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Chapter 1

Introduction

Polynomials are well known, powerful tools used for centuries in Mathemat-
ics. We do not only find them in theoretical Maths, but they are also used
to model problems in Sciences, Economy and Finance, Machine Learning,
Engineering, Computer Sciences and many other fields. Their strength is
that they are intuitive and yet very useful to describe non-linear problems.
Indeed, polynomials are the most famous non-linear functions that one can
think of.

During the last 20 years the interest towards non-linear programming in-
creased drastically. This is due to many factors, including the better un-
derstanding of linear programming, new mathematical tools and also the
advancement of computers, now capable of solving big problems in a rea-
sonable amount of time.
It is not surprising then, that during this period of time many new advances
where achieved also in polynomial programming.

Indeed, nonetheless polynomials were studied for many centuries, only dur-
ing last century we were able to solve some complicated problems related to
them. For example how to describe non-negative polynomials using sum of
squares, the famous Hilbert problem [Hil88]. Or, closely related to this one,
how to describe non-negative polynomials in a semialgebraic set.
The latter is the problem we are more interested in, since it is strictly con-
nected to solving polynomial programs. Shor [Sho87], in facts, showed that
solving a polynomial problem can be traced back to characterizing non-
negative polynomials over the set described by the constraints of the pro-
gram, that is a semi-algebraic set.
Unfortunately this tunrned out to be NP-hard, but thanks to the work
of Parrilo [Par00], Parrilo and Strumfels [PS01], and Lasserre [Las01], and
using algebraic results known as Positivstellensatz from Putinar [Put93],
Stengle [Ste74] and others, we were able to relax it. These relaxations
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6 CHAPTER 1. INTRODUCTION

are a sequence of semidefinite programs (a linear program with a further
constraint of positive semidefiniteness for a matrix). In each step of this
sequence, the degree of Sum of Squares (SOS) polynomials involved is in-
creased, and increasing the degree improves the relaxation. This sequence
is also proved to converge to the solution of the polynomial program taken
in consideration. We call it a Lasserre Hierarchy, and we use the degree of
polynomials involved to specify which step of the sequence we are consider-
ing.

This approach is also used nowadays but, unfortunately, needs a lot of com-
putational power to be implemented, since the complexity of the problem
for a fixed number of variables increases exponentially with the degree.
In order to solve this problem, many methods were implemented. For ex-
ample exploiting the sparsity to reduce the number of computations needed
[Fuk+01], or to relax the problem even more. The latter was done by Ah-
madi and Majumdar [AM17a], and further developed also by Hall [AH15].
It was achieved using a further relaxation of sum of squares polynomials,
namely Scaled Diagonal dominant Sum of Squares (SDSOS), that can be
written using Scaled Diagonally Dominant (sdd) matrices. This approach,
even if relaxes the problem even more (and thus give weaker bounds to the
optimal solution of the original polynomial program) has the advantage of
being very fast since the semidefiniteness contraint is applied only to 2 by
2 matrices, namely it uses Second Order Cone constraints. This allows to
increase the size of problems taken in consideration.

It’s in this setting that our work is collocated. Indeed, in a recent article of
Ghaddar, Vera and Anjos [GVA16], a new algorithm for solving polynomial
problems using SOS polynomials was implemented. This algorithm, called
Dynamical Inequalities Generation Scheme (DIGS), instead of increasing the
degree of polynomials involved, generates new inequalities to improve the
description of the semialgebraic set in which the optimization takes place.
Since the degree is fixed, the dimension of the problem does not increase at
each step. The method was shown to give very good bounds and sometimes
also to converge to the optimal value using less time and memory compared
to Lasserre’s approach.
In this thesis we focused on extending the algorithm to SDSOS polynomials,
moved by the increasing attention that SOCP are getting.
After writing down the new formulation for the algorithm and implementing
it in Matlab, we were able to test it on some examples.

To further increase its efficiency we also implemented a method to exploit
the sparsity that this kind of problems usually have, following the approach
of [SY19], checking that this method (thought for quadratic problems) could
be used also for our problem.

Finally we explained a way to strengthen our relaxation using valid inequal-
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ities.

Before presenting our work, we would like to clarify the notation used in
this thesis:

- We use the symbol N for the set {0, 1, 2, ...}, that is the set of natural
numbers including 0. We will write N+ whenever we want to exclude
the 0.

- R is the set of real numbers and R+ = {x ∈ R | x ≥ 0} is the set of
non-negative reals.

- Given a set A, we use the convention An = A × A × ... × A n-times
and x ∈ An is a vector with n entries in A.

- Given a vector x ∈ Rn, we denote with R[x] the ring of polynomials
in (x1, x2, ..., xn). We use Rd[x] for the ring of polynomials of degree
at most d.

- Given two vectors x, y ∈ Rn, we use (x, y) for the scalar product
(x, y) = x1y1 + x2y2 + ...+ xnyn.
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Chapter 2

Polynomial Programming

First of all, we need to understand what a polynomial programming problem
is and what is the state of the art method to optimize over it.
We start by defining what a multivariate polynomial is, and introducing
some notation to work with them.
Most of the notation, definitions and theorems are taken from [GVA16],
[Gha11] and references therein.

Given a vector x = (x1, ..., xn) ∈ Rn and a second vector a = (a1, ..., an) ∈ Nn,
we will use the convention

xa = xa11 x
a2
2 · · ·x

an
n

We will also say that |a| =
∑n

i=1 ai.

Definition 2.1 (Multivariate Polynomial). Given a vector x = (x1, ..., xn),
we say that p(x) ∈ R[x] is a multivariate polynomial if

p(x) =
∑
a∈Nn

cax
a

where a = (a1, ..., an) and ca ∈ R, ∀a ∈ Nn. We will also say p(x) ∈ Rd[x]
is a multivariate polynomial of degree at most d if

p(x) =
∑
|a|≤d

cax
a

Example 2.1. For example, if we take x ∈ R2 and

p(x) = x2
1 + 3x1x2 −

1

2
x2

2
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10 CHAPTER 2. POLYNOMIAL PROGRAMMING

in R2[x], we have that

a = (2, 0)⇒ c(2,0) = 1;

a = (1, 1)⇒ c(1,1) = 3;

a = (0, 2)⇒ c(0,2) = −1

2
;

Definition 2.2 (Polynomial Programming). We call polynomial program-
ming problem, any optimization problem of the form

(PP-P) ρ = inf
x∈Rn

f(x) (2.1)

s.t. gi(x) ≥ 0 i = 1, ...,m (2.2)

where f(x) and gi(x) are multivariate polynomials in n variables.

For example, we can regard linear programming as a special case of polyno-
mial programming, where each polynomial has degree at most 1.
The main problem with Polynomial Programming is that the feasible region

S =

{
x ∈ Rn | gi(x) ≥ 0 ∀i ∈ {1, ...,m}

}
is not always convex and the objective function f(x) is not linear and many
time it is not even convex.
We call a set like S a semialgebraic set.

To address the problem of optimizing over S a non-linear function we need
to relax the polynomial program in a way such that it can be cast as a conic
program.
Conic programming is a subcategory of convex programming [BV04] and is
a broadly studied field. We know how to optimize non-linear functions over
a cone using, for example, Interior Point methods.

2.1 Conic Programming

A conic program is a program in which the feasible set is given as an inter-
section between a cone and a polytope.

Definition 2.3 (Cone). Given a set C ⊂ Rn, we say that C is a cone if,
taken y ∈ C, λ ≥ 0, then λy ∈ C.
We say that C is a pointed cone if C ∩ −C = {0}.

Example 2.2. We give here some examples of famous cones

• Rn is a cone for all 1 ≤ n ∈ N
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• Rn+ = {x ∈ Rn|xi ≥ 0 i = 1, ..., n} is a cone for all 1 ≤ n ∈ N

• The set C =
{
x ∈ Rn+1 | x0 ≥

√∑n
i=1 x

2
i , x0 ≥ 0

}
is the so-called

Second Order cone.

We will see more examples of cones through the chapter.

Definition 2.4 (Dual). Given a set A ⊂ Rn, we say that

A∗ = {y ∈ Rn | (x, y) ≥ 0 ∀x ∈ A}

is the dual of A.

We can check that (Rn)∗ = {0} and (Rn+)∗ = Rn+.

Definition 2.5 (Convex Set). A set A is said to be convex if

λy1 + (1− λ)y2 ∈ A ∀y1, y2 ∈ A, λ ∈ [0, 1]

Intuitively a set is convex whenever, taken two arbitrary points in the set,
the segment between those 2 point lies on the set.

It is then straightforward to define a convex cone and the dual cone. We
say that a cone is self-dual if C∗∗ = C.
Notice that both examples of cones given above are convex and self dual.

Lemma 2.3 (Dual of a cone is a convex cone). Given a cone C, then C∗ is
a convex cone.

Proof. First, let’s prove that C∗ is a cone. If C∗ is non-empty, then taken
y ∈ C∗, we have that (x, y) ≥ 0 for all x ∈ C. Then, if we take λy with
λ ≥ 0, we have

(x, λy) = λ(x, y) ≥ 0

since it is a product of two positive quantities. Then λy ∈ C∗.
Now we prove that it is convex. Let y1, y2 ∈ C∗ and λ ∈ [0, 1]. Then we have

(x, λy1 + (1− λ)y2) = λ(x, y1) + (1− λ)(x, y2) ≥ 0

since it is the sum of positive terms. Then λy1 + (1− λ)y2 ∈ C∗

We say that a set is closed, if it is closed for the topology one is considering.
In our case, the Euclidean topology.

Definition 2.6 (Conic Programming). A program of the form

(CP− P) min cTx (2.3)

s.t. Ax = b

x ∈ C
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is a conic program, whenever C is a pointed closed convex cone, b ∈ Rm,
c ∈ Rn, A ∈ Rm×n

From this definition, we can derive the dual problem using a Lagrangian
multiplier y. Let

L(x, y) = cTx+ yT (b−Ax)

be the Lagrangian of the system. Then we get [BV04]:

min
x∈C

{
cTx | Ax = b

}
= min

x∈C
max
y∈Rn

cTx+ yT (b−Ax)

≥ max
y∈Rn

min
x∈C

cTx+ yT (b−Ax) (2.4)

= max
y∈Rn

(
bT y + min

x∈C
(c−AT y)Tx

)
= max

y∈Rn

{
bT y | c−AT y ∈ C∗

}
.

