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INTRODUCTION

The purpose of this thesis is to explain how different p-adic cohomology theories are

related one whit the other and to show that there are common fundamental aspects

that can be shared between different theories. The tool that allows us to investigate

such relations is the regulator map. It is a map connecting two different type of

algebraic/geometric worlds. The source has an intrinsic geometric nature, in which

the main objects are cycles on a variety. The target is the cohomology theory that

we choose to develop.Varieties can be defined over the complexes or over a discrete

valuation ring (in equi or mixed characteristic): in all these declinations, cycles have

different flavors and they may involve the topology of the variety but also its coho-

mology. The fact that this map change on the target, but comes by the same source,

make it like a bridge between the different theories that we want to study. In the

course of this study we have read about different kind of applications in number

theory or algebraic geometry and we understood that this kind of applications can

be reached after a deep knowledge of these connections. So, in this discussion we

want to stress these analogies and where they come from.

In the first chapter we deal with the definition of Higher Chow groups. The most

important properties are discussed and the Bloch argument of ([Blo86b]), on the

construction of higher cycle maps, is exposed.

In the second, we have described the theory which has motivated our work: that

is the Deligne-Beilinson cohomology. For a smooth variety defined over the com-
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plex numbers, such a cohomology takes care of the Hodge filtration in the de Rham

setting as well as the topological singular cohomology of the associated complex

manifold. In the third chapter we deal with an algebraic construction of Abel-

Jacobi type maps using the regulator map of the Deligne-Beilinson cohomology. We

show how the mixed Hodge structure on the singular cohomology theory is used to

define such maps.

As in the classical case we have Deligne-Beilinson cohomology, we would like to find

an analogue in the arithmetic setting. Namely, we consider a scheme X defined over

a valuation ring in mixed characteristic. For such a situation we would like to have

a cohomology theory which mixes the Hodge filtration of the algebraic scheme de-

fined on the generic fiber (in characteristic 0), together with some invariant (under

the Frobenius operator) in the cohomology of the special fiber which is a scheme

over a characteristic p > 0 field. For this reason in the chapters fourth and fifth

we deal with the definitions and properties of cohomology theories of varieties in

characteristic p which are relevant for our work: the crystalline and the rigid one.

Finally, in the last chapter we consider various definitions of the syntomic cohomol-

ogy. The original ”syntomic cohomology” a’ la Fontaine-Messing ([FM87]) involved

the crystalline cohomology and its filtration. It admits a link to p-adic étale coho-

mology. Besser cohomology mixed the rigid cohomology of the special fiber with

the Hodge algebraic filtration of the generic one. Gros syntomic cohomology uses

the rigid cohomology complex of the special fiber with an analogous of the Hodge

filtration (but again on the rigid complex), which has not (a priori) a geometric in-

terpretation. A regulator map has been constructed for the Besser-rigid cohomology

([CCM13]): the aim of our thesis has been to compare all these cohomology theories

as well as to study the properties of the Gros syntomic cohomology. Unfortunately,

the lack of a geometric interpretation has not allowed us to prove that Gros syn-

tomic cohomology is a Bloch cohomology. However, along the lines of [CCM13]

(i.e. using higher Chow groups) a possible construction of a regulator map from the

Higher Chow groups has been proposed. Moreover it has been sketched a possible

approach to solve the compatibility with the maps to the étale cohomology of all

these various syntomic cohomologies.
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CHAPTER 1

HIGHER CHOW GROUPS

In this chapter we introduce a fundamental object in algebraic topology, that is

related in a deep way with the different cohomology theories that we will treat.

They are the generalization to higher dimension of the classical Chow groups in

algebraic geometry. This definition is made and discussed in origin by Bloch, and

it is used for proving different properties that are intrinsic and characterize most of

the ”good” cohomological theories. In fact these objects are considered as the right

geometric object to study the so called ”motivic cohomology”, that is understood as

the tool that bring together all different kind of cohomologies and relate them with

comparison maps. Actually, Bloch proved that the definition of the higher Chow

groups is isomorphic to a portion of K-theory ([Blo86a]) and for this theory there is

a way to construct regulator maps. This isomorphism suggests to treat the regulator

map as an ”higher cycle map”, but a direct connection between regulator maps and

higher cycle maps is not yet so clear. In the course of this thesis, we want to discuss

the so called regulator maps, as ”higher cycle maps”, that is proved to exist in a

general setting over ”good” cohomological theories, as we will explain soon.

We will see in this chapter some fundamental property of the Higher Chow

groups for varieties over the ground field k. During this exposition we will follow

essentially [FF84], for the basic definitions in intersection theory and [Blo86a], for

the construction of higher Chow groups.
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1. HIGHER CHOW GROUPS

Definition 1.1. An algebraic cycle on a scheme X is a finite, formal linear

combination of the form
∑
nV [V ] where V ⊂ X is a subscheme and nV are integers.

Suppose that X is equidimensional, then Zr(X) is the free abelian group generated

by [V ], with V ⊂ X a subscheme of codimension r.

Definition 1.2. Let W a divisor with complete intersection, so given by equations

f1 = · · · = fn = 0. for a subscheme V ⊂ X, we say that W and V meet properly, if

codimV (W ∩ V ) ≥ n. By classical algebraic geometry we can define a cycle W · V .

Recall that the intersection ”·”is commutative and associative ([FF84]).

Definition 1.3. Let ∆n to be the affine simplex:

∆n := spec(k[t0, . . . , tn]/(t0 + . . . .tn − 1)).

Then we can define a map i : ∆m → ∆n associate to a map ρ : [0,m]→ [0, n] weakly

increasing. More precisely i is defined by the morphism on the algebras, given by

i∗(tk) =

0 if ρ−1(k) = 0∑
ρ(j)=k tj else.

So for an injection ρ, i is the inclusion of ∆m in ∆n obtained by intersecting with

tk = 0 all the parameters tk which are not involved in ∆m, and this map is called

face map. It is a flat map. While for ρ surjective, all the parameters tk in which

ρ(k) is the same, degenerate in the same parameter in ∆n, and this map is called

degeneration map. It is a proper map

Definition 1.4. Let define Zr(X,n) ⊂ Zr(X × ∆n) as the free abelian group

generated by irreducible subvarieties V ⊂ X × ∆n of codimension r such that V

meets all faces of X ×∆n properly.

Lemma 1.5. We have that Zr(X, •) is a simplicial abelian group.

Proof. We have to find for each ρ : [0,m]→ [0, n] a functorial map

ρ∗ : Zr(X,n)→ Zr(X,m).

Case 1: ρ is surjective. Then iρ : X ×∆m → X ×∆n is flat. Then there exists the

flat pullback

ρ∗ = i∗ρ : Zr(X ×∆m)→ Zr(X ×∆n)
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1. HIGHER CHOW GROUPS

. Case 2: ρ is injective. Then for each V that meets properly iρ(X ×∆n), define

ρ∗(V ) = iρ(X ×∆m) · V.

Case 3: general case. Then for each ρ : [0,m] → [0, n] there exist ρ1 injective and

ρ2 surjective such that ρ1 ◦ ρ2 = ρ. Then define ρ∗ = ρ∗2 ◦ ρ∗1. Then the functoriality

is immediate, since when T is closed subvariety of X ×∆m that meets all the faces

properly, then the multiplicity of T in ρ∗(V ) depends on the length of Oi−1
ρ (V ) with

respect to the generic point of T and this is a functorial property.

To prove that cycles that meet properly the faces are mapped in the corresponding

kind of cycles, let’s note that in the injective case, this is satisfied by definition.

For the general case, just consider that we have a commutative diagram that, by

functoriality, is commutative also at level of higher cycles:

X ×∆n X ×∆m

X

iρ

in
im

Since im, (in) corresponds to an injective ρ : [0] → [0,m] ([0, n]), we have that

i∗m(V ) meets X, the face of codimension 0 in X × ∆m, properly. But i∗m(V ) =

ρ∗(V )·X and so ρ∗(V ) meetsX properly. By induction onm, fixed a face σ ⊂ ∆m, we

can find an iτ : X×∆p → X×∆m such that it is induced by a map τ : [0, p]→ [0, n]

injective with p < m and such that its image is X × σ. By induction we have that

τ ∗(V ) meets properly X × σ and ρ∗(V ) · (X × σ) = τ ∗(V ), that means that ρ∗(V )

meets X × σ properly.

Definition 1.6. Let ∂i : Zr(X,n) → Zr(X,n − 1) be the pullback map of cycles

associate to i : ∆n−1 ↪→ ∆n defined by ti = 0

Now consider Zr(X, •) as a complex concentrated in negative degree. Then we can

define a map of complex by posing

δ =
∑

(−1)i∂i : Zr(X,n)→ Zr(X,n− 1).

Then it is a simple computation to verify that δ ◦ δ = 0. Then define

Definition 1.7. For X an equidimensional k-variety, define

CHr(X,n) = H−n(Zr(X, •))
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1. HIGHER CHOW GROUPS

Lemma 1.8. For n = 0, CHr(X, 0) ' CHr(X)

Proof. The classical Chow groups CHr(X) modulo rational equivalence are obtained

as cokernel of Zr(X, 1)→→Zr(X, 0), and so coincide with the definition posed.

Proposition 1.9. The complex Zr(X, •) is covariant functorial for proper maps

and contravariant functorial for flat maps.

Proof. Let f : X → Y be a proper map. Then f × 1 : X × 1 → Y × 1 is also a

proper map. Now by the properness, we deduce that for a subvariety Z ⊂ X ×∆n

and m < n, and ∂ : ∆m → ∆n that

f(Z) ∩ ∂(Y ×∆m) = f(Z ∩X ×∆n)

and

codim(f(Z ∩X ×∆n)) ≥ codim(Z ∩X ×∆n).

Then is well defined the pushforward for proper maps (with the right shift in grading)

f∗ such that we have the following diagram:

Z∗(X,n) Z∗(X,m)

Z∗(Y, n) Z∗(Y,m)

f∗

∂∗

f∗

∂∗

The fact that it commutes follows by a theorem of ([FF84], Proposition 6.2), applied

to Z ∩ X ×∆m, f(Z), Z, f(Z ∩ X ×∆m), and considered rational equivalence to

codimesion 0. The flat case follows also by a theorem in ([FF84] Proposition 1.7).

Now let Y be a smooth k-variety and W = {W1, . . . ,Wk} a collection of closed

algebraic sets of Y .

Definition 1.10. Define the subset ZrW(Y, n) ⊂ Zr(Y, n) to be the free abelian group

generated by the irreducible cycles of Y ×∆n meeting all Wi×∆m properly for each

∆m ⊂ ∆n.

Proposition 1.11. Assume Y smooth and W ⊂ Y a local complete intersection.

Then the pullback of cycle induced by the inclusion W ↪→ Y , induces a map on the

level of complexes

Zr+nW (Y, •)→ Zr(W, •).
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1. HIGHER CHOW GROUPS

Also, if W = {W1, . . . ,Wk} with Wi ⊂ W1 ⊂ Y for i ≥ 2, then there is a map of

complexes:

Zr+nW (Y, •)→ ZrW−W1
(W1, •).

Proof. The only request to satisfy for being a map of complexes is the commutativity

of the suitable diagram, but this is equivalent to request that the intersection of

cycles is commutative.

The next is a proposition that represents a moving lemma for higher cycle classes,

and we refer a proof to the article of Bloch ([Blo86a]). We will use it for transporting

functoriality on higher Chow groups.

Theorem 1.12. Let Y be a smooth k-variety, W a collection as above of closed

subsets of Y . Assume Y is either affine or projective. Then the inclusion ZrW(Y, •) ⊂

Zr(Y, •) is a quasi-isomorphism.

Proof. See ([Blo86a], Lemma 4.2).

To remove the hypothesis of affine or projective, Bloch at first proved a strong

formulation of the moving lemma, with the only quasi-projective hypothesis.

Theorem 1.13. Let X be a smooth quasi-projective variety and U a Zariski open

set of X. Denote Y = X − U . Suppose the codimension of Y in X is n. Then we

have a quasi-isomorphism:

Zr+n(X, •)/Zr(Y, •)→ Zr+n(U, •). (1.1)

Proof. See ([Blo86a], Theorem 3.3).

It is important to point up that this quasi isomorphism generates a long exact

sequence in Chow cohomology.

Proposition 1.14. Let Y ⊂ X a subvariety of codimension d. Then there is a long

exact sequence:

· · · → CH∗−d(Y, n)→ CH∗(X,n)→ CH∗(X − Y, n)→ . . .

Proof. We have a short exact sequence:

0→ Z∗−d(Y, •)→ Z∗(X, •)→ Z∗(X, •)/Z∗−d(Y, •)→ 0.
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1. HIGHER CHOW GROUPS

Then by the long exact sequence induced in cohomology, we have the long exact

sequence:

· · · → CH∗−d(Y, n)→ CH∗(X,n)→ H∗(Z∗(X, •)/Z∗−d(Y, •))→ . . .

Then by the quasi-isomorphism of the theorem (1.13), we have that the proposition

holds.

As corollary we can prove the following:

Corollary 1.15. Let Y be a smooth quasi-projective variety, andW as above. Then

the inclusion ZrW(Y, •) ⊂ Zr(Y, •) is a quasi-isomorphism.

Proof. We proceed with induction on the dimension n of Y . For n = 0, 1, Y is

affine or projective, so the proposition holds, in this case, by theorem 1.12. For

n > 1, consider the projective closure Ȳ of Y , and call Z = Ȳ − Y . Then chose an

hypersurface X̄ such that Z ⊂ X̄ and X = X̄ − Z contains a dense Zariski open

in X̄. Then X has dimension n− 1 and Y −X is affine (since a complement of an

hypersurface in a projective variety is affine). Then by the theorem 1.13 we have a

following commutative diagram of distinguished triangles on the rows:

ZW∩X(X, •) ZW(Y, •) ZW(Y −X, •)

Z(X, •) Z(Y, •) Z(Y −X, •)

Then the external vertical maps are quasi-isomorphism: On the left, by inductive

hypothesis. On the right because Y − X is affine. The fact that the rows are

distinguished triangles, implies that we can apply the five lemma and it shows that

the middle vertical map is a quasi-isomorphism too.

Proposition 1.16. Let f : X → Y be a morphism of k-variety. Suppose that Y is

smooth and quasi-projective. Then there is a functorial pullback map:

f ∗ : CH∗(Y, n)→ CH∗(X,n). (1.2)

Proof. Let 1Y : Y → Y be the identity map. Then we have a map f × 1Y :

X × Y → Y × Y . By the smoothness of Y we have that Y × Y is a local complete

12



1. HIGHER CHOW GROUPS

intersection, so also ∆Y ⊂ Y × Y is local complete intersection. Then the graph

Γf = (f × 1Y )−1(∆Y ) ⊂ X × Y is a local complete intersection. Then define

Ti = {y ∈ Y : dim(f−1(y)) ≥ dim(X)− dim(Y ) + i}. (1.3)

Then if Z is a closed subvariety of Y ×∆n that meets properly Ti×∆n, then Z×X

meets properly Γf ×∆n. Since Γf ∼ X, define

f ∗(Z) = (Z ×X) · (Γf ×∆n).

Then if T = {T0, . . . , Tk} we have by corollary 1.15 that

ZT (Y, •) ∼−→ Z(Y, •).

Then the definition is well posed since at level of cohomology it is independent on

T . The functoriality follows by the fact that Γf◦g = Γf ◦ Γg.

Another fundamental property is the homotopy property for higher Chow groups.

Its proof constitutes a big work in the article of Bloch ([Blo86a]). We are limited to

cite and use the result and try to understand the relationship with cohomological

theories.

Theorem 1.17. Let X a quasi-projective k-variety. Then the projection X×∆n →

X induces a pullback map

Zr(X, •)→ Zr(X ×∆n, •),

that is a quasi-isomorphism.

Proof. See ([Blo86a], Theorem 2.1)

The other fact about the complex Zr(X, •) is that it is a complex of sheaves over

a reasonable topology on X. An interesting fact is the following. Consider Xzar a

smooth variety with the Zariski topology. Then holds the following:

Theorem 1.18. The association

U 7−→ Zr(X, •)/Zr(X − U, •) =: Γ(U, Sr•) (1.4)

constitutes a flabby complex of sheaves.

13



1. HIGHER CHOW GROUPS

Proof. The flabby condition for Sr• is clear by definition. We have to prove that

actually they are sheaves. This means that we have to prove the exactness of the

following sequence: for open U, V ⊂ X then we have

0→ Zr(X,n)/Zr(X − (U ∪ V ))→ Zr(X,n)/Zr(X − U, n)⊕Zr(X,n)/Zr(X − V, n)

→
→Zr(X,n)/Zr(X − (U ∩ V ), n)

Since X − U and X − V are closed sets, we have that Zr(X − (U ∪ V )) = Zr(X −

U) ∩ Zr(X − V ), that means, that the first map in the sequence is injective. Then

we have to prove that the kernel above is equal to the image of this injective map.

Let (zU , zV ) ∈ Zr(X,n)/Zr(X − U, n)⊕Zr(X,n)/Zr(X − V, n) such that

zU − zV ∈ Zr(X − (U ∩ V ), n).

Denote with z̄U , z̄V the Zariski closures of respectively zU , zV in X × ∆n. The

condition on zU and zV means that they glue together on a section z on U ∪ V ,

and the Zariski closure z̄ of z in X × ∆n has not any component with support in

X − (U ∪ V ). We must show that z̄ ∈ Zr(X,n). To do that, notice that we can

write z̄ = z̄U + wU = z̄V + wV where supp(wU) ⊂ X − U and supp(wV ) ⊂ X − V

and so z̄U − z̄V = wV − wU ∈ Zr(X,n). Then we can write wU = w′U + wU,V where

w′U ∈ Zr(X,n) and supp(w′U) 6⊂ X − (U ∪ V ), while supp(wU,V ) ⊂ X − (U ∪ V ).

Then

z̄ = z̄U + w′U + wU,V .

But wU,V = 0 since there is no support in X − (U ∪ V ) for z̄ and so

z̄ = z̄U + w′U ∈ Zr(X,n).

A corollary of this fact is the useful spectral sequence that relates the Higher Chow

groups:

Corollary 1.19. There is a spectral sequence of the form:

Hp(X,Hq(X,Zr(−, •))) =⇒ CHr(X,−p− q). (1.5)

14



1. HIGHER CHOW GROUPS

Proof. By the theorem 1.18 we have that the hypercohomology and the cohomology

of global sections are isomorphic (it follows by flabby condition). More precisely we

have that

CHr(X,n) = H−n(Γ(X,Sr•)) = H−n(X,Sr•).

Then the Grothendieck spectral sequence for the hyperchomology writes as:

Hp(X,Hq(Zr(−, •))) =⇒ Hp+q(X,Sr•) = CHr(X,−p− q).

With this terms we can deduce a vanishing property for the higher Chow groups:

Proposition 1.20. Let CHr(n) the sheaf associate to the datum

U 7−→ CHr(U, n).

Then for i > n follows that

H i(X, CHr(n)) = 0.

Proof. With this notation the spectral sequence above has the form:

H i(X, CHr(n)) =⇒ CHr(X,n− i).

Since n− i < 0, the proposition follows.

This thesis will deal also with a slightly modification of the Higher Chow groups

that is referred to smooth schemes defined over a discrete valuation ring V , with

residue field k and fraction field K. If X is a quasi-projective smooth scheme over V

the definition of the group Zr(X/V , 0) is given by flat and integral cycle over V , in

a such way there are a non trivial cycle ZK over the general fiber XK ×V K over K,

and a cycle Zk over the special fiber Xk ×V k over k. In this context an n-simplex

is defined as

∆n := Spec(Z[x0, . . . , xn]/(x0 + · · ·+ xn − 1)) (1.6)

Formally all the previous definitions are the same.

A remark is that the complex Zr(X/V , •) is not only a complex of sheaves for the

Zariski topology but also for the étale topology on X ([Gei04], Lemma 3.1).
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1. HIGHER CHOW GROUPS

Now we want to explain the relationship between higher Chow groups and

cohomology. Recall that for ”good” cohomology theories, we have a cycle class

map, that means a functorial map

clr : CHr(X)→ H2r(X)

defined for X smooth. Actually for each Z ∈ Zr(X) is defined a cycle class ηZ ∈

H2r
Z (X) where HZ denotes the cohomology with support in a closed subset of X.

In the higher context, we play with a cohomological theory in ”two variables”, that

means a ”good” theory of the form

X 7−→ H∗(X, •)

and we expect to construct an ”higher cycle map” or ”regulator” map 1 that is a

functorial map

clr,n : CHr(X,n)→ H2r−n(X, r)

We will see that this behaviour of double index in cohomology is the common one,

also in the singular cohomology for example. In fact often we consider sheaves and

their twists that make the cohomological theory bigraded. We will see in some detail

further. We want now to explain under which condition a cohomological theory is

”good” and when it is possible to construct a regulator map. This is a quite general

fact and this generality is the key thanks which it is possible to formulate some

connection with the different cohomological theories here exposed. For integers a, b

let Ha(X, b) a cohomology theory of schemes X that satisfies the following axioms:

1. Given a subscheme Y of X, there exists a cohomology with support in Y such

that satisfies a localization exact sequence of the form:

· · · → Ha
Y (X, b)→ Ha(X, b)→ Ha(X − Y, b)→ Ha+1

Y (X, b)→ . . .

This exact sequence is contravariant functorial for cartesian squares of the

form:
Y X

Y ′ X ′

1the terms regulator often is used in the context of K-theory. During this paper our objective

is ”replace” in some sense the K-theory. The translation of this map in our context is the more

appropriate ”higher cycle map”.
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1. HIGHER CHOW GROUPS

and covariant for Y ′ ⊂ Y ⊂ X

2. The homotopy property holds. It means that for any i we have that

H i(X, b) ' H i(X ×∆n, b) ∀n ≥ 0.

3. There exists a cycle class map: for a pure codimesion r subscheme Y ⊂ X

there exists a cycle class

cl(Y ) ∈ H2r
Y (X, r)

such that it is compatible with pullback, i.e for a map f : X ′ → X and Y ⊂ X

such that f−1(Y ) has codimension r we have that clX′(f
∗Y ) = f ∗clX(Y ).

4. The weak purity property holds. It means that for Y ⊂ X of pure codimension

r we have that

H i
Y (X, b) = 0 ∀i < 2r.

When these properties hold, we call a such cohomology a Bloch cohomology theory.

