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INTRODUCTION

The purpose of this thesis is to explain how different p-adic cohomology theories are
related one whit the other and to show that there are common fundamental aspects
that can be shared between different theories. The tool that allows us to investigate
such relations is the regulator map. It is a map connecting two different type of
algebraic/geometric worlds. The source has an intrinsic geometric nature, in which
the main objects are cycles on a variety. The target is the cohomology theory that
we choose to develop.Varieties can be defined over the complexes or over a discrete
valuation ring (in equi or mixed characteristic): in all these declinations, cycles have
different flavors and they may involve the topology of the variety but also its coho-
mology. The fact that this map change on the target, but comes by the same source,
make it like a bridge between the different theories that we want to study. In the
course of this study we have read about different kind of applications in number
theory or algebraic geometry and we understood that this kind of applications can
be reached after a deep knowledge of these connections. So, in this discussion we

want to stress these analogies and where they come from.

In the first chapter we deal with the definition of Higher Chow groups. The most
important properties are discussed and the Bloch argument of ([Blo86b]), on the

construction of higher cycle maps, is exposed.

In the second, we have described the theory which has motivated our work: that

is the Deligne-Beilinson cohomology. For a smooth variety defined over the com-



plex numbers, such a cohomology takes care of the Hodge filtration in the de Rham
setting as well as the topological singular cohomology of the associated complex
manifold. In the third chapter we deal with an algebraic construction of Abel-
Jacobi type maps using the regulator map of the Deligne-Beilinson cohomology. We
show how the mixed Hodge structure on the singular cohomology theory is used to

define such maps.

As in the classical case we have Deligne-Beilinson cohomology, we would like to find
an analogue in the arithmetic setting. Namely, we consider a scheme X defined over
a valuation ring in mixed characteristic. For such a situation we would like to have
a cohomology theory which mixes the Hodge filtration of the algebraic scheme de-
fined on the generic fiber (in characteristic 0), together with some invariant (under
the Frobenius operator) in the cohomology of the special fiber which is a scheme
over a characteristic p > 0 field. For this reason in the chapters fourth and fifth
we deal with the definitions and properties of cohomology theories of varieties in

characteristic p which are relevant for our work: the crystalline and the rigid one.

Finally, in the last chapter we consider various definitions of the syntomic cohomol-
ogy. The original ”syntomic cohomology” a’ la Fontaine-Messing ([FM87]) involved
the crystalline cohomology and its filtration. It admits a link to p-adic étale coho-
mology. Besser cohomology mixed the rigid cohomology of the special fiber with
the Hodge algebraic filtration of the generic one. Gros syntomic cohomology uses
the rigid cohomology complex of the special fiber with an analogous of the Hodge
filtration (but again on the rigid complex), which has not (a priori) a geometric in-
terpretation. A regulator map has been constructed for the Besser-rigid cohomology
([CCM13]): the aim of our thesis has been to compare all these cohomology theories
as well as to study the properties of the Gros syntomic cohomology. Unfortunately,
the lack of a geometric interpretation has not allowed us to prove that Gros syn-
tomic cohomology is a Bloch cohomology. However, along the lines of [CCM13]
(i.e. using higher Chow groups) a possible construction of a regulator map from the
Higher Chow groups has been proposed. Moreover it has been sketched a possible
approach to solve the compatibility with the maps to the étale cohomology of all

these various syntomic cohomologies.
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CHAPTER 1

HIGHER CHOW GROUPS

In this chapter we introduce a fundamental object in algebraic topology, that is
related in a deep way with the different cohomology theories that we will treat.
They are the generalization to higher dimension of the classical Chow groups in
algebraic geometry. This definition is made and discussed in origin by Bloch, and
it is used for proving different properties that are intrinsic and characterize most of
the ”"good” cohomological theories. In fact these objects are considered as the right
geometric object to study the so called "motivic cohomology”, that is understood as
the tool that bring together all different kind of cohomologies and relate them with
comparison maps. Actually, Bloch proved that the definition of the higher Chow
groups is isomorphic to a portion of K-theory ([Blo86a]) and for this theory there is
a way to construct regulator maps. This isomorphism suggests to treat the regulator
map as an ~higher cycle map”, but a direct connection between regulator maps and
higher cycle maps is not yet so clear. In the course of this thesis, we want to discuss
the so called regulator maps, as ”"higher cycle maps”, that is proved to exist in a
general setting over ”good” cohomological theories, as we will explain soon.

We will see in this chapter some fundamental property of the Higher Chow
groups for varieties over the ground field k. During this exposition we will follow
essentially [FF84], for the basic definitions in intersection theory and |Blo86a], for

the construction of higher Chow groups.



1. HIGHER CHOW GROUPS

Definition 1.1. An algebraic cycle on a scheme X is a finite, formal linear
combination of the form > ny[V] where V. C X is a subscheme and ny are integers.
Suppose that X is equidimensional, then Z"(X) is the free abelian group generated

by [V], with V' C X a subscheme of codimension r.

Definition 1.2. Let W a divisor with complete intersection, so given by equations
fi=---=fun=0. for a subscheme V- C X, we say that W and V' meet properly, if
codimy (W N'V') > n. By classical algebraic geometry we can define a cycle W - V.

% 9

Recall that the intersection ”-”is commutative and associative ([FF84]).

Definition 1.3. Let A" to be the affine simplex:
A" = spec(klto, ..., tn]/(to+ ...t — 1)).

Then we can define a map i : A™ — A™ associate to a map p : [0,m] — [0, n] weakly
increasing. More precisely i is defined by the morphism on the algebras, given by
0 if p71(k) =0

(k) =
Do p)=kti  else.

So for an injection p, 7 is the inclusion of A™ in A™ obtained by intersecting with
tx = 0 all the parameters ¢, which are not involved in A™, and this map is called
face map. It is a flat map. While for p surjective, all the parameters ¢, in which
p(k) is the same, degenerate in the same parameter in A", and this map is called

degeneration map. It is a proper map

Definition 1.4. Let define Z"(X,n) C Z"(X x A") as the free abelian group
generated by irreducible subvarieties V-.C X x A" of codimension r such that V

meets all faces of X x A™ properly.

Lemma 1.5. We have that Z"(X, e) is a simplicial abelian group.

Proof. We have to find for each p: [0,m] — [0,n] a functorial map
pr ZN(X,n) = Z"(X,m).

Case 1: p is surjective. Then ¢, : X x A™ — X x A" is flat. Then there exists the
flat pullback
pr=1,: ZN(X x A™) = Z"(X x A")

8



1. HIGHER CHOW GROUPS

. Case 2: p is injective. Then for each V' that meets properly i,(X x A™), define
p(V) = i, (X x A7) V.

Case 3: general case. Then for each p : [0,m] — [0,n] there exist p; injective and
p2 surjective such that p; o po = p. Then define p* = pj o pi. Then the functoriality
is immediate, since when T is closed subvariety of X x A™ that meets all the faces
properly, then the multiplicity of 7" in p*(V') depends on the length of Oi;l(v) with
respect to the generic point of T and this is a functorial property.

To prove that cycles that meet properly the faces are mapped in the corresponding
kind of cycles, let’s note that in the injective case, this is satisfied by definition.
For the general case, just consider that we have a commutative diagram that, by

functoriality, is commutative also at level of higher cycles:

X X A" 2 X x Am
X

Since iy, (i) corresponds to an injective p : [0] — [0,m] ([0,n]), we have that
i*. (V) meets X, the face of codimension 0 in X x A™, properly. But i (V) =
p*(V)-X and so p*(V') meets X properly. By induction on m, fixed a face 0 C A™, we
can find an i, : X x A? — X x A™ such that it is induced by a map 7 : [0, p] — [0, n]
injective with p < m and such that its image is X x o. By induction we have that

7*(V) meets properly X x ¢ and p*(V) - (X x o) = 7%(V), that means that p*(V)

meets X X o properly. ]

Definition 1.6. Let 0; : Z"(X,n) — Z"(X,n — 1) be the pullback map of cycles
associate to i : A"t < A" defined by t; = 0

Now consider Z"(X, e) as a complex concentrated in negative degree. Then we can

define a map of complex by posing
0= (~1)'0;: Z'(X,n) = Z"(X,n - 1).
Then it is a simple computation to verify that d o 6 = 0. Then define

Definition 1.7. For X an equidimensional k-variety, define

CH"(X,n) = H"(Z"(X, )

9



1. HIGHER CHOW GROUPS

Lemma 1.8. Forn =0, CH"(X,0) ~ CH"(X)

Proof. The classical Chow groups C'H"(X') modulo rational equivalence are obtained

as cokernel of Z"(X,1) 2 2"(X,0), and so coincide with the definition posed. [

Proposition 1.9. The complex Z7(X,e) is covariant functorial for proper maps

and contravariant functorial for flat maps.

Proof. Let f: X — Y be a proper map. Then fx1: X x1 =Y x1isalsoa
proper map. Now by the properness, we deduce that for a subvariety Z C X x A"
and m <n, and 0 : A™ — A" that

F(Z)NAY x A™) = f(ZN X x A"

and

codim(f(ZNX x A")) > codim(Z N X x A").

Then is well defined the pushforward for proper maps (with the right shift in grading)

f« such that we have the following diagram:

Z4(X,n) —L— Z*(X,m)
|- |
Z(Y,n) —L— Z*(Y,m)
The fact that it commutes follows by a theorem of ([FF84], Proposition 6.2), applied
to ZNX x A™ f(Z), Z, f(ZN X x A™), and considered rational equivalence to

codimesion 0. The flat case follows also by a theorem in ([FF84] Proposition 1.7). [

Now let Y be a smooth k-variety and W = {W;,..., Wy} a collection of closed

algebraic sets of Y.

Definition 1.10. Define the subset Z;,,(Y,n) C Z7(Y,n) to be the free abelian group
generated by the irreducible cycles of Y x A™ meeting all W; x A™ properly for each
A™ C A",

Proposition 1.11. Assume Y smooth and W C Y a local complete intersection.
Then the pullback of cycle induced by the inclusion W — Y, induces a map on the
level of complexes

Z5(Y ) ZT(W,e).

10



1. HIGHER CHOW GROUPS

Also, if W = {Wh,..., Wi} with W; C Wy C Y fori > 2, then there is a map of
complezes:

Zy(Y e) = Zjy oy, (W1, e).

Proof. The only request to satisfy for being a map of complexes is the commutativity
of the suitable diagram, but this is equivalent to request that the intersection of

cycles is commutative. O

The next is a proposition that represents a moving lemma for higher cycle classes,
and we refer a proof to the article of Bloch ([Blo86a]). We will use it for transporting

functoriality on higher Chow groups.

Theorem 1.12. Let Y be a smooth k-variety, VW a collection as above of closed
subsets of Y. AssumeY is either affine or projective. Then the inclusion Z3,,(Y, ®) C

Z"(Y, e) is a quasi-isomorphism.
Proof. See ([Blo86a], Lemma 4.2). O

To remove the hypothesis of affine or projective, Bloch at first proved a strong

formulation of the moving lemma, with the only quasi-projective hypothesis.

Theorem 1.13. Let X be a smooth quasi-projective variety and U a Zariski open
set of X. Denote Y = X — U. Suppose the codimension of Y in X isn. Then we

have a quasi-isomorphism:
ZrM (X, e)/Z7(Y,8) — Z'T (U, e). (1.1)
Proof. See ([Blo86a], Theorem 3.3). O

It is important to point up that this quasi isomorphism generates a long exact

sequence in Chow cohomology.

Proposition 1.14. Let Y C X a subvariety of codimension d. Then there is a long

exact sequence:
o= CH*(Y,n) = CH*(X,n) = CH (X —=Y,n) — ...
Proof. We have a short exact sequence:

0— ZUY, 8) = Z*(X,0) = Z*(X,0)/Z" (Y, 8) = 0.

11



1. HIGHER CHOW GROUPS

Then by the long exact sequence induced in cohomology, we have the long exact

sequence:
ce = CHYY,n) — CH*(X,n) — H*(Z*(X,)/Z2*%(Y,®)) — ...

Then by the quasi-isomorphism of the theorem (|1.13)), we have that the proposition
holds. O

As corollary we can prove the following:

Corollary 1.15. LetY be a smooth quasi-projective variety, and VYV as above. Then

the inclusion Z7,,(Y,e) C Z"(Y, ) is a quasi-isomorphism.

Proof. We proceed with induction on the dimension n of Y. For n = 0,1, Y is
affine or projective, so the proposition holds, in this case, by theorem [1.12| For
n > 1, consider the projective closure Y of Y, and call Z =Y — Y. Then chose an
hypersurface X such that Z ¢ X and X = X — Z contains a dense Zariski open
in X. Then X has dimension n — 1 and Y — X is affine (since a complement of an
hypersurface in a projective variety is affine). Then by the theorem we have a

following commutative diagram of distinguished triangles on the rows:

ZWQ)((X7 O) — Zw(Y,.) e Zw(Y—X, .>

| | |

Z(X,0) — Z(Y,e) ——— Z(Y — X o)

Then the external vertical maps are quasi-isomorphism: On the left, by inductive
hypothesis. On the right because ¥ — X is affine. The fact that the rows are
distinguished triangles, implies that we can apply the five lemma and it shows that

the middle vertical map is a quasi-isomorphism too. O

Proposition 1.16. Let f: X — Y be a morphism of k-variety. Suppose that'Y is

smooth and quasi-projective. Then there is a functorial pullback map:
ff:CH*(Y,n) - CH*(X,n). (1.2)

Proof. Let 1y : Y — Y be the identity map. Then we have a map f x 1y :
X xY — Y xY. By the smoothness of Y we have that Y x Y is a local complete

12



1. HIGHER CHOW GROUPS

intersection, so also Ay C Y x Y is local complete intersection. Then the graph

I'y=(fx1y) " (Ay) C X x Y is a local complete intersection. Then define

T,={y €Y :dim(f~Y(y)) > dim(X) — dim(Y") + i}. (1.3)

Then if Z is a closed subvariety of Y x A™ that meets properly T; x A", then Z x X

meets properly I'y x A™. Since I'y ~ X, define
F1(2) = (Z x X)- () x A").

Then if T = {Ty,..., Ty} we have by corollary that

Then the definition is well posed since at level of cohomology it is independent on

7. The functoriality follows by the fact that I';oy = I'; o I'. O]

Another fundamental property is the homotopy property for higher Chow groups.
Its proof constitutes a big work in the article of Bloch ([Blo86a]). We are limited to
cite and use the result and try to understand the relationship with cohomological

theories.

Theorem 1.17. Let X a quasi-projective k-variety. Then the projection X x A™ —
X induces a pullback map

Z'(X,0) = Z"(X x A" e),
that is a quasi-isomorphism.

Proof. See ([Blo86a], Theorem 2.1) O

The other fact about the complex Z7(X,e) is that it is a complex of sheaves over
a reasonable topology on X. An interesting fact is the following. Consider X, a

smooth variety with the Zariski topology. Then holds the following:

Theorem 1.18. The association
Ur— Z"(X,0)/Z"(X —U,e) =:T'(U,S,) (1.4)

constitutes a flabby complex of sheaves.

13



1. HIGHER CHOW GROUPS

Proof. The flabby condition for S, is clear by definition. We have to prove that
actually they are sheaves. This means that we have to prove the exactness of the

following sequence: for open U,V C X then we have

0— Z7(X,n)/Z" (X = (UUV)) = Z'(X,n)/2"(X — Un)®Z"(X,n)/Z"(X — V,n)
= ZN(X,n) /27X — (UNV),n)

Since X — U and X — V are closed sets, we have that Z"(X — (UUV)) = Z"(X —
U)NZ"(X — V), that means, that the first map in the sequence is injective. Then

we have to prove that the kernel above is equal to the image of this injective map.

Let (zp,2v) € Z2"(X,n)/Z"(X —U,n)® Z"(X,n)/Z"(X — V,n) such that
2p—zy € Z'(X —(UNV),n).

Denote with zi7, zy, the Zariski closures of respectively zy,zy in X x A", The
condition on zy and zy means that they glue together on a section z on U UV,
and the Zariski closure z of z in X x A™ has not any component with support in
X — (U UV). We must show that Z € Z"(X,n). To do that, notice that we can
write Z = zZy + wy = Zy + wy where supp(wy) C X — U and supp(wy) C X =V
and so zy — 2y = wy —wy € Z7(X,n). Then we can write wy = wy; + wy,y where
wy, € Z27(X,n) and supp(wy,) ¢ X — (U U V), while supp(wyy) C X — (UUV).
Then

zZ=zy+wy +wyy.
But wyy = 0 since there is no support in X — (U U V) for z and so
z=zy+wy € Z"(X,n).
O

A corollary of this fact is the useful spectral sequence that relates the Higher Chow

groups:
Corollary 1.19. There is a spectral sequence of the form:

HP (X, HU(X, Z"(—,e))) = CH"(X,—p—q). (1.5)

14



1. HIGHER CHOW GROUPS

Proof. By the theorem we have that the hypercohomology and the cohomology
of global sections are isomorphic (it follows by flabby condition). More precisely we
have that

CH"(X,n)=H ™I[(X,S]) =HT"(X,S,).

Then the Grothendieck spectral sequence for the hyperchomology writes as:

HY(X, HY(Z"(—,0))) = HP(X, S))=CH(X,—p—q).

O
With this terms we can deduce a vanishing property for the higher Chow groups:
Proposition 1.20. Let CH"(n) the sheaf associate to the datum
U+— CH"(U,n).
Then for i > n follows that
H'(X,CH"(n)) = 0.
Proof. With this notation the spectral sequence above has the form:
HY(X,CH"(n)) = CH"(X,n —1).
Since n — 7 < 0, the proposition follows.
O

This thesis will deal also with a slightly modification of the Higher Chow groups
that is referred to smooth schemes defined over a discrete valuation ring V, with
residue field £ and fraction field K. If X is a quasi-projective smooth scheme over V
the definition of the group Z"(X/V,0) is given by flat and integral cycle over V, in
a such way there are a non trivial cycle Zx over the general fiber X xy, K over K,
and a cycle Z over the special fiber X Xy k over k. In this context an n-simplex

is defined as

A" := Spec(Zxo, ..., xn]/(xo + - - + x5 — 1)) (1.6)

Formally all the previous definitions are the same.
A remark is that the complex Z"(X' /V, ) is not only a complex of sheaves for the
Zariski topology but also for the étale topology on X' ([Gei04], Lemma 3.1).

15



1. HIGHER CHOW GROUPS

Now we want to explain the relationship between higher Chow groups and
cohomology. Recall that for "good” cohomology theories, we have a cycle class

map, that means a functorial map
" : CH"(X) — H*(X)

defined for X smooth. Actually for each Z € Z"(X) is defined a cycle class n; €
HZ'(X) where Hz denotes the cohomology with support in a closed subset of X.
In the higher context, we play with a cohomological theory in "two variables”, that

means a ”"good” theory of the form
X — H*(X, o)

and we expect to construct an ”higher cycle map” or "regulator” map E| that is a

functorial map

™" CH"(X,n) — H” "(X,7)

We will see that this behaviour of double index in cohomology is the common one,
also in the singular cohomology for example. In fact often we consider sheaves and
their twists that make the cohomological theory bigraded. We will see in some detail
further. We want now to explain under which condition a cohomological theory is
"good” and when it is possible to construct a regulator map. This is a quite general
fact and this generality is the key thanks which it is possible to formulate some
connection with the different cohomological theories here exposed. For integers a, b

let H*(X,b) a cohomology theory of schemes X that satisfies the following axioms:

1. Given a subscheme Y of X, there exists a cohomology with support in Y such

that satisfies a localization exact sequence of the form:
oo = HE(X,b) — HY(X,b) — H*(X = Y,b) — HE(X,b) — ...

This exact sequence is contravariant functorial for cartesian squares of the

form:
Y ——— X

L

Y — X'

Ithe terms regulator often is used in the context of K-theory. During this paper our objective
is "replace” in some sense the K-theory. The translation of this map in our context is the more

appropriate ”higher cycle map”.

