
COMBINING TIMBRIC AND RHYTHMIC FEATURES

FOR SEMANTIC MUSIC TAGGING

RELATORE: Ch.mo Prof. Nicola Orio
Dipartimento dei Beni Culturali: Archeologia,
Storia dell’Arte, del Cinema e della Musica

LAUREANDO: Roberto Piva

A.A. 2011-2012

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DI LAUREA

COMBINING TIMBRIC AND

RHYTHMIC FEATURES FOR

SEMANTIC MUSIC TAGGING

RELATORE: Ch.mo Prof. Nicola Orio

Dipartimento dei Beni Culturali: Archeologia,

Storia dell’Arte, del Cinema e della Musica

LAUREANDO: Roberto Piva

Padova, 10 marzo 2012

ii

A Chiara.
Agli amici.

Agli anni più belli della mia vita.

Alla musica.

iv

Abstract

The recent explosion of online streaming services is a reflection of the high importance
the multimedia has in our everyday life. These systems deal with large collections
of media pieces and their usability is tightly related to the meta-data associated with
content. As long as the meta-data is correctly assigned users can easily reach what they
were looking for. The presence of poorly annotated data and continuous addition of
new items can lead to poor recommendation performances and loss of earning because
a large part of the collection will remain unexplored . Automatic tagging can be a step
toward the solution for this problem, however state of the art system are not yet ready
to substitute human annotators, expecially for music.

In this thesis we propose a novel approach to semantic music tagging. The project
takes inspiration from Hidden Markov Models and exploits a statistical framework to
semantically link two acoustic features. We make the assumption that acoustically sim-
ilar songs have similar tags. We model our collection of known songs as a graph where
the states represent the songs and the transition probabilities are related to the timbric
similarity between songs. Observations and observation probabilities was modeled by
rhythm descriptors and rhythm similarity. To query the model we simulate the inser-
tion of the query song in the graph by calculating timbric and rhythmic similarity with
the collection. A modified Viterbi algorithm was developed to extract semantically
meaningful paths in this songs graph, from the query song. We infer the tags for the
query by a weighted sum of tags from the songs in the extracted paths.

We tested our model using the CAL500 dataset, a well known dataset for music
information retrieval evaluation, and results are promising. Performance measures are
good for an first implementation of a new model.

This thesis is intended to show the results of our work between august, 2012 and
march, 2013 on this project.

Contents

Abstract i

Introduction 1

1 Background 5
1.1 Hidden Markovian Models . 5

1.1.1 Markov chains . 5
1.1.2 Hidden Markovian Models 8
1.1.3 Three basic problems . 10

1.2 Rhythm Histograms . 14
1.2.1 Rhythm Patterns . 14
1.2.2 Rhythm Histograms . 16

1.3 Mel Frequency Cepstral Coefficients 16
1.3.1 Mel scale . 16
1.3.2 MFCC calculation . 18
1.3.3 Delta-MFCC . 19

1.4 Gaussian Mixture Models . 19
1.4.1 Definitions . 22
1.4.2 Constrained versions . 22
1.4.3 Training . 22

2 The model 25
2.1 Retrieval model . 25

2.1.1 Definitions . 26
2.1.2 Acoustic similarity . 28
2.1.3 Tag model . 29
2.1.4 Retrieval process . 30
2.1.5 Querying the model . 31

2.2 Semantic music tagging . 33

iii

CONTENTS

2.2.1 Definitions . 34
2.2.2 Adding rhyhtm features . 35
2.2.3 Similarity measures . 36
2.2.4 Querying the tagging model 38

3 Results 43
3.1 Test setup . 43

3.1.1 Data source . 43
3.1.2 Evaluation measures . 44
3.1.3 Tests . 46
3.1.4 Parameters Tuning . 46

3.2 Results . 48

Conclusions and future work 53

Bibliography 59

iv

Introduction

In the cloud computing era lots of people manage their files and media on online ser-
vices, often relying on the availability guaranteed by this kind of systems. Content has
to be somehow indexed, as users want their data to be also easier and faster to seek.
Services providers usually offer multiple ways to handle this. Data could be organized
in a tree-like fashion, as desktop computer’s OS got us used to, in a data type specific
scheme (e.g. movies may be organized by director, year, cast, genre and so on, whereas
books may be organized by author and year), or in a tag system, like music streaming
services usually do.

Tags are (often) short texts, usually of a single word, that suggest and describe the
kind of content the data represent, they are the are so-called meta-data. Putting them
along with the data is usually a task for a human being, not only for the difficulty
to gather synthetic description of the data, but also because tagging involves some
subjective judgements and logical connections between concepts. Another important
thing to note is that metadata has a very big role in every media that is not based in text
or graphic symbols (i.e. books, pictures) and/or it is not static: we can build a program
that summarize a text but you cannot write a summary of a movie without actually
seeing it before, and the same applies to music.

Speaking about music, tagging has always been a feature of online streaming ser-
vices like LastFM1, Apple Genius, Pandora2 or Grooveshark3. Their tags have different
origins though: while Pandora pays music experts to put correct and well expressive
tags on music4, LastFm and Apple Genius rely on user generated tags and playlists and
use statistics tools like collaborative filtering (see [15]) for annotating new items. For
these services having good tags for their music is essential, since they rely on this to
deliver the right songs to the right user, selecting the ones that suit the user’s tastes and
the mood of previously listened songs.

1http://www.last.fm
2http://www.pandora.com
3http://www.grooveshark.com
4As part of the Music Genome Project http://www.pandora.com/about/mgp

1

http://www.last.fm
http://www.pandora.com
http://www.grooveshark.com
http://www.pandora.com/about/mgp

INTRODUCTION

They also have to deal with newly added material and a whole range of music,
spacing from new broadly popular hits to very little known productions from indepen-
dent labels or individual bands. For the popular music getting proper tagging may not
be an issue, at least if there are advertiser which push songs in the market. But what
about the rest of the tracks users ignore? Will they ever be properly described? Will
that obscure but very interesting track be considered if it is poorly tagged? The short
answer is “no”, we cannot reach a song without proper tagging . Without an automatic
tagging system popular songs will become more popular and newly written songs (and
not-so-popular ones) will not be annotated and thus progressively ignored.

There is also a niche (actually not so little) in which proper tagging is requested but
little or not at all provided: there are large production libraries that contains millions of
songs. These songs are ready to be used into a variety of situations, such as commercial
jingles, background music of television shows, or even elevator music (muzak), but
they are ignored because of poor tagging. If library holders are asked to select a song
for a particular purpose they may have to listen randomly to hundreds of tunes to get a
proper one, or, worse than that, they may rely only on the already tagged songs, leaving
the others in the oblivion.

Another big problem is the long tail distribution: if we look on the listening charts
of a music streaming user we can see that the distribution of play counts over artists
resemble a power law. This means that there is a restricted number of artists which get
a high play count, while there is a long tail of artists with a little play count each (at
least compared to the top artists). We could think that those artists which are in the long
tail are being rather unnoticed, or even not appreciated. The problem here is that if we
sum up (integrate) the play counts of the long tail artists we outnumber the total play
counts of the first ones. This situation is replicated for every user (even those who listen
to “alternative music”, or to “every kind of music”) and, more generally, to the global
charts of a music streaming service. The way the listening distribution has a reflection
on services which make money on music, and there has been some investigation on
how this long tail affects the market. Quoting a work by Anita Elberse (see [12]) “The
goods in the long tail include former hits as well as true niche content. Most of the latter
was never released through traditional distribution channels or consists of orphans of
unbundling activity (as with individual tracks in the music industry)”. The problem is
related to tagging because in most of the times the long tail consists of poorly tagged
music pieces. It goes without saying that a song with no metadata cannot be found,
and this is true expecially for music we do not know about (i.e. new pieces).

Into this scenario lots of work has been focused into automatic tagging of mu-
sic, in order to speed up the evaluation process for searching music and get a proper

2

model to label new one. Early works were toward the recognition of the music genre
(see [20, 21, 46]), often pointing out that “genre” classification is very subjective and
different values have high tendency of overlapping. This problem led many researchers
to propose a new taxonomy for genre classification (see example in [31]). However,
music tagging is a more broad concept that includes other type of information, such
as whether the track is slow paced or it is fast, or whether you can dance on it or not,
that’s why some publications call it “music semantic annotation” (e.g. [17, 44]). This
subject is challenging, and lots of researchers tried different approaches to improve
music annotation performance. Notable works include the association between related
tags (i.e. co-occurrence) while judging some track in [26], or the inclusion of mined
social tags to infer some relation between tags and audio features in [2].

A variety of features were considered in search of the right combination to correctly
annotate novel songs. First attempts started with Mel Frequency Cepstral Coefficients
(see section 1.3), which were proven valid in speech recognition (see [34]) and were
promptly tried for music classification (see the work by Beth Logan in [23]). MFCCs
turned out to be quite good but in the end researchers hit what it was then called a “glass
ceiling” (see [30] for an extensive work on this), and they saw that exploiting the sole
timbral features was not enough. Recently better results were shown in the MIREX
2008 evaluation campaign (see [9]) with the aid of other sources, such as social tags
in [11], or temporal features like beat, tempo and rhythm complexity like in [24]. More
recent results (MIREX 2012) were pointed toward the improvement of MFCC features
by using different way to compute them: using Principal Component Analysis like
in [22] or using different time scales like [16]. There are also works on using visual
representation of music features for genre and mood classification: Wu et al. did it
with timbre and beat features using Gabor filter banks in [49]. Some complementary
work has been made on making frameworks for audio music similarity and retrieval
(see [7, 47]) where researchers seek for new features, different audio representations
and better computing performances. Recent works usually make heavy use of the
Support Vector Machines for different purposes: for example, Panda et al. [33] and
Bourguigne et al. [3] use them for classification, while Lim et al. [22] uses them for
feature selection. Other learning frameworks are used as well, for example there are
works that makes use of Artificial Neural Networks for music classification like [16]
and works that use variants of them like Restricted Boltzmann Machines in [7].

In this thesis we will discuss a method for semantically tagging music clips, by
exploiting rhytmical features (i.e. rhythm histograms as described by Rauber and Lidy
here [21]) on top of a previously defined retrieval model by Miotto and Orio [28].
The model itself uses a modified Hidden Markovian Model (see [35]) to combine tags

3

INTRODUCTION

and acoustic similarity and thus providing a semantic link between them: the results
were promising on the retrieval task, and we will show a way use the same system for
tagging new clips.

The thesis is organized as follows. On the first part (Chapter 1) we will describe
shortly the mathematical symbols , structures and methods. Then we will present
the model described by Miotto and Orio (Chapter 2), combined with our features,
followed by how we tag new clips and methods we would develop or explore but we
did not. In the end of the document you will find results (Chapter 3) from our tests, our
conclusions and suggestions for future works on this topic.

4

Chapter 1

Background

In this section we will describe the mathematical symbols, structures and methods
involved in this thesis, to better understand the concepts and as a recap for letting
everybody share the same knowledge before getting to the core content.

1.1 Hidden Markovian Models

Hidden Markovian Models are mathematical structures and methods which let us infer
the statistical properties of an unknown discrete Markov processes. Using some par-
ticular mathematical method we can infer the structure and the transition probabilities
by only knowing (a sample of) an observation sequence. First introduced by Leonard
E. Baum in 1966 [1], HMMs became popular because of their practical and compact
representation of unknown sequences. HMMs permit some form of prediction of the
next emission under certain circumstances, making them a form of machine learning
framework. To better comprehend the HMM structure we need to introduce the dis-
crete Markov processes, which are the basic frame of HMMs.

1.1.1 Markov chains

A discrete Markov process is a stochastic process which has a finite (or countable)
number of states and probabilistic transitions between them. The main property of
these systems is the Markov property, that is, the conditional probability of switching
between states depends only on the current state, not on the ones from previous steps.
In other words, Markov property makes the systems memoryless.

More formally: think of a system which may be described by being, at any time, in
one state from a finite set of N distinct states1 named S 1, . . . , S N . At regularly spaced

1We take it finite because we do not need further complication but the theory let the set be up to

5

1. BACKGROUND

times the system undergoes a state change (possibly to the same state) according to a
set of probabilities associated with the current state. If we number the time instants
as t = 1, 2, . . . , and the current state as qt, we may specify the transition probability is
described as follow:

P(qt = S j|qt−1 = S i, qt−2 = S k, . . . , q0 = S l) (1.1)

that is, we would have to specify every single previous conditional transition proba-
bility. Because of the Markov property the whole description is truncated to just the
current and previous state, and the state transition probabilities are indipendent of time:

P(qt = S j|qt−1 = S i) = ai j 1 ≤ i, j ≤ N. (1.2)

The transition coefficients ai j satisfy the following standard constraints:

ai j ≥ 0 1 ≤ i, j ≤ N (1.3)

N∑
j=1

ai j = 1. (1.4)

We also have to define some initial probability, named πi, for each state: of course
these prior probabilities must satisfy some basic constraints:

πi ≥ 0 1 ≤ i ≤ N (1.5)

N∑
i=1

πi = 1. (1.6)

The above system is called an observable Markov model, since at each time we can
inspect the system state as it is the output of the process.

