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Abstract

Continual learning, which involves the incremental acquisition of knowledge over time, is a challenging problem
in complex environments where the distribution of data may change over time. Despite the great results obtained
by neural networks in solving a great variety of tasks they still struggle in showing the same strong performance
in a continual learning environment, suffering from a problem known as catastrophic forgetting. This problem,
that consists in a model’s tendency to overwrite old knowledge when new one is presented, has been dealt with
through a variety of strategies that adapt the models on different levels. Among those, in this work we will focus
onGatedLinearNetworks (GLNs), a type of architectures that rely on a gatingmechanism to improve the storage
and retrieval of information over time. This class of models has already been applied to continual learning with
promising results, but always in extremely simplified frameworks. In thisworkwewill try todefine amore complex
continual learning environment and to adaptGLNs to the increased challenges that this environmentwill present,
evaluating their strengths and their limitations. In particular, we found that performing an encoding step can
help making a complex dataset more spatially separable and therefore making the GLNs more effective, and that
switching to a Class-Incremental with Repetition scenario is useful both to increase the realism of the framework
while easing the learning difficulty.
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1
Introduction

Machine learning and deep learning have become increasingly popular in recent years, and this trend is set to con-
tinue in the coming years. The growing popularity of these fields can be attributed to several factors, including
the availability of large amounts of data and computational resources, the development of more powerful and
efficient algorithms, and the increasing demand for solutions to complex problems that traditional methods are
unable to solve. These algorithms have been used to achieve state-of-the-art results in areas such as image recog-
nition, natural language processing, and speech recognition, among others. However as machine learning and
deep learning models become more complex and capable of solving increasingly challenging problems, the need
to learn and adapt to new information becomes crucial.

Continual learning refers to the ability of machine learning models to incrementally and continuously learn
new tasks while retaining their knowledge of previously learned tasks. This is in contrast to traditional machine
learning, where models are typically trained on a fixed set of tasks and then tested on new unseen data. The field
of continual learning is thus a vital component of deep learning, as it enables deep neural networks to be deployed
in real-world applications, where they must continuously face changing situations and environments. However,
the same models that are able to achieve impressive results in a traditional machine learning environment are not
able to maintain the same performance in a continual learning framework, due to a phenomenon known as catas-
trophic forgetting.

Catastrophic forgetting refers to the tendency of deep neural networks to forget previously learned informa-
tionwhen learning new information. This happens becausewhile themodel’s parameters are updated to optimize
performance on the new task, its lack of capacity to preserve conflicting or competing information leads to the
loss of knowledge about the previous tasks. Catastrophic forgetting is a major obstacle to achieving successful
continual learning, as it can lead to models losing important knowledge and becoming less effective over time.
To address the problem of catastrophic forgetting, various approaches have been proposed in the literature, that
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generally involve adapting the architecture of themodels, intervening in how theweights are updated or replaying
the information at risk of being forgotten. However, many of these approaches are limited by their complexity,
scalability, and ability to generalize to new tasks. Among them, this study will focus on a specific class of models,
the Gated Neural Networks, that adopt an architectural strategy to mitigate catastrophic forgetting, and it will
investigate their use in the context of continual learning.

Gated linear networks are a type of neural network architecture that relies on a gating mechanism to control
the flow of information in the network, allowing the model to selectively preserve and retrieve information over
time. The gating mechanism is typically implemented by exploiting contextual information about the available
data, with the assumption that the environment contains some knowledge about the task being solved. That in-
formation is used to select one of the multiple sets of weights associated with each neuron of the neural network,
according to a predetermined partition of the context space. Their gating mechanism, combined with a local
weight update strategy that does not rely on backpropagation, makes gated linear networks well-suited for being
trained in an online environment and a good fit for continual learning. Gated linear networks have already been
applied in continual learning for tasks that span from image recognition to multivariate regression to contextual
bandits, and in this study, we will try to expand the potential of gated neural networks to solve the problem of
catastrophic forgetting by providing insights into their effectiveness in a more complex environment.

In particular, the contribution of this study to the field of continual learning is twofold. TheContinual Learn-
ing paradigm has been so far modeled and evaluated with easy datasets in simplified scenarios, that manage to
grasp only partially the complexity represented by a real-world flow of information and at the same time give up
on features that could help in tackling catastrophic forgetting. This work will first try to address this problem by
moving to a more realistic and more challenging learning framework, both in terms of how data are presented to
the model and the type of presented data. Furthermore, it will test the performance of Gated Linear Networks
in this improved framework, pointing out the advantages and the limitations of this type of model and trying to
identify strategies to deal with the increased complexity they will have to face.

This dissertation is organized as follows. Chapter 2 introduces the theoretical background necessary for the
understanding of this work. After a general overview of the fields of Machine and Deep Learning, it will present
in more detail the Continual Learning paradigm and how it can be declined, it will describe the problem of catas-
trophic forgetting and it will give a summary of the related works in the literature. Chapter 3 will describe Gated
Neural Networks, starting from the mathematics that lies behind those models, explaining their main features
and why they are a great fit for continual learning, and reporting their usage in prior works. Chapter 4 will first
introduce the experimental framework and explain the novelty aspects of this study, and it will then summarize
the obtained results. Chapter 5 will finally address the findings and the limitations of this work, it will discuss
possible improvements and will suggest directions for future research.
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2
Background

In this chapter, we will talk about the theoretical background that lies behind this work. After a general intro-
duction to theMachine Learning field (Section 2.1), we will present the concept of Continual Learning together
with the challenges it presents (2.2).

2.1 Machine andDeep Learning
Machine Learning is a term that generally refers to the branch of Artificial Intelligence that focuses on how a ma-
chine is able to learn from data and improve its performance over time, like what humans do during the course of
their whole life. A classical definition by Thomas Mitchell [6] describes Machine Learning as follows:

A computer program is said to learn from experience E with respect to some class of tasks T and performance mea-
sure P if its performance at tasks in T, as measured in P, improves with experience E.

This definition allows us to identify all the main ingredients in machine learning: a task to be solved (clas-
sification, regression, etc.), a set of data related to that task, a model to be taught to solve that task, and some
metrics to measure the performance of that model. Among various types of machine learning models and algo-
rithms developed in past and recent years, that can span from simple statistical models like linear regression and
classification to SupportVectorMachines (SVMs) [7] toDecisionTrees [8] andmanymore, ArtificialNeuralNet-
works (ANNs) have attractedmuch attention because of their capability to perform greatly in complex tasks. The
branch of machine learning that focuses on neural networks is called Deep Learning, and while their main build-
ing blocks, like the perceptron [9], how to combine them [10] and how to train them through techniques such as
backpropagation [11][12] have been known for decades it has been only in the past 10-15 years that the necessary
computational power and large-scale datasets have been made available in order to efficiently train such complex
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models, paving the way for the so-called “deep learning revolution”. Taking inspiration from the structure of the
biological brain, neural networks generally rely on several layers of artificial neurons connected together in struc-
tures that can be very simple as much as incredibly elaborate in order to grasp all the complex patterns present
in the available data. Since their introduction neural networks have been able to match or even surpass human
performance on a wide range of tasks that include image recognition [13], object detection [14], natural language
processing [15], language translation [16], speech-to-text conversion [17], face identification [18] among the best-
known ones.

In addition to different types of tasks andmodels, another important aspect in defining how amachine “learns”
is the learning paradigm, which depends on the type of available data and the way they are presented to themodel.
The most important learning paradigms are Supervised Learning (when the target is available and can be used to
give feedback to the model), Unsupervised Learning (no target is available, and the goal is usually to find patterns
or approximate distributions), Reinforcement Learning (the model is asked to perform actions in a sequential
way receiving feedback in the form of a positive/negative reward), Online Learning (the model receives inputs
as a continuous flow of information to be analyzed one by one). This work will focus on a particular paradigm,
Continual Learning, that has recently gained a lot of attention because of its increased closeness to real-world
scenarios and to human learning patterns and at the same time because of the greater challenge it presents to
standard neural networks, and that will be presented in more detail in the next section.