16



1. HIGHER CHOW GROUPS

and covariant for Y/ CY € X
2. The homotopy property holds. It means that for any ¢ we have that

HY(X,b) ~ H'(X x A", b)  Vn>0.

3. There exists a cycle class map: for a pure codimesion r subscheme Y C X
there exists a cycle class

cd(Y)e HF(X,r)

such that it is compatible with pullback, i.e foramap f: X' - X andY Cc X
such that f~!(Y") has codimension r we have that clx:(f*Y) = f*clx(Y).

4. The weak purity property holds. It means that for Y C X of pure codimension
r we have that

Hy(X,b)=0  Vi<?2r

When these properties hold, we call a such cohomology a Bloch cohomology theory.
In fact thess axioms are presented in |[Blo86b| were it is introduced the following

"method” to construct "higher cycle maps”:

Theorem 1.21. Let H*(—,b) to be a Bloch cohomology theory in the above sense.
Assume that H*(X,b) is an hypercohomology over a topology in which Godement
resolutions there exist, computed by a complexr K% (b) contravariant functorial and
with Kx(b)" acyclic for each n (this assumption is endowed in the existence of

Godement resolutions). Then there exists a functorial map
™™ CH"(X,n) — H* ™(X,r) (1.7)
that in the case n = 0 coincides with the classical cycle class map.
Proof. Let’s consider the simplicial scheme built below:
XZX xAIZX x A2
We associate to this diagram the double complex

D(X % A, Kxxan (b))

17



1. HIGHER CHOW GROUPS

with p < 0. Then for reasons of convergence we choose a truncation of the simplicial

complex above, and consider for N >> 0 even and m > —N
A™ =15 NT(X X AT Kxa-m(b)?)
for m < 0. Then there is a spectral sequence
EM = HY(AY™) = H™(tot(A**)).
Then by the homotopy property we have
EP' = HY(X x A™™,b) = H'(X, D).

Then the differential map d' can be the identity or 0 (as we will see in the proof of

c.f. proposition 6.11)).
Then we obtain that

HYX,b) m=0
Byt =

0 otherwise.
Note that this conclusion on the E5 terms is the same without truncation, where
the only problem is about the convergence of E;. Then we can define
EfY = lim Hip (X x AT™b),
ZeZY(X,—m)
where |Z| = supp(Z). Now the rest of the construction is the same as we will follow
in the proof of proposition [6.11} Since that proof is much detailed and at this stage

it depends only by having a Bloch cohomology theory we refer the reader to it.

18



CHAPTER 2

DELIGNE-BEILINSON COHOMOLOGY

In this chapter we introduce the object that permits and motivates the developing of
the next theories. It will be the "trace” for the following discussion, and our objective
is to stress some peculiar behaviour of this cohomology theory that is expected to
share with other suitable theories. We will work over the field of complex numbers
C and the objects of interest are projective, smooth varieties over C.

The starting point is the classical de Rham cohomology. The basic idea to formulate
a "smaller” cohomology theory, taking the relevant information about the de Rham
cohomology, is to "truncate” the de Rham complex. Let X be a smooth, projective
variety over C. We endow X by analytical structure, in such way that it is a manifold

with differential forms. The main references for this part are [EV8§| and [PSO§]

Definition 2.1. Let Z(r) = (2mi)"Z C C forr > 0. Let define the Deligne complex
Z(r)p: 0 = Z(r) = Ox — Qe = Wyje = - = Ve = 0. (2.1)
The first map is the restriction over (27:)"Z of C — Ox.

Definition 2.2. The the Deligne cohomology is the bigraded hypercohomology of the

Deligne complezes, where X 1s the variety endowed by the analytical structure:

HH(X,r) = H (X, Z(r)p). (2.2)

19



2. DELIGNE-BEILINSON COHOMOLOGY

This cohomology theory has a natural cup product. In fact, on the level of complexes
it is defined as:

Z(r)yp @Z(r")p = Z(r +1")p
x-y  deg(z)=0
rUy=4qxzAdy deg(x)>0,deg(y) =1 (2.3)

0 else

\

Then the differential acts as:
dzUy) =dr Uy + (—1)%*@z Udy (2.4)

Lemma 2.3. the U product is a morphism of compleres associative and

anticommutative. It makes up a ring structure on the group

P Hp (X, 7).
Proof. For the associativity, let x,y, z respectively € Z(r)p, Z(r")p, Z(r")p. Then
we have )
xy Uz deg(z) =0
(zUy)Uz=1q (zAdy)Uz deg(z)>0,deg(y) =1
0 otherwise
TYz deg(z) = deg(y) =0
xy Ndz deg(y) > 0,deg(x) = 0,deg(z) = 1"
rANdyNdz deg(x) > 0,deg(y) =1',deg(z) = 1"
0 otherwise
while
ry2 deg(z) = deg(y) =0

x(y A dz) deg(r) = 0,deg(y) > 0,deg(z) = r"
rU(yUz) =

zA(dyUz) deg(x)>0,deg(y) =1, deg(z) = 1"

0 otherwise
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;

ryz deg(x) = deg(y) =0
Ty Ndz deg(z) = 0,deg(y) > 0,deg(z) =r"
rANdyNdz deg(x) > 0,deg(y) =1',deg(z) = 1"

\ 0 otherwise

For the anticommutative property, we have to prove that tUy = (—l)deg(‘”)deg(y)yUx
where the equality is considered in the homotopy class. An homotopy between x Uy

and (—1)d9(@)desw)y U 1 is provided by

h:Z(r)p ®Z(r")p — Z(r +1")p

(

0 if deg(x) =0 or deg(y) =0

TRYF>40 if deg(z) = r,deg(y) = r’'

(=1)%9@) (z Ay)  otherwise

\

Then we consider that d(z ® y) = dr ® y + (—1)%@z ® dy, and that d(z A y) =
dx Ay + (—1)%9@)+1g A dy. Then by linearity of h on the components of the tensor

product, we can compute that

hd(z @) +d(h(z @y)) = h(dz @ y) + (=1)® @ h(z @ dy) + dh(z @ y)

=zUy— (_1)d69(w)deg(y)y U z.

In fact it easy to verify that when deg(z) = 0 or deg(y) = 0 we have 0 on both sides
or one between the terms x A dy and —dz A y.

When deg(x) = r and deg(y) = 7’ we have that the LHS = x Ady + (—1)99)dz Ay
and the RHS = x Ady — (—1)39@)desW)y A dy = 2 A dy — (—1)4e9@)(degw)+deg(dy)) ga. p o
and by the fact that deg(y) + deg(dy) is odd, we see that RHS=LHS. In the case
that deg(x) # 0 and deg(y) # 0 but not in the previous case, we have the simple
computation on the LHS:

(=1)%99D da Ay 4+ 2 A dy + (=1)9@da Ay + (=1)29@ T Ay =0

and by definition the RHS is 0 too. ]

Note that in the case r = 0, the Deligne cohomology groups H3 (X, 0) are just the

singular cohomology groups of X.
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The relevant aspect of this theory is the following description:
Let
FrQ%:0— Qy — Ot — .. (2.5)

the trivial filtration of the de Rham complex. There is obvious inclusion map
v FTQS — O%.

Then consider Z(r) as the trivial complex, in which Z(r) is in the degree 0. Then

there is again an obvious inclusion
€:Z(r) — Q%.
Then define the Deligne complex as the following fibered cone:
Z!'(r)p := Cone(e — i : Z(r) ® F'Q% — Q%)[—1].

It in not difficult to prove that there is a quasi-isomorphism between the two

definitions:
Lemma 2.4. There is a quasi-ismorphism o : Z(r)p — Z'(r)p.
Proof. We have to define ; : Q%' — Q! such that

Z(r) —= Ox —4— ... y QT — L ot —————— 0

bl b b

Z<T) — > OX 0 > ... QTXTZ ﬁ) Q?}”{ @ QrXfl —or QTX+1 @ QTX

~

is a commutative diagram. In fact let’s define a;(w) = (—1)w for i = 0,...,r — 1,
a,(w) = (—1)"(dw,w). Then 6,_1(n) = (0,dn) and d,(n) = (—dn, = + dn). Then

we can see that the diagram above commutes, since
—di(a(w)) = =6((-1)w) = (1) di(w) = aidi(w).

then ker (9,)/Im (0,-1) = {(v,n) : dn = ¥} modulo exact forms 7. But this group is
the same of ker (d,)/Imd,_;. O

This description allows to compute the cohomology through long exact sequences

induced by the structure of the cone and recalling that in general for complexes
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A*, B*,C*, we have that

Cone(A* @ B* — C*)[—1] ~ (2.6)
Cone(A* — Cone(B* — C*®))[—1] ~ (2.7)
Cone(B* — Cone(A* — C*))[—1]. (2.8)

Moreover we notice that Cone(F™Q% — Q%) ~giso 0% = Q% /F"Q%. Then by the

long exact sequences for the cone we have:

Proposition 2.5. The following sequences are exact:
1. -+ — HR(X,r) » H"(X,Z(r)) ® FFTH"(X,C) - H"(X,C) — ...
2. -+ — H}X,r) - H"(X,Z(r)) - H"(X,C)/F"TH"(X,C) — ...

This kind of description allows to generalize a description of a possible cohomology
in the non proper case. Assume then that X is a smooth manifold over C. The
idea of Beilinson is to choose a good compactification of X in a proper manifold X,
that means that there exists an open inclusion j : X < X such that D := X — X
is a mormal crossing divisor, i.e. locally in the analytic topology, D has smooth
components that intersect transversally.

When a morphism of manifolds f : Y — X is given, one can choose compactifications
X and Y of X and Y respectively, such that f lifts to a morhpism f : YV —
X. The refining of the Deligne cohomology in this setting is the Deligne-Beilinson
cohomology that is obtained by replacing the differential Q%, with Rj.Q%, F"Q%
with F"Q% (log D), and Z(r) with Rj,Z(r). Then we define the following:

Definition 2.6. The Deligne-Beilinson complex of a smooth variety X is given by

the following fibered cone:
Z(r)p = Cone(e — i : RjZ(r) ® F"Q%(log D) — Rj.Q%)[—1]. (2.9)
Then the Deligne-Beilinson cohomology of X are the hypercohomology groups :
HA(X,r) = H(X,Z(r)p) (2.10)

The first problem is the dependence by the compactifications chosen. Actually
this definition does not depend by them. If (X,j) and (X’,;j') are different
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compactifications of X, note that by the definition of the complex of fibered cone,

the long exact sequences above still hold. In particular we have the exact sequence

o= HY(X, Zp(r)) = H*(X, RjZ(r)eH" (X, F'Q%(log D)) — H"(X, Rj.Q%) — ...

(2.11)
Then there is the analogous one for (X’,j'). But by the good compactification
properties any morphism of manifolds f : X’ — X induces an isomoprhism f* on

the level of hypercohomology groups
H"(X, Rj.Z(r))eH" (X, F'Q% (log D)) — H* (X', Rj.Z(r))®oH" (X', F"Q%,(log D"))

and
H"(X, Rj.Q%) — H" (X', Rj.Q%).
Then, by the five lemma this implies an isomorphism for the Deligne-Beilinson

cohomology. This definition is functorial on X. Given an f : Y — X, and a lift f,

then at the level of complexes we have a pullback map

o Z(r)px — f*Z(T){)y (2.12)

and this induces a map in hypercohomology. It also possible to define a ring structure
on this cohomology as done before, but for this construction and details we mention

and refer the reader to [EVS8§].

2.1 Cycle class in Deligne cohomology

The object that we want to introduce, is the key object that permits to construct
higher cycle maps or "regulators” maps as discussed in the first chapter. We will
interpret this regulators as higher Abel-Jacobi maps in the next chapter. To start,
we must recall the main facts about the cycle class in the de Rham cohomology and
singular cohomology. Through this section X will be a smooth compact manifold
over C. If Y C X is a closed irreducible subvariety of codimension r in X then there
exists a cycle class cl(Y) € H*(X,Z) that is of pure type (r,r): that means that
it maps on the level r of the Hodge filtration of H"(X,Z) ® C =, ,_, H"(X).
Since H* (X, F"Q%) = FTH*(X;C), cl(Y) induces a fundamental class on the
Hodge filtration clyq,(Y) € H* (X, F*Q%) and the inclusion Z — C induces a map
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that sends cl(Y) in clc(Y) € H*(X,C). Similarly, the inclusion F"Q% — Q%
induces a map that sends clyqy(Y) in clc(Y). To be more precise, upon factors
by (2mi)", we can consider cl(Y) € H?(X,Z(r)) and the inclusion Z(r) — C is
the morphism that make possible all the compatibility above. We also recall that
the fundamental class in the singular cohomology comes out by a representative
in the local cohomology, that is a Thom class 7(Y) € H¥ (X, Z(r)). What is less
obvious is that all these cycle classes can be refined in the local context with all the

compatibility that can be satisfied. More precisely the following theorem holds:

Theorem 2.7. Let X be a compact algebraic manifold and let Y C X an irreducible

subvariety of codimension r. Then the following holds:

1. It is possible to define a Hodge-Thom class
THdg<Y) € H%/T(X, FTQB()

such that the inclusions F"Q% — Q% and Z(r) — C sends Thqy(Y) and

respectively 7(Y) in the same class 7¢(Y) € HZ (X, C)
2. Trag(Y) maps to cluqagyy by the forgetful map of support.
3. There exists a class 7" € Hy (X, Q%) such that the following relations hold:

(YY) —— Tha(Y) —— 7(Y)

! !

" (Y) —— clpgg(Y) —— cle(Y)
where the morphisms are given by the following commutative diagram:

HY (X, Q) «—— HY (X, FrQ%) —— Hy (X, C)

| | !

H¥ (X, ) +—— FTH*(X,C) —— H¥(X,C)

Proof. See ([PS08], Theorem 2.36)
[

As corollary is not difficult to define a Deligne-Thom class that permits to define a

cycle class in the Deligne cohomology:
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Corollary 2.8. Let Y C X a subvariety of codimension r. Then there exists a

Deligne-Thom class

(V) € H¥ (X, Z(r)p)

such that it maps to 7(Y') and Thae(Y'). By forgetting supports it defines a class
cdp(Y) € HE(X,Z(r)) such that the natural maps Z(r)p — F"Q% and Z(r)p —

Z(r) respects the fundamental classes.

Proof. Let’s observe at first that Hy (X, Z(r)) = 0 for dimension reasons. Then

the long exact sequence for the Deligne (local) cohomology becomes:
0 — HY (X,Z(r)p) — HY (X, F'Q%) @ HY (X, Z(r)) — HY (X,C) — ... (2.13)

Then by the previous theorem the element (7p4,(Y), 7(Y")) maps to 0 by the second
map on the sequence above. Then by exactness there exists a unique element
p(Y) € H¥ (X, Z(r)p) and again, by the previous theorem, it satisfies the claimed
compatibility.

O

Remark 1. The definition of the Deligne-Beilinson cohomology depends by the
analytical structure of the variety. But this definition can be generalized to define
a cohomology theory for schemes endowed with Zariski topology. More precisely
in (JEV8S8],5.5) are described complex of sheaves Z(r)p, zq for the Zariski topology,
with the property that, when X is smooth (variety over C) and we endow it with
the analytic topology, by the GAGA theorem their hypercohomology is isomorphic
to the Deligne-Beilinson cohomology. Moreover the definition of these sheaves on
the Zariski topology has a product structure in the derived category. This shows a

first example where we leave the analytic setting towards a more algebraic setting.

In the next we define an higher cycle map and we see its description in terms of higher
Abel-Jacobi maps. We are interested mainly to stress some peculiar behaviour of this
cohomology that allows to take out the necessary tools to develop other theories with
a more algebraic setting. So it is important to have in mind the different structures

on the variety, that we will recall when it is necessary.
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CHAPTER 3

HIGHER A-J MAP

The aim of the following discussion is to provide a definition of an Abel-Jacobi map
extending one discussed in [EV88|. More precisely we have seen by Bloch’s work
([Blo86b]) that there exists a natural generalization of a cycle map for Bloch-Ogus
cohomological theories: they arise from the construction of the Higher Chow Groups
(IBlo86a]). From this we can derive a simple extension of Abel-Jacobi maps in terms
of mixed Hodge structures (see |PSO8] for the main definitions and properties of
MHS.).

Let X be a projective, smooth variety over C. We have have an exact sequence of

sheaves by the definition of Deligne complex as follows:
0 —— QF[-1] — Z(p)p — Z(p) — 0
from which derives the long exact sequence in Hypercohomology:

o= HFYX Z(p) S B H(X,QF) — HE(X, Z(p)) — H*(X, Z(p)) 5 mk(x, QF) — ...
N’ N’

_ HkF-l(x0 _ Hkx©
T FPHF-1(X,C) T FPHF(X,C)
(3.1)

The equality follows by notice that complex of holomorphic differentials can be

viewed as

Qx = Cone(QF[—1] > FPQy)
from which we have the exact sequence
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0 —— FPQx —— QF P FPQx = Qx > QY |
and by the derived exact sequence
Lo HOUX,QF) S HYX, FP) — HYX, Qx) — HYX, QF) S HOY(X, FP) = .

Recall that HY(X,Qx) ~ HI(X, C) between the De-Rham and singular cohomology
and that Im (H?(X, FPQx) — HI(X,Qx)) ~ FPHI(X,C). We split the long exact

sequence to obtain the short exact sequence
0 — cokera —— HE(X,Z(p)) — ker 3 —— 0.

Now
H’“*l(X, C)
FrHMY(X,C) + HY(X, Z(p))

coker o =

and

ker 3 = H*(X,Z(p)) N FPH*(X,C)

and so it rewrites as:

H*(X,C)

07 BHFI(X.C) 1 HY (X, Z(0)

— H} (X, Z(p)) — H*X,Z(p)) N FPH*(X,C) — 0.
(3.2)
Let k = 2p — n and define

H*» (X, C)
DN o
j <X) T FPHQP_n_l(X, (C) + HQP_”_1<X, Z(p)) .

Recall that in (2.1) we have defined a cycle map for the Deligne-Beilinson
cohomology:

Bl : CH?(X,0) — HX (X, Z(p)).
By the method exposed in , then it is defined an higher cycle class map
Bl,,, : CH?(X,n) — HX (X, Z(p)).
Moreover we define

CHY

hom

(X,n) := ker (OHP(X, n) 2o g2 X Zp)) — HP (X, Z(p))) .
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We observe that if [Z] € CH}  (X,n) then by the long exact sequence (3.1), it
follows that

Bl, (7)) € ker (HZ™"(X, Z(p)) — H* (X, Z(p))) =
Im (H* "~ 1(X, Q) & HE (X, Z(p)))

N HZp—n—l(X7 Q?{p)
o ker ¢

= coker v = JP"(X).
This means that Bl,, induces a map

®,,: CH}

hom

(X,n) — JP"(X) (3.3)

such that the following diagram

Qp’nT Blme (34)

commutes.

3.1 Review on the case ¢,, (n = 0)

Let’s observe that in the case n = 0 the diagram (3.4)) corresponds to the following

commutative diagram:

e}

0—— 2/ (X)) — ZP(X) » CHP(X)

‘/q)py() J/BZP’O ‘/

0 —— J(X) —— HZX(X,Z(p)) — H*(X,Z(p)) N H??(X,C) —— 0

(X,0) = 27

hom

In fact in the case above described we claim that CHY (X)/rat.eq.

hom
and that a cycle rational equivalent to 0 is the 0 class in HX(X,Z(p)). The last

sentence is proved in [[EV88|,Prop.7.6]. In particular we know the cycle map factors

through CH?(X,0) = ZP(X)/rat.eq. :

27(X,0) » HE (X, Z(p))

CH?(X,0)
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Recall that the composition
27(X,0) = Hp'(X, Z(p)) — H* (X, Z(p))
is the cycle map for singular cohomology and that

Zp

hom

(X) =27

om (X, 0) = ker (27(X,0) — Hy (X, Z(p)) — H* (X, Z(p)))
so that the following diagram commutes:

0—— 2P

hom

(X7 0) - ZP<X7 0) ’ H%p(X7Z(p)) - H2P(X,Z(p))
\\ /
CHP?(X,0)
where ¢ is defined by the obvious composition.

