UNIVERSITY OF PADOVA

DEPARTMENT OF MATHEMATICS “TUuLLIO LEVI-CIviTA”
MASTER THESIS IN DATA SCIENCE
GATED LINEAR NETWORKS FOR CONTINUAL
LEARNING IN A CLASS-INCREMENTAL WITH
REPETITION SCENARIO
SUPERVISOR MaSTER CANDIDATE

Pror. LAMBERTO BALLAN FEDERICO MEDICI

UNIVERSITY OF PADOVA

CO-SUPERVISOR STUDENT ID
DRr. N1icoLO NAVARIN 2005801
ErLENnA Izzo

UNIVERSITY OF PADOVA

ACADEMIC YEAR

2022-202%

ii

“Q_UALUNQUE COSA SIAIL DESTINO, ABITA NELLE MONTAGNE CHE ABBIAMO SOPRA LA
TESTA.”
— PaoLo COGNETTI

v

Abstract

Continual learning, which involves the incremental acquisition of knowledge over time, is a challenging problem
in complex environments where the distribution of data may change over time. Despite the great results obtained
by neural networks in solving a great variety of tasks they still struggle in showing the same strong performance
in a continual learning environment, suffering from a problem known as catastrophic forgetting. This problem,
that consists in a model’s tendency to overwrite old knowledge when new one is presented, has been dealt with
through a variety of strategies that adapt the models on different levels. Among those, in this work we will focus
on Gated Linear Networks (GLNS), a type of architectures that rely on a gating mechanism to improve the storage
and retrieval of information over time. This class of models has already been applied to continual learning with
promising results, but always in extremely simplified frameworks. In this work we will try to define a more complex
continual learning environment and to adapt GLNSs to the increased challenges that this environment will present,
evaluating their strengths and their limitations. In particular, we found that performing an encoding step can
help making a complex dataset more spatially separable and therefore making the GLNs more effective, and that
switching to a Class-Incremental with Repetition scenario is useful both to increase the realism of the framework
while easing the learning difficulty.

vi

ABSTRACT

LIST OF FIGURES

LisT OF TABLES

LISTING OF ACRONYMS

1 INTRODUCTION

2 BACKGROUND

2.1
2.2

Machine and Deep Learning
Continual Learning
2.2.1 Continual Learning scenarios
2.2.2 Continual Learning strategies

3 GATED LINEAR NETWORKS

3.1

3.2

4 EXPERIMENTS

4.1

GLNoverview
3.1.1 Geometricmixing,
3.1.2 Gated geometricmixing L. L.
3.1.3 GLN formulation
GLNtraining
Experimental setting L.
4.1.1 Datasets,
4.1.2 Task
4.1.3 Model
4.1.4 Evaluations
Results
4.2.1 Hyperparameters
4.2.2 Encoding
4.2.3 Tasksequence
4.2.4 Finalsummary

s CONCLUSIONS

REFERENCES

ACKNOWLEDGMENTS

vii

Contents

viii
xi

xiii

G\ AW W

................. II
................. I2

................. 13
................. 16

................. 17

19

................. 19

................. 19
................. 22

................. 26
................. 2.8
................. 29
................. 29
................. 33
................. 34
................. 35

39

43

49

viii

3.2

3.3

3.4

4.1

4.3
4.4
4.5

4.6

4.7

4.8
4.9

4.10

4.11
4.12

4.14
4.15

Listing of figures

Saliency map obtained from a GLN used for a binary one vs all classification task on the MNIST
dataset after 1 trainingepoch [1]. o oL o o
Illustration of half-space gating for 2D context space. Each white line corresponds to a hyper-
plane, and each region of the space is determined by its relative position with respect to all the
hyperplanes [2].
Difference between the region split produced by halfspace gating (left) and prototype gating
(right)inaaDcontextspace [3]. L L
Illustration of the general architecture of a Gated Linear Network. Each neuron receives as in-
put the outputs of the previous layer, with the side information z broadcasted to every neuron
and passed through each context function for the weight selection process [1].

Comparison of the separability of the first 3 classes of the MNIST (left) and CIFAR-10 (right)
datasets using so randomly generated prototypes.
Comparison of a GLN on the Permuted MNIST task from [3] and on the same task performed
using the CIFAR-10 dataset, while keeping all the model hyperparameters fixed.
Examples of images from each of the 10 classes belonging to the MNIST dataset.
Examples of images from all the 1o classes of CIFAR-10.
Pseudocode for a protocol to build a class-incremental with repetition benchmark for contin-
uallearning.[4] L
Relative size of each class of CIFAR-10 across all the training phases of the first CIR scenario
(a)and thesecond (b).
Visual comparison of the relative size of the first class of CIFAR-10 with respect to each train-
ing phase, in the simple class-incremental scenario (blue), in the first class-incremental with
repetition scenario (orange) and in the second one(green). L.
Scheme of the ResNet-so architecture [s]
Results obtained by performing tests on different sets of hyperparameters, specifically learning
rates, architectures and number of prototypes, using the random classifier (blue) as reference.
Subfigure (a) shows average accuracy trends for different learning rates, Subfigure (b) for dif-
ferent architectures and Subfigure (c) for different numbers of initialized prototypes.

Similarclasses.
Class-wise accuracy patterns for the best model with learning rate = 0.05 and so prototypes. .
Comparison between average accuracy trend for the best GLN obtained so far and its linear
COUNEEIPAIT. . . o v v vttt e it e e e e et e e et e e e e e e
Average accuracy of the model over the 10 classes in 3 different cases: no ResNet encoding
(orange), encoding taken from the 3rd convolutional block (green) and from the 4th convolu-
tional block (red).
Class-wise accuracy using the ResNet encoding from the 3rd convolutional block.
Comparison of the performance of the best model (learning rate = .05, 50 prototypes, one
fully connected layer with 100 neurons) in the first (orange) and second (green) CIR scenarios,
with the random classifier (blue) for reference. Lo L.

ix

I2

15

16

17

20
20

21

21

24

25

25
26

30
31
32

32

33
34

4.16

4.17

Comparison of the performance of the best model (learning rate = .05, 50 prototypes, one
fully connected layer with 100 neurons) tested without any extra additions (orange) and with

the new task sequence and encoding (green), with the random classifier (blue) as reference. . . 36
Class-wise accuracy patterns for the optimal model (learning rate = .05, 50 prototypes, one
fully connected layer with 100 neurons) with the new encoding and the new task sequence. . 36

4.2
43
4.4
4.5

Listing of tables

Scheme of the first CIR scenario. It shows how many elements of each class are presented in
each training phase. The classes are presented in the order of the random permutation applied. 23

Summary of the tests performed on the learningrate. L. 30
Summary of the tests performed on the model architecture. 31
Summary of the tests performed on the number of prototypes. 31

Summary of the performances of the best models found in each subsection, classified according
to the type of encoding (ResNet3 or ResNet4) and the task sequence used to train them (CIR 1
or CIR2). For each of them the average accuracy in each training phase and the final BWT score
areshown. e 37

xi

xii

Listing of acronyms

Cl................ Class-Incremental (scenario)

CIR Class-Incremental with Repetition (scenario)
CN-DPM Continual Neural Dirichlet Process Mixture

CWR Copy-Weights with Re-init

DGN Dendritic Gated Network

DGR Generative Replay

EWC Elastic Weight Consolidation

GEM Gradient Episodic Memory

GLN Gated Linear Network

HCL.............. Hybrid generative-discriminative approach to Continual Learning
ILSVRC ImageNet Large Scale Visual Recognition Challenge
LWTA Local Winner-take-All

MAS Memory Aware Synapses

NC............... New Classes (scenario)

NI................ New Instances (scenario)

NIC New Instances and Classes (scenario)

PNN Progressive Neural Network

SL.o..o Synaptic Intelligence

STM Short-Term Memory

XdG ...l Context-dependent Gating

xiil

Xiv

Introduction

Machine learning and deep learning have become increasingly popular in recent years, and this trend is set to con-
tinue in the coming years. The growing popularity of these fields can be attributed to several factors, including
the availability of large amounts of data and computational resources, the development of more powerful and
efficient algorithms, and the increasing demand for solutions to complex problems that traditional methods are
unable to solve. These algorithms have been used to achieve state-of-the-art results in areas such as image recog-
nition, natural language processing, and speech recognition, among others. However as machine learning and
deep learning models become more complex and capable of solving increasingly challenging problems, the need

to learn and adapt to new information becomes crucial.

Continual learning refers to the ability of machine learning models to incrementally and continuously learn
new tasks while retaining their knowledge of previously learned tasks. This is in contrast to traditional machine
learning, where models are typically trained on a fixed set of tasks and then tested on new unseen data. The field
of continual learning is thus a vital component of deep learning, as it enables deep neural networks to be deployed
in real-world applications, where they must continuously face changing situations and environments. However,
the same models that are able to achieve impressive results in a traditional machine learning environment are not
able to maintain the same performance in a continual learning framework, due to a phenomenon known as catas-

trophic forgetting.

Catastrophic forgetting refers to the tendency of deep neural networks to forget previously learned informa-
tion when learning new information. This happens because while the model’s parameters are updated to optimize
performance on the new task, its lack of capacity to preserve conflicting or competing information leads to the
loss of knowledge about the previous tasks. Catastrophic forgetting is a major obstacle to achieving successful
continual learning, as it can lead to models losing important knowledge and becoming less effective over time.

To address the problem of catastrophic forgetting, various approaches have been proposed in the literature, that

generally involve adapting the architecture of the models, intervening in how the weights are updated or replaying
the information at risk of being forgotten. However, many of these approaches are limited by their complexity,
scalability, and ability to generalize to new tasks. Among them, this study will focus on a specific class of models,
the Gated Neural Networks, that adopt an architectural strategy to mitigate catastrophic forgetting, and it will

investigate their use in the context of continual learning.

Gated linear networks are a type of neural network architecture that relies on a gating mechanism to control
the flow of information in the network, allowing the model to selectively preserve and retrieve information over
time. The gating mechanism is typically implemented by exploiting contextual information about the available
data, with the assumption that the environment contains some knowledge about the task being solved. That in-
formation is used to select one of the multiple sets of weights associated with each neuron of the neural network,
according to a predetermined partition of the context space. Their gating mechanism, combined with a local
weight update strategy that does not rely on backpropagation, makes gated linear networks well-suited for being
trained in an online environment and a good fit for continual learning. Gated linear networks have already been
applied in continual learning for tasks that span from image recognition to multivariate regression to contextual
bandits, and in this study, we will try to expand the potential of gated neural networks to solve the problem of

catastrophic forgetting by providing insights into their effectiveness in a more complex environment.

In particular, the contribution of this study to the field of continual learning is twofold. The Continual Learn-
ing paradigm has been so far modeled and evaluated with easy datasets in simplified scenarios, that manage to
grasp only partially the complexity represented by a real-world flow of information and at the same time give up
on features that could help in tackling catastrophic forgetting. This work will first try to address this problem by
moving to a more realistic and more challenging learning framework, both in terms of how data are presented to
the model and the type of presented data. Furthermore, it will test the performance of Gated Linear Networks
in this improved framework, pointing out the advantages and the limitations of this type of model and trying to

identify strategies to deal with the increased complexity they will have to face.