2.2 Continual Learning
Continual Learning (also known as Incremental Learning or Life-LongLearning) is a learning paradigm that aims
to bring the classical machine learning framework closer to human-like learning, and it is often seen as a necessary
step to lead AI systems into achieving “true” intelligence. This paradigm takes inspiration from the fact that for
humans it is natural to learn new skills sequentially without forgetting previously learned ones, and that theworld
around us is in general non-stationary. These are features that in real-world learning settings often translate into
a sequential stream of tasks without any knowledge about their relationship or duration in time and with no
chances of re-encountering previously seen data. These situations arise in multiple fields, from robotics [19] to
reinforcement learning [20], computer vision [21], and many more.

A one-sentence definition of this paradigm, obtained in [22] by adapting Mitchell’s definition of Machine
Learning, states the following:

A computer program is said to learn continually from experience if, given a sequence of ephemeral partial experi-
ence Ei, a target function h∗ and performance measure P , its performance in approximating h∗ as measured by P
improves with the number of processed partial experience Ei.

This definition expands the original ones by adding the adjectives ephimeral and partial to the experience
concept: this is a fundamental aspect in the continual learning paradigm, withmodels that are often trained in an
online fashion andwith a data distribution that changes over time and does not allow tomake permanent assump-
tions over previously seen data. All these aspects of continual learning can be formalized and declined in multiple
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ways, leading to several possible learning scenarios that will be presented in Section 2.2.1. This framework in gen-
eral is quite different from the standardmachine learning framework, that normally dealswith stationary tasks and
data distributions, and with the assumption that all the data are available during the training phase. That means
that conventional neural networks trying to solve problems in a continual learning framework struggle with re-
taining the previously acquired knowledge and end up overwriting the parameters critical for solving previously
learned tasks, a problem commonly referred to as catastrophic forgetting [23][24]. The root of this problem has
been found in the stability-plasticity dilemma [25][26], a constraint that applies to both artificial and biological
neural systems. It is based on the idea that a learning process required both plasticity to integrate new knowledge
and stability to retain the old one, and a balance between the twomust be obtained. Overcoming catastrophic for-
getting means, on one hand, being able to efficiently acquire new knowledge, and on the other hand, preventing
this new knowledge from interfering with the existing one. To achieve this a lot of computational strategies have
been developed, which will be summarized in Section 2.2.2.

2.2.1 Continual Learning scenarios
There are two main characteristics of the learning framework that could be exploited to differentiate the possible
continual learning scenarios: the knowledge of the task, and the type of content update [3][22].

The first distinction regards whether the model is aware or not of the task to be solved. The majority of the
models assume to know that task, often in the formof a label associatedwith the input data. In this scenario, called
task-aware, models can exploit that information to tackle more efficiently the problem of catastrophic forgetting,
for example by taking counter-measures whenever a task switch takes place. The alternative is to train a model
in a task-agnostic (or task-free) scenario, where no information about the task is provided. This scenario is more
realistic since in real-world cases it often happens that tasks are not clearly defined or change over time, but it also
results in greater challenges for the models that have less information to rely on. We will see later on when the
main continual learning strategies will be presented, that being in a task-aware or task-agnostic scenario can play
a big role in how the forgetting is dealt with.

The second distinction regards the possible kind of data included in each training batch, with three possible
cases:

• New Instances (NI): every batch contains new examples of previously encountered classes;

• New Classes (NC): every batch contains only examples of classes never encountered before;

• New Instances and Classes (NIC): a hybrid version of the first two and most realistic case, every batch
containing both examples of new classes and new instances of old classes.

In the context of continual learning the second scenario, also calledClass-Incremental (CI), is themost studied.
However, this scenario can be limiting, since it artificially exacerbates the catastrophic forgetting by never allowing
the model to revisit previously seen classes. In real-world though it is natural to encounter repeatedly items from
the same class without it abruptly disappearing, a behavior that implicitly contributes tomitigating the forgetting
of previous knowledge [4]. The third scenario sometimes referred to asClass-IncrementalWithRepetition (CIR),
tries to address this limitation, and has been proven to be beneficial for the performance on both learned and
novel classes [27][28][29]. For this reason, this work will focus on a NIC scenario, using a task-building protocol
proposed in [4].
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2.2.2 Continual Learning strategies
The relative novelty of this field had led research tomove in various directions, sometimes very different from each
other, in order to address catastrophic forgetting. In the literature the approaches have been commonly grouped
into three main categories [30][31][22][32]:

• Architectural strategies: they try to mitigate the effect of catastrophic forgetting by altering the archi-
tecture of the model, and therefore by choosing specific architectures, activation functions, or weight-
freezing strategies;

• Regularization strategies: in this case, the adopted strategy involves adding constraints to the model’s
weight updates by intervening on the loss function with some regularization techniques;

• Rehearsal strategies: involves periodically replayingdata fromearlier training sessions inorder to strengthen
the connections relative to previously learned knowledge.

We will now introduce some of those strategies more in detail with a reference to the categories introduced
above, keeping inmind that not all of them are fit for both the task-aware and task-agnostic scenarios and that the
classes of strategies are not necessarily mutually exclusive.

Architectural strategies

Models belonging to this class take inspiration from the internal structure of the brain and the presence of func-
tional areas within it. According to the Complementary Learning Systems theory[33] there are two areas in the
brain responsible for the learning process: short-termmemories are stored in the hippocampus, while a long-term
consolidation of those memories takes place in the prefrontal cortex, allowing the brain to retain the most useful
information and discard the rest. This led to developing strategies that focus on having multiple representations
inside the model, with different sets of weights getting updated under different rules.

The most naive approach consists in freezing a subset of deemed important weights while leaving the others
subject to updates [34], a procedure that can be relaxed by introducing different learning rates for different sets
of weights according to how specialized they are to previous tasks leading to an intersection with the regulariza-
tion strategies. A dual-memory approach has been used also in the GeppNet+STMmodel [35], where a standard
architecture is joined by a short-termmemory (STM) buffer that is used to store inputs that produce highly uncer-
tain predictions. Thosememories are then consolidated into themain network during a designated ”sleep” phase,
similarly to how memory works in humans. The Copy-Weights with Re-init (CWR) approach [36] is still based
on a dual representation but targets only the neurons of the last layer of a network, being the most specialized
ones. For each of them, two sets of weights are defined, a temporary one that gets trained in a regular way only
to be re-initialized whenever a shift in the data distribution takes place, and a consolidated one that gets updated
only concurrently to those shifts on thebasis of the temporary ones, while the rest of thenetwork is left untouched.

Of course, more than two learning areas can be initialized in a model. In the Progressive Neural Networks
(PNNs) introduced in [37] new sets of task-related neurons are initialized whenever a new task is encountered,
and only those related to the current task are trained while the others are kept frozen. These models, that as the
CWR strategy work in a task-aware scenario, ensure a great specialization of different areas of the network, and
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are very efficient in preserving weights related to old tasks. On the other hand, these benefits come at the expense
of a potential explosion of the architectural complexity, that in a framework with a potentially infinite training
time could end up being a heavy limitation.

Another approach is the Context-dependent Gating (XdG) [38], which uses task labels as contextual infor-
mation to activate or deactivate certain areas of the network and leading to each neuron being trained only on a
subset of the tasks, mitigating the forgetting. The result is similar to the one obtained with the PNNs, with each
task referring to a part of the architecture, andwith a weaker specialization compensated by the lack of complexity
explosion. The gating mechanism presented above can also be adapted to be used in a task-agnostic scenario. The
Gated Linear Networks (GLNs) [39] present multiple weight vectors for each neuron, and the weight set to be
activated is chosen through a gatingmechanism based on some contextual information relying on the assumption
that the context brings information on the task to solve. This class ofmodels is the object of study of this work and
will be described in more detail in Chapter 3. An interesting variant of the GLNs is represented by the Dendritic
Gated Networks (DGN) [40]: in an attempt to propose a more biologically plausible process, the gating mecha-
nism is applied to different branches that, like the dendrites in biological neurons, connect the artificial neurons
to different subsets of neurons of the lower layer.

An alternative way to introduce specialization inside a neural network consists in using different activation
functions. It has been found that different activation functions are preferable depending on the task and the rela-
tionship between tasks [41]. With this assumption, in [42] a local winner-takes-all (LWTA) approach is proposed,
enhancing local competition between neighboring neuronswhile exploiting different nonlinearities. Layers in the
models that adopt this strategy are composed not of individual neurons but of blocks containing several neurons,
each with a different activation function. In each block, a winner is selected through a competition function,
while the outputs of the losing neurons are discarded in a winner-takes-all fashion.