In fact thess axioms are presented in [Blo86b] were it is introduced the following

”method” to construct ”higher cycle maps”:

Theorem 1.21. Let Ha(−, b) to be a Bloch cohomology theory in the above sense.

Assume that H∗(X, b) is an hypercohomology over a topology in which Godement

resolutions there exist, computed by a complex K∗X(b) contravariant functorial and

with KX(b)n acyclic for each n (this assumption is endowed in the existence of

Godement resolutions). Then there exists a functorial map

clr,n : CHr(X,n)→ H2r−n(X, r) (1.7)

that in the case n = 0 coincides with the classical cycle class map.

Proof. Let’s consider the simplicial scheme built below:

X →
→X ×∆1→→

→X ×∆2 . . .

We associate to this diagram the double complex

Γ(X ×∆−p, KX×∆−p(b)
q)

17
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with p ≤ 0. Then for reasons of convergence we choose a truncation of the simplicial

complex above, and consider for N >> 0 even and m ≥ −N

Am,t := τm≥−NΓ(X ×∆−m, KX×∆−m(b)q)

for m ≤ 0. Then there is a spectral sequence

Em,t
1 := H t(A•,m) =⇒ Hm+t(tot(A•,•)).

Then by the homotopy property we have

Em,t
1 = H t(X ×∆−m, b) = H t(X, b).

Then the differential map d1 can be the identity or 0 (as we will see in the proof of

c.f. proposition 6.11).

Then we obtain that

Em,t
2 =

H
t(X, b) m = 0

0 otherwise.

Note that this conclusion on the E2 terms is the same without truncation, where

the only problem is about the convergence of E1. Then we can define

Em,t
1,c := lim−→

Z∈Zb(X,−m)

H t
|Z|(X ×∆−m, b),

where |Z| = supp(Z). Now the rest of the construction is the same as we will follow

in the proof of proposition 6.11. Since that proof is much detailed and at this stage

it depends only by having a Bloch cohomology theory we refer the reader to it.
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CHAPTER 2

DELIGNE-BEILINSON COHOMOLOGY

In this chapter we introduce the object that permits and motivates the developing of

the next theories. It will be the ”trace” for the following discussion, and our objective

is to stress some peculiar behaviour of this cohomology theory that is expected to

share with other suitable theories. We will work over the field of complex numbers

C and the objects of interest are projective, smooth varieties over C.

The starting point is the classical de Rham cohomology. The basic idea to formulate

a ”smaller” cohomology theory, taking the relevant information about the de Rham

cohomology, is to ”truncate” the de Rham complex. Let X be a smooth, projective

variety over C. We endow X by analytical structure, in such way that it is a manifold

with differential forms. The main references for this part are [EV88] and [PS08]

Definition 2.1. Let Z(r) = (2πi)rZ ⊂ C for r ≥ 0. Let define the Deligne complex

Z(r)D : 0→ Z(r)→ OX → Ω1
X/C → Ω2

X/C → · · · → Ωr−1
X/C → 0. (2.1)

The first map is the restriction over (2πi)rZ of C→ OX .

Definition 2.2. The the Deligne cohomology is the bigraded hypercohomology of the

Deligne complexes, where X is the variety endowed by the analytical structure:

H∗D(X, r) := H∗(X,Z(r)D). (2.2)
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2. DELIGNE-BEILINSON COHOMOLOGY

This cohomology theory has a natural cup product. In fact, on the level of complexes

it is defined as:

Z(r)D ⊗ Z(r′)D → Z(r + r′)D

x ∪ y =


x · y deg(x) = 0

x ∧ dy deg(x) > 0, deg(y) = r′

0 else

(2.3)

Then the differential acts as:

d(x ∪ y) = dx ∪ y + (−1)deg(x)x ∪ dy (2.4)

Lemma 2.3. the ∪ product is a morphism of complexes associative and

anticommutative. It makes up a ring structure on the group⊕
r,n

Hn
D(X, r).

Proof. For the associativity, let x, y, z respectively ∈ Z(r)D,Z(r′)D,Z(r′′)D. Then

we have

(x ∪ y) ∪ z =


xy ∪ z deg(x) = 0

(x ∧ dy) ∪ z deg(x) > 0, deg(y) = r′

0 otherwise

=



xyz deg(x) = deg(y) = 0

xy ∧ dz deg(y) > 0, deg(x) = 0, deg(z) = r′′

x ∧ dy ∧ dz deg(x) > 0, deg(y) = r′, deg(z) = r′′

0 otherwise

while

x ∪ (y ∪ z) =



xyz deg(x) = deg(y) = 0

x(y ∧ dz) deg(x) = 0, deg(y) > 0, deg(z) = r′′

x ∧ (dy ∪ z) deg(x) > 0, deg(y) = r′, deg(z) = r′′

0 otherwise
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2. DELIGNE-BEILINSON COHOMOLOGY

=



xyz deg(x) = deg(y) = 0

xy ∧ dz deg(x) = 0, deg(y) > 0, deg(z) = r′′

x ∧ dy ∧ dz deg(x) > 0, deg(y) = r′, deg(z) = r′′

0 otherwise

For the anticommutative property, we have to prove that x∪y = (−1)deg(x)deg(y)y∪x

where the equality is considered in the homotopy class. An homotopy between x∪y

and (−1)deg(x)deg(y)y ∪ x is provided by

h : Z(r)D ⊗ Z(r′)D −→ Z(r + r′)D

x⊗ y 7−→


0 if deg(x) = 0 or deg(y) = 0

0 if deg(x) = r, deg(y) = r′

(−1)deg(x)(x ∧ y) otherwise

Then we consider that d(x ⊗ y) = dx ⊗ y + (−1)deg(x)x ⊗ dy, and that d(x ∧ y) =

dx∧ y+ (−1)deg(x)+1x∧ dy. Then by linearity of h on the components of the tensor

product, we can compute that

h(d(x⊗ y)) + d(h(x⊗ y)) = h(dx⊗ y) + (−1)deg(x)h(x⊗ dy) + dh(x⊗ y)

= x ∪ y − (−1)deg(x)deg(y)y ∪ x.

In fact it easy to verify that when deg(x) = 0 or deg(y) = 0 we have 0 on both sides

or one between the terms x ∧ dy and −dx ∧ y.

When deg(x) = r and deg(y) = r′ we have that the LHS = x∧dy+(−1)deg(dx)dx∧y

and the RHS = x∧dy−(−1)deg(x)deg(y)y∧dx = x∧dy−(−1)deg(x)(deg(y)+deg(dy))dx∧y

and by the fact that deg(y) + deg(dy) is odd, we see that RHS=LHS. In the case

that deg(x) 6= 0 and deg(y) 6= 0 but not in the previous case, we have the simple

computation on the LHS:

(−1)deg(dx)dx ∧ y + x ∧ dy + (−1)deg(x)dx ∧ y + (−1)2deg(x)+1x ∧ y = 0

and by definition the RHS is 0 too.

Note that in the case r = 0, the Deligne cohomology groups H∗D(X, 0) are just the

singular cohomology groups of X.
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2. DELIGNE-BEILINSON COHOMOLOGY

The relevant aspect of this theory is the following description:

Let

F rΩ•X : 0→ Ωr
X → Ωr+1

X → . . . (2.5)

the trivial filtration of the de Rham complex. There is obvious inclusion map

i : F rΩ•X → Ω•X .

Then consider Z(r) as the trivial complex, in which Z(r) is in the degree 0. Then

there is again an obvious inclusion

ε : Z(r)→ Ω•X .

Then define the Deligne complex as the following fibered cone:

Z′(r)D := Cone(ε− i : Z(r)⊕ F rΩ•X → Ω•X)[−1].

It in not difficult to prove that there is a quasi-isomorphism between the two

definitions:

Lemma 2.4. There is a quasi-ismorphism α : Z(r)D → Z′(r)D.

Proof. We have to define αi : Ωi−1
X → Ωi−1

X such that

Z(r) OX . . . Ωr−2
X Ωr−1

X 0

Z(r) OX . . . Ωr−2
X Ωr

X ⊕ Ωr−1
X Ωr+1

X ⊕ Ωr
X

α0

d d

α1 αr−1

d

αr

−ε −δ1 −δr−1 −δr

is a commutative diagram. In fact let’s define αi(ω) = (−1)iω for i = 0, . . . , r − 1,

αr(ω) = (−1)r(dω, ω). Then δr−1(η) = (0, dη) and δr(η) = (−dη,−ψ + dη). Then

we can see that the diagram above commutes, since

−δi(α(ω)) = −δi((−1)i−2ω) = (−1)i−1di(ω) = αi−1di(ω).

then ker (δr)/Im (δr−1) = {(ψ, η) : dη = ψ} modulo exact forms η. But this group is

the same of ker (dr)/Im dr−1.

This description allows to compute the cohomology through long exact sequences

induced by the structure of the cone and recalling that in general for complexes
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A•, B•, C•, we have that

Cone(A• ⊕B• → C•)[−1] ' (2.6)

Cone(A• → Cone(B• → C•))[−1] ' (2.7)

Cone(B• → Cone(A• → C•))[−1]. (2.8)

Moreover we notice that Cone(F rΩ•X → Ω•X) ∼q.iso Ω<r
X := Ω•X/F

rΩ•X . Then by the

long exact sequences for the cone we have:

Proposition 2.5. The following sequences are exact:

1. · · · → Hn
D(X, r)→ Hn(X,Z(r))⊕ F rHn(X,C)→ Hn(X,C)→ . . .

2. · · · → Hn
D(X, r)→ Hn(X,Z(r))→ Hn(X,C)/F rHn(X,C)→ . . .

This kind of description allows to generalize a description of a possible cohomology

in the non proper case. Assume then that X is a smooth manifold over C. The

idea of Beilinson is to choose a good compactification of X in a proper manifold X̄,

that means that there exists an open inclusion j : X ↪→ X̄ such that D := X̄ −X

is a normal crossing divisor, i.e. locally in the analytic topology, D has smooth

components that intersect transversally.

When a morphism of manifolds f : Y → X is given, one can choose compactifications

X̄ and Ȳ of X and Y respectively, such that f lifts to a morhpism f̄ : Ȳ →

X̄. The refining of the Deligne cohomology in this setting is the Deligne-Beilinson

cohomology that is obtained by replacing the differential Ω•X , with Rj∗Ω
•
X , F rΩ•X

with F rΩ•
X̄

(logD), and Z(r) with Rj∗Z(r). Then we define the following:

Definition 2.6. The Deligne-Beilinson complex of a smooth variety X is given by

the following fibered cone:

Z(r)D := Cone(ε− i : Rj∗Z(r)⊕ F rΩ•X̄(logD)→ Rj∗Ω
•
X)[−1]. (2.9)

Then the Deligne-Beilinson cohomology of X are the hypercohomology groups :

H∗D(X, r) := H∗(X̄,Z(r)D) (2.10)

The first problem is the dependence by the compactifications chosen. Actually

this definition does not depend by them. If (X̄, j) and (X̄ ′, j′) are different
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compactifications of X, note that by the definition of the complex of fibered cone,

the long exact sequences above still hold. In particular we have the exact sequence

· · · → Hn(X̄,ZD(r))→ Hn(X̄, Rj∗Z(r))⊕Hn(X̄, F rΩ•X̄(logD))→ Hn(X̄, Rj∗Ω
•
X)→ . . .

(2.11)

Then there is the analogous one for (X̄ ′, j′). But by the good compactification

properties any morphism of manifolds f : X̄ ′ → X̄ induces an isomoprhism f ∗ on

the level of hypercohomology groups

Hn(X̄, Rj∗Z(r))⊕Hn(X̄, F rΩ•X̄(logD))→ Hn(X̄ ′, Rj′∗Z(r))⊕Hn(X̄ ′, F rΩ•X̄′(logD′))

and

Hn(X̄, Rj∗Ω
•
X)→ Hn(X̄ ′, Rj′∗Ω

•
X).

Then, by the five lemma this implies an isomorphism for the Deligne-Beilinson

cohomology. This definition is functorial on X. Given an f : Y → X, and a lift f̄ ,

then at the level of complexes we have a pullback map

f̄ ∗ : Z(r)•D,X̄ → f̄∗Z(r)•D,Ȳ (2.12)

and this induces a map in hypercohomology. It also possible to define a ring structure

on this cohomology as done before, but for this construction and details we mention

and refer the reader to [EV88].

2.1 Cycle class in Deligne cohomology

The object that we want to introduce, is the key object that permits to construct

higher cycle maps or ”regulators” maps as discussed in the first chapter. We will

interpret this regulators as higher Abel-Jacobi maps in the next chapter. To start,

we must recall the main facts about the cycle class in the de Rham cohomology and

singular cohomology. Through this section X will be a smooth compact manifold

over C. If Y ⊂ X is a closed irreducible subvariety of codimension r in X then there

exists a cycle class cl(Y ) ∈ H2r(X,Z) that is of pure type (r, r): that means that

it maps on the level r of the Hodge filtration of Hn(X,Z) ⊗ C =
⊕

p+q=nH
p,q(X).

Since H2r(X,F rΩ•X) = F rH2r(X;C), cl(Y ) induces a fundamental class on the

Hodge filtration clHdg(Y ) ∈ H2r(X,F rΩ•X) and the inclusion Z ↪→ C induces a map
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2. DELIGNE-BEILINSON COHOMOLOGY

that sends cl(Y ) in clC(Y ) ∈ H2r(X,C). Similarly, the inclusion F rΩ•X ↪→ Ω•X

induces a map that sends clHdg(Y ) in clC(Y ). To be more precise, upon factors

by (2πi)r, we can consider cl(Y ) ∈ H2r(X,Z(r)) and the inclusion Z(r) ↪→ C is

the morphism that make possible all the compatibility above. We also recall that

the fundamental class in the singular cohomology comes out by a representative

in the local cohomology, that is a Thom class τ(Y ) ∈ H2r
Y (X,Z(r)). What is less

obvious is that all these cycle classes can be refined in the local context with all the

compatibility that can be satisfied. More precisely the following theorem holds:

Theorem 2.7. Let X be a compact algebraic manifold and let Y ⊂ X an irreducible

subvariety of codimension r. Then the following holds:

1. It is possible to define a Hodge-Thom class

τHdg(Y ) ∈ H2r
Y (X,F rΩ•X)

such that the inclusions F rΩ•X → Ω•X and Z(r) → C sends τHdg(Y ) and

respectively τ(Y ) in the same class τC(Y ) ∈ H2r
Y (X,C)

2. τHdg(Y ) maps to clHdg(Y ) by the forgetful map of support.

3. There exists a class τ r,r ∈ Hr
Y (X,Ωr

X) such that the following relations hold:

τ r,r(Y ) τHdg(Y ) τ(Y )

clr,r(Y ) clHdg(Y ) clC(Y )

where the morphisms are given by the following commutative diagram:

H2r
Y (X,Ωr

X) H2r
Y (X,F rΩ•X) H2r

Y (X,C)

H2r(X,Ωr
X) F rH2r(X,C) H2r(X,C)

Proof. See ([PS08], Theorem 2.36)

As corollary is not difficult to define a Deligne-Thom class that permits to define a

cycle class in the Deligne cohomology:
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Corollary 2.8. Let Y ⊂ X a subvariety of codimension r. Then there exists a

Deligne-Thom class

τD(Y ) ∈ H2r
Y (X,Z(r)D)

such that it maps to τ(Y ) and τHdg(Y ). By forgetting supports it defines a class

clD(Y ) ∈ H2r
D (X,Z(r)) such that the natural maps Z(r)D → F rΩ•X and Z(r)D →

Z(r) respects the fundamental classes.

Proof. Let’s observe at first that H2r−1
Y (X,Z(r)) = 0 for dimension reasons. Then

the long exact sequence for the Deligne (local) cohomology becomes:

0→ H2r
Y (X,Z(r)D)→ H2r

Y (X,F rΩ•X)⊕H2r
Y (X,Z(r))→ H2r

Y (X,C)→ . . . (2.13)

Then by the previous theorem the element (τHdg(Y ), τ(Y )) maps to 0 by the second

map on the sequence above. Then by exactness there exists a unique element

τD(Y ) ∈ H2r
Y (X,Z(r)D) and again, by the previous theorem, it satisfies the claimed

compatibility.

Remark 1. The definition of the Deligne-Beilinson cohomology depends by the

analytical structure of the variety. But this definition can be generalized to define

a cohomology theory for schemes endowed with Zariski topology. More precisely

in ([EV88],5.5) are described complex of sheaves Z(r)D,Zar for the Zariski topology,

with the property that, when X is smooth (variety over C) and we endow it with

the analytic topology, by the GAGA theorem their hypercohomology is isomorphic

to the Deligne-Beilinson cohomology. Moreover the definition of these sheaves on

the Zariski topology has a product structure in the derived category. This shows a

first example where we leave the analytic setting towards a more algebraic setting.

In the next we define an higher cycle map and we see its description in terms of higher

Abel-Jacobi maps. We are interested mainly to stress some peculiar behaviour of this

cohomology that allows to take out the necessary tools to develop other theories with

a more algebraic setting. So it is important to have in mind the different structures

on the variety, that we will recall when it is necessary.
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CHAPTER 3

HIGHER A-J MAP

The aim of the following discussion is to provide a definition of an Abel-Jacobi map

extending one discussed in [EV88]. More precisely we have seen by Bloch’s work

([Blo86b]) that there exists a natural generalization of a cycle map for Bloch-Ogus

cohomological theories: they arise from the construction of the Higher Chow Groups

([Blo86a]). From this we can derive a simple extension of Abel-Jacobi maps in terms

of mixed Hodge structures (see [PS08] for the main definitions and properties of

MHS.).

Let X be a projective, smooth variety over C. We have have an exact sequence of

sheaves by the definition of Deligne complex as follows:

0 Ω<p
X [−1] Z(p)D Z(p) 0

from which derives the long exact sequence in Hypercohomology:

...→ Hk−1(X,Z(p))
α−→ Hk−1(X,Ω<p

X )︸ ︷︷ ︸
=

Hk−1(X,C)
FpHk−1(X,C)

→ Hk
D(X,Z(p))→ Hk(X,Z(p))

β−→ Hk(X,Ω<p
X )︸ ︷︷ ︸

=
Hk(X,C)

FpHk(X,C)

→ ...

(3.1)

The equality follows by notice that complex of holomorphic differentials can be

viewed as

ΩX = Cone(Ω<p
X [−1]

0−→ F pΩX)

from which we have the exact sequence
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0 F pΩX Ω<p
X

⊕
F pΩX = ΩX Ω<p

X 0

and by the derived exact sequence

...→ Hq−1(X,Ω<p
X )

0−→ Hq(X,F p)→ Hq(X,ΩX)→ Hq(X,Ω<p
X )

0−→ Hq+1(X,F p)
.−→ ..

Recall that Hq(X,ΩX) ' Hq(X,C) between the De-Rham and singular cohomology

and that Im (Hq(X,F pΩX) −→ Hq(X,ΩX)) ' F pHq(X,C). We split the long exact

sequence to obtain the short exact sequence

0 cokerα Hk
D(X,Z(p)) ker β 0.

Now

cokerα =
Hk−1(X,C)

F pHk−1(X,C) +Hk−1(X,Z(p))

and

ker β = Hk(X,Z(p)) ∩ F pHk(X,C)

and so it rewrites as:

0→ Hk−1(X,C)

F pHk−1(X,C) +Hk−1(X,Z(p))
→ Hk

D(X,Z(p))→ Hk(X,Z(p)) ∩ F pHk(X,C)→ 0.

(3.2)

Let k = 2p− n and define

J p,n(X) :=
H2p−n−1(X,C)

F pH2p−n−1(X,C) +H2p−n−1(X,Z(p))
.

Recall that in (2.1) we have defined a cycle map for the Deligne-Beilinson

cohomology:

Blp,0 : CHp(X, 0)→ H2p
D (X,Z(p)).

By the method exposed in (1.21), then it is defined an higher cycle class map

Blp,n : CHp(X,n)→ H2p−n
D (X,Z(p)).

Moreover we define

CHp
hom(X,n) := ker

(
CHp(X,n)

Blp,n−−−→ H2p−n
D (X,Z(p))→ H2p−n(X,Z(p))

)
.

28



3. HIGHER A-J MAP

We observe that if [Z] ∈ CHp
hom(X,n) then by the long exact sequence (3.1), it

follows that

Blp,n([Z]) ∈ ker (H2p−n
D (X,Z(p))→ H2p−n(X,Z(p))) =

Im (H2p−n−1(X,Ω<p
X )

δ−→ H2p−n
D (X,Z(p)))

' H2p−n−1(X,Ω<p
X )

ker δ
= cokerα = J p,n(X).

This means that Blp,n induces a map

Φp,n : CHp
hom(X,n) −→ J p,n(X) (3.3)

such that the following diagram

J p,n(X) H2p−n
D (X,Z(p))

CHp
hom(X,n) CHp(X,n)

Φp,n Blp,n (3.4)

commutes.

3.1 Review on the case Φp,0 (n = 0)

Let’s observe that in the case n = 0 the diagram (3.4) corresponds to the following

commutative diagram:

0 Zphom(X) Zp(X) CHp(X) 0

0 J p(X) H2p
D (X,Z(p)) H2p(X,Z(p)) ∩Hp,p(X,C) 0

Φp,0 Blp,0

In fact in the case above described we claim that CHp
hom(X, 0) = Zphom(X)/rat.eq.

and that a cycle rational equivalent to 0 is the 0 class in H2p
D (X,Z(p)). The last

sentence is proved in [[EV88],Prop.7.6]. In particular we know the cycle map factors

through CHp(X, 0) = Zp(X)/rat.eq. :

Zp(X, 0) H2p
D (X,Z(p))

CHp(X, 0)

Blp,0
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Recall that the composition

Zp(X, 0)→ H2p
D (X,Z(p))→ H2p(X,Z(p))

is the cycle map for singular cohomology and that

Zphom(X) = Zphom(X, 0) := ker
(
Zp(X, 0)→ H2p

D (X,Z(p))→ H2p(X,Z(p))
)

so that the following diagram commutes:

0 Zphom(X, 0) Zp(X, 0) H2p
D (X,Z(p)) H2p(X,Z(p))

CHp(X, 0)

δ

where δ is defined by the obvious composition.

In this way we obtain the exact sequence

0 Im δ CHp(X, 0) H2p(X,Z(p))

and so CHp
hom(X, 0) = Im δ = Zphom(X)/rat.eq.