So we have the following:

Definition 2.7 (Conic Dual Program). We call dual of (2.3) the program

(CP−D) max
y∈Rn

bT y

s.t. c−AT y ∈ C∗

Like in linear programming, we say that a point x ∈ C is feasible if Ax = b,
and that y ∈ Rn is dual feasible if c−AT y ∈ C∗.
Moreover if x is a feasible optimal solution of (CP-P) and y of (CP-D), then
we can define the duality gap as

cTx− bT y.

The following theorem holds

Theorem 2.4 (Duality Gap). Let x be a feasible solution of (CP-P) and y
a dual feasible solution. Then

cTx− bT y ≥ 0

Proof. It comes directly from (2.4) in the derivation of the dual problem
using Lagrange Multipliers given above.

If cTx− bT y = 0, we say that strong duality holds.

Definition 2.8 (Slater’s Condition). We say that (CP-P) satisfies Slater’s
condition if there exist a point x̂ such that x̂ is feasible for (CP-P) and
x̂ ∈ int(C).
The same way, we say that (CP-D) satisfies Slater’s condition if there exist
a point ŷ such that ŷ is feasible for (CP-D) and c−AT ŷ ∈ int(C∗).
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Slater’s condition is a very powerful tool to prove strong duality, since we
have the following

Theorem 2.5. Let p∗ be a feasible solution for (CP-P) and d∗ a feasible
solution for (CP-D). Then:

• If (CP-P) satisfies Slater’s condition and p∗ is finite, then p∗ = d∗ and
p∗ is attained for (CP-P).

• If (CP-D) satisfies Slater’s condition and d∗ is finite, then p∗ = d∗

and d∗ is attained for (CP-D)

• If both (CP-P) and (CP-D) satisfy Slater’s condition, then p∗ = d∗

and this value is attained for both problems.

Strong duality is a very useful property, since solving only one between the
primal and the dual problem, we get solutions for both. This means that
we can chose to solve the easier of the two.
Moreover Slater’s condition is a necessary condition for most Interior Point
algorithms, and this is why we always need to be sure our problems satisfy
it to be able to solve them.

2.2 From Polynomial to Conic

We have seen what a polynomial program is. Now we show hot to cast it as
a conic program.
We start noticing that if λ∗ is the optimal value of (PP-P), i.e.

λ∗ = min
x∈S

f(x)

where S was the feasible region S =

{
x ∈ Rn | gi(x) ≥ 0 ∀i ∈ {1, ...,m}

}
,

then f(x)− λ∗ ≥ 0 ∀x ∈ S.
But this means f(x) − λ∗ is a polynomial that is positive for all x in S.
Then, to find the value λ∗ we can solve the following

(PP −D) sup
λ
λ

s.t. f(x)− λ ≥ 0 ∀x ∈ S. (2.5)

In conclusion our main problem is to understand what’s the set of non-
negative polynomials with variables in the semialgebraic set S.
We will now use the notation

P(S) = {f(x) ∈ R[x] | f(x) ≥ 0 ∀x ∈ S}
Pd(S) = {f(x) ∈ Rd[x] | f(x) ≥ 0 ∀x ∈ S}
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where R[x] is the ring of polynomials, and Rd[x] of polynomials of degree at
most d.
In the end (2.5) becomes

(PP −D) sup
λ
λ

s.t. f(x)− λ ∈ P(S) (2.6)

It is easy to verify that P(S) is a convex cone. Unfortunately, it is not
self-dual and optimizing over it is a NP-hard problem. Indeed there is no
way to characterize it yet. So we need a way to relax request (2.6).

2.2.1 Lasserre Hierarchies and Semidefinite Programming

The study of non-negative polynomials over a set S is a classic problem. For
example, sum of square polynomials, that are polynomials of the form

p(x) =
K∑
i=1

qi(x)2

for some K ∈ N+, with qi polynomials in n variables of degree at most r,
are trivially non-negative polynomials. And the set of all sum of squares
polynomials is also a cone. We will call it SOSr(n) r, n ∈ N (we will write
SOS(n) if r = +∞).

Lemma 2.6 (SOSr(n) is a convex cone). Let

SOSr(n) =

{
p ∈ R[x] | p(x) =

K∑
i=1

qi(x)2, ∃qi ∈ Rr[x] ∀i = 1, ...,K

}
Then SOSr(n) is a convex cone ∀r ∈ N+.

Proof. Let p(x) ∈ SOSr(n) for some r ∈ N+. We need to show that given a
scalar λ ≥ 0, then λp(x) ∈ SOSr(n).
But

λp(x) = λ

K∑
i=1

qi(x)2 =

K∑
i=1

λqi(x)2 =

K∑
i=1

(√
λqi(x)

)2

that is well defined since λ ≥ 0. We prove that it is also convex. Given now
λ ∈ [0, 1], p(x), s(x) ∈ SOSr(n), is λp(x) + (1− λ)s(x) ∈ SOSr(n)?
We have

p(x) =

K∑
i=1

qi(x)2 and s(x) =

M∑
i=1

hi(x)2
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since they are SOS. Then

λp(x) + (1− λ)s(x) = λ
K∑
i=1

qi(x)2 + (1− λ)
M∑
i=1

hi(x)2

=
K∑
i=1

(√
λqi(x)

)2
+

M∑
i=1

(√
(1− λ)hi(x)

)2

=

K∑
i=1

li(x)2

where

li(x) =

{√
λqi(x), i = 1, ...,K√
(1− λ)hi−K(x), i = K + 1, ...,K +M

Moreover the degree of p(x) can not exceed 2r since the degree of the sum of
two polynomials is less or equal to the maximum degree of every polynomial.

Is it true that all positive polynomials can be expressed as sum of squares?
[Hil88]
Unfortunately not, for example the famous Motzkin [Mot67] polynomial
x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1 in R[x1, x2] can not. Then we usually have

SOSr(n) ⊆ P2r(Rn)

But Hilbert was able to prove equality when n = 1 or r = 1 or (n, r) = (2, 2).

This means that, if we want to describe polynomials in P2r(S) with S semi-
algebraic set, we can not just restrict our search to SOSr(n) ∩ S.
Nonetheless it is true that SOS polynomials are always non-negative. But
in general, it is very hard to find polynomials that are guaranteed to be
non-negative over a semialgebraic set. This is why many partial results
characterizing when a polynomial is non-negative were found. They come
with the name of Positivstellensatz. Putinar’s Positivstellensatz is the one
we need, but we remand the interested reader to [Pò74], [Ste74], [Sch91].

The power of Putinar’s result is that it tells us that every positive polynomial
on a semialgebraic set S can be written exactly only using SOS polynomials
and the polynomials appearing in the description of S. The hypothesis
underlying this theorem are not restrictive either, it states the follwing:

Theorem 2.7 (Putinar’s Positivstellensatz [Put93]). With the notation used
above, let g0(x) = 1 and G = {gi | i = 0, ...,m}, we define

K(G) =

{
p(x) =

m∑
i=0

gi(x)si(x) | si(x) ∈ SOS(n), gi ∈ G

}
(2.7)
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If there exists L such that S ⊆ {x ∈ Rn|
∑n

i=1 x
2
i ≤ L} and ∀x ∈ S, p(x) > 0,

then p(x) ∈ K(G).

K(G) is usually called a quadratic module generated by G. This means
that positive polynomials over S can be written as a finite sum of products
between SOS polynomials and the constraints that define S.
This is a very useful result but has two drawbacks that we need to notice.
The first one is that it characterizes only positive polynomials, while we
would like to describe non-negative ones; the second one is that it poses no
limit on the degree of the polynomials involved in the description of K(G).
Indeed it could happen that to describe p(x) of small degree, one needs
si ∈ SOSr(n), i = 1, ...m with r very large.
That S needs to be contained in a ball of some radius

√
L is not a demanding

request, since it naturally happens many times in practical application or it
can be added as a constraints to the definition of S for L large enough. It can
be proved that this request is also equivalent to a hypothesis of compactness
of S. One might find other equivalent requests in the literature.

The unlimited degree in Putinar’s Positivstelelnsatz is the biggest limit to
practical use of the theorem. It was then Lasserre that, trying to overcome
it, noticed the following [Las01]:

Theorem 2.8 (Lasserre’s Theorem). Let g0(x) = 1 and

Kr(G) =

{
p(x) =

m∑
i=0

gi(x)si(x) | si(x) ∈ SOS(n),deg(gi(x)si(x)) ≤ 2r

}
(2.8)

Then

K0(G) ⊆ K1(G) ⊆ ... ⊆ Kr(G) ⊆ ... ⊆ P(S)

Also we get {p ∈ R[x] | p(x) > 0 ∀x ∈ S} ⊆
+∞⋃
r=0

Kr(G).

Moreover, called

λ∗r = sup
λ
λ

s.t. f(x)− λ ∈ Kr(G) (2.9)

then

λ∗0 ≤ λ∗1 ≤ ... ≤ λ∗r ≤ ... ≤ λ∗

with λ∗ optimal value of (PP-D).

(2.9) are called Lasserre Hierarchies of order 2r (since the total degree of
polynomials involved is 2r).
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Given a polynomial p(x), let dp =
⌈

deg(p(x))
2

⌉
. Then notice that

deg(gi(x)si(x)) ≤ 2r can be reformulated as

si ∈ SOSr−dgi (n)

This means that we can approximate the solution of (PP-D) using SOS
polynomials of fixed degree and that, the higher the degree, the better the
approximation. We will see, again in practice, that many times the optimal
value is reached already for small degree relaxations.

Remark 2.9. Kr(G) is the truncation of order r of the quadratic module
introduced previously. It is sometimes called truncated module of order r.

Motivated by this result, we need to better understand how to describe SOS
polynomials and how to optimize over the cone SOSr(n).