Regularization strategies

In this case, catastrophic forgetting is mitigated by adding regularization terms to the loss function so that the
newly acquired knowledge does not interfere with the old one. These approaches are generally based on the as-
sumption that there are multiple sets of weights resulting in the same performance. Therefore, when a new task
is introduced, a possible way to preserve previous knowledge is to select a new set of optimal weights that is the
closest possible to the old one, taking inspiration from how synaptic consolidationworks in biological brains [43].
The easiest way to achieve that is by casually differentiating the learning speed across different neurons, a naive
strategy that has been studied in the past years without achieving extremely encouraging results [44][24].

A more targeted method consists in slowing down the learning for the parameters of a model according to
how much they contributed to the previous tasks, something that can be measured in different ways leading to
different strategies. The ElasticWeight Consolidation (EWC) [31] quantifies the importance of the weights with
respect to previous tasks through the diagonal of the Fischer informationmatrix. In the Synaptic Intelligence (SI)
approach [30] an estimate of the importance of each weight is obtained by considering their contribution to the
change in the loss while learning the task. In the Memory Aware Synapses (MAS) [45] a similar gradient-based
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approach is used, but in this case the importance of each parameter is given by an estimate of how sensitive the
performance of the model is to a perturbation of that parameter. In all these cases the computed importance is
then incorporated into the loss function as part of an extra term that determines the learning speed for eachweight.
All these three strategies work only in a task-aware scenario since they rely on a task-change signal to update the
importance value associated with each parameter, but they can be extended to the task-agnostic scenario. For ex-
ample, the Task-Free Continual Learning approach [19] adds a task-switching mechanism to theMAS algorithm
to compensate for the absence of task labels. In particular, it bounds the update of the importance values to a
quick growth in the loss, assuming that the model performs badly immediately after data from a new task are
presented, and freezes the importance values whenever that happens.

A slightly different strategy is used in the Uncertainty-guided Continual learning with Bayesian Neural Net-
works (UCB) [46]. While the goal is still to adapt the learning speed of each weight, the focus is on their uncer-
tainty rather than their importance. Adopting a Bayesian approach to neural networks, they have each parameter
drawn from a normal distributionN(μ, σ2), and during the learning phase the weights are not updated directly,
but rather through theirmean and variance. In this context, the variance associatedwith eachweight is interpreted
as a measure of the weight’s uncertainty. Assuming that the most uncertain weights are the less specialized ones,
and thus those more available for further training, their updating speed is determined by multiplying their learn-
ing rate by their uncertainty. Notably, this approach doesn’t require a knowledge of the task being solved, and is
therefore fit for both task-aware and task-agnostic scenarios.

The Learning without Forgetting approach [47] introduces an extra loss term called Knowledge Distillation
loss. Knowledge distillation generally refers to the process of passing the knowledge of a large model to a smaller
one, and the loss function introduced in [48] does that by encouraging the outputs of the two networks to be
similar. In Learning without Forgetting the same loss function is used to minimize the variation in the outputs
for old tasks when a new one is introduced. Some variants of this method can be found in the literature: the
Active Long Term Memory (A-LTM) network [49] works in a nearly identical way, differing only in the weight
decay regularization strategy, while Less-Forgetting Learning differs in using internal representations instead of
the final output to control the updates of the weights [50].

Rehearsal strategies

The rehearsal strategies try to prevent catastrophic forgetting by retraining themodel using past information. Also
in this case, the most naive approach of storing all the past samples and using them to retrain the model whenever
a task shift takes place is extremely inefficient, both in terms of computational complexity and memory require-
ments. It is possible though to adopt strategies that store past knowledge in an efficient and less memory consum-
ing way, making this approach a viable option.

The ExStream algorithm [51] uses a memory buffer to store only a fixed number of examples from each class
that can be seen as prototypes. As long as there’s space in the buffer new examples are simply added, while when
the buffer gets full a compression process takes place to free somememory: the two closest prototypes are merged
through an average weighted on the number of previous mergers of each prototype. The prototypes are then
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re-presented to the model together with examples from new tasks.

A less memory consuming approach to present past information to the model is through generative models.
Thesemodels instead of storing past examples learn the distribution of the previously presented data and generate
newdata from that distribution. For example, theDeepGenerativeReplay (DGR) strategy [52] uses a dualmodel
architecture, with a deep generative model (“generator”) and a task-solving model (“solver”). The generator pro-
duces data based on the distributions of the old tasks that are paired with labels from those tasks. The generated
data are then presented to the solver, which works as a standard neural network, interleaved with examples from
the new task to reduce the overall forgetting.

Hybrid strategies

Strategies belonging to different categories can be combined in order to obtain more resistant models. It is the
case for example of the AR1 approach [53], obtained by combining CWR [36], an architectural method, with SI
[30], a regularization strategy. The weights of the last layer that were kept entirely frozen in CWR got instead a
different updated speed each, according to their importance as computed in the SI approach.

While AR1 is a task-awaremethod, as much as the twomethods that it combines, most of the hybrid strategies
have been developed for task-agnostic scenarios. The Hybrid generative-discriminative approach to Continual
Learning (HCL) [54] combines features from all three strategy groups. It is a method based on generative replay
that maps tasks to distributions through generative flows, expanding the model whenever a new task is detected
by looking at drifts in the data statistics and adopting a regularized loss to enforce small changes in old representa-
tions. Continual Neural Dirichlet ProcessMixture (CN-DPM) [32] is also based on a combination of generative
replay andmodel expansion where outliers from the existing distributions are detected in a Bayesian nonparamet-
ric framework. Outliers are believed to belong to a new task and subsequently stored in a buffer, and as soon as the
buffer gets filled a new task-related part of the network is built using the outliers collected up to thatmoment, with
the model then being trained on samples generated from the distributions. Continual Unsupervised representa-
tion Learningworks in the sameway, differing just in using aVariational Autoencoder for the generative part [55].

DarkExperienceReplay [56]workswith a combination of regularization and rehearsal techniques. LikeLearn-
ing without Forgetting [47] a knowledge distillation loss is used but applied only to a subset of the samples stored
in a memory buffer. Those samples are selected via reservoir sampling, in order to simulate a uniform sampling
among all the past data without the need of storing them all. A knowledge distillation step is used also in Incre-
mental Classifier andRepresentation Learning (ICARL) [57], but in this case a more elaborate strategy is used to
select the samples to be stored. A similar combination is used in the Gradient Episodic Memory (GEM) model
[58], which uses a memory buffer to store the last n seen examples from each class and adds a regularization term
to the loss based on the performance on the stored examples. However, while the knowledge distillation loss en-
forces stability on the performance for previous tasks, the loss term introduced with the GEMmodel allows that
performance to grow, in order to enhance the backward transfer of knowledge.

A third class of hybrid methods involves a mix of architectural and rehearsal strategies. These methods gener-
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ally rely on a dual-memory system, similarly to the GeppNet+STPmodel [35] described among the architectural
strategies. However, in these cases the short-term memory has two roles: learning short-term conceptual repre-
sentations for the prediction phase, and generating samples for consolidation into the long-termmemory. This is
the case for example of FearNet [59] and Growing Dual-Memory (GDM) [60].
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3
Gated Linear Networks

In this chapter we will describe in detail the Gated Linear Network model, focusing on the general functioning
of the model and the results achieved so far in the literature.

3.1 GLN overview
Gated LinearNetworks (GLNs) are a family of neural networkmodels first introduced in [39] with some peculiar
features that make them particularly fit for working in the continual learning environment. In standard neural
networks the task of predicting the final target is left to the final layer of the network, with all the internal neurons
and layers learning to detect specific features of the input. In GLNs the approach is different: each neuron is con-
sidered an expert that predicts the probability of the target, taking the predictions of the neurons of the previous
layer as inputs. Moreover, the model is characterized by a gating mechanism through which each neuron chooses
the set of weights to use (and update) according to the region of the space to which the input data belongs, with
different neurons having different space partitions.