In this way we obtain the exact sequence

0 —— Imd — CH?(X,0) — H?(X,Z(p))

and so CH?

hom

(X,0) =Imé = 27

hom

(X)/rat.eq.
This proves that the cycle map defined by Bloch in the case n = 0 is simply the

factorization of the classical cycle map modulo rational equivalence.

3.1.1 Different description of ®,,

Now we can derive an alternative description of the map ®,, assuming we have a

cohomological theory that satisfies:
1. Weak purity: H(“Z'(X) =0 for |Z| := supp(Z), Z € ZP(X) Vk <2p
2. Homotopy axiom: H*¥(X x Al) = H¥(X) Vk
3. Mixed Hodge structure.

All the conditions are satisfied by the singular cohomology, in particular we can
assume that the morphisms which involve in the discussion arise from the mixed
structure. For the moment consider the case n = 0. From the long exact sequence
of cohomology with support in |Z| and from weak purity we have the following:

HE (X, 2(p)) — H? (X, Zp)) & B /(X — | 2], 2(p)) — HZ(X,Z(p)) > H?(X. Z(p))

J/

~~
=0

(3.5)
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2 2 2
Observe that H 7 (X, Z(p)) ~ H(|Z|,Z) = @y¢|z Z and FPH 7 = Hy. Moreover
the exact sequence is in terms of mixed Hodge structure, so it respect such structure.
In particular we have an exact sequences’ diagram for which we can apply snake

lemma:

~ . ~ ‘/

0 —— FPH?» 1(X,C) —— EPHQP*I(X— |Z],C) —— FPkery =kery —— 0

~ ~

0 —— H*(X,C).——— H* (X —|Z],C) ——— kery ———— 0

H2p71(X7(C) \ H2p71(X_‘Z‘7(C) \ O
FrH2p—1(X,C) " FPH2P-1(X-|Z|,C) ’

In this way we see [ induces an isomorphism

H2p71(X7(C) ~ H2p71(X_|Z|7(C)
FrH»-1(X,C) ~ FrPHZ-1(X —|Z],C)

and so in particular

_ H*1(X,C) N H*1(X -1Z],C)
- FPHPUX,C) + H¥ Y(X,Z(p)) ~ FPH#-YX —[Z],C) + H*» (X, Z(p))’
(3.6)

If Z e 2! (X) there exists a unique (modulo Im ) éz(2) € H*~Y(X — |Z],Z(p))
that maps in H*~1(X — |Z|,C) and after take the class in the quotient [3.6] by

T (X)

isomorphism there is a unique 1, 0(2) € JP°(X).
Definition 3.1. ¢, : 2/ (X) — JPY(X) is called Abel-Jacobi map.
Theorem 3.2. We have that 1,9 = ®p .

Proof. See [EV88] Prop.7.11. O

3.1.2 Extensions in MHS

Before to go further let’s observe the role of the long exact sequence(3.5|in the context

of the extensions in the MHS (mixed Hodge structure). An equivalent formulation
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of the 3.2 is:

0 — Extyms(Z, H*~Y(X, Z)(p)) — HZ (X, Z(p)) — Homyus(Z, H*(X, Z(p)))
(3.7)
from the relation Extyms(Z, H*~ (X, Z)(p)) = JP°(X) (|[PS08|, Theorem 3.31 (1)).

We want to understand how a cycle class defines an extension class. Let’s recall that

a cycle class is given by a map Z — H, |2§| (X,Z(p)), and when it is nullhomologous

it means that when we forget the support it is the zero map (for Y € |Z| yields
i[Y] = 0 where 7 is defined in [3.5]). Choosing a pullback of Z coming from the [3.5]

we obtain the following extension :
0— H* YX,Z(p) = E—=Z —0 (3.8)

where E ~ H*1(X Z(p)) ® ¢z(Y) determines a unique extension class. This will

be the more general framework on which we will define Abel-Jacobi maps.

3.2 Generic ¢,, (n > 0)

We want now to generalize this construction for a generic number n. Let
A" := Spec (Clto, ..., ta]/(to + ... + t, — 1))

the algebraic n — simplex. The faces are the subsimplexes of A™ given by {t; = 0} =:
H;. We define
oA" = J H.
i=0

For the singular cohomology theory we can compute

. Z(p) ifi=0ori=n—1
H'(OA", Z(p)) =

0 else

If Z € 2°(X,n) we define
0Z = Z N (X x 0A").
Let us indicate U := (X x A") —|Z| and 0U = U N (X x 0A™).

We collect some useful remarks:
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Lemma 3.3. With the notation above we have
1. H(X,Z(p)) = H(U,Z(p)) i<2p—1
2. H(X x OA™, Z(p)) = H(OU,Z(p)) i<2p—1
3. H{(X x 0A™ Z(p)) = H(X,Z(p)) ® H~""Y( X, Z(p)).
Proof. 1) We have a long exact sequence in local cohomology with support:

0= Hiy(XxA" Z(p)) = H'(Xx A", Z(p)) — H'(U,Z(p)) = Hi5 (X x A", Z(p)) = 0

where the 0’s come from weak purity and H*(X x A") = H*(X) by homotopy axiom.

2) It is analogous to 1) :

0= Hf8Z|(X><8A”,Z(p)) — HY (X x0A™, Z(p)) — H'(OU,Z(p)) — Hr'gzl‘(XxﬁA”’Z(p)) =0

where the weak purity is applied to the faces of the simplex that for definition
intersect properly the cycle Z.
3) It is just the consequences of the Kunneth formula in cohomology and the

computation of cohomology of 0A™. O

From the long exact sequence for relative cohomology and the lemma [3.3| we obtain:

H*(U, Z(p)) —— H**(0U,Z(p)) — H*'(U,0U,Z(p)) - H* (U, Z(p)) » H* " (dU, Z(p))

Hll HZ.

H»2(X,Z(p)) — H* (X x A", Z(p))

s

H*=*(X, Z(p)) & H* ™" 1(X, Z(p))
from which derive the following short exact sequence:
0 — H* " YX,Z(p)) — H*(U,0U) — ker (H*~Y(U) — H**~1(0U)) — 0.
(3.9)
We want to mimic the construction of an isomorphism for the J7"(X) like in the

previous section, where we deal with case n = 0. For doing that, we need of a certain

long exact sequence (of mixed Hodge structure).
Theorem 3.4. The following is a long exact sequence of mixed Hodge structures:
0 — H* " YX,Z(p)) = H*(U,0U,Z(p)) — L(U) - H*™(X,Z(p)) (3.10)

where L(U) is a subgroup of H|2Z”|(X X A" Z(p)), so that FPL(U) = L(U).
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Proof. Let be

H?

7)(X < A™)% = ker (HZ

Z(X X A") = H?(X x A"))

and
H% (X x OA™)° = ker (Hjgy (X x OA™) — H*(X x JA™))
Considering the long exact sequence in local cohomology, we obtain the following

diagram of exact sequences, for which we apply the snake lemma:

0 o > ker () oy ker (B)

~ v Y

0=HZ (X x A") — H* (X x A") — H* 1 (U) — HE(X x A")° — 0

1Z]
l @ 8

0= H (X x 9A") — H™7H(X x 9A") — H*H9U).—~ H, (X x DA")° = 0

10Z]

~

H"(X)

Put L(U) := ker 5. In this way we have the short exact sequence
0 — kera — L(U) — H* (X, Z(p))
that glue together with the (3.9) and it gives the searched one. O

We are now ready just to follow what we have done in the case n = 0. In particular
if we call

B H* "X, Z(p)) — H*~(U,0U, Z(p))

then follows, by the fact that F? kery = kery, that f’ induces an isomorphism:

H*» " Y(X,C) _ H¥"\(U,0U,C)
FrH» - 1(X,C)  FrH» 7 1(U,0U,C)

and so in particular

B H>»="-1(X,C)

= FHY (X, C) + B (X, Z(p))
N H2~"=1(U, U, C)

= FrH2 (U, 0U, C) + H2 " 1(X, Z(p))’

JP(X) ~ (3.11)

(3.12)
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If Z € CHI (X,n) there exists a unique ¢z(Z) € H*~Y(U,0U, Z(p)) (modulo
Im (H*""Y(X,Z(p)) — H* 1 (U,0U,Z(p))) that maps in H?**~}(U,0U,C) and
after taking the class in the quotient [3.12] by isomorphism there is a unique
Upn(Z) € TPM(X).

Definition 3.5. ¢, : CH},

hom

(X,n) — JP"(X) is called higher Abel-Jacobi map.
Theorem 3.6. We have that ¢, = ®, .

The proof deals with the framework of the MHS, so let’s observe that as in the
case n = 0, the nullhomologous cycle class pullbacks to give an extension class in
Extyms(Z, H#P~"1(X,Z(p))) (3.1.2)). This is what we have did explicitly with the
construction of the map 1), ,,. There is not a direct link to the map ®,, that deals
with Deligne cohomology. This connection arises from the fact that the Deligne
cohomology is the absolute cohomology for the mixed Hodge category as proved by
Beilinson in ([Bei86]). There is a different description of the exact sequence
using a simplicial complex that tracks the simplicial structure of X x A™. What we
need to compare the two descriptions is the following. Any cycle Z € CH?(X,n) can
be assumed relative to X x JA™ in the sense that the intersections of Z with the faces
of X x A" represent zero cycles. Since H?P(X x A", Z(p)) — H?(X x OA™, Z(p)) is
injective, a fundamental class of Z is 0 in both H?(X x A") and H.% (X x OA™) and
so it arise naturally to an element of L(U). Moreover if Z is actually nullhomologous,
then it implies v([Z]) = 0. Since we will consider X x A™ as the geometric realization
of a simplicial complex that we will call 3".X, there is a natural map given by the

forgetful functor of the realizations:

for* : H?

(X x A", Z(p)) = HY,

‘Z‘(E”X,Z(p))

such that the extension classes of Z in both the descriptions are the same. For the
definition of the simplicial complex "X we refer to [Sch93|. From this construction
we just recall that we have an a long exact sequence of cohomology with support as

following:

0 — H¥ ("X, Z(p)) = H¥ (3" X—2Z., Z(p)) 2 HY(S"X, Z(p) > H(S"X, Z(p)).
(3.13)
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where the s is in place of "simplicial” (to distinguish from the corresponding map
in singular cohomology). Moreover H’(X"X,Z(p)) = H'™"(X,Z(p)). Notice that
~v* o for"([Z]) = v([Z]) = 0. This compatibility implies a map of the extensions
of the couple (Z, H*"P~1(X,Z(p))) given separately by and [3.13] so it shows

the extension class of Z is the same. Recall now that the cohomology of Deligne is
computed as the Yoneda Ext functor for the category of mixed Hodge structures:

more specifically if Zx (p) is the twisted constant sheaf over X we have that
Hp (X, Z(p)) = Ext}yys(Z, R (Zx))

where RI is the functor of global sections in the derived category of MHS. ([Bei86]).
This description yields the existence of a convergent Grothendieck spectral sequence.

In fact we have that

EYY = RPHomyps(Z, —) o RIT(Zx(r)) = RPY(Homyus(Z, RT(Zx(r)))) =

Extaris(Z, RT(Zx (1)) = HEM(X, Z(r)). (3.14)

Since RT(Zx(p)) = H9(X,Z(p)), by convergence, the natural map FOHZX ™" —

E%2r—n —y BT s the map
Hy™" (X, Z(p)) = Homurus(Z, H (X, Z(p)))

so that the Bloch’s map arises naturally by the edge morphism induced by the

spectral sequence:

edge

ker (HZ (X, Z(p)) — Homys(Z, H* (X, Z(p)))) <= Extyys(Z, H* "X, Z(p)))
(3.15)
With this notation, we can reformulate the theorem [3.6}

Theorem 3.7. The composed map

CHY

hom

(X,n) < ker (H%p_”(X,Z(p)) — Hompys(Z, H* (X, Z(p))))
2 Buthyug(Z, H ™" (X, Z(p))) (3.16)
is equal to @, .

Proof. Let Z € CH;, (X,n). The fundamental class of Z in the absolute
cohomology belongs to ker(H%’]Z'(Z"X)—)Hom(Z, H?(¥"X))) and maps to
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the fundamental class of Z in the singular cohomology, that belongs to
ker (Hom(Z, H‘?(Z”X)) — Hom(Z, H*’(¥"X))) and by edge morphism, it maps to
the extension class. On the other hand, the map ®,, maps the fundamental class
of the absolute cohomology in ker (H?(£"X) — Hom(Z, H*(X"X))) that by the
exact sequence [3.2] is Extys(Z, H?~1(X7X)). Keeping track of this observations,
the theorem follows by the theorem [[Jan90], Lemma 9.5] in homological algebra.

Actually it implies that we have the following commutative diagram:

ker (H7,(£"X) — Hom(Z, H*(£"X))) — ker (HZ'(£"X) — Hom(Z, H* (3" X)))

| |

ker (H%(X"X) — Hom(Z, H* (3" X))) cdge Exti g (Z, H*~1(2" X))
(3.17)
and this is precisely the assertion of the theorem. More precisely, the theorem
[[Jan90], Lemma 9.5 | asserts that for an exact sequence of complexes in a category
A with enough injective: 0 — A* — B®* — C* — 0 and a left exact functor

G : A — B, for a category B, the following is a commutative diagram:

ker (R'G(A®) — G(H'(B*))) —— ker (R'G(B*) — G(H'(B*)))

| \,

ker (G(H(A®)) = G(H!(B*))) R'G(H(B*))

\ /

G(coker (H71(A®) — HY(

(3.18)
Now for
A* = RU\z(Zsnx)
B*®* = RT'(Zsnx)
C. - RF<ZE"X—|Z|>
G = HOHIMHs(Z, —),
we obtain the diagram [3.17]
O

The theorem suggests a way to thinking kind of ”Abel-Jacobi maps” in a

more general setting. In such setting we deal with the formulation of two kind of
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cohomology theories: one of geometric, and the other with arithmetic flavour. More
precisely, for a category of smooth algebraic varieties (or more generally smooth
schemes over a field) that include projective varieties on a field K, we can associate
a topology on it (analytic, étale, Zariski, etc.) and a functor of global sections I'.
Then the corresponding derived functors are the ”geometric” cohomology groups.
But as in the example of the singular cohomology, these groups together with the
twist with integers , has expected to inherit more structure ( as for example the
singular cohomology has the MHS), sitting in a abelian tensor category C with
unitary object 1¢. If one takes account of the abelian structure of this category, we

can form the Yoneda Hom functor:
HOmc(]_c, —) < End(lc) — mod

and the derived functors are the ”"absolute” (or "arithmetic”) cohomologies (as for

the Deligne cohomology). Then these cohomology theories are expected to be relate
as in|3.14] The edge morphism should provide an Abel-Jacobi type map (as in|3.15)):

it means that we search for a suitable convergent spectral sequence

EPY = Extl(le, HL(X)(j) = HLAX)(j) J€Z (3.19)

geo abs

where j is the twist.
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CHAPTER 4

CRYSTALLINE COHOMOLOGY

This chapter is devoted to discuss about a p-adic cohomology theory. Our interest
is to obtain similar considerations to the Deligne-Beilinson cohomology, but in the
p-adic context. Then, following these similarities we motivate the introduction of
syntomic sheaves, and the associated syntomic cohomology, that, for us, represents
the analogous relationship between Deligne and singular cohomology. Some bad
behaviour on the crystalline theory can represent an obstacle for some purpose, so we
choose to discuss a ”generalized” form in the next chapter, that has a nice behaviour
where the crystalline fails. We follows, for this part of the theory, essentially [BO7§]

in combination with [Kat85].

4.1 Divided powers

Let R a commutative ring, I and ideal.

Definition 4.1. A divided power structure (P.D. structure) on I, is a colletion of

maps {7; : I — R};, for integers i > 0 such that the following conditions hold:
1. %(X)=1 m(z)=2 Veel
2. y(x)el n>1
3. m(x+y) =i ni@)yly) =yl
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4. CRYSTALLINE COHOMOLOGY

4. Yn(Ax) = Ny, (X) VAER

5. Y (X)ym(X) = (n+m)7n+m<x> Ve el

n

6. V(1 (X)) = 4 yun(z) Yz € 1.

mi(nlym Imn

Remark 2. The property 1) and 5) implies n!y,(z) = ™. In fact it follows by a
simple induction with the trivial case of n = 1, that since (n + 1)y,41(x) = 27y, (x),

then n!(n + 1)y,1(x) = 2", Morover, by 4) 7,(0) = 0 for n > 0.

Definition 4.2. A morphism of P.D. structure f : (R,1,v) — (P, J,0), is a ring
homomorphism f : R — P such that f(I) C J and 6,(f(z)) = f(yn(x)) for each

n>0and x € 1.

Remark 3. When we looking for a P.D. structure on an ideal, morally we want to
verify if the elements of the form x"/n! lie in the ideal. For example, in the case
of a DV R with mixed characteristic (0,p) and ramification e, a classical estimates
of |n!| shows that the maximal ideal generated by the uniformizer m, admits P.D.

structure iff e < p — 1.
The ideal of the P.D. structure is called "P.D. ideal”.

Definition 4.3. Let (I,v) a P.D. ideal, then J C I is a sub-P.D. ideal iff v,(J) C J

for eachn > 1.
Under some conditions we can transport P.D. structures.

Lemma 4.4. Let (R,I,v) be a P.D. structure, and J an ideal of R. Consider the
ideal I = I/INJ on R/J. Then the P.D. structure v on I extends (uniquely)
on ¥ P.D. structure on I iff J N1 is sub-P.D. ideal. Here “extends” means that
(R, 1,v) — (R/J,1,7) is a P.D. morphism.

Proof. If 74 exists, then it is unique. Moreover when = € J N I, we have that

Yn(x) = 3,(Z) = 0, where the “symbol denotes the class in /I NJ. Then v,(z) €

J N I.Conversely, define 7 : & +— 7,(x). It is well defined. In fact if y is another
presentation of z, then x —y € I N J. So it holds that

(@) =T+ (@ =) = Y %)y —y).

i+j=n
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4. CRYSTALLINE COHOMOLOGY

Since I N J is P.D. sub ideal, we have v;(x —y) € I NJ for j > 1, but then this

implies

]

Moreover, to verify that an ideal is a sub ideal (and so verify some extension

property) is sufficient to verify that on a set of generators:

Lemma 4.5. Let (R, I,v) be a P.D. structure and J C I and ideal. Then if J = (S)
where S is a subset of I, J is sub-P.D. ideal iff v,(S) € S for each n > 1.

Proof. We have to prove only the sufficiency. Let J'={zx € J :v,(x) € J n > 1}.
The proposition claims that J’ is an ideal. In fact if z,y € J' then 7, (z + y) =
> it V(@) (y) € J because at least one of i or j is > 1 and because one of 7;(z)
or v;(y) is in J, that is an ideal. This means that vt +y € J'. If v € J" and A € R,
then v, (Ax) = A"y, (z) € J, so Az € J'. O

Lemma 4.6. Let (R,I,v) and (R, J,0) P.D. structures . Then I.J is a P.D. sub
ideal of both I and J and ~v = 0§ restricted on IJ.

Proof. Since all the elements xy with x € I and y € J are a set of generators of I.J,

it suffices to prove that v, (zy) = d,(zy) € I.J. But we have that

Tn(2y) = Y n(x) = nln(y)ym(z) = "0 (y) = onlzy).
Moreover is clear that v,(xy) € 1.J, since n|y,(z)d,(y) € IJ. O
Corollary 4.7. If (I,7) is a P.D. ideal, then I"™ C I a sub-P.D. ideal.

Now recall the notion of extension of P.D. structures and compatibility in a more

general sense.

Definition 4.8. Let (R, 1,7) be a P.D. structure and let B be an R-algebra. Then
v on R extends to ¥ on B if and only if (R,I,v) — (B,IB,%) is a P.D. morphism.