This dissertation is organized as follows. Chapter 2 introduces the theoretical background necessary for the
understanding of this work. After a general overview of the fields of Machine and Deep Learning, it will present
in more detail the Continual Learning paradigm and how it can be declined, it will describe the problem of catas-
trophic forgetting and it will give a summary of the related works in the literature. Chapter 3 will describe Gated
Neural Networks, starting from the mathematics that lies behind those models, explaining their main features
and why they are a great fit for continual learning, and reporting their usage in prior works. Chapter 4 will first
introduce the experimental framework and explain the novelty aspects of this study, and it will then summarize
the obtained results. Chapter s will finally address the findings and the limitations of this work, it will discuss

possible improvements and will suggest directions for future research.

Background

In this chapter, we will talk about the theoretical background that lies behind this work. After a general intro-
duction to the Machine Learning field (Section 2.1), we will present the concept of Continual Learning together

with the challenges it presents (2.2).

2.1 MACHINE AND DEEP LEARNING

Machine Learning is a term that generally refers to the branch of Artificial Intelligence that focuses on how a ma-
chine is able to learn from data and improve its performance over time, like what humans do during the course of

their whole life. A classical definition by Thomas Mitchell [6] describes Machine Learning as follows:

A computer program is said to learn from experience E with respect to some class of tasks T and performance mea-

sure Pif its performance at tasks in T, as measured in P, improves with experience E.

This definition allows us to identify all the main ingredients in machine learning: a task to be solved (clas-
sification, regression, etc.), a set of data related to that task, a model to be taught to solve that task, and some
metrics to measure the performance of that model. Among various types of machine learning models and algo-
rithms developed in past and recent years, that can span from simple statistical models like linear regression and
classification to Support Vector Machines (SVMs) [7] to Decision Trees [8] and many more, Artificial Neural Net-
works (ANN’s) have attracted much attention because of their capability to perform greatly in complex tasks. The
branch of machine learning that focuses on neural networks is called Deep Learning, and while their main build-
ing blocks, like the perceptron [9], how to combine them [10] and how to train them through techniques such as
backpropagation [11][12] have been known for decades it has been only in the past 10-15 years that the necessary

computational power and large-scale datasets have been made available in order to efficiently train such complex

models, paving the way for the so-called “deep learning revolution”. Taking inspiration from the structure of the
biological brain, neural networks generally rely on several layers of artificial neurons connected together in struc-
tures that can be very simple as much as incredibly elaborate in order to grasp all the complex patterns present
in the available data. Since their introduction neural networks have been able to match or even surpass human
performance on a wide range of tasks that include image recognition [13], object detection [14], natural language
processing [15], language translation [16], speech-to-text conversion [17], face identification [18] among the best-

known ones.

In addition to different types of tasks and models, another important aspect in defining how a machine “learns”
is the learning paradigm, which depends on the type of available data and the way they are presented to the model.
The most important learning paradigms are Supervised Learning (when the target is available and can be used to
give feedback to the model), Unsupervised Learning (no target is available, and the goal is usually to find patterns
or approximate distributions), Reinforcement Learning (the model is asked to perform actions in a sequential
way receiving feedback in the form of a positive/negative reward), Online Learning (the model receives inputs
as a continuous flow of information to be analyzed one by one). This work will focus on a particular paradigm,
Continual Learning, that has recently gained a lot of attention because of its increased closeness to real-world
scenarios and to human learning patterns and at the same time because of the greater challenge it presents to

standard neural networks, and that will be presented in more detail in the next section.

2.2 CONTINUAL LEARNING

Continual Learning (also known as Incremental Learning or Life-Long Learning) is a learning paradigm that aims
to bring the classical machine learning framework closer to human-like learning, and it is often seen as a necessary
step to lead Al systems into achieving “true” intelligence. This paradigm takes inspiration from the fact that for
humans it is natural to learn new skills sequentially without forgetting previously learned ones, and that the world
around us is in general non-stationary. These are features that in real-world learning settings often translate into
a sequential stream of tasks without any knowledge about their relationship or duration in time and with no
chances of re-encountering previously seen data. These situations arise in multiple fields, from robotics [19] to
reinforcement learning [20], computer vision [21], and many more.

A one-sentence definition of this paradigm, obtained in [22] by adapting Mitchell’s definition of Machine

Learning, states the following:

A computer program is said to learn continually from experience if; given a sequence of ephemeral partial experi-
ence E;, a target function b* and performance measure P, its performance in approximating b* as measured by P

improves with the number of processed partial experience E;.

This definition expands the original ones by adding the adjectives ephimeral and partial to the experience
concept: this is a fundamental aspect in the continual learning paradigm, with models that are often trained in an
online fashion and with a data distribution that changes over time and does not allow to make permanent assump-

tions over previously seen data. All these aspects of continual learning can be formalized and declined in multiple

ways, leading to several possible learning scenarios that will be presented in Section 2.2.1. This framework in gen-
eralis quite different from the standard machine learning framework, that normally deals with stationary tasks and
data distributions, and with the assumption that all the data are available during the training phase. That means
that conventional neural networks trying to solve problems in a continual learning framework struggle with re-
taining the previously acquired knowledge and end up overwriting the parameters critical for solving previously
learned tasks, a problem commonly referred to as catastrophic forgetting [23][24]. The root of this problem has
been found in the stability-plasticity dilemma [25][26], a constraint that applies to both artificial and biological
neural systems. It is based on the idea that a learning process required both plasticity to integrate new knowledge
and stability to retain the old one, and a balance between the two must be obtained. Overcoming catastrophic for-
getting means, on one hand, being able to efficiently acquire new knowledge, and on the other hand, preventing
this new knowledge from interfering with the existing one. To achieve this a lot of computational strategies have

been developed, which will be summarized in Section 2.2.2.

2.2.1 CONTINUAL LEARNING SCENARIOS

There are two main characteristics of the learning framework that could be exploited to differentiate the possible
continual learning scenarios: the knowledge of the task, and the type of content update [3][22].

The first distinction regards whether the model is aware or not of the task to be solved. The majority of the
models assume to know that task, often in the form of a label associated with the input data. In this scenario, called
task-aware, models can exploit that information to tackle more efficiently the problem of catastrophic forgetting,
for example by taking counter-measures whenever a task switch takes place. The alternative is to train a model
in a task-agnostic (or task-free) scenario, where no information about the task is provided. This scenario is more
realistic since in real-world cases it often happens that tasks are not clearly defined or change over time, but it also
results in greater challenges for the models that have less information to rely on. We will see later on when the
main continual learning strategies will be presented, that being in a task-aware or task-agnostic scenario can play
a big role in how the forgetting is dealt with.

The second distinction regards the possible kind of data included in each training batch, with three possible

cases:

* New Instances (NI): every batch contains new examples of previously encountered classes;
* New Classes (NC): every batch contains only examples of classes never encountered before;

* New Instances and Classes (NIC): a hybrid version of the first two and most realistic case, every batch
containing both examples of new classes and new instances of old classes.

In the context of continual learning the second scenario, also called Class-Incremental (CI), is the most studied.
However, this scenario can be limiting, since it artificially exacerbates the catastrophic forgetting by never allowing
the model to revisit previously seen classes. In real-world though it is natural to encounter repeatedly items from
the same class without it abruptly disappearing, a behavior that implicitly contributes to mitigating the forgetting
of previous knowledge [4]. The third scenario sometimes referred to as Class-Incremental With Repetition (CIR),
tries to address this limitation, and has been proven to be beneficial for the performance on both learned and
novel classes [27][28][29]. For this reason, this work will focus on a NIC scenario, using a task-building protocol

proposed in [4].

2.2.2 CONTINUAL LEARNING STRATEGIES

The relative novelty of this field had led research to move in various directions, sometimes very different from each
other, in order to address catastrophic forgetting. In the literature the approaches have been commonly grouped

into three main categories [30][31][22][32]:

* Architectural strategies: they try to mitigate the effect of catastrophic forgetting by altering the archi-
tecture of the model, and therefore by choosing specific architectures, activation functions, or weight-
freezing strategies;

* Regularization strategies: in this case, the adopted strategy involves adding constraints to the model’s
weight updates by intervening on the loss function with some regularization techniques;

* Rehearsal strategies: involves periodically replaying data from earlier training sessions in order to strengthen
the connections relative to previously learned knowledge.

We will now introduce some of those strategies more in detail with a reference to the categories introduced
above, keeping in mind that not all of them are fit for both the task-aware and task-agnostic scenarios and that the

classes of strategies are not necessarily mutually exclusive.

ARCHITECTURAL STRATEGIES

Models belonging to this class take inspiration from the internal structure of the brain and the presence of func-
tional areas within it. According to the Complementary Learning Systems theory[33] there are two areas in the
brain responsible for the learning process: short-term memories are stored in the hippocampus, while a long-term
consolidation of those memories takes place in the prefrontal cortex, allowing the brain to retain the most useful
information and discard the rest. This led to developing strategies that focus on having multiple representations

inside the model, with different sets of weights getting updated under different rules.

The most naive approach consists in freezing a subset of deemed important weights while leaving the others
subject to updates [34], a procedure that can be relaxed by introducing different learning rates for different sets
of weights according to how specialized they are to previous tasks leading to an intersection with the regulariza-
tion strategies. A dual-memory approach has been used also in the GeppNet+STM model [35], where a standard
architecture is joined by a short-term memory (STM) buffer that is used to store inputs that produce highly uncer-
tain predictions. Those memories are then consolidated into the main network during a designated “sleep” phase,
similarly to how memory works in humans. The Copy-Weights with Re-init (CWR) approach [36] is still based
on a dual representation but targets only the neurons of the last layer of a network, being the most specialized
ones. For each of them, two sets of weights are defined, a temporary one that gets trained in a regular way only
to be re-initialized whenever a shift in the data distribution takes place, and a consolidated one that gets updated

only concurrently to those shifts on the basis of the temporary ones, while the rest of the network is left untouched.

Of course, more than two learning areas can be initialized in a model. In the Progressive Neural Networks
(PNNs) introduced in [37] new sets of task-related neurons are initialized whenever a new task is encountered,
and only those related to the current task are trained while the others are kept frozen. These models, that as the

CWR strategy work in a task-aware scenario, ensure a great specialization of different areas of the network, and

are very efficient in preserving weights related to old tasks. On the other hand, these benefits come at the expense
of a potential explosion of the architectural complexity, that in a framework with a potentially infinite training

time could end up being a heavy limitation.

Another approach is the Context-dependent Gating (XdG) [38], which uses task labels as contextual infor-
mation to activate or deactivate certain areas of the network and leading to each neuron being trained only on a
subset of the tasks, mitigating the forgetting. The result is similar to the one obtained with the PNNs, with each
task referring to a part of the architecture, and with a weaker specialization compensated by the lack of complexity
explosion. The gating mechanism presented above can also be adapted to be used in a task-agnostic scenario. The
Gated Linear Networks (GLNs) [39] present multiple weight vectors for each neuron, and the weight set to be
activated is chosen through a gating mechanism based on some contextual information relying on the assumption
that the context brings information on the task to solve. This class of models is the object of study of this work and
will be described in more detail in Chapter 3. An interesting variant of the GLNGs is represented by the Dendritic
Gated Networks (DGN) [40]: in an attempt to propose a more biologically plausible process, the gating mecha-
nism is applied to different branches that, like the dendrites in biological neurons, connect the artificial neurons

to different subsets of neurons of the lower layer.