The first advantage of continual learning comes from the simplification of the learning phase with respect to
standard backpropagation. In fact, the weights of each neuron are updated independently by associating a sep-
arate convex loss to each neuron, increasing significantly its computational efficiency. The gating mechanism is
also very helpful in tackling the problem of catastrophic forgetting by defining different sets of weights to be up-
dated separately; in doing so thismodel falls into the category of architectural strategies following the classification
proposed in Chapter 2. Moreover, this comes with no loss in terms of approximation capacity. In fact, similarly
to what the Universal Approximating Theorem proved for feed-forward neural networks [61], it has been proved
that with sufficiently rich side information the GLNs have a large approximation capacity and that the capacity is
effective in the sense a gradient descent algorithm will eventually find the approximation [39].
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Another interesting characteristic of this model regards its easy interpretability. Most of the modern neural
networks have been criticized for being “black boxes” for which an interpretation is very difficult to obtain, often
requiring complex post-hoc analysis [62]. As forGLNswewill see that after the gating process themodel collapses
into a linear model, specifically into amultilinear polynomial of degree equal to the number of layers. The weight
vector associated to the polynomial has the same size of the input, meaning that it can be used to build an intuitive
saliencymapwithout any further computational expense. Figure 3.1 shows an example of saliencymaps obtained
from a GLN used in a classification task with the MNIST dataset.

Figure 3.1: Saliency map obtained from a GLN used for a binary one vs all classification task on the MNIST dataset after 1
training epoch [1].

Due to their particularly fast training procedure, GLNs have seen their best field of application in online learn-
ing, with tasks spanning from contextual bandits [2] to univariate andmultivariate regression[63] to image classi-
fication [1]. The performance of GLNs in a continual learning setting in countering catastrophic forgetting has
been explored only in [3] using the Split-MNIST and Permuted-MNIST benchmarks, leaving room for an evalu-
ation of its efficiency on more complex datasets and tasks, that is the aim of this work.

We will now introduce in more detail the two main building blocks of the Gated Neural Networks, the Geo-
metric Mixing operation and the gating mechanism, explaining how to combine them and how to train a model
built on those concepts.

3.1.1 Geometric mixing
First introduced byChristopherMettern in the context of data compression [64][65], GeometricMixing consists
in a parametrized way of combining probabilistic forecasts. Given p1, p2, ..., pd input probabilities predicting a
binary event, the geometric mixing of such probabilities takes the form

GEOw(p) = σ(wTσ−1(p)) (3.1)
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where σ(x) := 1/(1 + e−x) defines the sigmoid function, σ−1(x) := log(x/(1 − x)) defines its inverse, the
logit function, p = (p1, ..., pd) is the vector containing the input probabilities and w ∈ Rd is the weight vector.
As shown in [1] the following identity holds:

σ(wTσ−1(p)) =
∏d

i=1 p
wi

i∏d
i=1 pw

i
i +

∏d
i=1(1− pwi

i )
(3.2)

thatmakes it explicit that the geometricmixing operationworks as a product of experts, and leads to the following
interesting properties:

• if all the weights wi are the same the geometric mixing works as a simple mean;

• if all the weights wi are equal to 0 then the prediction is 1/2;

• every forecaster has a ”right of veto”, meaning that a single pi equal to zero, combined with a non-zero
weight, drives the whole geometric mixture prediction to zero.

A neuron that carries out the operation defined in 3.1 is called a Geometric Mixer and both its inputs and its
output take values in [0, 1]. As a result, an L-layers network of geometric mixers can be defined as:h(0) = σ(x)

h(i) = σ(W(i)σ−1(h(i−1))), i = 1, ..L
(3.3)

where x is the input data of the network,W(i) is thematricial parametrization of the weights of all the neurons
of the i-th layer and h(i) is the output of the i-th layer.

It is worth noting that a deep network composed solely of geometric mixing neurons as described before is
equivalent to a linear network with a final sigmoid function:

h(L) =σ
(
W(L)σ−1

(
σ...
(
W(1)σ−1 (σ(x))

)))
(3.4)

=σ
(
W(L) · ... ·W(1)x

)
(3.5)

=σ

( L∏
i=1

W(i)x

)
(3.6)

Given this last equivalence, in order to account for the nonlinearity that usually emerges in non-trivial data it
becomes necessary to add a gating mechanism to the geometric mixers.

3.1.2 Gated geometric mixing
To obtain the neuron of a GLN a contextual gating procedure is added to the geometric mixer as described in the
previous section. This means that the contextual information associated with the input data is used to select the
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set of weights to be used. This is performed by subdividing the context space into non-overlapping regions, with
every region being associated to a different set of weightsW.

More formally, a context function c : Z → C is associated to each neuronmapping the contextual information
z associated to the input x to a specific set of weights wc(z), where Z is the set of possible side information z and
C = {0, ..., k − 1} is the context space consisting of k regions. Using the notation of equation 3.1 we get that a
Gated Geometric Mixer can be defined as

GEOc
w(p, z) := GEOwc(z)(p, z) (3.7)

The standard approach is to simply use the feature vector of each input as context information. As for how
to determine the regions of the context space, we will now present two possible strategies: halfspace gating and
prototype gating.

Halfspace gating

This is the method proposed in the original paper [1]. The split of the input space into regions is obtained by
combining the halfspaces defined by hyperplanes. Given a vector z ∈ Rd and an hyperplane with parameters
ai ∈ Rd and bi ∈ Rwe can define a context function cĩ as

cĩ(x) =

1 if aTi z > bi
0 otherwise

(3.8)

What we obtain is that the affine hyperplane {x ∈ Rd : x · ai = bi} is being used to divide the context space
into two non-overlapping regions. Assuming the number of regions k to be a power of 2, we can stack log2(k)
context functions of the same kind obtaining a higher-order context function c̃ : Rd → {0, 1}log2(k), where
c̃ = [c1̃, ..., ck̃]T. On top of that, the set 0, 1log2(k) can be easily mapped into a one-hot encoding of the k regions,
and thus we obtain the final context function by combining all those operations: c : Rd → {0, 1}k.

The standard approach for the initialization of the hyperplanes is to sample them randomly from a normal
distribution fixed beforehand. In particular, a hyperplane defined through the parameters a, b as described above
has those two parameters sampled respectively from

a ∼ N(0, I)

b ∼ N(0, σ2)

with the first being a multivariate normal distribution with the zero vector as mean vector and the identity
matrix I as covariance matrix, and the second being a univariate normal distribution with 0 as mean and a small
fixed value σ2 as variance. This choice has twomain properties: with large d such sampled hyperplanes have a high
chance of being orthogonal, maximizing the efficiency of the split; secondly, inputs close in cosine distance will be
mapped into similar predictions [1]. The choice of a small σ2 is driven by the fact that it forces all the hyperplanes
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to pass close to the origin; this, combined with a standardization of the input data, will ensure an optimal choice
of the hyperplanes in the sense that all of themwill cross the data splitting them into two groups. Figure 3.2 shows
the result of half-space gating in a two-dimensional context space.

Figure 3.2: Illustration of half‐space gating for 2D context space. Each white line corresponds to a hyperplane, and each
region of the space is determined by its relative position with respect to all the hyperplanes [2].

Prototype gating

In [3] an alternative gating strategy is proposed, that focuses on prototypes rather than hyperplanes. The region
assignment is done by associating every point to its closest prototype, with the result being a Voronoi tessellation
of the context space. If we call P(i)

j ∈ Rk×d the matrix of the prototypes associated with the j-th neuron of the
i-th layer, the gating function can be formalized as:

c(i)j (z) = one hot
(
arg min

l

(
∥p(i)j,l − z∥

))
(3.9)

where z is the context vector, p(i)j,l is the l-th row of P(i)
j (corresponding to the parametrization of the l-th proto-

type of the j-th neuron of the i-th layer) and ∥ · ∥ is the Euclidean norm. Figure 3.3 shows how prototype gating
differs from half-space gating in splitting a two-dimensional context space.

15



Figure 3.3: Difference between the region split produced by halfspace gating (left) and prototype gating (right) in a 2D
context space [3].