Definition 4.9. Let (R, 1v) be a P.D. structure and let B an R-algebra, such that
(B, J,9) is a P.D. structure. Then 7y and ¢ are compatible if and only if v extends
on Bandy =0 onIBNJ.
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4.1.1 Divided power envelope

A useful property of the divided power structures is that satisfies a universal

property:

Theorem 4.10. (divided power envelope) Let (R,I,v) a P.D. structure. Let B be
an R-algebra and J an ideal of B. Then for each B-algebra C' with P.D. structure
(C,K,0) with JC C K and with § and v compatible, there exists a unique P.D.
morphism of B-algebra (Dg.(J),J,8) — (C, K,§) such that the following diagram

commutes: B
(DB,’V(‘])a J7 B)
(B7 J) > (07 K7 5)
\ /
!
(R,1,7)
Proof. See ([BO78|, Theorem 3.19). O

Remark 4. If K C B with KDg,(J) = 0, then by universal property we have
DBﬁ(J) ~ DB/K,W(J/J N K)

Lemma 4.11. Let (R,1,v) a be a P.D. structure and B a flat algebra over R. Then

v extends uniquely over B.

Proof. This is a technical lemma and we refer to [stacks-project, Tag 07GZ, Lemma,

23.4.2) 0

Corollary 4.12. If (B, J) — (C, JC) is a flat morphism of (R, 1,~) algebras, then
C @p Dpy(J) = Doy (CJ).

Proof. By the previous lemma C' ®p Dg,(J) has P.D. structure, then by the
universal property of P.D. envelopes, the natural map C' ®p Dp,(J) = Dc(CJ)

is an isomorphism. O

Now let (B, J,v) be a P.D. algebra over R. Then consider the R-module Q}B/R and
all the relations

d’Yn(ﬂf) = ’ynfl(x)dx T e [7n > 1.
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The quotient by these relations is the module of divided power Khaler differentials

QB/sw = QlB/S/N B/S'y /\QB/S-W
Now for a P.D. ideal J, the n-th divided power of J is defined posing
T = i (1) i ()] @y €, 4+ >0}
with JI := B. Then we can define the de Rham complex by:
B/Re =B = sy = Vs, — -
and a filtration, called divided power Hodge filtration by the P.D. ideal J of B:
Fil"Qy g, = JI — g0 o — JH08 o — (4.1)

As an example if (R, I,7) is a P.D. ring and B is a flat R-algebra, then v extends
to (B,IB,%). By universal property of divided power envelope, this means that
B =Dg,(IB). Thenif b= )"'_ x;b; € IB with z1,...,z, € I and by,...,b. € B
we can verify that dv,(b) = v,-1(b)db. By induction we can suppose r = 2. Then

the computation follows:

dyn(1by + x2be) = d ( Z %(xlbl)yj(leh)) =

i+j=n

= 7 dllwaba))yyeabe) + 3ilwiby)d(y;(eaba)) =

= Z d(bi%(l'l))”}/j(xQ@) + ’Yi(xlbl)d(b%%(@)) =
Z ’Yifl(xlbl)")/j(x2b2)d($lb1) + ’Yj—l(952[72)%(515151)(1(33252) =

i+j=n

Z ”yi(l‘lbl)’Yj(ﬂfng)d(iElbl + .172[72) =

i+j=n—1

= Yn—1(2101 + 2b2)d(2101 + T2b3),
where the equality in the third row follows by the computation
d(bzl’yz(l'l)) = ’Lbll_l’)/z(l‘l)dbl = bil_lxl’yi_l(ﬂfl)dbl = ’)/7;_1(1‘161>d(l‘1b1).

This fact proves that in this case Q. = Qp . Then we want to extend the

definitions at level of scheme. Let X a topological space within O a sheaf of rings.

Let J an ideal sheaf of O.
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Definition 4.13. A divided power structure on (O, J) is a sequence of maps 7y, :
O — O such that for each U C X open subset the induced map v,(U) : O(U) —
O(U) is a P.D. ring structure.

The definition applies to the case of the structural sheaf of regular functions on a
scheme X over spec(R). If J is a quasi-coherent ideal sheaf of Oy, then Q} /R I8
understood as Q}DX IRy and we have a notion of divided power de Rham complex

and divided power Hodge filtration. We have also a divided power envelope:

Definition 4.14. Let (S,O0g,Z,7) be a P.D. scheme. Let (X,Ox,J) an S-scheme.
Then the diwvided power envelope of X with respect to J s the following relative

spectrum over Ox:

Speco,, (Do (7).

When we have a closed immersion ¢ : X — Y of S-schemes, there is a corresponding
quasi-coherent ideal sheaf 7 of Oy. Then the P.D. envelope of Y with respect to J
is simply called P.D. envelope of X in Y and denoted by Dy ,(Y).

In the case of interest we are in the situation where S = spec(R) with (R, 1,7) a
P.D. ring, p > 0 a prime number and p € I, the ideal (p) locally nilpotent over X.
We want to formulate a very useful theorem that permits us to well define the so
called crystalline cohomology. To prove this theorem different facts will be involved

that we will explain in the course of the proof.

4.2 Crystalline cohomology: definitions

Theorem 4.15. Let P and Y be smooth schemes over Spec(R). Let f:Y — P be
a map of schemes which s either a closed embedding or smooth and let g : X — Y
be a map such that g and fg are both closed immersion. All is presented in the

following diagram:
DX'y — DX,'y(P)

/lfl

5

\l/

Spec(R
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Then the following canonical map is a filtered quasi isomorphism:

Q.DX,«/(P) — Q.DX»"/(Y). (42)

The proof of the theorem comes from different results. We just recall a notation.
Define the R-algebra R(Xj,..., Xy) by
R(Xy,...Xy)= @ Rx™.. xg"
ni,...,nny>0

as R-module. Then the multiplication is defined by extending linearly the relation

(xtm o x eyl xedy =

ny +my ny +my ni+m nN+m
( )( )Xl[ vbmal - xlnbmal
nq nn

Then we denote with
R(Xy,.... Xn)+ = @@ RX™ XY
Hn]’>0

as subalgebra of R(Xy,..., Xn).

Theorem 4.16. Let (R,I,v) be a P.D. ring and R — C a ring homomorphism.
Let J C K be an ideal of C and suppose that J = (x1,...,24) is generated by a
regular sequence. Moreover assume that R — C and R — C/J are smooth.

Then there is an isomorphism of P.D. rings such that the following diagram

commutes:
DC,w(K) e DC/J;Y(KC/J)(Xl,...,Xd)
l xMso
Deysr(KC/JT)
Proof. Since p is nilpotent in R, this means that p™R = 0 for some m >
0 integer. Since z" = rlvy.(x), then 2" = 0 for r > p™.  Since J is

finitely generated, there exists n (for example n = (p™ — 1)d + 1) such that
J"Dcy(J) = 0. This implies that D¢, (J) ~ Deygn(J/J").  Similarly, if
Jo = (Xq,...,Xy) is the ideal of (C/J)[X;,...,X4], then Dicypyx,,..xq~(Jo) =~
Dcyixy,.., Xd]/JO7—y(<]O/J6L). Moreover, by the smoothness of C' and C'/.J there is an
isomoprhism (C/J)[ X1, ..., Xq4|/J§ ~ C/J™. This lifts to an isomoprhism on the

level of P.D. envelopes, and so

DC,'y(J) = DC/J[X1 ..... de(Jo) = C/J<X17 ce ,Xd>,
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where the last isomorphism comes from the universal property of P.D. envelope and
by flatness of C'/J. Then by the universal property of P.D. envelope, we have the

following isomorphisms:

.....

]

Lemma 4.17. Let (R,I1,v) be a P.D. ring. Let R — B — C' ring morphisms.
B — C an étale morphism of R-algebras and Let J be an ideal of B and K an ideal
of C with B/J = C/K (assume this identification is induced by the étale morphism).
Then B/J™ ~ C/K"™ and the ideal JB/J"™ corresponds to KC/K™ for each n > 1.
This implies that

Dy (J) ~ Doy (K).

Proof. By induction on n and the fact that B — (' is étale, we have a unique

morphism from C' — B/J": it follows by universal property of étale maps:

C —— B/J" !

T \\\\ E“ T
\\)‘

B—— B/J"

It factors through C'/K"™: In fact by induction we can identify B/J" ! ~ C'/K"!.
Moreover this morphism sends K™ to 0 € B/J", since any = € K is mapped to 0 by
C — B/J=C/K. The map B — C'/K™ induced by the étale morphism B — C' is

such that the following diagram commutes:

B —— C/K"!

T p T

R —— C/K"

Then it factors through B/J". These diagrams yield (identifying C/K"~* ~ B/J"1
in the bottom square) a factorization B/J" — C/K" 2 B/J"™ of the identity,

and by uniqueness it implies B/J" ~ C/K"™. The sentence about ideal follows
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immediately and the sentence about the P.D. envelope follows by the nilpotence of

p. ]

Theorem 4.18. (Divided power Poincaré lemma) Let (B, J,d) a P.D. algebra over
R.Then the map:

is a filtered homotopy equivalence of R-modules.

Proof. By induction we have to prove the assertion for d = 1. Denote X; = X. Note
that the inclusion j : B — B(X) satisfies zj = 1. Now consider the proposition as
B-module differentials. Then Qy /5 5 = [B(X) = B(X)dX] and it reduce to prove
that jz ~ id (homotopic to 1dent1ty). This means to find a map [ : B(X)dX —
B(X), such that [d+d [ =id— jz. In fact the map ” [ is the "integral”

/ : XUlgx — X+, (4.3)
Then
/d(ZbiX“])er /behdx /be[l Uax) +d(> " b X =
>0 >0 i>1 >0
D X4y hxldx =
i>1 i>1
D b XN b xMdX — 2 (Z biX[i])> — jz (Z biX[i]dX> :
i>0 i>0 i>0 i>0
Since

QBixy/rs = Qp/ps @ B(X) © Qpixy/p s
f extends to an homotopy equivalence for
QB/rs = Qxy/Rs:

By the isomorphism above, [ acts only at level of B(X). So it preserves the Hodge
filtration. O

Lemma 4.19. Let R be a ring. Let R — C — B be smooth homorphisms of
R-algebras. Let J an ideal of B and K an ideal of C with B/J = C/K = A. For
each x € spec(A) there exists f € B and an ideal Jy C Jy, (the localization ot f)
such that f(x) # 0 and C — By /Jy is étale.
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Proof. The morphisms B — B/J and C — C/K induce the respective exact

sequences :

K/K? = Qt)p@c A= Qyp—0
Moreover, since C' — B is smooth, we have the following exact sequence:
Q}j/R Qc A — Q}g/R R A — QB/C g A — 0.

We put all together in the following diagram:

K/K? —— Qe p® A —— Qup —— 0

| I J

J/J2 — QB/R®A e QA/R — 0
S B

~

~
~

~ ~

Qpc® A

2

0

Then f is surjective: for each x € Qp/c ® A, by going up we find z; € Qp/r ® A.
Then its image x5 in Qi‘/R has a fiber in Q}J/R ® A. Choose z3 as an element of this
fiber. Then the image x4 of x3 in Q}B/R ® A is such that the image of xy — x4 in
QL IR is 0. Then, by exactness, there exists an element of J/.J?, say y that maps to
1 — T4, and the image of 1 — x4 in Q}B/C ® A is equal to the image of x; that is x.
Now, since 3 is surjective and Qp/c is projective of finite type (by smoothness)
of rank n, for some f € B with f(z) # 0 can be found a basis of Qp, o made
by dg,...,dg, with g1,...,9, € J. Define Jy = (¢1,...,9,). To the morphism

By — By/Jy is associated the long exact sequence:
J()/J()2 — Qle/C ®Bf Bf/Jo — Q(le/Jo)/C — 0

The first morphism is surjective by construction, and it is a map of module of rank
n, since C' — By is smooth. Then, it is an isomorphism, and by exactness this yields

Ql

B, 170)c = 05 that means C' — By/.J is étale. 0

Then the proof of theorem is made as following. Since it is a local question,

we suppose P = spec(C), Y = spec(B) and X = spec(C/K).
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1) f is a closed embedding. Then B = C/J, with J = (x1,...,24) a regular
sequence. Then we proved D (K) = Deyyy(KJ/C)(Xq,..., Xq), where d =
dimP — dimY. Then the theorem follows by the divided power Poincaré lemma.

2) f smooth.Let J be the ideal of B such that B/J = C/K. Then by a previous
lemma we can, after localizing, assume that there is an ideal Jy C J such that

C — B/Jy is étale. Then QF, = Q;)B/JO(JB/JO)’ by lemma (4.17). Then

QbB( ) = Q’DB/J (JB/Jo) by the reasoning made previously: since R — B/Jy is
0

smooth, then Dp, 5, (JB/Jo)(X1, ..., Xa) =~ Dp(J) . This implies the assertion.

O

Definition 4.20. Let (R,1,7) a P.D. ring and X a scheme over R/I that admits
lifting Y, P as in the situation of theorem . Then the crystalline cohomology
of X with respect to (R, I,7) is defined as the hypercohomology groups:

H:rys<X/R) = H*(X7 Q.DXN(P)/R)

We have to show that this definition is independent of the choices and that is
functorial in X. First notice that if Y, Z are smooth schemes over spec(R) and X
a closed immersion in both Y and Z, also Y X,e(r) Z is smooth and Z is closed.

The following diagram, by the previous result is made by quasi-isomorphisms:

Q.

Dx (Y xZ)

Q) Qs 2)
Moreover they satisfy the cocycle condition, for three scheme X, X5, X3. This
proves the independence of the smooth lifting Y. Let now X, X’ two schemes over
spec(R/I) and Y, Y” the respective smooth schemes over spec(R) for which X, X’ are
closed immersion in Y, Y’ respectively. Let f : X — X’ be a morphism of schemes
and assume to have a lifting g : Y — Y’ of f. Then at level of sheaves there is a

pullback map
I ) = Qo)
Then we have to prove that this map does not depend by the choice of g, but only

by f. So assume Y},Y/ to be another lift of X, X’ respectively and h : Y] — Y] is

another lifting of f.Then we can form the fiber products Y x Y and Y; x Y] with p;
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4. CRYSTALLINE COHOMOLOGY

resp. p2) the projection on the scheme Y or Y7 (resp. Y’ or Y/). Then the following
1

diagram commutes:
—10e ° —10e
Pr Q%) — Qhvxyny S P2 Qb o)
—1e ° —10)e
Py QDX/(Yl) — QDX/(yle{) P2 QDX/(Yl’)

Moreover there always exists a such lifting. In fact if i : X — Y and ¢/ : X’ — Y’
are the closed immersions, then by the universal property of cartesian squares, we

obtain a unique map X — Y X,c(r) Y’ such that the following diagram commutes:

Y Xapee(r) Y ——— Y
I l
Y’ —— spec(R)
Then, it yields a commutative diagram:

X —Y X spec(R) Y’
boh
X T sy

This proves the functoriality with respect to X.

4.2.1 The (crystalline) Frobenius action

For our interest, it is important to study the action of the cohomology on some
endomorphism of X. More precisely we are in the following setting. We have a
smooth scheme X over R and Xy = X Xpec(r) R/I. We can suppose to embed
the scheme X in a smooth and proper scheme P. We have proved that over a flat
morphism, the divided power differentials equal the classical differentials. In the
case of X smooth we have a flat morphism R — Ox. Then Dy, ,(X) = X and by

flatness we have that

1 1 1
Qs 0)/Rs = LDy /R = /e

This means that

HCyo(Xo/R) = Hyp(X/R) ~H'(Xo, 2 (p)):

crys
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4. CRYSTALLINE COHOMOLOGY

Now suppose to have an absolute Frobenius morphism fy : Xo — Xy. It induces
a morphism at level of crystalline cohomology over X, but by the identification it
is an endomorphism over the De Rham cohomology of X, without assumption of
lifting of fy over X. We are interested in the study of Frobenius morphism in the
following case: let k be a perfect field of characteristic p > 0, W = W (k) its ring
of Witt vectors, X, a smooth quasi-projective over W, = W/p*™!, Xy = X ® k and
fo : Xo — Xo the absolute Frobenius. For each s choose an embedding of X, in
a projective scheme P,. Since it is projective, the Frobenius morphism admits a

lifting. This lifting induces a morphism
f:Ds— Dy,
where D; := Dx_(Ps). Then f is defined at level of differentials, by pullback
Q5 = Qp..

Theorem 4.21. Let r < p and n with n +r < s. Then there exists a unique

semilinear map

fr Fil'Q}, — Q-
such that p" f, = f*. Recall that Fil' Q)}, is defined in .

Proof. Let’s denote with (m) the integer such that (pi™) = (p)I™, whenever m > 0,
otherwise (m) = 0. By definition of the Frobenius morphism, we have that f*(x) =

2? (mod p). If x = adz, ...dz; € Q) , then
(@) = (@) f(dzr) ... f*(dz;) = oP(pa}~ dwy+pdwy) . .. (pa? ™ dzi+pdw;) € p'QY, .

Then if J is the P.D. ideal of D,,, then follows that if v;, (z1) ... 7, (%) € JI~ we

have
F (i) = 7, (F*(20)) = %, (2P +pw) = 7, (P () +pw) = ((p—1) () 73 (p) € (p)F.
Since i1 + - - - + ix > r — 1, by linearity we have that
I C ).
This means that (without the hypothesis r < p) holds

FH(FiQy, ) C prtiriar
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4. CRYSTALLINE COHOMOLOGY

When, r < p we have (r — i) = r — ¢, that implies
fHFIQ, ) C p', .

Now, we know that
pr . Z/pn+1 N an+r+1

M+l Suppose for the moment that

is injective. We claim that Qp,, is flat over Z/p
it is true. Then

p:Qp — QDTM

is injective too. Then, by the following diagram

we obtain a factorization map p~" f* : Fil”Qerrn — QY , the reduction modulo prtl
is the map f.. To see why Qf, is flat over Z/ p™tl = W,,, we use the flatness of
P,, over spec(W,,,[X1,...,X;]). In fact the problem is local, so we assume that X,
is generated by a regular sequence gy, ..., g;. Then we have the following cartesian

square:

X > P,

| |

Spec<Wm) er) Spec(Wm[Xla s 7Xt])

And since P,, — spec(W,,[X1,...,X;]) is smooth, then flat, we have by a
previous lemma that D, ~ P Xgpee(Win[X1,....X:]) Dspec(win) (spec(Wi[ X1, ..., X4]))
and Q.Dspec(wm)(SpeC(Wm[X1,~-~7XtD) are free over W,,.

]

Remark 5. In the proposition , actually, the smoothness of X is a strong
condition. In fact in the course of the proposition the relevant fact was the existence
of a regular local closed immersion of the scheme in a smooth scheme (needed for
the independence of the embedding as proved in the theorem (4.15])) and flatness,
(needed for extending the P.D. structure of pW,, C W,,). This led to study the

Frobenius endomorphism around syntomic schemes over W, that are schemes with
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4. CRYSTALLINE COHOMOLOGY

local complete intersection and flat. The quasi-projective hypothesis is needed for
extending the Frobenius action of the special fiber over the smooth embedding, and
so it guarantees the lifting property. We also have seen that the existence of such
lifting is not an obstruction to the existence of Frobenius endomorphism at level of
the crystalline cohomology, but it helps the study of this action. We will see the

really important role of the smoothness in the next chapter.