An alternative way to introduce specialization inside a neural network consists in using different activation
functions. It has been found that different activation functions are preferable depending on the task and the rela-
tionship between tasks [41]. With this assumption, in [42] alocal winner-takes-all (LWTA) approach is proposed,
enhancing local competition between neighboring neurons while exploiting different nonlinearities. Layers in the
models that adopt this strategy are composed not of individual neurons but of blocks containing several neurons,
each with a different activation function. In each block, a winner is selected through a competition function,

while the outputs of the losing neurons are discarded in a winner-takes-all fashion.

REGULARIZATION STRATEGIES

In this case, catastrophic forgetting is mitigated by adding regularization terms to the loss function so that the
newly acquired knowledge does not interfere with the old one. These approaches are generally based on the as-
sumption that there are multiple sets of weights resulting in the same performance. Therefore, when a new task
is introduced, a possible way to preserve previous knowledge is to select a new set of optimal weights that is the
closest possible to the old one, taking inspiration from how synaptic consolidation works in biological brains [43].
The easiest way to achieve that is by casually differentiating the learning speed across different neurons, a naive

strategy that has been studied in the past years without achieving extremely encouraging results [44][24].

A more targeted method consists in slowing down the learning for the parameters of a model according to
how much they contributed to the previous tasks, something that can be measured in different ways leading to
different strategies. The Elastic Weight Consolidation (EWC) [31] quantifies the importance of the weights with
respect to previous tasks through the diagonal of the Fischer information matrix. In the Synaptic Intelligence (SI)
approach [30] an estimate of the importance of each weight is obtained by considering their contribution to the

change in the loss while learning the task. In the Memory Aware Synapses (MAS) [45] a similar gradient-based

approach is used, but in this case the importance of each parameter is given by an estimate of how sensitive the
performance of the model is to a perturbation of that parameter. In all these cases the computed importance is
then incorporated into the loss function as part of an extra term that determines the learning speed for each weight.
All these three strategies work only in a task-aware scenario since they rely on a task-change signal to update the
importance value associated with each parameter, but they can be extended to the task-agnostic scenario. For ex-
ample, the Task-Free Continual Learning approach [19] adds a task-switching mechanism to the MAS algorithm
to compensate for the absence of task labels. In particular, it bounds the update of the importance values to a
quick growth in the loss, assuming that the model performs badly immediately after data from a new task are

presented, and freezes the importance values whenever that happens.

A slightly different strategy is used in the Uncertainty-guided Continual learning with Bayesian Neural Net-
works (UCB) [46]. While the goal is still to adapt the learning speed of each weight, the focus is on their uncer-
tainty rather than their importance. Adopting a Bayesian approach to neural networks, they have each parameter
drawn from a normal distribution N(g, #*), and during the learning phase the weights are not updated directly,
but rather through their mean and variance. In this context, the variance associated with each weight is interpreted
as a measure of the weight’s uncertainty. Assuming that the most uncertain weights are the less specialized ones,
and thus those more available for further training, their updating speed is determined by multiplying their learn-
ing rate by their uncertainty. Notably, this approach doesn’t require a knowledge of the task being solved, and is

therefore fit for both task-aware and task-agnostic scenarios.

The Learning without Forgetting approach [47] introduces an extra loss term called Knowledge Distillation
loss. Knowledge distillation generally refers to the process of passing the knowledge of a large model to a smaller
one, and the loss function introduced in [48] does that by encouraging the outputs of the two networks to be
similar. In Learning without Forgetting the same loss function is used to minimize the variation in the outputs
for old tasks when a new one is introduced. Some variants of this method can be found in the literature: the
Active Long Term Memory (A-LTM) network [49] works in a nearly identical way, differing only in the weight
decay regularization strategy, while Less-Forgetting Learning differs in using internal representations instead of

the final output to control the updates of the weights [50].

REHEARSAL STRATEGIES

The rehearsal strategies try to prevent catastrophic forgetting by retraining the model using past information. Also
in this case, the most naive approach of storing all the past samples and using them to retrain the model whenever
a task shift takes place is extremely inefficient, both in terms of computational complexity and memory require-
ments. Itis possible though to adopt strategies that store past knowledge in an eflicient and less memory consum-

ing way, making this approach a viable option.

The ExStream algorithm [51] uses a memory buffer to store only a fixed number of examples from each class
that can be seen as prototypes. As long as there’s space in the bufter new examples are simply added, while when
the buffer gets full a compression process takes place to free some memory: the two closest prototypes are merged

through an average weighted on the number of previous mergers of each prototype. The prototypes are then

re-presented to the model together with examples from new tasks.

A less memory consuming approach to present past information to the model is through generative models.
These models instead of storing past examples learn the distribution of the previously presented data and generate
new data from that distribution. For example, the Deep Generative Replay (DGR) strategy [52] uses a dual model
architecture, with a deep generative model (“generator”) and a task-solving model (“solver”). The generator pro-
duces data based on the distributions of the old tasks that are paired with labels from those tasks. The generated
data are then presented to the solver, which works as a standard neural network, interleaved with examples from

the new task to reduce the overall forgetting.

HYBRID STRATEGIES

Strategies belonging to different categories can be combined in order to obtain more resistant models. It is the
case for example of the AR 1 approach [53], obtained by combining CWR [36], an architectural method, with SI
[30], a regularization strategy. The weights of the last layer that were kept entirely frozen in CWR got instead a

different updated speed each, according to their importance as computed in the ST approach.

While AR1 is a task-aware method, as much as the two methods that it combines, most of the hybrid strategies
have been developed for task-agnostic scenarios. The Hybrid generative-discriminative approach to Continual
Learning (HCL) [54] combines features from all three strategy groups. It is a method based on generative replay
that maps tasks to distributions through generative flows, expanding the model whenever a new task is detected
by looking at drifts in the data statistics and adopting a regularized loss to enforce small changes in old representa-
tions. Continual Neural Dirichlet Process Mixture (CN-DPM) [32] is also based on a combination of generative
replay and model expansion where outliers from the existing distributions are detected in a Bayesian nonparamet-
ric framework. Outliers are believed to belong to a new task and subsequently stored in a buffer, and as soon as the
buffer gets filled a new task-related part of the network is built using the outliers collected up to that moment, with
the model then being trained on samples generated from the distributions. Continual Unsupervised representa-

tion Learning works in the same way, differing just in using a Variational Autoencoder for the generative part [55].

Dark Experience Replay [56] works with a combination of regularization and rehearsal techniques. Like Learn-
ing without Forgetting [47] a knowledge distillation loss is used but applied only to a subset of the samples stored
in a memory buffer. Those samples are selected via reservoir sampling, in order to simulate a uniform sampling
among all the past data without the need of storing them all. A knowledge distillation step is used also in Incre-
mental Classifier and Representation Learning (ICARL) [57], but in this case a more elaborate strategy is used to
select the samples to be stored. A similar combination is used in the Gradient Episodic Memory (GEM) model
[58], which uses a memory buffer to store the last # seen examples from each class and adds a regularization term
to the loss based on the performance on the stored examples. However, while the knowledge distillation loss en-
forces stability on the performance for previous tasks, the loss term introduced with the GEM model allows that

performance to grow, in order to enhance the backward transfer of knowledge.

A third class of hybrid methods involves a mix of architectural and rehearsal strategies. These methods gener-

ally rely on a dual-memory system, similarly to the GeppNet+STP model [3 5] described among the architectural
strategies. However, in these cases the short-term memory has two roles: learning short-term conceptual repre-
sentations for the prediction phase, and generating samples for consolidation into the long-term memory. This is

the case for example of FearNet [59] and Growing Dual-Memory (GDM) [60].

I0

Gated Linear Networks

In this chapter we will describe in detail the Gated Linear Network model, focusing on the general functioning

of the model and the results achieved so far in the literature.

3.1 GLN OVERVIEW

Gated Linear Networks (GLNs) are a family of neural network models first introduced in [39] with some peculiar
features that make them particularly fit for working in the continual learning environment. In standard neural
networks the task of predicting the final target is left to the final layer of the network, with all the internal neurons
and layers learning to detect specific features of the input. In GLNs the approach is different: each neuron is con-
sidered an expert that predicts the probability of the target, taking the predictions of the neurons of the previous
layer as inputs. Moreover, the model is characterized by a gating mechanism through which each neuron chooses
the set of weights to use (and update) according to the region of the space to which the input data belongs, with

different neurons having different space partitions.

The first advantage of continual learning comes from the simplification of the learning phase with respect to
standard backpropagation. In fact, the weights of each neuron are updated independently by associating a sep-
arate convex loss to each neuron, increasing significantly its computational efficiency. The gating mechanism is
also very helpful in tackling the problem of catastrophic forgetting by defining different sets of weights to be up-
dated separately; in doing so this model falls into the category of architectural strategies following the classification
proposed in Chapter 2. Moreover, this comes with no loss in terms of approximation capacity. In fact, similarly
to what the Universal Approximating Theorem proved for feed-forward neural networks [61], it has been proved
that with sufficiently rich side information the GLNs have a large approximation capacity and that the capacity is

effective in the sense a gradient descent algorithm will eventually find the approximation [39].

II

Another interesting characteristic of this model regards its easy interpretability. Most of the modern neural
networks have been criticized for being “black boxes” for which an interpretation is very difficult to obtain, often
requiring complex post-hoc analysis [62]. As for GLNs we will see that after the gating process the model collapses
into a linear model, specifically into a multilinear polynomial of degree equal to the number of layers. The weight
vector associated to the polynomial has the same size of the input, meaning that it can be used to build an intuitive
saliency map without any further computational expense. Figure 3.1 shows an example of saliency maps obtained
from a GLN used in a classification task with the MNIST dataset.

0 1 2 3 4 1.00
f-l' - :_; . Io.75
I ' r] - ' 3 L 0.50
s - L 0.25
- 0.00
5 6 7 8 9
. : a = L —0.25
i - L —0.50
‘i ‘_ . h‘ a I:_G_?S
- -
-1.00

Figure 3.1: Saliency map obtained from a GLN used for a binary one vs all classification task on the MNIST dataset after 1
training epoch [1].

Due to their particularly fast training procedure, GLNs have seen their best field of application in online learn-
ing, with tasks spanning from contextual bandits [2] to univariate and multivariate regression[63] to image classi-
fication [1]. The performance of GLNs in a continual learning setting in countering catastrophic forgetting has
been explored only in [3] using the Split-MNIST and Permuted-MNIST benchmarks, leaving room for an evalu-

ation of its efficiency on more complex datasets and tasks, that is the aim of this work.

We will now introduce in more detail the two main building blocks of the Gated Neural Networks, the Geo-
metric Mixing operation and the gating mechanism, explaining how to combine them and how to train a model

built on those concepts.