To fix ideas, think of the following game: you have 2 boxes and some colored balls,
in box 1 there are 3 blue and 7 red balls, in box 2 there are 1 blue and 9 red balls. A
genie does the following steps: first it chooses a box, with 0.5 probability each, and
then it picks a random ball from that box, with uniform probabilty. Finally, it puts the
ball in the same box as before. At the end of the process he choses a random box to
pick balls from, however, it has some bias: if the genie had picked a blue ball it is
more likely to choose box 1 the next time, while picking a red ball lead to equal box
probability. We may model (we may call this model λ1) this situation with a 4 state
Markov chain:

State 1: The genie has chosen box 1
State 2: The genie has chosen box 2
State 3: The genie has picked a blue ball
State 4: The genie has picked a red ball.

countable infinite

6

1.1 HIDDEN MARKOVIAN MODELS

The process starts at a random box state, and we can write the transition probability
matrix A as follows:

A = {ai j} =

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 0 3

10
7
10

0 0 1
10

9
10

3
5

2
5 0 0

1
2

1
2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.7)

We can see that getting to state 3 from state one has 3
10 probability, while going to state

1 from state 2 is impossible (P(S t = 1|S t−1 = 2) = 0). Also, the chances to pick a
blue ball are higher if the genie had chosen the first box (i.e. if the machine was in
state 1 before coming to state 3). To complete the model we must also specify the prior
probability vector π:

π = {π} = [0.5, 0.5, 0, 0] (1.8)

The model λ1 = (A,π) itself describe well the whole process, however we are interested
only in the ball color, so we can simplify the model by retaining only 2 states:

State B: The genie has picked a blue ball
State R: The genie has picked a red ball

And summarize the transition probabilities by summing each possible path that can
lead from B to B, B to R and so on:

P(qt = B|qt−1 = B, λ2) = P(qt = S 3|qt−2 = S 3, λ1) =
3
5

3
10

+
2
5

1
10

=
11
50

P(qt = B|qt−1 = R, λ2) = P(qt = S 3|qt−2 = S 4, λ1) =
1
2

3
10

+
1
2

1
10

=
4

20

P(qt = R|qt−1 = R, λ2) = P(qt = S 4|qt−2 = S 4, λ1) =
1
2

7
10

+
1
2

9
10

=
16
10

P(qt = R|qt−1 = B, λ2) = P(qt = S 4|qt−2 = S 3, λ1) =
3
5

7
10

+
2
5

9
10

=
39
50

(1.9)

We need also to adjust the prior probabilities:

πλ2
1 = P(q2 = S 3|q1 = S 1, λ1) · πλ1

1 + P(q2 = S 3|q1 = S 2, λ1) · πλ1
2 =

1
2

πλ2
2 = P(q2 = S 4|q1 = S 1, λ1) · πλ1

1 + P(q2 = S 4|q1 = S 2, λ1) · πλ1
2 =

1
2

(1.10)

where with the superscripts λ1 and λ2 we denoted the prior probabilites of first and
second model. At this point we have a simplified model of this process, and we can
answer simple questions like:

1. What is the probability for we to see the sequence “blue-blue-red-blue-red” or
O = {S 1, S 1, S 2, S 1, S 2}?

7

1. BACKGROUND

2. Given the system is in state S i, what is the probability that system stays on it for
d time slices?

The answer to question 1 is as simple as multiplying the conditional probabilities of
the transitions plus the prior probability:

P(O|λ2) = π1 · P(S 1|S 1) · P(S 2|S 1) · P(S 1|S 2) · P(S 2|S 1)

=
1
2
·

11
50
·

39
50
·

1
5
·

39
50

= 1.338 × 10−2

(1.11)

The answer to question 2 is not harder to tell, we only need to specify the meaning of
it in terms of observation sequence:

O = { S i, S i, . . . , S i︸ ︷︷ ︸
d observations

, S j , S i}

and calculate the probability as above:

P(O|q1 = S i, λ2) = (aii)d−1(1 − aii) = pi(d) (1.12)

where pi(d) is the discrete probability density function of duration d for state i. The
fact that pi(d) is exponential in terms of d is a characteristic of Markov chain’s state
duration.

The above mentioned structure is what is called an observable stochastic process,
that is, we can see exactly “what is going on”, we know the states the system can be on,
and we know all the transition probabilities. Unfortunately this model is too restrictive
for some particular problems (like our, as we will see). We may need the ability to
guess or infer the system structure by only looking at the observations, like the system
is a black box and we can see only it’s output. In the next subsection we will have
a look into Hidden Markovian Models, which are an extension of this mathematical
structure.

1.1.2 Hidden Markovian Models

Once we have seen the potentialities of a Markov chain, we may extend this definition
by introducing emissions as probability functions of the states. The result is called
Hidden Markov Model (HMM), which is a doubly embedded stochastic process: one
process is hidden and it is observable via a set of stochastic processes that produce the
observation sequences.

To fix ideas consider the previous urn and balls model: the genie is behind a wall,
hiding from you, and performs the experiment by only letting you know the result

8

1.1 HIDDEN MARKOVIAN MODELS

of the ball picking (i.e. “I’ve extracted a blue ball”). Giving the ball color you can
not really tell from which urn the ball came from: the only thing we would see is a
sequence of “blue” and “red”. We want to build an HMM to model the event.

The first issue is to decide what a state represents, and how many states our model
should have: in this case we may choose to represent one state per ball color, thus
having two states, or maybe two states, each representing an urn, with different ball
color emission probabilities per state. If we do not know what’s behind the wall (in a
real situation this would not be an unlikely event) we may also guess there are more
urns, and the model could include 3 states or more.

The first situation is, in fact, an observable Markov process, and we only need to
specify the transition probabilities. If we want a state to represent an urn we are in a
different situation: each state has a different stochastic process which picks a ball color
with a probability distribution, and the state transitions is itself a stochastic process
with its own probabilities. As we see the complexity of the model grows more than
linearly with the number of states (we need 1 parameter for the observable process, 2
emission probabilities + 2 transition probabilities for the 2 states model) while we gain
more degrees of freedom for modeling complex events.

Choosing the right representation and number of states is a crucial point for an
HMM: if we take too few states we may be not able to get a full representation of the
event, not covering some situation that a correctly designed HMM would. If we set
up too many states we may be using an underspecified model (e.g. we may model a 1
coin toss with a 3 states HMM). Moreover, we will see some computational complexity
implications that strongly limit the size of the models we may consider. Before we see
how to use these models, we must introduce an example and some formalism.

Following the very good Rabiner’s tutorial (as before, see [35]) we introduce the
Urn and Ball model, a generalization of the examples seen before: We have N (finite)
urns, and each urn has a lot of colored balls in it. Balls can be of one of M (finite)
distinct colors. Like before a genie initially chooses an urn and extract a ball from it,
the ball’s color is recored as an observation and replaced in the original urn. Then the
genie chooses another urn according to some stochastic process associated with the
current urn, and repeats the ball selection process (and so on). What we want to do is
to model the entire event using the finite observation sequence as the observable output
of an HMM. As you can guess the simplest way to model this is the same as before:
each urn corresponds to a single state, and the extracted ball’s color is a probabilistic
function of the current state. State transition is ruled by the transition matrix.

More formally, an HMM is characterize by 5 parts:

1. A set S of N states, where S = {S 1, S 2, . . . , S N}. For many application there is a

9

1. BACKGROUND

physical correspondence between the event and the modeled states, such as for
the urns before. The state at time t is referred as qt.

2. A set V of M different observation simbols. For the urn and balls model these
symbols are the balls’ colors. We denote the symbols as Vi with 1 ≤ i ≤ M.

3. The state transition probability matrix A = {ai j} where

ai j = P(qt+1 = S j|qt = S i), 1 ≤ i, j ≤ N (1.13)

4. The observation symbols probability distribution for state j, B = {b j(k)}, where

b j(k) = P(Vk at t|qt = S j) 1 ≤ j ≤ N, 1 ≤ k ≤ M (1.14)

5. The initial state distribution π = {πi}, where:

πi = P(q1 = S i), 1 ≤ i ≤ N (1.15)

We can now say that to completely describe an HMM we need two parameters (N,M),
a set of observation symbols V , and the specification of three probability measures
A,B and π. We now refer to the model with the following compact notation:

λ = (A, B, π) (1.16)

1.1.3 Three basic problems

Now we can define the three basic problems associated with HMMs:

1. Given the observation sequence O = O1,O2, . . . ,OT and model λ = (A, B, π)
how do we efficiently compute the observation probability P(O|λ) ?

2. Given the observation sequence O = O1,O2, . . . ,OT and model λ = (A, B, π)
how do we choose a state sequence which most likely produce the aforemen-
tioned sequence (i.e. it is optimal in some sense)?

3. How do we choose the model parameters λ = (A, B, π) to maximize a (serie of)
P(O|λ)?

In this thesis we are interested in the solution for the second problem, but in this section
we will have a look at all three.

The solution to problem 1 gives us an idea on how a model is adherent with some
specification based on observation. Moreover, if we have more models, we can com-
pare them by the probability of emitting a particular sequence. A naı̈ve but correct

10

1.1 HIDDEN MARKOVIAN MODELS

solution to this problem is to enumerate each possible path sequence of lenght T and
sum the emission probability for the given observation sequence for each path. That
is, for the aforementioned observation sequence O we can write, for each state se-
quence Q = q1, . . . , qT , the transition probability P(Q|λ) and the emission probability
P(O|Q, λ) as:

P(Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT (1.17)

P(O|Q, λ) = bq1(O1)bq2(O2) · · · bqT (OT). (1.18)

To compute the solution to problem 1 the joint probability of O and Q (i.e. their
product) must be summed for all possible state sequences Q giving:

P(O|λ) =
∑
all Q

P(O|Q, λ)P(Q|λ) (1.19)

=
∑

Qi from all Q

 ∑
qi

1,q
i
2,...,q

i
T

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT)

 . (1.20)

We could easily see that this way the computational cost is exponential with the value
of T .

A wiser way to calculate the sequence probability is to use the forward-backward
algorithm. This procedure is split in two parts: the forward computation, which solves
problem 1, and the backward computation, which will be presented as it will be useful
for problem3.

In the forward computation we calculate the forward variable αi(t) as here:

αt(i) = P(O1 O2 · · ·Ot, qt = S i|λ) (1.21)

This variable express the probability of being in state i after seeing the partial observa-
tion from O1 to Ot. We compute αi(t) inductively:

α1(i) = πibi(O1), 1 ≤ i ≤ N (1.22)

αt+1(j) =

 N∑
i=1

αt(i)ai j

 b j(Ot+1) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (1.23)

And finally we can calculate the observation probability by summing the last α:

P(O|λ) =

N∑
i=1

αT (i). (1.24)

What we have done is to set the initial α1(i) to the joint probability of state S i and obser-
vation O1, then we can calculate αt>1(j) for state S j. Because S j can be reached from

11

1. BACKGROUND

(possibly) every other state we must calculate the joint probability of getting to state S j

from previous states (and observations) and observing the current observation in here:
this is what induction calculate in equation 1.23. Once we have inductively calculated
every αT (i) from i = 1 to N, equation 1.24 sums them up to get the final probabil-
ity of the observation for model λ. This algorithm complete the task by performing
O(N2T) calculations, which is better than the naı̈ve version. The forward computation
already solves problem 1, but as we stated before, the backward computation will be
interesting for problem 3, so on the next paragraph we will present it.

The backward computation defines a backward variable βt(i) which is similar to the
α from the forward computation. The difference is that it considers the observations
starting from Ot+1 to OT :

βt(i) = P(Ot+1 Ot+2 · · ·OT , qt = S i|λ) (1.25)

i.e. it is the probability of observing the last part of the observation sequence giving
we are on state S i at time t. As before we can compute β in an inductive way:

βT (i) = 1, 1 ≤ i ≤ N (1.26)

βt(i) =

N∑
j=1

ai jb j(Ot+1)βt+1(j), 1 ≤ i ≤ N, t = T − 1,T − 2, . . . , 1. (1.27)

The first step initialises all βT (i) to 1, arbitrarily. Then the induction shows that in order
to be in state S i at time t and subsequently see observations from Ot+1 and on, you
have to consider all states at time t + 1, with the respective transition and observation
probabilities. The backward computation takes again O(N2T) calculations, and we
will see how it will help solving problems 2 and 3.