4.2.2 Syntomic sheaves

We can now define an object that carries the information of the Frobenius action
at level of cohomology. Let J, to be the P.D. ideal of D,, defining X,,, and JI the
r-th divided power. Then the divided power Hodge filtration of 27, becomes

FiI'Q}, «p:J = I ®e, Qp — I @0, QF — ... (4.4)

Clearly, for r = 0 this filtration is the entire complex of differentials, and we have
just defined a map f, between the r-th level of the filtration and the 0 level. Then

we consider the map
]_ - fr . Fl]'TQ.Dn,X,P % FIIOQ.DTL,X,P

where 1 is the inclusion map of Fil"QQ7, C QF, . Then consider the mapping cone

Spx.p(r) == Cone(FiI'Q}, « p —25 Fil’Q3, + p)[—1] (4.5)
d 0

with differential h = . Then we can see that these sheaves are
1—f d

independent of the choice of f and P. For two lifting P, P’ we can consider
the fiber product P x P’ and the immersion of X — P x P’ and we see that
Snx.p(r) = Suxpxp(r) < S,x.p(r), where the quasi-isomorphism is satisfied

by the theorem (4.15)). These sheaves have a product structure:

Proposition 4.22. Let r,r' > 0 and r + 1" < p. Then there exists a ring structure

on &, x p(r) defined by a product

Gn,X7P(T) X 6,17)(713(7"/) — Gn,X,P(r + 7“/>‘
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Proof. Define the following abelian groups:

A= P FIre;, «» B= P Fi'Q}, «p

0<r<p o<r<p
g=P1 =P
0<r<p 0<e<p

Then over B, we have a ring structure given by the product

(1, xp)(Yr,y -y Yp) = (21,0, 2p)

given by

2 = Z LiYi-

ij=t
Over A, the product is induced by the inclusion morphism 1: A C B. Now consider
A, and B as complex of abelian groups, with the components given by the filtration
AT =Fil'Qy, p for A and B = FilOQbm x.p> for B. Then the tensor product of
the complex A ® A defines a ring structure with unit, and such that A”A™ C A7+

and

d(zy) = d(w)y + (=1)"zd(y),
where d is the differential of the complex and z € A" and y € A" . Then if
C := Cone(A &% B)[—1]

define the product structure on C'® C', by a map C' ® C' — C' such that

(,9)(2",y) = (z2', (=1)"g(x)y’ + yh(z)).

Now is a computation to verify that this product define a ring homomorphism with
unit (1,0) € C°.
]

Remark 6. It is clear by the discussion above that as consequence of the theorem

(4.15) this product is again independent by the choices of P.

Remark 7. These complexes, actually come from the one built in [FM87] where it
is called S]. In their theory they deal with the geometric situation in which X is
endowed with the syntomic site. What we have defined here in these terms is the

direct image of S] by the map of sites 7 : Xy, — X, ([Kat85]). We have chosen
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4. CRYSTALLINE COHOMOLOGY

to not deal with the syntomic topology, but when consider &, (r) as sheaves, we
consider X (and X,,) endowed with the étale topology. The smoothness is a strong
condition as discussed previously, but the name ”syntomic” is motivated in both
direction as a definition of sheaves with respect to syntomic topology (i.e. S;) or in
the sense that the weaker condition to deal with such definitions is that X can be

syntomic (and quasi-projective) as scheme with respect to W.

Why the introduction of these sheaves? They represent an analogy to the
Deligne-Beilinson complexes Z(r)p. Recall that there is an inclusion map Z C C that
is the multiplication by (27i)"Z and by this map is constructed the Deligne-Beilinson
complex

Z(r) = Ox = Qyc = - = Qe = 0

for a smooth projective variety over C. The interpretation of this inclusion map in
characteristic p > 0, is the multiplication by p". In the next chapter, we will see that
this analogy is supported by the behaviour of the cycle classes. For the moment we

want to explain the analogy between the map Z(r) — Qx and the map 1 — f,.

Lemma 4.23. Assume that X is a smooth variety over W with a Frobenius
morphism f, lifting the one over its reduction modulo p. Then the syntomic sheaves

S,.x(r) are quasi-isomorphic to the following:

Ox, <50k =% o2 2 o gopt Edon )
Proof. The condition of smoothness and the theorem permits to choose P =
X, and so the P.D. ideal defining X,,, in P, is the (0). This means that in the
explicit writing of the complex &, x(r) , the first 7 — 1 terms don’t contain any
term with JM. Since the term J = Op,,, it remains to explain, why the complex
has a truncation at the level r. In fact it suffices to prove that H4(&, x(r)) = 0,
whenever ¢ > r. But this is easy: we may assume n = 1, then f, = p? " f, by the
property of factorization with f*. Then ¢ —r > 1 and so, the reduction modulo p
is 0. This means that the component 1 — f. = 1: Q% — Q% that is clearly an

isomorphism.
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CHAPTER 5

RIGID COHOMOLOGY

In this chapter we start to recall the principal definitions and theorems of the rigid
cohomology of Berthelot. The main references are |Ber96|,[Ber97b|, [Pet03]. This
cohomology theory has some similarity with the de Rham cohomology, but the
essential difference is to associate a different topology to a space, for which it is
called rigid. The purpose for introducing such theory is to allow the study of a
p-adic cohomology theory that has a nice behaviour for non proper e non smooth

schemes, for which the crystalline cohomology in general is not finite dimensional.

Definition 5.1. Let X be a set. A Grothendieck topology on X, denoted with T, is a
subset S of parts of X, such that it contains (), X , it is stable for finite intersections
and for each U € S there exist a set Cov(U) of covering of U, such that the following
holds:

1. (U) € Cou(U)
2.4fU,V €8,V CU, and if (U;); € Cov(U) then U;NV € Couv(V)
3. if (U;); € Cov(U) and for each i, (U;;); € Cou(U;), then (U;;)i; € Cov(U).

Definition 5.2. The elements of S are called open; the covering (U;); € Cov(U) is

called admissible covering.

Then we work in the following context. We assume to have a discrete valuation ring

W with residue field k of characteristic p > 0, and Frac(W) =: K. We assume 7 is
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5. RIGID COHOMOLOGY

a uniformizer of . To start, fix A a Tate algebra and X = spm(A). We define the

following strong Grothendieck topology on X.

Definition 5.3. Let X = Spm(A) as above.
An open U € §(X) is a subset of X such that:
1) There exists a covering (V;);, for which the elements are called special domains,

such that

Vi={x € X : s.t. there exists

fos--oy fu generating A and |fj(x)] <|fo(z)] Vj=1,...,n}

and for each morphism of Tate algebras A — B, such that the induced f : spm(B) —
spm(A), satisfies f(spm(B)) C U, then there exists a finite number of (V;); that
covers f(spm(B))

2) (U;); € Cou(U) if and only if for all morphisms as in 1) there exists a finite

covering of spm(B) of special domains, much finer then f~1(U;)

Lemma 5.4. The strong topology defined above is satured, that means: 1) If U is
open and V' C U such that there ezists (U;); € Cov(U) with U; NV open, then V is
open.

2) if an open U = |, U; is given with each U; open, and (U;); admits a refining by

an admissible covering, then (U;); is admissible

Proof. The assertion in 2) is obvious, so we have to prove 1). Since U; NV C
V C U, let’s choose a morphism of Tate algebras ¢ : Spm(C') — Spm(A) such that
o(Spm(C)) € V C U. By the fact that (U;); is an admissible covering of U, this
means that (¢! (U;) N Spm(C)); admits a finite refining by special domains, (Z; ;);
for each . Since U; NV is open, by (|[FP04], section 9.1.2, lemma 4 (ii)) follows that
the collection (Z; ;); ;) is a covering of V' that admits a refining similar to (U;);, i.e.
for each f : Spm(D) — Spm(A) morphism of Tate algebras, there exists a finite
refining of (f~'(Z; ;) N Spm(D)),; by finite number of special domains and so V' is
open. 0

Next we can define the ring of functions for X. For each special domain V', we
simply define
I'(V,O0x) = A{t1, ..., ta}/(fo — fiti)i=1,..nn-

o7



5. RIGID COHOMOLOGY

By the acyclicity theorem of Tate ([Ber96|, loc.ref. [Tal,8.2]) we can define for an

open U, the sheaf of analytic functions
(U, Ox) := ker (H LV, 0x)Z [[T(VinV;, OX)>
i ij

where (V}); € Cov(U).

Definition 5.5. The ringed space (Spm(A), Ogpm(a)) is called affinoid analytic

space.

Definition 5.6. Let K a non-archimedean field. A (rigid) analytic space X
over K is a set X endowed with a Grothendieck satured topology, and a sheaf of
K-algebras Ox such that there exists an admissible covering X; of open sets, such

that (X;, Ox|x,) is isomorphic as analytic space to an affinoid analytic space.

Definition 5.7. A morphism f : X — Y between K-analytic spaces is the datum
of a continuous map from X toY and an homomorphism of sheaves of local rings
10y — Ox.
The morphism f is finite if there exists an admissible covering (X;); such that
F7HX;) is affinoid for each i and T(f~1(X;), Oy) is a finite algebra over T'(X;, Ox).
The morphism f is smooth (resp. étale) if there exists an admissible covering (X;);
of X and an admissible covering (Y;); of Y such that:
1) f(Y;) C X, are affinoid spaces,
2)

I'(Y:,Oy) ~T(X;, Ox){t1, .- tn}/(f1,.. ., fr) (resp. m=n),

with det(0, (f;)))1<k.j<r invertible.

Similar to classical algebraic geometry, we can consider the immersion of ¥ —

Y X x Y and the Oy-module J defining Y. Then we define

Qﬁ(/K = J/J27 TX/K = /\Qﬁ(/K'

5.1 Formal schemes and rigid spaces

Now let A to be a Noetherian topological ring. An ideal of definition I of A is
a system of neighborhood of 0 of A of the form {/"},en. If A is separated and
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5. RIGID COHOMOLOGY

complete, it is called adic ring. Assume A is adic and [ its ideal of definition. Let
X, = spec(A/I"T).

Clearly, the underlying space for each n is the same, since A is separated. Then

consider the structural sheaves Oy,. The projection maps
AT I AT

together give rise to a projective system, so the induced maps on the structural

sheaves give rise again to a projective system. So we can define
hm Oy, =: Ospe(a),
n

and the ringed space (Spf(A), Ogpia)) is the formal spectrum of A. Let’s immediately

observe that
Ospi(a) (SPE(A)) = im T (Spf(A), Ospa)) = Lim A/ 1" = A = A,

Definition 5.8. If a ringed space (X,Ox) is isomorphic to a formal spectrum
Spf(A), then it is called affine formal scheme.
A formal scheme (X, Ox) is a ringed space such that there exists a covering of affine

formal schemes.

A construction with formal schemes arise directly by the schemes.

Let X a Noetherian scheme and Xy < X a closed subscheme of X. Then let J be
the ideal of Ox defining Xy. Then the completion of X along Xy, denoted with X
is defined as following.

Let X,, := spec(Ox/J"™), then we form the projective limit over Oy, and define
Og = l&nn Ox,. Observe that the underlying space of X is the same as X.
For example if A is a discrete valuation ring with uniformizer p, in the case of

X = spec(A) we can complete along the special fiber

Xo = Spec(4/(p))

and we obtain that

O = Spf(A).
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5. RIGID COHOMOLOGY

5.2 Generic fiber in rigid geometry

Now we establish a connection with the analytic rigid spaces defined above. Let k
be a perfect field of characteristic p > 0. Let W the ring of Witt vectors of k£ and
7 a uniformizer of the maximal ideal of W. Let K := Frac(W). We consider the
formal schemes over W. Let A be a W-algebra of finite type over W. Then we pose
X = Spf(A) a W-formal scheme of finite type. Since A is an adic ring, A @y K is a
Tate algebra over K. Then we define the generic fiber Xy, as the affinoid analytic
space associated to Spm(A @ K).

Lemma 5.9. The points of the space X are in bijection with the quotients of the
form A/I that are integral, finite and flat over W

Proof. For each point of X corresponds a maximal ideal of A ®y K, then the
corresponding quotient is an extension of K, let’s say K’. The image of A in K’ is
integral and flat, because it is torsion free and it is a module over a discrete valuation
ring. Then, keeping a finite number of generators of A (it is of finite type), their
images in K’ lie in the ring of valuation of W’ of K’, so they are integral also over
w.

Viceversa, an integral, flat, finite quotient of A of the form A/I, means that A/I® K

is a finite extension of K. O

Corollary 5.10. If the quotient A/l is given as above, then the support of
SpflA/I) C SpflA) = X is a closed point x,,.

Proof. Since K is a complete non archimedean field, W is henselian. Since A/[
is a finite, integral WW-algebra, it is a finite product of integral local ring, so it is

local. O

The described point z,, is called specialization of the point x; € X corresponding

to A/I. The specialization induces a map at the level of sets,
sp: Xg — X

that we can define for a general W-formal schemes X. So we define X as the set of
closed subschemes of X finite, flat, integral over W, with support in a closed point

Z,. Then the specialization map sends a such subscheme to the corresponding closed
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point. In particular, at level of affine open cover of X, that is a composed by affine
formal schemes of the form U; = Spf(A;) for A; of finite type, then sp~!(U;) is in
bijection with Spm(A; ® K). Then, since the last scheme has an analytic structure,
by transporting the structure, we can consider each sp~(U;) like analytic space.

Then a theorem of Berthelot follows.

Theorem 5.11. Let X, X' be given W-formal scheme of finite type. Then the
following holds: 1) There exist on X a unique structure of analytic rigid space,

Lis an open map and for each affine open covering (U;); of X, sp~*(U;)

such that sp~
has the analytic structure induced by the respective affinoid analytic space. 2) The
analytic space Xk is functorial in X, and for each morphism f : X — X' of formal

W -scheme, there is a commutative diagram of sites:

Xy 22X X

Xl/fx lf

' spxr X7
Proof. See ([Ber96|,Prop 0.2.3). O]

Theorem 5.12. Let X be a W-formal scheme and let J be an ideal of definition.
Denote with X, the scheme defined by J. Let Z a closed subscheme of Xy and denote
by X the completion of X by the subscheme Z. If sp: X — X 1s the specialization
morphism, then sp~*(Z) is open in X and the cononical morphism X = Xk

induces an isomorphism of analytic spaces

Proof. See ([Ber96],0.2.7). O

5.2.1 The tube of a k-scheme

The next tools needed to define the rigid cohomology is the notion of tube. Let X a
k-scheme separated of finite type, P a W-formal scheme of finite type and a locally
closed immersion X - P. We call this datum, formal embedding. Denote with Py
the generic fiber, and P, the special fiber. The notion of the tube deals with the
relation between k-scheme and its "lifting” over the generic fiber, endowed with the

topology structure defined previously.
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Definition 5.13. Let X 5 P as above. The tube of X in P, denoted by | X|p is
the set defined by sp~'(i(X)). By the theorem (m, | X[p has analytical structure.

We will see some properties of the tube.

Lemma 5.14. Assume X = J, X; a k-scheme of finite type union of k-subschemes
of Py. Then | X[p=,|Xi[p. The analogous result holds for intersections.

1

Proof. We just notice that sp™" respect intersections and unions. O

Then we can see that the definition of the tube is independent by open subsets of

the formal scheme.

Lemma 5.15. Let i : X < P. Then there exists i’ : X — P’ formal embedding,

with P’ = P open immersion that factors through u. Moreover | X [p=]X[p:.

Proof. Since P and P, have the same underlying spaces, if X’ is an open subset of
Py, we can write X' = P} with P’ open in P Since holds that P} = sp~'(P’), then
follows
i X > X =P P <P
Moreover | X [p=sp™(i(X)) = sp~H(uo (X)) =] X[p.
]

Proposition 5.16. Let be a following commutative diagram of morphisms of

scheme: 4
X X, p

oo
X Xy p
Then holds that 1X[pC ux'(]X'[p) and the equality holds when the diagram is

cartesian.

Proof. Let’s consider the following commutative diagram,

ix sp
X «© y P < P

S

(2

/ S
X 2 P Py

If x €] X[p we have to prove by definition of tube, that (sp o uk)(z) € ix/(X’). By

the commutative diagram above follows that

(sp o up)(x) = (wo sp)(x) € u(sp(]X[p)) = u(ix (X)) = ix(f(X)) € ix/(X').
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If the initial diagram is cartesian, then X = X’ xp P and so
u(ix (X)) = ix(X).
We need to prove that
(5p 0 ur) ™" (ix: (X)) € sp~* (ix(X)).
So let © € Pk such that (spoug)(x) € ix:/(X’), then
(spouk)(x) = (uosp)(x) € ix(X'),

that implies sp(z) = u™ ' (u(sp(x))) € ix(X).
[

We assume now that the W-formal scheme P is affine of the form P = Spf(A),
with A a W-algebra of finite type. If we consider an immersion ¢ : X — P, for a

k-scheme X, we call a presentation of X in P an identity of the form

Z(X) = V(fla '-'7f7“) N D(gla 7gm) N Pk

where, fi,...,f, (resp. gi1,...,9m) are elements of A and V(fi,...,f,) is the

generated closed formal subscheme, and D(gi,...,gmn) is the complement of

V(gla s 7g’m)

Proposition 5.17. If X has a presentation in an affine formal scheme P then the

tube | X [p can be written as
| X[p={x € P : |fi(x)] <1 Vi=1,...,r
and |gj(x)]=1 for some j=1,...,m}.

Proof. Let’s assume X = Spf(A4). By induction over the number of components of
the variety, we have to verify the assertion for the case j = 1,7 = 0, and j = 0,
1= 1.

In the first case we have
i(X)=V(f)NP. [feA
then follows that

z €]X[p <= sp(X) €i(X) <= sp(f(sp(x))) =0 < [f(x)] < 1.
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For the second case we have, for g € A
i(X) = D(g) N Py
that, by the previous computation, it implies
[X[p=A{z € Px - |g(z)| = 1} ={z € Px : [g(x)] = 1}. (5.1)
The last equality holds by normalizing. O

Proposition 5.18. Leti: X < P a formal embedding. Then | X [p is an admissible
open subset of Pk.

Proof. Let’s remark that this is a local property. In fact it is a consequence of
the saturated condition on the strong Grothendieck topology on Pg. To verify the
admissible condition, it is sufficient to choose an admissible covering of the big space
and prove it on the restriction of each set of the covering. This means that we can
assume that P is an affine formal scheme. Then by the previous result, we choose a

presentation of X. The assertion is equivalent to verify that
| X[p={zx € P : |filx)| <1 Vi=1,...,r
and |gj(x)] =1 forsome j=1,...,m}.

is admissible. Note that {|g;] = 1} is intersection of special domains, so it is

admissible. By intersection property, it is sufficient to verify that
{rePx:|filr))<1l Vi=1,...,r}

is admissible. Again for the strong property of the topology, this set is a countable

union of special domains, that are admissible, so it is so. O

We can extend this result to covering of formal embedding. More precisely, if it is
given a commutative diagram

X; ——
[
X

with (X;); an open covering (resp. (P;); ), with the open inclusion X; < X (resp.

~
=

ixi 7)
j (5.2)
X, p

—

P), we call it a covering of the the formal embedding i : X — P.
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Proposition 5.19. Let be given a diagram as in (5.4). Then | X [p=]X;[p, and it is

an admissible covering.

Proof. As discussed in the previous proof, the statement is local. Moreover the
notion of tube is independent by open embedding and the equality follows. So
we can assume P; = P and affine, for each i. Since | X;[p is admissible open and
X Noetherian, we can assume on induction on irreducible components of X, that
X = X; U Xs,. In particular the affine description of the | Xi[p and |X5[p implies
that X is covered by X7 U X7, that is a union of special domains so an admissible
open; by strong property of the topology, (]X;[p,); it is an admissible covering.

O

Proposition 5.20. Fixn < 1. Leti: X — P be a formal embedding with P affine
and fix a presentation of X. Let’s define

[ X[p,={z € Pk :|filx)|<n Vi=1,...r

and |gj(x)] =1 for some j=1,...,m}.

Call it open tube of radius n < 1. Then the open tubes of radius n < 1 form an

admissible covering of | X|p.

Proof. By the satured property of Grothendieck topology, the assertion is proved
after showing a admissible refinement, since the open tubes defined form a covering.
But this refining can be obtained by special domains V,, ,, for each fixed n and n > 0,

and this collection for the variables n and n form an admissible covering. O]

Another important concept for defining the rigid cohomology is the notion of strict
neighborhoods that is defined for make possible a discussion on non proper varieties.