3.1.1 GEOMETRIC MIXING

Firstintroduced by Christopher Mettern in the context of data compression [64][65], Geometric Mixing consists
in a parametrized way of combining probabilistic forecasts. Given py, ps, ..., p4 input probabilities predicting a

binary event, the geometric mixing of such probabilities takes the form

GEO,(p) = o(w’s7'(p)) (3.1)

I2

where o(x) := 1/(1 + ¢*) defines the sigmoid function, & (x) := log(x/(1 — x)) defines its inverse, the
logit function, p = (p1, ..., pa) is the vector containing the input probabilities and w € R? is the weight vector.
As shown in [1] the following identity holds:

Hf:ﬂ’?’i ‘
H?:1Pi‘vl + Hf:l(l -p¥)

that makes it explicit that the geometric mixing operation works as a product of experts, and leads to the following

dw'e™(p)) = (3.2)
interesting properties:

* ifall the weights w; are the same the geometric mixing works as a simple mean;
* ifall the weights w; are equal to 0 then the prediction is 1/2;

* every forecaster has a “right of veto”, meaning that a single p; equal to zero, combined with a non-zero
weight, drives the whole geometric mixture prediction to zero.

A neuron that carries out the operation defined in 3.1 is called a Geometric Mixer and both its inputs and its

output take values in [0, 1]. As a result, an L-layers network of geometric mixers can be defined as:

hO) = o(x)

' _ _ (3-3)
P = (W (BED)), i =1,..L

where x is the input data of the network, W) is the matricial parametrization of the weights of all the neurons

of the i-th layer and b is the output of the i-th layer.

It is worth noting that a deep network composed solely of geometric mixing neurons as described before is

equivalent to a linear network with a final sigmoid function:

p :J(W(L)afl (a’... (VVmcfl (cr(x))))) (3-4)
:J(W<L) Tt Wl)x) (3:5)

L
= <H W(")x> (3.6)

Given this last equivalence, in order to account for the nonlinearity that usually emerges in non-trivial data it

becomes necessary to add a gating mechanism to the geometric mixers.

3.1.2 GATED GEOMETRIC MIXING

To obtain the neuron of a GLN a contextual gating procedure is added to the geometric mixer as described in the

previous section. This means that the contextual information associated with the input data is used to select the

13

set of weights to be used. This is performed by subdividing the context space into non-overlapping regions, with
every region being associated to a different set of weights 7.

More formally, a context function ¢ : Z — Cisassociated to each neuron mapping the contextual information
z associated to the input x to a specific set of weights We(z)s where Z is the set of possible side information z and
C = {0, ..., k — 1} is the context space consisting of regions. Using the notation of equation 3.1 we get thata

Gated Geometric Mixer can be defined as

GEO,(p;2) := GEOu,,, (p,2) (37)

The standard approach is to simply use the feature vector of each input as context information. As for how

to determine the regions of the context space, we will now present two possible strategies: halfspace gating and

prototype gating.

HALFSPACE GATING

This is the method proposed in the original paper [1]. The split of the input space into regions is obtained by
combining the halfspaces defined by hyperplanes. Given a vector z € R and an hyperplane with parameters

a; € R and b; € R we can define a context function ¢ as

o T
G() = 1 ifa;z>b; (5.8)
0 otherwise
What we obtain is that the affine hyperplane {x € R? : x - 2; = b;} is being used to divide the context space
into two non-overlapping regions. Assuming the number of regions £ to be a power of 2, we can stack log, (k)
context functions of the same kind obtaining a higher-order context function ¢ : R — {0,1}%¢®) where
¢ =[,...,GT. On top of that, the set 0, 182(8) can be easily mapped into a one-hot encoding of the £ regions,

and thus we obtain the final context function by combining all those operations: ¢ : RY — {0, 1}*.

The standard approach for the initialization of the hyperplanes is to sample them randomly from a normal
distribution fixed beforehand. In particular, a hyperplane defined through the parameters 4, & as described above

has those two parameters sampled respectively from

a ~ N(0,1)
b ~ N(0,57)

with the first being a multivariate normal distribution with the zero vector as mean vector and the identity
matrix / as covariance matrix, and the second being a univariate normal distribution with 0 as mean and a small
fixed value o> as variance. This choice has two main properties: with large d such sampled hyperplanes have a high
chance of being orthogonal, maximizing the efficiency of the split; secondly, inputs close in cosine distance will be

mapped into similar predictions [1]. The choice of a small ¢ is driven by the fact that it forces all the hyperplanes

14

to pass close to the origin; this, combined with a standardization of the input data, will ensure an optimal choice
of the hyperplanes in the sense that all of them will cross the data splitting them into two groups. Figure 3.2 shows

the result of half-space gating in a two-dimensional context space.

Figure 3.2: lllustration of half-space gating for 2D context space. Each white line corresponds to a hyperplane, and each
region of the space is determined by its relative position with respect to all the hyperplanes [2].

PROTOTYPE GATING

In [3] an alternative gating strategy is proposed, that focuses on prototypes rather than hyperplanes. The region
assignment is done by associating every point to its closest prototype, with the result being a Voronoi tessellation
of the context space. If we call PJ@ € R¥*4 the matrix of the prototypes associated with the j-th neuron of the

i-th layer, the gating function can be formalized as:

cJ@ (z) = one hot (arg min <||pj(ll) - z||)) (3-9)
!
where z is the context vector, P](,? is the I-th row of PJ@ (corresponding to the parametrization of the I-th proto-

type of the j-th neuron of the i-th layer) and || - || is the Euclidean norm. Figure 3.3 shows how prototype gating

differs from half-space gating in splitting a two-dimensional context space.

Is

Figure 3.3: Difference between the region split produced by halfspace gating (left) and prototype gating (right) in a 2D

context space [3]

Also in this case the choice of the prototypes can descend from a random sampling strategy, with the pro-
totypes being sampled from a multivariate normal distribution p ~ N(0, X) with 0 being the zero vector and X
being a diagonal covariance matrix with small-value variances. Also in this case, the choice of small-value variances
combined with standardized input data ensures an efficient choice of prototypes. Alternatively, a data-driven ap-
proach can be used, with prototypes selected among the input data. This can be done in two ways: by sampling

among the whole dataset (if it is fully available since the beginning) or, in the case of a continual learning frame-
work, by selecting iteratively the most significant items according to some importance criteria (like the distance
from pre-existing prototypes). This last method in [3] leads to the definition of a sub-class of GLNSs called Grow-

ing ProtoGLNs. While Munari in his work finds the growing approach to be more efficient, its performance with

the more complex dataset used in this work will be discussed in Chapter ?2.

3.1.3

far with the equation 3.1 we obtain the following formulation for a neuron ; at layer 7:

i(ez) = ((“’Jz(

represents the set of weights activated by the contest z through the context function cjl associated

where w

A schematic depiction of the full model as defined above can be seen in Figure 3.4.

()

(=)
to the neuron. Or, to switch to the matricial notation used in equation 3.3:

0 1
WEz)" (

GLN FORMULATION

Independently from the choice of the gating function ¢(z), by combining all the building blocks introduced so

@ _
bj,(x,z) - 0'(

z))T"fl (

16

(3.10)

(3.11)

pl(l p!\ p!‘

c, <,y
Layer 2 /—é % —— %
/%_1\““‘\
T~
Py T ~ P
a=Na=
Layer |) e
/ \‘\
p['\[_Fc]‘, = ‘-_-. p[JI pll(K‘rla
Layer 0 j
Side information z

Figure 3.4: lllustration of the general architecture of a Gated Linear Network. Each neuron receives as input the outputs of
the previous layer, with the side information g broadcasted to every neuron and passed through each context function for
the weight selection process [1].

3.2 GLN TRAINING

As said at the beginning of the chapter each neuron is assumed to be predicting the binary target y at each training
step, meaning that they can be trained individually without the need to resort to backpropagation. Thus given
the side information z, at each training step # the neuron ; at layer 7 suffers a loss that is convex with respect to its

()

active weights # := W, () [65]. Using the notation from equation 3.7 the loss can be expressed as:

[FF0(u) = —log(GEO, (y; 2:)) (3.12)

with GEO, (1;p,) = o(u"a7}(p,)) and GEO,(0; p,) = 1 — GEO,(1;,). The gradient of this loss function

with respect to the weights # is very easy to compute and is given by:

VIO (1) = (GEO,(1; pr) —) logic(p.) (3.13)

which allows the model to carry out the update of the weights of all the neurons in parallel. The update of
the weights can then be done using one of the many different online convex programming techniques, but in this
work, we will restrict to Online Gradient Descent. Assuming that the weights belong to a convex set W C R4
then the algorithm is ensured to converge to the solution [66]. The most common way to bound a weight vector
into a convex set is by clipping its components into an interval in the form [—£, #] for some constant £ > 1, which

forces the weight vector inside a scaled hypercube of side 2.

17

18

Experiments

In this chapter, we show and analyze the results of the tests performed. We use the experiments in [3] as starting
point for our study, and we will try to increase the complexity of the environment while trying to progressively

move towards a more realistic learning scenario.

4.1 EXPERIMENTAL SETTING

This section reports the experimental setting to ease the reproducibility of the experiments.

4.1.1 DATASETS

In this work, we will refer to two different datasets. We will try to compare the performance of GLNSs on the
MNIST dataset, used in the early work of [3] that we will use as a starting point, to the performance on the
CIFAR-10 dataset to check how GLNs adapt to a significantly more complex environment. The performance of
the GLNs (and other continual learning strategies) on MNIST has been widely assessed [39][1][3], but the rela-
tive simplicity, assessed through the two Figures on the next page, calls for test on more difficult datasets. Figure
4.1 compares the separability of classes from MNIST and CIFAR using so randomly generated prototypes: we
can clearly see that the MNIST images are mostly concentrated in a limited number of areas while the CIFAR ones
are more scattered and thus more likely to generate overlappings between different classes. Figure 4.2 shows the
performance of GLN on one of the tasks presented in [3] and on the same task using the CIFAR dataset instead.
The task in question is called Permuted-MNIST and consists in several training phases, each presenting to the
model permutations of the original images. Also in this case we can see how harder it is for the model to perform
the same task on the CIFAR dataset.

19

2500 00
2000 50

1500

g

R It b1) E) B 0 10)) o

(@) MNIST, Class 1 (b) CIFAR, Class 1
. P
zzz 200
3 b 2 Eol 0 0 T 10 bl 30 20 50
(c) MNIST, Class 2 (d) CIFAR, Class 2
400
100 50
3 1 2 EY a0 0 B 10 0 E)) 50
(e) MNIST, Class 3 (f) CIFAR, Class 3

Figure 4.1: Comparison of the separability of the first 3 classes of the MNIST (left) and CIFAR-10 (right) datasets using 50
randomly generated prototypes.

MMIST/CIFAR-10 comparison on a Cl task

» & . & &
- - » - -

=
E =&— Permuted MNIST

2 B0 - & Permuted CIFAR-10
&

Training phase

Figure 4.2: Comparison of a GLN on the Permuted MNIST task from [3] and on the same task performed using the CIFAR-
10 dataset, while keeping all the model hyperparameters fixed.

20

MNIST

The MNIST (Modified National Institute of Standards and Technology) database is a large database containing
images of handwritten digits [67]. It contains 60,000 training images and 10,000 testing images, all equally split
among 10 categories corresponding to the 1o digits. All theimages are in black and white and in a 28x2.8 resolution.

Figure 4.3 presents examples from the dataset.

Label: 5 Label: 0 Label: 4 Label: 1 Label: 9

L=}
(=)
[=]

Label: 1 o Label: 3 o Label: 1

Figure 4.3: Examples of images from each of the 10 classes belonging to the MNIST dataset.