Problem 2 is about finding a state sequence, for a given observation sequence,
which is optimal in some sense. We say “optimal” because we cannot find a single right
state sequence, matter of a fact the state transition process is hidden. One possible way
to define an optimal state sequence is to determine the states which are individually
optimal for the given observation. That way we can exploit the forward-backward
procedure, and select the states according to the variable:

γt(i) = P(qt = S i|O, λ). (1.28)

which can be written in terms of the forward and backward variables. This variable
express the probability of being in state S i at time t given the observation sequence O
and the model λ. The problem with this definition is that it doesn’t take in account
the resulting state sequence probabilities, thus leading to sequences which may not be
even feasible (e.g. they may have 0 valued transitions between them).

12

1.1 HIDDEN MARKOVIAN MODELS

A solution to this is to consider a single best state sequence by maximizing both
the probabilities of state and observation sequences. The algorithm which does this
is called Viterbi algorithm and it is based on dynamic programming methods. The
algorithm keeps trace, for each possible state and for each observation, of the best
partial path via the following variable:

δt(i) = max
q1,q2,...,qt−1

P(q1q2 · · · qt = i,O1O2 . . . |λ). (1.29)

The δ variable holds the best partial score for a single path at time t (the first t obser-
vations) that ends at state S i. We need also to keep track of the chosen path, so we
introduce a new variable ψt(j) that holds the state values for each observation t and
state S i. By induction we can define δ and ψ as:

δ1(i) =πibi(O1), 1 ≤ i ≤ N (1.30)

ψ1(i) =0, 1 ≤ i ≤ N (1.31)

δt(j) = max
1≤i≤N

[δt−1(i)ai j]b j(Ot) 1 ≤ i ≤ N, 2 ≤ i ≤ T (1.32)

ψt(j) = arg max
1≤i≤N

[δt−1(i)ai j] 1 ≤ i ≤ N, 2 ≤ i ≤ T (1.33)

As we can see the initialization of δ1(i) (equation 1.30) keeps track of the prior prob-
abilities and the first observation probabilities; the ψ1(i) are set to 0, which has no
meaning, but it doesn’t affect the result. The algorithm is quite similar to the forward
computation as seen before, the only difference is that equation 1.32 makes use of the
maximization in place of the summing, matter of a fact we are looking for a single
best path. The other significant difference is that we take in account the arg max of
the maximizations, because we need to trace back the single best path. Next equations
explain how we can get the best path’s probability and backtrack the path itself via ψ
variables:

P∗ = max
1≤i≤N

[δT (i)] (1.34)

q∗T = arg max
1≤i≤N

[δT (i)] (1.35)

q∗t =ψt+1(q∗t−1), t = T − 1,T − 2, · · · , 1. (1.36)

As we see, for P∗ the calculation is quite easy, since we are already carrying the con-
ditional probability (a consequence of the Markov property, equation 1.2). For q∗ we
need to iterate over the ψ values to infer the resulting path (equation 1.36). Computa-
tional comlpexity is similar to the forward computation from problem 1.

Problem 3 is about inferring or modifying the inner probabilities (A, B, π) of the
model by only observing an (a set of) observation sequence. The goal is to maximize

13

1. BACKGROUND

the observation sequence’s probability. This is the most challenging problem for the
HMM structure, and there are no known way to analitically solve this task.

The Baum-Welch method is an iterative procedure that maximizes P(O, λ) locally,
i.e. it obtains a local maxima for the observation sequence, not necessarily a global
one. This method makes use of a particular forward-backward procedure that keeps
track of the single transition. The probability that the best path for O touches states S i

and S j sequentially is called ξt(i, j) and the probability of being in state S i at time t is
γt(i), as seen equation 1.28. Baum-welch method defines a new model λ in terms of ξ
and γ so that:

P(O|λ) > P(O|λ) (1.37)

that is, in the new model the observation sequence is more likely to be produced. We
won’t cover the whole procedure here, since we do not need it for this thesis. However
you can find a very well written explanation of Baum-Welch algorithm in Rabiner’s
paper [35].

1.2 Rhythm Histograms

According to Oxford Dictionary2, rhythm is “a strong, regular repeated pattern of
movement or sound”. If we think of rhythm as a superimposition of amplitude mod-
ulation frequencies, humans perceive as rhythm only modulation frequencies between
about 0 and 10 Hz. Rhythm Histograms (RH) are an audio feature which holds infor-
mation regarding the rhythm of a given piece of audio. RH where introduces in 2001
by Pampalk [32] and Rauber [36], that were in search of psychoacoustically motivated
Rhythm Patterns. Rhythm Patterns themselves are a variation of Fluctuation Pattern,
an audio feature developed by Fastl [14] in 1982 for a purpose similar to RHs. To
better understand Rhythm Histograms we will first introduce Rhythm Patterns.

1.2.1 Rhythm Patterns

Rhythm Patterns are an audio feature which represents rhythm in a piece of audio.
Following Rauber’s paper [21] we can first define how they are calculated, and then
we can comment on what they represent. The first step is to preprocess the audio,
forcing it to be in mono format at 44 kHz sampling resolution. Then we iterate the
following steps for each 6 seconds excerpts of audio taken from the original audio
piece (with lead in and fade out options):

2http://oxforddictionaries.com/definition/english/rhythm

14

http://oxforddictionaries.com/definition/english/rhythm

1.2 RHYTHM HISTOGRAMS

S1 transform the audio segment into frequency representation via Fast Fourier Trans-
form with Hanning window of 23 ms and 50% overlap between windows: this
will obtain roughly 520 samples, which is very close to a power of 2, allowing
the FFT calculation to be efficient3.

S2 apply Bark scale (see [50]) by grouping frequency bands in 24 critical bands: this
accounts for the human perception of frequency, which is not linear (i.e., we can-
not perceive well the same frequency differences at different frequency ranges).

S3 apply spreading function to account for spectral masking effect (see [39]): again
this is done because of the human perception mechanism.

S4 transform the resulting energy values in deciBel scale [dB]: this is a standard step
that is motivated by the better representation of energy ratio, which is a thing
humans perceive better than absolute energy value.

S5 transform the energy values in loudness levels, making use of equal-loudness con-
tours [Phon]: this is done to account for the human way of loudness perception
(i.e. the psychological perception of amplitude) as a function of amplitude level.

S6 compute specific loudness sensation per critical band [Sone]: this transformation
account for loudness perception as a function of the frequency.

R1 apply Fast Fourier Transform to the Sone representation (treat every critical band
as a signal, calculate FFT for each band): this will produce a time-invariant rep-
resentation of the critical bands. This procedure highlights the rhythmic structure
of the critical bands in the form of amplitude modulation up to 43 Hz4. However,
as said before, humans do not recognize as rhythm the frequencies above 10 Hz,
so we take the first 60 of 520 modulation frequencies.

R2 weight modulation amplitudes according to human fluctuation strength sensation:
humans perceive well amplitude modulation at around 4 Hz, and decreasing to-
ward 15 Hz.

R3 apply a gradient filter and perform Gaussian smoothing: this will emphasize dis-
tinctive beats and reduce noise from un-noticeable variations.

After these steps we will have a 24 × 60 matrix that holds information on rhythm
patterns of the 6 seconds excerpt. To calculate Rhythm Patterns of the whole piece of

3Remember the Cooley-Tukey O(N log(N)) optimization, expecially the radix-2 decimation in time
4520 samples for 6 seconds audio means we have 86 Hz sampling frequency, then Nyquist-Shannon

theorem comes in action and halves the value to get the right frequency resolution

15

1. BACKGROUND

audio we have to calculate the median of Rhythm Patterns for every 6 second of music.
In the original paper Rauber states that steps S3, S4, S5, S6, R2 and R3 are considered
optional, although they are useful and make the representation more appropriate.

1.2.2 Rhythm Histograms

Rhythm Histograms are an audio feature that sums up the rhythmics of an audio doc-
ument. Rhythm Histograms store information regarding rhythm without referring to
a critical band, thus keeping only a single value for each amplitude modulation fre-
quency bin. To calculate the Rhythm Histogram of a given piece of audio we need to
compute the Rhythm Pattern first and then sum the values for each frequency bin. The
result is a 60 elements vector representing the “rhythmic energy” of the corresponding
modulation frequencies. The calculation of the Rhyhtm Histogram of a complete piece
of audio takes the same steps as Rhythm Patterns: we consider the Rhythm Histograms
of each 6 second excerpt and we take the median of all Histograms as the final result.
In figure 1.1 we can see Rhythm Histograms from some selected songs.

1.3 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients, or MFCCs are timbric features. The timbre can
be defined as the “sound characteristics that allow listeners to perceive as different two
sounds with the same pitch (i.e., the perceived fundamental frequency of a sound) and
intensity (i.e., the energy of the music vibration) but played by different instruments”
(taken from [29]). They are short-term spectra-based features that are widely used in
speech recognition because of their power to highlight the timbre of an audio piece.
The “Mel” part of the name comes from the Mel scale, which is the psychoacoustic
base for MFCCs. Beth Logan [23] made an interesting work on MFCCs, showing
that they can be effectively used in music modeling. Figure 1.3 shows two examples
of MFCCs plots: we can clearly see that the timbric signature makes the two songs
distinguishable.

1.3.1 Mel scale

Mel scale is a perceptual pitch scale originally developed by Stevens et al. [41]. The
original task was to determine how human perceive pitch and pitch ratio. Based on
multiple tests, Stevens and his group discovered that from 1000Hz upwards humans
tend to perceive less variation in pitch. To explain how big is the difference, think

16

1.3 MEL FREQUENCY CEPSTRAL COEFFICIENTS

(a) Rhythm Histogram plot for an excerpt of Led Zeppelin’s “Immigrant Song”

(b) Rhythm Histogram plot for an excerpt of Alicia Keys’ “Fallin’ ”

Figure 1.1: Some examples of Rhythm Histograms from selected songs (taken from a
single 6 second excerpt)

17

1. BACKGROUND

that a 4 real octave interval can be perceived as a 2 octaves interval. The full inspec-
tion of frequencies in [0, 10000] Hz shows a log-like relation between perceived and
real frequency. Because of the subjectiveness of the data, there is no single formula
for converting frequency to mel scale. Figure 1.2 shows a plot of a commonly used

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

M
el

 s
ca

le

Hertz scale

Figure 1.2: The mel-hertz equivalence, calculated with formula 1.38

formula, that is:

m = 1127 loge

(
1 +

f
700

)
(1.38)

where f is the frequency in Hertz, and m is the frequency in mel scale.

1.3.2 MFCC calculation

MFCCs are easy to compute, and the procedure consists in 5 steps:

S1 Divide the source signal in little frames, usually around 20 ms, to ensure that signal
is statistically stationary at each frame. This step includes some windowing
function like Hamming window.

S2 Fourier-transform each frame separately, stripping down the phase data. This can
be done because perceptual studies have shown that amplitude is much more
important than phase.

18

1.4 GAUSSIAN MIXTURE MODELS

S3 Convert each amplitude in log scale (i.e. in deciBel), because loudness perception
has been found to be approximately logarithmic.

S4 Smooth the spectrum to emphasize meaningful frequencies. This is done by group-
ing previously calculated amplitudes into frequency bins. Bin frequency group-
ing is not done by regular frequency spacing. Mel scale is used instead, thus
grouping small ranges at lower frequencies, and big ranges at high frequency.
At this step we have low number of bins, usually less than 40.

S5 Now the mel-spectral vector on each frame contains highly correlated values. The
typical use for MFCC vectors is to process them via Gaussian Mixture Mod-
els (GMM), and correlated data makes the GMM training harder to do and the
resulting model to be less effective. A good way to decorrelate is to use the Dis-
crete Cosine Transform (you can find a better explanation of this step in Logan’s
paper [23]) to the vector. The result is a 13 sized vector of MFCCs, with the first
one representing the signal’s energy.

1.3.3 Delta-MFCC

If we consider MFCCs as described before we can see they do not keep temporal
information. That is, we cannot get information regarding variations in time by only
looking at a single vector. To overcome this limitation we can use the first and second
time derivatives of MFCCs: the delta- and delta-delta-MFCCs (we can simply call
them “delta” and “delta-delta”). The delta MFCCs are computed via linear regression:

∆c[m] =

k∑
i=1

i(c[m + i] − c[m − i])

2
k∑

i=1

i2

(1.39)

where c[m] is the m-th MFCC coefficient, and 2k + 1 is the regression window size.
Delta-delta feature is calculated by applying linear regression to the delta feature. This
way we can account for MFCC variation over time and thus expanding the feature
expressivity.