This proves that the cycle map defined by Bloch in the case n = 0 is simply the

factorization of the classical cycle map modulo rational equivalence.

3.1.1 Different description of Φp,0

Now we can derive an alternative description of the map Φp,0 assuming we have a

cohomological theory that satisfies:

1. Weak purity: Hk
|Z|(X) = 0 for |Z| := supp(Z), Z ∈ Zp(X) ∀k < 2p

2. Homotopy axiom: Hk(X × A1) = Hk(X) ∀k

3. Mixed Hodge structure.

All the conditions are satisfied by the singular cohomology, in particular we can

assume that the morphisms which involve in the discussion arise from the mixed

structure. For the moment consider the case n = 0. From the long exact sequence

of cohomology with support in |Z| and from weak purity we have the following:

H2p−1
|Z| (X,Z(p))︸ ︷︷ ︸

=0

→ H2p−1(X,Z(p))
β−→ H2p−1(X − |Z|,Z(p))→ H2p

|Z|(X,Z(p))
i−→ H2p(X,Z(p))

(3.5)
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Observe that H2p
|Z|(X,Z(p)) ' H0(|Z|,Z) =

⊕
Y ∈|Z| Z and F pH2p

|Z| = H2p
|Z|. Moreover

the exact sequence is in terms of mixed Hodge structure, so it respect such structure.

In particular we have an exact sequences’ diagram for which we can apply snake

lemma:

0 0 0

0 F pH2p−1(X,C) F pH2p−1(X − |Z|,C) F p ker γ = ker γ 0

0 H2p−1(X,C) H2p−1(X − |Z|,C) ker γ 0

H2p−1(X,C)
F pH2p−1(X,C)

H2p−1(X−|Z|,C)
F pH2p−1(X−|Z|,C)

0

In this way we see β induces an isomorphism

H2p−1(X,C)

F pH2p−1(X,C)
' H2p−1(X − |Z|,C)

F pH2p−1(X − |Z|,C)

and so in particular

J p,0(X) =
H2p−1(X,C)

F pH2p−1(X,C) +H2p−1(X,Z(p))
' H2p−1(X − |Z|,C)

F pH2p−1(X − |Z|,C) +H2p−1(X,Z(p))
.

(3.6)

If Z ∈ Zphom(X) there exists a unique (modulo Im β) c̃Z(Z) ∈ H2p−1(X − |Z|,Z(p))

that maps in H2p−1(X − |Z|,C) and after take the class in the quotient 3.6, by

isomorphism there is a unique ψp,0(Z) ∈ J p,0(X).

Definition 3.1. ψp,0 : Zphom(X) −→ J p,0(X) is called Abel-Jacobi map.

Theorem 3.2. We have that ψp,0 = Φp,0.

Proof. See [EV88] Prop.7.11.

3.1.2 Extensions in MHS

Before to go further let’s observe the role of the long exact sequence 3.5 in the context

of the extensions in the MHS (mixed Hodge structure). An equivalent formulation
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of the 3.2 is:

0→ ExtMHS(Z, H2p−1(X,Z)(p))→ H2p
D (X,Z(p))→ HomMHS(Z, H2p(X,Z(p)))

(3.7)

from the relation ExtMHS(Z, H2p−1(X,Z)(p)) = J p,0(X) ([PS08], Theorem 3.31 (1)).

We want to understand how a cycle class defines an extension class. Let’s recall that

a cycle class is given by a map Z → H2p
|Z|(X,Z(p)), and when it is nullhomologous

it means that when we forget the support it is the zero map (for Y ∈ |Z| yields

i[Y ] = 0 where i is defined in 3.5). Choosing a pullback of Z coming from the 3.5,

we obtain the following extension :

0→ H2p−1(X,Z(p))→ E→ Z→ 0 (3.8)

where E ' H2p−1(X,Z(p)) ⊕ c̃Z(Y ) determines a unique extension class. This will

be the more general framework on which we will define Abel-Jacobi maps.

3.2 Generic Φp,n (n > 0)

We want now to generalize this construction for a generic number n. Let

∆n := Spec (C[t0, ..., tn]/(t0 + ...+ tn − 1))

the algebraic n−simplex. The faces are the subsimplexes of ∆n given by {ti = 0} =:

Hi. We define

∂∆n :=
n⋃
i=0

Hi.

For the singular cohomology theory we can compute

H i(∂∆n,Z(p)) =

Z(p) if i = 0 or i = n− 1

0 else

If Z ∈ Zp(X,n) we define

∂Z := Z ∩ (X × ∂∆n).

Let us indicate U := (X ×∆n)− |Z| and ∂U = U ∩ (X × ∂∆n).

We collect some useful remarks:
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Lemma 3.3. With the notation above we have

1. H i(X,Z(p)) = H i(U,Z(p)) i < 2p− 1

2. H i(X × ∂∆n,Z(p)) = H i(∂U,Z(p)) i < 2p− 1

3. H i(X × ∂∆n,Z(p)) = H i(X,Z(p))⊕H i−n+1(X,Z(p)).

Proof. 1) We have a long exact sequence in local cohomology with support:

0 = H i
|Z|(X×∆n,Z(p))→ H i(X×∆n,Z(p))→ H i(U,Z(p))→ H i+1

|Z| (X×∆n,Z(p)) = 0

where the 0’s come from weak purity and H i(X×∆n) = H i(X) by homotopy axiom.

2) It is analogous to 1) :

0 = H i
|∂Z|(X×∂∆n,Z(p))→ H i(X×∂∆n,Z(p))→ H i(∂U,Z(p))→ H i+1

|∂Z|(X×∂∆n,Z(p)) = 0

where the weak purity is applied to the faces of the simplex that for definition

intersect properly the cycle Z.

3) It is just the consequences of the Kunneth formula in cohomology and the

computation of cohomology of ∂∆n.

From the long exact sequence for relative cohomology and the lemma 3.3 we obtain:

H2p−2(U,Z(p)) H2p−2(∂U,Z(p)) H2p−1(U, ∂U,Z(p)) H2p−1(U,Z(p)) H2p−1(∂U,Z(p))

H2p−2(X,Z(p)) H2p−2(X × ∂∆n,Z(p))

H2p−2(X,Z(p))⊕H2p−n−1(X,Z(p))

1. 2.

3.

from which derive the following short exact sequence:

0→ H2p−n−1(X,Z(p))→ H2p−1(U, ∂U)→ ker (H2p−1(U)→ H2p−1(∂U))→ 0.

(3.9)

We want to mimic the construction of an isomorphism for the J p,n(X) like in the

previous section, where we deal with case n = 0. For doing that, we need of a certain

long exact sequence (of mixed Hodge structure).

Theorem 3.4. The following is a long exact sequence of mixed Hodge structures:

0→ H2p−n−1(X,Z(p))→ H2p−1(U, ∂U,Z(p))→ L(U)
γ−→ H2p−n(X,Z(p)) (3.10)

where L(U) is a subgroup of H2p
|Z|(X ×∆n,Z(p)), so that F pL(U) = L(U).
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Proof. Let be

H2p
|Z|(X ×∆n)◦ := ker (H2p

|Z|(X ×∆n)→ H2p(X ×∆n))

and

H2p
|∂Z|(X × ∂∆n)◦ := ker (H2p

|∂Z|(X × ∂∆n)→ H2p(X × ∂∆n))

Considering the long exact sequence in local cohomology, we obtain the following

diagram of exact sequences, for which we apply the snake lemma:

0 ker (α) ker (β)

0 = H2p−1
|Z| (X ×∆n) H2p−1(X ×∆n) H2p−1(U) H2p

|Z|(X ×∆n)◦ 0

0 = H2p−1
|∂Z| (X × ∂∆n) H2p−1(X × ∂∆n) H2p−1(∂U) H2p

|∂Z|(X × ∂∆n)◦ 0

H2p−n(X)

0

α β

Put L(U) := ker β. In this way we have the short exact sequence

0→ kerα→ L(U)→ H2p−n(X,Z(p))

that glue together with the (3.9) and it gives the searched one.

We are now ready just to follow what we have done in the case n = 0. In particular

if we call

β′ : H2p−n−1(X,Z(p)) −→ H2p−1(U, ∂U,Z(p))

then follows, by the fact that F p ker γ = ker γ, that β′ induces an isomorphism:

H2p−n−1(X,C)

F pH2p−n−1(X,C)
' H2p−n−1(U, ∂U,C)

F pH2p−n−1(U, ∂U,C)

and so in particular

J p,n(X) =
H2p−n−1(X,C)

F pH2p−n−1(X,C) +H2p−n−1(X,Z(p))
' (3.11)

' H2p−n−1(U, ∂U,C)

F pH2p−n−1(U, ∂U,C) +H2p−n−1(X,Z(p))
. (3.12)
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If Z ∈ CHp
hom(X,n) there exists a unique c̃Z(Z) ∈ H2p−1(U, ∂U,Z(p)) (modulo

Im (H2p−n−1(X,Z(p))→ H2p−1(U, ∂U,Z(p))) that maps in H2p−1(U, ∂U,C) and

after taking the class in the quotient 3.12, by isomorphism there is a unique

ψp,n(Z) ∈ J p,n(X).

Definition 3.5. ψp,n : CHp
hom(X,n) −→ J p,n(X) is called higher Abel-Jacobi map.

Theorem 3.6. We have that ψp,n = Φp,n.

The proof deals with the framework of the MHS, so let’s observe that as in the

case n = 0, the nullhomologous cycle class pullbacks to give an extension class in

ExtMHS(Z, H2p−n−1(X,Z(p))) (3.1.2). This is what we have did explicitly with the

construction of the map ψp,n. There is not a direct link to the map Φp,n that deals

with Deligne cohomology. This connection arises from the fact that the Deligne

cohomology is the absolute cohomology for the mixed Hodge category as proved by

Beilinson in ([Bĕı86]). There is a different description of the exact sequence 3.10

using a simplicial complex that tracks the simplicial structure of X ×∆n. What we

need to compare the two descriptions is the following. Any cycle Z ∈ CHp(X,n) can

be assumed relative to X×∂∆n in the sense that the intersections of Z with the faces

of X×∆n represent zero cycles. Since H2p(X×∆n,Z(p))→ H2p(X×∂∆n,Z(p)) is

injective, a fundamental class of Z is 0 in both H2p(X×∆n) and H2p
∂Z(X×∂∆n) and

so it arise naturally to an element of L(U). Moreover if Z is actually nullhomologous,

then it implies γ([Z]) = 0. Since we will consider X×∆n as the geometric realization

of a simplicial complex that we will call ΣnX, there is a natural map given by the

forgetful functor of the realizations:

for∗ : H2p
|Z|(X ×∆n,Z(p))→ H2p

|Z|(Σ
nX,Z(p))

such that the extension classes of Z in both the descriptions are the same. For the

definition of the simplicial complex ΣnX we refer to [Sch93]. From this construction

we just recall that we have an a long exact sequence of cohomology with support as

following:

0→ H2p−1(ΣnX,Z(p))→ H2p−1(ΣnX−Z.,Z(p))
∂−→ H2p

Z. (Σ
nX,Z(p))

γs−→ H2p(ΣnX,Z(p)).

(3.13)
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where the s is in place of ”simplicial” (to distinguish from the corresponding map

in singular cohomology). Moreover Hj(ΣnX,Z(p)) = Hj−n(X,Z(p)). Notice that

γs ◦ for∗([Z]) = γ([Z]) = 0. This compatibility implies a map of the extensions

of the couple (Z, H2n−p−1(X,Z(p))) given separately by 3.10 and 3.13, so it shows

the extension class of Z is the same. Recall now that the cohomology of Deligne is

computed as the Yoneda Ext functor for the category of mixed Hodge structures:

more specifically if ZX(p) is the twisted constant sheaf over X we have that

Hk
D(X,Z(p)) = ExtkMHS(Z, RΓ(ZX))

where RΓ is the functor of global sections in the derived category of MHS. ([Bĕı86]).

This description yields the existence of a convergent Grothendieck spectral sequence.

In fact we have that

Ep,q
2 = RpHomMHS(Z,−) ◦RqΓ(ZX(r)) =⇒ Rp+q(HomMHS(Z, RΓ(ZX(r)))) =

ExtMHS(Z, RΓ(ZX(r))) = Hp+q
D (X,Z(r)). (3.14)

Since RqΓ(ZX(p)) = Hq(X,Z(p)), by convergence, the natural map F 0H2p−n
D →

E0,2p−n
∞ → E0,2p−n

2 is the map

H2p−n
D (X,Z(p))→ HomMHS(Z, H2p−n(X,Z(p)))

so that the Bloch’s map arises naturally by the edge morphism induced by the

spectral sequence:

ker
(
H2p−n
D (X,Z(p))→ HomMHS(Z, H2p−n(X,Z(p)))

) edge−−→ Ext1
MHS(Z, H2p−n−1(X,Z(p)))

(3.15)

With this notation, we can reformulate the theorem 3.6:

Theorem 3.7. The composed map

CHp
hom(X,n) ↪→ ker

(
H2p−n
D (X,Z(p))→ HomMHS(Z, H2p−n(X,Z(p)))

)
edge−−→ Ext1

MHS(Z, H2p−n−1(X,Z(p))) (3.16)

is equal to Φp,n.

Proof. Let Z ∈ CHp
hom(X,n). The fundamental class of Z in the absolute

cohomology belongs to ker (H2p
D,|Z|(Σ

nX)→ Hom(Z, H2p(ΣnX))) and maps to
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the fundamental class of Z in the singular cohomology, that belongs to

ker (Hom(Z, H2p
|Z|(Σ

nX))→ Hom(Z, H2p(ΣnX))) and by edge morphism, it maps to

the extension class. On the other hand, the map Φp,n maps the fundamental class

of the absolute cohomology in ker (H2p
D (ΣnX)→ Hom(Z, H2p(ΣnX))) that by the

exact sequence 3.2 is Ext1
MHS(Z, H2p−1(ΣnX)). Keeping track of this observations,

the theorem follows by the theorem [[Jan90], Lemma 9.5] in homological algebra.

Actually it implies that we have the following commutative diagram:

ker (H2p
D,|Z|(Σ

nX)→ Hom(Z, H2p(ΣnX))) ker (H2p
D (ΣnX)→ Hom(Z, H2p(ΣnX)))

ker (H2p
|Z|(Σ

nX)→ Hom(Z, H2p(ΣnX))) Ext1
MHS(Z, H2p−1(ΣnX))

edge

(3.17)

and this is precisely the assertion of the theorem. More precisely, the theorem

[[Jan90], Lemma 9.5 ] asserts that for an exact sequence of complexes in a category

A with enough injective: 0 → A• → B• → C• → 0 and a left exact functor

G : A → B, for a category B, the following is a commutative diagram:

ker (RiG(A•)→ G(H i(B•))) ker (RiG(B•)→ G(H i(B•)))

ker (G(H i(A•))→ G(H i(B•))) R1G(H i−1(B•))

R1G(coker (H i−1(A•)→ H i−1(B•)))

(3.18)

Now for

A• = RΓ|Z|(ZΣnX)

B• = RΓ(ZΣnX)

C• = RΓ(ZΣnX−|Z|)

G = HomMHS(Z,−),

we obtain the diagram 3.17.

The theorem 3.7 suggests a way to thinking kind of ”Abel-Jacobi maps” in a

more general setting. In such setting we deal with the formulation of two kind of
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cohomology theories: one of geometric, and the other with arithmetic flavour. More

precisely, for a category of smooth algebraic varieties (or more generally smooth

schemes over a field) that include projective varieties on a field K, we can associate

a topology on it (analytic, étale, Zariski, etc.) and a functor of global sections Γ.

Then the corresponding derived functors are the ”geometric” cohomology groups.

But as in the example of the singular cohomology, these groups together with the

twist with integers , has expected to inherit more structure ( as for example the

singular cohomology has the MHS), sitting in a abelian tensor category C with

unitary object 1C. If one takes account of the abelian structure of this category, we

can form the Yoneda Hom functor:

HomC(1C,−) ∈ End(1C)−mod

and the derived functors are the ”absolute” (or ”arithmetic”) cohomologies (as for

the Deligne cohomology). Then these cohomology theories are expected to be relate

as in 3.14. The edge morphism should provide an Abel-Jacobi type map (as in 3.15):

it means that we search for a suitable convergent spectral sequence

Ep,q
2 := ExtpC(1C, H

q
geo(X)(j)) =⇒ Hp+q

abs (X)(j) j ∈ Z (3.19)

where j is the twist.
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CHAPTER 4

CRYSTALLINE COHOMOLOGY

This chapter is devoted to discuss about a p-adic cohomology theory. Our interest

is to obtain similar considerations to the Deligne-Beilinson cohomology, but in the

p-adic context. Then, following these similarities we motivate the introduction of

syntomic sheaves, and the associated syntomic cohomology, that, for us, represents

the analogous relationship between Deligne and singular cohomology. Some bad

behaviour on the crystalline theory can represent an obstacle for some purpose, so we

choose to discuss a ”generalized” form in the next chapter, that has a nice behaviour

where the crystalline fails. We follows, for this part of the theory, essentially [BO78]

in combination with [Kat85].

4.1 Divided powers

Let R a commutative ring, I and ideal.

Definition 4.1. A divided power structure (P.D. structure) on I, is a colletion of

maps {γi : I → R}i, for integers i ≥ 0 such that the following conditions hold:

1. γ0(X) = 1 γ1(x) = x ∀x ∈ I

2. γn(x) ∈ I n ≥ 1

3. γn(x+ y) =
∑

i+j=n γi(x)γj(y) x, y ∈ I
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4. γn(λx) = λnγn(X) ∀λ ∈ R

5. γn(X)γm(X) =
(
n+m
n

)
γn+m(x) ∀x ∈ I

6. γm(γn(X)) = (mn)!
m!(n!)m

γmn(x) ∀x ∈ I.

Remark 2. The property 1) and 5) implies n!γn(x) = xn. In fact it follows by a

simple induction with the trivial case of n = 1, that since (n+ 1)γn+1(x) = xγn(x),

then n!(n+ 1)γn+1(x) = xn+1. Morover, by 4) γn(0) = 0 for n ≥ 0.

Definition 4.2. A morphism of P.D. structure f : (R, I, γ) → (P, J, δ), is a ring

homomorphism f : R → P such that f(I) ⊂ J and δn(f(x)) = f(γn(x)) for each

n ≥ 0 and x ∈ I.

Remark 3. When we looking for a P.D. structure on an ideal, morally we want to

verify if the elements of the form xn/n! lie in the ideal. For example, in the case

of a DV R with mixed characteristic (0, p) and ramification e, a classical estimates

of |n!| shows that the maximal ideal generated by the uniformizer π, admits P.D.

structure iff e ≤ p− 1.

The ideal of the P.D. structure is called ”P.D. ideal”.

Definition 4.3. Let (I, γ) a P.D. ideal, then J ⊂ I is a sub-P.D. ideal iff γn(J) ⊂ J

for each n ≥ 1.

Under some conditions we can transport P.D. structures.

Lemma 4.4. Let (R, I, γ) be a P.D. structure, and J an ideal of R. Consider the

ideal Ī = I/I ∩ J on R/J . Then the P.D. structure γ on I extends (uniquely)

on γ̄ P.D. structure on Ī iff J ∩ I is sub-P.D. ideal. Here ”extends” means that

(R, I, γ)→ (R/J, Ī, γ̄) is a P.D. morphism.

Proof. If γ̄ exists, then it is unique. Moreover when x ∈ J ∩ I, we have that

γn(x) = γ̄n(x̄) = 0, where the¯symbol denotes the class in I/I ∩ J . Then γn(x) ∈

J ∩ I.Conversely, define γ̄ : x̄ 7→ γn(x). It is well defined. In fact if y is another

presentation of x̄, then x− y ∈ I ∩ J . So it holds that

γn(x) = γn(y + (x− y)) =
∑
i+j=n

γi(y)γj(x− y).
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Since I ∩ J is P.D. sub ideal, we have γj(x − y) ∈ I ∩ J for j ≥ 1, but then this

implies

γn(x) = γn(y).

Moreover, to verify that an ideal is a sub ideal (and so verify some extension

property) is sufficient to verify that on a set of generators:

Lemma 4.5. Let (R, I, γ) be a P.D. structure and J ⊂ I and ideal. Then if J = 〈S〉

where S is a subset of I, J is sub-P.D. ideal iff γn(S) ∈ S for each n ≥ 1.

Proof. We have to prove only the sufficiency. Let J ′ = {x ∈ J : γn(x) ∈ J n ≥ 1}.

The proposition claims that J ′ is an ideal. In fact if x, y ∈ J ′ then γn(x + y) =∑
i+j γi(x)γj(y) ∈ J because at least one of i or j is ≥ 1 and because one of γi(x)

or γj(y) is in J , that is an ideal. This means that x + y ∈ J ′. If x ∈ J ′ and λ ∈ R,

then γn(λx) = λnγn(x) ∈ J , so λx ∈ J ′.

Lemma 4.6. Let (R, I, γ) and (R, J, δ) P.D. structures . Then IJ is a P.D. sub

ideal of both I and J and γ = δ restricted on IJ .

Proof. Since all the elements xy with x ∈ I and y ∈ J are a set of generators of IJ ,

it suffices to prove that γn(xy) = δn(xy) ∈ IJ . But we have that

γn(xy) = ynγn(x) = n!δn(y)γn(x) = xnδn(y) = δn(xy).

Moreover is clear that γn(xy) ∈ IJ , since n|γn(x)δn(y) ∈ IJ .

Corollary 4.7. If (I, γ) is a P.D. ideal, then In ⊂ I a sub-P.D. ideal.

Now recall the notion of extension of P.D. structures and compatibility in a more

general sense.

Definition 4.8. Let (R, I, γ) be a P.D. structure and let B be an R-algebra. Then

γ on R extends to γ̄ on B if and only if (R, I, γ)→ (B, IB, γ̄) is a P.D. morphism.

Definition 4.9. Let (R, Iγ) be a P.D. structure and let B an R-algebra, such that

(B, J, δ) is a P.D. structure. Then γ and δ are compatible if and only if γ extends

on B and γ̄ = δ on IB ∩ J .
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4.1.1 Divided power envelope

A useful property of the divided power structures is that satisfies a universal

property:

Theorem 4.10. (divided power envelope) Let (R, I, γ) a P.D. structure. Let B be

an R-algebra and J an ideal of B. Then for each B-algebra C with P.D. structure

(C,K, δ) with JC ⊂ K and with δ and γ compatible, there exists a unique P.D.

morphism of B-algebra (DB,γ(J), J̄ , β)→ (C,K, δ) such that the following diagram

commutes:

(DB,γ(J), J̄ , β)

(B, J) (C,K, δ)

(R, I, γ)

∃!

f

g

Proof. See ([BO78], Theorem 3.19).