CIFAR-10

The second dataset used in this work is CIFAR-10 [68]. It consists of 60,000 32x32 colored images, equally divided
into 1o classes. The 1o different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks, and of the 60,000 items in the dataset 50,000 are used for the training phase and 10,000 for the test phase.
With respect to MNIST this dataset already results in a more difficult challenge due to a (slightly) bigger dimension
of the images, the switch to color images with three different RGB channels, and the presence of significantly more

complex figures and patterns.

airplane automobile

Figure 4.4: Examples of images from all the 10 classes of CIFAR-10.

21

4.1.2 TAsk

As discussed in Chapter 2 working in a Class-Incremental With Repetition scenario has been proven more effec-
tive in dealing with catastrophic forgetting while allowing to present data to the model in a more realistic way.
However, to this date, most of the experiments in continual learning are performed in class-incremental scenarios
without any kind of repetition, by simply presenting to the model only unseen classes at each training phase, ei-
ther from the same dataset [21][3], from different datasets [19] or using transformations of previously seen classes
[58][3]. In order to address this problem this work will present the data to the GLN model in a CIR fashion, and
in particular, referring to two different task-building criteria that increasingly relax the CI scenario. While at first
glance it could seem that switching to a CIR scenario, and thus presenting new samples of old classes, would be
equivalent to incorporating a rehearsal strategy into the model, there is a significant difference. Rehearsal strate-
gies rely on information that has already been passed to the model and gets passed again either directly or indirectly.
In this case, however, the new samples, while still belonging to old classes, represent previously unseen informa-

tion and thus there is no rehearsal of past information involved.

In order to ease the comprehension of the learning scenario adopted in this study we will try to formalize the
concept of task and task sequence. The data flow can be described as a sequence of couples in the form (x?), y(?))
with x() € X being the input vector and y\) € {cy, ..., ¢, } its target label corresponding to one of the 7 classes of
the dataset. The data are presented to the model in a sequence of disjoint training phases 7; € {71, ..., T;, }, each
characterized by a different distribution of the 7 classes. In the CIR framework, each training phase contains a few
samples belonging to all the classes presented in the previous phases and samples belonging to at least one newly
introduced class. The two scenarios used in this study differ in the number of samples of each class presented in
each phase, which is determined using two different approaches. Figure 4.6 and 4.7 at the end of this section will

give a visual comparison of how classes are presented to the model in the two cases.

We will now present in more detail the two scenarios. In both cases the samples will be presented to the model
in an online fashion, meaning that the training will happen with just one epoch and batches of size one. A random
permutation has also been applied to the order of the classes with the respect to the standard order of the dataset,
which will be the order according to which they will be progressively presented to the model. Also in both cases,
the first training phase contains 2 classes, and a new one is introduced at each one of the following ones resulting
in a total of nine training phases. At the end of each training phase, the model is evaluated on all the classes that

it has seen up to that moment.

22

FirsT CIR SCENARIO

This first scenario has been applied only with the CIFAR-10 dataset, for which each class contains 5, 000 training
samples. In this scenario, each class is presented to the model following the same pattern, with the assumption
that the majority of the samples of each class are presented at the beginning with only a few of them being used
in later training phases. For each class ¢, being 7} the first training phase in which the class is presented to the
model, the number of samples from that class presented in each phase 1;is determined according to the following

rules:
e Oforj <j*
* 3,000 forj = j*
* 600 forj=;* +1
* 200 forj > j* +1

The following table sums up the whole training process for this scenario, with the number of samples of each

class presented in each training phase (with the classes already ordered according to the applied random permuta-

tion):

Class/ Task | T T, T T T T T Ts Ty TOT
Class 2 3000 600 200 200 200 200 200 200 200 | 5000
Class 8 3000 600 200 200 200 200 200 200 200 | 5000
Class 4 3000 60O 200 200 200 200 200 200 | 4800
Class 9 3000 600 200 200 200 200 200 | 4600
Class 1 3000 600 200 200 200 200 | 4400
Class 6 3000 600 200 200 200 | 4200
Class 7 3000 60O 200 200 | 4000
Class 3 3000 600 200 | 3800
Class o 3000 600 | 3600
Class s 3000 | 3000

TOT 6000 4200 4000 4200 4400 4600 4800 5000 §5200 | 42400

Table 4.1: Scheme of the first CIR scenario. It shows how many elements of each class are presented in each training
phase. The classes are presented in the order of the random permutation applied.

Note that in this first scenario since all the classes follow the same pattern the number of presented samples
does not depend on the number of training phases the class takes part in, which means that of the 5, 000 training

items not all of them are necessarily shown to the model.

23

SEcoND CIR SCENARIO

This second scenario refers to the protocol introduced in [4] to build the sequence of training phases, which is

described through the pseudocode in Figure 4.5:

Require: Dataset D = {(xj,¥j)}j=1,..m> number of experiences
N in the stream, list of classes per each experience C =
(€1,Ca, .., Cx), where C; = (¢}, ¢, ..., c{-{(i)) and k(i) is the
number of classes in experience i.

1: p < [0,0,..,0] with as many elements as number of classes
in D.

2: forj < 1,2,..,Mdo > Number of patterns for each class

inD

n plyl=plyl+1

4: end for

5. ¢ < [0,0,...,0] with as many elements as number of classes
inD

6: fori < 1,2,..,Ndo > Experience count for each class

7: fork < 1,2,.... k(i) do

8: e[c;‘] = e[cf] +1

9: end for

10: end for

11: pli] < floor(plil/elil), Vi

12: stream < emply stream

13: fori « 1,2,..,Ndo & build the stream of experiences
14: stream.append(E;)

15: C; < Cli]

16: fork < 1,2,.., k(i) do

17: cf‘ <« Ci[k]

18: PE‘ <« sample p[i] patterns from D belonging to class

19: D.remove(P¥)
20: Epadd(Pf)

21: end for

22: end for

23: return stream

Figure 4.5: Pseudocode for a protocol to build a class-incremental with repetition benchmark for continual learning.[4]

The protocol is quite intuitive and it can be applied to any dataset regardless of the number of samples it
contains. However, it is based on a completely different assumption with respect to the first scenario. In this case,
the classes do not follow the same pattern, but instead, for each class, the same number of samples is included in
each training phase, obtained simply by dividing the number of samples of each class by the number of training
phases the class takes part in. However due to the sizes of the training phases increasing over time the relative size

of each class still decreases over time.

24

~—8— Class2 &8
o Class 4
—o— Class 9
—8 Class 1
—o— Class 6
—o— Class 7
@ Class 3
—o— Class 0
Class 5

s & 85 B 3

Relative size
Relative size

[~
=

v,

Training phase Training phase
(@) (b)

Figure 4.6: Relative size of each class of CIFAR-10 across all the training phases of the first CIR scenario (a) and the second

(b).

50 1 —&— Class-incremental
#— Class-incremental with rep. (1)
40 - —&— Class-incremental with rep. (2)
m
o
[h)
£ 301
k-]
o
]
(2]
o 201
=
=
m
& 10 -
& o
04 L L o o & & &

o 1 2 3 4 5 b 7 8
Training phase

Figure 4.7: Visual comparison of the relative size of the first class of CIFAR-10 with respect to each training phase, in the

simple class-incremental scenario (blue), in the first class-incremental with repetition scenario (orange) and in the second
one (green).

25

4.1.3 MODEL

The two CIR task sequences outlined above have been used to test the perform of Gated Linear Networks. In
particular, the model used in this work is based on the Prototypes GLN (PGLN) proposed in [3], with the addi-
tion of an encoder for the input data. The reasons behind the choices of the encoding and the gating mechanism,
as much as the details of the normalization strategy used in this online environment, will be discussed in the fol-

lowing paragraphs. The choice of hyperparameters as learning rate, number of prototypes and architecture have
been object of study and will be discussed in Section 4.2.

RESNET ENCODING

As we saw in Section 4.1.1 one of the practical consequences of moving to more complex datasets is having classes
that are less separable in the input space. Since we are using a model whose strategy to counter catastrophic for-
getting is based exactly on efficiently partitioning the input space it is a good idea to increase the separability of
the data before presenting them to the GLN. An efficient strategy is to perform an encoding through a pretrained

model, with the assumption that such an encoding would highlight the most distinctive features of each class.

In our specific case, we decided to perform the encoding through the ResNet-50 model. ResNet, short for
Residual Network, refers to a type of Convolutional Neural Network first introduced in [69] that makes use of
skip connections to train extremely deep neural networks without encountering the Vanishing Gradient problem,
i.e. the tendency of the gradient to decrease significantly in value during backpropagation, resulting in negligi-
ble updates of the weights. Its first introduction coincided with its victory at the ILSVRC 2015 and is generally
considered a model capable of reaching state-of-the-art results on image classification tasks. Because of their prop-
erties, the ResNet architectures have been widely used as a backbone in solving more complex computer vision
tasks, covering also the role of encoders in many cases [70][71][72]. The specific architecture chosen for this work,
ResNet-s0, is as the name suggests a 5o layers-deep model, whose general structure can be seen in Figure 4.8:

i dayers =i A8a]
191 laers 23,3]

4 3 [—— - - @ © w
]) m - o 2 o 2 w2 oo i oo
£ o o o o o oy P) n o] | oa T Ehs
™ ™ ™ o 't} wn = =2 = = = =
Ble|add |||238)| z38|[S8 1| BEE |||8HE || ERE | |LNE||| BRE||! FEE ||| BRE||||B58&||¢ |
3 = = - - . - - = - - o= oo) o w " o = g = 2
3 L= 5 e S S L o c 3 = = , = z
Elilzgeel sl st s el sxalfszs el el Zef b 223 2R L 228 g
3t §§ §§§ §§ 889 SEg 5§85 & 2o 535 S5 5 595 G Ea 5 -
E o s Ll 8o 8o oo u:u gr‘:u u:u u:u 01::0 u:o)
~| E - - - - - - - - e - = = - - = = - - - - -
x % = i x x x
& EHE i L B 2RE ZAZ 242 daE (EaE LR £ L8
P
= & A = [—-—I
® cielo] blocks & il blacks & = gl 3 bdocks

2] blocks

Figure 4.8: Scheme of the ResNet-50 architecture [5]

As we can see the architecture is composed of several convolutional blocks interconnected through the skip
connections mentioned before. In this study we performed tests using as encoded inputs for the GLN the out-

puts of the third (pink) or fourth (green) blocks, both providing (after a proper MaxPooling step) a representation

26

in the form of a vector of size 2048, and we compared the performance of the model in the two cases trying to

understand which was the best fit for our model and why.

In order to apply the encoding to samples from the CIFAR-10 dataset we used a ResNet trained on that same

dataset, which has been found on the GitHub repository at [73].

GATING STRATEGY

In Chapter 3 we discussed several possible strategies for what concerns the gating mechanism in GLNs. In Mu-
nari’s work [3] three different approaches are tested, with increasingly better results: Halfspace Gating, random
Prototype Gating and Growing Prototype Gating. However, those results have been obtained with the MNIST
dataset. In the preliminary tests that we run, applying the same task sequences used in [3] (Split-MNIST and
Permuted-MNIST) to the CIFAR-10 dataset, we obtained different results. In particular, we found that consis-
tently with [3] randomly initialized Prototypes resulted in a better performance than halfspace gating, but the

same did not apply to the Growing Prototype approach, which was actually outperformed by the other two.