1.4 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a parametric statistical tool to approximate a
probability density function. The model consists in a weighted sum of Gaussian dis-
tributions. The parameters of the models are the medians and the covariance matrices

19

1. BACKGROUND

(a) MFCC plot for an except of Led Zeppelin’s “Immigrant Song”

(b) MFCC plot for an except of Alicia Keys’ “Fallin’ ”

Figure 1.3: Two examples of MFCC plots: we can see that different music pieces have
different timbric signatures

20

1.4 GAUSSIAN MIXTURE MODELS

of the Gaussians, and the weights of the sum. GMMs are used to approximate a den-
sity function which is known to be composed of other known density functions.For
example, it is known that humans’ height (the feature) is normally distributed, but it
is also known that males are generally taller than females: the overall density function
is a gaussian, but it is composed by a mixture of two gaussian distributions. Training
a GMM over some population’s data could help guessing the sex of a given subject
by knowing only its height. Another interesting feature of GMMs is that their output
density is usually smooth, and its components are clearly highlighted by the weigths.
You can see an example of the smoothing performance of GMMs in figure 1.4, which
shows the smoothing of a single MFCC coefficient over time.

(a) Distribution of original data

(b) Unimodal Gaussian

(c) Resulting mixture

Figure 1.4: An example of Gaussian smoothing of a single cepstral coefficient from a
25 second utterance by a male speaker (courtesy of Douglas Reynolds, see [37])

21

1. BACKGROUND

Following a very good work by Douglas Reynolds (see [37]) we will introduce this
useful tool that will be used in our work.

1.4.1 Definitions

The model’s output probability density is defined as follows:

p(x | λ) =

M∑
i=1

wi g(x |µi,Σi), (1.40)

where x is a D−dimensional data vector (the features), M is the number of mixed
Gaussians densities, each with its weight wi. Each Gaussian density is a D−variate
Gaussian density with mean µi,covariance matrix Σi, and density function calculated
with the standard formula:

g(x |µi,Σi) =
1

(2π)D/2|Σi|
1/2 exp

{
−

1
2

(x − µi)′ Σi
−1(x − µi)

}
. (1.41)

Mixture weigths wi must of course sum to one.

1.4.2 Constrained versions

Depending on the amount of available training data and on the particular application,
model’s parameters can be constrained in different ways. For example, the covariance
matrices Σi can be constrained to be diagonal (i.e. forcing the D components to be in-
dependent), or to be all equal, or we may define some function that ties the parameters
together. It is worth saying that forcing the covariance matrices to be diagonal does
not really reduce the expressiveness of the model: the linear combination between
diagonal covariance Gaussians can model correlation between feature vectors. This
means you can model M full covariance matrix Gaussians by using a larger number of
diagonal covariance matrix Gaussians.

1.4.3 Training

Gaussian Mixture Models are used for classification based on multiple features. GMM
training is the process that determines the model λ = (wi,µi,Σi)) that better describe
the probability distribution of the training dataset.

The most popular method to find the model parameters is the Maximum Likely-
hood (ML) estimation. The method uses a sequence of training vectors X = {x1, . . . , xT}

22

1.4 GAUSSIAN MIXTURE MODELS

that are assumed statistically independents (obviously this is not true in general, but it
makes problem tractable). What we need to maximize is the following:

p(X | λ) =

T∏
t=1

p(xt | λ). (1.42)

Of course we cannot use linear programming to maximize this probability, this is a non-
linear function. ML parameters can instead be estimated iteratively via Expectation
Maximization (EM) algorithm. EM algorithm starts from an already known model
and iteratively and monotonically increases the model’s likelihood value at each step.
The following re-estimation formulas are used at each step:

Mixture Weights

wi =
1
T

T∑
t=1

P(i | xt, λ). (1.43)

Means

µi =

∑T
t=1 P(i | xt, λ)xt∑T

t=1 P(i | xt, λ)
. (1.44)

Variances (covariance matrices’ diagonals)

σ2
i =

∑T
t=1 P(i | xt, λ)x2

t∑T
t=1 P(i | xt, λ)

− µ2
i , (1.45)

where σ2
i , xt and µi refer to arbitrary elements of vectors σ2

i
, xt and µi respectively.

The a posteriori probability for component i is given by

P(i | xt, λ) =
wi g(xt |µi,Σi)∑M

k=1 wk g(xt |µk,Σk)
. (1.46)

The initial model parameters can also be derived from an estimation using other meth-
ods (not covered here).

In this thesis we will use a modified version of EM algorithm that can learn mixture
hierarchies from the training data. The whole process is not covered here, but you can
look in the original paper from Vasconcelos et al. in [48] for further information.

23

1. BACKGROUND

24

Chapter 2

The model

In this chapter we will describe the model we use to semantically tag songs. The
model itself is based on a work by Miotto and Orio ([28] and [27]) which considered
the relation between tags and acoustic similarity to build a retrieval framework. We
have been inspired by the model and the way it combines two sources of information
(tags and trimbric features), and we wanted to replicate the framework for a tagging
system. The model is still similar but we covered another characteristic of music by
adding a rhythmic feature. We have then developed a query procedure that exploits all
the features together to guess the tags for a novel song. On the next section we will
see the original model, complete with the retrieval process. Then we will see how we
added a rhythm feature and how we modified the query procedure to tag songs. The
last part will cover methods we wanted to try and method who had proven to be not
useful.

2.1 Retrieval model

The goal for the retrieval model proposed by Miotto and Orio was to retrieve a list of
meaningful songs in response of a user query. The user may ask for a certain type of
songs, that is, naming the semantic tags of what he needs. Or he may ask for songs
similar to a given one: this way we could infer the needed tags by looking at the one
from the query song. The retrieval model of course needs a collection of known songs,
from which it can learn acoustic and semantic characteristics. The database is also
the source of the response songs: the system cannot suggest songs it does not “know”
(well, actually it could output general suggestion like “you may like this artist”, but
usually it’s not done).

What the user expects to observe is a list of meaningful songs, in a sense that

25

2. THE MODEL

each proposed song has a positive relation with the query tags. This relation can be ex-
pressed as the adherence to a sequence of observation in time, that is, O = (o1, . . . , oT).
In these terms T is the number of requested songs, and ot express what the user expect
to see at time t. The query process consists in ranking the songs from the collection in
order to maximize the probability to observe the given sequence over time.

In order to correctly rank the songs the model represents the collection as a graph
where each state is a song. The retrieval process is modeled as a doubly embedded
stochastic process: one process is hidden and can only be observed through a set of
other processes which emit the observation sequence. In particular: each connection
edge is weighted using the acoustic similarity between the songs (the states), and the
emission symbols are the semantic tags.

The model as described so far resembles a Hidden Markovian Model (see sec-
tion 1.1): at each time step the system undergoes a state (song) change according to
the acoustic similarity, and emits a symbol (tag) according to the tag relevance for the
given state. The path probability is a measure of the relevance of the path’s songs for
the given observation sequence (query tags). On the following paragraphs we will see
more formally the model definition, and the retrieval process with details regarding
acoustic similarity and tag management.

2.1.1 Definitions

In this section we will describe more formally the graph-based retrieval model at the
base of this work. Following the analogy with HMMs the model λ can be described as
follows:

States Giving the collection has N songs, we model each song as a state. States are
named as in the set S = {S 1, . . . , S N}, and state at time t is denoted as s(t).

Observations We model each tag as an observation symbol and because of the limita-
tion of the HMMs the tag set must be fixed and finite. We name the observation
vocabolary asV = {w1,w2, . . . ,w|V|}.

Transition probabilities The transition probability ai j of moving from state S i to S j

is related to the acoustic similarity between the song. The similarity has not been
forced to be symmetric, so ai j may be different from a ji. We will see this part in
details on the next sections.

Emission probabilities The emission probability for each observation in each state
is set according to the tag relevance for the given song. That is, each bi(w)

26

2.1 RETRIEVAL MODEL

represents the tag w is associated to song i. This is set according to the ground
truth and a further study on top of it (see next sections for a detailed view on
this).

Prior probabilities The prior probabilities are not specified since they are set to differ-
ent values depending on the query type (i.e. query-by-example or query-by-tag).
Again, on the next sections we will see details on this.

A graphical representation of the model can be found in figure 2.1.

Figure 2.1: A graphical representation of the retrieval model

If we consider acoustic similarity as is we get a matrix composed of ai j > 0 for each
(i, j) pair. With the aim to improve scalability this situation is modified by artificially
keeping, for each song S i, only a subset R(S i) of connected states containing the first
P most similar song. That is, we keep the top P highest transition probability for each
state, and we put 0 (or an artificially low probability) on the remaining transition. The
value of P has been set to 10% of the global number of the songs. Investigation on this
value has been made in [28] but we will not cover this here. At the end of this pruning
operation the transition probabilities are normalized, so the statistical properties remain
verified (see equation 1.4). Another approach would be capping the maximum number
of reachable songs, which may be better for very large collections1. Because of this

1Lowering to 10% connections improves scalability but does not prevent linear growing of connec-
tions with the number of songs in the model, hence a fixed capping may be better from a certain (big)
model size

27

2. THE MODEL

modification the similarity matrix (i.e. the transition matrix) may be not symmetric.
This asymmetry can be interpreted as follows: there are songs which had inspired a lot
of other songs, being covered by other artists or by using the same musical structure.
Each cover version may be very similar (and thus related) to the original song, but the
latter may be only loosely related.

2.1.2 Acoustic similarity

The acoustic similarity is defined in terms of timbral features. We make use of MFCCs
(see section 1.3) to capture the timbral signature of each song. These features has been
successfully used for speech recognition and a work by Beth Logan (see [23]) showed
that they can be used successfully in music too.

We specifically capture MFCCs using a 23 ms, half-overlapping windows over at
most 4 minutes of music. We take the music from the middle of the song after stripping
down the first and last 20 seconds of music in order to exclude the characterization of
the lead-in and lead-out phase of the song. The output is a 13-sized vector for each
window, but since we include the first and second derivatives, we end up with a matrix
of 39 elements multiplied by the number of windows.

What we need is a way to compute the similarity between two songs, that is, to
produce a real number in the [0, 1] interval that is closer to 1 the more similar the
songs are. There are a lot of well known similarity measures, but these are usually
able to compare at most two distributions. Since our song feature is a (rather big)
matrix and we need to first extract a representative distribution from it, and then use
this distribution to compare two songs.

For our model we use an approach based on a work by Mandel and Ellis (see [25])
which treats MFCCs from each frame as words on a dictionary. We calculate mean and
covariance of the MFCCs over the length of the song and the result is a representative
multivariate Gaussian distribution of the song. To compare two distibution we use the
Kullback-Leibler divergence (KL divergence):

KL(p || q) ≡
∫

p(x) log
p(x)
q(x)

dx, (2.1)

where p(x) and q(x) are the two distributions. The KL divergence cannot be used as-is
as a metric (and a similarity measure), it has to be transformed to a [0, 1] value, with 1
representing two identical songs. To do this we exponentiate the divergence to obtain
the similarity :

sim(p, q) = e−γKL(p || q), (2.2)

28

2.1 RETRIEVAL MODEL

where γ is a parameter to be tuned (for this work it has been set to 0.009). The fact that
KL divergence is asymmetric reflects the music scenario as described in the previous
section.

As said in section 2.1.1 we need to limit the number of connected songs in order
to improve scalability of the system. To do so we limit transition probabilities for each
song S i as follows:

ai j =

ai j if j ∈ R(S i)

0 elsewhere
∀i, j = 1, . . . ,N, (2.3)

where R(S i) is the number of connected songs as defined in section 2.1.1. Then we
normalize the remaining transition probabilities so they sum to one.

2.1.3 Tag model

We describe a song in terms of semantic tags from a finite vocabulary V = {w1,

w2, . . . ,w|V|}. We take these song-tags association from a set of already annotated
songs, the ground truth. The latter usually marks a tag for a song as either present or
not, which lead to a sort of boolean matrix of song-tag association. The problem is
that this representation does not express the tag relevance for a given song and also
present some issues while comparing two songs’ tags. What we need is to measure the
relevance of these tags for each song, obtaining what we call a Semantic MultiNomial
(SMN), a vector of weights which is a smoothed version of the original ground truth.

In this work we calculate the SMN for each song using an autotagging approach.
Autotagging itself is obviously the objective of this work, but here we just need a
smoothed version of the SMN. Following a work by Turnbull et al. (see [44]) we try
to infer some relation between a tag and music features in songs that are positively
related with that tag. To do this, Turnbull proposes a model which relates, for each
tag wi ∈ V, a probability distribution on the space of the music features. The model
is based on Gaussian Mixture Models (see section 1.4) and the probability distribution
can be written as follows:

p(x |wi) =

R∑
r=1

awi
r N(x |µwi

r ,Σ
wi
r), (2.4)

where x are the audio features, R is the number of mixture components, N(· |µ,Σ)
a multivariate Gaussian distribution with mean µ and covariance matrix Σ, and awi

r

the mixture weights for mixture component r and tag wi. The model’s parameters
{awi

r ,µ
wi
r ,Σ

wi
r }

R
r=1, are estimated from the timbral features (MFCC) using Hierarchical

Expectation Maximization using the songs positively associated for each tag wi.