To better work with SOS polynomials, we need a better description of them.
That’s why we will now study the relationship between SOS polynomials
and positive semidefinite matrices. This will allow us to cast (2.9) as a
semidefinite program, i.e. a conic program where C is the cone of positive
semidefinite matrices.

Definition 2.9 (Positive Semidefinite Matrix). Given a matrixQ ∈ Rn×Rn,
we say that Q is positive semidefinite (SDP) if

zTQz ≥ 0, ∀z ∈ Rn

Lemma 2.10 (SDP matrices form a convex cone). The set of all SDP
matrices is a convex cone.

Proof. Let Q and z be as in the definition above. Then

zT (λQ) z = λ
(
zTQz

)
≥ 0, ∀λ ≥ 0

This prove the set of SDP matrices is a cone. We prove it is also convex.
Let’s take Q,T ∈ Rn × Rn SDP matrices, z ∈ Rn, λ ∈ [0, 1]. We have

zT (λQ+ (1− λ)T ) z = λzTQz + (1− λ)zTTz ≥ 0

since it is a sum of non-negative terms.

This shows us that semidefinite programming is a subclass of conic pro-
gramming, and so we can use interior point methods to solve this kind of
problems.

Theorem 2.11. A polynomial p(x) is in SOSr(n) if and only if
p(x) = z(x)TQz(x), where Q is SDP and z(x) is the vector of all mono-
mials in x of degree at most r.
That is z = (xa) with |a| ≤ r. Then Q ∈ RN×N with N =

(
n+r
r

)
.
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Proof. Assume p(x) is SOS. Then p(x) =
∑K

i=1 qi(x)2. But each qi(x) can
be written as qi(x) = δTi z(x), where δi ∈ RN . Then we get

p(x) =
K∑
i=1

qi(x)2 =
K∑
i=1

(
δTi z(x)

)T
δTi z(x) = z(x)T

(
K∑
i=1

δiδ
T
i

)
z(x) (2.10)

Then we say that Q =
∑K

i=1 δiδ
T
i .

Now let p(x) = z(x)TQz(x) where Q is SDP. Then we can factorize Q as
Q =

∑K
i=1 δiδ

T
i and read (2.10) from right to left.

So, unlike P(Rn), SOSr(n) is easily described using SDP matrices. This
means that (2.9) can be written as

f(x)− λ =

m∑
i=0

gi(x)si(x) (2.11)

si ∈SOSr−d(gi)(n)

that is

f(x)− λ =

m∑
i=1

gi(x)
(
z(x)TQiz(x)

)
(2.12)

Qi � 0 (2.13)

(2.12) can be formulated as linear constraints on f(x) − λ and gi(x) co-
efficients and Qi entries, while (2.13) are SDP constraints. This is our
formulation as a conic program.

But also solving semidefinite programs can be very costly, since to check
positive semidefiniteness for a N × N matrix one would need to check its
eigenvalues, that is known to be an hard problem in computational mathe-
matics.
This is why we can think to relax the problem even more, considering only
a subclass of SOS polynomial, namely SDSOS polynomials.

2.2.2 From SOS to SDSOS

Ahmadi and Majumdar [AM17a], realizing that SOS relaxation could be
very costly for mid to big sized problems, tried to relax (2.12) and (2.13)
even more using a particular subclass of SDP matrices, and therefore a
subclass of SOS polynomials.

Definition 2.10 (Sdd matrix). A symmetric matrix Q = (qij) is diagonally

dominant if qii ≥
∑N

j 6=i qij for all j = 1, ..., N .
Q is scaled diagonally dominant (sdd) if there exist a diagonal matrix D
such that DQD is diagonally dominant.
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Definition 2.11 (SDSOS polynomial). We say that a polynomial p(x) is
SDSOSr(n) if

p(x) = z(x)TQz(x)

with Q sdd-matrix and z is the vector of all monomials of degree at most r.

SDSOS polynomials can also be seen as polynomial of the form

p(x) =

N∑
i=1

αim
2
i (x) +

N∑
i,j=1

(
β+
ijmi(x) + γ+

ijmj(x)
)

+
(
β−ijmi(x)− γ−ijmj(x)

)
where mi,mj are monomials in n variables of degree at most r, αi, β

+
ij , β

−
ij ,

γ+
ij , γ

−
ij are scalars and αi ≥ 0.

But usually we prefer working with sdd matrices instead, due to the following
result that can be found in [AM17a]

Lemma 2.12. A symmetric matrix Q is sdd if and only if it can be expressed
as

Q =
∑
i<j

M ij (2.14)

where M ij is an N × N matrix with all zeros entries except for
(
M ij

)
ii

,(
M ij

)
ij

,
(
M ij

)
ji

and
(
M ij

)
jj

and

((
M ij

)
ii

(
M ij

)
ij(

M ij
)
ji

(
M ij

)
jj

)
is SDP.

Checking if that 2× 2 matrix is SDP is equivalent to checking(
M ij

)
ii

+
(
M ij

)
jj
≥ 0,

∥∥∥∥∥
(

2
(
M ij

)
ij(

M ij
)
ii
−
(
M ij

)
jj

)∥∥∥∥∥ ≤ (M ij
)
ii

+
(
M ij

)
jj

(2.15)

This is also called a rotated second-order cone (SOC) constraints and they
are much faster than SDP constraints. A program in which the conic con-
straints are all SOC constraints, is called a SOCP (where P stands for Pro-
gram).

Then (2.6) can be relaxed also with

f(x)− λ =
m∑
k=1

gi(x)
(
z(x)TQkz(x)

)
(2.16)

Qk =
∑
i<j

M ij
k (2.17)

(
M ij
k

)
ii

+
(
M ij
k

)
jj
≥ 0,

∥∥∥∥∥∥
 2

(
M ij
k

)
ij(

M ij
k

)
ii
−
(
M ij
k

)
jj

∥∥∥∥∥∥ ≤
(
M ij
k

)
ii

+
(
M ij
k

)
jj

(2.18)
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and once again (2.16) + (2.17) can be imposed using linear constraints
and (2.18) are SOC constraints that are also solvable with interior points
methods in a more efficient way than SDP constraints.

If we call

Hr(G) =

{
p(x) =

m∑
i=0

gi(x)si(x) | si(x) ∈ SDSOSr−dgi (n)

}

we can also rewrite the relaxation as

λ∗r = sup
λ
λ

s.t. f(x)− λ ∈ Hr(G) (2.19)

The drawback of this method comes from the fact that

SDSOSr(n) ⊆ SOSr(n)

and, even when we reach convergence using the SOS relaxation, it might
be that the SDSOS one needs many more iterations to reach it. How good
it might be to use SDSOS instead of SOS highly depends on the objective
function and the constraints of our problem.

Notice that, a hierarchy of order r has:

• Around 3m
(
n+r
r

)2
variables (three for every M ij

k )

•
(
n+r
r

)
linear constraints

•
(
n+r
r

)2
SOCP constraints (i.e. to check if those 2×2 matrices are PSD.

Then, increasing r means increasing the problem complexity a lot. Already
for small values of n, having a big r leads to very costly problems.
This is what motivated the research for a new approach, namely the DIGS
algorithm, where the value of r is fixed in advance.
We will study it in more detail from next chapter.

2.3 Moment Approach

Lasserre Hierarchy actually comes from using the so called moment repre-
sentation for polynomials [Las01], [Las15], and was proved this way.
The moment approach is very useful for understanding polynomial programs
and the relationship between dual and primal problems. Moreover we will
introduce a new notation that will be useful later on and that’s very common
in the literature.
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Let’s suppose we are working on Rn with the usual Borel σ-algebra B(Rn),
and let µ be a Borel measure of probability, i.e. µ(Rn) = 1 and µ(A) ≥ 0,
∀A ∈ B(Rn).

Definition 2.12 (Moment sequence). Given a measure µ on Rn, we call
moment of order a the quantity

ya =

∫
Rn

xadµ(x)

for a ∈ Nn. We call sequence of moments of µ the sequence (ya)a∈Nn and
truncated sequence of order r the sequence (ya)|a|≤r, with r ∈ N.

For example, given the Dirac measure δx, the sequence of moments of δx is
ya = xa, ∀a ∈ Nn.

2.3.1 Moment Matrices

Given a sequence (ya)a∈Nn , we can define its moment matrix M(y) as the
infinite matrix indexed in Nn × Nn, such that M(y)(a,b) = ya+b. The trun-
cated matrix of order r is the submatrix of M(y)(a,b) given by the rows and
columns in which a ≤ r, b ≤ r. We will denote in with Mr(y).
We can now define a new sequence, that links our moment approach to
polynomials.

Definition 2.13 (Shifted Vector). Given g ∈ R[x], y ∈ Rn, we call shifted
vector the sequence

gy := M(y)g ∈ RNn

Namely, (gy)a =
∑

b gbya+b.

The same definition holds if y is a truncated sequence, with Mr(y) instead
of M(y).

Example 2.13. If n = r = 2, and y = (y00, y10, y01, y20, y11, y02, ...) se-
quence associated to monomials in 2 variables, we get

M2(y) =



y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


that is the truncated matrix.
If we now consider n = 2, d = 1 and g(x) = 5− x2

1 − x2
2, we have

M1(gy) =

5y00 − y20 − y02 5y10 − y30 − y12 5y01 − y21 − y03

5y10 − y30 − y12 5y20 − y40 − y22 5y11 − y31 − y13

5y01 − y21 − y30 5y11 − y31 − y13 5y02 − y22 − y04
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is the shifted moment matrix.

We have seen already that we can write a polynomial p(x) as

p(x) =
∑
a

pax
a

Indeed we can identify p(x) with the vector of his coefficients (pa)a, indexed
in Nn (or in Nnr ). This way we can identify R[x] with a vectorial space. Then
we can define linear forms on R[x].
Given a polynomial f(x) and a sequence y, we are interested in the following
linear form

Ly(f) = yT f =
∑
a

yafa (2.20)

Ly(f) is called Riesz linear functional.

With next lemma we are going to show what’s the link between moment
matrices and this form.