The cause of this apparently unexpected can be found by analyzing the functioning of the Growing mechanism
in relationship with the internal structure of the datasets in question. According to the Growing mechanism
proposed in [3] each newest sample is considered a new prototype whenever it falls far enough from the pre-
existing prototypes in the context space, with an additional mechanism that removes unused prototypes after a
while. Thisis done through the definition of a distance threshold, in that case, fixed as the average distance between
samples within the dataset. Such a mechanism is based on the assumption that different classes naturally fall into
a series of more-or-less well-defined non-overlapping cluster(s) so that members of different classes are on average
more distant. However we have already shown in Figure 4.1 that this assumption can hold for a simple complex
such as MNIST, but it is definitely not true in the case of CIFAR-10. For this reason, we decided to proceed with
our study by using the Prototype gating with randomly generated prototypes.

NORMALIZATION

As discussed in Chapter 3 when dealing with GLNS the standardization of the context information z becomes a
necessary step in order to ensure an optimal partition of the context space, both with halfspace and prototype gat-
ing. This is a procedure that normally relies on the knowledge of the true expected value ¢, and the true standard
deviation ¢; for each feature 7 of the context space. However in an online learning environment like the one where
we performed our tests that knowledge is not available. To overcome this problem the authors of the paper where

GLNs have been first introduced [39] used Welford’s online algorithm [74] to iteratively estimate the two values.

27

The algorithm makes use of the following formulas to update the values:

ale+1) — (0

o) =g+ D (41
Aern)=7AAD (42)

where
m(t+1) = m(t) + (z,—(t +1) — /zl,(t)) (z,~(t +1) —p(t+ 1)) (4.3)

initialized with (1) = z; and m;(1) = 0.

Of course, introducing such a standardization strategy comes at a cost, in terms of having an early training per-
formed with standardization parameters substantially different from the current ones. However, this is a scenario
consistent with real-world flows of information where it is impossible to predict future shifts in the data distribu-

tion and represents a further step in the goal of this work to move towards more realistic learning frameworks.

4.1.4 EVALUATIONS
In this work the performance of GLNSs has been evaluated using two different metrics:

* the first is the accuracy of the model, measured in amount of correctly classified items. It has been com-
puted separately for each training phase to account for the performance of the model over time, both
class-wise and averaged over the classes;

* thesecond is the backward transfer (BWT) [58], a measure of how the performance on a class is influenced
by the introduction of new classes. When positive, it means that the knowledge about a new class is also
used to better classify old ones; when negative, it works as a measure of the catastrophic forgetting. If we
call 2;; the accuracy on the j-th class during the i-th training phase, 7 the number of training phases and
7 the index of the training phase were the i-th class is first introduced, we can formally define backward

transfer of the model as
m—1

1
BWT = 4}% 1 Zlﬂm,i — i (44)

The reason behind the choice of this dual system of evaluation lies on what we expect from a model capable
of behaving correctly in a continual learning environment: a good classifying performance, and little catastrophic
forgetting. Moreover, if considered independently they could be misleading: a relatively stable average accuracy
could hide very unstable class-wise patterns with a lot of forgetting, while a low BWT could be just the result of a

low accuracy since the early training phases.

2.8

4.2 REsuULTS

With the nature of this study being exploratory, the directions to follow have been determined in a progressive
way. Having defined a more complex learning environment through the choice of the dataset, and being con-
scious thanks to the exploratory tests of the greater challenge it would have represented we first decided to apply
an encoding (form the 4th ResNet block) and to choose a first CIR task sequence (the first) and see how the model
would have performed in this situation. After having explored the performance of the model in this context we
decided to proceed with testing a different encoding and to apply the model in a different CIR scenario. In each
of the subsections plots are presented with a graphical comparison of the accuracy trends between different tested
models. In the first subsection some tables have been added to better underline the performance with different
combinations of hyperparameters, while Table 4.5 at the end of the section will recap the accuracy and BWT

scores of the best models found in each subsection.

All the experiments have been performed on Python v3.10.4, using Pythorch vi.12.1, Torchvision vo.13.1 and

Numpy v1.23.1.

4.2.1 HYPERPARAMETERS

We decided to try different learning rates, number of prototypes, layers and neurons, with disappointing results.
It was possible to identify an optimal combination of hyperparameter, consisting in a learning rate of 0.5, 50 pro-
totypes and a two layers architecture by looking at the average accuracy trend across all the training phases and
prioritizing a better performance on the late phases. However, the differences in performance between different
sets of hyperparameters were very tiny. In particular, out of all the tests performed Figure 4.9 shows the average ac-
curacy trends for different hyperparameter combinations based on the optimal one, changing one hyperparameter
and keeping the others fixed. It is quite clear from those plots that while still outperforming the random classifier,
the differences between different combinations are mostly negligible. Tables 4.2, 4.3 and 4.4 show in more detail

the accuracy and BWT scores of all the the combinations presented in the Figures.

29

Comparing learning rates, n® proto = 50, arch = [100, 1]

Comparing architectures, Ir = 0.05, n® proto = 50

901 —e— random 01
80 o= Ir=0.01 a0
—& |r=0.05
704 - |r=0.075 70 1
& Ir=01
B0 &0 -
.
I
5 501
o
£ 404
10 -
201
10

o —&— random
&= [100, 1]
== [100, 25, 1]
—&— [100, 50, 1]
&= [100, 100, 100, 1]

0 1 2 3 4 5 6 7 8
Training phase

0 1 2 3 4 5 3 7 8
Training phase

(b)

(@)
Comparing n® proto, Ir = 0.05, arch = [100, 1]
90 1 —&— random
80 - #— n° proto =10
—&— n°proto = 100
70 4 —&— n°proto = 500
-
8
5
o
El

Training phase

(c)

Figure 4.9: Results obtained by performing tests on different sets of hyperparameters, specifically learning rates, archi-
tectures and number of prototypes, using the random classifier (blue) as reference. Subfigure (a) shows average accuracy
trends for different learning rates, Subfigure (b) for different architectures and Subfigure (c) for different numbers of initial-

ized prototypes.

Accuracy
Model BWT
L 1, Iy Tn s T, T, Ty Ty
Random | so.0 33.3 25.0 200 167 14.3 12.5 II.I 10.0 | -15.9
Ir=0.01 | 86.2 68.8 40.9 37.0 382 328 35.3 29.1 32.9 | -58.2
Ir=0.05 | 89.2 73.1 2.1 41.3 42.4 42.4 41.2 33.6 40.7 | -48.6
Ir=0.075 | 88.2 72.0 47.1 40.2 40.5 42.3 41.4 35.2 35.2 | -43.1
Ir=o0.1 | 88.1 67.0 3.1 41.7 34.2 41.2 36.3 322 34.4 | -52.9

Table 4.2: Summary of the tests performed on the learning rate.

30

Accuracy

Model BWT
T L, 1z 1y 1s T, 1T, Ty Ty

Random 50.0 33.3 25.0 200 16.7 143 1I2.5 IIL.I 10.0 | -I5.9

[100, 1] 89.2 73.1 S2.1 41.3 42.4 42.4 41.2 133.6 40.7 | -48.6

[100, 25,1] 82.4 632 1.3 37.1 43.1 38.2 36.7 29.7 33.1 | -49.9
[100, 50, 1] 83.1 68.3 s50.I 40.2 39.5 4I.2 40.4 31.6 30.3 | -50.0

[100,100,100,1] | 73.7 60.2 43.7 347 39.3 39.6 33.0 28.7 37.1 | -42.5

Table 4.3: Summary of the tests performed on the model architecture.

Accuracy
S Y A A C T L

Random | s0.0 33.3 25.0 200 167 143 12.5 II.I 10.0 | -15.9

Model BWT

soproto | 89.2 73.1 52.1 41.3 42.4 42.4 41.2 33.6 40.7 | -48.6
1ooproto | 89.6 71.9 SI.0 34.0 4I.5 39.2 36.2 29.8 33.9 | -56.2

sooproto | 88.0 70.9 56.3 44.3 41.6 40.8 382 36.6 38.6 | -56.3

Table 4.4: Summary of the tests performed on the number of prototypes.

The cause of these results can be investigated by analyzing in more de-
tail the performance of the best model. Figure 4.12 in the next page
shows class-wise accuracy patterns for that model. Interestingly, we see
some violent downward peaks in accuracy for some specific classes. In

particular, we see a drop for class 4 when class 7 is introduced, for

class 8 when class o is introduced and for class 3 when class 5 is in- po
troduced. Those combinations are not random: by looking at the
composition of the dataset we see that those correspond to the couples

deer/horse, cat/dog and plane/ship. As we can see in Figure 4.10, the

images belonging to those classes are very similar in terms of subjects,
shapes or backgrounds. This suggests that the model is still not power-
ful enough to perform a clear distinction between those classes, resulting in r

ﬁ
interference between classes that enhance the catastrophic forgetting prob- ¥ E I

lem. Figure 4.10: Similar classes.

31

random
Class 2
Class 8
Class 4
Class 9
Class 1
Class &6
Class 7
Class 3
Class 0
Class 5

EXXXEER

¢4

Training phase

Figure 4.11: Class-wise accuracy patterns for the best model with learning rate = 0.05 and 50 prototypes.

A turther confirmation of the weakness of the model in this form is given by a comparison of its performance
with that of a linear model (equivalent for the reasons explained in Chapter 3 to a GLN with just one prototype).
The comparison can be seen in Figure 4.12, that show clearly that while the GLN becomes more effective when
more and more classes are introduced, in the early stages its performance is only slightly better than that of the
linear model. In order to increase the power of the model we considered two strategies: increasing significantly the
number of prototypes, both randomly- and data-generated, and improving the quality of the encoding. While
the latter will be presented in the next section, it has not been possible to pursue the former due to its memory

load, a problem that will be discussed more in detail in the conclusions.

—&— random
- GLN
—&— linear

Accuracy

o 1 2 3 4 5 B 7 8
Training phase

Figure 4.12: Comparison between average accuracy trend for the best GLN obtained so far and its linear counterpart.

32

4.2.2 ENCODING

Having verified that the main reason behind the suboptimal performance of the GLNs in our tests depended from
their lack to grasp the complexity of the presented data, we decided to intervene on the encoding phase by using a
different output from the ResNet. In particular, as anticipated in Section 4.1.3 we performed tests comparing the
performance of the GLN using inputs encoded up to the 3rd convolutional block of the ResNet with those en-
coded with the whole model. The tests have been done using be optimal combination of hyperparameters found
in the previous section, therefore with a learning rate of 0.05, 50 prototypes and a fully connected layer with 1oo

neurons.

—&— Random

Mo ResMet
80 4 —&— Reshet - 3rd conv. block
—&— ResMet - 4th conv. block

20 1

o 1 2 3 4 5 B 7 B
Training phase

Figure 4.13: Average accuracy of the model over the 10 classes in 3 different cases: no ResNet encoding (orange), encod-
ing taken from the 3rd convolutional block (green) and from the 4th convolutional block (red).