We will work in the following situation.

Definition 5.21. A frame is a diagram X — Y < P given an open immersion
of an algebraic k-variety (k-scheme separated and of finite type) X into another

algebraic k-variety Y and a closed immersion of Y into a formal W-scheme P

In the situation of varieties in characteristc p > 0, a theorem of Nagata ([Nag62|)
holds on the compactifications, and it always permits to have an open embedding

of X in a proper variety X. Consider P = X as the completion along some closed
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subvariety. Since we will concerned with (flat) 1¥-scheme, often for our interest the
completion is made along the special fiber. In the next, we will interested to the

smooth case for X, but now we discuss more generally.

Definition 5.22. Let (X,Y,P) a frame. |Y [p the rigid analytic variety associate to
the tube. Let U be an admissible open of |Y[p. Then U is called a strict neighborhood
of | X[p in Y [p if | X[pC U and the covering (U,|Y — X[p) is an admissible covering
of [Yp.

Lemma 5.23. Let U be a strict neighborhood as above.
1) Suppose that U’ is an admissible open subset of |Y [p such that U C U’. Then U’
15 a strict neighborhood.

2) Any finite intersection of strict neighborhoods is a strict neighborhood.

Proof. The first assertion results from the fact that a covering by admissible open
subsets that has an admissible refinement is already admissible. To prove the second
assertion, by induction we suppose to have two strict neighborhood Vi, V5. We have
to prove that

(VinVa,]Y — X[)

is admissible. since (V3,]Y — X|) is admissible, by intersection on V; follows that
(Va2 V,JY = X[NW)
is admissible. Then
(Vi NVl — X[ JY — X

is also admissible, since it admits the trivial refining by (]Y —X|). Since (V4,]Y —X])
is admissible by hypothesis, then the following covering obtained by gluing that

admissible above, is admissible:
(Vi NV, ]V = X[NV4, Vi N Van]Y — X[ ]V = X]).

But it is also an admissible refining of (Vi N V5,]Y — X]), so it is admissible too.
[

With similar kind of reasoning one can show different properties of the the tube.
Since it is not the principal argument of this thesis, we limit ourselves to cite the

next fact, that can be useful on the next.
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Proposition 5.24. Let (X,Y,P) be a frame with P affine. Let X < 1 and U =
\Yx[p,. Then fix a presentation of Y — X =V (g1,...,g.) N Py. Then

1)Uy ={z €]Y[p: and |g;(z)| >\ for some j=1,...,r}

2) Let V' an admissible open of |Y [p containing | X[p. V is a strict neighborhood if
and only if there exists \g < 1 such that for all affinoid W C|Y[p and \g < X < 1
then WNU,CV.

3) for X quasi-compact each Uy is a strict neighborhood.
Proof. See [Ber96|. O

We can extend this proposition for general formal schemes, but for details we refer
to [Ber96]. Let’s conclude citing a result of Berthelot used to verify some property

on the rigid cohomology the we will define, but we link the proof to [Ber96].

Theorem 5.25. (strong fibration theorem) Given a commutative diagram of frames

as follows,

el
e
> Y < > P

with w smooth, there is an isomorphism between a strict neighborhood V' of 1 X [ps

in |Y[p and a strict neighborhood V" of | X [pxB%(0,1) in |Y[pxB(0,1).

X c

Proof. See ([Ber96|, Theorem 1.3.7). O

5.3 Rigid cohomology is well defined

Now suppose to have a frame (X,Y,P) and after Nagata assume Y = X. We want

to define a functor from abelian sheaves on | X|[p to itself. Let F be a such sheaf.

Let consider V a strict neighborhood of | X [p in | X[p. Then, denote with

ay V=] X[p

jX:X%X

the respective open inclusions. Then consider an inductive system of strict

neighborhoods as above. Define

JLF = lim ary oy F
v
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where obviously the maps oy, and «f denotes respectively, pushforward and
pullback of sheaves.

Now let Z a closed subscheme of X. Let U = X — Z be the open complement, with
an open immersion j; : U < X (again by Nagata). In a similar way, we can define
j[T]. More precisely, let V a strict neighborhood of |U[p in ] X[p, then one chooses

an inductive fundamental system of strict neighborhoods V' and define

j;]]-" = hﬂ ay.ayF
%

Now let V' a strict neighborhood of | X[p in | X[p and V"’ a strict neighborhood with
of JU[p in ] X[p, then (V',]X — X[p) is again an admissible covering since admits
a refining admissible. The by the universal property of inductive limits and by a
choice of an inductive system of strict neighboorhoods like V" and V', there is a map

given by the following diagram

vy F f\
ayra i F J

where r :j}]—" — jg,]-" is the restriction map.

We consider the sheaves of differential forms on | X[p and consider the complex:
— O - 1

The restriction induces a map

Then we can form the fibered cone, such that there is a distinguished triangle of the

form:

. . . ° . . roo. . +1
The functor j1 is exact ([Ber96]) and the fundamental system of strict neighborhoods

can made by pseudo-compact spaces (i.e. locally on affinoid subset is

quasi-compact). This means that j' commutes with filtrant inductive limits.
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Definition 5.26. Let (X, X,P) be a frame with X a compactification of X and
assume that P is smooth on a neighborhood of X. Define the rigid cohomology of X
on K as the hypercohomology groups given by

H}o(X/K) = H ([ X[p, 5 Uy, ).

The cohomology with support in the closed subscheme Z is given by the
hypercohomology groups defined on the fibered cone:

a2 (X/K) = (X p, Cone (1 750fcq, = 3505y, ) (1)

1X[p
A simple remark is that when X = Z the definitions coincide.

Moreover by the long exact sequence in hypercohomology we deduce a long exact

sequence of the form:

RPN HﬁigJZl(X/K) — H},(X/K) = H. (X —Z/K) — ... (5.4)

rig
The major work of Berthelot has been to prove that this definition is independent
by the choices of the compactification and the formal scheme P. Here we will see
what tools are needed to prove such facts, but the details go out from our discussion
and the purpose of the thesis, so what we do is to collect and discuss some useful
and remarkable facts on the rigid cohomology, that permits us to consider it as a
good cohomological theory. We will use such results to follow the reasoning in the
last chapter. We will refer on this part to [Ber97b]. To prove the independence of

the formal scheme, Berthelot used the following result:

Theorem 5.27. Let X — X an open immersion of k-scheme of finite type. Then

consider the following commutative diagram

’P/
Xt p

X <

where j is an open immersion and i,i' closed immersions, smooth on X. Let jf
and j'* the respective functor on | X|p and | X[p. Then assume u smooth over X
and ug : Pj. — Py is the morphism of the analytic varieties corresponding to P
and P’, respectively. Then the following canonical morphism is an isomoprhism of
complezes:
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Then after applying Rsp, we obtain an isomorphism:
]Rsp*jTQ]'X[P — Rsp*j’TQ]’X[P/. (5.6)
An analogous result holds for cohomology with support.

Proof. See ([Ber97b|, Theorem 1.4). O

Moreover the complex j}(Q' is functorial on the couple (X, X) in the following

X[p
sense: given an (f, f) : (X, X) — (X', X’) then after a choice of X — P and
X’ < P’ we can form the product P” = P x P’ and consider the projection
morphism ¢; : P” — P and ¢» : P” — P’. Then we can compose and find the

morphism of associated complexes :

. ° a5 i . . (qf)_l r . .
RSP*JL'Q]X/[P, — Rf*Rsp*j;(Q]X[p” e Rf*Rsp*j;Q}X[P. (5.7)

~

This morphism does not depend by the choice of the formal scheme and one can
verify the functoriality. Then the independence of the compactification follows by

the theorem

Theorem 5.28. Let have the following commutative diagram:

X
X v P
X/
where jx, jx: are open immersion in the two compactifications of X. Suppose v is a

proper morphism and P smooth in a neighborhood of X. Then we have the following

isomoprhism of complexes:
Rsp*jLQ]'X[P > Rv*Rsp*j}L(,Q}'X,[P. (5.8)
Proof. See ([Ber97b],Theorem 1.6). O

The theorem implies that when one keeps the global sections with respect to X and

X’ we have an isomoprhism at the level of cohomology:

H;y(X/K) 5 B (X [p, k) (59)
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Now it’s easy to define a pullback for the cohomology and verify its functoriality.
So to a morphism of k-scheme f : X — X’ we can choose compactifications X and
X', consider the product X x X’ and denote with X” the schematic closure of X in
X x X’. Then py : X” — X and p, : X” x X’ — X’ denote the projections. Then
we define f* as

(g9~

J* s Hg (X)) 2 B (X0, 10 ) 2 HE(X/K). (5.10)

m(
g

It is possible to extend this functoriality property to cohomology with support,
under the condition that for a given morphism f : X — X', Z a closed subscheme
of X, and T closed subscheme of X', then f~(T') C Z. Then there is a functorial
pullback

[ Y o (X K) = HYy 7/(X/ K. (5.11)

5.3.1 Rigid cohomology: fundamental properties

Since the technical points are almost discussed, we can prove some elementary
property following by the "well” (at posteriori) posed definitions. In particular
the rigid cohomology is a Bloch-Ogus cohomology theory.

We can say that an excision property holds:

Proposition 5.29. Let X a k-variety. Let T C Z C X, closed subschemes. Then

there is a long exact sequence:
s Hyg | (X/K) = Hyg 1 2(X/K) = Hyyg o (X =T)/K) — ... (5.12)

Proof. We choose a compactification X of X and P a formal scheme, smooth on
a neighborhood of X. Then, for any sheaf F on ]X[p we have the following short

exact sequence of the cone:
0— jx_¢F[—1] = Cone(F — jx_¢F)[—1] = F — 0.

The terms T and Z are the schematic closure of T and Z respectively, in X. The

we can apply this exact sequence to the complex of sheaves
F = Cone(j! Uy, = jX ZJXQ].X )[—1].

Since j}(izj; = j;(_z, we notice that F is the complex the computes the rigid

cohomology of X relative to the closed subset Z. Moreover, since the jT commutes

71



5. RIGID COHOMOLOGY

with fibered cones, and by the fact that j}ij}( = ji(fT and j}(ij}(ij;( =

’
J(X-T)—(z-T)> We see that

X F = Cone(jl _ %0 —>J(x m-z-nYxp =1

and this is the complex that computes the rigid cohomology of X — T relative to
Z —T. Now observe that holds

Cone(F — j}_f]-")[—l] ~

Cone(Cone(j}Q]')—([P — J';(—TQ].X[p)[_l] - Cone(jg(—ZQ].X[p - ng—T)—(Z—T)Q}.X[p>[_1])[_1]-

This follows by the fact that j}(fT commutes with the cone and by interchanging
the fibered cones. Then by the fact that X — Z = (X —T) — (Z —T), follows that

Cone(F — j&_;F)[~1] = Cone(ji Qg — jk Qg )[-1].

This complex computes the rigid cohomology of X relative to the closed T'. Then the
long exact sequence ((5.12)) follows by the long exact sequence in hypercohomology

induced by the short exact sequence of the cone.

Corollary 5.30. Let Z a closed subscheme of X.
1) Suppose to have an open X' of X, such that it contains Z. Then the open

immersion induces an isomorphism.:

Hiy, X/K)intlfz| X'/K) (5.13)

7”'9( ,rig(

2)If Z =71 U7y and Zy N Zy = then

Hiig,\Z|(X/K) 2Hiig,|Z1|(X/K)@H (X/K).

7
r r rig,| 2|

Proof. 1) follows by the long exact sequence ([5.12)) for T' = (). 2) since Z; N Zy = (),
and (X — Z;, X — Z,) is an open cover of X, by the property of the functor jT, it
follows that 5t F = 51 _ 72, F @ i 2, for each abelian sheaf. Then

Cone <j;(.7-" — j}le]:@j;(,%}") [—1] = 0.

Then the isomorphism follows by the long exact sequence for the cone. O]

72



5. RIGID COHOMOLOGY

Another important fact on the rigid cohomology is the fact that is finite dimensional
for each k-variety X. The crystalline cohomology does not preserves this property in
the non proper or not smooth case. We will concern about the smooth case, so for the
non proper case, the rigid cohomology is more suitable then crystalline. Moreover is
a fact that the two cohomology theories are canonical isomorphic when X is smooth
and proper ([Ber97b]). Before to go further we want just to see some terminology
and example of the rigid cohomology in the affine case, which will be used in the
last chapter, for the construction of a map between cohomological theories.

Let A be an R-algebra of finite type for R a commutative ring.

Definition 5.31. Let I be an ideal of R. The weak completion of A with respect to
I is the subset of the completion A = lgln A/I™A defined by:
At={scA | 3u,..., 0, €A and 3p; € PRIX,,.... X,] st
de st deg(pj) <c(j+1) Vj
and z = ij(:vl, cey T b

Jj=0
In our case we let R = W (k) = W and consider the weak completion respect to (7).

If X = spec(A) where a representation of A is

A= W[ZL‘l,‘ .. ,l’n]/(fly- . -afm)v
then we find that
A = Wlay, . oxn]T/(fro o )

where Wiz, ..., z,]" is equal to
Wiz, .xa] = aa’ i=(ir,... in)|as €W

st. Je and pe(0,1)
st Jag| < eplfl Ji| =iy + - +in )

Then suppose that X is smooth. We want to compute H; (spec(Ag)).
Let X = spec(A4y), then consider X as the reduction (mod ) of the projective
closure of X < P,. Then we complete X along the ideal defining X;. Then denote
it with P = X. Then (X}, Xi, P) is a frame.
By definition

[ Xk[p= Pk
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and by representation of Xy, it follows that
| X[p= Px NB™(0,17).
For A > 1, the open admissible sets
Uy:={r € Px:and |gj(z)| <A forsome j}

form a quasi-compact admissible covering of Px. Then by definition of the sheaf of

regular functions Op, , we have

~

(] Xk[p, Op) = AR K.
Then the inclusion | X [pC U, induces an homomorphism
I(Uy,Op,.) = AQ K.
If I is the ideal in O]p?( defining Pk, then
L(Ux, Opy) =~ T'(Ux, Opn ) /IT(Uy, Opr. ).

Since on the right side there are regular functions defined on U,, that is the ball
centered in 0 and with radius A > 1, its image in A® K is contained in AT ® K, since
its power series’s develop has to be convergent on this ball. On the other hand, any
element of AT ® K converges on a such ball, for some A > 1. For these reasons, we

have an isomorphism

lim T(Uy, Op,) ~ A'® K.
A1+

Now since Px admits an admissible covering of quasi-compact spaces, then each
finite intersection of the elements of the covering is a quasi-compact space, and this
implies that the left exact functor I' commutes with inductive limits. For any F

Op,-module, then follows that
(P, j'"F) = T (P, lim ay, a7, F) = im T(Pg N Uy, F).
Uy A
Then the following proposition holds:

Proposition 5.32. Let X = spec(A) an affine smooth W-scheme, with reduction
Xi. Then

H(X/K) =H (A" 5 O @ K = QY 1y @ K — ). (5.14)
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Proof. Tt follows by the previous discussion and by noting that

limg LUy, Qp, @ K) =0y ® K.

A—1+

There is also a notion of rigid cohomology with compact support.
Let (X, X, P) be a frame, Z a closed subscheme of X. Then ] Z[pC]X[p is admissible

open. Denote by i the inclusion map. For an abelian sheaf F of ] X[p Then define
I'xF = ker(F — i,i"F).

I'x is a left exact functor and admits right derived functors. Then the cohomology

with compact support is given by

HY 1o X/K) = H ()X [, RTx Q5 ). (5.15)

A first look to the latter definition seems to be a strong dependence by the choices of
the closed scheme Z. But a particular case of (|Ber86|,section 3, Theorem 4) proves

that is not actually true.

Theorem 5.33. Letv : X — X a proper morphism. Let Z, Z' two closed subscheme
of X such that v(Z') C Z. Then the rigid cohomology with compact support relative

to the inclusion i ) Z[p—]X[p and i’ :]Z'[p—]X[p are isomorphic.
Proof. See ([Ber86],section 3, Theorem 4). O

The consequence is that ”bring together” all the closed subschemes of X, that means

to choose an inductive system of such set, does not change the cohomology.

Theorem 5.34. The rigid cohomology with compact support satisfies the following
properties:

1) There exists a natural map H.,iy(X/K) — H,jy(X/K) that is an isomoprhism
when X 1s proper.

2) It is contravariant for proper morphisms and covariant for open immersions

3) There is an excision long exact sequence: For Z a closed subscheme of X and

U= Xy, then

c,rig

(U/K) — H

c,rig

(X/K) — H

c,rig

(Z/K) — ... (5.16)

holds.
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Proof. See ([Ber86], 3.1). O

Now suppose we are in the case with X a smooth scheme and to have a closed
subscheme Z of X of codimension r. Then one can define a Gysin morphism

([Pet03]) that induce the following isomorphism:

(X/K)~ H-?(Z/K) (5.17)

rig

1
Hig,

rig
This implies the weak purity condition on the rigid cohomology.

Proposition 5.35. (weak purity) If Z is a closed subscheme of codimension r of a

smooth k-variety X, then holds that

Hiyjig(X/K) =0 Vi <2r. (5.18)

rig
Moreover, there exists a trace map

TT’X:Hzn

c,rig

(X/K) = K (5.19)

defined for a k-variety X of dimension n.
For a subscheme Z of codimension r of a smooth k-variety X we then define a

fundamental rigid class 7z, as

Nzrig = Gz/x(1), (5.20)

where Gz/x @ HY (Z/K) — H\ley (X/K) is defined by the isomorphism (5.17).

g

Following Petrequin we collect all the basic facts on rigid cohomology that make it

a Bloch-Ogus cohomology theory.

Theorem 5.36. Let k be a perfect field of characteristic p > 0, let W (k) = W its
ring of Witt vectors and K = Frac(W) the fraction field of W with charcateristic

0. Let X a k-scheme reduced of finite type. The following properties holds:

1. H,(X/K) and H;

rig,C

(X/K) are K-vector spaces of finite dimension.

2. If X is equidimensional of dimension n, then the rigid cohomology and the

rigid cohomology with compact support is 0 for each i & {0,...,2n}.

3. The weak purity property holds for X smooth.
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4. When X is smooth there is a perfect pairing, given by the trace morphism :

Hiy\ig(X/K) x H?W(Z]K) — K

rig( c,rig

5. If X, Y are smooth varieties then there is an isomorphism:

H:(X/K) © HY (Y/K) S H;

rig

(X xx Y/K).
It s compatible with fundamental classes:
X rig & Ny rig = NXx,Y,rig

Proof. See ([Pet03],Theorem 2.10). O

Note that in the smooth case we can define a functorial pushforward for rigid
cohomology. If f : X — Y a morphism of smooth varieties then we have a pullback
on the support:

F s Hiyyy(Y) = H

c,rig

(X)7

then by the perfect pairing (4), if n, m are the dimension respectively of XY, then

they induce a morphism

fo: HUX) — HEMHY). (5.21)

rig rig
By these results we can deduce the homotopy property for the rigid cohomology:

Proposition 5.37. (Homotopy property) Let X a smooth k-variety, then for each

natural number ¢ holds that
H} (X/K) ~ H}; (X xp AL/K). (5.22)

Proof. By the property 5) of the Theorem (5.36)), it suffices to prove that the rigid
cohomology of A} is 0 for 7 > 0. By the isomorphism ({5.14)) we have in this case
AT = WT[t]. Now we claim that the sequence (like de De Rham)

0 ATRK 204K = Q@K —0 (5.23)

is exact. But by a remark on the Poincaré lemma on the characteristic 0 case, it is

sufficient to verify that there exist the integrals of > a,t"dt”, i.e. that the elements

ant"'H
> pels O @ K.
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By the definition of the weak completion it is sufficient to verify that |7f—ﬁ| < cp"
for some ¢ and p < 1 independently by n. For simplicity suppose to have a p-adic
valuation v,(.). Since there exist a py < 1 such that |a,| < cpp, then |cpp/(n+1)] <
cppp’»™ D). Then choose an a such that 1/py® > p and let n = am. For m — oo

then we have

Cpgpvp(n—i-l) — Cpgmpvp(am-i—l) < vap(am—i-l)—m — 0.
Then there exists some suitable ¢ and p = py such that the claim holds. O]

5.3.2 The (rigid) Frobenius action

Let X be a smooth k-variety. For a closed subscheme Z of codimensior r of X we
have defined the fundamental class. Now suppose to have a cycle > n;[Z;] € Z7(X).
Then if «; : Z; — X denotes the inclusion morphism, extending by linearity we

obtain a class in cohomology, given by

x 2 27(X) = HY (X/K)
Z n; [Zz] — Z NiQx 7, rig

The following propositions hold:

Proposition 5.38. 1. If X, X' are smooth k-varieties and f : X — X' is a
proper morphism. For each x € Z"(X), then pushforward f. commutes with

cycle class:

Yx(fel2)) = 1x (fu(2))
2. ifx € Z"(X) is a cycle rationally equivalent to 0, then yx(x) =0

3. vx factorizes with respect to Chow groups CH"(X) and it is a ring

homomorphism.