Also in this case the choice of the prototypes can descend from a random sampling strategy, with the pro-
totypes being sampled from a multivariate normal distribution p ∼ N(0,Σ) with 0 being the zero vector and Σ
being a diagonal covariancematrix with small-value variances. Also in this case, the choice of small-value variances
combined with standardized input data ensures an efficient choice of prototypes. Alternatively, a data-driven ap-
proach can be used, with prototypes selected among the input data. This can be done in two ways: by sampling
among the whole dataset (if it is fully available since the beginning) or, in the case of a continual learning frame-
work, by selecting iteratively the most significant items according to some importance criteria (like the distance
from pre-existing prototypes). This last method in [3] leads to the definition of a sub-class of GLNs called Grow-
ing ProtoGLNs. WhileMunari in his work finds the growing approach to bemore efficient, its performance with
the more complex dataset used in this work will be discussed in Chapter ??.

3.1.3 GLN formulation
Independently from the choice of the gating function c(z), by combining all the building blocks introduced so
far with the equation 3.1 we obtain the following formulation for a neuron j at layer i:

h(i)j,(x,z) = σ
((

w(i)
j,(z)

)T
σ−1
(
h(i−1)
(x,z)

))
, i ≥ 1 (3.10)

where w(i)
j,(z) represents the set of weights activated by the contest z through the context function c

i
j associated

to the neuron. Or, to switch to the matricial notation used in equation 3.3:

h(i)j,(x,z) = σ
(
W(i)

(z)σ
−1
(
h(i−1)
(x,z)

))
, i ≥ 1 (3.11)

A schematic depiction of the full model as defined above can be seen in Figure 3.4.
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Figure 3.4: Illustration of the general architecture of a Gated Linear Network. Each neuron receives as input the outputs of
the previous layer, with the side information z broadcasted to every neuron and passed through each context function for
the weight selection process [1].

3.2 GLN training
As said at the beginning of the chapter each neuron is assumed to be predicting the binary target y at each training
step, meaning that they can be trained individually without the need to resort to backpropagation. Thus given
the side information z, at each training step t the neuron j at layer i suffers a loss that is convex with respect to its
active weights u := w(i)

j,(z) [65]. Using the notation from equation 3.7 the loss can be expressed as:

lGEOt (u) = −log(GEOu(y; pt)) (3.12)

with GEOu(1; pt) = σ(uTσ−1(pt)) and GEOu(0; pt) = 1 − GEOu(1; pt). The gradient of this loss function
with respect to the weights u is very easy to compute and is given by:

∇lGEOt (u) = (GEOu(1; pt)− y) logit(pt) (3.13)

which allows the model to carry out the update of the weights of all the neurons in parallel. The update of
the weights can then be done using one of the many different online convex programming techniques, but in this
work, we will restrict to Online Gradient Descent. Assuming that the weights belong to a convex setW ⊂ Rd

then the algorithm is ensured to converge to the solution [66]. The most common way to bound a weight vector
into a convex set is by clipping its components into an interval in the form [−k, k] for some constant k > 1, which
forces the weight vector inside a scaled hypercube of side 2k.
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4
Experiments

In this chapter, we show and analyze the results of the tests performed. We use the experiments in [3] as starting
point for our study, and we will try to increase the complexity of the environment while trying to progressively
move towards a more realistic learning scenario.

4.1 Experimental setting
This section reports the experimental setting to ease the reproducibility of the experiments.

4.1.1 Datasets
In this work, we will refer to two different datasets. We will try to compare the performance of GLNs on the
MNIST dataset, used in the early work of [3] that we will use as a starting point, to the performance on the
CIFAR-10 dataset to check howGLNs adapt to a significantly more complex environment. The performance of
the GLNs (and other continual learning strategies) on MNIST has been widely assessed [39][1][3], but the rela-
tive simplicity, assessed through the two Figures on the next page, calls for test on more difficult datasets. Figure
4.1 compares the separability of classes from MNIST and CIFAR using 50 randomly generated prototypes: we
can clearly see that theMNIST images aremostly concentrated in a limited number of areaswhile theCIFARones
are more scattered and thus more likely to generate overlappings between different classes. Figure 4.2 shows the
performance of GLN on one of the tasks presented in [3] and on the same task using the CIFAR dataset instead.
The task in question is called Permuted-MNIST and consists in several training phases, each presenting to the
model permutations of the original images. Also in this case we can see how harder it is for the model to perform
the same task on the CIFAR dataset.
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(a) MNIST, Class 1 (b) CIFAR, Class 1

(c) MNIST, Class 2 (d) CIFAR, Class 2

(e) MNIST, Class 3 (f) CIFAR, Class 3

Figure 4.1: Comparison of the separability of the first 3 classes of the MNIST (left) and CIFAR‐10 (right) datasets using 50
randomly generated prototypes.

Figure 4.2: Comparison of a GLN on the Permuted MNIST task from [3] and on the same task performed using the CIFAR‐
10 dataset, while keeping all the model hyperparameters fixed.

20



MNIST

The MNIST (Modified National Institute of Standards and Technology) database is a large database containing
images of handwritten digits [67]. It contains 60,000 training images and 10,000 testing images, all equally split
among10 categories corresponding to the 10digits. All the images are in black andwhite and in a 28x28 resolution.
Figure 4.3 presents examples from the dataset.

Figure 4.3: Examples of images from each of the 10 classes belonging to the MNIST dataset.

CIFAR-10

The seconddataset used in thiswork isCIFAR-10 [68]. It consists of 60,00032x32 colored images, equally divided
into 10 classes. The 10 different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks, and of the 60,000 items in the dataset 50,000 are used for the training phase and 10,000 for the test phase.
With respect toMNIST this dataset already results in amore difficult challenge due to a (slightly) bigger dimension
of the images, the switch to color imageswith three differentRGBchannels, and the presence of significantlymore
complex figures and patterns.

Figure 4.4: Examples of images from all the 10 classes of CIFAR‐10.
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4.1.2 Task
As discussed in Chapter 2 working in a Class-Incremental With Repetition scenario has been proven more effec-
tive in dealing with catastrophic forgetting while allowing to present data to the model in a more realistic way.
However, to this date, most of the experiments in continual learning are performed in class-incremental scenarios
without any kind of repetition, by simply presenting to the model only unseen classes at each training phase, ei-
ther from the same dataset [21][3], fromdifferent datasets [19] or using transformations of previously seen classes
[58][3]. In order to address this problem this work will present the data to the GLNmodel in a CIR fashion, and
in particular, referring to two different task-building criteria that increasingly relax the CI scenario. While at first
glance it could seem that switching to a CIR scenario, and thus presenting new samples of old classes, would be
equivalent to incorporating a rehearsal strategy into the model, there is a significant difference. Rehearsal strate-
gies rely on information that has already been passed to themodel and gets passed again either directly or indirectly.
In this case, however, the new samples, while still belonging to old classes, represent previously unseen informa-
tion and thus there is no rehearsal of past information involved.

In order to ease the comprehension of the learning scenario adopted in this study we will try to formalize the
concept of task and task sequence. The data flow can be described as a sequence of couples in the form (x(i), y(i))
with x(i) ∈ X being the input vector and y(i) ∈ {c1, ..., cn} its target label corresponding to one of the n classes of
the dataset. The data are presented to the model in a sequence of disjoint training phasesTj ∈ {T1, ...,Tm}, each
characterized by a different distribution of the n classes. In theCIR framework, each training phase contains a few
samples belonging to all the classes presented in the previous phases and samples belonging to at least one newly
introduced class. The two scenarios used in this study differ in the number of samples of each class presented in
each phase, which is determined using two different approaches. Figure 4.6 and 4.7 at the end of this section will
give a visual comparison of how classes are presented to the model in the two cases.

We will now present in more detail the two scenarios. In both cases the samples will be presented to the model
in an online fashion,meaning that the trainingwill happenwith just one epoch and batches of size one. A random
permutation has also been applied to the order of the classes with the respect to the standard order of the dataset,
which will be the order according to which they will be progressively presented to the model. Also in both cases,
the first training phase contains 2 classes, and a new one is introduced at each one of the following ones resulting
in a total of nine training phases. At the end of each training phase, the model is evaluated on all the classes that
it has seen up to that moment.