Remark 4. If K ⊂ B with KDB,γ(J) = 0, then by universal property we have

DB,γ(J) ' DB/K,γ(J/J ∩K).

Lemma 4.11. Let (R, I, γ) a be a P.D. structure and B a flat algebra over R. Then

γ extends uniquely over B.

Proof. This is a technical lemma and we refer to [stacks-project, Tag 07GZ, Lemma

23.4.2]

Corollary 4.12. If (B, J)→ (C, JC) is a flat morphism of (R, I, γ) algebras, then

C ⊗B DB,γ(J) ' DC,γ(CJ).

Proof. By the previous lemma C ⊗B DB,γ(J) has P.D. structure, then by the

universal property of P.D. envelopes, the natural map C ⊗B DB,γ(J) → DC,γ(CJ)

is an isomorphism.

Now let (B, J, γ) be a P.D. algebra over R. Then consider the R-module Ω1
B/R and

all the relations

dγn(x) = γn−1(x)dx x ∈ I, n ≥ 1.
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The quotient by these relations is the module of divided power Khaler differentials

Ω1
B/S,γ := Ω1

B/S/∼ Ωr
B/S,γ =

r∧
Ω1
B/S,γ.

Now for a P.D. ideal J , the n-th divided power of J is defined posing

J [n] := {γi1(x1) . . . γir(xr)| xj ∈ J, i1 + · · ·+ ir ≥ n}

with J [0] := B. Then we can define the de Rham complex by:

Ω•B/R,γ := B → Ω1
B/S,γ → Ω2

B/S,γ → . . .

and a filtration, called divided power Hodge filtration by the P.D. ideal J of B:

FilnΩ•B/S,γ := J [n] → J [n−1]Ω1
B/S,γ → J [n−2]Ω2

B/S,γ → . . . . (4.1)

As an example if (R, I, γ) is a P.D. ring and B is a flat R-algebra, then γ extends

to (B, IB, γ̄). By universal property of divided power envelope, this means that

B = DB,γ(IB). Then if b =
∑r

i=1 xibi ∈ IB with x1, . . . , xr ∈ I and b1, . . . , br ∈ B

we can verify that dγn(b) = γn−1(b)db. By induction we can suppose r = 2. Then

the computation follows:

dγn(x1b1 + x2b2) = d

(∑
i+j=n

γi(x1b1)γj(x2b2)

)
=

=
∑
i+j=n

d(γi(x1b1))γj(x2b2) + γi(x1b1)d(γj(x2b2)) =

=
∑
i+j=n

d(bi1γi(x1))γj(x2b2) + γi(x1b1)d(bj2γj(x2)) =

∑
i+j=n

γi−1(x1b1)γj(x2b2)d(x1b1) + γj−1(x2b2)γi(x1b1)d(x2b2) =

∑
i+j=n−1

γi(x1b1)γj(x2b2)d(x1b1 + x2b2) =

= γn−1(x1b1 + x2b2)d(x1b1 + x2b2),

where the equality in the third row follows by the computation

d(bi1γi(x1)) = ibi−1
1 γi(x1)db1 = bi−1

1 x1γi−1(x1)db1 = γi−1(x1b1)d(x1b1).

This fact proves that in this case Ω1
B/R,γ̄ = Ω1

B/R. Then we want to extend the

definitions at level of scheme. Let X a topological space within O a sheaf of rings.

Let J an ideal sheaf of O.
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Definition 4.13. A divided power structure on (O,J ) is a sequence of maps γn :

O → O such that for each U ⊂ X open subset the induced map γn(U) : O(U) →

O(U) is a P.D. ring structure.

The definition applies to the case of the structural sheaf of regular functions on a

scheme X over spec(R). If J is a quasi-coherent ideal sheaf of OX , then Ω1
X/R is

understood as Ω1
OX/R,γ and we have a notion of divided power de Rham complex

and divided power Hodge filtration. We have also a divided power envelope:

Definition 4.14. Let (S,OS, I, γ) be a P.D. scheme. Let (X,OX ,J ) an S-scheme.

Then the divided power envelope of X with respect to J is the following relative

spectrum over OX :

SpecOX (DOX ,γ(J )).

When we have a closed immersion i : X → Y of S-schemes, there is a corresponding

quasi-coherent ideal sheaf J of OY . Then the P.D. envelope of Y with respect to J

is simply called P.D. envelope of X in Y and denoted by DX,γ(Y ).

In the case of interest we are in the situation where S = spec(R) with (R, I, γ) a

P.D. ring, p > 0 a prime number and p ∈ I, the ideal (p) locally nilpotent over X.

We want to formulate a very useful theorem that permits us to well define the so

called crystalline cohomology. To prove this theorem different facts will be involved

that we will explain in the course of the proof.

4.2 Crystalline cohomology: definitions

Theorem 4.15. Let P and Y be smooth schemes over Spec(R). Let f : Y → P be

a map of schemes which is either a closed embedding or smooth and let g : X → Y

be a map such that g and fg are both closed immersion. All is presented in the

following diagram:

DX,γ(Y ) DX,γ(P )

X Y P

Spec(R)

g f
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Then the following canonical map is a filtered quasi isomorphism:

Ω•DX,γ(P ) → Ω•DX,γ(Y ). (4.2)

The proof of the theorem comes from different results. We just recall a notation.

Define the R-algebra R〈X1, . . . , XN〉 by

R〈X1, . . . , XN〉 =
⊕

n1,...,nN≥0

RX
[n1]
1 . . . X

[nN ]
N

as R-module. Then the multiplication is defined by extending linearly the relation

(X
[n1]
1 . . . X

[nN ]
N ) · (X [m1]

1 . . . X
[mN ]
N ) =(
n1 +m1

n1

)
. . .

(
nN +mN

nN

)
X

[n1+m1]
1 . . . X

[nN+mN ]
N .

Then we denote with

R〈X1, . . . , XN〉+ =
⊕
∃nj>0

RX
[n1]
1 . . . X

[nN ]
N

as subalgebra of R〈X1, . . . , XN〉.

Theorem 4.16. Let (R, I, γ) be a P.D. ring and R → C a ring homomorphism.

Let J ⊂ K be an ideal of C and suppose that J = (x1, . . . , xd) is generated by a

regular sequence. Moreover assume that R→ C and R→ C/J are smooth.

Then there is an isomorphism of P.D. rings such that the following diagram

commutes:
DC,γ(K) DC/J,γ(KC/J)〈X1, . . . , Xd〉

DC/J,γ(KC/J)

'

X
[n]
i 7→0

Proof. Since p is nilpotent in R, this means that pmR = 0 for some m ≥

0 integer. Since xr = r!γr(x), then xr = 0 for r ≥ pm. Since J is

finitely generated, there exists n (for example n = (pm − 1)d + 1) such that

JnDC,γ(J) = 0. This implies that DC,γ(J) ' DC/Jn,γ(J/J
n). Similarly, if

J0 = (X1, . . . , Xd) is the ideal of (C/J)[X1, . . . , Xd], then D(C/J)[X1,...,Xd],γ(J0) '

D(C/J)[X1,...,Xd]/J0,γ(J0/J
n
0 ). Moreover, by the smoothness of C and C/J there is an

isomoprhism (C/J)[X1, . . . , Xd]/J
n
0 ' C/Jn. This lifts to an isomoprhism on the

level of P.D. envelopes, and so

DC,γ(J) ' DC/J [X1,...,Xd],γ(J0) ' C/J〈X1, . . . , Xd〉,
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where the last isomorphism comes from the universal property of P.D. envelope and

by flatness of C/J . Then by the universal property of P.D. envelope, we have the

following isomorphisms:

DC,γ(K) ' DDC,γ(J),γ̄(KDC,γ(J) + J̄)

' DDC/J[X1,...,Xd],γ
(J0),γ̄(K + J̄)

' DC/J [X1,...,Xd],γ(J0 +KC/J [X1, . . . , Xd])

' DC/J,γ(KC/J)〈X1, . . . , Xd〉

Lemma 4.17. Let (R, I, γ) be a P.D. ring. Let R → B → C ring morphisms.

B → C an étale morphism of R-algebras and Let J be an ideal of B and K an ideal

of C with B/J = C/K (assume this identification is induced by the étale morphism).

Then B/Jn ' C/Kn and the ideal JB/Jn corresponds to KC/Kn for each n ≥ 1.

This implies that

DB,γ(J) ' DC,γ(K).

Proof. By induction on n and the fact that B → C is étale, we have a unique

morphism from C → B/Jn: it follows by universal property of étale maps:

C B/Jn−1

B B/Jn

∃!

It factors through C/Kn: In fact by induction we can identify B/Jn−1 ' C/Kn−1.

Moreover this morphism sends Kn to 0 ∈ B/Jn, since any x ∈ K is mapped to 0 by

C → B/J = C/K. The map B → C/Kn induced by the étale morphism B → C is

such that the following diagram commutes:

B C/Kn−1

R C/Kn

Then it factors through B/Jn. These diagrams yield (identifying C/Kn−1 ' B/Jn−1

in the bottom square) a factorization B/Jn → C/Kn ∃!−→ B/Jn of the identity,

and by uniqueness it implies B/Jn ' C/Kn. The sentence about ideal follows
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immediately and the sentence about the P.D. envelope follows by the nilpotence of

p.

Theorem 4.18. (Divided power Poincaré lemma) Let (B, J, δ) a P.D. algebra over

R.Then the map:

z : Ω•B〈X1,...,Xd〉/R,δ → Ω•B/R,δ

X
[n]
i 7−→ 0

is a filtered homotopy equivalence of R-modules.

Proof. By induction we have to prove the assertion for d = 1. Denote X1 = X. Note

that the inclusion j : B → B〈X〉 satisfies zj = 1. Now consider the proposition as

B-module differentials. Then Ω•B〈X〉/B,δ = [B〈X〉 → B〈X〉dX] and it reduce to prove

that jz ∼ id (homotopic to identity). This means to find a map
∫

: B〈X〉dX →

B〈X〉, such that
∫
d+ d

∫
= id− jz. In fact the map ”

∫
” is the ”integral”∫

: X [i]dX → X [i+1]. (4.3)

Then∫
d(
∑
i≥0

biX
[i]) + d(

∫ ∑
i≥0

biX
[i]dX) =

∫
(
∑
i≥1

biX
[i−1]dX) + d(

∑
i≥0

biX
[i+1]) =

∑
i≥1

biX
[i] +

∑
i≥1

biX
[i]dX =

∑
i≥0

biX
[i] +

∑
i≥0

biX
[i]dX − jz

(∑
i≥0

biX
[i])

)
− jz

(∑
i≥0

biX
[i]dX

)
.

Since

Ω•B〈X〉/R,δ ' Ω•B/R,δ ⊗B〈X〉 ⊕ Ω•B〈X〉/B,δ∫
extends to an homotopy equivalence for

Ω•B/R,δ → Ω•B〈X〉/R,δ.

By the isomorphism above,
∫

acts only at level of B〈X〉. So it preserves the Hodge

filtration.

Lemma 4.19. Let R be a ring. Let R → C → B be smooth homorphisms of

R-algebras. Let J an ideal of B and K an ideal of C with B/J = C/K = A. For

each x ∈ spec(A) there exists f ∈ B and an ideal J0 ⊂ Jf , (the localization ot f)

such that f(x) 6= 0 and C → Bf/J0 is étale.
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Proof. The morphisms B → B/J and C → C/K induce the respective exact

sequences :

J/J2 → Ω1
B/R ⊗B A→ Ω1

A/R → 0

K/K2 → Ω1
C/R ⊗C A→ Ω1

A/R → 0

Moreover, since C → B is smooth, we have the following exact sequence:

Ω1
C/R ⊗C A→ Ω1

B/R ⊗B A→ ΩB/C ⊗B A→ 0.

We put all together in the following diagram:

K/K2 Ω1
C/R ⊗ A ΩA/R 0

J/J2 ΩB/R ⊗ A ΩA/R 0

ΩB/C ⊗ A

0

id

β

Then β is surjective: for each x ∈ ΩB/C ⊗ A, by going up we find x1 ∈ ΩB/R ⊗ A.

Then its image x2 in Ω1
A/R has a fiber in Ω1

C/R⊗A. Choose x3 as an element of this

fiber. Then the image x4 of x3 in Ω1
B/R ⊗ A is such that the image of x1 − x4 in

Ω1
A/R is 0. Then, by exactness, there exists an element of J/J2, say y that maps to

x1 − x4, and the image of x1 − x4 in Ω1
B/C ⊗A is equal to the image of x1 that is x.

Now, since β is surjective and ΩB/C is projective of finite type (by smoothness)

of rank n, for some f ∈ B with f(x) 6= 0 can be found a basis of ΩBf/C made

by dg1, . . . , dgn with g1, ..., gn ∈ J . Define J0 = (g1, . . . , gn). To the morphism

Bf → Bf/J0 is associated the long exact sequence:

J0/J0
2 → Ω1

Bf/C
⊗Bf Bf/J0 → Ω1

(Bf/J0)/C → 0

The first morphism is surjective by construction, and it is a map of module of rank

n, since C → Bf is smooth. Then, it is an isomorphism, and by exactness this yields

Ω1
(Bf/J0)/C = 0, that means C → Bf/J0 is étale.

Then the proof of theorem 4.15 is made as following. Since it is a local question,

we suppose P = spec(C), Y = spec(B) and X = spec(C/K).
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1) f is a closed embedding. Then B = C/J , with J = (x1, . . . , xd) a regular

sequence. Then we proved DC,γ(K) = DC/J,γ(KJ/C)〈X1, . . . , Xd〉, where d =

dimP − dimY . Then the theorem follows by the divided power Poincaré lemma.

2) f smooth.Let J be the ideal of B such that B/J = C/K. Then by a previous

lemma we can, after localizing, assume that there is an ideal J0 ⊂ J such that

C → B/J0 is étale. Then Ω•DC(K)

∼−→ Ω•DB/J0 (JB/J0), by lemma (4.17). Then

Ω•DB(J)

∼−→ Ω•DB/J0 (JB/J0) by the reasoning made previously: since R → B/J0 is

smooth, then DB/J0(JB/J0)〈X1, . . . , Xd〉 ' DB(J) . This implies the assertion.

�

Definition 4.20. Let (R, I, γ) a P.D. ring and X a scheme over R/I that admits

lifting Y, P as in the situation of theorem (4.15). Then the crystalline cohomology

of X with respect to (R, I, γ) is defined as the hypercohomology groups:

H∗crys(X/R) = H∗(X,Ω•DX,γ(P )/R)

We have to show that this definition is independent of the choices and that is

functorial in X. First notice that if Y, Z are smooth schemes over spec(R) and X

a closed immersion in both Y and Z, also Y ×spec(R) Z is smooth and Z is closed.

The following diagram, by the previous result is made by quasi-isomorphisms:

Ω•DX(Y×Z)

Ω•DX(Y ) Ω•DX(Z)

∼ ∼

Moreover they satisfy the cocycle condition, for three scheme X1, X2, X3. This

proves the independence of the smooth lifting Y . Let now X,X ′ two schemes over

spec(R/I) and Y, Y ′ the respective smooth schemes over spec(R) for which X,X ′ are

closed immersion in Y, Y ′ respectively. Let f : X → X ′ be a morphism of schemes

and assume to have a lifting g : Y → Y ′ of f . Then at level of sheaves there is a

pullback map

f−1Ω•DX′ (Y ′) → Ω•DX(Y ).

Then we have to prove that this map does not depend by the choice of g, but only

by f . So assume Y1, Y
′

1 to be another lift of X,X ′ respectively and h : Y1 → Y ′1 is

another lifting of f .Then we can form the fiber products Y ×Y ′ and Y1×Y ′1 with p1
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(resp. p2) the projection on the scheme Y or Y1 (resp. Y ′ or Y ′1). Then the following

diagram commutes:

p−1
1 Ω•DX(Y ) Ω•DX(Y×Y ′) p−1

2 Ω•DX(Y ′)

p−1
1 Ω•DX′ (Y1) Ω•DX′ (Y1×Y ′1) p−1

2 Ω•DX′ (Y ′1)

Moreover there always exists a such lifting. In fact if i : X ↪→ Y and i′ : X ′ ↪→ Y ′

are the closed immersions, then by the universal property of cartesian squares, we

obtain a unique map X → Y ×spec(R) Y
′ such that the following diagram commutes:

X

Y ×spec(R) Y
′ Y

Y ′ spec(R)

i′◦f

i

∃!

p2

p1

Then, it yields a commutative diagram:

X Y ×spec(R) Y
′

X ′ Y ′.

f p2

i′

This proves the functoriality with respect to X.

4.2.1 The (crystalline) Frobenius action

For our interest, it is important to study the action of the cohomology on some

endomorphism of X. More precisely we are in the following setting. We have a

smooth scheme X over R and X0 = X ×spec(R) R/I. We can suppose to embed

the scheme X in a smooth and proper scheme P . We have proved that over a flat

morphism, the divided power differentials equal the classical differentials. In the

case of X smooth we have a flat morphism R → OX . Then DX0,γ(X) = X and by

flatness we have that

Ω1
DX0,γ

(X)/R,δ = Ω1
DX0,γ

(X)/R = Ω1
X/R.

This means that

H∗crys(X0/R) ' H∗dR(X/R) ' H∗(X0,Ω
•
DX0,γ

(P )).
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Now suppose to have an absolute Frobenius morphism f0 : X0 → X0. It induces

a morphism at level of crystalline cohomology over X0, but by the identification it

is an endomorphism over the De Rham cohomology of X, without assumption of

lifting of f0 over X. We are interested in the study of Frobenius morphism in the

following case: let k be a perfect field of characteristic p > 0, W = W (k) its ring

of Witt vectors, Xs a smooth quasi-projective over Ws = W/ps+1, X0 = X ⊗ k and

f0 : X0 → X0 the absolute Frobenius. For each s choose an embedding of Xs in

a projective scheme Ps. Since it is projective, the Frobenius morphism admits a

lifting. This lifting induces a morphism

f : Ds → Ds,

where Ds := DXs(Ps). Then f is defined at level of differentials, by pullback

f ∗ : Ω•Ds → Ω•Ds .

Theorem 4.21. Let r < p and n with n + r ≤ s. Then there exists a unique

semilinear map

fr : FilrΩ•Dn → Ω•Dn

such that prfr = f ∗. Recall that FilrΩ•Dn is defined in (4.1).

Proof. Let’s denote with 〈m〉 the integer such that (p〈m〉) = (p)[m], whenever m ≥ 0,

otherwise 〈m〉 = 0. By definition of the Frobenius morphism, we have that f ∗(x) ≡

xp (mod p). If x = αdx1 . . . dxi ∈ Ωi
Dm

, then

f ∗(x) = f ∗(α)f ∗(dx1) . . . f ∗(dxi) = αp(pxp−1
1 dx1+pdw1) . . . (pxp−1

i dxi+pdwi) ∈ piΩi
Dm .

Then if J is the P.D. ideal of Dm, then follows that if γi1(x1) . . . γik(xk) ∈ J [r−i], we

have

f ∗(γit(xt)) = γit(f
∗(xt)) = γit(x

p
t+pw) = γit(p!γp(xt)+pw) = ((p−1)!γp(xt))

itγit(p) ∈ (p)[it].

Since i1 + · · ·+ ik ≥ r − i, by linearity we have that

f ∗(J [r−i]) ⊂ (p〈r−i〉).

This means that (without the hypothesis r < p) holds

f ∗(FilrΩi
Dm) ⊂ pi+〈r−i〉Ωi

Dm .
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When, r < p we have 〈r − i〉 = r − i, that implies

f ∗(FilrΩi
Dm) ⊂ piΩi

Dm .

Now, we know that

pr : Z/pn+1 → Zpn+r+1

is injective. We claim that ΩDm is flat over Z/pm+1. Suppose for the moment that

it is true. Then

pr : Ω•Dn → Ω•Dr+n

is injective too. Then, by the following diagram

FilrΩ•Dr+n Ω•Dr+n

Ω•Dn

f∗

∃! p−rf∗
pr

we obtain a factorization map p−rf ∗ : FilrΩ•Dr+n → Ω•Dn , the reduction modulo pn+1

is the map fr. To see why Ω•Dm is flat over Z/pm+1 = Wm, we use the flatness of

Pm over spec(Wm[X1, . . . , Xt]). In fact the problem is local, so we assume that Xm

is generated by a regular sequence g1, ..., gt. Then we have the following cartesian

square:

Xm Pm

spec(Wm) spec(Wm[X1, . . . , Xt])0←Xi

And since Pm → spec(Wm[X1, . . . , Xt]) is smooth, then flat, we have by a

previous lemma that Dm ' Pm ×spec(Wm[X1,...,Xt]) Dspec(Wm)(spec(Wm[X1, . . . , Xt]))

and Ω•Dspec(Wm)(spec(Wm[X1,...,Xt]))
are free over Wm.

Remark 5. In the proposition (4.21), actually, the smoothness of X is a strong

condition. In fact in the course of the proposition the relevant fact was the existence

of a regular local closed immersion of the scheme in a smooth scheme (needed for

the independence of the embedding as proved in the theorem (4.15)) and flatness,

(needed for extending the P.D. structure of pWm ⊂ Wm). This led to study the

Frobenius endomorphism around syntomic schemes over W , that are schemes with
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local complete intersection and flat. The quasi-projective hypothesis is needed for

extending the Frobenius action of the special fiber over the smooth embedding, and

so it guarantees the lifting property. We also have seen that the existence of such

lifting is not an obstruction to the existence of Frobenius endomorphism at level of

the crystalline cohomology, but it helps the study of this action. We will see the

really important role of the smoothness in the next chapter.