4. if [ 1s morphism of smooth varieties then the pullback commutes with cycle

classes: if v € CH"(X')

x ([ (@) = e (F* ().

Proof. See Petrequin [Pet03].
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Then we can focus on the absolute Frobenius morphism f : X — X. Then the

pullback f* = ¢, induces a morphism

(X/K).
Then the following proposition holds:

Proposition 5.39. ([Pet05], Proposition 7.13) If Z is a subvariety of X smooth of

codimension r, then

¢(vx(2)) = p'yx(2). (5.24)

Proof. Assume Z is irreducible, the general case follows by linearity. The first claim
is that when X is smooth then ¢ = f* is flat. Assume that. Then by the definition

of flat pullback for the cycle on Chow groups, it follows that
f*[Z(p)] = [f_l(Z(p))] = s[Z] s = leghtOX,C(Offl(zm),g),

where Z® is the image of Z by f, that like spaces are the same, but the local
function are obtained by those of Z with power of p.Here ( is the generic point
corresponding to f~1(Z®). Then Ox is a regular (since X smooth) local ring of
dimension r and so the length of Q17w is equal to p". Then by compatibility
of the cycle class with the pullback, we obtain:

o(v(2)) = [ (1(2)) = (" (2)) = p"v(2).

Now we prove the claim. Actually, since it is a local question, we suppose X to
be a smooth k-scheme of relative dimension r. This means that locally there is a

factorization

U = > AL
\ /
spec(k)
with 7 un étale map and U a Zariski open of X. We claim that actually the relative
Frobenius fx/; : X — X () is locally free of rank p”. With this in mind, the absolute
Frobenius is the composition of relative and arithmetical Frobenius. Then by base
change, since f : spec(k) — spec(k) is obviously locally free, also the arithmetic
Frobenius is so. Then the absolute Frobenius is locally free, then flat. The assertion

is local so we can assume to have 7 : X — AJ étale. A fact in algebraic geometry is
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that when X is k-scheme étale then the relative Frobenius fx/; is an isomorphism.

This means we have a cartesian square

x—1 ox

l l

spec(k) 2= spec(k)

where f is the absolute Frobenius. Then we have other two cartesian squares (by

construction)
X0, x Y
spec(k) 422 spec(k) spec(k) —— spec(k)

The universal property applied to the second cartesian square provides a map 7 :

xX® Az(p ) such that

Moreover

i
A ——

commutes. In fact, by universal property, there exists a unique map fx,, and 7P

such that

X P xw L x

l |0 lﬂ

A ALY ——— A}

!

spec(k) —— spec(k)

but again, by universal property also the map

Far
X — A AN Az(p) — spec(k)
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make the same diagram commutes. Then, by uniqueness, the claimed diagram is
commutative. Moreover it is a cartesian square because all squares written above
are cartesian, so it follows at fortiori. This means that it suffices to verify the claim

for the case X = A} and it is trivial. ]
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CHAPTER 6

SYNTOMIC RECULATOR IN ETALE
AND RICGID COHOMOLOGY

Until now, we have seen two cohomology theories for the special fiber.
Through them, we can construct some syntomic theories: one is the original
”Fontaine-Messing” ([FM87]) which deals with crystalline cohomology, the others
are its development using rigid cohomology: rigid-Gros and rigid-Besser cohomology.
The Fontaine-Messing and rigid-Besser cohomology have their own way of
constructing a regulator map. In particular, the rigid-Besser cohomology admits
a regulator map arising from the classical cycle map, hence having as a source the
Higher Chow groups. This has been done in the article [CCM13]: the proof involved
some properties of this cohomology theory as, for example, the homotopy property.
We plan in this thesis to follow the same path in the possible construction of a
regulator map for the rigid-Gros cohomology.

On the other hand, one of the important features of the Fontaine-Messing
cohomology was its link to the étale p-adic cohomology. Gros was able to conctruct
a similar map to (the syntomic- étale cohomology hence to) the étale p-adic
cohomology for his cohomology, as well as to the crystalline cohomology. We address
a similar problem for the Besser-Rigid cohomology and we ask about a possible

compatibility of the regulator maps between rigid-Besser and rigid-Gros cohomology.

82



6. SYNTOMIC REGULATOR IN ETALE AND RIGID
COHOMOLOGY

This was initially motivated by the following compatibility for the K-theory. In fact
in [[GK90|, Theorem 0.1] it is proved the following (let p a prime number):

Theorem 6.1. If k is a perfect field of characteristic p > 0 and W (k) denotes its
ring of Witt vectors, then for all W-schemes quasi-projective and flat X there exist

for all i < p Chern maps
Ciy + IG(X) = Hy (X, 50(i)x)

such that they factor the higher Chern class in crystalline cohomology, i.e. ¢;; :

Ki(X) — H%-1(Xo/W,).

crys

Here X,, = X xyw W, and W,, = W/p"+1.

Here s,(r)x is the same of the syntomic sheaves ([£.5). For convenience, we also use
the same notation of Gros. Actually can be already seen that a kind of generalisation
appears in ([Gro94]): we will use its definition of the "rigid-syntomic” sheaf.

In the course of the exposition we notice that there are some problems with the
analogue in the rigid setting of the Hodge filtration in de Rham cohomology. So,
we try to understand which kind of behaviour such filtration has to satisfy to build
a nice cohomology theory.

Notation: We have k, perfect field of characteristic p > 0, W its ring of Witt
vectors, we suppose there is not ramification, and K := Frac(W). For a W-scheme

Z, Zp =7 @ W,, where W,, = W/p"TL.

In this discussion we will assume X smooth. Our first task is to replace the K-theory
in with the "motivic” interpretation of the higher Chow groups. This led to
approach the question not anymore on the crystalline theory, but more generally on a
rigid point of view. The motivation of such choice, a part of his natural generalization
of the crystalline cohomology, lies on the fact that the rigid cohomology has a
more classical treating of the existence of cycle class map, like in the étale, de
Rham, singular and other classical Weil cohomology theories. Moreover it is a better
cohomology theory for non-proper schemes (since the crystalline cohomology is not
finite for the non proper case). However, the crystalline setting is easier to connect
to étale cohomology, while in the rigid case, this relationship seems less clear. So we

notice that a satisfactory theory bringing such connection is the "rigid” cohomology
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of Gros ([Gro94]), defined by using a slightly modification of the syntomic sheaf of
Fontaine and Messing in the rigid case. Then, our task is to prove that in the case
of smooth schemes (and possibly with other known hypothesis), there exists a cycle
map and that this map can be extended to higher cycle maps, as in the language
of Bloch ([Blo86b]). As consequence we just looking for deriving the analogous
of theorem 3.4 in ([Gro94]) but with the higher Chow groups instead of K-theory.
Finally, when this is true, it shows that the map between rigid-Besser and rigid-Gros
cohomology defined in the proof of Proposition 9.5 of (|[Bes00]) is compatible with
higher Chow groups (for the higher cycle maps in the Besser-rigid cohomology we
refer to [CCM13)]).

6.1 A remark on a method of Bloch

In this section we want to remark a simple general fact on Bloch cohomology theories
(that means cohomology theories that satisfy the axioms described in |[Blo86b]).
Let H{(—,b), H3(—,b) be two Bloch cohomology theories.

Lemma 6.2. Suppose that there are cycle maps
ch : CH"(X) — H" (X,r)
cly : CH"(X) — HY" (X,r)
and a functorial map fx : H¥ (X, r) — H3"(X,r) compatible with the cycle maps.
Then the map "« HY""™(X,r) — H3 "™ (X,r) is compatible with the higher cycle
maps of Bloch
ci""  CH™(X,m) — H ™(X,r)
cy"  CH™(X,m) — HY ™(X,r)

Proof. 1t is a consequence of the fact that the higher cycle maps depend only from
cycle maps. In fact in the argument of Bloch there is a map of complexes
TvZ(X, %) = lim HY (X x A*,r)
ZeZ" (X %)
induced by cycle class map and by hypothesis, that map factors throw fx. Then
the rest of the argument depends only by the weak purity property, so the defined

higher cycle maps are compatible by construction. O]
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This is a useful remark that permits to reduce compatibility at higher dimension
essentially to dimension 0. What we have in mind is to compare the cohomology of
Gros that we will recall in the next section, with the étale-syntomic cohomology
HZ' (X, 500(r)x) where soo(r)x = Rlim sp(r)x. Since we can define a map
connecting these cohomology theories (|Gro94|, section 3), we want to verify that

there exist compatible cycle maps.

6.2 Rigid-Gros cohomology

Let us consider the following situation: Let be X a smooth W-scheme, and X its
special fiber. Suppose there exists an open immersion jx, : Xo — Y of finite type
k-schemes and a closed immersion of the k-scheme Y in a formal Spf(W)-scheme P
with (rigid) generic fiber Pk, namely i : Y — P. Let Y be a W-scheme such that
its special fiber is Y. Then we can complete ¥ along Y and we call it the formal
scheme associate to Y. Denote it by ) := 12/ We denote with Yk its (rigid) generic
fiber. The tube of Y in P defines an open subset of Pg. The ring O}y, admits an
ideal I defining the generic fiber Y. For any strict neighborhood V of | X,[ in |Y7,
we denote the inclusion with ay : V' <=]Y[p. Berthelot defined for any sheaf F on
Y[ the functor
jg(o}" = limay « oy F
%
where the inductive limit is over the strict neighborhoods above. Let’s consider
a decreasing filtration of the differential forms on the tube |Y[. We define for an
integer 7
FirQfy =17 = "'y, = I72Q5, — ..

with the convention that I" = O)y for r < 0. Then we can define a complex of

sheaves as following:
j}?o’y’fp = Rsp* (];(0 FllTny[P ),

where sp : Yx — Y. It represents a complex of sheaves on an open subset of Py.
For our purpose, we want to define a relative version of this complex, with analogy
of rigid cohomology with support in a closed subscheme.

Let Z be a closed subscheme of X, and let U = Xy — Z. Denote with jy : U — Y

the respective open immersion. As done previously, we can form the Berthelot j[T]
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functor. Since a strict neighborhood of |U[ in Y] is a strict neighborhood of | X[ in
Y[, by the universal property of the inductive limits, we can form a restriction map

T j}o}' — j;]]-" . Then we can define a map between complexes

Ik FI Q& G FIQy

-
For convention with the notation in [Pet03], we define the fibered cone of r and

denote it as follows. Define
(J5 Fil Oy, 5 IO, ) 1= Cone (L, FiIlQy, 5 GHFI Dy, ) (-1

and note that by definition of the cone
Cone(r)[—1] =

Now we are ready to define the relative complex of sheaves as following:
Ttovpz = Rsp, (j;OFﬂ’“Q;Y[P N j[T]FiFQ}'Y[PL.

Now we note that for » = 0 the global sections of the complex above represent the
rigid cohomology with support in Z defined in Berthelot ([Ber97b|) and Petrequin
([Pet03]), and for X = Z it is simply the definition of rigid cohomology. In particular
under some assumptions that can be always satisfied, we can kill some dependency’s
condition. For the rest of the discussion, we then suppose to be in the following

situation:

Situation 1. We can assume that X, can be embedded in proper scheme X, by
a theorem of Nagata ([Nag62]) and suppose that there exists a formal scheme P
smooth on a neighborhood of Xj: in particular we assume that X is endowed with
étale topology and quasi-projective, so that we can lift the Frobenius morphism f

of Xy on P.

Remark 8. In this setting Berthelot proved the independence of the definition
of JY, yp, and J, yp for each r, with respect to Y and P. This is claimed in
(|[Gro94], Propositions 3.3 and 3.5). With this remark we can denote it simply by
Jx,- However we want to advert the reader that what is claimed in Gros is not
supported by a verifiable reference. For us, it has been impossible to find it as well

as the concerned proof.
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As done in [Bes00] we can take together all such choices.

Definition 6.3. If (X, X,j,P) with j : X — X are W-scheme with the hypothesis
as in the situation , we call a such collection rigid datum. A morphisms between
the rigid data (X, X,7,P) and (X, X".j',P') is the data of a proper morphism o :

X — X’ and a smooth morphismu : P — P’ compatible with the obvious morphisms.

These objects form a category RD(X, W) which is filtered as proved in |Bes00].
Moreover we can refine this definition, requiring a compatibility with strict
neighborhoods. If to a rigid datum we choose a strict neighborhood V' of | X[p
in | Xo[p, we call this datum, extended rigid datum. Then a morphism of extended
rigid data, with V' and V' their corresponding strict neighborhoods, is a morphism
of rigid data such that the induced map on the tubes sends V in V’. Again this
is a filtered category that we note ED(X, W) so we have direct limits taking all
the rigid data or extended rigid data. We remark that all this constructions induce
quasi isomorphism on each particular chosen datum. Under these assumptions we
can form the following so called rigid syntomic sheaves. First define

m . : r
T xy = hﬂ Txo 3PV
(X.4,P,V)EED(X,W)

" L . -
T Xojz1 = lm Txo,X.P.V)2]
(X7j77j7v7|Z|)egD(X7W)

Here V' means that the sheaves Jy are defined more generally

o X Py Ixo %P vz
with €2},. Since the Frobenius on X, admits a lifting on the formal scheme P that

we denote still by f, we define the following sheaves for each integer r:

s(r)x/k.f.rig 1= Cone(1 —p~" f + Ty, = T, ) 1]

s(r)x/, 2|, f.rig = Cone(l —p~" f j’gmz‘ — j’g(ov‘zl)[—l].
It is important to remark that these sheaves depend by f but by the theorem 1.5 in
(IGro94]), they are independent by homotopy class. Since we are interested in the
study of their cohomology, we can just forget the map f by the notation, and we

consider them as in the homotopy category. We are now ready to define the Gros

cohomology theory.

Definition 6.4. Let’s X, X, X, P as above. We define H%.(X,r) as the
hypercohomology groups

HaGr<X7 T) = HG(X7 S(T)X/K,rig)
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and in the relative case, we define
HaGr,\Z\(Xa T) = Ha(Xa S<T)X/K7\Z\ﬂ“ig)'
Remark 9. Note that the filtration
r r—1 0 . . °
T C I T, = lim RSP*J;@Q}XO[
ED(X,W)

induces K-vector spaces of the rigid cohomology that we denote with

Fil"Hy, (Xo/K) == H*(X,J",).- In the definition of rigid-Besser cohomology in
[Bes00], it is defined a filtration on the De Rham cohomology, that play the role
of the filtration defined above. Actually Besser provides a map between them in a
more general situation. The relevant fact is that this map is functorial with respect

to X. This allows us to define a cycle class on the Gros filtration as image of the

cycle class of the de Rham filtration.

Remark 10. We have to underline that in the definition of these K-vector spaces
we don’t know if they actually are sub-objects. In this discussion we assume (or

better, we have conjectured) that: under suitable conditions on X, we have that

Fil"H

rig

(Xo/K) — H;,

rig

(Xo/K)

1S an injection.

We stress that in the smooth and proper case, the identification of rigid and de Rham
cohomology follows by the GAGA theorem (where the terms analytic is intended
rigid-analytic) and so we apply this principle on the filtration both on rigid that and
on the de Rham cohomology, to obtain an isomorphism. However when we don’t
have properness, than we don’t know the behaviour of this filtration. For example, in
the case Xy = Spec(klt]), the injection cannot be hold, since the filtration on the left
makes the cohomology an infinite dimensional K-space, meanwhile on the right we
have one that is finite dimensional. In fact, we can choose a frame Al < PL < Py
Also Y = P}, and so }:/K — Pl So we have the stupid filtration relative to the rigid
complex

Then we see that Fil' H},,

(X/K) is infinite dimensional, while H}

rig

(X/K) is finite

dimensional.
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Lemma 6.5. For X smooth (and suitable conditions as described above), and W a

flat integral subscheme of codimension r, there exists a functorial map

Fil Hpw, (Xi/K) =5 Fil HY,

Tiga Wo

(Xo/K)
such that,

Fil Hypy . (Xg/K) iy FMHEZ?“WO

(Xo/K) — H*

Tig,WO

(Xo/K)

is compatible with the cycle classes (betweeen the de Rham and rigid one). That
means: if Narw, denote a cycle class of a closed subscheme Wi of codimension r of

X, then cx(Narwy) is compatible with n,igw, € HZ . (Xo/K) (defined in chapter

rig,Wo
5).

Proof. The existence of the map is proved in |[Bes00] proposition 9.5. But after

[[CCM13]|, section 1.5] we have a specialization map

Hoy o (Xic/ K) D B

rig,Wo

(Xo/K)

NdRWx 7 Nrig, Wy
The Hodge theory for the de Rham cohomology provides an equality
Fil'H3p w, (Xk/K) = Hipw, (Xk/K). Then actually the de Rham fundamental
class lies in the r-th part of the filtration and so, cx is the restriction of the
specialization map to this filtration. This means that we have the following

commutative diagram (where we stress the injectivity hypothesis):

HC%I%,WK (Xk/K) — Hﬁ”ii],W()(XO/K)

]\ remark ]

Fil'HZ, . (Xk/K) — Fil'HZ,

rig,Wo

(Xo/K)
[l

This lemma guarantees the existence of a cycle class in the rigid filtration of Gros.

Definition 6.6. Let W be a flat closed subscheme of X of pure codimension r. Then

we define a fundamental class in the rigid filtration as

TrigWo = Cx (Nar,wy )- (6.2)
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Proposition 6.7. The Rigid-Gros cohomology satisfies the following long exact

sequences:
Lo = H N (Xo/K) @ Hiy'(Xo/K) — Hg(X,r) — H(Xo/K) @
Fil HY, (Xo/K) — HS (Xo/ K) @ HE (Xo/K) — ...
2. = H|aZ_|,%"ig(XO/K) & H|az_\,1rig(X0/K) = Hg, 7(Xor) = Hiy 0 (Xo/K) @
Pl HY, . (Xo/K) = Hyy L (Xo/K) @ HY L (Xo/K) = ...

8. = HE o (Xr) = He (X,r) = Hg (X — Zr) — ..
Moreover the last exact sequence is contravariant for cartesian squares.