The results can be seen in Figure 4.13, that includes also the performance of a model without any encoding at
all. While it is quite clear that any encoding increases significantly the performance of the model, with the perfor-
mance of the model without any kind of encoding being comparable to that of the random classifier, the difference
between the two types of encoding is a bit less evident. However, using the output from the 3rd convolutional
block outperform the alternative at almost every training phase, especially during the late ones. By looking at the
class-wise accuracy we can see another improvement provided by the choice of the the 3rd block output: Figure
4.14 shows that the patterns are more stable and the downward peaks are weaker than what seen using the 4th
block in the previous section. The reasons behind this apparently counter intuitive result, i.e. a less processed
input leading to a better classification performance, lies in the capability of models relatively simple like GLNs to

properly handle heavily processed data and will be discussed more in detail in the conclusions.

33

random
Class 2
Class 8
Class 4
Class 9
Class 1
Class 6
#— Class 7
Class 3
Class 0
Class 5

EXREE

¢4

o 1 2 3 4 5 B 7
Training phase

oo

Figure 4.14: Class-wise accuracy using the ResNet encoding from the 3rd convolutional block.

4.2.3 TASK SEQUENCE

Similarly to the tests performed with different types of encoding, in this case we tried to compare the performance
of the model over the two Class-Incremental with Repetition scenarios introduced in Section 4.1.2. Since the per-
formance of the GLN still showed in the tests performed so far a certain degree of catastrophic forgetting, despite
a relative stability of the average accuracy towards the final training phases, it makes sense to relax even more the
constraint on the presentation of samples from old classes with the second CIR scenario. Once again, the tests
have been performed using a model with so prototypes, a learning rate of 0.05 and a fully connected layer of 100

neurons.

The results of this test are shown in Figure 4.15 and, as expected, we see the GLN performing better in every

learning phase but the first and generally being more stable in terms of fluctuations of the average accuracy.

34

—&— Random
First CIR scenaric
—&— Second CIR scenario

Accuracy

o 1 2 3 4 5 B 7 B
Training phase

Figure 4.15: Comparison of the performance of the best model (learning rate = 0.05, 50 prototypes, one fully connected
layer with 100 neurons) in the first (orange) and second (green) CIR scenarios, with the random classifier (blue) for refer-

ence.

4.2.4 FINAL SUMMARY

To conclude the experimental part of this work, we tried to combine the best set of hyperparameters, the optimal
encoding and the second CIR all in one test. The results of this last test are summarized in the next two figures.
Figure 4.16 compares the average accuracy before and after adding both the new encoding and the new task se-
quence. As we can see, the new additions lead the model into significantly outperforming the base version, with
the accuracy stabilizing around 60% as soon as with the sth training phase, compared to the base models that
after the third training phase never manages to go back over a 50% average accuracy. Figure 4.17 shows the class-
wise accuracy patterns of this final implementations, and even here huge improvements are clearly visible. All the
trends appear generally more stable, and the downward peaks are reduced in terms of both quantity and intensity,
with non of them ever going below a 30% accuracy, let alone touching values below 10% down to even 0% as it

was for the first tests.

35

—&— Random
@ First model
—&— MNew encoding + new task

Accuracy

o 1 2 3 4 5 B 7 B
Training phase

Figure 4.16: Comparison of the performance of the best model (learning rate = 0.05, 50 prototypes, one fully connected
layer with 100 neurons) tested without any extra additions (orange) and with the new task sequence and encoding (green),
with the random classifier (blue) as reference.

random
Class 2
Class 8
Class 4
Class 9
Class 1
Class 6
Class 7
Class 3
Class 0
Class 5

EEEEREX

+o

o 1 2 3 4 5 B 7 8
Training phase

Figure 4.17: Class-wise accuracy patterns for the optimal model (learning rate = 0.05, 50 prototypes, one fully connected
layer with 100 neurons) with the new encoding and the new task sequence.

Table 4.5 sums up the results for the models that have been progressively tested across this study. First we

can observe that the combination of an encoding from a lower layer of the ResNet combined with the second

CIR learning environment actually grants the best possible performance, both in terms of average accuracy and

in terms of BWT score. Furthermore, we can observe a tangible proof of the necessity to adopt a dual evaluation

method: the random classifier is the one that, on paper, shows the less forgetting, but only because it performs

very badly since the beginning.

Model Accuracy BWT

L T, T, T, Ts T, 1T, Ty T
Random 50.0 33.3 25.0 20.0 16.7 14.3 12.5 TII.I 10.0| -15.9
CIR1+ResNet4 | 89.2 73.1 2.1 41.3 42.4 42.4 41.2 33.6 40.7 | -48.6
CIR1+ResNet3 | 93.2 73.1 60.6 39.6 53.3 49.1 47.2 45.2 41.5 | -51.3
CIR2+ResNet4 | 85.7 72.7 $7.9 5§37 48.3 50.7 45.5 42.0 44.5 | -29.1
CIR2+ResNet3 | 90.2 78.6 65.1 66.5 55.9 58.4 53.6 $1.9 55.3 | -21.4

Table 4.5: Summary of the performances of the best models found in each subsection, classified according to the type of
encoding (ResNet3 or ResNet4) and the task sequence used to train them (CIR1 or CIR2). For each of them the average
accuracy in each training phase and the final BWT score are shown.

37

38

Conclusions

In this work we tried to evaluate the performance of Gated Neural Networks in a complex environment, defined
by the choice of datasets that are more challenging than those used in prior works. The evaluation has been per-
formed in a Class-Incremental with Repetition framework, that while being closer to real-world scenarios allows
to implicitly mitigate the catastrophic forgetting, the main problem that arises when training a model within a

Continual Learning paradigm.

We saw that, as expected, the performance of GLNs drops significantly when moving from a simple dataset like
MNIST to a more complex one like CIFAR-10. We first observed that while an optimal set of hyperparameters
can be found, it will not change the final performance in a significant way. The small improvements obtained
by changing the combination of most hyperparameters, if compared with the assumption that a GLN has the
potential to approximate any function no matter its complexity, lead us into thinking that the problem resides in
the complexity of the model itself. This idea was confirmed by looking at the class-wise accuracy patterns, that
present huge downward peaks in correspondence with the introduction of new classes whose samples resemble
closely those of old classes, and by the fact that the GLN performance was only slightly better than the one of a
basic linear classifier. We decided therefore to implement new strategies to increase the capabilities of the model.
While the result of testing different encodings lead to encouraging results and will be discussed in the next para-
graph, we haven not been able to carry out the attempt to significantly increase the number of prototypes becasue

of some technical limitations that will be discussed later on.

The first main finding of our tests using different encoding is that indeed, as our preliminary tests suggested, in-
troducing an encoding given by a pretrained model like ResNet can help to significantly improve the performance
of GLNSs. This can be explained by the fact that such an encoding improves the separability of the different classes
of the dataset, and therefore diminishes the amount of spatial overlappings between different classes making the

gating mechanism more efficient. As a confirmation of that, we could see that the performance of the model

39

dealing with raw data without any encoding was comparable to that of a random classifier. Moreover, we saw
that taking the encoding from an output of an earlier point of the ResNet results in a better performance of the
attached GLN classifier. This result, however counter intuitive, can be explained by taking into account that in
deep neural networks the specialization and the complexity of the learned representations of the model increase
together with its depth, a known and well-verified fact. In a model as deep and as powerful as a ResNet this means
that the representations produced by the very last layer are incredibly complex, and very hard to learn for a model
such as a GLN, that relies mostly on linear transformation and spatial separability. With this assumption taking
the output from the 3rd block instead of the 4th, giving up on around twenty layers of various transformations,
represents a good compromise between increasing the separability of the data and learning a representation that
is feasible for being learned by a GLN.

While testing the two different Class Incremental with Repetition scenarios, we found as expected that the
more we relax the lack of repetition the better the performance becomes. With the perspective of applying con-
tinual learning models to flows of data coming from real-world environments like robotics or automated driving,
that would most likely result in a CIR flow of information, it makes sense to train and evaluate models in CIR
scenarios. From this point of view we found the prior literature to be lacking, with most of the continual learning
strategies being tested on Class-Incremental without repetition scenarios, resulting in a consequent lack of bench-
marks to be exploited. In view of that, on one hand the pseudocode proposed in [4] for the protocol to generate
CIR task sequences should be applied to even more complex pre-existing classification datasets; on the other hand,
more task-specific datasets like Coreso [36], with built-in CIR training sequences, should be developed and in-

troduced as benchmarks.

One of the main limitations found in this work regards the memory consumption of GLNs. The problem
emerged mainly in two situations: when combining a data-driven initialization of the prototypes, and when try-
ing to significantly scale up the number of prototypes. While if this could become an unsolvable limitation for
future developments of GLNSs in even more complex environments is a possibility worth of being investigated, it
is true that it represented a significant limitation for this study. As we already said testing various combination
of hyperparameters lead to mixed results, with the GLN only slightly overperforming the linear baseline. This,
together with the separability problems that we already discussed, suggests that a significantly higher number of
prototypes (or a relatively similar number of data-driven prototypes) could have lead to a better performance solv-
ing some of the stability problems encountered in this study. While this couldn’t have been verified in this study

it represents for sure a promising way forward.

Other improvements could be done regarding how prototypes are generated. As explained in Chapter 4 the
Growing ProtoGLN approach has been proved to not be particularly effective whenever the data are nor clearly
separable and the distance between samples is highly variable. However the idea of generating prototypes in a data-
driven fashion, instead of generating them randomly, remains still valid and potentially more memory efficient
since it reduces the risk of generating useless partitions in the context space. A way to implement such a strategy
could be found taking inspiration from the generative rehearsal strategies for deep learning described in Chapter
2. Some information about the classes could be stored, for example in the form of normal distributions approx-

imating the data distribution of each class that get continuously updated while more data from those classes are

40

detected. The prototypes could then be sampled from those distributions on a regular basis, without the need to

initialize all of them since the beginning and thus reducing even more the memory load of the model.

A further step of development is also represented by the detection of new classes. The GLN as developed in
this work, while not actively using the knowledge of the task to mitigate catastrophic forgetting, still relied on
it to detect when a new class is introduced and expand the model to account for that class in a proper way. It
could be interesting to explore the possibility of having GLNs detecting autonomously the introduction of new
classes, possibly exploiting information related to the frequency with which different prototypes are activated.
This would turn the model completely fit for a task-agnostic scenario, a property that should be considered desir-

able being that scenario the most realistic one.

41

42

(1]

2]

[3]

(4]

[s]
(6]
[7]

(8]

[9]

[x0]

[x1]

[r2]

[13]

[14]

[15]

References

J. Veness, T. Lattimore, D. Budden, A. Bhoopchand, C. Mattern, A. Grabska-Barwinska, E. Sezener,
J. Wang, P. Toth, S. Schmitt ¢z al., “Gated linear networks,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 35, no. 11, 2021, pp. 10015—10023.

E. Sezener, M. Hutter, D. Budden, J. Wang, and J. Veness, “Online learning in contextual bandits using
gated linear networks,” Advances in Neural Information Processing Systems, vol. 33, pp. 19 467-19 477,

2020.
M. Munari, “Extending gated linear networks for continual learning,” 2022.

A. Cossu, G. Graffieti, L. Pellegrini, D. Maltoni, D. Bacciu, A. Carta, and V. Lomonaco, “Is class-

incremental enough for continual learning?” Frontiers in Artificial Intelligence, vol. s, 2022.
A. Rastogi. (2022) Resnetso. [Online]. Available: https://blog.devgenius.io/resnet50-6b42934db431
T. M. Mitchell and T. M. Mitchell, Machine learning. McGraw-hill New York, 1997, vol. 1, no. 9.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Pro-
ceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144—152.