Lemma 2.14. Let y ∈ RNn
, Ly the linear form discussed above and f, g ∈

R[x].
Then Ly(fg) = fTM(y)g

Proof. f(x)g(x) =
∑

c

(∑
a+b=c fagb

)
xc. Then

Ly(fg) =
∑
c

( ∑
a+b=c

fagb

)
yc =

∑
a

∑
b

fagbya+b = fTM(y)g.

Remark 2.15. From previous result, we get

• Ly(f2) = fTM(y)f

• Ly(f) = vec(1)TM(y)f

Remark 2.16 (Bilinear Form). Lemma 2.14 gives us a method to extend
Ly to the bilinear form

By(f, g) := Ly(fg)

and to the quadratic form

Qy(f) := Ly(f
2)

We want now to understand when, given a sequence y ∈ RNn
2r , this is se-

quence a sequence of moments of some measure µ.
We leave the following important theorem without proof, since it would need
advanced results in functional analysis.
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Theorem 2.17 (Riesz-Haviland Theorem). Let (ya)a∈Nn be a sequence,
S ⊆ Rn be closed. There exists a probability measure µ on S such that∫

S
xadµ(x) = ya, ∀a ∈ Nn

if and only if Ly(f) ≥ 0 for all polynomials f ∈ R[x] non-negative on S.

Of course this result is the link between non-negative polynomials and linear
functionals.

Milder but very useful for practical implementation results are also the fol-
lowing:

Lemma 2.18. Let y ∈ RNn
2r , g ∈ R[x] and dg =

⌈
deg(g)

2

⌉
.

(i) If y is the sequence of moments of a measure µ, then Mt(y) � 0.

(ii) If t ≥ dg is the sequence of moments of a measure µ with support in
S = {x ∈ Rn | g(x) ≥ 0}, then Mr−dg(gy) � 0.

Proof. (i) Let p(x) ∈ Rt[x]. Then

pTMt(y)p =
∑
|a|≤r

∑
|b|≤r

papbya+b

=
∑
|a|≤r

∑
|b|≤r

papb

∫
Rn

xa+bdµ(x)

=

∫
Rn

p(x)2dµ(x) ≥ 0

(ii) Let p(x) ∈ Rr−dg [x]. Then

pTMt(gy)p =
∑

|a|≤r−dg

∑
|b|≤r−dg

papb(gy)a+b

=
∑

|a|≤r−dg

∑
|b|≤r−dg

∑
c∈Nn

papbgcya+b+c =

=

∫
S
g(x)p(x)2dµ(x) ≥ 0.

We can even extend point (ii) to S = {x ∈ Rn | gi(x) ≥ 0, i = 1, ...,m} using
dS = maxi=1,...,m{dgi} and r ≥ dS , and we get

Mr(y) � 0, Mr−dgi (giy) � 0, i = 1, ...,m
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2.3.2 Moment relaxation of a Polynomial Program

We can easily notice that

λ∗ = inf
x∈S

p(x) = inf
µ

∫
S
p(x)dµ(x)

Indeed, for x̄ ∈ S, p(x̄) =
∫
S p(x)dδx̄(x), showing that λ∗ ≥ infµ

∫
S p(x)dµ(x).

Conversely, p(x) ≥ λ∗ for all x ∈ S. Then

p(x) ≥ λ∗ ⇒
∫
S
p(x)dµ(x) ≥

∫
K
λ∗dµ(x) = λ∗

since µ is a probability measure.
Moreover, since p(x) is a polynomial, we get∫

S
p(x)dµ(x) =

∫
S

∑
a

pax
adµ(x) =

∑
a

pa

∫
S
xadµ(x) = pT y

with y sequence of moments of µ.

We can then rewrite (PP − P ) as

λ∗ = inf pT y

s.t. y0 = 1

y has a representing measure on S

Using Lemma 2.18, we can relax it to

λmomr = inf
y∈RNn2r

pT y (2.21)

s.t y0 = 1 (2.22)

Mr(y) � 0 (2.23)

Mr−dgi (giy) � 0, i = 1, ...,m (2.24)

Or, equivalently using the linear forms,

λmomr = inf
L∈(R[x])∗

L(p)

s.t. L(1) = 1

L(f) ≥ 0 ∀f ∈ Kr(G)

and Kr(G) is the set defined in (2.8).

Finally, if S has non-empty interior, one can show that λ∗r = λmomr . We have
already seen that we attain the supremum for λ∗r (and therefore for λmomr )
whenever S is inside a ball of radius big enough.
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2.3.3 Frobenius Inner Product

We end the section introducing another way to write conic programs. This
approach is largely used nowadays but was developed recently.

Definition 2.14 (Frobenius Inner Product). Given two matrices
A,B ∈ Rn × Rm, we define the product

A ·B :=
n∑
i=1

m∑
j=1

AijBij = tr(ATB)

Example 2.19. For example, given a polynomial p(x1, x2) ∈ R2[x1, x2],
such that

p(x) = p00 + p10x1 + p01x2 + p20x
2
1 + p11x1x2 + p02x

2
2

and y sequence of moments of x, we can define

P =

p00
p10
2

p01
2

p10
2 p20

p11
2

p01
2

p11
2 p02

 Y =

y00 y10 y01

y10 y20 y11

y01 y11 y02


Then

P · Y = p00y00 + p10y10 + p01y01 + p20y20 + p11y11 + p02y02 = pT y

Looking at Example 2.19, we understand that we can write (2.21) as

λmomr = inf
Y
P · Y

where Y is exactly Mr(y), and so (2.22) and (2.23) become

H · Y = 1

Y � 0

where H is a matrix with a 1 in entry (0, 0) and 0 otherwise.
Lastly, (2.24) involves the use of shifted moment matrices.
Calling Ygi := Mr0−dgi (giy), we get

Ygi � 0

And then the full problem can be cast as

λmomr = inf
Y

P · Y

s.t. H · Y = 1

Y � 0

Ygi � 0
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With SDSOS

In the SOS case, we get that both in the primal and dual formulation we
need matrices to be SDP. This is because the dual space of SDP matrices
is the space of SDP matrices itself. This doesn’t happen with sdd matrices.
The dual space of sdd matrices is instead given by

Tn+ :=
{
X ∈ Rn × Rn | X = XT and Xij � 0

}
where Xij is the 2× 2 minor specified by (i, j).
Understanding the proof of this would need to introduce a better description
of what a cone is, we remand the interested reader to [AH15].
So, (2.23) and (2.24) become

Y ∈ TN+
Ygi ∈ TN−dgi+

and so the full problem is

λmomr = inf
Y
P · Y (2.25)

s.t. H · Y = 1

Y ∈ TN+
Ygi ∈ TN(dgi )

+

where N =
(
n+r0
r0

)
and N(dgi) =

(
n+r0−dgi

n

)
.

Before ending the chapter, we want to give also the formulation for (2.25)
in the case of a quadratic program with r = 2, since it will be used later.
We call Qi, i = 1, ...,m the matrices of quadratic constraints. Then we
have:

λmomr = inf
Y
P · Y (2.26)

s.t. H · Y = 1

Y ∈ TN+
Qi · Y ≥ 0 (2.27)

where (2.27) comes from the fact that we are considering a matrix of moment
truncated at 0, that is exactly gi(x) or in matrix form Qi ·X.

2.4 Interior Point algorithms

Interior Point algorithms are the tool we use to optimize conic programs.
There are many algorithms under this name, but the way they work is very
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similar. We present only one example of Interior Point algorithm to give
a hint to the reader on how they work in general. We follow the work of
[NT98].

Let’s take in consideration the couple of conic programs presented previously
(CP-P) and (CP-D). We recall C is a pointed closed convex cone. We also
assume that Slater’s condition holds for both the primal and dual program
(i.e. we have strong duality).
We introduce the function

F : int(C) −→ R

and we say that F is a barrier function if

• F is strictly convex

• Taken (xk)k∈N ∈ int(C) sequence of points in the interior of C, such
that lim

k→+∞
xk = x̄ ∈ ∂C, then lim

k→+∞
F (xk) = +∞.

Let F∗ be a barrier function for the dual problem. We chose a value µ and
we introduce the following Barrier programs.

(BPµ) min
x

cTx+ µF (x)

s.t. Ax = b

(BDµ) max
y,s

bT y − µF∗(s)

s.t. AT y + s = c

(s is a slack variable that we use to rewrite the conic dual program in a more
readable way. It is easy to check that this is the same formulation we gave
previously) Those programs have solutions x(µ) and y(µ), s(µ) respectively,
that change smoothly with µ. The trajectories they form are called central
paths. This is why this kind of algorithm is usually also called central path
algorithm.
Of course now we need to characterize the barrier function F . We start by
asking for some properties we’d like it to have [NN94].
We say that F is ν-self-concordant (SCB) for C if

• F ∈ C3(C;R)

• For all x ∈ int(C), ∂2F
∂x2

is positive definite.

• For all x ∈ int(C) and d ∈ Rn the following holds:

- ∂3F
∂x3

(d, d, d) ≤ 2
(
∂2F
∂x2

(d, d)
)3/2

- ∂F
∂x d ≤

√
ν
(
∂2F
∂x2

(d, d)
)1/2
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We also say it is ν-logarithmically homogeneous (LHSCB) if, for all x ∈ int(C),
τ > 0, it holds F (τx) = F (x)− ν ln τ .
If F is ν-LHSCB, we deine F∗ as

F∗(s) := sup−sTx− F (x)

and we have that F∗ is ν-LHSCB for C∗.

Example 2.20. We give here some examples of barrier functions we are
interested in.

• If C is the cone of SDP matrices in Rn, then F (X) = − log(det(X))
and it is ν-LHSCB with ν = n.

• If C is the cone Tn+1
+ , then F (X) = − ln(x2

0 − ||x̄||22) with ν = 2 and
x̄ = (x1, ..., xn)

Once we create an F as above, the following holds

Lemma 2.21. x is optimal for (BPµ) and y, s for (BDµ) if and only if they
solve the following set of equations

AT y + s = c, s ∈ int(C∗)
Ax = b, x ∈ int(C)
µF ′(x) + s = 0

The idea of Interior Point methods is then that, using Newton method, we
can solve these equations and find x(µ), y(µ), s(µ) that, for µ going towards
0, converge to the optimal solution of (CP-P) and (CP-D).

