UNIVERSITA' DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE

CORSO DI LAUREA MAGISTRALE A CICLO UNICO IN INGEGNERIA EDILE – ARCHITETTURA

TESI DI LAUREA

ANALISI DI VULNERABILITA' SISMICA DI PALAZZO DEL CAPITANIO DI PADOVA E CONFRONTO DI MODELLI PER L'ANALISI DI MECCANISMI LOCALI E GLOBALI

Relatore: Prof.ssa FRANCESCA DA PORTO

Correlatori: Prof.ssa MARIA ROSA VALLUZZI Ing. GIULIA BETTIOL

Laureanda: ROSSELLA GAMBUTO

ANNO ACCADEMICO 2014 - 2015

Alla mia famiglia e a chi mi è stato vicino in questi anni

SOMMARIO

IN	TRODUZI	ONE	1
1.	DESCR	IZIONE DEL MANUFATTO	7
	Identificaz	ione della costruzione	7
	Generalità	ı'	9
	Sismicità'	del luogo	13
	Caratteriz	zazione geotecnica	21
2.	ANALIS	SI STORICA	27
	Evoluzion	e storica	27
	Cronologia	a essenziale	40
	Analisi crit	ica	41
3.	RILIEV	O GEOMETRICO	55
	3.1 Rili	evo dei prospetti	55
	3.2 Rili	evo delle piante	
	3.3 Rili	evo delle sezioni	63
4.	RILIEV	O FOTOGRAFICO	69
	Rilievo de	i prospetti	69
	Rilievo de	gli spazi interni	71
5.	RILIEV	O COSTRUTTIVO STRUTTURALE	81
	Unità mini	ma di intervento	81
	Dettagli co	ostruttivi	83
	Piante stru	utturali	
	Scheda pe	er il rilievo e la tipologia della qualità muraria	90
6.	RILIEV	O CRITICO	
	Quadro fe	ssurativo e analisi del degrado	
	Analisi de	le vulnerabilità	112
	Meccanis	ni di danno	119
	Osservazi	oni preliminari all'analisi	121
7.	VALUT	AZIONI DELLA SICUREZZA SISMICA	
	Premesse	per la valutazione della sicurezza sismica	
	Valutazior	e dell'azione sismica	
	Analisi de	carichi	134
	7.3.1	Carichi permanenti G	134
	7.3.2	Carichi variabili Q	
	7.3.3	Analisi dei carichi permanenti ed accidentali	
8.	ANALIS	I DEI MECCANISMI LOCALI DI COLLASSO	
	Premessa	per l'analisi dei meccanismi locali di collasso	
	Meccanis	no di ribaltamento semplice di parete monolitica	151
	8.2.1	Ribaltamento totale	151

	8.2.2	Ribaltamento parziale	153
	Meccanisr	no di ribaltamento del cantonale	
	Meccanisr	no di flessione verticale di parete monolitica	156
	Meccanisr	no nel piano	158
	Approccio	cinematico	
	Individuaz	ione macroelementi	163
	Analisi dei	meccanismi locali di collasso tramite fogli di calcolo, LC 1	165
	Analisi dei	risultati ottenuti	
	Analisi dei	meccanismi locali di collasso tramite fogli di calcolo, LC 2	270
	Analisi dei	risultati ottenuti	
	Analisi dei	meccanismi locali di collasso tramite il software C – Sisma	
	8.12.1	Il metodo utilizzato	
	8.12.2	Analisi di un meccanismo locale di collasso	
	Analisi dei	risultati ottenuti	
	Confronto	dei risultati ottenuti: Excel - C – Sisma	
9.	ANALIS	I DEI MECCANISMI GLOBALI DI COLLASSO	
	Premesse	per la valutazione di meccanismi globali di collasso	
	Il metodo	utilizzato dal software 3Muri	
	Definizion	e del modello	
	Analisi sta	tica non lineare	
	Effetti dell'	aggregazione sul modello	
	Palazzo de	el Capitanio, unità strutturale 1	
	9.6.1	Modello libero	
	9.6.2	Modello con vincoli rigidi	
	9.6.3	Modello con vincoli cedevoli elasticamente	
	Palazzo de	el Capitanio, unità strutturale 2	
	9.7.1	Modello libero	
	9.7.2	Modello con vincoli rigidi	
	9.7.3	Modello con vincoli cedevoli elasticamente	
	Analisi dei	risultati ottenuti	
	Il metodo	utilizzato dal software ANDILWall	
	Definizion	e del modello	
	Analisi sta	tica non lineare	
	Effetti dell'	aggregazione sul modello	
	Palazzo de	el Capitanio, unità strutturale 1	
	9.13.1	Modello libero	
	9.13.2	Modello con vincoli cedevoli elasticamente	
	Palazzo de	el Capitanio, unità strutturale 2	
	9.14.1	Modello libero	
	9.14.2	Modello con vincoli cedevoli elasticamente	