22



First CIR scenario

This first scenario has been applied only with the CIFAR-10 dataset, for which each class contains 5, 000 training
samples. In this scenario, each class is presented to the model following the same pattern, with the assumption
that the majority of the samples of each class are presented at the beginning with only a few of them being used
in later training phases. For each class ck, being Tj∗ the first training phase in which the class is presented to the
model, the number of samples from that class presented in each phaseTj is determined according to the following
rules:

• 0 for j < j∗

• 3, 000 for j = j∗

• 600 for j = j∗ + 1

• 200 for j > j∗ + 1

The following table sums up the whole training process for this scenario, with the number of samples of each
class presented in each training phase (with the classes already ordered according to the applied random permuta-
tion):

Class / Task T1 T2 T3 T4 T5 T6 T7 T8 T9 TOT
Class 2 3000 600 200 200 200 200 200 200 200 5000
Class 8 3000 600 200 200 200 200 200 200 200 5000
Class 4 3000 600 200 200 200 200 200 200 4800
Class 9 3000 600 200 200 200 200 200 4600
Class 1 3000 600 200 200 200 200 4400
Class 6 3000 600 200 200 200 4200
Class 7 3000 600 200 200 4000
Class 3 3000 600 200 3800
Class 0 3000 600 3600
Class 5 3000 3000
TOT 6000 4200 4000 4200 4400 4600 4800 5000 5200 42400

Table 4.1: Scheme of the first CIR scenario. It shows how many elements of each class are presented in each training
phase. The classes are presented in the order of the random permutation applied.

Note that in this first scenario since all the classes follow the same pattern the number of presented samples
does not depend on the number of training phases the class takes part in, which means that of the 5, 000 training
items not all of them are necessarily shown to the model.
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Second CIR scenario

This second scenario refers to the protocol introduced in [4] to build the sequence of training phases, which is
described through the pseudocode in Figure 4.5:

Figure 4.5: Pseudocode for a protocol to build a class‐incremental with repetition benchmark for continual learning.[4]

The protocol is quite intuitive and it can be applied to any dataset regardless of the number of samples it
contains. However, it is based on a completely different assumption with respect to the first scenario. In this case,
the classes do not follow the same pattern, but instead, for each class, the same number of samples is included in
each training phase, obtained simply by dividing the number of samples of each class by the number of training
phases the class takes part in. However due to the sizes of the training phases increasing over time the relative size
of each class still decreases over time.
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(a) (b)

Figure 4.6: Relative size of each class of CIFAR‐10 across all the training phases of the first CIR scenario (a) and the second
(b).

Figure 4.7: Visual comparison of the relative size of the first class of CIFAR‐10 with respect to each training phase, in the
simple class‐incremental scenario (blue), in the first class‐incremental with repetition scenario (orange) and in the second
one (green).
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4.1.3 Model
The two CIR task sequences outlined above have been used to test the perform of Gated Linear Networks. In
particular, the model used in this work is based on the Prototypes GLN (PGLN) proposed in [3], with the addi-
tion of an encoder for the input data. The reasons behind the choices of the encoding and the gating mechanism,
as much as the details of the normalization strategy used in this online environment, will be discussed in the fol-
lowing paragraphs. The choice of hyperparameters as learning rate, number of prototypes and architecture have
been object of study and will be discussed in Section 4.2.

ResNet encoding

Aswe saw in Section 4.1.1 one of the practical consequences of moving tomore complex datasets is having classes
that are less separable in the input space. Since we are using a model whose strategy to counter catastrophic for-
getting is based exactly on efficiently partitioning the input space it is a good idea to increase the separability of
the data before presenting them to the GLN. An efficient strategy is to perform an encoding through a pretrained
model, with the assumption that such an encoding would highlight the most distinctive features of each class.

In our specific case, we decided to perform the encoding through the ResNet-50 model. ResNet, short for
Residual Network, refers to a type of Convolutional Neural Network first introduced in [69] that makes use of
skip connections to train extremely deep neural networks without encountering the Vanishing Gradient problem,
i.e. the tendency of the gradient to decrease significantly in value during backpropagation, resulting in negligi-
ble updates of the weights. Its first introduction coincided with its victory at the ILSVRC 2015 and is generally
considered amodel capable of reaching state-of-the-art results on image classification tasks. Because of their prop-
erties, the ResNet architectures have been widely used as a backbone in solving more complex computer vision
tasks, covering also the role of encoders inmany cases [70][71][72]. The specific architecture chosen for this work,
ResNet-50, is as the name suggests a 50 layers-deep model, whose general structure can be seen in Figure 4.8:

Figure 4.8: Scheme of the ResNet‐50 architecture [5]

As we can see the architecture is composed of several convolutional blocks interconnected through the skip
connections mentioned before. In this study we performed tests using as encoded inputs for the GLN the out-
puts of the third (pink) or fourth (green) blocks, both providing (after a properMaxPooling step) a representation
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in the form of a vector of size 2048, and we compared the performance of the model in the two cases trying to
understand which was the best fit for our model and why.

In order to apply the encoding to samples from the CIFAR-10 dataset we used a ResNet trained on that same
dataset, which has been found on the GitHub repository at [73].

Gating strategy

In Chapter 3 we discussed several possible strategies for what concerns the gating mechanism in GLNs. In Mu-
nari’s work [3] three different approaches are tested, with increasingly better results: Halfspace Gating, random
Prototype Gating and Growing Prototype Gating. However, those results have been obtained with the MNIST
dataset. In the preliminary tests that we run, applying the same task sequences used in [3] (Split-MNIST and
Permuted-MNIST) to the CIFAR-10 dataset, we obtained different results. In particular, we found that consis-
tently with [3] randomly initialized Prototypes resulted in a better performance than halfspace gating, but the
same did not apply to the Growing Prototype approach, which was actually outperformed by the other two.

The cause of this apparently unexpected canbe foundby analyzing the functioning of theGrowingmechanism
in relationship with the internal structure of the datasets in question. According to the Growing mechanism
proposed in [3] each newest sample is considered a new prototype whenever it falls far enough from the pre-
existing prototypes in the context space, with an additional mechanism that removes unused prototypes after a
while. This is done through the definitionof a distance threshold, in that case, fixed as the average distance between
samples within the dataset. Such a mechanism is based on the assumption that different classes naturally fall into
a series of more-or-less well-defined non-overlapping cluster(s) so that members of different classes are on average
more distant. However we have already shown in Figure 4.1 that this assumption can hold for a simple complex
such asMNIST, but it is definitely not true in the case of CIFAR-10. For this reason, we decided to proceed with
our study by using the Prototype gating with randomly generated prototypes.

Normalization

As discussed in Chapter 3 when dealing with GLNs the standardization of the context information z becomes a
necessary step in order to ensure an optimal partition of the context space, both with halfspace and prototype gat-
ing. This is a procedure that normally relies on the knowledge of the true expected value μi and the true standard
deviation σi for each feature i of the context space. However in an online learning environment like the one where
we performed our tests that knowledge is not available. To overcome this problem the authors of the paper where
GLNs have been first introduced [39] usedWelford’s online algorithm [74] to iteratively estimate the two values.
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The algorithmmakes use of the following formulas to update the values:

μi(t+ 1) = μi(t) +
zi(t+ 1)− μi(t)

t+ 1
(4.1)

σ2i (t+ 1) =
mi(t+ 1)
t+ 1

(4.2)

where

mi(t+ 1) = mi(t) +
(
zi(t+ 1)− μi(t)

) (
zi(t+ 1)− μi(t+ 1)

)
(4.3)

initialized with μi(1) = zi andmi(1) = 0.

Of course, introducing such a standardization strategy comes at a cost, in terms of having an early training per-
formed with standardization parameters substantially different from the current ones. However, this is a scenario
consistent with real-world flows of information where it is impossible to predict future shifts in the data distribu-
tion and represents a further step in the goal of this work to move towards more realistic learning frameworks.