Now we have all the tools to talk about DIGS, namely the new polynomial
optimization algorithm that we will present in next chapter.



Chapter 3

The algorithm DIGS

In the previous chapter we have seen how Lasserre Hierarchies work and
what are the main problem about them, namely the fast growth of the size
of the problem when increasing the degree of the hierarchy.

Here we want to introduce a new approach, presented for the first time in
[Gha11], and then outline the scope of this work, that is adapt this method
to the use of SOCP programming instead of SDP.

3.1 Dynamic Inequality Generation Scheme

We recall that in the previous chapter we wanted to solve the problem

(PP-P) ρ = inf
x∈Rn

f(x)

s.t. gi(x) ≥ 0 i = 1, ...,m

and that we were left with the following relaxation

λ∗r = sup
λ
λ

s.t. f(x)− λ ∈ Kr(G)

where

Kr(G) =

{
p(x) =

m∑
i=0

gi(x)si(x) | si(x) ∈ SOS(n), deg(gi(x)si(x)) ≤ 2r

}

and G = {gi |i = 1, ...,m}.
We also showed that, increasing r, these relaxations converge to the actual
optimum of (PP-P) but that this approach led to large size problems.

29
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With the approach we present in this chapter, we fix the degree of Kr(G) to
a small value, for example r0 = max {dgi , df} and, instead of improving the
relaxation increasing the degree of it, we want to show that we can improve
it by adding constraints.
But not every constraint works fine, so our problem will be how to generate a
new constraint p(x) such that Kr0(G∪{p(x)}) gives a better approximation
than Kr0(G).

3.1.1 Improving Inequalities

We notice that, if p(x) ∈ Kr0(G), then Kr0(G∪ {p(x)}) = Kr0(G). Then, if
we want to improve our relaxation, our first request for p(x) is not to be in
Kr0(G) already. If that happens, we have

Kr0(G) ⊂ Kr0(G ∪ {p(x)}) ⊆ P2r0(S)

The second problem is that we want a p(x) such that p(x) ≥ 0 ∀x ∈ S. So
we want p(x) to be non-negative over S, namely p(x) ∈ P2r0(S).
This means we need to find p(x) ∈ Pd(S) \Kr0(G) with deg(p) ≤ r0.

3.1.2 The algorithm

The algorithm will work this way: at every iteration we solve a Lasserre
Hierarchy of fixed degree. Using its solution, we look for an improving
inequality and we update the hierarchy with it. We stop as soon as we can
not find new inequalities to add.

Algorithm 1 is what we call master problem. We call subproblem the prob-
lem we need to solve in order to generate improving inequalities.

First of all, notice that in Algorithm 1 we have to deal with the description of
P2r0(S) once again. And, since we don’t have a good way to represent it, we
are going to approximate P2r0(S) with Kr0+1(S). Since Kr0(S) ⊂ Kr0+1(S),
we know that Kr0+1(S) \Kr0(S) is not empty.

Now that we have a description for (PP −Mk), we can also write its dual.
We get

inf
Y

(f, Y )

s.t. (1, Y ) = 1

Y ∈ (Kr0(G))∗

This comes from the description using moments that we outlined in Chapter 2.
Why is it important to study the dual of (PP −Ms)?
Because thanks to the property of the dual cone, we will be able to extract



3.1. DYNAMIC INEQUALITY GENERATION SCHEME 31

Algorithm 1 Master Problem for DIGS with SOS polynomials

Require: G ⊆ Rd[x] description of S and 2r0 ≥ d
s← 0, G0 ← G
loop

Let

(PP −Ms) νs = sup
λ
λ

s.t.f(x)− λ ∈ Kr0(Gs)

Subproblem: Look for an improving inequality

ps(x) ∈ P2r0(S) \Kr0(Gs)

if Improving equality doesn’t exist then
STOP

else
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

end if
end loop

improving equality using the solution of the dual problem. Indeed we recall
that

(Kr0(G))∗ =
{
Y ∈ RN | (p, Y ) ≥ 0, ∀p ∈ Kr0(G)

}
This means that, given a feasible solution f for (PP −Mk), let Y be its dual
solution. We can understand when a polynomial p(x) is not in Kr0(G), i.e.
whenever (p, Y ) < 0.
To recap, if we find p(x) in Kr0+1 ∩ R2r0 [x] such that (p, Y ) < 0, we have
found an improving equality for (PP −Ms).
We are now ready to describe the full algorithm in Algorithm 2.
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Algorithm 2 DIGS Algorithm using SOS polynomials

Require: G description of S, 2r0 ≥ d and ε ≥ 0
s← 0, G0 ← G
loop

Let

(PP −Ms) νs = sup
λ
λ

s.t.f(x)− λ ∈ Kr0(Gs)

Ys ←dual optimal solution of (PP −Ms)
Subproblem: Let ps(x) ∈ R2r0 [x] be an optimal solution of

(PP − Subs) αs = min
p

(p, Ys)

s.t. p ∈ Kr0+1(Gs) ∩ R2r0 [x]

||p|| = 1

if αs < −ε then
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

else
STOP

end if
end loop

There are a few things to point out:

• We are here looking for the minimum of (p, Ys). This is not strictly
necessary, as we only care that (p, Ys) ≤ 0. But this kind of problem is
usually referred as pricing problem, and heuristically the best bound
is achieved using the minimum.
Indeed this problem can be relaxed and stopped before the minimum
is reached. Also, further studies can be done to understand if there is
a way to extract stronger inequalities.

• We are forcing ||p|| = 1. This is necessary since we know that, for every
C > 0, constraints p(x) and Cp(x) are the same but ||Cp|| = C||p||.
So imposing norm of p to be equal to one is a way to force uniqueness
of the representation of equal constraints.

• We haven’t specified any norm yet. We have yet to study how different
norms influence the performances of the algorithm.
Commonly used norms are:
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- ||p||2 =

(∑
|a|=2r0

p2
a

) 1
2

- ||p||1 =
∑
|a|=2r0

|pa|

• We stop the iterations whenever αs ≥ −ε for ε very small instead of
0, since we are working in finite arithmetic.

Now that we have a formulation of DIGS using SOS polynomials, we are
ready to give the same formulation using SDSOS.

3.1.3 DIGS with SDSOS

The formulation of the problem is almost the same, but we have SDSOS
polynomials instead. The full algorithm in this case would be

Algorithm 3 DIGS Algorithm using SDSOS polynomials

Require: G description of S, 2r0 ≥ d and ε ≥ 0
s← 0, G0 ← G
loop

Let

(PP −Ms) νs = sup
λ
λ

s.t.f(x)− λ ∈ Hr0(Gs)

Ys ←dual optimal solution of (PP −Ms)
Subproblem: Let ps(x) ∈ R2r0 [x] be an optimal solution of

(PP − Subs) αs = min
p

(p, Ys)

s.t. p ∈ Hr0+1(Gs) ∩ R2r0 [x]

||p|| = 1

if αs < −ε then
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

else
STOP

end if
end loop

Notice that the only difference is that we have Hr0(G) and Hr0+1(G) instead
of Kr0(G) and Kr0+1(G) respectively.
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3.2 Analysis of dimensionality

We compare now Lasserre Hierarchy approach with DIGS, in both SOS and
SDSOS case, for a problem of order r, with n variables and m constraints.
To simplify the notation, we use

Nn,r =

(
n+ r

n

)
Notice that Nn,r = O(nr)

3.2.1 Lasserre Hierarchy with SOS polynomials

Since we have n variables and the maximum degree of polynomials involved
is 2r, we have a constraint for every possible monomial. The number of
monomials that can appear in a polynomial of degree 2r in n variables is
Nn,2r. Indeed these constraints are equality constraints between the coeffi-
cients of f − λ and

∑m
i=0 si(x)gi(x).

Since we write si as matrices that we force to be SDP, we also have m + 1
conic constraints imposing Qi � 0.
The amount of variables involved is given by the entries of Qi matrices.
Those matrices are symmetric and, since in our constraints we have

deg

(
gi(x)

[
z(x)TQiz(x)

])
Qi is a Nn,r−dgi ×Nn,r−dgi matrix.
This means that the amount of distinct entries in Qi are[

Nn,r−dgi + 1
] Nn,r−dgi

2

For Q0 it is O(nr) (since dg0 = 0) and, when increasing the value of r, this
dominates the dimensionality of the problem.

So, once again, there are

• A O(n2r)×O(mnr) matrix of linear constraints

• m+ 1 Semidefiniteness constraints on O(nr−dgi )×O(nr−dgi )

3.2.2 Lasserre Hierarchy with SDSOS polynomials

We can make almost the same considerations of before, this time we have
that each Qi is decomposed in the sum of matrices that are sdd. Indeed we
have

Qk =
∑
i<j

M ij
k
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Here i = 1, ..., Nn,r−dgi ; j = i, ..., Nn,r−dgi . This means we have a total of

3

2

[
Nn,r−dgi − 1

]
Nn,r−dgi

linear constraints. Here 3 are the numbers of non-zero entries of every M ij
k .

Each one of these matrices has to satisfy a SOCP constraint, so we have

[
Nn,r−dgi − 1

] Nn,r−dgi
2

SOCP constraints. In the end, we have:

• A O(n2r)×O(mn2r) matrix for linear constraints

• O(mn2r) SOCP constraints on 2× 2 matrices

Increasing the degree of Lasserre Hierarchy is usually a much stronger method
than adding an improving inequality, but is prohibitive due to the size in-
creasing very fast as soon as r becomes bigger.

3.2.3 Dimensionality of DIGS

We see now that, if we set r0 = d, the dimension of DIGS is dominated by
the dimension of Lasserre Hierarchy of order 2r0 +2, due to the Subproblem.
For example, if we want to solve a quadratic problem, we can set r0 = 1,
and the dimension of the DIGS problem will be approximately the same of
a Lasserre Hierarchy of degree 2r0 + 2 = 2 + 2 = 4.