4.2.2 Syntomic sheaves

We can now define an object that carries the information of the Frobenius action

at level of cohomology. Let Jn to be the P.D. ideal of Dn defining Xn, and J
[r]
n the

r-th divided power. Then the divided power Hodge filtration of Ω•Dn becomes

FilrΩ•Dn,X,P : J [r]
n → J [r−1]

n ⊗OPn Ω1
Pn → J [r−2]

n ⊗OPn Ω2
Pn → . . . . (4.4)

Clearly, for r = 0 this filtration is the entire complex of differentials, and we have

just defined a map fr between the r-th level of the filtration and the 0 level. Then

we consider the map

1− fr : FilrΩ•Dn,X,P → Fil0Ω•Dn,X,P

where 1 is the inclusion map of FilrΩ•Dn ⊂ Ω•Dn . Then consider the mapping cone

Sn,X,P (r) := Cone(FilrΩ•Dn,X,P
1−fr−−−→ Fil0Ω•Dn,X,P )[−1] (4.5)

with differential h =

 d 0

1− fr d

. Then we can see that these sheaves are

independent of the choice of f and P . For two lifting P, P ′ we can consider

the fiber product P × P ′ and the immersion of X ↪→ P × P ′ and we see that

Sn,X,P (r)
∼−→ Sn,X,P×P ′(r)

∼←− Sn,X,P ′(r), where the quasi-isomorphism is satisfied

by the theorem (4.15). These sheaves have a product structure:

Proposition 4.22. Let r, r′ ≥ 0 and r + r′ < p. Then there exists a ring structure

on Sn,X,P (r) defined by a product

Sn,X,P (r)×Sn,X,P (r′)→ Sn,X,P (r + r′).
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Proof. Define the following abelian groups:

A =
⊕

0≤r<p

FilrΩ•Dn,X,P B =
⊕
o≤r<p

Fil0Ω•Dn,X,P

g =
⊕

0≤r<p

1 h =
⊕

0≤e<p

fr

Then over B, we have a ring structure given by the product

(x1, . . . , xp)(y1, . . . , yp) = (z1, . . . , zp)

given by

zt =
∑
i+j=t

xiyi.

Over A, the product is induced by the inclusion morphism 1 : A ⊂ B. Now consider

A, and B as complex of abelian groups, with the components given by the filtration

Ar = FilrΩ•Dn,X,P for A and Br = Fil0Ω•Dn,X,P , for B. Then the tensor product of

the complex A⊗A defines a ring structure with unit, and such that ArAr
′ ⊂ Ar+r

′

and

d(xy) = d(x)y + (−1)rxd(y),

where d is the differential of the complex and x ∈ Ar and y ∈ Ar′ . Then if

C := Cone(A
g−h−−→ B)[−1]

define the product structure on C ⊗ C, by a map C ⊗ C → C such that

(x, y)(x′, y′) = (xx′, (−1)rg(x)y′ + yh(x′)).

Now is a computation to verify that this product define a ring homomorphism with

unit (1, 0) ∈ C0.

Remark 6. It is clear by the discussion above that as consequence of the theorem

(4.15) this product is again independent by the choices of P .

Remark 7. These complexes, actually come from the one built in [FM87] where it

is called Srn. In their theory they deal with the geometric situation in which X is

endowed with the syntomic site. What we have defined here in these terms is the

direct image of Srn by the map of sites π : Xsyn → Xét, ([Kat85]). We have chosen
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4. CRYSTALLINE COHOMOLOGY

to not deal with the syntomic topology, but when consider Sn(r) as sheaves, we

consider X (and Xn) endowed with the étale topology. The smoothness is a strong

condition as discussed previously, but the name ”syntomic” is motivated in both

direction as a definition of sheaves with respect to syntomic topology (i.e. Srn) or in

the sense that the weaker condition to deal with such definitions is that X can be

syntomic (and quasi-projective) as scheme with respect to W .

Why the introduction of these sheaves? They represent an analogy to the

Deligne-Beilinson complexes Z(r)D. Recall that there is an inclusion map Z ⊂ C that

is the multiplication by (2πi)rZ and by this map is constructed the Deligne-Beilinson

complex

Z(r)→ OX → Ω1
X/C → · · · → Ωr−1

X/C → 0

for a smooth projective variety over C. The interpretation of this inclusion map in

characteristic p > 0, is the multiplication by pr. In the next chapter, we will see that

this analogy is supported by the behaviour of the cycle classes. For the moment we

want to explain the analogy between the map Z(r)→ ΩX and the map 1− fr.

Lemma 4.23. Assume that X is a smooth variety over W with a Frobenius

morphism f , lifting the one over its reduction modulo p. Then the syntomic sheaves

Sn,X(r) are quasi-isomorphic to the following:

OXn
−d−→ Ω1

Xn

−d−→ . . .
−d−→ Ωr−2

Xn

(0,−d)−−−→ Ωr
Xn ⊕ Ωr−1

Xn

(1−fr,−d)−−−−−−→ Ωr
Xn → 0.

Proof. The condition of smoothness and the theorem (4.15) permits to choose P =

X, and so the P.D. ideal defining Xn, in Pn is the (0). This means that in the

explicit writing of the complex Sn,X(r) , the first r − 1 terms don’t contain any

term with J
[k]
n . Since the term J

[0]
n = ODn , it remains to explain, why the complex

has a truncation at the level r. In fact it suffices to prove that Hq(Sn,X(r)) = 0,

whenever q > r. But this is easy: we may assume n = 1, then fr = pq−rfq by the

property of factorization with f ∗. Then q − r ≥ 1 and so, the reduction modulo p

is 0. This means that the component 1 − fr = 1 : Ωq
Xn
→ Ωq

Xn
that is clearly an

isomorphism.
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CHAPTER 5

RIGID COHOMOLOGY

In this chapter we start to recall the principal definitions and theorems of the rigid

cohomology of Berthelot. The main references are [Ber96],[Ber97b], [Pet03]. This

cohomology theory has some similarity with the de Rham cohomology, but the

essential difference is to associate a different topology to a space, for which it is

called rigid. The purpose for introducing such theory is to allow the study of a

p-adic cohomology theory that has a nice behaviour for non proper e non smooth

schemes, for which the crystalline cohomology in general is not finite dimensional.

Definition 5.1. Let X be a set. A Grothendieck topology on X, denoted with τ , is a

subset S of parts of X, such that it contains ∅, X, it is stable for finite intersections

and for each U ∈ S there exist a set Cov(U) of covering of U , such that the following

holds:

1. (U) ∈ Cov(U)

2. if U, V ∈ S, V ⊂ U , and if (Ui)i ∈ Cov(U) then Ui ∩ V ∈ Cov(V )

3. if (Ui)i ∈ Cov(U) and for each i, (Ui,j)j ∈ Cov(Ui), then (Ui,j)i,j ∈ Cov(U).

Definition 5.2. The elements of S are called open; the covering (Ui)i ∈ Cov(U) is

called admissible covering.

Then we work in the following context. We assume to have a discrete valuation ring

W with residue field k of characteristic p > 0, and Frac(W ) =: K. We assume π is
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5. RIGID COHOMOLOGY

a uniformizer of W . To start, fix A a Tate algebra and X = spm(A). We define the

following strong Grothendieck topology on X.

Definition 5.3. Let X = Spm(A) as above.

An open U ∈ S(X) is a subset of X such that:

1) There exists a covering (Vi)i, for which the elements are called special domains,

such that

Vi = {x ∈ X : s.t. there exists

f0, . . . , fn generating A and |fj(x)| ≤ |f0(x)| ∀j = 1, . . . , n}

and for each morphism of Tate algebras A→ B, such that the induced f : spm(B)→

spm(A), satisfies f(spm(B)) ⊂ U , then there exists a finite number of (Vi)i that

covers f(spm(B))

2) (Ui)i ∈ Cov(U) if and only if for all morphisms as in 1) there exists a finite

covering of spm(B) of special domains, much finer then f−1(Ui)

Lemma 5.4. The strong topology defined above is satured, that means: 1) If U is

open and V ⊂ U such that there exists (Ui)i ∈ Cov(U) with Ui ∩ V open, then V is

open.

2) if an open U =
⋃
i Ui is given with each Ui open, and (Ui)i admits a refining by

an admissible covering, then (Ui)i is admissible

Proof. The assertion in 2) is obvious, so we have to prove 1). Since Ui ∩ V ⊂

V ⊂ U , let’s choose a morphism of Tate algebras φ : Spm(C)→ Spm(A) such that

φ(Spm(C)) ⊂ V ⊂ U . By the fact that (Ui)i is an admissible covering of U , this

means that (φ−1(Ui) ∩ Spm(C))i admits a finite refining by special domains, (Zi,j)j

for each i. Since Ui∩V is open, by ([FP04], section 9.1.2, lemma 4 (ii)) follows that

the collection (Zi,j)i,j) is a covering of V that admits a refining similar to (Ui)i, i.e.

for each f : Spm(D) → Spm(A) morphism of Tate algebras, there exists a finite

refining of (f−1(Zi,j) ∩ Spm(D))i,j by finite number of special domains and so V is

open.

Next we can define the ring of functions for X. For each special domain V , we

simply define

Γ(V,OX) := A{t1, . . . , tn}/(f0 − fiti)i=1,...,n.

57



5. RIGID COHOMOLOGY

By the acyclicity theorem of Tate ([Ber96], loc.ref. [Ta1,8.2]) we can define for an

open U , the sheaf of analytic functions

Γ(U,OX) := ker

(∏
i

Γ(Vi,OX)→→
∏
i,j

Γ(Vi ∩ Vj,OX)

)

where (Vi)i ∈ Cov(U).

Definition 5.5. The ringed space (Spm(A),OSpm(A)) is called affinoid analytic

space.

Definition 5.6. Let K a non-archimedean field. A (rigid) analytic space X

over K is a set X endowed with a Grothendieck satured topology, and a sheaf of

K-algebras OX such that there exists an admissible covering Xi of open sets, such

that (Xi,OX|Xi) is isomorphic as analytic space to an affinoid analytic space.

Definition 5.7. A morphism f : X → Y between K-analytic spaces is the datum

of a continuous map from X to Y and an homomorphism of sheaves of local rings

f−1OY → OX .

The morphism f is finite if there exists an admissible covering (Xi)i such that

f−1(Xi) is affinoid for each i and Γ(f−1(Xi),OY ) is a finite algebra over Γ(Xi,OX).

The morphism f is smooth (resp. étale) if there exists an admissible covering (Xi)i

of X and an admissible covering (Yi)i of Y such that:

1) f(Yi) ⊂ Xi are affinoid spaces,

2)

Γ(Yi,OY ) ' Γ(Xi,OX){t1, . . . , tn}/(f1, . . . , fr) (resp. r = n),

with det(∂tk(fj)))1≤k,j≤r invertible.

Similar to classical algebraic geometry, we can consider the immersion of Y ↪→

Y ×X Y and the OY -module J defining Y . Then we define

Ω1
X/K := J/J2, Ωr

X/K =
r∧

Ω1
X/K .

5.1 Formal schemes and rigid spaces

Now let A to be a Noetherian topological ring. An ideal of definition I of A is

a system of neighborhood of 0 of A of the form {In}n∈N. If A is separated and
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5. RIGID COHOMOLOGY

complete, it is called adic ring. Assume A is adic and I its ideal of definition. Let

Xn := spec(A/In+1).

Clearly, the underlying space for each n is the same, since A is separated. Then

consider the structural sheaves OXn . The projection maps

A/In+1 πn−→ A/In

together give rise to a projective system, so the induced maps on the structural

sheaves give rise again to a projective system. So we can define

lim←−
n

OXn =: OSpf(A),

and the ringed space (Spf(A),OSpf(A)) is the formal spectrum of A. Let’s immediately

observe that

OSpf(A)(Spf(A)) = lim←−
n

Γ(Spf(A),OSpf(A)) = lim←−
n

A/In+1 = Â = A.

Definition 5.8. If a ringed space (X,OX) is isomorphic to a formal spectrum

Spf(A), then it is called affine formal scheme.

A formal scheme (X,OX) is a ringed space such that there exists a covering of affine

formal schemes.

A construction with formal schemes arise directly by the schemes.

Let X a Noetherian scheme and X0 ↪→ X a closed subscheme of X. Then let J be

the ideal of OX defining X0. Then the completion of X along X0, denoted with X̂

is defined as following.

Let Xn := spec(OX/Jn+1), then we form the projective limit over OXn and define

OX̂ := lim←−nOXn . Observe that the underlying space of X̂ is the same as X0.

For example if A is a discrete valuation ring with uniformizer p, in the case of

X = spec(A) we can complete along the special fiber

X0 = Spec(A/(p))

and we obtain that

OX̂ = Spf(Â).
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5.2 Generic fiber in rigid geometry

Now we establish a connection with the analytic rigid spaces defined above. Let k

be a perfect field of characteristic p > 0. Let W the ring of Witt vectors of k and

π a uniformizer of the maximal ideal of W . Let K := Frac(W ). We consider the

formal schemes over W . Let A be a W -algebra of finite type over W . Then we pose

X = Spf(A) a W -formal scheme of finite type. Since A is an adic ring, A⊗W K is a

Tate algebra over K. Then we define the generic fiber XK , as the affinoid analytic

space associated to Spm(A⊗W K).

Lemma 5.9. The points of the space XK are in bijection with the quotients of the

form A/I that are integral, finite and flat over W

Proof. For each point of XK corresponds a maximal ideal of A ⊗W K, then the

corresponding quotient is an extension of K, let’s say K ′. The image of A in K ′ is

integral and flat, because it is torsion free and it is a module over a discrete valuation

ring. Then, keeping a finite number of generators of A (it is of finite type), their

images in K ′ lie in the ring of valuation of W ′ of K ′, so they are integral also over

W .

Viceversa, an integral, flat, finite quotient of A of the form A/I, means that A/I⊗K

is a finite extension of K.

Corollary 5.10. If the quotient A/I is given as above, then the support of

Spf(A/I) ⊂ Spf(A) = X is a closed point xo.

Proof. Since K is a complete non archimedean field, W is henselian. Since A/I

is a finite, integral W -algebra, it is a finite product of integral local ring, so it is

local.

The described point xo, is called specialization of the point xK ∈ XK corresponding

to A/I. The specialization induces a map at the level of sets,

sp : XK → X

that we can define for a general W -formal schemes X. So we define XK as the set of

closed subschemes of X finite, flat, integral over W , with support in a closed point

xo. Then the specialization map sends a such subscheme to the corresponding closed
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5. RIGID COHOMOLOGY

point. In particular, at level of affine open cover of X, that is a composed by affine

formal schemes of the form Ui = Spf(Ai) for Ai of finite type, then sp−1(Ui) is in

bijection with Spm(Ai⊗K). Then, since the last scheme has an analytic structure,

by transporting the structure, we can consider each sp−1(Ui) like analytic space.

Then a theorem of Berthelot follows.

Theorem 5.11. Let X,X ′ be given W -formal scheme of finite type. Then the

following holds: 1) There exist on XK a unique structure of analytic rigid space,

such that sp−1 is an open map and for each affine open covering (Ui)i of X, sp−1(Ui)

has the analytic structure induced by the respective affinoid analytic space. 2) The

analytic space XK is functorial in X, and for each morphism f : X → X ′ of formal

W -scheme, there is a commutative diagram of sites:

XK X

X ′K X ′

spX

fK f

spX′

Proof. See ([Ber96],Prop 0.2.3).

Theorem 5.12. Let X be a W -formal scheme and let J be an ideal of definition.

Denote with X0 the scheme defined by J . Let Z a closed subscheme of X0 and denote

by X̂ the completion of X by the subscheme Z. If sp : XK → X is the specialization

morphism, then sp−1(Z) is open in XK and the cononical morphism X̂K → XK

induces an isomorphism of analytic spaces

X̂K
'−→ sp−1(Z)

Proof. See ([Ber96],0.2.7).

5.2.1 The tube of a k-scheme

The next tools needed to define the rigid cohomology is the notion of tube. Let X a

k-scheme separated of finite type, P a W -formal scheme of finite type and a locally

closed immersion X
i−→ P . We call this datum, formal embedding. Denote with PK

the generic fiber, and Pk the special fiber. The notion of the tube deals with the

relation between k-scheme and its ”lifting” over the generic fiber, endowed with the

topology structure defined previously.
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Definition 5.13. Let X
i−→ P as above. The tube of X in P, denoted by ]X[P is

the set defined by sp−1(i(X)). By the theorem (5.11), ]X[P has analytical structure.

We will see some properties of the tube.

Lemma 5.14. Assume X =
⋃
iXi a k-scheme of finite type union of k-subschemes

of Pk. Then ]X[P=
⋃
i]Xi[P . The analogous result holds for intersections.

Proof. We just notice that sp−1 respect intersections and unions.

Then we can see that the definition of the tube is independent by open subsets of

the formal scheme.

Lemma 5.15. Let i : X ↪→ P. Then there exists i′ : X ↪→ P ′ formal embedding,

with P ′ u−→ P open immersion that factors through u. Moreover ]X[P=]X[P ′.

Proof. Since P and Pk have the same underlying spaces, if X ′ is an open subset of

Pk, we can write X ′ = P ′k with P ′ open in P Since holds that P ′K = sp−1(P ′), then

follows

i : X ↪→ X ′ = P ′k ↪→ P ′ ↪→ P

Moreover ]X[P= sp−1(i(X)) = sp−1(u ◦ i′(X)) =]X[P ′ .

Proposition 5.16. Let be a following commutative diagram of morphisms of

scheme:

X P

X ′ P ′

iX

f u

iX′

Then holds that ]X[P⊂ u−1
K (]X ′[P ′) and the equality holds when the diagram is

cartesian.

Proof. Let’s consider the following commutative diagram,

X P PK

X ′ P ′ P ′K

iX

f u

sp

uK

iX′ sp

If x ∈]X[P we have to prove by definition of tube, that (sp ◦ uK)(x) ∈ iX′(X ′). By

the commutative diagram above follows that

(sp ◦ uk)(x) = (u ◦ sp)(x) ∈ u(sp(]X[P)) = u(iX(X)) = iX′(f(X)) ∈ iX′(X ′).
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If the initial diagram is cartesian, then X = X ′ ×P ′ P and so

u−1(iX′(X
′)) = iX(X).

We need to prove that

(sp ◦ uK)−1(iX′(X
′)) ⊂ sp−1(iX(X)).

So let x ∈ PK such that (sp ◦ uK)(x) ∈ iX′(X ′), then

(sp ◦ uK)(x) = (u ◦ sp)(x) ∈ iX′(X ′),

that implies sp(x) = u−1(u(sp(x))) ∈ iX(X).

We assume now that the W -formal scheme P is affine of the form P = Spf(A),

with A a W -algebra of finite type. If we consider an immersion i : X ↪→ P , for a

k-scheme X, we call a presentation of X in P an identity of the form

i(X) = V (f1, ..., fr) ∩D(g1, ..., gm) ∩ Pk

where, f1, . . . , fr (resp. g1, . . . , gm) are elements of A and V (f1, . . . , fr) is the

generated closed formal subscheme, and D(g1, . . . , gm) is the complement of

V (g1, . . . , gm).

Proposition 5.17. If X has a presentation in an affine formal scheme P then the

tube ]X[P can be written as

]X[P= {x ∈ PK : |fi(x)| < 1 ∀i = 1, . . . , r

and |gj(x)| = 1 for some j = 1, . . . ,m}.

Proof. Let’s assume X = Spf(A). By induction over the number of components of

the variety, we have to verify the assertion for the case j = 1, i = 0, and j = 0,

i = 1.

In the first case we have

i(X) = V (f) ∩ Pk f ∈ A,

then follows that

x ∈]X[P ⇐⇒ sp(X) ∈ i(X) ⇐⇒ sp(f(sp(x))) = 0 ⇐⇒ |f(x)| < 1.
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For the second case we have, for g ∈ A

i(X) = D(g) ∩ Pk

that, by the previous computation, it implies

]X[P= {x ∈ PK : |g(x)| ≥ 1} = {x ∈ PK : |g(x)| = 1}. (5.1)

The last equality holds by normalizing.

Proposition 5.18. Let i : X ↪→ P a formal embedding. Then ]X[P is an admissible

open subset of PK.

Proof. Let’s remark that this is a local property. In fact it is a consequence of

the saturated condition on the strong Grothendieck topology on PK . To verify the

admissible condition, it is sufficient to choose an admissible covering of the big space

and prove it on the restriction of each set of the covering. This means that we can

assume that P is an affine formal scheme. Then by the previous result, we choose a

presentation of X. The assertion is equivalent to verify that

]X[P= {x ∈ PK : |fi(x)| < 1 ∀i = 1, . . . , r

and |gj(x)| = 1 for some j = 1, . . . ,m}.

is admissible. Note that {|gj| = 1} is intersection of special domains, so it is

admissible. By intersection property, it is sufficient to verify that

{x ∈ PK : |fi(x)| < 1 ∀i = 1, . . . , r}

is admissible. Again for the strong property of the topology, this set is a countable

union of special domains, that are admissible, so it is so.

We can extend this result to covering of formal embedding. More precisely, if it is

given a commutative diagram

Xi Pi

X P

iXi

iX

(5.2)

with (Xi)i an open covering (resp. (Pi)i ), with the open inclusion Xi ↪→ X (resp.

P), we call it a covering of the the formal embedding i : X ↪→ P .
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Proposition 5.19. Let be given a diagram as in (5.2). Then ]X[P=]Xi[Pi and it is

an admissible covering.

Proof. As discussed in the previous proof, the statement is local. Moreover the

notion of tube is independent by open embedding and the equality follows. So

we can assume Pi = P and affine, for each i. Since ]Xi[P is admissible open and

X Noetherian, we can assume on induction on irreducible components of X, that

X = X1 ∪ X2. In particular the affine description of the ]X1[P and ]X2[P implies

that X is covered by Xn
1 ∪Xn

2 , that is a union of special domains so an admissible

open; by strong property of the topology, (]Xi[Pi)i it is an admissible covering.

Proposition 5.20. Fix η < 1. Let i : X ↪→ P be a formal embedding with P affine

and fix a presentation of X. Let’s define

]X[Pη := {x ∈ PK : |fi(x)| < η ∀i = 1, . . . , r

and |gj(x)| = 1 for some j = 1, . . . ,m}.

Call it open tube of radius η < 1. Then the open tubes of radius η < 1 form an

admissible covering of ]X[P .

Proof. By the satured property of Grothendieck topology, the assertion is proved

after showing a admissible refinement, since the open tubes defined form a covering.

But this refining can be obtained by special domains Vη,n for each fixed η and n > 0,

and this collection for the variables n and η form an admissible covering.

Another important concept for defining the rigid cohomology is the notion of strict

neighborhoods that is defined for make possible a discussion on non proper varieties.

We will work in the following situation.