Analisi dei risultati ottenuti	
Confronto dei risultati ottenuti: 3Muri - ANDILWall	
10. PIANO DI INDAGINI	
Premesse per la progettazione del piano di indagini	
Progetto del piano di indagini	
11. PROPOSTE DI INTERVENTO	471
Premesse per la progettazione degli interventi	471
Progetto degli interventi	
CONCLUSIONI	
BIBLIOGRAFIA	
SITOGRAFIA	
RINGRAZIAMENTI	
ALLEGATI	
ALLEGATO A: analisi statica non lineare, 3Muri	
Definizione del modello, unità strutturale 1	
Definizione del modello, unità strutturale 2	530
Unità strutturale 2, modelli in LC2	
ALLEGATO B: analisi statica non lineare, ANDILWall	
Definizione del modello, unità strutturale 1	
Definizione del modello, unità strutturale 2	
Unità strutturale 2, modello in LC2	

ALLEGATO C: tavole allegate alla tesi 1. Inquadramento

- Evoluzione storica
 Rilievo geometrico
 Rilievo fotografico
 Rilievo degli elementi di interesse storico artistico
- 6. Rilievo strutturale
- 7. Rilievo critico
- 8. Analisi critica
- 9. Piano delle indagini
- 10. Piano degli interventi

INTRODUZIONE

Il territorio nazionale si estende su più placche tettoniche, il cui moto reciproco è causa principale di eventi sismici. I terremoti nel nostro paese producono un'ingente quantità di danni, in quanto gran parte dell'edificato è costituito da strutture di epoche antiche. In quest'ordine di idee si rivela quanto più necessario un piano di prevenzione per diminuire il rischio sismico nazionale.

Il rischio sismico si compone di tre concetti: pericolosità, vulnerabilità ed esposizione.

La pericolosità misura la probabilità che in un'area e in un certo intervallo di tempo si verifichi un evento sismico che superi una data soglia di intensità; dipende essenzialmente dalle caratteristiche fisiche del terreno, dal tipo di terremoto e dalla distanza dall'epicentro. Lo studio della storia sismica e l'osservazione di caratteristiche geomorfologiche, uniti a considerazioni di tipo probabilistico, sono molto utili per definire dei termini di previsione.

La vulnerabilità esprime la probabilità che dei tipi di costruzione possano subire dei danni sotto l'azione di terremoti di una determinata intensità. E' determinabile in funzione della tipologia, della qualità di progettazione e materiali, della modalità di costruzione e della manutenzione stessa.

Infine l'esposizione valuta la presenza di beni storico – artistici a rischio e la possibilità di sostenere un danno dal punto di vista di vite umane, di patrimonio culturale ed economico. Non è possibile ridurre l'esposizione, ma la corretta progettazione ed uso del territorio diminuisce sensibilmente il livello di rischio sismico.

Appare evidente che il metodo efficace per ridurre il rischio è la conoscenza della pericolosità in relazione alle prestazioni attese, al fine di calibrare la progettazione stessa. Per quanto riguarda la riduzione del rischio del costruito è necessaria una valutazione preventiva alla predisposizione al danneggiamento e una scelta corretta di eventuali interventi per l'adeguamento o il miglioramento.

Il rischio sismico risulta quindi più elevato per questo tipo di costruzioni: mentre gli edifici di nuova progettazione seguono criteri prestazionali, collegati a stati limite superati i quali la struttura non soddisfa più le esigenze per la quale è stata concepita, gli edifici esistenti sono stati realizzati in base a criteri di proporzionalità degli elementi strutturali, fondati sulle "regole dell'arte".

Tali regole vertono sull'esperienza acquisita nella realizzazione di strutture analoghe, un approccio che considera unicamente le azioni statiche (principalmente connesse al peso proprio degli elementi stessi) e le azioni verticali, ma non contrasta le forze orizzontali.

Si consideri comunque che, nonostante il diffuso impiego della muratura, la conoscenza del suo comportamento effettivo risulta tuttora poco approfondito: in questo panorama tuttavia il mancato utilizzo delle "regole dell'arte" ha riportato, durante le esperienze precedenti, a crolli rovinosi.

Nello scenario di una città storica sono presenti edifici di minore importanza e edifici monumentali. I primi in genere sono molto vulnerabili a causa della scadente qualità muraria, del pessimo stato di manutenzione delle superfettazioni subite.

I secondi sono ugualmente vulnerabili, anche se per differenti motivazioni. Sebbene essi siano stati realizzati in media con materiali di pregio, le loro dimensioni sono considerevoli: aule e volte sottili di grande luce, muri snelli con aperture imponenti. Inoltre nel corso del tempo sono stati in genere utilizzati per diverse mansioni, che non sempre si sono rivelate attinenti con la funzionalità della struttura, e hanno subito notevoli trasformazioni per adeguarsi alle nuove necessità.