But, a new iteration of DIGS doesn’t improve the dimensionality of the
whole problem that much since it only adds a constraint ps(x), that is

• For SOS: it adds O(nr0+1−dps ) variables and a semidefiniteness con-
straint on the constraint matrix

• For SOCP: it addsO(n2(r0+1−dps )) variables andO(n2(r0+1−dps )) SOCP
constraints on 2× 2 matrices

So, while Lasserre increases exponentially, here with each iteration the
growth it is only polynomial.

Unfortunately, it is very hard to study convergence rate for this kind of
problem, and right now there is close to no literature about them. But
there are already many promising results about DIGS, showing that for
some problems it can converge to the optimal solution faster than Lasserre
Hierarchies, or reach a better bound than Lasserre’s approach (since many
times Lasserre Hierarchy can not run due to time or memory limitations).
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More about DIGS-SDSOS

It is very hard to compare the two approaches for DIGS from a theoretical
point of view. But we will see, experimentally, that many times SDSOS
bounds are way weaker that SOS ones. So why should we focus our atten-
tion on the SDSOS approach?
The fact is that, the biggest problem right now for polynomial optimiza-
tion is to have efficient tools to solve mid-large sized polynomial prob-
lems. Semidefinite programming scales very badly, since imposing positive
semidefiniteness to a large matrix is usually very expensive in terms of time.
That’s why many optimization software nowadays don’t implement an SDP
solver anymore, and only implement SOCP ones.
SDSOS approach, even if right now is weaker, has better chances to improve
in the future. Indeed DIGS approach is very similar to a column generation
scheme by Ahmadi et al. [ADH15]. Also there the author both implemented
the SOS and SDSOS approach. The latter showed worse performances than
SOS approach in small instances but the ability to run for large size prob-
lems.

During our work we also focused on testing DIGS-SDSOS on high instances,
to understand how we could improve its performances already.

3.3 Equalities, exploiting sparsity, adding inequal-
ities and other improvements

One of the strength of this approach is that whenever we find a way to
improve Lasserre Hierarchy, those improvements can be applied to DIGS as
well. And since DIGS order is fixed to a small value, they are usually very
effective.

3.3.1 Dealing with equalities

For example, in (PP − P ) we considered only constraints of the form

gi(x) ≥ 0

and never equality constraints. This is because every constraint of the form
gi(x) = 0 can be rewritten as a couple of constraints

gi(x) ≥ 0

gi(x) ≤ 0

But this also means that we are increasing the number of constraints needed
to solve an equality constraint. We would like to be able to deal with
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equalities directly.
In this case we can think at S as the set

S = {x ∈ Rn | gi(x) ≥ 0, i = 1, ...,m1, hj(x) = 0, j = 1, ...,m2}

and so we get

G = {gi(x), hj(x) | i = 1, ...,m1, j = 1, ...,m2}

Then, since hj(x) = 0 ∀x ∈ S, this means

hj(x)q(x) = 0, ∀x ∈ Rn, q(x) ∈ R[x]

From this we get that

Kr(G) =

p(x) =

m1∑
i=0

gi(x)si(x) +

m2∑
j=1

hj(x)δj(x) |si(x) ∈ SOSr−di(n),
δj(x) ∈ R2r−deg(δj)[x]


This is a huge improvement, especially when there are many equalities in-
volved, since this doesn’t just reduce the number of constraints, but also
constraints on δjs are only linear and they don’t involve any SDP constraint.
A more detailed proof of this can be found in [PVZ08].
In this article the author uses the following hypothesis:

i Kr(G) ⊆ Kr+1(G) ⊆ P(S), r = 0, 1, ...

ii P+(S) ⊆ ∪∞r=0Kr(G) ⊆ P(S)

that are always verified for Lasserre Hierarchies thanks to Putinar’s theorem.

The same way we can heuristically apply it to Hr(G) with SDSOS instead
of SOS and avoid many SOCP constraints. Unfortunately though, while
hypothesis (i) holds true even for Hr(G), the same is not always true for
hypothesis (ii) (see [AM17b]). That those hypothesis are true should be
checked whenever someone wants to use this method, since we weren’t able
to prove or find proofs of the same result for SOCP hierarchies.

A good example in which this improvement is very effective are binary pro-
grams, since in there we have an equality xi(xi− 1) = 0 for every xi binary.

3.3.2 Exploiting Sparsity

Another thing to notice is that, given every polynomial constraint gi(x) has
to be multiplied by si(x) SOS-polynomial in (2.11) to get

f(x)− λ =

m∑
i=0

gi(x)si(x)
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Many times it happens that some monomials in the result of gi(x)si(x) don’t
have any real effect in the solution of the problem, since they don’t appear
in f(x) or in any g(x), but they only appear due to the multiplication of gi
with si.
We need to formalize this, and find a way to describe those monomials and
prove that they are not needed in our optimization framework.

This was done for the SOS case by Fukuda [Fuk+01] already in 2001, using
chordal graphs to detect unnecessary monomials. It was proven that for
quadratic problems, the sparse formulation (the formulation given by getting
rid of those monomials) gave the same result as the dense formulation. For
problems of degree 3 or more, the sparse formulation is a relaxation of the
dense problem. But has the pro that it greatly improves time and memory
usage for big problems.
There is also a toolbox for Matlab called SparseCOlO [Zhe+16], [Zhe+] that
implements this method.

Recently a new sparsity exploitation method was published by Sheen and
Yamashita [SY19], regarding SOCP relaxation (Lasserre Hierarchy of order
2) of quadratic programs. In it, the authors proven equality between their
sparse formulation and the full formulation of the problem.
We have seen already that, using matrix notation, an SOCP relaxation of
order 2 for a quadratic problem can be written as (check [KK01])

min
Y

P · Y

s.t. Qk · Y ≥ 0, k = 1, ...,m

H0 · Y = 1

Y ∈ TN+ (3.1)

Now, if we denote with E the N ×N matrix such that

Eij =

{
1 if (Qk)ij 6= 0 forsome k or Pij 6= 0 or i = j

0 otherwise

we can create the set JE = {(i, j) ∈ N ×N | Eij = 1}.
This was needed to introduce 2 more sets:

TN+ (X,E, ?) :=
{
X ∈ sym(RN ) | ∃X̄ ∈ TN+ s.t. Xij = X̄ij ∀(i, j) ∈ JE

}
TN+ (X,E, 0) :=

{
X ∈ TN+ (X,E, ?) | X̄ij = 0 ∀(i, j) /∈ JE

}
TN+ (X,E, ?) is the set of all matrices that can be completed to a matrix
in TN+ by changing elements in N × N \ JE , and TN+ (X,E, 0) the sets of
matrices that are in TN+ if elements outside JE are put to 0.
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Now we also introduce the set

T̄N+ (E) :=
{
X ∈ sym(RN ) | Xij � 0∀(i, j) ∈ JE

}
Notice that, since (i, i) ∈ JE ∀i = 1, ..., N , every diagonal element of
X ∈ T̄N+ (E) is non-negative.
We want to prove that TN+ (X,E, ?) is equivalent to T̄N+ (E). For X ∈ T̄N+ (E),
we define

Rij(X) :=
[
−
√
XiiXjj ,

√
XiiXjj

]
and we call this value range (i, j) of X.
There is a last set we need to introduce:

T̂N+ (E,X) :=

{
X̄ ∈ sym(RN ) |X̄ij = Xij∀(i, j) ∈ JE ,

X̄ij ∈ Rij(X)∀(i, j) /∈ JE

}

Lemma 3.1. It holds that TN+ (E, ?) = T̄N+ (E)

Proof. TN+ (E, ?) ⊆ T̄N+ (E):
Fix X ∈ TN+ (E, ?). Then there exists X̄ ∈ TN+ such that X̄ij = Xij for
(i, j) ∈ JE . We have that

X̄ij =

(
X̄ii X̄ij

X̄ji X̄jj

)
� 0

for (i, j) ∈ JE , and so also Xij � 0, since they are equal for (i, j) ∈ JE .
Notice that this means that also the diagonal of X is non-negative. Then
this means X ∈ T̄N+ (E).
T̄N+ (E) ⊆ TN+ (E, ?):

Fix X ∈ T̄N+ (E) this time, and take a matrix X̄ ∈ T̂N+ (E,X). Then we can
show that X̄ ∈ TN+ . This is obvious for (i, j) ∈ JE . For (i, j) /∈ JE , we have(

X̄ii X̄ij

X̄ji X̄jj

)
=

(
Xii X̄ij

X̄ji Xjj

)
� 0

since −
√
XiiXjj ≤ X̄i,j ≤

√
XiiXjj

From Lemma 3.1, we notice that, given X̄ ∈ T̄N+ (E), we can complete X̄

to a matrix X̂ ∈ T̂N+ (E, X̄) without changing the elements specified by JE .

Moreover, T̂N+ (E, X̄) covers all possible completion matrices in TN+ for X̄.

As a result, we can modify (3.1) to (3.2)

min
Y

P · Y

s.t. Qk · Y ≥ 0, k = 1, ...,m

H0 · Y = 1

Y ∈ T̄N+ (E) (3.2)
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Remark 3.2. We are considering here only quadratic problems. More in
general, we would have to deal also with SOCP constraints on shifted mo-
ment matrices. Notice that the reasoning we have done so far can be re-
peated for those matrices as well. Now we will prove that the objective of
(3.1) and (3.2) are the same. This only holds for quadratic problems instead.

Let X̄ be a solution of (3.2). Let ζ and ζ̄ be optimal values of (3.1) and
(3.2) respectively. Since TN+ ⊆ T̄N+ (E), in general we have ζ ≥ ζ̄, i.e. (3.2)
is a relaxation of (3.1).

Theorem 3.3. We have ζ = ζ̄. Moreover, if X∗ is an optimal solution of
(3.1), then it is also an optimal solution for (3.2) and T̂N+ (E, X̄) is included
in the set of solution of (3.1).

Proof. We show that any X̂ ∈ T̂N+ (E, X̄) is an optimal solution of (3.1).