Definition 5.21. A frame is a diagram X ↪→ Y ↪→ P given an open immersion

of an algebraic k-variety (k-scheme separated and of finite type) X into another

algebraic k-variety Y and a closed immersion of Y into a formal W -scheme P

In the situation of varieties in characteristc p > 0, a theorem of Nagata ([Nag62])

holds on the compactifications, and it always permits to have an open embedding

of X in a proper variety X̄. Consider P = ˆ̄X as the completion along some closed
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subvariety. Since we will concerned with (flat) W -scheme, often for our interest the

completion is made along the special fiber. In the next, we will interested to the

smooth case for X, but now we discuss more generally.

Definition 5.22. Let (X, Y,P) a frame. ]Y [P the rigid analytic variety associate to

the tube. Let U be an admissible open of ]Y [P . Then U is called a strict neighborhood

of ]X[P in ]Y [P if ]X[P⊂ U and the covering (U, ]Y −X[P) is an admissible covering

of ]Y [P .

Lemma 5.23. Let U be a strict neighborhood as above.

1) Suppose that U ′ is an admissible open subset of ]Y [P such that U ⊂ U ′. Then U ′

is a strict neighborhood.

2) Any finite intersection of strict neighborhoods is a strict neighborhood.

Proof. The first assertion results from the fact that a covering by admissible open

subsets that has an admissible refinement is already admissible. To prove the second

assertion, by induction we suppose to have two strict neighborhood V1, V2. We have

to prove that

(V1 ∩ V2, ]Y −X[)

is admissible. since (V2, ]Y −X[) is admissible, by intersection on V1 follows that

(V2 ∩ V1, ]Y −X[∩V1)

is admissible. Then

(V1 ∩ V2∩]Y −X[, ]Y −X[)

is also admissible, since it admits the trivial refining by (]Y −X[). Since (V1, ]Y −X[)

is admissible by hypothesis, then the following covering obtained by gluing that

admissible above, is admissible:

(V1 ∩ V2, ]Y −X[∩V1, V1 ∩ V2∩]Y −X[, ]Y −X[).

But it is also an admissible refining of (V1 ∩ V2, ]Y −X[), so it is admissible too.

With similar kind of reasoning one can show different properties of the the tube.

Since it is not the principal argument of this thesis, we limit ourselves to cite the

next fact, that can be useful on the next.
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Proposition 5.24. Let (X, Y,P) be a frame with P affine. Let λ < 1 and U =

]YX [Pλ. Then fix a presentation of Y −X = V (g1, ..., gr) ∩ Pk. Then

1) Uλ = {x ∈]Y [P : and |gj(x)| ≥ λ for some j = 1, . . . , r}

2) Let V an admissible open of ]Y [P containing ]X[P . V is a strict neighborhood if

and only if there exists λ0 < 1 such that for all affinoid W ⊂]Y [P and λ0 ≤ λ < 1

then W ∩ Uλ ⊂ V .

3) for X quasi-compact each Uλ is a strict neighborhood.

Proof. See [Ber96].

We can extend this proposition for general formal schemes, but for details we refer

to [Ber96]. Let’s conclude citing a result of Berthelot used to verify some property

on the rigid cohomology the we will define, but we link the proof to [Ber96].

Theorem 5.25. (strong fibration theorem) Given a commutative diagram of frames

as follows,

P ′

X Y P

u

with u smooth, there is an isomorphism between a strict neighborhood V ′ of ]X[P ′

in ]Y [P ′ and a strict neighborhood V ′′ of ]X[P×Bd(0, 1) in ]Y [P×Bd(0, 1).

Proof. See ([Ber96], Theorem 1.3.7).

5.3 Rigid cohomology is well defined

Now suppose to have a frame (X, Y,P) and after Nagata assume Y = X̄. We want

to define a functor from abelian sheaves on ]X̄[P to itself. Let F be a such sheaf.

Let consider V a strict neighborhood of ]X[P in ]X̄[P . Then, denote with

αV : V ↪→]X̄[P

jX : X ↪→ X̄

the respective open inclusions. Then consider an inductive system of strict

neighborhoods as above. Define

j†XF := lim−→
V

αV ∗α
∗
VF
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where obviously the maps αV ∗ and α∗V denotes respectively, pushforward and

pullback of sheaves.

Now let Z a closed subscheme of X. Let U = X −Z be the open complement, with

an open immersion jU : U ↪→ X̄ (again by Nagata). In a similar way, we can define

j†U . More precisely, let V a strict neighborhood of ]U [P in ]X̄[P , then one chooses

an inductive fundamental system of strict neighborhoods V and define

j†UF := lim−→
V

αV ∗α
∗
VF

Now let V a strict neighborhood of ]X[P in ]X̄[P and V ′ a strict neighborhood with

of ]U [P in ]X̄[P , then (V ′, ]X̄ − X[P) is again an admissible covering since admits

a refining admissible. The by the universal property of inductive limits and by a

choice of an inductive system of strict neighboorhoods like V and V ′, there is a map

given by the following diagram

αV ∗α
∗
VF

j†XF j†UF

αV ′∗α
∗
V ′F

∃ r

where r : j†XF → j†UF is the restriction map.

We consider the sheaves of differential forms on ]X̄[P and consider the complex:

Ω•]X̄[P
:= O]X̄[P → Ω1

]X̄[P
→ . . .

The restriction induces a map

r : j†XΩ•]X̄[P
→ j†UΩ•]X̄[P

.

Then we can form the fibered cone, such that there is a distinguished triangle of the

form:

Cone
(
r : j†XΩ•]X̄[P

→ j†UΩ•]X̄[P

)
[−1]→ j†XΩ•]X̄[P

r−→ j†UΩ•]X̄[P

+1−→ . . . . (5.3)

The functor j† is exact ([Ber96]) and the fundamental system of strict neighborhoods

can made by pseudo-compact spaces (i.e. locally on affinoid subset is

quasi-compact). This means that j† commutes with filtrant inductive limits.
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Definition 5.26. Let (X, X̄,P) be a frame with X̄ a compactification of X and

assume that P is smooth on a neighborhood of X. Define the rigid cohomology of X

on K as the hypercohomology groups given by

H∗rig(X/K) := H∗(]X̄[P , j
†
XΩ•]X̄[P

).

The cohomology with support in the closed subscheme Z is given by the

hypercohomology groups defined on the fibered cone:

H∗rig,|Z|(X/K) := H∗(]X̄[P ,Cone
(
r : j†XΩ•]X̄[P

→ j†UΩ•]X̄[P

)
[−1]).

A simple remark is that when X = Z the definitions coincide.

Moreover by the long exact sequence in hypercohomology we deduce a long exact

sequence of the form:

· · · → H i
rig,|Z|(X/K)→ H i

rig(X/K)→ H i
rig(X − Z/K)→ . . . (5.4)

The major work of Berthelot has been to prove that this definition is independent

by the choices of the compactification and the formal scheme P . Here we will see

what tools are needed to prove such facts, but the details go out from our discussion

and the purpose of the thesis, so what we do is to collect and discuss some useful

and remarkable facts on the rigid cohomology, that permits us to consider it as a

good cohomological theory. We will use such results to follow the reasoning in the

last chapter. We will refer on this part to [Ber97b]. To prove the independence of

the formal scheme, Berthelot used the following result:

Theorem 5.27. Let X → X̄ an open immersion of k-scheme of finite type. Then

consider the following commutative diagram

P ′

X X̄ P

u

j

i′

i

where j is an open immersion and i, i′ closed immersions, smooth on X. Let j†

and j′† the respective functor on ]X̄[P and ]X̄[P ′. Then assume u smooth over X

and uK : P ′K → PK is the morphism of the analytic varieties corresponding to P

and P ′, respectively. Then the following canonical morphism is an isomoprhism of

complexes:

j†Ω•]X̄[P

'−→ RuK∗j′†Ω•]X̄[P′
(5.5)
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5. RIGID COHOMOLOGY

Then after applying Rsp∗ we obtain an isomorphism:

Rsp∗j†Ω•]X̄[P

'−→ Rsp∗j′†Ω•]X̄[P′
. (5.6)

An analogous result holds for cohomology with support.

Proof. See ([Ber97b], Theorem 1.4).

Moreover the complex j†XΩ•
]X̄[P

is functorial on the couple (X, X̄) in the following

sense: given an (f, f̄) : (X, X̄) → (X ′, X̄ ′) then after a choice of X̄ ↪→ P and

X̄ ′ ↪→ P ′, we can form the product P ′′ = P × P ′ and consider the projection

morphism q1 : P ′′ → P and q2 : P ′′ → P ′. Then we can compose and find the

morphism of associated complexes :

Rsp∗j†X′Ω
•
]X̄′[P′

q∗2−→ Rf̄∗Rsp∗j†XΩ•]X̄[P′′

(q∗1)−1

−−−→
'

Rf̄∗Rsp∗j†XΩ•]X̄[P
. (5.7)

This morphism does not depend by the choice of the formal scheme and one can

verify the functoriality. Then the independence of the compactification follows by

the theorem

Theorem 5.28. Let have the following commutative diagram:

X̄

X P

X̄ ′

v

jX′

jX

where jX , jX′ are open immersion in the two compactifications of X. Suppose v is a

proper morphism and P smooth in a neighborhood of X. Then we have the following

isomoprhism of complexes:

Rsp∗j†XΩ•]X̄[P

'−→ Rv∗Rsp∗j†X′Ω
•
]X̄′[P

. (5.8)

Proof. See ([Ber97b],Theorem 1.6).

The theorem implies that when one keeps the global sections with respect to X̄ and

X̄ ′ we have an isomoprhism at the level of cohomology:

H∗rig(X/K)
'−→ H∗(]X̄ ′[P , j†X′Ω

•
]X̄[P

). (5.9)

70



5. RIGID COHOMOLOGY

Now it’s easy to define a pullback for the cohomology and verify its functoriality.

So to a morphism of k-scheme f : X → X ′ we can choose compactifications X̄ and

X̄ ′, consider the product X̄ × X̄ ′ and denote with X̄ ′′ the schematic closure of X in

X̄ × X̄ ′. Then p1 : X̄ ′′ → X̄ and p2 : X̄ ′′ × X̄ ′ → X̄ ′ denote the projections. Then

we define f ∗ as

f ∗ : H•rig(X
′/K)

p∗2−→ H•(X̄ ′′, j†XΩ•]X̄′′[P )
(q∗1)−1

−−−→
'

H•rig(X/K). (5.10)

It is possible to extend this functoriality property to cohomology with support,

under the condition that for a given morphism f : X → X ′, Z a closed subscheme

of X, and T closed subscheme of X ′, then f−1(T ) ⊂ Z. Then there is a functorial

pullback

f ∗ : H•rig,|T |(X
′/K)→ H•rig,|Z|(X/K). (5.11)

5.3.1 Rigid cohomology: fundamental properties

Since the technical points are almost discussed, we can prove some elementary

property following by the ”well” (at posteriori) posed definitions. In particular

the rigid cohomology is a Bloch-Ogus cohomology theory.

We can say that an excision property holds:

Proposition 5.29. Let X a k-variety. Let T ⊂ Z ⊂ X, closed subschemes. Then

there is a long exact sequence:

· · · → H i
rig,|T |(X/K)→ H i

rig,|Z|(X/K)→ H i
rig,|Z−T |((X − T )/K)→ . . . (5.12)

Proof. We choose a compactification X̄ of X and P a formal scheme, smooth on

a neighborhood of X. Then, for any sheaf F on ]X̄[P we have the following short

exact sequence of the cone:

0→ jX̄−T̄F [−1]→ Cone(F → jX̄−T̄F)[−1]→ F → 0.

The terms T̄ and Z̄ are the schematic closure of T and Z respectively, in X̄. The

we can apply this exact sequence to the complex of sheaves

F = Cone(j†XΩ•]X̄[P
→ j†

X̄−Z̄j
†
XΩ•]X̄[P

)[−1].

Since j†
X̄−Z̄j

†
X = j†X−Z , we notice that F is the complex the computes the rigid

cohomology of X relative to the closed subset Z. Moreover, since the j† commutes
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with fibered cones, and by the fact that j†
X̄−T̄ j

†
X = j†X−T and j†

X̄−T̄ j
†
X̄−Z̄j

†
X =

j†(X−T )−(Z−T ), we see that

j†
X̄−T̄F = Cone(j†X−TΩ•]X̄[P

→ j†(X−T )−(Z−T )Ω
•
]X̄[P

)[−1]

and this is the complex that computes the rigid cohomology of X − T relative to

Z − T . Now observe that holds

Cone(F → j†
X̄−T̄F)[−1] '

Cone(Cone(j†XΩ•]X̄[P
→ j†X−TΩ•]X̄[P

)[−1]→ Cone(j†X−ZΩ•]X̄[P
→ j†(X−T )−(Z−T )Ω

•
]X̄[P

)[−1])[−1].

This follows by the fact that j†
X̄−T̄ commutes with the cone and by interchanging

the fibered cones. Then by the fact that X − Z = (X − T )− (Z − T ), follows that

Cone(F → j†
X̄−T̄F)[−1] = Cone(j†XΩ•]X̄[P

→ j†X−TΩ•]X̄[P
)[−1].

This complex computes the rigid cohomology of X relative to the closed T . Then the

long exact sequence (5.12) follows by the long exact sequence in hypercohomology

induced by the short exact sequence of the cone.

Corollary 5.30. Let Z a closed subscheme of X.

1) Suppose to have an open X ′ of X, such that it contains Z. Then the open

immersion induces an isomorphism:

H i
|Z|,rig(X/K)

'−→ H i
|Z|,rig(X

′/K) (5.13)

2) If Z = Z1 ∪ Z2 and Z1 ∩ Z2 = ∅ then

H i
rig,|Z|(X/K) ' H i

rig,|Z1|(X/K)⊕H i
rig,|Z2|(X/K).

Proof. 1) follows by the long exact sequence (5.12) for T = ∅. 2) since Z1 ∩Z2 = ∅,

and (X − Z1, X − Z2) is an open cover of X, by the property of the functor j†, it

follows that j†XF
∼−→ j†X−Z1

F ⊕ j†X−Z2
F for each abelian sheaf. Then

Cone
(
j†XF → j†X−Z1

F ⊕ j†X−Z2
F
)

[−1] = 0.

Then the isomorphism follows by the long exact sequence for the cone.
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Another important fact on the rigid cohomology is the fact that is finite dimensional

for each k-variety X. The crystalline cohomology does not preserves this property in

the non proper or not smooth case. We will concern about the smooth case, so for the

non proper case, the rigid cohomology is more suitable then crystalline. Moreover is

a fact that the two cohomology theories are canonical isomorphic when X is smooth

and proper ([Ber97b]). Before to go further we want just to see some terminology

and example of the rigid cohomology in the affine case, which will be used in the

last chapter, for the construction of a map between cohomological theories.

Let A be an R-algebra of finite type for R a commutative ring.

Definition 5.31. Let I be an ideal of R. The weak completion of A with respect to

I is the subset of the completion Â = lim←−nA/I
nA defined by:

A† := {z ∈ Â | ∃x1, . . . , xn ∈ A and ∃pj ∈ IjR[X1, . . . , Xn] s.t.

∃c s.t. deg(pj) ≤ c(j + 1) ∀j

and z =
∑
j≥0

pj(x1, . . . , xn)}.

In our case we let R = W (k) = W and consider the weak completion respect to (π).

If X = spec(A) where a representation of A is

A = W [x1, . . . , xn]/(f1, . . . , fm),

then we find that

A† = W [x1, . . . , xn]†/(f1, . . . , fm)

where W [x, . . . , xn]† is equal to

W [x1, . . . , xn]† = {
∑
i

aix
i i = (i1, . . . , in)|ai ∈ W

s.t. ∃c and ρ ∈ (0, 1)

s.t. |ai| ≤ cρ|i| |i| = i1 + · · ·+ in}.

Then suppose that X is smooth. We want to compute H∗rig(spec(Ak)).

Let Xk = spec(Ak), then consider X̄k as the reduction (mod π) of the projective

closure of X ↪→ PnW . Then we complete X̄ along the ideal defining Xk. Then denote

it with P = ˆ̄X. Then (Xk, X̄k,P) is a frame.

By definition

]X̄k[P= PK
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and by representation of Xk, it follows that

]Xk[P= PK ∩ Bn(0, 1+).

For λ > 1, the open admissible sets

Uλ := {x ∈ PK : and |gj(x)| ≤ λ for some j}

form a quasi-compact admissible covering of PK . Then by definition of the sheaf of

regular functions OPK , we have

Γ(]Xk[P ,OP ) = Â⊗K.

Then the inclusion ]Xk[P⊂ Uλ induces an homomorphism

Γ(Uλ,OPK )→ Â⊗K.

If I is the ideal in OPnK defining PK , then

Γ(Uλ,OPK ) ' Γ(Uλ,OPnK )/IΓ(Uλ,OPnK ).

Since on the right side there are regular functions defined on Uλ, that is the ball

centered in 0 and with radius λ > 1, its image in Â⊗K is contained in A†⊗K, since

its power series’s develop has to be convergent on this ball. On the other hand, any

element of A† ⊗K converges on a such ball, for some λ > 1. For these reasons, we

have an isomorphism

lim−→
λ→1+

Γ(Uλ,OPK ) ' A† ⊗K.

Now since PK admits an admissible covering of quasi-compact spaces, then each

finite intersection of the elements of the covering is a quasi-compact space, and this

implies that the left exact functor Γ commutes with inductive limits. For any F

OPK -module, then follows that

Γ(PK , j
†F) = Γ(PK , lim−→

Uλ

αUλ,∗α
∗
Uλ
F) = lim−→

λ

Γ(PK ∩ Uλ,F).

Then the following proposition holds:

Proposition 5.32. Let X = spec(A) an affine smooth W -scheme, with reduction

Xk. Then

H∗rig(X/K) = H∗(A† → OA† ⊗K → Ω1
A†/W ⊗K → . . . ). (5.14)
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Proof. It follows by the previous discussion and by noting that

lim−→
λ→1+

Γ(Uλ,Ω
•
PK
⊗K) = Ω•A†/W ⊗K.

There is also a notion of rigid cohomology with compact support.

Let (X, X̄,P) be a frame, Z a closed subscheme of X. Then ]Z[P⊂]X̄[P is admissible

open. Denote by i the inclusion map. For an abelian sheaf F of ]X̄[P Then define

ΓXF := ker(F → i∗i
∗F).

ΓX is a left exact functor and admits right derived functors. Then the cohomology

with compact support is given by

H∗c,rig(X/K) := H∗(]X̄[P ,RΓXΩ•]X̄[P
). (5.15)

A first look to the latter definition seems to be a strong dependence by the choices of

the closed scheme Z. But a particular case of ([Ber86],section 3, Theorem 4) proves

that is not actually true.

Theorem 5.33. Let v : X̄ → X̄ a proper morphism. Let Z,Z ′ two closed subscheme

of X̄ such that v(Z ′) ⊂ Z. Then the rigid cohomology with compact support relative

to the inclusion i :]Z[P→]X̄[P and i′ :]Z ′[P→]X̄[P are isomorphic.

Proof. See ([Ber86],section 3, Theorem 4).

The consequence is that ”bring together” all the closed subschemes of X, that means

to choose an inductive system of such set, does not change the cohomology.

Theorem 5.34. The rigid cohomology with compact support satisfies the following

properties:

1) There exists a natural map Hc,rig(X/K) → Hrig(X/K) that is an isomoprhism

when X is proper.

2) It is contravariant for proper morphisms and covariant for open immersions

3) There is an excision long exact sequence: For Z a closed subscheme of X and

U = XZ, then

· · · → H i
c,rig(U/K)→ H i

c,rig(X/K)→ H i
c,rig(Z/K)→ . . . (5.16)

holds.
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Proof. See ([Ber86], 3.1).

Now suppose we are in the case with X a smooth scheme and to have a closed

subscheme Z of X of codimension r. Then one can define a Gysin morphism

([Pet03]) that induce the following isomorphism:

H i
|Z|,rig(X/K) ' H i−2r

rig (Z/K) (5.17)

This implies the weak purity condition on the rigid cohomology.

Proposition 5.35. (weak purity) If Z is a closed subscheme of codimension r of a

smooth k-variety X, then holds that

H i
|Z|,rig(X/K) = 0 ∀i < 2r. (5.18)

Moreover, there exists a trace map

TrX : H2n
c,rig(X/K)→ K (5.19)

defined for a k-variety X of dimension n.

For a subscheme Z of codimension r of a smooth k-variety X we then define a

fundamental rigid class ηZ,rig as

ηZ,rig := GZ/X(1), (5.20)

where GZ/X : H0
rig(Z/K) → H2r

|Z|,rig(X/K) is defined by the isomorphism (5.17).

Following Petrequin we collect all the basic facts on rigid cohomology that make it

a Bloch-Ogus cohomology theory.

Theorem 5.36. Let k be a perfect field of characteristic p > 0, let W (k) = W its

ring of Witt vectors and K = Frac(W ) the fraction field of W with charcateristic

0. Let X a k-scheme reduced of finite type. The following properties holds:

1. H i
rig(X/K) and H i

rig,c(X/K) are K-vector spaces of finite dimension.

2. If X is equidimensional of dimension n, then the rigid cohomology and the

rigid cohomology with compact support is 0 for each i 6∈ {0, . . . , 2n}.

3. The weak purity property holds for X smooth.
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4. When X is smooth there is a perfect pairing, given by the trace morphism :

H i
|Z|,rig(X/K)×H2n−i

c,rig (Z/K)→ K

5. If X, Y are smooth varieties then there is an isomorphism:

H∗rig(X/K)⊗H∗rig(Y/K)
'−→ H∗rig(X ×k Y/K).

It is compatible with fundamental classes:

ηX,rig ⊗ ηY,rig = ηX×kY,rig

Proof. See ([Pet03],Theorem 2.10).