29

2. THE MODEL

Once we have trained the GMM we can compute the relevance of each tags based
on the music features X = {x1, . . . , xT } using the Bayes’ rule:

P(wi | X) =
p(X |wi)P(wi)

p(X)
, (2.5)

where P(wi) is the tag prior probabilty (which is assumed uniform) and p(X) is the
song prior, that is, p(X) =

∑|V|
j=1 p(X |w j)P(w j). After this process, normalizing to 1 if

needed, we have the SMN for each song.
In the query-by-example process we use the query song’s tags as the observation

sequence, so we do not actually see only one tag per observation. We have a full SMN
instead, so we treat the SMN as an observation and we need to emulate the observation
probability (i.e. the SMN) bi(ot) by comparing two songs’ SMNs. To do this we can
make use of the discrete version of Kullback-Leibler divergence, since it expresses a
distance for probability distributions:

DKL(bx(·) || by(·)) =

|V|∑
k=1

bx(k) log
bx(k)
by(k)

, (2.6)

where bx(·) and by(·) are the two SMNs for songs x and y andV is the tag vocabulary.
Of course we need a similarity measure, not a distance, so we use the inverse of the
KL divergence as observation relevance φx(by(·)) for song x with song y:

φx(by(·)) =
1

DKL(bx(·) || by(·))
. (2.7)

2.1.4 Retrieval process

As we have seen in the previous sections, the retrieval problem is similar to Problem
2 for HMMs (see section 1.1.3): what we need is a state (song) sequence which better
explains an observation sequence. The query can be formally expressed as a sequence
of observations O = (o1, . . . , oT), where T is the expected number of response songs.
The output song list must of course be ranked according to the relevance with the query
sequence.

The way to solve this problem is to use a modified Viterbi algorithm. This algo-
rithm is composed of two procedures called forward and backward (see section 1.1.3)
that calculate first the probability of the most likely state sequence, and then decode
the path which gives this probability. To understand seamlessly the procedure we will
use a naming convention which resembles the one we used for HMMs.

Input for the problem must be described in both query-by-tag (also called query-by-
description) and query-by-example cases. The observation sequence O = (o1, . . . , oT),

30

2.1 RETRIEVAL MODEL

is defined such that for each ot:

ot(·) =

{(o
1
t , . . . , o

k
t) | o

y
t = w ∈ V, y = 1, . . . , k} if k-tag query-by-description

bq(·) if query-by-example with song q
(2.8)

where bq(·) is the tag relevance (SMN) for this song. In the query by description
equation we assume that each tag mentioned by oy

t is considered as requested, and that
the query does not specify any weight on tags (it is like query is a uniform SMN).

Looking at section 1.1.3 we also see that we need to define a way to account for
prior probabilities πi and observation probabilities bi(·). Because we must handle dif-
ferent situations (query by tag and query by example) we defined a function φi(t) that
expresses the observation probability for song i and observation at time t and the prior
probabilities at the same time as:

φi(t) = bi(o1
t) · bi(o2

t) · . . . · bi(ok
t) ∀t > 0 if query by description (2.9)

φi(t) =

1 if t = 1 ∧ i = q

0 if t = 1 ∧ i , q
1

DKL(bx(·) || by(·)) if t > 1

if query by example, (2.10)

where q is the query song in the query by example situation.
In the general query by description situation the query consists in a sequence of

observations, each one composed of a k-tag observation (see equation 2.8). We can
see that equation 2.9 accounts for each observation vector by multiplying each tag rel-
evance from its SMN description. On the other hand in the query by example scenario
we have a reference (seed) song with its already known tags2. In this situation we
firstly force all paths to start from the seed song by setting φseed(1) = 1. The next
step is to define the observation probability: since we are seeking for songs similar to
the seed song, we want to be sure that the observation probability φi(t) reflects the tag
similarity of song i and tags from ot. Equation 2.10 does this by exploiting the inverse
of the KL divergence as defined in section 2.1.3.

2.1.5 Querying the model

Once we have defined the naming convention we can describe the querying algorithm.
To query the model we use a modified Viterbi algorithm (see the original version in
section 1.1.3) which is composed of three parts:

2We assume that we are querying the model using a song from the ground truth collection

31

2. THE MODEL

Initialization: for all i = 1, . . . ,N:

δ1(i) =φi(1) (2.11)

ψ1(i) =0 (2.12)

Recursion: for t = 2, . . . ,T , and i = 1, . . . ,N:

δt(i) = max
1≤i≤N

[δt−1(i) a ji] φi(t) (2.13)

ψt(i) = arg max
1≤i≤N

[δt−1(i) a ji] (2.14)

ari =
ari

η
for r = ψt(i), η = 10 (2.15)

Decoding (backtracking):

s(t)∗ =

arg max
1≤i≤N

[δt(i)] if t = T

ψt+1(s(t + 1)∗) if t = T − 1,T − 2, . . . , 1,
(2.16)

Where N is the number of songs in the database, δi(·) and ψt(·) are the forward variables
in the Viterbi algorithm and s(t)∗ are the output songs. The result of the algorithm is a
ranked list of songs {s(1)∗, s(2)∗, . . . , s(T)∗}.

As we can see equations 2.11 and 2.13 make use of the previously defined obser-
vation probabilities (see equations 2.9 and 2.9) to account for relation between query
tags and songs ones. Another notable difference from original Viterbi algorithm is
equation 2.15: when we search for an optimal path in the songs graph it could happen
(it actually happens a lot) that the path loops between two or more songs. This is a
consequence of the transition probabilities and the query. If the combination between
the two induces a looping nothing can prevent it because Viterbi algorithm searches for
maximum path probability, and it does not care about loops. As a solution to this we
temporarily lowered the transition probability of most probable path (i.e. the chosen
transition) by dividing it by a fixed amount η = 10. This decreases the probability of
choosing the same transition on the path for the query, thus preventing looping. Of
course this modification is temporary and the original transition probabilities are re-
stored after querying the model. This solution happens to be effective but one could
argue that dividing by a fixed amount do not actually cover all possibile situations: it
could happen that the second maximum transition probability is actually more than η
times lower than the maximum (e.g. maximum value is 0.80, second maximum value
may be 0.07) thus making equation 2.15 useless. A solution may be to consider some
statistic over the transition probability (e.g. the variance or the max value) and use

32

2.2 SEMANTIC MUSIC TAGGING

that for parametrically reduce the value of the chosen transition’s probability. We will
discuss later on this topic in the conclusions. It should be pointed out that this kind of
modification actually breaks guarantee of path’s optimality, but it does not affect the
relevance of the output songs to the query.

There is also another difference from Viterbi’s algorithm: Miotto and Orio noted
that the output precision of the original algorithm was rather low expecially when
dealing with long paths through the graph. They observed that long paths have the
tendency of losing relation with both query tags and first selected songs. They resolved
this issue by splitting the retrieval process in little substeps: each step does retrieve a
little number of songs (e.g. 5) and the following step resets the forward variables and
forces the first retrieved song to be the last retrieved from the previuous step. At the
same time the steps after the first ignore the already retrieved songs while forming the
output ranked list. The aim of this solution is to keep some form of locality between
results, thus mantaining correlation with both query and first songs.

2.2 Semantic music tagging

In this thesis we want to present a method for semantic tagging of music pieces. As
we said in the introduction, the role of semantic music tagging is to provide some
meaningful description (tags) to a novel music piece. We want to do this by exploiting
the existing Markovian-like retrieval model by Miotto and Orio, by adapting it to tag
new songs. The retrieval model has been developed on the assumption that tags and
timbre are in a positive correlation. This assumption was not so weak, as they observed
that exploiting tag similarity can increase the performance of a timbre-based retrieval.
We also wanted to add a feature to cover another characteristic of music pieces: the
rhythm description. To account for this we have introduced Rhythm Histograms, a
feature proposed by Rauber and Lidy (see [21]) which was been proven valid for genre
classification. The querying process was also modified, since the input of the model is
different (i.e. it is a new song) and the expected output is different too (i.e. tags instead
of songs).

The first issue we meet is how we define the input and the output of the problem:
the input is a song which is not in our collection, and the output is a weighted set of
tags related to the query song. The first thought about how we could tag is to use the
acoustic similarity: the retrieval model suggests that acoustically similar songs have
similar tags. So we thought about “placing” the query song in the collection graph in
some meaningful way and then exploring the “best” paths (in some sense) around the
query to guess the tags by the ones from neigbour songs. This is basically what we

33

2. THE MODEL

ended up doing, but we had to define that “place”, “path”, and “best” mean.

2.2.1 Definitions

The model itself is based on the retrieval model, so some terms remains the same as
before, while others are re-defined to reflect the tagging task. At any time the system
rely on a set of known songs which serves as both the source of the tags and the
similarity model. This means that at the boostrapping phase we assume we have some
previous knowledge, which is composed of a set of known songs, with proper tags on
them.

Analogy with Hidden Markovian Models remains, so the model itself is named λ
as before, and can be described as follows:

States A song is represented as a state S i from a set S = {S 1, . . . , S N}, and, as in the
retrieval model, state at time t is denoted as s(t).

Transition probabilities As before, the transition probabilities are related to the acous-
tic similarity between the songs. We have chosen to use the timbric similarity
as it is defined in the retrieval model. Again, the similarity is not forced to be
symmetric for the reasons mentioned in subsection 2.1.2. They are named as
before, and ai j stands for the acoustic similarity of song S i with song S j.

Observations The notion of observation is different from the previous model: since
we need tags as output and not as input, we cannot use them as observation. We
have chosen to use an audio feature that captures a different characteristic of a
music piece: the rhythm. However, we could use any other characteristic, the
main reason for choosing this was that rhythm (or, more specifically, Rhythm
Histograms) is an effective feature for genre classification. We also wanted to
see if the use of two features together gives better results than the single features
used individually. We will cover better this aspect on next sections.

Observation probabilities As said before, we do not have conventional observations.
Since we simulate observation with rhythmic description of a song, we model
observation probability as rhythmic similarity. That is, instead of calculating the
probability of a state to emit a particular symbol, we replace this probability with
the rhythm similarity between the query song and the state song. This means
that in a random walk in the graph the path probability is influenced by both
rhythmic and timbric similarity. As a consequence of the analogy with HMM,
rhythm plays a bigger role than the timbre in discriminating the songs. This

34

2.2 SEMANTIC MUSIC TAGGING

happens because rhythm is compared to query at each song (it is an observation),
while timbric similarity is progressively multiplicated from previous steps, so it
decades as the path grows longer. However, this does not necessarily mean that
songs along the path have low timbric similarity with the query. We name these
“observation” probabilities φi(j) for song S i observing the rhythm of song S j.

Prior Probabilities Prior probabilities play a big role in the query process: they help
choosing the first states for the paths. With the idea of starting from a song
which is acoustically similar to the query we first simulate the insertion of the
query in the model, and then we force the paths to start from the query. That is,
we calculate the timbric similarity between each song and the query, we treat it
as a song in the database, and then we set the prior probability of the query to 1
and the others to 0. In this way we force the model to calculate the similarity of
both timbre and rhythm, and we also have a suggestion for how the model could
grow.

Tags The foundamental thing that is not included in the Hidden Markovian model are
the tags: at every instant the models has information regarding the tags of the
known songs. These are stored on a separate structure and are needed to tag
novel songs. We name that structure bi(j), which stands for tags for song S i

in the collection. We assume that the vocabulary of tags consist in M different
symbolsV = {w1,w2, . . . ,w|V|} where M = |V|. The vector is in binary form, it
contains a 1 in position j if tag j is present, 0 if not.

A graphical representation of the model can be found in figure 2.2.
It should be noted that every time we mentioned some similarity measure with

the query or between known songs we also imply that statistical properties must be
satisfied, so every value has to be normalized in order to treat the model as an HMM.

Regarding the transition probabilities: we mantain the pruning of the transition
probabilities for scalability purposes, as seen in the end of section2.1.1.

As a difference with the retrieval model we make use of binary tags and not a
semantic multinomial as seen in section 2.1.3, that is, a tag can either be present or not
for a specific song . We will also see that having the tags in a separate structure let us
grow the model easily if there is a novel tag (e.g. the song is partly tagged).