Indeed P · X̂ = P · X̄ = ζ̄, Qk · X̂ = Qk · X̄, k = 1, ...,m and H0 · X̂ = H0 · X̄.
But, since X̂ ∈ TN+ (see Lemma 3.1), X̂ is a feasible solution of (3.1). Then

ζ̄ ≥ ζ. But we already had ζ ≥ ζ̄, and then equality holds and X̂ is an
optimal solution of (3.1).
Finally, since TN+ ⊆ T̄N+ (E), X∗ is also a feasible solution for (3.2), and it is
optimal because ζ = ζ̄.

The completion method comes from [Fuk+01] and it uses the maximum
determinant property to show that the completion matrix is constructed by
putting 0 in entries that are not in JE . We will not show the proof, but we
want to point out that this is a way easier method than the one needed for
the SOS case, that uses chordal graphs instead and maximal cliques. This
is another reason to prefer SDSOS over SOS.

Since we are more used to the dual formulation of (3.1), we end the chapter
giving the dual formulation of (3.2), that is the one we implemented on
Matlab.

max ξ

s.t. P +

m∑
k=1

Qkyk − ξ =
∑

(i,j)∈JE

W ij

y ∈ Rm+ , ξ ∈ R
W ∈ SDSOS1(N) and Wij = 0 for (i, j) /∈ JE

Notice that we have W i,j ∈ SDSOS1(N) since we are considering first order
relaxation and thus we have

∑m
k=1Qkyk with y ∈ Rm+ since this is the same
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of asking yk ∈ SDSOS0(N), k = 1, ...,m.

3.3.3 Adding Inequalities

DIGS approach consists in adding inequalities at each iteration in order to
better describe the feasible set. The fact that more inequalities can bring a
better level of detail was already known and what DIGS does is generating
them.
In literature, instead, we can find this method of manually adding valid
inequalities to a relaxation to improve its description. Most of the times
these inequalities are added to linearized binary problems [BEL08] or MILP
[DL13], or they come from analysis of a specific problem.

In [GVA11], for example, they studied valid inequalities for SOCP relax-
ations of binary programs. Indeed they showed that adding redundant in-
equalities like

(xi − 1)(xj − 1) ≥ 0

(xi − 1)(xi + 1) ≥ 0

(xi + 1)(xj + 1) ≥ 0

can improve the bound of a SOCP relaxation. Since the Master problem
of DIGS-SDSOS algorithm is exactly a SOCP relaxation, we can use this
method to improve it whenever we deal with binary programs.
Also, in order to save the sparsity of the problem, we can add them only for
the couples (i, j) ∈ JE .

Now we can test how this algorithm works on some examples, and also
improve it using the methods explained above.
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Chapter 4

Numerical Results

In this chapter we will at first compare how DIGS and Lasserre Hierarchy
work in both SOS and SDSOS case. This will be done for small to medium
size instances, due to the dimensionality problems already outlined in the
previous chapters.
Then we will start comparing DIGS-SOS and DIGS-SDSOS also for bigger
problems, and we will do a detailed analysis on how they work.
We will also implement sparsity for DIGS-SDSOS to see how the algorithm
performs in this case. Then we enrich our relaxation with valid inequalities
to show how this can affect the algorithm.

All the experiments are implemented in Matlab and solved using SeDuMi
[Stu99] as SDP solver and Mosek [ApS19] as SOCP solver. The hardware
is a Lenovo Thinkstation P300 with 32 gigabyte of RAM with Intel Xeon
CPU 2.40 GHz.

4.1 Continuous Quadratic Problems

The first three problems we try to optimize are taken from [GVA16].

43
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4.1.1 Example 5: a 5 variables instance

The first problem is the following

max
x∈R5

− 2x1 + x2 − x3 + 2x4 + 2x5

s.t. (x1 − 2)2 − x2
2 − (x3 − 1)2 − (x5 − 1)2 ≥ 0

x1x3 − x4x5 + x2
1 ≥ 1

x3 − x2
2 − x42 ≥ 1

x1x5 − x2x3 ≥ 2

x1 + x2 + x3 + x4 + x5 ≤ 14

xi ≥ 0, i = 1, ..., 5

It is a rather low dimensional problem but it is very hard to optimize over
it due to its structure. Indeed we show here the amount of time needed to
optimize over it using Lasserre Hierarchy with SOS and SDSOS.

Relaxation Degree Bound Time

SOS 2 25 0.3
4 6.006 0.82
6 2.399 7.09
8 1.567∗ 157.7

SDSOS 2 25 0.12
4 6.71 0.35
6 4.55 1.55
8 2.81 15.0

Table 4.1: Comparing Lasserre Hierarchies with SOS and SDSOS formula-
tions in the 5 variable instance. A ∗ means that it is the optimal value.

We can see in Table 4.1 that we need a degree 8 hierarchy to reach optimality
with SOS, even if the problem is only quadratic. We want also to point out
how much the time needed to solve the problem increased when we increased
the order of the relaxation, and that SOS grows very quickly compared to
SDSOS.
The SDSOS hierarchy, instead, was not able to reach the optimal bound
with degree 8.

Now let’s look at Table 4.2 to see how DIGS performs on the same example.

One can clearly see that DIGS-SOS is very fast to reach the optimal value,
even if we are only using order 2 for DIGS. The same does not hold for
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Relaxation Bound Time Iterations

SOS 1.568 58.45 59
SDSOS 1.731 4000+ 1225

Table 4.2: DIGS results on the 5 variables instance.

SDSOS though. It takes a lot of time to reach a value that is not even
optimal.

Let’s see if we get the same results using a 10 variables example.

4.1.2 Example 10: a 10 variable instance

The second problem we try to optimize is

max
x∈R10

x1 + x2 − x3 + 2x4 + x5 − x6 − x7 + x8 − x9 + 2x10

s.t. (x3 − 2)2 − (x5 − 1)2 − 2x6 + x2
8 − (x9 − 2)2 ≥ −4

− x2
2 + x3x10 − x2

4 − x2
5 + x6x7 ≥ 1

x1x8 − x2x3 + x4x7 − x5x10 ≥ 2

10∑
i=1

xi ≤ 5

xi ≥ 0, i = 1, ..., 10

Once again we start testing Lasserre Hierarchies.

Relaxation Degree Bound Time

SOS 2 10 0.2
4 7.758 9.9
6 5.183∗ 3613.8

SDSOS 2 10 0.04
4 7.758 0.80
6 5.183∗ 18.58

Table 4.3: Comparing Lasserre Hierarchies with SOS and SDSOS formula-
tions in the 10 variable instance. A ∗ means that it is the optimal value.

We see that here the order needed to reach optimality is 6 and that it takes
a lot of time to compute that using SOS. The SDSOS formulation instead is
able to reach the same results in a smaller amount of time. This is a good
example that shows why SDSOS popularity is growing.

Let’s see if this time DIGS gives good results.
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Relaxation Bound Time Iterations

SOS 5.183∗ 301.5 30
SDSOS 5.877 4000+ 410

Table 4.4: DIGS results on the 10 variables instance. A ∗ means that it is
the optimal value.

And once again, looking at 4.4, DIGS-SOS looks very promising, reaching
optimality very quickly if compared to Lasserre’s method. SDSOS instead
still did not converge in the time limit even if it was getting closer.
Let’s see if, even in the last problem, the situation is the same.

4.1.3 Example 15: a 15 variables instance

The last of these examples is a 15 variables instance

max
x∈R15

− x1 + x2 − x3 + x4 + x5 − x6 − x7 + x8 − x9 + x10 − x11

+ x12 − x13 + x14 − x15

s.t. (x1 − 2)2 − x2
2 + (x3 − 2)2 − (x4 − 1)2 − (x5 − 1)2 + (x6 − 1)2

− (x7 − 2)2 − x2
8 − (x9 − 2)2 − (x10 − 1)2 + x2

11 − x2
12

+ (x13 − 2)2 + x2
14 − (x15 − 1)2 ≥ 0

− x1x7 − x4x5 − x2
13 + x6x9 + x10x12 ≥ 3

x2x3 − x8x11 − x2
14 + x5x15 ≥ 3

15∑
i=1

xi ≤ 10

xi ≥ 0, i = 1, ..., 15

The results are the following:

Relaxation Degree Bound Time

SOS 2 10 0.3
4 8.059 790.2

SDSOS 2 10 0.02
4 8.29 3.60

Table 4.5: Comparing Lasserre Hierarchies with SOS and SDSOS formula-
tions in the 15 variable instance.

This time we were not able to compute Lasserre Hierarchies of degree greater
than 4 due to memory limitation. We start to see why Lasserre Hierarchies



4.2. LATTICE PROBLEM 47

can not be used for problems of larger scale. Let’s see if we can achieve
anything better with DIGS.

Relaxation Bound Time Iterations

SOS 10 4000+ 4
SDSOS 9.98 4000+ 125

Table 4.6: DIGS results on the 15 variables instance.

Unfortunately this time DIGS was not able to outperform Lasserre. This is
also because our time limit of 4000 seconds is relatively small, and we know
from [GVA16] that given more time DIGS-SOS is able to reach the optimal
value for this problem in around 10000 seconds.
Meanwhile we can also notice that DIGS-SDSOS was able to get a better
bound than its SOS counterpart. Once again it is a sign of the scalability
that SDSOS formulation has.

4.2 Lattice Problem

From the last section, one could think that SDSOS relaxations are not strong
enough to accurately solve polynomial problems. With the next example we
show why this is not true. Moreover this example will prove the sparse
formulation to be essential to be able to solve the problem. The example is
taken from [SY19].

Given n ∈ N, we call a Lattice graph a graph in which the nodes are arranged
in a n × n square and such that there is an edge between nodes i and j if
and only if i is the closest node on top, bottom, left or right of j. See Figure
4.1.