Note that in the smooth case we can define a functorial pushforward for rigid

cohomology. If f : X → Y a morphism of smooth varieties then we have a pullback

on the support:

f ∗ : H i
c,rig(Y )→ H i

c,rig(X),

then by the perfect pairing (4), if n,m are the dimension respectively of X, Y , then

they induce a morphism

f∗ : H2n−i
rig (X)→ H2m−i

rig (Y ). (5.21)

By these results we can deduce the homotopy property for the rigid cohomology:

Proposition 5.37. (Homotopy property) Let X a smooth k-variety, then for each

natural number i holds that

H i
rig(X/K) ' H i

rig(X ×k A1
k/K). (5.22)

Proof. By the property 5) of the Theorem (5.36), it suffices to prove that the rigid

cohomology of A1
k is 0 for i > 0. By the isomorphism (5.14) we have in this case

A† = W †[t]. Now we claim that the sequence (like de De Rham)

0→ A† ⊗K → OA† ⊗K → Ω1
A† ⊗K → 0 (5.23)

is exact. But by a remark on the Poincaré lemma on the characteristic 0 case, it is

sufficient to verify that there exist the ”integrals of
∑
ant

ndt”, i.e. that the elements∑ ant
n+1

n+ 1
∈ OA† ⊗K.
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By the definition of the weak completion it is sufficient to verify that | an
n+1
| ≤ cρn

for some c and ρ < 1 independently by n. For simplicity suppose to have a p-adic

valuation vp(.). Since there exist a ρ0 < 1 such that |an| ≤ cρn0 , then |cρn0/(n+ 1)| ≤

cρn0p
vp(n+1). Then choose an a such that 1/ρ0

a > p and let n = am. For m → ∞

then we have

cρn0p
vp(n+1) = cρam0 pvp(am+1) ≤ cpvp(am+1)−m −−−→

m→∞
0.

Then there exists some suitable c̃ and ρ = ρ0 such that the claim holds.

5.3.2 The (rigid) Frobenius action

Let X be a smooth k-variety. For a closed subscheme Z of codimensior r of X we

have defined the fundamental class. Now suppose to have a cycle
∑
ni[Zi] ∈ Zr(X).

Then if αi : Zi ↪→ X denotes the inclusion morphism, extending by linearity we

obtain a class in cohomology, given by

γX : Zr(X)→ H2r
rig(X/K)∑

ni[Zi] 7→
∑

niαi∗ηZi,rig

The following propositions hold:

Proposition 5.38. 1. If X,X ′ are smooth k-varieties and f : X → X ′ is a

proper morphism. For each x ∈ Zr(X), then pushforward f∗ commutes with

cycle class:

γX′(f∗(x)) = γX(f∗(x))

2. if x ∈ Zr(X) is a cycle rationally equivalent to 0, then γX(x) = 0

3. γX factorizes with respect to Chow groups CHr(X) and it is a ring

homomorphism.

4. if f is morphism of smooth varieties then the pullback commutes with cycle

classes: if x ∈ CHr(X ′)

γX(f ∗(x)) = γX′(f
∗(x)).

Proof. See Petrequin [Pet03].
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Then we can focus on the absolute Frobenius morphism f : X → X. Then the

pullback f ∗ = φ, induces a morphism

φ : H i
rig(X/K)→ H i

rig(X/K).

Then the following proposition holds:

Proposition 5.39. ([Pet03],Proposition 7.13) If Z is a subvariety of X smooth of

codimension r, then

φ(γX(Z)) = prγX(Z). (5.24)

Proof. Assume Z is irreducible, the general case follows by linearity. The first claim

is that when X is smooth then φ = f ∗ is flat. Assume that. Then by the definition

of flat pullback for the cycle on Chow groups, it follows that

f ∗[Z(p)] = [f−1(Z(p))] = s[Z] s = leghtOX,ζ(Of−1(Z(p)),ζ),

where Z(p) is the image of Z by f , that like spaces are the same, but the local

function are obtained by those of Z with power of p.Here ζ is the generic point

corresponding to f−1(Z(p)). Then OX,ζ is a regular (since X smooth) local ring of

dimension r and so the length of Of−1(Z(p)),ζ is equal to pr. Then by compatibility

of the cycle class with the pullback, we obtain:

φ(γ(Z)) = f ∗(γ(Z)) = γ(f ∗(Z)) = prγ(Z).

Now we prove the claim. Actually, since it is a local question, we suppose X to

be a smooth k-scheme of relative dimension r. This means that locally there is a

factorization
U Ar

k

spec(k)

π

with π un étale map and U a Zariski open of X. We claim that actually the relative

Frobenius fX/k : X → X(p) is locally free of rank pr. With this in mind, the absolute

Frobenius is the composition of relative and arithmetical Frobenius. Then by base

change, since f : spec(k) → spec(k) is obviously locally free, also the arithmetic

Frobenius is so. Then the absolute Frobenius is locally free, then flat. The assertion

is local so we can assume to have π : X → Ar
k étale. A fact in algebraic geometry is
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that when X is k-scheme étale then the relative Frobenius fX/k is an isomorphism.

This means we have a cartesian square

X X

spec(k) spec(k)

f

a7→ap

where f is the absolute Frobenius. Then we have other two cartesian squares (by

construction)

X(p) X Ar(p)
k Ar

k

spec(k) spec(k) spec(k) spec(k)a7→ap

The universal property applied to the second cartesian square provides a map π(p) :

X(p) → Ar(p)
k such that

X(p) X

Ar(p)
k Ar

k

spec(k) spec(k)

∃!π(p)

π

Moreover

X X(p)

Ar
k Ar(p)

k

fX/k

π π(p)

fAr
k
/k

commutes. In fact, by universal property, there exists a unique map fX/k and π(p)

such that

X X(p) X

Ar
k Ar(p)

k Ar
k

spec(k) spec(k)

fX/k

π(p) π

but again, by universal property also the map

X → Ar
k

fAr
k
/k

−−−→ Ar(p)
k → spec(k)
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make the same diagram commutes. Then, by uniqueness, the claimed diagram is

commutative. Moreover it is a cartesian square because all squares written above

are cartesian, so it follows at fortiori. This means that it suffices to verify the claim

for the case X = Ar
k and it is trivial.
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CHAPTER 6

SYNTOMIC REGULATOR IN ÉTALE

AND RIGID COHOMOLOGY

Until now, we have seen two cohomology theories for the special fiber.

Through them, we can construct some syntomic theories: one is the original

”Fontaine-Messing” ([FM87]) which deals with crystalline cohomology, the others

are its development using rigid cohomology: rigid-Gros and rigid-Besser cohomology.

The Fontaine-Messing and rigid-Besser cohomology have their own way of

constructing a regulator map. In particular, the rigid-Besser cohomology admits

a regulator map arising from the classical cycle map, hence having as a source the

Higher Chow groups. This has been done in the article [CCM13]: the proof involved

some properties of this cohomology theory as, for example, the homotopy property.

We plan in this thesis to follow the same path in the possible construction of a

regulator map for the rigid-Gros cohomology.

On the other hand, one of the important features of the Fontaine-Messing

cohomology was its link to the étale p-adic cohomology. Gros was able to conctruct

a similar map to (the syntomic- étale cohomology hence to) the étale p-adic

cohomology for his cohomology, as well as to the crystalline cohomology. We address

a similar problem for the Besser-Rigid cohomology and we ask about a possible

compatibility of the regulator maps between rigid-Besser and rigid-Gros cohomology.
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This was initially motivated by the following compatibility for the K-theory. In fact

in [[GK90], Theorem 0.1] it is proved the following (let p a prime number):

Theorem 6.1. If k is a perfect field of characteristic p > 0 and W (k) denotes its

ring of Witt vectors, then for all W -schemes quasi-projective and flat X there exist

for all i < p Chern maps

ci,j : Kj(X)→ H2i−j
ét (Xn, sn(i)X)

such that they factor the higher Chern class in crystalline cohomology, i.e. ci,j :

Kj(X)→ H2i−j
crys (X0/Wn).

Here Xn = X ×W Wn and Wn = W/pn+1.

Here sn(r)X is the same of the syntomic sheaves (4.5). For convenience, we also use

the same notation of Gros. Actually can be already seen that a kind of generalisation

appears in ([Gro94]): we will use its definition of the ”rigid-syntomic” sheaf.

In the course of the exposition we notice that there are some problems with the

analogue in the rigid setting of the Hodge filtration in de Rham cohomology. So,

we try to understand which kind of behaviour such filtration has to satisfy to build

a nice cohomology theory.

Notation: We have k, perfect field of characteristic p > 0, W its ring of Witt

vectors, we suppose there is not ramification, and K := Frac(W ). For a W -scheme

Z, Zn = Z ⊗Wn, where Wn = W/pn+1.

In this discussion we will assume X smooth. Our first task is to replace the K-theory

in 6.1 with the ”motivic” interpretation of the higher Chow groups. This led to

approach the question not anymore on the crystalline theory, but more generally on a

rigid point of view. The motivation of such choice, a part of his natural generalization

of the crystalline cohomology, lies on the fact that the rigid cohomology has a

more classical treating of the existence of cycle class map, like in the étale, de

Rham, singular and other classical Weil cohomology theories. Moreover it is a better

cohomology theory for non-proper schemes (since the crystalline cohomology is not

finite for the non proper case). However, the crystalline setting is easier to connect

to étale cohomology, while in the rigid case, this relationship seems less clear. So we

notice that a satisfactory theory bringing such connection is the ”rigid” cohomology
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of Gros ([Gro94]), defined by using a slightly modification of the syntomic sheaf of

Fontaine and Messing in the rigid case. Then, our task is to prove that in the case

of smooth schemes (and possibly with other known hypothesis), there exists a cycle

map and that this map can be extended to higher cycle maps, as in the language

of Bloch ([Blo86b]). As consequence we just looking for deriving the analogous

of theorem 3.4 in ([Gro94]) but with the higher Chow groups instead of K-theory.

Finally, when this is true, it shows that the map between rigid-Besser and rigid-Gros

cohomology defined in the proof of Proposition 9.5 of ([Bes00]) is compatible with

higher Chow groups (for the higher cycle maps in the Besser-rigid cohomology we

refer to [CCM13]).

6.1 A remark on a method of Bloch

In this section we want to remark a simple general fact on Bloch cohomology theories

(that means cohomology theories that satisfy the axioms described in [Blo86b]).

Let Ha
1 (−, b), Ha

2 (−, b) be two Bloch cohomology theories.

Lemma 6.2. Suppose that there are cycle maps

cl1 : CHr(X)→ H2r
1 (X, r)

cl2 : CHr(X)→ H2r
2 (X, r)

and a functorial map fX : H2r
1 (X, r)→ H2r

2 (X, r) compatible with the cycle maps.

Then the map fm,rX : H2r−m
1 (X, r)→ H2r−m

2 (X, r) is compatible with the higher cycle

maps of Bloch

clm,r1 : CHr(X,m)→ H2r−m
1 (X, r)

clm,r2 : CHr(X,m)→ H2r−m
2 (X, r)

Proof. It is a consequence of the fact that the higher cycle maps depend only from

cycle maps. In fact in the argument of Bloch there is a map of complexes

τNZr(X, ∗)→ lim−→
Z∈Zr(X,∗)

H2r
2,|Z|(X ×∆∗, r)

induced by cycle class map and by hypothesis, that map factors throw fX . Then

the rest of the argument depends only by the weak purity property, so the defined

higher cycle maps are compatible by construction.
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This is a useful remark that permits to reduce compatibility at higher dimension

essentially to dimension 0. What we have in mind is to compare the cohomology of

Gros that we will recall in the next section, with the étale-syntomic cohomology

H2r
ét (X, s∞(r)X) where s∞(r)X = R lim←−n sn(r)X . Since we can define a map

connecting these cohomology theories ([Gro94], section 3), we want to verify that

there exist compatible cycle maps.

6.2 Rigid-Gros cohomology

Let us consider the following situation: Let be X a smooth W -scheme, and X0 its

special fiber. Suppose there exists an open immersion jX0 : X0 → Y of finite type

k-schemes and a closed immersion of the k-scheme Y in a formal Spf(W )-scheme P

with (rigid) generic fiber PK , namely i : Y → P . Let Ỹ be a W -scheme such that

its special fiber is Y . Then we can complete Ỹ along Y and we call it the formal

scheme associate to Ỹ . Denote it by Y := ˆ̃Y . We denote with ỸK its (rigid) generic

fiber. The tube of Y in P defines an open subset of PK . The ring O]Y [P admits an

ideal I defining the generic fiber ỸK . For any strict neighborhood V of ]X0[ in ]Y [,

we denote the inclusion with αV : V ↪→]Y [P . Berthelot defined for any sheaf F on

]Y [ the functor

j†X0
F := lim−→

V

αV ∗ α∗VF

where the inductive limit is over the strict neighborhoods above. Let’s consider

a decreasing filtration of the differential forms on the tube ]Y [. We define for an

integer r

FilrΩ•]Y [P
:= Ir → Ir−1Ω1

]Y [P
→ Ir−2Ω2

]Y [P
→ . . .

with the convention that Ir = O]Y [ for r ≤ 0. Then we can define a complex of

sheaves as following:

J r
X0,Y,P := Rsp∗(j

†
X0

FilrΩ•]Y [P
),

where sp : ỸK → Y . It represents a complex of sheaves on an open subset of PK .

For our purpose, we want to define a relative version of this complex, with analogy

of rigid cohomology with support in a closed subscheme.

Let Z be a closed subscheme of X0 and let U = X0 − Z. Denote with jU : U ↪→ Y

the respective open immersion. As done previously, we can form the Berthelot j†U
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functor. Since a strict neighborhood of ]U [ in ]Y [ is a strict neighborhood of ]X0[ in

]Y [, by the universal property of the inductive limits, we can form a restriction map

r : j†X0
F → j†UF . Then we can define a map between complexes

j†X0
FilrΩ•]Y [P

r−→ j†UFilrΩ•]Y [P
.

For convention with the notation in [Pet03], we define the fibered cone of r and

denote it as follows. Define(
j†X0

FilrΩ•]Y [P

r−→ j†UFilrΩ•]Y [P

)
s

:= Cone
(
j†X0

FilrΩ•]Y [P

r−→ j†UFilrΩ•]Y [P

)
[−1]

and note that by definition of the cone

Cone(r)[−1] =

dX0 0

r −dU

 .

Now we are ready to define the relative complex of sheaves as following:

J r
X0,Y,P,|Z| := Rsp∗

(
j†X0

FilrΩ•]Y [P

r−→ j†UFilrΩ•]Y [P

)
s
.

Now we note that for r = 0 the global sections of the complex above represent the

rigid cohomology with support in Z defined in Berthelot ([Ber97b]) and Petrequin

([Pet03]), and for X = Z it is simply the definition of rigid cohomology. In particular

under some assumptions that can be always satisfied, we can kill some dependency’s

condition. For the rest of the discussion, we then suppose to be in the following

situation:

Situation 1. We can assume that X0 can be embedded in proper scheme X̄0 by

a theorem of Nagata ([Nag62]) and suppose that there exists a formal scheme P

smooth on a neighborhood of X0: in particular we assume that X is endowed with

étale topology and quasi-projective, so that we can lift the Frobenius morphism f

of X0 on P .

Remark 8. In this setting Berthelot proved the independence of the definition

of J 0
X0,Y,P , and J r

X0,Y,P for each r, with respect to Y and P . This is claimed in

([Gro94], Propositions 3.3 and 3.5). With this remark we can denote it simply by

J r
X0

. However we want to advert the reader that what is claimed in Gros is not

supported by a verifiable reference. For us, it has been impossible to find it as well

as the concerned proof.
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COHOMOLOGY

As done in [Bes00] we can take together all such choices.

Definition 6.3. If (X, X̄, j,P) with j : X ↪→ X̄ are W -scheme with the hypothesis

as in the situation (1), we call a such collection rigid datum. A morphisms between

the rigid data (X, X̄, j,P) and (X, X̄ ′.j′,P ′) is the data of a proper morphism α :

X̄ → X̄ ′ and a smooth morphism u : P → P ′ compatible with the obvious morphisms.

These objects form a category RD(X,W ) which is filtered as proved in [Bes00].

Moreover we can refine this definition, requiring a compatibility with strict

neighborhoods. If to a rigid datum we choose a strict neighborhood V of ]X0[P

in ]X̄0[P , we call this datum, extended rigid datum. Then a morphism of extended

rigid data, with V and V ′ their corresponding strict neighborhoods, is a morphism

of rigid data such that the induced map on the tubes sends V in V ′. Again this

is a filtered category that we note ED(X,W ) so we have direct limits taking all

the rigid data or extended rigid data. We remark that all this constructions induce

quasi isomorphism on each particular chosen datum. Under these assumptions we

can form the following so called rigid syntomic sheaves. First define

J ′rX0
:= lim−→

(X̄,j,P,V )∈ED(X,W )

J r
X0,X̄,P,V .

J ′rX0,|Z| := lim−→
(X̄,j,P,V,|Z|)∈ED(X,W )

J r
X0,X̄,P,V,|Z|

Here V means that the sheaves J r
X0,X̄,P,V , J r

X0,X̄,P,V,|Z| are defined more generally

with Ω•V . Since the Frobenius on X0 admits a lifting on the formal scheme P that

we denote still by f , we define the following sheaves for each integer r:

s(r)X/K,f,rig := Cone(1− p−rf : J ′rX0
→ J ′0X0

)[−1]

s(r)X/K,|Z|,f,rig := Cone(1− p−rf : J ′rX0,|Z| → J
′0
X0,|Z|)[−1].

It is important to remark that these sheaves depend by f but by the theorem 1.5 in

([Gro94]), they are independent by homotopy class. Since we are interested in the

study of their cohomology, we can just forget the map f by the notation, and we

consider them as in the homotopy category. We are now ready to define the Gros

cohomology theory.

Definition 6.4. Let’s X,X0, X̄0,P as above. We define Ha
Gr(X, r) as the

hypercohomology groups

Ha
Gr(X, r) := Ha(X̄, s(r)X/K,rig)
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and in the relative case, we define

Ha
Gr,|Z|(X, r) := Ha(X̄, s(r)X/K,|Z|,rig).

Remark 9. Note that the filtration

J ′rX0
⊂ J ′r−1

X0
⊂ · · · ⊂ J ′0X0

= lim−→
ED(X,W )

Rsp∗j
†
X0

Ω•]X̄0[

induces K-vector spaces of the rigid cohomology that we denote with

FilrH∗rig(X0/K) := H∗(X̄,J ′rX0
). In the definition of rigid-Besser cohomology in

[Bes00], it is defined a filtration on the De Rham cohomology, that play the role

of the filtration defined above. Actually Besser provides a map between them in a

more general situation. The relevant fact is that this map is functorial with respect

to X. This allows us to define a cycle class on the Gros filtration as image of the

cycle class of the de Rham filtration.

Remark 10. We have to underline that in the definition of these K-vector spaces

we don’t know if they actually are sub-objects. In this discussion we assume (or

better, we have conjectured) that: under suitable conditions on X, we have that

FilrH∗rig(X0/K) ↪→ H∗rig(X0/K)

is an injection.

We stress that in the smooth and proper case, the identification of rigid and de Rham

cohomology follows by the GAGA theorem (where the terms analytic is intended

rigid-analytic) and so we apply this principle on the filtration both on rigid that and

on the de Rham cohomology, to obtain an isomorphism. However when we don’t

have properness, than we don’t know the behaviour of this filtration. For example, in

the case X0 = Spec(k[t]), the injection cannot be hold, since the filtration on the left

makes the cohomology an infinite dimensional K-space, meanwhile on the right we

have one that is finite dimensional. In fact, we can choose a frame A1
k ↪→ P1

k ↪→ P̂W .

Also Ỹ = P1
W and so ˆ̃YK = P̂1

K . So we have the stupid filtration relative to the rigid

complex

0→ W †[t]⊗K → OW †[t]⊗K → Ω1
W †[t]⊗K → 0. (6.1)

Then we see that Fil1H1
rig(X/K) is infinite dimensional, while H1

rig(X/K) is finite

dimensional.
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Lemma 6.5. For X smooth (and suitable conditions as described above), and W a

flat integral subscheme of codimension r, there exists a functorial map

FilrH2r
dR,WK

(XK/K)
cX−→ FilrH2r

rig,W0
(X0/K)

such that,

FilrH2r
dR,WK

(XK/K)
cX−→ FilrH2r

rig,W0
(X0/K)→ H2r

rig,W0
(X0/K)

is compatible with the cycle classes (betweeen the de Rham and rigid one). That

means: if ηdR,WK
denote a cycle class of a closed subscheme WK of codimension r of

XK, then cX(ηdR,WK
) is compatible with ηrig,W0 ∈ H2r

rig,W0
(X0/K) (defined in chapter

5).

Proof. The existence of the map is proved in [Bes00] proposition 9.5. But after

[[CCM13], section 1.5] we have a specialization map

H2r
dR,WK

(XK/K)
sp−→ H2r

rig,W0
(X0/K)

ηdR,WK
7−→ ηrig,W0

The Hodge theory for the de Rham cohomology provides an equality

FilrH2r
dR,WK

(XK/K) = H2r
dR,WK

(XK/K). Then actually the de Rham fundamental

class lies in the r-th part of the filtration and so, cX is the restriction of the

specialization map to this filtration. This means that we have the following

commutative diagram (where we stress the injectivity hypothesis):

H2r
dR,WK

(XK/K) H2r
rig,W0

(X0/K)

FilrH2r
dR,WK

(XK/K) FilrH2r
rig,W0

(X0/K)

sp

cX

remark 10

This lemma guarantees the existence of a cycle class in the rigid filtration of Gros.

Definition 6.6. Let W be a flat closed subscheme of X of pure codimension r. Then

we define a fundamental class in the rigid filtration as

η̃rig,W0 := cX(ηdR,WK
). (6.2)
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Proposition 6.7. The Rigid-Gros cohomology satisfies the following long exact

sequences:

1. · · · → Ha−1
rig (X0/K) ⊕ Ha−1

rig (X0/K) → Ha
Gr(X, r) → Ha

rig(X0/K) ⊕

FilrHa
rig(X0/K)→ Ha

rig(X0/K)⊕Ha
rig(X0/K)→ . . .

2. · · · → Ha−1
|Z|,rig(X0/K) ⊕ Ha−1

|Z|,rig(X0/K) → Ha
Gr,|Z|(X, r) → Ha

|Z|,rig(X0/K) ⊕

FilrHa
|Z|,rig(X0/K)→ Ha

|Z|,rig(X0/K)⊕Ha
|Z|,rig(X0/K)→ . . .

3. · · · → Ha
Gr,|Z|(X, r)→ Ha

Gr(X, r)→ Ha
Gr(X − Z, r)→ . . . .

Moreover the last exact sequence is contravariant for cartesian squares.