Per questi motivi la normativa prevede l'attuazione di politiche di prevenzione sismica nelle quali si richiede la conoscenza, a scala territoriale, del rischio cui sono soggetti i manufatti esistenti, in particolare il patrimonio tutelato. Poiché il suolo nazionale consta di una notevole quantità di opere architettoniche, è stato elaborato un programma per il monitoraggio dello stato di conservazione e sono stati individuati modelli meccanici utilizzabili per le tipologie più diffuse.

INTRODUZIONE

Nell'ottica di una valutazione di vulnerabilità sismica di un bene tutelato è stato redatto il seguente elaborato.

Il caso studio è Palazzo del Capitanio, edificio di proprietà del comune di Padova, ex sede del potere carrarese, veneziano e austriaco.

Il lavoro svolto si accinge a seguire il percorso di conoscenza, valutazione della sicurezza sismica e progetto degli eventuali interventi proposto dalle Linee Guida per i beni culturali: la finalità è quella di formulare un giudizio quanto più oggettivo circa sicurezza e miglioramento sismico.

Il percorso della conoscenza si articola nelle seguenti attività: identificazione della costruzione, rilievo geometrico, individuazione dell'evoluzione della fabbrica, individuazione degli elementi costituenti l'organismo resistente, identificazione dei materiali e conoscenza del sottosuolo e delle strutture di fondazione.

La prima parte della tesi riguarda la descrizione del manufatto, intesa come localizzazione geografica rispetto alla CTR, all'estratto catastale, ai vincoli territoriali di natura storico – artistica – ambientale; segue la caratterizzazione geotecnica del luogo.

In secondo luogo viene eseguita l'analisi storica del fabbricato: tramite ricerca in archivio comunale e in biblioteca è stato possibile redigere un quadro degli interventi subiti e delle diverse destinazioni d'uso, dovute ai cambi di potere nei secoli.

La fabbrica, nata come Reggia Carrarese, venne rasa al suolo dall'arrivo della signoria veneziana, che alla fine del XVII secolo eresse il Palazzo del Capitanio. Tale destinazione non durò più di un secolo: con la dominazione austriaca il palazzo divenne la dispensa Sali, finché nel 1867 la regia intendenza provinciale delle finanze di Padova stipulò l'atto di compravendita per utilizzare l'edificio come sede della borsa. Solo verso la metà del secolo scorso il fabbricato assunse il ruolo attuale di palazzo comunale.

Non è stato possibile stilare una comparazione di tutti gli interventi subiti, ma dalle mappe catastali rinvenute si compone un confronto parziale tra lo stato di fatto e i documenti reperiti.

Seguono rilievo geometrico di piante, prospetti e sezioni, rilievo fotografico di spazi esterni ed interni, rilievo costruttivo strutturale e rilievo critico.

Gli ultimi due punti sono indispensabili per capire il comportamento strutturale dell'edificio: il primo prevede una sintetizzazione degli elementi costitutivi il sistema resistente, il secondo una caratterizzazione del grado di danno degli stessi. L'attribuzione di tali caratteristiche è stata possibile grazie alla ricerca storica, che ha permesso l'individuazione di pareti portanti rispetto a tramezzature nelle due unità strutturali, e al sopralluogo interno per la visione dei danni.

In mancanza di prove specifiche è bene affermare che le valutazioni svolte sono frutto di analisi teoriche, nulla toglie che siano stati effettuati degli interventi non censiti; inoltre la costruzione può essere stata soggetta ad azioni i cui effetti non siano completamente manifesti e possono essere insiti e non palesi difetti di impostazione e realizzazione.

Di conseguenza la valutazione della sicurezza, costituente la seconda parte della tesi, è affetta da un grado di incertezza diverso da quello degli edifici di nuova progettazione: sono stati impiegati metodi di analisi e verifica dipendenti dall'affidabilità dell'informazione disponibile e sono stati utilizzati adeguati fattori di confidenza che modificano i parametri di capacità in funzione del livello di conoscenza, relativo a geometria, dettagli costruttivi e materiali.

Previo quantificazione della vita e del periodo di riferimento, sono calcolati i parametri sismici di progetto, infine sono valutati i carichi agenti variabili e permanenti.

Come previsto nel capitolo 8 delle norme tecniche, l'analisi sismica è stata attuata mediante una modellazione sia locale che globale.

L'analisi locale è effettuata tramite individuazione di meccanismi probabili che interessino i macroelementi, parti costruttivamente riconoscibili di caratteristiche omogenee in riferimento al comportamento strutturale.