4.1.4 Evaluations
In this work the performance of GLNs has been evaluated using two different metrics:

• the first is the accuracy of the model, measured in amount of correctly classified items. It has been com-
puted separately for each training phase to account for the performance of the model over time, both
class-wise and averaged over the classes;

• the second is the backward transfer (BWT) [58], ameasure of how the performance on a class is influenced
by the introduction of new classes. When positive, it means that the knowledge about a new class is also
used to better classify old ones; when negative, it works as a measure of the catastrophic forgetting. If we
call ai,j the accuracy on the j-th class during the i-th training phase,m the number of training phases and
ī the index of the training phase were the i-th class is first introduced, we can formally define backward
transfer of the model as

BWT =
1

m− 1

m−1∑
i=1

am,i − aī,i (4.4)

The reason behind the choice of this dual system of evaluation lies on what we expect from a model capable
of behaving correctly in a continual learning environment: a good classifying performance, and little catastrophic
forgetting. Moreover, if considered independently they could be misleading: a relatively stable average accuracy
could hide very unstable class-wise patterns with a lot of forgetting, while a low BWT could be just the result of a
low accuracy since the early training phases.
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4.2 Results

With the nature of this study being exploratory, the directions to follow have been determined in a progressive
way. Having defined a more complex learning environment through the choice of the dataset, and being con-
scious thanks to the exploratory tests of the greater challenge it would have represented we first decided to apply
an encoding (form the 4thResNet block) and to choose a firstCIR task sequence (the first) and see how themodel
would have performed in this situation. After having explored the performance of the model in this context we
decided to proceed with testing a different encoding and to apply the model in a different CIR scenario. In each
of the subsections plots are presented with a graphical comparison of the accuracy trends between different tested
models. In the first subsection some tables have been added to better underline the performance with different
combinations of hyperparameters, while Table 4.5 at the end of the section will recap the accuracy and BWT
scores of the best models found in each subsection.

All the experiments have been performed onPython v3.10.4, using Pythorch v1.12.1, Torchvision v0.13.1 and
Numpy v1.23.1.

4.2.1 Hyperparameters

We decided to try different learning rates, number of prototypes, layers and neurons, with disappointing results.
It was possible to identify an optimal combination of hyperparameter, consisting in a learning rate of 0.5, 50 pro-
totypes and a two layers architecture by looking at the average accuracy trend across all the training phases and
prioritizing a better performance on the late phases. However, the differences in performance between different
sets of hyperparameters were very tiny. In particular, out of all the tests performed Figure 4.9 shows the average ac-
curacy trends for different hyperparameter combinations based on the optimal one, changing one hyperparameter
and keeping the others fixed. It is quite clear from those plots that while still outperforming the random classifier,
the differences between different combinations are mostly negligible. Tables 4.2, 4.3 and 4.4 show in more detail
the accuracy and BWT scores of all the the combinations presented in the Figures.
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(a) (b)

(c)

Figure 4.9: Results obtained by performing tests on different sets of hyperparameters, specifically learning rates, archi‐
tectures and number of prototypes, using the random classifier (blue) as reference. Subfigure (a) shows average accuracy
trends for different learning rates, Subfigure (b) for different architectures and Subfigure (c) for different numbers of initial‐
ized prototypes.

Model
Accuracy

BWT
T1 T2 T3 T4 T5 T6 T7 T8 T9

Random 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 -15.9
lr = 0.01 86.2 68.8 40.9 37.0 38.2 32.8 35.3 29.1 32.9 -58.2
lr = 0.05 89.2 73.1 52.1 41.3 42.4 42.4 41.2 33.6 40.7 -48.6
lr = 0.075 88.2 72.0 47.1 40.2 40.5 42.3 41.4 35.2 35.2 -43.1
lr = 0.1 88.1 67.0 53.1 41.7 34.2 41.2 36.3 32.2 34.4 -52.9

Table 4.2: Summary of the tests performed on the learning rate.
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Model
Accuracy

BWT
T1 T2 T3 T4 T5 T6 T7 T8 T9

Random 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 -15.9
[100, 1] 89.2 73.1 52.1 41.3 42.4 42.4 41.2 33.6 40.7 -48.6

[100, 25, 1] 82.4 63.2 51.3 37.1 43.1 38.2 36.7 29.7 33.1 -49.9
[100, 50, 1] 83.1 68.3 50.1 40.2 39.5 41.2 40.4 31.6 30.3 -50.0

[100, 100, 100, 1] 73.7 60.2 43.7 34.7 39.3 39.6 33.0 28.7 37.1 -42.5

Table 4.3: Summary of the tests performed on the model architecture.

Model
Accuracy

BWT
T1 T2 T3 T4 T5 T6 T7 T8 T9

Random 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 -15.9
50 proto 89.2 73.1 52.1 41.3 42.4 42.4 41.2 33.6 40.7 -48.6
100 proto 89.6 71.9 51.0 34.0 41.5 39.2 36.2 29.8 33.9 -56.2
500 proto 88.0 70.9 56.3 44.3 41.6 40.8 38.2 36.6 38.6 -56.3

Table 4.4: Summary of the tests performed on the number of prototypes.

Figure 4.10: Similar classes.

The cause of these results can be investigated by analyzing in more de-
tail the performance of the best model. Figure 4.12 in the next page
shows class-wise accuracy patterns for that model. Interestingly, we see
some violent downward peaks in accuracy for some specific classes. In
particular, we see a drop for class 4 when class 7 is introduced, for
class 8 when class 0 is introduced and for class 3 when class 5 is in-
troduced. Those combinations are not random: by looking at the
composition of the dataset we see that those correspond to the couples
deer/horse, cat/dog and plane/ship. As we can see in Figure 4.10, the
images belonging to those classes are very similar in terms of subjects,
shapes or backgrounds. This suggests that the model is still not power-
ful enough to perform a clear distinction between those classes, resulting in
interference between classes that enhance the catastrophic forgetting prob-
lem.
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Figure 4.11: Class‐wise accuracy patterns for the best model with learning rate = 0.05 and 50 prototypes.

A further confirmation of the weakness of the model in this form is given by a comparison of its performance
with that of a linear model (equivalent for the reasons explained in Chapter 3 to a GLNwith just one prototype).
The comparison can be seen in Figure 4.12, that show clearly that while the GLN becomes more effective when
more and more classes are introduced, in the early stages its performance is only slightly better than that of the
linearmodel. In order to increase the power of themodel we considered two strategies: increasing significantly the
number of prototypes, both randomly- and data-generated, and improving the quality of the encoding. While
the latter will be presented in the next section, it has not been possible to pursue the former due to its memory
load, a problem that will be discussed more in detail in the conclusions.

Figure 4.12: Comparison between average accuracy trend for the best GLN obtained so far and its linear counterpart.
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4.2.2 Encoding

Having verified that themain reason behind the suboptimal performance of theGLNs in our tests depended from
their lack to grasp the complexity of the presented data, we decided to intervene on the encoding phase by using a
different output from theResNet. In particular, as anticipated in Section 4.1.3 we performed tests comparing the
performance of the GLN using inputs encoded up to the 3rd convolutional block of the ResNet with those en-
coded with the whole model. The tests have been done using be optimal combination of hyperparameters found
in the previous section, therefore with a learning rate of 0.05, 50 prototypes and a fully connected layer with 100
neurons.

Figure 4.13: Average accuracy of the model over the 10 classes in 3 different cases: no ResNet encoding (orange), encod‐
ing taken from the 3rd convolutional block (green) and from the 4th convolutional block (red).

The results can be seen in Figure 4.13, that includes also the performance of a model without any encoding at
all. While it is quite clear that any encoding increases significantly the performance of the model, with the perfor-
mance of themodelwithout any kind of encoding being comparable to that of the randomclassifier, the difference
between the two types of encoding is a bit less evident. However, using the output from the 3rd convolutional
block outperform the alternative at almost every training phase, especially during the late ones. By looking at the
class-wise accuracy we can see another improvement provided by the choice of the the 3rd block output: Figure
4.14 shows that the patterns are more stable and the downward peaks are weaker than what seen using the 4th
block in the previous section. The reasons behind this apparently counter intuitive result, i.e. a less processed
input leading to a better classification performance, lies in the capability of models relatively simple like GLNs to
properly handle heavily processed data and will be discussed more in detail in the conclusions.
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Figure 4.14: Class‐wise accuracy using the ResNet encoding from the 3rd convolutional block.

4.2.3 Task sequence

Similarly to the tests performedwith different types of encoding, in this case we tried to compare the performance
of themodel over the twoClass-Incremental with Repetition scenarios introduced in Section 4.1.2. Since the per-
formance of the GLN still showed in the tests performed so far a certain degree of catastrophic forgetting, despite
a relative stability of the average accuracy towards the final training phases, it makes sense to relax even more the
constraint on the presentation of samples from old classes with the second CIR scenario. Once again, the tests
have been performed using a model with 50 prototypes, a learning rate of 0.05 and a fully connected layer of 100
neurons.