Proof. Let’s observe that we have a quasi isomorphism
Cone(1 —p™" f + T, = T, )[=1] ~ Cone(T ", ® T, = T'%, & T'%, )11,

1—p™7"f O
where h = Py . The same holds in the relative case. Then 1) and 2)

0 1
follows by the long exact sequence associates to a mapping cone. For the property

3), recall that in general holds that

Cone(Cone(A* — B*)[—1] — Cone(C* — D*)[—-1])[—1]
~ Cone(Cone(A* — C*)[—1] — Cone(B* — D*)[—1])[—1],

and in particular it applies to the sheaves s(7)x/x |z f,rig- Then 3) follows again by
the long exact sequence of the mapping cone. The last sentence follows by the fact

that s(r) X/K,|Z|,frig 1 contravariant for cartesian squares. ]

Conjecture 6.1. The rigid Gros cohomology satisfies the homotopy property, i.e.

there exist a canonical isomorphism such that
Hg'r(X’ T’) = Hg;‘r(X X All/V(k)7T)

A possible proof has been attempted as following.
We consider the long exact sequence on Gros cohomology
Hyo N (Xo/K) @ Hyy) (Xo/K) — He, (X, r) — Hy

— H,(Xo/K) © H,

rig

(Xo/K) & Fil" H?

rig

(Xo/K)
(Xo/K)
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and the similar one corresponding to the scheme X x A‘I,V(k). The projection map
X x Aév(k) — X induces an isomorphism on the rigid cohomology groups appearing
in the exact sequences since the rigid cohomology satisfies the homotopy property.
To prove that the homotopy property holds for the filtration, we consider that in

the affine case, with X = Spec(A) we have the short exact sequence
0— Fil'Q%; — Q% — Q37° — 0

that induces a long exact sequence in cohomology. By the five lemma it suffices to
prove the isomorphism H’(Q5]*) ~ Hj(Q(i:’x.W[t})T)' If we consider the Kunneth
formula in ([Ber97aj, section 3.1, ref. (3.1.1)), we observe that there is an
isomorphism at level of complexes, so it is an isomorphism also only considering
the first » — 1 terms. Since the computation of cohomology of Q;Vw] is trivial
(H° = K, otherwise is 0), by Kunneth formula, the only term of the direct sum is
the cohomology relative to X. This reasoning proves the searched isomorphism for
j <r—2and for j > r. What about j = r — 17 We note that this corresponds
to the case where Fil' H!(Spec(k[t])/K) is infinite dimensional discussed in remark
. When this is verified, then by four lemma, also the map between the rigid

Gros cohomology groups is an isomorphism.

Proposition 6.8. Let Z be a closed W-subscheme of X of pure codimension q.

Then the rigid Gros cohomology satisfies the weak purity condition, i.e.
HCa;’I’7|Z|(X’T) :O a < 2q
Proof. By the long exact sequence

He o (Xo/ K)OHS  (Xo/ K) = HE, (X, 1) = Hy7(Xo/ K)SFI"HY, | 7(Xo/K)

rig,|Z| rig,|Z| r rig,|Z|

and by weak purity of rigid cohomology (the weak purity holds on the filtration, by
the injectivity conjectured hypothesis), it follows that the first and last term of the

sequence are (. The proposition follows. O

Now assume that X is smooth. As described in [Pet03], if Z; is a closed k-subscheme
of X of codimension ¢ we can define a fundamental class 1z, i, € H |2Z€'O|7Mg(Xo /K).
Starting from such class we can define the analogous one for the rigid Gros

cohomology.
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Proposition 6.9. Let Z a closed W-subscheme of codimension r. There exist
a unique syntomic fundamental class in the rigid Gros cohomology, nzar €

HIQZTLGT(X’ r) compatible with the rigid fundamental class 1z, rig-

Proof. By weak purity we have the following exact sequence:

r r T Iy2r h r r
0— HEZ‘,GT(X7 T) - ‘[—‘lfig,|Z0|(‘XV()/I{)GBF11 Hfig,\Zg\(XO/K> — H|2Zo|,rig(X0/K)EBH|2ZO|,rig(XO/K)'

In particular by exactness there is a unique class in the Gros cohomology
corresponding to an element of the kernel of h. We have defined 7z, 4

Cx (nZK,dR) c Fil" H*"

vig|zo|(Xo/K). Moreover the Frobenius action on 7z, is the

multiplication by p" and it is compatible with the r-th level of the de Rham filtration,
so that the couple (12, rig, Nzy.rig) € ker(h). This proves that there exists a unique

corresponding 1z g, € H‘QZT"GT(X, r). O

Now by linearity we can extend the definition of Gros fundamental class, to Gros

cycle class.
We can verify the compatibility on the pullback of cycle.

Lemma 6.10. Let f : X' — X be a closed immersion of smooth W -schemes, and
let Z € Z"(X) a relative cycle of codimension r. We Assume that the f~(Z) lies
in Z"(X"). Then holds that

f*T/Gr,Z = Ngr,f*zZ

Proof. Since ngrz 1is defined as the wunique corresponding element of
(Nzorigs ¢x (Nzi.ar)), and cx is a functorial map, the assertion follows by the
compatibility of the de Rham cycle class with respect to pullback, as proved in
(|[CCM13], lemma 1.6.3).

O

The previous assertions prove that the Gros cohomology is a Bloch (in our sense)
cohomology theory. As seen in ([Blo86b|), on such kind of cohomology it is possible
to construct an higher class cycle map. We will just apply the Bloch’s argument to

the Gros cohomology here defined.
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Proposition 6.11. Let X be a smooth W -scheme. Then the Gros cycle class induces

an higher cycle class map (regulator)

™ CH™(X/W,m) — HZ™(X,7) (6.3)

syn
compatible with the regqulator map for the rigid-Besser cohomology defined in

(|CCM13], Proposition 1.6.6).

Proof. Let’s choose a resolution of the complex that computes the Gros cohomology.

In particular we denote

RGT‘(X X A*m,r) = RF(X X Aim,S(T)XXAfm/KJ‘ig)
Rerz| (X x A7 r) := RI'(X x A7, 5(r)xxa-m /K, 12| rig)

RG’I‘,C(X X A_mﬂ“) = hﬂ RGT,\Z\(X x AT™, 7“)
ZeZr(X,—m)

where m < 0 and Z € Z7(X,—m). Since it can be some problem of convergence
about unbounded spectral sequences, we choose an N >> 0 even and suppose
m > —N, then we pose
K™ = 1> NRa (X x A™™ )
KM =15 NRaro (X x A7 1)t
with ¢ > 0. In this way we can consider the "filtration bete” spectral sequences

associate to K** and K2*, namely:

EM = HY(K*™) = H™"(tot(K**))

EY = HY(KD™) = H™(tot(K2*))
By a closer inspection on the first spectral sequence we can notice that:
E?%t = Hér(X X Aimar) = HtG’r(X’ 7")

by homotopy property. Moreover, if D3™ : K*™ — K*™*! denotes the differential,
—

(that is induced by the face inclusion maps X x A™ : X x A™*1) then we have that
>
d' = (=1)'HY(D3™) and so we deduce

(
id if =N <m <0, meven and t even

dT’t =9q-id if =N <m <0, m even, t odd

0 otherwise.

\
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This means that

t _
Bt — HL (X,r) m=0

0 otherwise

and so H'(tot(K**)) ~ HE,.(X,r). Now, the Gros cycle class map induces the

following map of complexes
Tm>-NZ" (X, ) = E 7. (6.4)

From the weak purity property we deduce that E;flc’t =0 for t < 2r and for ¢ > 1.

This means that we have a map

E;;"’z’“ — BV — HY " (tot(K2*))

— H? " ™(tot(K**)) ~ HG ™(X, 7).

Then composing with the cycle map after taking the cohomology, we obtain
the desired map. The compatibility with Besser syntomic regulator follows by the

compatibility of cycle maps (6.5) and lemma (6.2)).

6.3 A map from Gros cohomology to (étale)
syntomic cohomology

The previous sections show that the Gros cohomology has good properties, like
to the classical étale cohomology. Here we will see that a connection between the
Gros cohomology and étale-syntomic cohomology arise naturally. Unfortunately it
is important to remark that the Fontaine-Messing étale sheaves s,(r)x have not the
same kind of behaviour. We don’t know in general if the homotopy property holds.
Actually, a modified version of these sheaves appears in [Sat10], where it is claimed
a lack of the homotopy invariant, so the construction of an higher cycle map needs
some care and a little different approach. We will see it in the next section.

In this section we are going to use the differential description of the syntomic sheaves
of Fontaine and Messing, as described in ([Kat85]) or in section [1.2.2].

Let X be a smooth, quasi-projective W-scheme. Let X — Z a closed immersion in

a smooth (in a neighborhood of X') W-scheme Z, such that the Frobenius morphism
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of X lifts to Z. Let D,, := Dx, (Z,) the divided power envelope with respect to the
divided power ideal pW,, C W, and let J, := Jp, the ideal of Op, defining X,,.
Let JI denote the r-th divided power of J,,, where for r < 0 we denote JI! := Op, .

We can define a complex of sheaves over (Xg)g:
Jg,]x,z : J}f] — J,[f_l] ®oy, len — J,[Z”_Q] R0y, QQZTL — ...

Moreover there exists a unique f, that represents the ”division by p"™” of the

Frobenius f. Then we can define the fibered cone
5u(r)x.z += Cone(I}ly , =55 I /)[~1].

Let’s denote the image of these sheaves (étale ) on the derived category with
sn(r)x. All the sentences are verified in ([Kat85], and in loc. section on Crystalline
cohomology). Now let’s assume X = spec(A) is an affine smooth scheme, where A is
a finite type W-algebra. If AT denotes the weak completion respect to (p), Berthelot
([Ber97b|) proved that there is an isomorphism

RT (g, ) = RT(Q% )y @ K).

Moreover there is a natural inclusion (by definition) of At — A := lm Alp™.
By covariant functoriality of the differential Q2 for each 7, the inclusion induces a
morphism

Ly © K — (1&1 Qo w,) ® K. (6.5)

Moreover notice that there is an inclusion spec(A4,) < Z, and the divided power

envelope of spec(A,,) in Z, with respect to pWW,, yields a map

[ ] [ ]
An/Wn - QDspec(An) (Z’ﬂ) :

Keeping the projective limits on each terms, then extending to the scalars K and

composing the obtained map with (6.5]), we obtain a map
Lpiyw @ K = (Im Oy, z,) © K.
So in the case of affine smooth schemes we have a map

R (X, $(0)x/k.rig) = RT(X, 500(0)x) ® K.
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where in this context RI'(X,s(r)x/kriq) 1is the complex such that
RT(X,s(r)x/krig) = Hg& (X,r) With an analogous reasoning, we deduce the

existence of a map [1]
RI(X, s(r)x/k,rig) — RI(X, 500(r)x) @ K (6.6)

for each integer r. We underline that in the map [6.6, X is endowed with Zariski
topology on the LHS, while X is endowed with étale topology in RHS.

Now for a generic X smooth, we choose a covering of affine schemes. The universal
property of divided power envelopes guarantees the compatibility of these maps on
finite intersections of the covering. So by the definition of sheaf, there exist a unique

map extending for a generic X smooth.

6.4 Cycle map in étale cohomology

In the previous section, we observed that the Fontaine-Messing sheaves s,,(r)x loss
the homotopy property. This means there is a gap in the construction of an higher
cycle map in the sense of Bloch. However, the classical étale cohomology is a good
Bloch cohomology theory. We ask then if it possible to define, in a functorial way,
an higher syntomic cycle map, starting from the classical étale point of view. In
([Sat10]) is described a modified version of the Fontaine-Messing sheaves to make
up for the lack of the homotopy property. His discussion is more general, but it has
some difficulty that make less clear the connection with the maps built here. So, for
simplicity we choose to deal with the classical étale cohomology and then, through a
result of Kurihara ([Kur87]) and an argument of Geisser (|Gei04]), we make possible
the desired connection. Under the assumption of smoothness of X, for the author
this seems the shortest way to approach the argument.

In this section we study the cohomology of the generic fiber Xx of a smooth

W-scheme X. Let m = p” and denote with Z/m(q) the p-adic sheaves
® qfg>1
Hom, gz
Z/m(q) =
Z/m if ¢ =0.

'We notice that in the affine case there is no information on the ideal I, i.e. I = (0). This
beacause we can choose the frame spec(Ay) < P} < P%, and if Y = P} and P = P%,, then

Yi = Pxk.

96



6. SYNTOMIC REGULATOR IN ETALE AND RIGID
COHOMOLOGY

These sheaves satisfy the purity condition from classical étale theory: let Zx be a

closed subscheme of pure codimension ¢, then there is a canonical isomorphism
HEK (Xket, Z/m(q)) =~ H'™((Zk)ew, Zm). (6.7)

In particular H ;‘i{ (X, Z/m(q)) is generated by the irreducible components of Zx. A
cycle map is then defined extending by linearity the fundamental classes of such Zx,
i.e. the preimage of [Zx] € H°(Zk,Z/m) by the isomorphism (6.7). Moreover the
étale cohomology has the homotopy property. To apply the Bloch’s argument, we
need of a resolution that computes the étale cohomology and the functoriality of the
class cycle map. For the resolution, choose a Godement resolution of Z/m(q) on Xk,
namely G*(Xk,Z/m(q)). We note that it is quasi isomorphic with R['(X g, Z/m(q)),
so the cohomology of both complexes is the same. The functoriality of cycle map

follows by the following lemma in étale cohomology:

Lemma 6.12. Let cll, : 29 X,0) = H*(Xg ¢, Z/m(q)) the cycle map for the
¢tale cohomology. If f : Yx — Xk is a morphism of smooth K-scheme, Wi C Xk
a closed subscheme of codimension > q, Tk C Yx a closed subscheme such that

Y (Wg) C Tk and Tk has codimension > q, then
fr(ely((Wkl)) = el (f*[Wik])
Proof. See (|[GLO1|, proposition 3.5 (1)). O

Now, by the argument of Bloch, we can construct an higher cycle map (regulator)
from higher Chow groups to étale cohomology. More precisely it is the map in

cohomology induced by a map
cld : 29Xy, 0) @Z/m — G** (X, Z/m(q)). (6.8)

To see it, we note that the argument of Bloch, at first step provide a map of

complexes induced by cycle map as following:
29—, 0)® Z/m — H*(G3(~«, LZ/m(q))) (6.9)

where G®(—¢,Z/m(q)) is obtained by G* taking the inductive limit over the
subgroups of Z%(—,0) of closed subschemes that meet properly. Moreover by the

weak purity in étale cohomology we have a natural quasi isomorphism

T<2,Ge(—, Z/m(q)) = H* (G2 (=&, Z/m(q)))[—2q)- (6.10)
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We have also a map
T<2qGe(= Z/m(q)) = GI(=,Z/m(q)) = G*(=,Z/m(q)) (6.11)

obtained by composing with forgetful support functor. Composing all these maps,

then applying to X x A*, and by homotopy property, we get .

6.4.1 Looking for compatibility and questions

What we have done until now is provide a strategy to formulate an analogous of the
theorem (3.4) (|[Gro94|) in terms of higher cycle maps. More precisely we hope that
the following holds:

Conjecture 6.2. Let X a smooth W -scheme, with Xy smooth special fiber and X g

the (smooth) generic fiber. Then there exists a functorial (in X ) regulator map

i CH'(X,m) ®Q, — H" ™( X4, 50 (r)x) @ Q, (6.12)

ét-syn

making the following diagram commutative:

om

CH™(X,m)®Q, — " HZ ™(X,r)

m

w l (6.13)

HY ™ (X1, 00 (1) x) @ Qp
where the vertical map 1s induced by .

As a consequence, we can express the relation between the (rigid) syntomic
cohomology in the sense of Besser, and the étale cohomology, in a similar fashion of

the Deligne-Beilinson cohomology.

Corollary 6.13. Let X as in the theorem . Then there is a commutative
diagram

CH"(X,m)®Q, —— HZ"™ (X,r)

syn-Bess

l l (6.14)

CH"(Xg,m) ®Q, —— HZ ™(Xg,Qpy(r))

where the right vertical map is given by the following composition:

H 5o (Xor) — HE 7™ (X, r) — H ™ (X, s00(r) x) @ Qp = HE ™™ (X, Qu(r)).
(6.15)
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Here, the first map on the left is given by one defined in ([Bes00], proof lemma 9.5).
The last map on the right is the one given in ([FM87],3, 5.1).

Proof. By the theorem and by construction of the syntomic-Besser regulator
map given in [CCM13], we have just said that CH"(X,m) — HZ ™(Xg,Q,(r))
factorizes through Hf;;i"Bess (X,r). In the case m = 0 the assertion of the corollary
is true: In fact by the weak purity property HZ , (Xg,Q,(r)) is generated by the
irreducible components of Zx. The elements of C H"(X) are flat subschemes of pure
codimension 7, so in the generic fiber the irreducible components relative to W are
irreducible relative to K, then also the respective classes in cohomology are the
same. Since the syntomic-Besser cohomolgy and the étale cohomology are Bloch

type, by the lemma [6.2] the commutativity follows for m > 0.
]

The rest of the section is devoted to see how the ”conjecture” has been

approached.

Let start with some notation. Let
1:Xg—=> X

the closed immersion of the special fiber, denote with
J: Xg =X

the open immersion of the generic fiber. Denote with I'x ¢ (r) the complex of étale
sheaves associate to the presheaves U — Z"(U, »). Analogously we denote I'x 74, (1)
the corresponding Zariski complex of sheaves. Denote by € : Xg — Xz, the map
of sites. Now we sketch an argument of Geisser . By a result of Kurihara ([Kur87])

there is a map

Sn(r)x = T< 1" RjZ/p" (7). (6.16)
Moreover there is the following map of complexes:
Teri* €T x ar (1) @ Z)p" = 7<,i* ¢ Rj.x, () @ Z/p". (6.17)
Then the adjoint map €*Rj, — Rj.e* composed with yields a map

T< 1 € Ry x, (r)[-2r] ® Z/p" — 1<, 0" RjZ/p"(T). (6.18)
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Then the main result of Geisser ([Gei04] proof of theorem 1.3) is to prove that there
exists a map

T<ri € Ux z0r(7)[=2r] @ Z/p" — $5(7) x (6.19)
such that the following diagram

T<ri* € T x 70, (1)[-27] @ Z/p" —— T<,i*¢" Rj.Tx, (r)[—2r] @ Z/p"

l l (6.20)

Sn(r)x > T<pi* Ry Z/p™(r)

commutes. Now we consider the following extended diagram:

T<r i €' Tx 2ar(7)[-2r] @ Q) —— T<, "€ ' x 20, (r)[—2r] ® Q) —— T, i*¢" Rj.I'x, (1) ® Q,

l l l

s(1) x/K rig > Seo(T)x ® Qp > T<pi* Ry, Qp (1)
(6.21)

The claim is that, at the level of cohomology, it is commutative. In fact we note that
all the vertical maps represent the suitable higher cycle maps, since by vanishing of
the cohomology of the higher Chow groups, the truncation at level r is not restrictive.
Moreover the composition of the maps on the bottom is a non trivial functorial map
between two Bloch cohomology theories, so we can ask if they are compatible with
respect to the cycle maps. Is this true? Since the weak purity property forces a
non trivial map to send fundamental class in fundamental class, this sentence is
verified only for the relative cohomology. We know by (|Gro94]) that the map
is compatible with Chern classes, but we don’t know if we can refine these classes
to "local Chern classes” with target in the relative cohomology. On the other hand,
without this assumption we can ask if the map on the relative cohomology induced
by is an isomorphism. In this case, by weak purity the compatibility follows
at fortiori. If assume such compatibility for the cycle classes, then by the lemma
[6.2) this means that all the bigger rectangle is commutative. Together with the
commutative diagram in , this not implies yet that the square on the left is

commutative on the cohomology. But for this purpose it suffices that the map

Soo(1)x ® Q) = T<, 1" R7,.Q,(1) (6.22)

is injective. This follows by a simple fact on commutative diagrams: we are in the

100



6. SYNTOMIC REGULATOR IN ETALE AND RIGID
COHOMOLOGY

situation in which the following diagram in a category C

A—*s By (C
ol
D4y F_—¢3F

is such that all the bigger rectangle and the right square commute, i.e. the following
diagrams are commutative:

b

boa

A5 (C B ——C
lh lk l k
D -4 F E—°5 F

If e is a monomorphism then, also the square on the left is commutative: it follows

simply by the relations
eodoh=koboa=¢coloa

and since e is a monomorphism, d o h = [ o a. So the question is:

Under which hypothesis, the map is injective? Is it possible for example in
the case r =17

Does exist a refining of Chern classes as ”local Chern classes” compatible with the
classical one?

Is it possible, anyway, to prove that induces an isomorphism at level of relative

cohomology?
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