2.2.2 Adding rhyhtm features

We have chosen to use Rhythm Histograms (see section 1.2.2) as a rhythm descriptor
for a given song. This feature has been developed by Rauber et al. in [21] and has

35

2. THE MODEL

Figure 2.2: A graphical representation of the tagging model

been successfully used for genre classification. With the reference from section 1.2.1
we have calculated RH using steps S1, S2, S3, S4, R1 for rhythm patterns calculations,
and then we summed the values from each frequency bin to obtain the Rhythm His-
tograms. Since we have done a slightly different calculation we obtain a 120 values
vector representing the amplitude modulation frequencies between 0 and 10 Hz. We
have calculated this feature over only a 6 second segment of music after the first 30
seconds. This was initially done for testing and then kept in view of future experiments
with Amazon APIs, which provide short music samples taken after roughly 30 seconds
of the songs3.

2.2.3 Similarity measures

Since we use RH as observation we must define the observations vocabulary, but we
can clearly see that this time the vocabulary is not finite: it is in fact a vector of floating
numbers. In order to compare two songs (namely the query and the state) we need to
define some similarity measure between their RH, which will be used in lieu of the
observation probability.

What we want is a measure that expresses the similarity of two Rhythm Histograms
with a number in the [0, 1] range. We expect that the closer to 1 the similarity value is,

3We have also thought about scraping the Amazon catalogue to test our system, but we did not try it
yet

36

2.2 SEMANTIC MUSIC TAGGING

the more similar the two rhythm are. We denote the similarity of RH x (the one from
query song) with RH y as φx(y), and the i-th value from a RH vector as xi. We can now
see which similarity measures we have tried:

Cosine The standard metric for information retrieval:

φx(y) =

|x|∑
i=1

xiyi√√√
|x|∑

i=1

x2
i

√√√
|y|∑

i=1

y2
i

. (2.17)

Euclidean distance This is based on the standard euclidean distance:

φx(y) = 1 − ||x − y|| = 1 −

√√√
|x|∑

i=1

|xi − yi|
2 (2.18)

Bray-Curtis This similarity was named after the two biologists J. Roger Bray and J.T.
Curtis that had invented it in [4].

φx(y) =
2

∑|x|
i=1 min(xi, yi)∑|x|
i=1(xi + yi)

(2.19)

Modified Chord This is a variation of the cosine similarity that compresses the low
and highlight the high similarity values.

φx(y) = 1 −
√

1 − φcosine
x (y) = 1 −

√√√√√
1 −

∑|x|
i=1 xiyi√∑|x|

i=1 x2
i

√∑|y|
i=1 y2

i

. (2.20)

Ruzicka similarity index Ruzicka similarity was developed by the Croatian scientist
Lavoslav Ružička in a work about geobotany (see [38]).

φx(y) =

∑|x|
i=1 min(xi, yi)∑|x|
i=1 max(xi, yi)

(2.21)

Similarity ratio

φx(y) =

|x|∑
i=1

xiyi

|x|∑
i=1

x2
i +

|y|∑
i=1

y2
i −

|x|∑
i=1

xiyi

(2.22)

37

2. THE MODEL

Kulczynski similarity

φx(y) = 1 −
∑|x|

i=1 |xi − yi|∑|x|
i=1 min(xi, yi)

(2.23)

Kullback-Leibler distance This is based on the already presented KL divergence.

φx(y) = e−DKL(x || y) = exp

− |x|∑
i=1

xi log
xi

yi

 (2.24)

It is worth saying that some of them suffer some technical problems in specific
situations, thus leading to some caveat in the implementation. For example, KL diver-
gence in some situations can lead to a 0 log 0 multiplication, and Kulczynski similarity
is prone to the division by zero. These caveats are often resolved in a way that inter-
feres with the measure itself: for example a divison by zero may be avoided by adding
a (little) constant value to the denominator.

It should be also noted that different similarities have different computational cost:
those which include calculation of square roots (cosine, modified chord) or logarithms
(KL), tend to cost more than a simple minimum or maximum (Ruzicka). This has
almost no influence with a low number of song in the model, like in our tests, but can
be quite costly as the collection grows bigger.

2.2.4 Querying the tagging model

Now that we have defined the model we can see how we can tag a novel song. As before
we use a modified version of the Viterbi algorithm (see the original in section 1.1.3 and
the retrieval version in section 2.1.5) and we will also make use of the tags which are
held in a separate structure (see previous sections). At any time, when we want to refer
to the query song, we use the subscript q (e.g. S q for the song, bq() for the tags, and
so on) which of course stands for “query”. We also assume that the vocabulary of tags
consists in M different symbolsV = {w1,w2, . . . ,w|V|} where M = |V|.

Initialization As we said in section 2.2.1 we simulate the insertion of the query song
in the model in order to tag it. So if we assume that at this time there are N song
in the collection the initializazion of the foward variables is, for all i = 1, . . . ,N :

δ1(i) =

1 i = q

0 i , q
(2.25)

ψ1(i) =0. (2.26)

Where q denotes the query song.

38

2.2 SEMANTIC MUSIC TAGGING

Recursion Here we take the same steps as the retrieval model. For t = 2, . . . ,T , and
i = 1, . . . ,N:

δt(i) = max
1≤i≤N

[δt−1(i) a ji] φq(i) (2.27)

ψt(i) = arg max
1≤i≤N

[δt−1(i) a ji] (2.28)

ari =
ari

η
for r = ψt(i), η = 10. (2.29)

Where φq(i) is the rhythm similarity between the query and the given song, cal-
culated using the current similarity measure. We can see that we do the same as
in the retrieval to avoid looping in equation 2.29. Some consideration regarding
this type of probability cutting are made in section 2.1.5.

Decoding (backtracking) Decoding is the same as in the retrieval model, but we also
keep the path probability at each step.

s(t)∗ =

arg max
1≤i≤N

[δt(i)] if t = T

ψt+1(s(t + 1)∗) if t = T − 1,T − 2, . . . , 1,
(2.30)

p(t)∗ =

max
1≤i≤N

[δt(i)] if t = T

δt(s(t)∗) if t = T − 1,T − 2, . . . , 1.
(2.31)

Here p(t)∗ represent the probability at each step of the best path. This time T is
a parameter, which has to be tuned: the length of the path affect the similarity
between the first and the last song in the path, so we may want to keep the value
low.

Tagging Now we will see how we tag new songs: we assume that a song that is
similar to the query in terms of both timbre and rhythm has very similar tags.
This assumption lets us infer the tags for the new songs by looking at the tags
from songs in the best path in the model (in a Markovian sense). In fact, a song
in the best path has is very likely to have a high timbric and rhythmic similarity
with the query. Since we have included the song in the model in order to tag it,
it is possible that the path includes one or more times the query song. Of course
we can not take in account any contribution from the query since it does not
have any tag, so we have to skip it. So to tag the novel song we take the T songs
extracted with equation 2.30 and we calculate a vector of tag weights bq(j) for
all tags in j = 1, . . . ,M as in:

bq(j) =

T∑
i=1,i,q

bi(j)ω(i). (2.32)

39

2. THE MODEL

In this equation ω(i) is the weighting function of the tags: this is a weakly de-
creasing monotonic function of the path position i. That is, tags from songs
acoustically similar (low i) to the query should have more importance than songs
that are not that similar (i.e. that are later in the path). The i , q is needed
because the song has initially no tags, and then to avoid any self-contribution,
which has no semantic meaning.

Iterating As the retrieval model in section 2.1.5 the tagging model also take action
against the probability decay of long paths. Instead of splitting the path research
in little substeps, making the model restart from the last visited state as in a
“chain”, we just restart the Viterbi procedure. We keep T , the maximum length
of a path, to a low number (e.g. 4) and we launch the Viterbi-like procedure to
tag the song. Then we restart from the initialization step (thus restarting from
the query song as before) without resetting the modified transitions (i.e. keeping
the effects from equation 2.29) and keeping the tags weights calculated so far.
The calculated tag weights are summed at each iteration. We repeat this process
for a number of iterations (e.g. 10) to be sure we inspect enough similar songs
to correctly infer the query’s tags. This variation has been developed because we
got poor results from the “chained” version of the Viterbi procedure.

We have chosen the Viterbi algorithm because it gives us a method to link the
influence of two features at once. We could argue that we can calculate query’s tag
using all the neighbour songs, the transition and the observation probabilities, that
is, we can just do a weighted sum of the tags from all the songs using a forward
exploration4 from the query. The advantage we get from using Viterbi is the fact that it
finds an acoustically meaningful “music path” from the query, which helps us avoiding
non-related songs. Another important advantage is that we can also decide which
weight we want to assign to each song in the path, which could lead to better results,
as we will see in the results chapter.

It has to be noted that there is no real contol of the paths extracted at each iteration,
in a sense that there may be songs that appear multiple times on different iterations
or maybe multiple times on the same iteration (see limitations on avoiding looping in
section 2.1.5). This as an desired behaviour: if a song is chosen multiple times we
assume that it is somehow “very similar” to the query, and so its tags may be better
related to the query. In fact, we sum the tags contribution of these songs every time
they are chosen, regardless of the number of times and the position in the paths they
appear.

4In graph theory the forward star of a state is defined as its outgoing edges

40

2.2 SEMANTIC MUSIC TAGGING

For the special case of paths with loops involving the query multiple times (thus
making the path useless for tagging) we do the following workaround: we calculate a
path of length T for each iteration, but we retain only K songs. This way we can expect
that equation 2.29 does its effects and let the path deviate towards other songs while
still offering at least K songs different from query. An alternative workaround may be
thought for this, but we will discuss it after the conclusions.

As of the weighting function in equation 2.32 we have different options, and we
have tried four different functions so far:

Path probability We can use the path probability at step i as the weight:

ω(i) = p(i)∗. (2.33)

This has the advantage that tag weighting reflects the acoustic similarity in a
direct way.

Linear decay We have defined a linear decading function of the path step:

m = − c/T, c < 1 (2.34)

ω(i) =1 + m(i − 1), (2.35)

where T is the path length and the coefficient c < 1 is needed to give the last
weight a value above 0 and the (i− 1) lets the first weight to be 1. We set c to 0.9
in our experiments.

Exponential decay We have defined an exponentially decading function of the path
step:

ω(i) = a(i−1), (2.36)

where the (i−1) lets the first weight to be 1. The parameter a should be 0 < a < 1,
we have set it at 1/2.

Hyperbolic decay We have defined an hyperbolic decay function:

ω(i) = 1/i (2.37)

41

2. THE MODEL

42

Chapter 3

Results

An automatic tagging system is expected to put meaningful tags on novel songs in a
reliable way. We have already seen the importance of automatic tagging in the intro-
duction and we wanted to test how our model performs in this difficult task. In this
chapter we will show some results obtained with the model presented on this thesis.
We will first describe the test setup, including the source data and the evaluation mea-
sures. Then we will show the results of the tests with a comment on what we obtained
in respect of what we expected.

3.1 Test setup

To test our model we need to first find a source of already tagged music as the model in-
fers tags from already known songs. This prior knowledge constitutes also the ground
truth on which we can test the results of the tagging process. We will see now the data
source we have chosen, the evaluation measures we used, the tests we have made and
a little comment on the tuning of the model’s parameters.

3.1.1 Data source

We have different options regarding the initial data source, but we thought about some
restrictions. We put an accent on the quality of the source data, as we need to rely on
it to put the right tags to songs. For these reasons we have chosen the CAL500 dataset
as the source of our data. This dataset consists of 502 popular songs of Western music
my different artists, and has been collected by Turnbull et al. in [45] for a work on
query-by-tag.

Songs from this dataset have been tagged through a contolled survey, where every
song has been examinated by at least three human annotators. The semantic vocabu-

43

3. RESULTS

lary consists of 149 tags spacing from genre classification (e.g. “rock”, “pop”) to vocal
and acoustic characteristics (e.g. “female lead vocals), as well as emotions (e.g. “ag-
gressive”) and song usages (e.g. “studying”). The survey results is a binary annotation
of each song, which marks a 1 for each tag applies to that song, 0 otherwise. It should
be noted that in order to mark a tag for a song at least 2 annotators must vote that tag,
so we can be quite confident about this data.

It is also important to note that we have full acces to all the audio clips from the
dataset, but for copyright reasons the clips are a degraded version of the original1. We
need this because it permits us to calculate every feature we may need, MFCCs and
Rhythm Histograms in our case.

There are of course other useful datasets, but some of them does not meet our
needs. For example, the CAL10k database (see [43]) provides around 10000 songs
with manually annotated tags. These tags are mined from Pandora service as part of
the Music Genome Project and are considered objective. However, this database does
not give access to the audio clips: instead, it gives an EchoNest TrackID for each song.
Echo Nest is a music data service company, which supports other music Companies
such as streaming services with their data. It provides acoustic data on songs via some
public API. However, this data does not include the audio clip of the songs, so we
cannot get features besides the ones they expose.