In our example, each variable is a node of the graph, and the function and
constraints are quadratic. Quadratic terms involving both nodes i and j
appear only if there is an edge between i and j.
More formally, we can write it as

min
x∈Rn2

xTP0x

s.t. xTPkX + rk ≤ 0, i = 1, ...,m

and introduce

JE = {((i− 1)n+ j, (i− 1)n+ j + 1) | i = 1, ..., n, j = 1, ..., n− 1}
∪ {((i− 1)n+ j, in+ j) | i = 1, ..., n− 1, j = 1, ..., n}

∪ {(i, i) | i = 1, ..., n}

(Notice that the symmetry of matrices let us define JE as above).
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Figure 4.1: A lattice graph for n = 4. The image is taken from [SY19]

With the same notation used in Chapter 3, we have E = 0⇒ Pl = 0,
l = 0, ...,m. For our example we will use:

• for l = 0, 2, 3, ...,m, (Pl)ij is a random number in [−1, 0] if
(i, j) ∈ JE , i 6= j.

• for l = 0, 2, 3, ...,m, (Pl)ii is a random number in [−1, 1]

• P1 is a diagonal matrix with random values in (0, 1]

These choices were made to satisfy the hypothesis of Theorem 3.4 and 3.5
of [KK02]. This will grant us that the SDSOS relaxation is able to solve the
problem at optimality.

We used n going from 20 to 35, than means the number of variables goes
from 400 to 1225. In this setting not only the SOS version, but also the
dense one of SDSOS wouldn’t be able to solve these problems in reasonable
time. Let’s see how the SDSOS-sparse one performs.

We can see in Table 4.7 that it takes very little time to solve every instance.
From the theory we know that it reaches optimality due to its structure and
since it’s a quadratic problem, that means that dense and sparse formula-
tions are guaranteed to give the same result. So exploiting sparsity in this
case has given an enormous advantage in terms of time without sacrificing
accuracy.



4.3. QUADRATIC KNAPSACK 49

n, (variables) Optimization time (s)

20, (400) 0.82
21, (441) 0.85
22, (484) 0.87
23, (529) 0.89
24, (576) 1.04
25, (625) 0.85
26, (676) 1.12
27, (729) 0.96
28, (784) 1.00
29, (841) 1.05
30, (900) 1.12
31, (961) 1.33
32, (1024) 1.57
33, (1089) 1.30
34, (1156) 1.34
35, (1225) 1.92

Table 4.7: Results on the Lattice problem. We can see that thanks to
sparsity, even if the problem has more than 1000 variables, the optimization
process still takes little time.

4.3 Quadratic Knapsack

Quadratic Knapsack (QKP) is a problem that models many real-life appli-
cations. This is why it is very important to be able to solve it.
Quadratic Knapsack is a generalization of its linear version.
Suppose you have to fill your knapsack with some items: each item has
a value but it also occupies space, increases the weight of the knapsack, or
anyway has to fit in some constraints. Then your aim is to carry those items
that give you the maximum value but satisfy the constraints.

Then, if you have n items, you can introduce variable xi, i = 1, ..., n such
that

xi =

{
1 if you carry item i

−1 otherwise

Then if your profit (the value you get from items) is linear, you have a linear
knapsack problem. This means your profit is, given c = (c1, ..., cn) vector of
values, cTx. We will focus on linear constraints, i.e. constraints of the form
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wTx ≤M . Then the full problem with only one constraint will be:

max
x

cTx

s.t. wTx ≤M
xi ∈ {−1, 1}

The same way, if your profit is quadratic in the items you choose to carry,
your profit will be of the form

(
1 xT

)
Q

(
1
x

)

and then the full problem will look like this

max
x

(
1 xT

)
Q

(
1
x

)
s.t. wTx ≤M

xi ∈ {−1, 1}

Then this is a quadratic problem with binary variables. While on the linear
case one needs to find a way to deal with binary constraints using methods
like Branch and Bound or Gomory cuts, here we can write those constraints
as (xi − 1)(xi + 1) = 0, i = 1, ..., n. These are still polynomial constraints.
We tested our algorithm also on instances of this problem.

Since this kind of problem is usually very sparse, this time we compared the
dense algorithms with the sparse one. Compared to the previous 3 examples,
QKP is usually easier to solve.
We created our problems using a generator that takes in input the amount
of variables and the density of the problem and gives as output a matrix Q
with specified density and a vector of weights w. So we were able to test
our algorithm on problem of the desired size and sparsity.

We list in Table 4.8 bounds and time for every instance we tested the problem
on.

Test with valid inequalities

The same sparse formulation was then enriched with the inequalities dis-
cussed in Chapter 3. We tested in on the same instances. The results are
once again listen in Table 4.8.
To show why we choose to focus our attention on DIGS-SDSOS, we also
tested only the master problem (a Lassere Hierarchy of degree 2) on QKP
instances of 10 to 150 variables and density 70.
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From Table 4.9 we can notice that the time needed for optimization in the
SOCP case does not even reach 1 second on the biggest instance, while SOS
time is more than 10000 seconds. The fact that SDSOS is so fast allows us
to use valid inequalities to improve the bound without affecting much the
time needed for optimization. By doing that, we have relaxations so strong
that they give stronger bounds than the SOS ones.

Form Table 4.8, instead, we can clearly see that, once again dense SD-
SOS can not compete with SOS, but its sparse implementation is very fast.
Sometimes it is able to converge to the same bound of SOS in less time (es-
pecially when the dimensions are big and SOS can not iterate). And once
again, when improved using valid inequalities, even if the time needed to
construct the subproblem increases slightly, the better starting bound gives
us convergence in fewer iterations to the same optimal of the sparse formu-
lation.
We can see that this does not happen in Figure 4.3. This is due the fact
that we are taking in consideration also the time needed to create the sub-
problem, that was not optimized for the sparse case. If one would only look
at the time needed for optimization, it is clear that the sparse formulation
with valid inequalities is usually preferable. For example, in Figure 4.5, we
can also notice that the starting bound given by the Sparse+ formulation
is already better than the final bound of the Sparse one. Finally, in Figure
4.4, we see that Sparse and Sparse+ reach the same objective. But a prob-
lem of DIGS-SDSOS is the fact that its first iteration usually gives a very
weak bound and then it needs many iterations to improve from it. Sparse+
formulation instead starts already with a very good bound and it needs few
iteration to converge.

4.4 Considerations on the results

In general we have seen that DIGS-SDSOS iterations are faster than DIGS-
SOS one, but also weaker. Usually we see that the SOS version converges
in less time than the SDSOS anyway, especially for small-size problem. We
have also seen that this does not always hold true, for example for the in-
stance with 15 variables, when the problem is so big that each iteration for
the SOS is very expensive.
The Lattice example showed us that the performances of SDSOS relaxations
highly depends on the structure of the problem, and how sparsity can im-
prove performances and let us solve very large problems.
From the QKP instances we can clearly see that the exploitation of sparsity
works very well, especially when the problem is very sparse. The fact that
we want to keep that sparsity also in the new constraints that we generate
is also making use of more information that can lead to stronger inequality.
So, for problems like QKP, the sparse formulation is outperforming both
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SOS and SDSOS.
Finally, when adding valid inequalities, we got convergence to the same op-
timal value but usually in a lesser time.
This is an example of how DIGS-SDSOS can give a good balance between
time, scalability and bound accuracy. And also that this algorithm can be
easily adapted to specific problems.

A weak point right now is that, after the first iterations, the inequalities
generated by the subproblem do not give good improvements on the bound,
and the convergence rate slows down. This causes the algorithm to keep
running for many iterations without really improving its bound. The best
example for this behavior is Figure 4.6.
This weakness might also be the reason why we almost never reached opti-
mality when using SDSOS.

4.5 Tables and Figures
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Figure 4.2: A quadratic knapsack with 10 variables and high sparsity. Be-
cause of the limited size, we can see that the dense formulation reaches lower
bounds than the sparse one. We also notice that Sparse+ starts from an
already good bound (better than the SOS one) and reaches the final bound
in few iterations.
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Figure 4.3: An example of QKP in which both the sparse and dense formu-
lation reach the same objective. It is clear how much time the sparse for-
mulation saves. Here the time needed to create the problem in the Sparse+
case is higher than the time needed to the Sparse formulation to reach con-
vergence. This is not usual, and it is probably because the dimensionality
is low.
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Figure 4.4: Increasing the size makes the sparse formulation even more
effective. It takes less time to reach a better bound. Also notice that most
of the time needed to Sparse+ is construction time, while the convergence
happens very quickly.
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Figure 4.5: Things are even better for the Sparse formulations when the size
of the problem is so big that the dense one can not compute the subproblem
in the time limit anymore. Once again Sparse+ needs more time to be built
but provides better starting bounds. Here it is already better than what the
Sparse formulation can reach in the time limit.
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Figure 4.6: This plot shows that inequalities generated by DIGS-SDSOS
can be very weak and lead to a slow convergence rate. In this case the final
bound is not much better than the objective reached after 400 iterations.
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Chapter 5

Conclusions

In this thesis we implemented a new version of the DIGS algorithm for solv-
ing polynomial programs. This version made use of the SOC relaxation of
Lasserre Hierarchies.
We showed that for some problems it is not able to give good bounds or
that needs a lot of iteration to reach convergence due to the weakness of
SDSOS compared to SOS polynomials. But we were also able to show that
with other problems, for example QKP, the performances are good and we
get convergence in reasonable time, sometimes to the same bound we can
get with SOS.
Performances can improve drastically when the sparse formulation is taken
into account. This formulation is also very easy to implement compared to
the SOS case, and this is a great advantage of the SOC formulation.
We also discussed about the possibility of strenghtening the formulation
adding special inequalities for some specific problems. This is more conve-
nient when using the SDSOS formulation, since the dimension of the problem
increases more slowly than in the SOS case.

In general we have shown the advantages of implementing the SDSOS version
of the algorithm, also due to the increasing attention that SOCP is gain-
ing recently and the fact that most optimization software nowadays have a
SOC optimizer. On the other hand, Semidefinite Programming fortune is
decreasing because of the drawback of its complexity increasing very fast
with the dimensionality of a program.

Further studies can focus on how to create stronger inequalities at each it-
erations, for example using other norms or different convergence conditions.
Moreover we focused on a general framework, but we have seen that DIGS
can easily adapt to specific problems. This was shown to improve its per-
formances. In the same way, a future direction could be how to adapt the
inequality generation scheme to specific problems.
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