Proof. Let’s observe that we have a quasi isomorphism

Cone(1− p−rf : J ′rX0
→ J ′0X0

)[−1] ∼ Cone(J ′rX0
⊕ J ′0X0

h−→ J ′0X0
⊕ J ′0X0

)[−1],

where h =

1− p−rf 0

0 1

. The same holds in the relative case. Then 1) and 2)

follows by the long exact sequence associates to a mapping cone. For the property

3), recall that in general holds that

Cone(Cone(A• → B•)[−1]→ Cone(C• → D•)[−1])[−1]

' Cone(Cone(A• → C•)[−1]→ Cone(B• → D•)[−1])[−1],

and in particular it applies to the sheaves s(r)X/K,|Z|,f,rig. Then 3) follows again by

the long exact sequence of the mapping cone. The last sentence follows by the fact

that s(r)X/K,|Z|,f,rig is contravariant for cartesian squares.

Conjecture 6.1. The rigid Gros cohomology satisfies the homotopy property, i.e.

there exist a canonical isomorphism such that

Ha
Gr(X, r) ' Ha

Gr(X × A1
W (k), r)

A possible proof has been attempted as following.

We consider the long exact sequence on Gros cohomology

Ha−1
rig (X0/K)⊕Ha−1

rig (X0/K)→ Ha
Gr(X, r)→ Ha

rig(X0/K)⊕ FilrHa
rig(X0/K)

→ Ha
rig(X0/K)⊕Ha

rig(X0/K)
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and the similar one corresponding to the scheme X × A1
W (k). The projection map

X ×A1
W (k) → X induces an isomorphism on the rigid cohomology groups appearing

in the exact sequences since the rigid cohomology satisfies the homotopy property.

To prove that the homotopy property holds for the filtration, we consider that in

the affine case, with X = Spec(A) we have the short exact sequence

0→ FilrΩ•A† → Ω•A† → Ω<r,•
A†
→ 0

that induces a long exact sequence in cohomology. By the five lemma it suffices to

prove the isomorphism Hj(Ω<r,•
A†

) ' Hj(Ω<r,•
(A×W [t])†

). If we consider the Kunneth

formula in ([Ber97a], section 3.1, ref. (3.1.1)), we observe that there is an

isomorphism at level of complexes, so it is an isomorphism also only considering

the first r − 1 terms. Since the computation of cohomology of Ω•
W †[t] is trivial

(H0 = K, otherwise is 0), by Kunneth formula, the only term of the direct sum is

the cohomology relative to X. This reasoning proves the searched isomorphism for

j ≤ r − 2 and for j ≥ r. What about j = r − 1? We note that this corresponds

to the case where Fil1H1(Spec(k[t])/K) is infinite dimensional discussed in remark

(10). When this is verified, then by four lemma, also the map between the rigid

Gros cohomology groups is an isomorphism.

Proposition 6.8. Let Z be a closed W -subscheme of X of pure codimension q.

Then the rigid Gros cohomology satisfies the weak purity condition, i.e.

Ha
Gr,|Z|(X, r) = 0 a < 2q.

Proof. By the long exact sequence

Ha−1
rig,|Z|(X0/K)⊕Ha−1

rig,|Z|(X0/K)→ Ha
Gr,|Z|(X, r)→ Ha

rig,|Z|(X0/K)⊕FilrHa
rig,|Z|(X0/K)

and by weak purity of rigid cohomology (the weak purity holds on the filtration, by

the injectivity conjectured hypothesis), it follows that the first and last term of the

sequence are 0. The proposition follows.

Now assume thatX0 is smooth. As described in [Pet03], if Z0 is a closed k-subscheme

of X0 of codimension q we can define a fundamental class ηZ0,rig ∈ H
2q
|Z0|,rig(X0/K).

Starting from such class we can define the analogous one for the rigid Gros

cohomology.
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Proposition 6.9. Let Z a closed W -subscheme of codimension r. There exist

a unique syntomic fundamental class in the rigid Gros cohomology, ηZ,Gr ∈

H2r
|Z|,Gr(X, r) compatible with the rigid fundamental class ηZ0,rig.

Proof. By weak purity we have the following exact sequence:

0→ H2r
|Z|,Gr(X, r)→ H2r

rig,|Z0|(X0/K)⊕FilrH2r
rig,|Z0|(X0/K)

h−→ H2r
|Z0|,rig(X0/K)⊕H2r

|Z0|,rig(X0/K).

In particular by exactness there is a unique class in the Gros cohomology

corresponding to an element of the kernel of h. We have defined η̃Z0,rig =

cX(ηZK ,dR) ∈ FilrH2r
rig,|Z0|(X0/K). Moreover the Frobenius action on ηZ0,rig is the

multiplication by pr and it is compatible with the r-th level of the de Rham filtration,

so that the couple (ηZ0,rig, η̃Z0,rig) ∈ ker(h). This proves that there exists a unique

corresponding ηZ,Gr ∈ H2r
|Z|,Gr(X, r).

Now by linearity we can extend the definition of Gros fundamental class, to Gros

cycle class.

We can verify the compatibility on the pullback of cycle.

Lemma 6.10. Let f : X ′ → X be a closed immersion of smooth W -schemes, and

let Z ∈ Zr(X) a relative cycle of codimension r. We Assume that the f−1(Z) lies

in Zr(X ′). Then holds that

f ∗ηGr,Z = ηgr,f∗Z

Proof. Since ηGr,Z is defined as the unique corresponding element of

(ηZ0,rig, cX(ηZK ,dR)), and cX is a functorial map, the assertion follows by the

compatibility of the de Rham cycle class with respect to pullback, as proved in

([CCM13], lemma 1.6.3).

The previous assertions prove that the Gros cohomology is a Bloch (in our sense)

cohomology theory. As seen in ([Blo86b]), on such kind of cohomology it is possible

to construct an higher class cycle map. We will just apply the Bloch’s argument to

the Gros cohomology here defined.
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Proposition 6.11. Let X be a smooth W -scheme. Then the Gros cycle class induces

an higher cycle class map (regulator)

clr,msyn : CHr(X/W,m)→ H2r−m
Gr (X, r) (6.3)

compatible with the regulator map for the rigid-Besser cohomology defined in

([CCM13],Proposition 1.6.6).

Proof. Let’s choose a resolution of the complex that computes the Gros cohomology.

In particular we denote

RGr(X ×∆−m, r) := RΓ(X ×∆−m, s(r)X×∆−m/K,rig)

RGr,|Z|(X ×∆−m, r) := RΓ(X ×∆−m, s(r)X×∆−m/K,|Z|,rig)

RGr,c(X ×∆−m, r) := lim−→
Z∈Zr(X,−m)

RGr,|Z|(X ×∆−m, r)

where m ≤ 0 and Z ∈ Zr(X,−m). Since it can be some problem of convergence

about unbounded spectral sequences, we choose an N >> 0 even and suppose

m ≥ −N , then we pose

Km,t := τm≥−NRGr(X ×∆−m, r)t

Km,t
c := τm≥−NRGr,c(X ×∆−m, r)t.

with t ≥ 0. In this way we can consider the ”filtration bete” spectral sequences

associate to K•,• and K•,•c , namely:

Em,t
1 := H t(K•,m) =⇒ Hm+t(tot(K•,•))

Em,t
1,c := H t(K•,mc ) =⇒ Hm+t(tot(K•,•c ))

By a closer inspection on the first spectral sequence we can notice that:

Em,t
1 = H t

Gr(X ×∆−m, r) = H t
Gr(X, r)

by homotopy property. Moreover, if D•,m2 : K•,m → K•,m+1 denotes the differential,

(that is induced by the face inclusion maps X×∆m
↪→
...
↪→
X×∆m+1) then we have that

dm,t1 = (−1)tH t(D•,m2 ) and so we deduce

dm,t1 =


id if −N ≤ m < 0 , m even and t even

-id if −N ≤ m < 0, m even, t odd

0 otherwise.
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This means that

Em,t
2 =

H
t
Gr(X, r) m = 0

0 otherwise

and so H i(tot(K•,•)) ' H i
Gr(X, r). Now, the Gros cycle class map induces the

following map of complexes

τm≥−NZr(X, •)→ E−•,2r1,c . (6.4)

From the weak purity property we deduce that Em,t
q,c = 0 for t < 2r and for q > 1.

This means that we have a map

E−m,2r2,c → E−m,2r∞,c → H2r−m(tot(K•,•c ))

→ H2r−m(tot(K•,•)) ' H2r−m
Gr (X, r).

Then composing with the cycle map 6.4 after taking the cohomology, we obtain

the desired map. The compatibility with Besser syntomic regulator follows by the

compatibility of cycle maps (6.5) and lemma (6.2).

6.3 A map from Gros cohomology to (étale)

syntomic cohomology

The previous sections show that the Gros cohomology has good properties, like

to the classical étale cohomology. Here we will see that a connection between the

Gros cohomology and étale-syntomic cohomology arise naturally. Unfortunately it

is important to remark that the Fontaine-Messing étale sheaves sn(r)X have not the

same kind of behaviour. We don’t know in general if the homotopy property holds.

Actually, a modified version of these sheaves appears in [Sat10], where it is claimed

a lack of the homotopy invariant, so the construction of an higher cycle map needs

some care and a little different approach. We will see it in the next section.

In this section we are going to use the differential description of the syntomic sheaves

of Fontaine and Messing, as described in ([Kat85]) or in section 4.2.2 .

Let X be a smooth, quasi-projective W -scheme. Let X ↪→ Z a closed immersion in

a smooth (in a neighborhood of X) W -scheme Z, such that the Frobenius morphism
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of X lifts to Z. Let Dn := DXn(Zn) the divided power envelope with respect to the

divided power ideal pWn ⊂ Wn, and let Jn := JDn the ideal of ODn defining Xn.

Let J
[r]
n denote the r-th divided power of Jn, where for r ≤ 0 we denote J

[r]
n := ODn .

We can define a complex of sheaves over (X0)ét:

J
[r]
n,X,Z : J [r]

n → J [r−1]
n ⊗OZn Ω1

Zn → J [r−2]
n ⊗OZn Ω2

Zn → . . . .

Moreover there exists a unique fr that represents the ”division by pr” of the

Frobenius f . Then we can define the fibered cone

sn(r)X,Z := Cone(J
[r]
n,X,Z

1−fr−−−→ J
[0]
n,X,Z)[−1].

Let’s denote the image of these sheaves (étale ) on the derived category with

sn(r)X . All the sentences are verified in ([Kat85], and in loc. section on Crystalline

cohomology). Now let’s assume X = spec(A) is an affine smooth scheme, where A is

a finite type W -algebra. If A† denotes the weak completion respect to (p), Berthelot

([Ber97b]) proved that there is an isomorphism

RiΓ(Ω•]X̄0[P
) ' RiΓ(Ω•A†/W ⊗K).

Moreover there is a natural inclusion (by definition) of A† ↪→ Â := lim←−nA/p
n.

By covariant functoriality of the differential Ωi
∗ for each i, the inclusion induces a

morphism

Ω•A†/W ⊗K → (lim←−
n

Ω•An/Wn
)⊗K. (6.5)

Moreover notice that there is an inclusion spec(An) ↪→ Zn and the divided power

envelope of spec(An) in Zn with respect to pWn yields a map

Ω•An/Wn
→ Ω•Dspec(An)(Zn).

Keeping the projective limits on each terms, then extending to the scalars K and

composing the obtained map with (6.5), we obtain a map

Ω•A†/W ⊗K → (lim←−
n

Ω•Dspec(An)(Zn))⊗K.

So in the case of affine smooth schemes we have a map

RΓ(X, s(0)X/K,rig)→ RΓ(X, s∞(0)X)⊗K.
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where in this context RΓ(X, s(r)X/K,rig) is the complex such that

RiΓ(X, s(r)X/K,rig) = H i
Gr(X, r) With an analogous reasoning, we deduce the

existence of a map 1

RΓ(X, s(r)X/K,rig)→ RΓ(X, s∞(r)X)⊗K (6.6)

for each integer r. We underline that in the map 6.6, X is endowed with Zariski

topology on the LHS, while X is endowed with étale topology in RHS.

Now for a generic X smooth, we choose a covering of affine schemes. The universal

property of divided power envelopes guarantees the compatibility of these maps on

finite intersections of the covering. So by the definition of sheaf, there exist a unique

map extending (6.6) for a generic X smooth.

6.4 Cycle map in étale cohomology

In the previous section, we observed that the Fontaine-Messing sheaves sn(r)X loss

the homotopy property. This means there is a gap in the construction of an higher

cycle map in the sense of Bloch. However, the classical étale cohomology is a good

Bloch cohomology theory. We ask then if it possible to define, in a functorial way,

an higher syntomic cycle map, starting from the classical étale point of view. In

([Sat10]) is described a modified version of the Fontaine-Messing sheaves to make

up for the lack of the homotopy property. His discussion is more general, but it has

some difficulty that make less clear the connection with the maps built here. So, for

simplicity we choose to deal with the classical étale cohomology and then, through a

result of Kurihara ([Kur87]) and an argument of Geisser ([Gei04]), we make possible

the desired connection. Under the assumption of smoothness of X, for the author

this seems the shortest way to approach the argument.

In this section we study the cohomology of the generic fiber XK of a smooth

W -scheme X. Let m = pr and denote with Z/m(q) the p-adic sheaves

Z/m(q) =

µ
⊗q
m if q ≥ 1

Z/m if q = 0.

1We notice that in the affine case there is no information on the ideal I, i.e. I = (0). This

beacause we can choose the frame spec(Ak) ↪→ Pn
k ↪→ P̂n

W and if Y = Pn
k and P = P̂n

W , then

ỸK = PK .
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These sheaves satisfy the purity condition from classical étale theory: let ZK be a

closed subscheme of pure codimension q, then there is a canonical isomorphism

H i
ZK

(XK,ét,Z/m(q)) ' H i−2q((ZK)ét,Z/m). (6.7)

In particular H2q
ZK

(Xét,Z/m(q)) is generated by the irreducible components of ZK . A

cycle map is then defined extending by linearity the fundamental classes of such ZK ,

i.e. the preimage of [ZK ] ∈ H0(ZK ,Z/m) by the isomorphism (6.7). Moreover the

étale cohomology has the homotopy property. To apply the Bloch’s argument, we

need of a resolution that computes the étale cohomology and the functoriality of the

class cycle map. For the resolution, choose a Godement resolution of Z/m(q) on XK ,

namely G•(XK ,Z/m(q)). We note that it is quasi isomorphic with RΓ(XK ,Z/m(q)),

so the cohomology of both complexes is the same. The functoriality of cycle map

follows by the following lemma in étale cohomology:

Lemma 6.12. Let clqét : Zq(XK , 0) → H2q(XK,ét,Z/m(q)) the cycle map for the

étale cohomology. If f : YK → XK is a morphism of smooth K-scheme, WK ⊂ XK

a closed subscheme of codimension ≥ q, TK ⊂ YK a closed subscheme such that

f−1(WK) ⊂ TK and TK has codimension ≥ q, then

f ∗(clqét([WK ])) = clqét(f
∗[WK ])

Proof. See ([GL01], proposition 3.5 (1)).

Now, by the argument of Bloch, we can construct an higher cycle map (regulator)

from higher Chow groups to étale cohomology. More precisely it is the map in

cohomology induced by a map

clqét : Zq(XK , •)⊗ Z/m→ G2q−•(XK ,Z/m(q)). (6.8)

To see it, we note that the argument of Bloch, at first step provide a map of

complexes induced by cycle map as following:

Zq(−, 0)⊗ Z/m→ H2q(G•c(−ét,Z/m(q))) (6.9)

where G•c(−ét,Z/m(q)) is obtained by G• taking the inductive limit over the

subgroups of Zq(−, 0) of closed subschemes that meet properly. Moreover by the

weak purity in étale cohomology we have a natural quasi isomorphism

τ≤2qG
•
c(−,Z/m(q))

α−→ H2q(G•c(−ét,Z/m(q)))[−2q]. (6.10)
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We have also a map

τ≤2qG
•
c(−,Z/m(q))→ G•c(−,Z/m(q))→ G•(−,Z/m(q)) (6.11)

obtained by composing with forgetful support functor. Composing all these maps,

then applying to X ×∆∗, and by homotopy property, we get (6.8).

6.4.1 Looking for compatibility and questions

What we have done until now is provide a strategy to formulate an analogous of the

theorem (3.4) ([Gro94]) in terms of higher cycle maps. More precisely we hope that

the following holds:

Conjecture 6.2. Let X a smooth W -scheme, with X0 smooth special fiber and XK

the (smooth) generic fiber. Then there exists a functorial (in X) regulator map

clr,mét-syn : CHr(X,m)⊗Qp → H2r−m(Xét, s∞(r)X)⊗Qp (6.12)

making the following diagram commutative:

CHr(X,m)⊗Qp H2r−m
Gr (X, r)

H2r−m(Xét, s∞(r)X)⊗Qp

clr,msyn

clr,mét-syn (6.13)

where the vertical map is induced by (6.6).

As a consequence, we can express the relation between the (rigid) syntomic

cohomology in the sense of Besser, and the étale cohomology, in a similar fashion of

the Deligne-Beilinson cohomology.

Corollary 6.13. Let X as in the theorem (6.2). Then there is a commutative

diagram

CHr(X,m)⊗Qp H2r−m
syn-Bess(X, r)

CHr(XK ,m)⊗Qp H2r−m
ét (XK ,Qp(r))

(6.14)

where the right vertical map is given by the following composition:

H2r−m
syn-Bess(X, r)→ H2r−m

Gr (X, r)→ H2r−m(Xét, s∞(r)X)⊗Qp → H2r−m
ét (XK ,Qp(r)).

(6.15)

98



6. SYNTOMIC REGULATOR IN ÉTALE AND RIGID
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Here, the first map on the left is given by one defined in ([Bes00], proof lemma 9.5).

The last map on the right is the one given in ([FM87],3, 5.1).

Proof. By the theorem 6.2 and by construction of the syntomic-Besser regulator

map given in [CCM13], we have just said that CHr(X,m) → H2r−m
ét (XK ,Qp(r))

factorizes through H2r−m
syn−Bess(X, r). In the case m = 0 the assertion of the corollary

is true: In fact by the weak purity property H2r
ét,ZK

(XK ,Qp(r)) is generated by the

irreducible components of ZK . The elements of CHr(X) are flat subschemes of pure

codimension r, so in the generic fiber the irreducible components relative to W are

irreducible relative to K, then also the respective classes in cohomology are the

same. Since the syntomic-Besser cohomolgy and the étale cohomology are Bloch

type, by the lemma 6.2 the commutativity follows for m > 0.

The rest of the section is devoted to see how the ”conjecture” 6.2 has been

approached.

Let start with some notation. Let

i : X0 ↪→ X

the closed immersion of the special fiber, denote with

j : XK ↪→ X

the open immersion of the generic fiber. Denote with ΓX,ét(r) the complex of étale

sheaves associate to the presheaves U → Zr(U, •). Analogously we denote ΓX,Zar(r)

the corresponding Zariski complex of sheaves. Denote by ε : Xét → XZar, the map

of sites. Now we sketch an argument of Geisser . By a result of Kurihara ([Kur87])

there is a map

sn(r)X → τ≤ri
∗Rj∗Z/pn(r). (6.16)

Moreover there is the following map of complexes:

τ≤ri
∗ε∗ΓX,Zar(r)⊗ Z/pn c−→ τ≤ri

∗ε∗Rj∗ΓXK (r)⊗ Z/pn. (6.17)

Then the adjoint map ε∗Rj∗ → Rj∗ε
∗ composed with (6.8) yields a map

τ≤ri
∗ε∗Rj∗ΓXK (r)[−2r]⊗ Z/pn → τ≤ri

∗Rj∗Z/pn(r). (6.18)
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Then the main result of Geisser ([Gei04] proof of theorem 1.3) is to prove that there

exists a map

τ≤ri
∗ε∗ΓX,Zar(r)[−2r]⊗ Z/pn → sn(r)X (6.19)

such that the following diagram

τ≤ri
∗ε∗ΓX,Zar(r)[−2r]⊗ Z/pn τ≤ri

∗ε∗Rj∗ΓXK (r)[−2r]⊗ Z/pn

sn(r)X τ≤ri
∗Rj∗Z/pn(r)

(6.20)

commutes. Now we consider the following extended diagram:

τ≤ri
∗ε∗ΓX,Zar(r)[−2r]⊗Qp τ≤ri

∗ε∗ΓX,Zar(r)[−2r]⊗Qp τ≤ri
∗ε∗Rj∗ΓXK (r)⊗Qp

s(r)X/K,rig s∞(r)X ⊗Qp τ≤ri
∗Rj∗Qp(r)

(6.21)

The claim is that, at the level of cohomology, it is commutative. In fact we note that

all the vertical maps represent the suitable higher cycle maps, since by vanishing of

the cohomology of the higher Chow groups, the truncation at level r is not restrictive.

Moreover the composition of the maps on the bottom is a non trivial functorial map

between two Bloch cohomology theories, so we can ask if they are compatible with

respect to the cycle maps. Is this true? Since the weak purity property forces a

non trivial map to send fundamental class in fundamental class, this sentence is

verified only for the relative cohomology. We know by ([Gro94]) that the map 6.6

is compatible with Chern classes, but we don’t know if we can refine these classes

to ”local Chern classes” with target in the relative cohomology. On the other hand,

without this assumption we can ask if the map on the relative cohomology induced

by 6.6 is an isomorphism. In this case, by weak purity the compatibility follows

at fortiori. If assume such compatibility for the cycle classes, then by the lemma

6.2, this means that all the bigger rectangle is commutative. Together with the

commutative diagram in (6.20), this not implies yet that the square on the left is

commutative on the cohomology. But for this purpose it suffices that the map

s∞(r)X ⊗Qp → τ≤ri
∗Rj∗Qp(r) (6.22)

is injective. This follows by a simple fact on commutative diagrams: we are in the
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situation in which the following diagram in a category C

A B C

D E F

a

h

b

l k

d e

is such that all the bigger rectangle and the right square commute, i.e. the following

diagrams are commutative:

A C B C

D F E F

b◦a

h k l

b

k

e◦d e

If e is a monomorphism then, also the square on the left is commutative: it follows

simply by the relations

e ◦ d ◦ h = k ◦ b ◦ a = e ◦ l ◦ a

and since e is a monomorphism, d ◦ h = l ◦ a. So the question is:

Under which hypothesis, the map (6.22) is injective? Is it possible for example in

the case r = 1?

Does exist a refining of Chern classes as ”local Chern classes” compatible with the

classical one?

Is it possible, anyway, to prove that 6.6 induces an isomorphism at level of relative

cohomology?
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