The Magnatagatune database is another example of set which permits access to the
the music clips, and it can do this because it uses music released under Creative Com-
mons. It also provides human annotated tags to the songs, but they did not employed
music experts to do this: instead they have written a social music game where users
can tag the songs. This makes the database useful but unreliable, so we skipped it.

Another option would be using some large source of music and relying on social
music services like LastFM to provide tags. But then again, we would face the relia-
bility problem: we need expert evaluation to get a good prior knowledge.

3.1.2 Evaluation measures

To measure the performance of our model we need to define what is important for
an automatic music tagging system to do. What the users expect from this system is,
naturally, that proposed tags are relevant, in a sense that they truly describe the content
of the song, and the tags are complete, so there is no lack of information. This also
means that any extra tag that the system propose for a song is counted as an error, or

1We have access to the MP3 version of the songs, however the encoding quality is high enough for
our purposes

44

3.1 TEST SETUP

at least as noise. We also expect that a system for automatic tagging has to be concise,
that is, if the output of the system is a ranked list of tags, where the rank is a relevance
measure, we may want to keep only the top most tags as the query result. In other
words, we need to measure whether the system is able to propose the most relevant
tags at the top of the ranked list, while other tags (not-so-relevant ones and wrong
ones) should have lower ranks. With this aim in mind we choosed to use the precision
metric, which measures the fraction of relevant tags on a list: since it is exactly what
we wanted to do we have implemented all the metrics as variations of the precision to
measure the performance of our system:

Precision at k This metric measures how many good results are in the top k results
from the ranked list of tags, reporting the fraction of relevant tags. If we think
that a real system may keep the first k tags it is important to measure which
fraction of the first k tags is expected to be right. We measured this precision at
k = 1, 3, 5, 10 for each song and we then average the value between all songs to
have an idea on the general performances.

Precision at number of total tags This metric measure the precision (as defined be-
fore) at a precise point. Since we tested our system on a well tagged dataset we
know how many real tags every song have. This means we can measure whether
the system is able to guess these tags and put them on top of the ranked list. To
do this we count how many tags the song really have (say R), and we measure
the precision at R, then we report the average value of this precision between
every song.

Precision at 100% recall The recall measures the fraction of all relevant tags retrieved
by the ranked list. Since our ranked list includes all the tags the recall is always
100% at the end of the list, so the interesting statistic is the recall at a given
position or the precision at a given recall value. Here we measure the precision
when the recall reach 100%, that is, when the ranked list of tags includes all the
tags from the ground truth.

Mean Average Precision The MAP is calculated by averaging the precision at each
point of the ranked list of tag. The mean value of the average precision of each
song is the MAP of the system. This is a measure of the quality of the whole
ranked list.

45

3. RESULTS

3.1.3 Tests

Since the role of this model is to tag a new song we can test it using the ground truth
(the CAL500 dataset) in a leave-one-out fashion. The model can be “trained”2 with
all songs minus one, and tested with the removed one. What we have done is calcu-
lating the timbric similarity for each song in the dataset, and, in turns, we simulated
the querying of each song against the rest of the dataset. We have also calculated in
advance the rhythm similarity between all songs.

The tagging procedure helps us, since it ignores the tag contribution from the query
song as it assumes that it does not have tags on it. This is essential since we know in
advance the tags from the query as they come from the ground truth.

Because we have done the timbric similarity calculation ahead of time, we do not
need to “waste time” calculating it in the initialization phase, and we can speed up the
test phase.

After we have queried the model we can test the results of the tagging by comparing
the ranked tags against the tags from the ground truth using the metrics described in
section 3.1.2.

3.1.4 Parameters Tuning

The tagging model as proposed in this thesis has some parameters which have to be
tuned. For the timbric similarity we rely on the work by Miotto and Orio in [28],
since they had good results in their model. They have defined the timbric similarity
as an exponentiation KL divergence of the distribution of the MFCCs of the songs.
The parameters of this similarity are the same as their work (γ = 0.009 and number of
subsampled MFCCs).

Other parameters which have been kept as before are the one from the pruning of
transitions probabilities (i.e. R(S i)). In this case we have kept the 10% of the total
transitions.

On the modified Viterbi algorithm we use η = 10 as defined in the retrieval model,
however we think that an investigation on this could lead to a better strategy for loop
prevention.

We also tested some combinations of the values of T (length of the random path)
in relation to the number of effectively retrieved songs per path and the total number
of iterations (see section 2.2.4). What we have seen is that short paths give better
results, and the number of effectively retrieved songs should be as close as possible to

2We may not call it training, because we do not adjust any parameter on the basis of some data
analysis

46

3.2 TEST SETUP

the length of the path: this could mean that the conservation of acoustic similarity is
preferred over the number of retrieved results. We ended up choosing a path length
of 4 with 3 retrieved song per iteration. This approach can produce iterations where
as little as 1 song are retrieved, that is, there can be a loop of length 3 with the query
and one song. Other combinations of path length and retrieved songs led us to worse
results MAP-wise.

Regarding the total number of iterations of the Viterbi algorithm we have seen that,
for our data, the best result were obtained with 9 iteration. Any number below that
value has led to worse results. Iterations above 10 were not tested because we wanted
to limit the total number of retrieved songs, and also because we got better results with
9 than with 10, as confirmed in figure 3.1 (tested with Cosine similarity).

5 6 7 8 9 10
0.45

0.46

0.47

0.48

0.49

0.5

Iterations

M
e
a
n

A
v
e
r
a
g
e

P
r
e
c
i
s
i
o
n

Figure 3.1: Mean Average Precision plot for different numbers of Viterbi iterations,
using Cosine similarity (see section 3.1.4)

Of course the influence of these parameters should be further discussed and optimal
values may change for different datasets or as the model grows integrating the tagged
songs.

47

3. RESULTS

3.2 Results

The first question we face is which similarity measure best describes the difference
between rhythm of the songs. We can measure this with the Mean Average Precision
over the tagging of all tested songs. We also have to compare the results of each
weighting strategy in order to find the best overall performance.

Table 3.1, and the corresponding plot in figure 3.2 show the summary of the results
we obtained from our tests. We can see that Ruzicka similarity gives the best results
among the similarity measures. We also see that linear weighting outperforms the path
probability weighting with every similarity metric: this suggests that path distance
from the query is more important than the path probability.

Path Prob. Linear Exponential Hyperbolic
Cosine 0.5036 0.5430 0.5418 0.5415

Bray Curtis 0.5096 0.5574 0.5558 0.5558
Mod. chord 0.5054 0.5535 0.5497 0.5497

Ruzicka 0.5108 0.5594 0.5558 0.5559
Sim. ratio 0.5016 0.5390 0.5400 0.5393

KL 0.4689 0.4802 0.4833 0.4822

Table 3.1: Mean Average Precision values for Rhythm Histograms similarity measures
and weighting functions. Best results are highlighted in bold.

Since we said that a real system may keep only the top most relevant tags after
the tagging process, it is interesting to see the performance of our system in terms of
precision at 10. This measure tells us how well we can tag a novel song if we keep only
the top 10 tags in the ranking list. We also wanted to see how well our system perform
in respect to the baseline, that is, if our system does better than a (truly) random walk
in the graph. To measure this we tried three strategies: first, we measured the influence
of the rhythmic similarity by uniforming the transition probabilities (which are the
timbric similarities) to 1/N, where N is the number of songs in the dataset. Then
we measured the influence of the timbric similarity by uniforming the observation
probabilities (which are the rhythmic similarities) to 1/N. The last test simulated a
completely random walk by uniforming both observation and transition probabilities,
and this last test represents the true baseline.

Figure 3.3 shows our results using the best performing rhythmic similarity mea-
sure, the Ruzicka, and we can clearly see that our results are better than all baseline
tests. The value of the precision tells us that if we pick a random song and we keep

48

3.2 RESULTS

Cosine Braycurtis Mod. Chord Ruzicka Similarity ratio KL
0.45

0.5

0.55

0.6

M
e
a
n

A
v
e
r
a
g
e

P
r
e
c
i
s
i
o
n

Path probability Linear Exponential Hyperbolic

Figure 3.2: Mean Average Precision plot for table 3.1: results for different rhythm
similarity measures and weighting functions.

Normal Unif. Trans. Unif. Obs. Baseline
0.45

0.5

0.55

0.6

0.65

0.7
Influence of the single features

P
r
e
c
i
s
i
o
n

a
t

1
0

Path probability

Linear

Exponential

Hyperbolic

Figure 3.3: Comparison of mean precision at 10 calculated with Ruzicka rhythm
similarity and different baseline test cases.

49

3. RESULTS

only the top 10 proposed tags, we can expect 6 of them to be correct on average, which
is a good result for the first implementation of a novel approach. We can also see
that uniforming transition probabilities leads to better results than uniforming obser-
vation probabilities: this does not necessarily mean that rhythmic features are better
for discriminating songs. This could be the effect of using rhythmic similarity as the
observation probabilities, and this should be further investigated by swapping the role
of timbre and rhythm in the model (we will see this on the conclusions). Another in-
teresting fact is that even using one feature (i.e. only rhythm or only timbre) we obtain
better results than the baseline’s completely random walk.

One particular test that is usually done for retrieval systems is the precision at 1:
this measures the ability of a system to propose a meaningful document at the top of
the ranked list of retrieved document. Results for this test, computed using Ruzicka
similarity measure, are exposed in table 3.2. We can see that results are all very good,
with the worse preformance by path probability weighting function. However, we can
see that the baseline outperforms the normal procedure, meaning we can seek for errors
in this direction.

Normal Unif. Trans. Unif. Obs. Baseline
Path prob. 0.8267 0.7888 0.7072 0.8785

Linear 0.8685 0.8705 0.8207 0.8845
Exponential 0.8625 0.8645 0.8207 0.8845
Hyperbolic 0.8625 0.8645 0.8207 0.8845

Table 3.2: Precision at 1 values for different weighting functions. Best results are
highlighted in bold.

Another way to measure if the system is performing well is to measure the precision
at the number of tags from the ground truth (see section 3.1.2). Table 3.3 shows a sum-
mary of the performances for different rhythmic similarities and weighting function.
We can clearly see that Ruzicka and Bray Curtis are the top performing similarities.
The overall results are low but this was expected since we are measuring the precision
on a large part of the ranked list.

An interesting measure is the precision value when recall reach 100%, that is, the
precision value calculated when the ranked list includes all tags from the ground truth.
We do not expect high values, in fact table 3.4 shows poor results, however it is inter-
esting to see that again results calculated with Ruzicka similarity measure are the top
performing ones together with the ones calculated with Bray Curtis similarity.

50

3.2 RESULTS

Path Prob. Linear Exponential Hyperbolic
Cosine 0.4505 0.4995 0.4997 0.4985

Bray Curtis 0.4533 0.5141 0.5114 0.5110
Mod. chord 0.4539 0.5093 0.5062 0.5058

Ruzicka 0.4549 0.5138 0.5103 0.5102
Sim. ratio 0.4531 0.4947 0.4956 0.4949

KL 0.4313 0.4449 0.4487 0.4465

Table 3.3: Mean precision at number of tags from ground truth; calculated for differ-
ent Rhythm Histograms similarity measures and weighting functions. Best results are
highlighted in bold.

Path Prob. Linear Exponential Hyperbolic
Cosine 0.2119 0.2277 0.2274 0.2273

Bray Curtis 0.2149 0.2327 0.2325 0.2324
Mod. chord 0.2119 0.2281 0.2275 0.2275

Ruzicka 0.2140 0.2316 0.2311 0.2311
Sim. ratio 0.2105 0.2249 0.2247 0.2244

KL 0.2070 0.2151 0.2150 0.2149

Table 3.4: Mean precision at 100% recall for Rhythm Histograms similarity measures
and weighting functions. Best results are highlighted in bold.

51

3. RESULTS

52

Conclusions and future work

Automatic music tagging is a challenging task in the music information retrieval world.
In this thesis we have presented a novel approach for semantic music tagging on a
graph-based framework. The work was based on the assumption that acoustically sim-
ilar songs have similar tags, and thus we can infer the tag of a novel song by seeking
for its acoustical neighbours. We have been inspired by Hidden Markov Models and
we have developed a model which combines timbric and rhythmic features to tag new
songs. Each state in the model represents a song, while transition probabilities are
modeled as timbric similarity between songs and observation probability as rhythmic
similarity with the query song. The model assumes that at any time there is a set of
known songs with proper tags on them that serves as prior knowledge for tagging and
acoustic similarity modeling. A modified Viterbi algorithm was developed and a crite-
rion for repeated exploration of the graph was introduced to extract tags from similar
songs. The output of the querying process is a set of ranked tags, where higher rank
indicates higher tag relevance. We have found that using Viterbi for producing short
“acoustic paths” for multiple times gives better results than extracting a single long
path.