W.-Y. Loh, “Fifty years of classification and regression trees,” International Statistical Review, vol. 82, no. 3,

pp- 329-348, 2014.

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The bulletin

of mathematical biophysics, vol. s, pp. 115-133, 1943.

A. G.Ivakhnenko, V. G. Lapa, and V. G. Lapa, Cybernetics and forecasting techniques. American Elsevier
Publishing Company, 1967, vol. 8.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propaga-

tion,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

——, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533536,
1986.

J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu, “Coca: Contrastive captioners are

image-text foundation models,” a7Xiv preprint arXiv:2zo5.01917, 2022.

Z. Zou, K. Chen, Z. Shi, Y. Guo, and]. Ye, “Object detection in 20 years: A survey,” Proceedings of the
IEEE, 2023.

K. Chowdhary and K. Chowdhary, “Natural language processing,” Fundamentals of artificial intelligence,
pp- 603-649, 2020.

43

https://blog.devgenius.io/resnet50-6b42934db431

[x6]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

S.Yang, Y. Wang, and X. Chu, “A survey of deep learning techniques for neural machine translation,” arXzv

preprint arXiv:2002.07520, 2020.

P. Khilari and V. Bhope, “A review on speech to text conversion methods,” International Journal of Ad-

vanced Research in Computer Engineering € Technology (IIARCET), vol. 4, no. 7, pp. 3067-3072, 2015.

I. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb-Ahmed, “Past, present, and future of face recognition:

A review,” Electronics, vol. 9, no. 8, p. 1188, 2020.

R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task-free continual learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 254—11 263.

M. B. Ring, “Child: A first step towards continual learning,” in Learning to learn. ~ Springer, 1998, pp.

261-292.

O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi, “Learning to remember: A synaptic plas-
ticity driven framework for continual learning,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2019, pp. IT 321—11 329.

V. Lomonaco, “Continual learning with deep architectures,” Ph.D. dissertation, Universita di Bologna,

2019.

M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential

learning problem,” in Psychology of learning and motivation. Elsevier, 1989, vol. 24, pp. 109-165.

R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Measuring catastrophic forgetting in
neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

W. C. Abraham and A. Robins, “Memory retention—the synaptic stability versus plasticity dilemma,”

Trends in neurosciences, vol. 28, no. 2, pp. 73—78, 2005.

M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity dilemma: Investigating the continuum

from catastrophic forgetting to age-limited learning effects,” p. s04, 2013.

S. Stojanov, S. Mishra, N. A. Thai, N. Dhanda, A. Humayun, C. Yu, L. B. Smith, and]. M. Rehg, “Incre-
mental object learning from contiguous views,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 8777-8786.

A. Thai, S. Stojanov, I. Rehg, and J. M. Rehg, “Does continual learning= catastrophic forgetting?” arXzv

preprint arXiv:2101.07295, 2021.

V. Lomonaco, D. Maltoni, and L. Pellegrini, “Rehearsal-free continual learning over small non-iid batches.”

in CVPR Workshops, vol. 1, no. 2, 2020, p. 3.

F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,” in International

Conference on Machine Learning. PMLR, 2017, pp. 3987-3995.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska ez al., “Overcoming catastrophic forgetting in neural networks,” Proceedings

of the national academy of sciences, vol. 114, no. 13, pp. 3521-3526, 2017.

44

[32]

S. Lee, J. Ha, D. Zhang, and G. Kim, “A neural dirichlet process mixture model for task-free continual

learning,” arXiv preprint arXiv:2001.00689, 2020.

[33] J.L.McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are complementary learning systems

[34]

[35]

[36]

[37]

[38]

in the hippocampus and neocortex: insights from the successes and failures of connectionist models of

learning and memory.” Psychological review, vol. 102, no. 3, p. 419, 1995.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-shelf: an astounding
baseline for recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition

workshops, 2014, pp. 806-813.

A. Gepperth and C. Karaoguz, “A bio-inspired incremental learning architecture for applied perceptual
problems,” Cognitive Computation, vol. 8, no. s, pp. 924—934, 2016.

V. Lomonaco and D. Maltoni, “Coreso: a new dataset and benchmark for continuous object recognition,”

in Conference on Robot Learning. PMLR, 2017, pp. 17-26.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and

R. Hadsell, “Progressive neural networks,” arXzv preprint arXiv:1606.04671, 2016.

N. Y. Masse, G. D. Grant, and D. J. Freedman, “Alleviating catastrophic forgetting using context-
dependent gating and synaptic stabilization,” Proceedings of the National Academy of Sciences, vol. 115,
no. 44, pp- E1o 467-E10 475, 2018.

[39] J.Veness, T. Lattimore, A. Bhoopchand, A. Grabska-Barwinska, C. Mattern, and P. Toth, “Online learning

[40]

[41]

[42]

[43]

[44]

[4s]

[46]

with gated linear networks,” arXiv preprint arXiv:r712.01897, 2017.

E. Sezener, A. Grabska-Barwiriska, D. Kostadinov, M. Beau, S. Krishnagopal, D. Budden, M. Hutter, J. Ve-
ness, M. Botvinick, C. Clopath ez al., “A rapid and efficient learning rule for biological neural circuits,”

BioRxiv, 2021.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical investigation of catas-

trophic forgetting in gradient-based neural networks,” arXiv preprint arXiv:1312.6211, 2013.

R. K. Srivastava, J. Masci, S. Kazerounian, F. Gomez, and J. Schmidhuber, “Compete to compute,” Ad-

vances in neural in formdtz'on processing systems, vol. 26, 2013.

C. Clopath, “Synaptic consolidation: an approach to long-term learning,” Cognitive neurodynamics, vol. 6,

no. 3, pp. 251-257, 2012,

G.E.Hintonand D. C. Plaut, “Using fast weights to deblur old memories,” in Proceedings of the 9th annual
conference of the cognitive science society, 1987, pp. 177-186.

R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware synapses: Learn-
ing what (not) to forget,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp.
139-T54.

S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach, “Uncertainty-guided continual learning with

bayesian neural networks,” arXiv preprint arXiv:1906.02425, 2019.

45

[47]

[48]

[49]

[so]

[51]

[52]

[53]

[54]

[ss]

[s6]

[57]

[58]

[59]

[60]

[61]

[62]

Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern analysis and machine

intelligence, vol. 40, no. 12, pp. 2935-2947, 2017.

G. Hinton, O. Vinyals, J. Dean et /., “Distilling the knowledge in a neural network,” arXiv preprint

arXiv:1503.02531, vol. 2, no. 7, 2015.

T. Furlanello, J. Zhao, A. M. Saxe, L. Itti, and B. S. Tjan, “Active long term memory networks,” arXzv
preprint arXiv:1606.02355, 2016.

H. Jung, J. Ju, M. Jung, and J. Kim, “Less-forgetting learning in deep neural networks,” a7Xiv preprint

arXiv:1607.00122, 2016.

T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience replay for streaming learning,” in
2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 9769-9776.

H. Shin, J. K. Lee, J. Kim, and . Kim, “Continual learning with deep generative replay,” Advances in neural

z'nformoztz'an processing systems, vol. 30, 2017.

D. Maltoni and V. Lomonaco, “Continuous learning in single-incremental-task scenarios,” Neural Net-

works, vol. 116, pp. 56-73, 2019.

P. Kirichenko, M. Farajtabar, D. Rao, B. Lakshminarayanan, N. Levine, A. Li, H. Hu, A. G. Wilson,
and R. Pascanu, “Task-agnostic continual learning with hybrid probabilistic models,” arXzv preprint

arXiv:2106.12772, 2021.
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” a7Xiv preprint arXiv:1312.6114, 2013.

P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, “Dark experience for general continual
learning: a strong, simple baseline,” Advances in neural information processing systems, vol. 33, pp. 15 920—

15930, 2020.

S.-A.Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and representation
learning,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.

200I—20I0.

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” Advances in neural

z'nformatz'on processing systems, vol. 30, 2017.

R. Kemker and C. Kanan, “Fearnet: Brain-inspired model for incremental learning,” arXiv preprint

arXiv:1711.10563, 2017.

G. L Parisi, J. Tani, C. Weber, and S. Wermter, “Lifelong learning of spatiotemporal representations with

dual-memory recurrent self-organization,” Frontiers in nenrorobotics, p. 78, 2018.

K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Newural networks, vol. 4,

no. 2, pp. 251-257, 1991.

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image clas-

sification models and saliency maps,” a»Xiv preprint arXiv:1312.6034, 2013.

46

[63]

[64]

[65]

[66]

[67]

[68]

[69]

D. Budden, A. Marblestone, E. Sezener, T. Lattimore, G. Wayne, and J. Veness, “Gaussian gated linear

networks,” Advances in Neural Information Processing Systems, vol. 33, pp. 16 508—16 519, 2020.

C. Mattern, “Mixing strategies in data compression,” in 2012 Data Compression Conference. IEEE, 2012,

Pp- 337-346.

——, “Linear and geometric mixtures-analysis,” in 2013 Data Compression Conference. 1EEE, 2013, pp.

301-310.

M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,” in Proceedings

of the 2 0th international conference on machine learning (icmi-03), 2003, pp. 928-936.
Y. LeCun, “The mnist database of handwritten digits,” betp://yann. lecun. com/exdb/mnist/, 1998.
A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.

[70] J.Jiang, L. Zheng, F. Luo, and Z. Zhang, “Rednet: Residual encoder-decoder network for indoor rgb-d

[71]

[72]

[73]

[74]

semantic segmentation,” arXiv preprint arXiv:1806.01054, 2018.

S. Bang, S. Park, H. Kim, and H. Kim, “Encoder—decoder network for pixel-level road crack detection
in black-box images,” Computer-Aided Civil and Infrastructure Engineering, vol. 34, no. 8, pp. 713-727,

2019.

Z.Gu,]. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao, T. Zhang, S. Gao, andJ. Liu, “Ce-net: Context encoder
network for 2d medical image segmentation,” JEEE transactions on medical imaging, vol. 38, no. 10, pp.

2281-2292, 2019.
H. Phan, “Pytorch cifar1o,” https://github.com/huyvnphan/PyTorch_CIFARI10, 2021.

B. Welford, “Note on a method for calculating corrected sums of squares and products,” Technometrics,

vol. 4, no. 3, pp. 419—420, 1962.

47

https://github.com/huyvnphan/PyTorch_CIFAR10

48

49

Acknowledgments

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background
	Machine and Deep Learning
	Continual Learning
	Continual Learning scenarios
	Continual Learning strategies

	Gated Linear Networks
	GLN overview
	Geometric mixing
	Gated geometric mixing
	GLN formulation

	GLN training

	Experiments
	Experimental setting
	Datasets
	Task
	Model
	Evaluations

	Results
	Hyperparameters
	Encoding
	Task sequence
	Final summary

	Conclusions
	References
	Acknowledgments