The results of this test are shown in Figure 4.15 and, as expected, we see the GLN performing better in every
learning phase but the first and generally being more stable in terms of fluctuations of the average accuracy.
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Figure 4.15: Comparison of the performance of the best model (learning rate = 0.05, 50 prototypes, one fully connected
layer with 100 neurons) in the first (orange) and second (green) CIR scenarios, with the random classifier (blue) for refer‐
ence.

4.2.4 Final summary

To conclude the experimental part of this work, we tried to combine the best set of hyperparameters, the optimal
encoding and the second CIR all in one test. The results of this last test are summarized in the next two figures.
Figure 4.16 compares the average accuracy before and after adding both the new encoding and the new task se-
quence. As we can see, the new additions lead the model into significantly outperforming the base version, with
the accuracy stabilizing around 60% as soon as with the 5th training phase, compared to the base models that
after the third training phase never manages to go back over a 50% average accuracy. Figure 4.17 shows the class-
wise accuracy patterns of this final implementations, and even here huge improvements are clearly visible. All the
trends appear generally more stable, and the downward peaks are reduced in terms of both quantity and intensity,
with non of them ever going below a 30% accuracy, let alone touching values below 10% down to even 0% as it
was for the first tests.
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Figure 4.16: Comparison of the performance of the best model (learning rate = 0.05, 50 prototypes, one fully connected
layer with 100 neurons) tested without any extra additions (orange) and with the new task sequence and encoding (green),
with the random classifier (blue) as reference.

Figure 4.17: Class‐wise accuracy patterns for the optimal model (learning rate = 0.05, 50 prototypes, one fully connected
layer with 100 neurons) with the new encoding and the new task sequence.
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Table 4.5 sums up the results for the models that have been progressively tested across this study. First we
can observe that the combination of an encoding from a lower layer of the ResNet combined with the second
CIR learning environment actually grants the best possible performance, both in terms of average accuracy and
in terms of BWT score. Furthermore, we can observe a tangible proof of the necessity to adopt a dual evaluation
method: the random classifier is the one that, on paper, shows the less forgetting, but only because it performs
very badly since the beginning.

Model
Accuracy

BWT
T1 T2 T3 T4 T5 T6 T7 T8 T9

Random 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 -15.9
CIR1+ResNet4 89.2 73.1 52.1 41.3 42.4 42.4 41.2 33.6 40.7 -48.6
CIR1+ResNet3 93.2 73.1 60.6 39.6 53.3 49.1 47.2 45.2 41.5 -51.3
CIR2+ResNet4 85.7 72.7 57.9 53.7 48.3 50.7 45.5 42.0 44.5 -29.1
CIR2+ResNet3 90.2 78.6 65.1 66.5 55.9 58.4 53.6 51.9 55.3 -21.4

Table 4.5: Summary of the performances of the best models found in each subsection, classified according to the type of
encoding (ResNet3 or ResNet4) and the task sequence used to train them (CIR1 or CIR2). For each of them the average
accuracy in each training phase and the final BWT score are shown.
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5
Conclusions

In this work we tried to evaluate the performance of Gated Neural Networks in a complex environment, defined
by the choice of datasets that are more challenging than those used in prior works. The evaluation has been per-
formed in a Class-Incremental with Repetition framework, that while being closer to real-world scenarios allows
to implicitly mitigate the catastrophic forgetting, the main problem that arises when training a model within a
Continual Learning paradigm.

We saw that, as expected, the performance ofGLNs drops significantlywhenmoving from a simple dataset like
MNIST to a more complex one like CIFAR-10. We first observed that while an optimal set of hyperparameters
can be found, it will not change the final performance in a significant way. The small improvements obtained
by changing the combination of most hyperparameters, if compared with the assumption that a GLN has the
potential to approximate any function no matter its complexity, lead us into thinking that the problem resides in
the complexity of the model itself. This idea was confirmed by looking at the class-wise accuracy patterns, that
present huge downward peaks in correspondence with the introduction of new classes whose samples resemble
closely those of old classes, and by the fact that the GLN performance was only slightly better than the one of a
basic linear classifier. We decided therefore to implement new strategies to increase the capabilities of the model.
While the result of testing different encodings lead to encouraging results and will be discussed in the next para-
graph, we haven not been able to carry out the attempt to significantly increase the number of prototypes becasue
of some technical limitations that will be discussed later on.

The firstmain finding of our tests using different encoding is that indeed, as our preliminary tests suggested, in-
troducing an encoding given by a pretrainedmodel likeResNet can help to significantly improve the performance
of GLNs. This can be explained by the fact that such an encoding improves the separability of the different classes
of the dataset, and therefore diminishes the amount of spatial overlappings between different classes making the
gating mechanism more efficient. As a confirmation of that, we could see that the performance of the model
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dealing with raw data without any encoding was comparable to that of a random classifier. Moreover, we saw
that taking the encoding from an output of an earlier point of the ResNet results in a better performance of the
attached GLN classifier. This result, however counter intuitive, can be explained by taking into account that in
deep neural networks the specialization and the complexity of the learned representations of the model increase
together with its depth, a known andwell-verified fact. In amodel as deep and as powerful as a ResNet this means
that the representations produced by the very last layer are incredibly complex, and very hard to learn for a model
such as a GLN, that relies mostly on linear transformation and spatial separability. With this assumption taking
the output from the 3rd block instead of the 4th, giving up on around twenty layers of various transformations,
represents a good compromise between increasing the separability of the data and learning a representation that
is feasible for being learned by a GLN.

While testing the two different Class Incremental with Repetition scenarios, we found as expected that the
more we relax the lack of repetition the better the performance becomes. With the perspective of applying con-
tinual learning models to flows of data coming from real-world environments like robotics or automated driving,
that would most likely result in a CIR flow of information, it makes sense to train and evaluate models in CIR
scenarios. From this point of viewwe found the prior literature to be lacking, withmost of the continual learning
strategies being tested onClass-Incremental without repetition scenarios, resulting in a consequent lack of bench-
marks to be exploited. In view of that, on one hand the pseudocode proposed in [4] for the protocol to generate
CIR task sequences should be applied to evenmore complex pre-existing classification datasets; on the other hand,
more task-specific datasets like Core50 [36], with built-in CIR training sequences, should be developed and in-
troduced as benchmarks.

One of the main limitations found in this work regards the memory consumption of GLNs. The problem
emerged mainly in two situations: when combining a data-driven initialization of the prototypes, and when try-
ing to significantly scale up the number of prototypes. While if this could become an unsolvable limitation for
future developments of GLNs in even more complex environments is a possibility worth of being investigated, it
is true that it represented a significant limitation for this study. As we already said testing various combination
of hyperparameters lead to mixed results, with the GLN only slightly overperforming the linear baseline. This,
together with the separability problems that we already discussed, suggests that a significantly higher number of
prototypes (or a relatively similar number of data-driven prototypes) could have lead to a better performance solv-
ing some of the stability problems encountered in this study. While this couldn’t have been verified in this study
it represents for sure a promising way forward.

Other improvements could be done regarding how prototypes are generated. As explained in Chapter 4 the
Growing ProtoGLN approach has been proved to not be particularly effective whenever the data are nor clearly
separable and the distance between samples is highly variable. However the idea of generating prototypes in a data-
driven fashion, instead of generating them randomly, remains still valid and potentially more memory efficient
since it reduces the risk of generating useless partitions in the context space. A way to implement such a strategy
could be found taking inspiration from the generative rehearsal strategies for deep learning described in Chapter
2. Some information about the classes could be stored, for example in the form of normal distributions approx-
imating the data distribution of each class that get continuously updated while more data from those classes are
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detected. The prototypes could then be sampled from those distributions on a regular basis, without the need to
initialize all of them since the beginning and thus reducing even more the memory load of the model.

A further step of development is also represented by the detection of new classes. The GLN as developed in
this work, while not actively using the knowledge of the task to mitigate catastrophic forgetting, still relied on
it to detect when a new class is introduced and expand the model to account for that class in a proper way. It
could be interesting to explore the possibility of having GLNs detecting autonomously the introduction of new
classes, possibly exploiting information related to the frequency with which different prototypes are activated.
This would turn the model completely fit for a task-agnostic scenario, a property that should be considered desir-
able being that scenario the most realistic one.
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