The model itself does not need much training, however different initial datasets
may require some tuning on the Viterbi parameters (number of iterations to perform,
path length for each iteration, tags weighting strategy) to reach optimal results.

We found out that the model performs better with a tags’ weighting that is inde-
pendent of the path probability, which is linked to the similarity metrics. This can be
an advantage since this let us be more robust against similarity’s poor discrimination
performances, and we can use tags weighting strategy as a tuning parameter.

The framework described here was tested using the CAL500 dataset, a collection
of western songs tagged by expert annotators. Experiments have shown good results
in terms of Mean Average Precision of the ranked lists of tags. We have also measured
the performance contribution of each feature separately: we have found that both fea-
tures perform better than random guessing, while combining the features in the model
produces better results than using single features. To the best of our knowledge, we

53

CONCLUSIONS AND FUTURE WORK

think that our results are to be considered respectable for an initial work on a new
model. Performances are in line with other approaches at an early stage, so we can
be quite satisfied. It should be noted that usually automatic music tagging systems are
specialized in one kind of tags (e.g. only in genre or mood classification) while this
approach aims to be as general as possibile. We take our initial performance as an
encouragement for further developing of the system.

As the model exploits acoustic similarity to produce a list of similar song we can
exploit this framework as a retrieval model. For example we could build a system for
query-by-example retrieval, which could take the query song as input and produce a
playlist of similar songs as output. The output playlist would have not only a high
acoustic similarity with the query but also a high probability of being semantically
linked to the query’s tags.

The performances obtained on this novel approach let us be confident about the
evolution and extension of the model. We believe that the enhancing of this model
could lead to great improvements in music information retrieval. We also believe that
artificial intelligence could take advantage of this framework too, as this model tries
to infer meaningful meta-data (tags) from the raw data (audio clips) by exploiting
multiple features: this could be an good step toward semantic classification of generic
data.

Future work

Future works can take several directions from this initial approach. First we can search
for different similarity metrics for the features, expecially the timbric ones. We have
trusted the earlier work by Miotto and Orio for the similarity measure for MFCCs but
there could be other significant metrics available. Another interesting thing to inspect
is the role of each feature: future works may test if exchanging the roles of timbric and
rhythmic features can lead to better results. It may also be worth trying using other
features as well: for example melodic features like n-grams or harmonic like chromas.

As of the modified Viterbi algorithm, we have noticed that the workarounds to
avoid loops may not be effective under some circumstances. Expecially the η parameter
in equation 2.29 has been subject of discussion in our group. We believe that a different
approach on this, for example a data-dependent variation of the transition probability,
could lead to better loop avoidance.

Another possible improvement on looping avoidance may be researched in the way
we insert the novel song in the graph for the purpose of tagging. In the current pro-
cedure we calculate the timbric similarity and we treat the query as a song in the col-

54

CONCLUSIONS AND FUTURE WORK

lection (we just avoid it when we infer tags): this way there could be a loop between
the query and a single other song, potentially leading to a poor tagging performance.
In this case the vulnerability against looping is caused by the timbric similarity of the
known songs with the query. This could be avoided by just setting transition probabil-
ities to zero on all the transitions to the query, thus permitting the paths to start with
the query but never come back to it.

The current tagging procedure suggests a way to grow the model by adding the
newly tagged song to the graph. This could be a good starting point for a research on
how the newly inserted song influences the tagging of next songs. Since the tagging
is not perfect we can expect that the performances will decrease as new songs are
added in the graph. One possibile solution would be to avoid the adding of the newly
tagged songs and keep tagging next audio clips using a single large well tagged dataset.
However, a better approach would be trying to validate the tags of new songs: we
could think on a music streaming service which tags unknown songs, leaving them on
a separate collection. As the users listen to these songs the system may ask whether
they agree or not with the proposed tags. This way the system can mark the songs as
correctly tagged, and then add them to the tagging graph, thus refining the results of
next novel songs.

55

56

“Said the straight man to the late man
Where have you been?

I’ve been here and I’ve been there
And I’ve been in between.”

(King Crimson - I talk to the wind)

57

58

Bibliography

[1] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite
state markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563,
1966.

[2] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger: A model for
predicting social tags from acoustic features on large music databases. Journal
of New Music Research, 37(2):115–135, 2008.

[3] Simon Bourguigne and Pablo Daniel Agüero. Mirex 2011: Audio tag classifica-
tion using feature trimming and grid search for svm.

[4] J Roger Bray and John T Curtis. An ordination of the upland forest communities
of southern wisconsin. Ecological monographs, 27(4):325–349, 1957.

[5] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between
probability density functions. City, 1(2):1, 2007.

[6] E. Coviello, L. Barrington, A.B. Chan, and G.R.G. Lanckriet. Automatic music
tagging with time series models. In 11th International Society for Music Infor-
mation Retrieval (ISMIR) Conference, 2010.

[7] Franz de Leon and Kirk Martinez. Using timbre, rhythm and tempo models for
audio music similarity estimation. 2012.

[8] E. Di Buccio, N. Montecchio, and N. Orio. Falcon: Fast lucene-based cover song
identification. In Proceedings of the international conference on Multimedia,
pages 1477–1480. ACM, 2010.

[9] J.S. Downie. The music information retrieval evaluation exchange (2005-2007):
A window into music information retrieval research. Acoustical Science and
Technology, 29(4):247–255, 2008.

59

BIBLIOGRAPHY

[10] S. Downie and M. Nelson. Evaluation of a simple and effective music information
retrieval method. In Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval, pages 73–80.
ACM, 2000.

[11] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Automatic generation of so-
cial tags for music recommendation. Advances in neural information processing
systems, 20(20):1–8, 2007.

[12] Anita Elberse. Should you invest in the long tail? Harvard business review,
86(7/8):88, 2008.

[13] K. Ellis, E. Coviello, and G.R.G. Lanckriet. Semantic annotation and retrieval of
music using a bag of systems representation. In proc. ISMIR, volume 1, page 7,
2011.

[14] H. Fastl. Fluctuation strength and temporal masking patterns of amplitude-
modulated broadband noise. Hearing Research, 8(1):59–69, 1982.

[15] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12):61–70,
1992.

[16] Philippe Hamel. Multi-timescale pmscs for music audio classification.

[17] M. Hoffman, D. Blei, and P. Cook. Easy as cba: A simple probabilistic model for
tagging music. In Proc. of ISMIR, pages 369–374, 2009.

[18] Jeffrey R Johansen, Adchara Javakul, and Samuel R Rushforth. Effects of burning
on the algal communities of a high desert soil near wallsburg, utah. Journal of
Range Management, pages 598–600, 1982.

[19] P. Knees, T. Pohle, M. Schedl, D. Schnitzer, K. Seyerlehner, and G. Widmer.
Augmenting text-based music retrieval with audio similarity. Proceedings of the
International Society for Music Information Retrieval (ISMIR’09), pages 579–
584, 2009.

[20] T. Li, M. Ogihara, and Q. Li. A comparative study on content-based music genre
classification. In Proceedings of the 26th annual international ACM SIGIR con-
ference on Research and development in informaion retrieval, pages 282–289.
ACM, 2003.

60

[21] T. Lidy and A. Rauber. Evaluation of feature extractors and psycho-acoustic
transformations for music genre classification. In Proc. ISMIR, pages 34–41,
2005.

[22] Shin-Cheol Lim, Karam Byun, Jong-Soel Lee, Sei-Jin Jang, and Moo Young
Kim. Music genre/mood classification: Mirex 2012.

[23] B. Logan et al. Mel frequency cepstral coefficients for music modeling. In Inter-
national Symposium on Music Information Retrieval, volume 28, page 5, 2000.

[24] M.I. Mandel and D.P.W. Ellis. Multiple-instance learning for music information
retrieval. In ISMIR 2008: Proceedings of the 9th International Conference of
Music Information Retrieval, pages 577–582. Drexel University, 2008.

[25] Michael I Mandel and Daniel PW Ellis. Song-level features and support vector
machines for music classification. In ISMIR 2005: 6th International Conference
on Music Information Retrieval: Proceedings: Variation 2: Queen Mary, Uni-
versity of London & Goldsmiths College, University of London, 11-15 September,
2005, pages 594–599. Queen Mary, University of London, 2005.

[26] R. Miotto and G. Lanckriet. A generative context model for semantic music anno-
tation and retrieval. Audio, Speech, and Language Processing, IEEE Transactions
on, 20(4):1096–1108, 2012.

[27] R. Miotto and N. Orio. A probabilistic approach to merge context and content in-
formation for music retrieval. Proceedings of the International Society for Music
Information Retrieval (ISMIR’10), pages 15–20, 2010.

[28] R. Miotto and N. Orio. A probabilistic model to combine tags and acoustic sim-
ilarity for music retrieval. ACM Transactions on Information Systems (TOIS),
30(2):8, 2012.

[29] N. Orio. Music retrieval: A tutorial and review, volume 1. Now Pub, 2006.

[30] F. Pachet and J.J. Aucouturier. Improving timbre similarity: How high is the sky?
Journal of negative results in speech and audio sciences, 1(1):1–13, 2004.

[31] F. Pachet, D. Cazaly, et al. A taxonomy of musical genres. In Proc. Content-
Based Multimedia Information Access (RIAO), pages 1238–1245, 2000.

[32] E. Pampalk. Islands of music: Analysis, organization, and visualization of mu-
sic archives. Master’s thesis, Vienna University of Technology, Vienna, Austria,
2001.

61

BIBLIOGRAPHY

[33] Renato Panda and Rui Pedro Paiva. Mirex 2012: Mood classification tasks sub-
mission. Machine Learning, 53(1-2):23–69, 2003.

[34] L. Rabiner and B.H. Juang. Fundamentals of speech recognition. 1993.

[35] L.R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[36] A. Rauber, E. Pampalk, and D. Merkl. The som-enhanced jukebox: Organization
and visualization of music collections based on perceptual models. Journal of
New Music Research, 32(2):193–210, 2003.

[37] D. Reynolds. Gaussian mixture models. Encyclopedia of Biometric Recognition,
pages 12–17, 2008.

[38] M Ruzicka. Anwendung mathematisch-statistischer methoden in der geobotanik
(synthetische bearbeitung von aufnahmen), 1958. Cited in [18].

[39] M.R. Schroeder, B.S. Atal, and JL Hall. Optimizing digital speech coders by
exploiting masking properties of the human ear. The Journal of the Acoustical
Society of America, 66:1647, 1979.

[40] J. Shifrin, B. Pardo, C. Meek, and W. Birmingham. Hmm-based musical query
retrieval. In Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital
libraries, pages 295–300. ACM, 2002.

[41] S.S. Stevens, J. Volkmann, and EB Newman. A scale for the measurement of the
psychological magnitude pitch. The Journal of the Acoustical Society of America,
8(3):185–190, 1937.

[42] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Pearson
Education India, 2007.

[43] D. Tingle, Y.E. Kim, and D. Turnbull. Exploring automatic music annotation
with acoustically-objective tags. In Proceedings of the international conference
on Multimedia information retrieval, pages 55–62. ACM, 2010.

[44] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic annotation and
retrieval of music and sound effects. Audio, Speech, and Language Processing,
IEEE Transactions on, 16(2):467–476, 2008.

62

[45] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. Towards
musical query-by-semantic-description using the cal500 data set. In Proceed-
ings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 439–446. ACM, 2007.

[46] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. Speech
and Audio Processing, IEEE transactions on, 10(5):293–302, 2002.

[47] George Tzanetakis. Marsyas submissions to mirex 2012.

[48] Nuno Vasconcelos and Andrew Lippman. Learning mixture hierarchies. Ad-
vances in Neural Information Processing Systems, pages 606–612, 1999.

[49] Ming-Ju Wu and Jyh-Shing Roger Jang. Mirex 2012 submissions-combining
acoustic and multi-level visual features for music genre classification.

[50] E. Zwicker, H. Fastl, and H. Frater. Psychoacoustics, facts and models, volume
22 of springer series of information sciences, 1999.

63

	Abstract
	Introduction
	Background
	Hidden Markovian Models
	Markov chains
	Hidden Markovian Models
	Three basic problems

	Rhythm Histograms
	Rhythm Patterns
	Rhythm Histograms

	Mel Frequency Cepstral Coefficients
	Mel scale
	MFCC calculation
	Delta-MFCC

	Gaussian Mixture Models
	Definitions
	Constrained versions
	Training

	The model
	Retrieval model
	Definitions
	Acoustic similarity
	Tag model
	Retrieval process
	Querying the model

	Semantic music tagging
	Definitions
	Adding rhyhtm features
	Similarity measures
	Querying the tagging model

	Results
	Test setup
	Data source
	Evaluation measures
	Tests
	Parameters Tuning

	Results

	Conclusions and future work
	Bibliography