Determinati i meccanismi probabili di I e II modo (rispettivamente fuori piano e nel piano) si esegue la verifica allo Stato Limite di salvaguardia della Vita, sviluppata adottando metodi di analisi "lineare" e "non lineare", tramite sia fogli di calcolo Excel, sia il software C – Sisma.

Nella modellazione globale invece si valutano meccanismi d'insieme, che impegnano i pannelli murari prevalentemente nel piano. I software utilizzati sono 3Muri e ANDILWall, i quali sviluppano analisi di tipo push - over tramite una schematizzazione a telaio equivalente.

In entrambi i casi sono state separate le due unità strutturali, sintetizzando prima due modelli liberi e poi schematizzando la loro iterazione tramite vincoli rigidi e cedevoli. Infine è stato adottato un fattore di confidenza superiore a quello designato per valutare l'apporto migliorativo dovuto ad una maggiore conoscenza della fabbrica.

La terza parte della tesi conclude quanto previsto dalle Linee Guida per i beni culturali: per punti considerati criticità sono previsti interventi migliorativi a seconda dei risultati ottenuti dalle analisi, associati alla verifica dell'efficacia dell'intervento ed al monitoraggio dei risultati ottenuti, prevedendo il loro comportamento nel tempo e la possibilità della loro reversibilità.

1. DESCRIZIONE DEL MANUFATTO

Identificazione della costruzione

Localizzazione geografica

Palazzo del Capitanio è situato nel centro storico di Padova, racchiuso dalle cinte murarie duecentesche e cinquecentesche, lungo via Monte di Pietà e Piazza Capitaniato.

La sua posizione nevralgica lo ha reso fin dalle origini un edificio di rappresentanza: ha ospitato il potere Carrarese, Veneziano, Austriaco ed attualmente quello comunale.

Il contesto urbano è quello del sistema di piazze, utilizzate nei secoli come teatro di celebrazioni civiche, di tornei, spazi commerciali e di rappresentanza della città; e dei grandi palazzi e delle chiese circostanti, quali Palazzo della Ragione, Palazzo Moroni, il Duomo.

L'edificio analizzato è parte del complesso antistante Piazza dei Signori, collocato a Sud della Torre dell'Orologio, polo nevralgico del sistema urbano.

Figura 1.1: Localizzazione geografica del Palazzo del Capitanio

Inquadramento cartografico

La conoscenza della localizzazione del complesso è stata possibile grazie all'ausilio della CTR (Carta Tecnica Regionale del Veneto) e dell'estratto catastale, reperiti dal Comune di Padova¹.

Per quanto concerne la cartografia, le informazioni sono state reperite nel P.A.T.I. (Piano di Assetto del Territorio Intercomunale), che sostituisce il P.R.G. (Piano Regolatore Generale) e disciplina l'assetto edilizio e lo sviluppo del territorio comunale e provinciale (*fig. 1.2*).

¹ Piano Regolatore Generale, norme tecniche di attuazione, 1992

Figura 1.2: Mappale NTCR 797

Il P.A.T.I. contiene le carte B1 e B2 del P.R.G. della zona del centro storico, la carta dei vincoli e della pianificazione territoriale, delle invarianti, delle fragilità, del rischio ambientale e delle trasformabilità a scala territoriale.

La modalità di attuazione degli interventi nelle unità di piano è disciplinata dall'estratto fogli 99 – 100 della carta B1 (sistema Prato della Valle ed aree del sistema bastionato, *Fig. 1.3*), secondo il principio di classificazione derivato dall'edificio con più elevato valore culturale presente.

Il Palazzo del Capitanio è inserito nell'unità di piano di classe C, quindi sottoposte a restauro (Tavola 1.02).

Figura 1.3: Estratto fogli 99 - 100, carta B1

Le destinazioni d'uso delle unità di piano sono disciplinate dall'estratto fogli 99 – 100 della carta B2, dalla quale Palazzo del Capitanio risulta un'area di interesse generale, con attrezzature di interesse comune.

Figura 1.4: Estratto fogli 99 - 100, carta B2

La carta dei vincoli e della pianificazione territoriale e la carta delle invarianti denotano la presenza nella zona di elementi ed immobili di notevole interesse pubblico, la carta delle fragilità classifica l'area "di interesse storico, ambientale ed artistico", la carta del rischio ambientale denota l'area a permeabilità media e la carta delle trasformabilità segnala la presenza di servizi di interesse sovra comunale [Tav. 1.03].

Dalle carte idrogeologica e litologica si evincono informazioni circa il sottosuolo: la falda freatica è posta tra zero e due metri dal piano campagna, mentre il terreno è costituito da materiale da riporto² [Tav. 1.04].

Generalità'

Presentazione edificio

Quello che anticamente fu simbolo della dominazione Carrarese a Padova, oggi è diventato un edificio dedicato alle funzioni pubbliche per la città.

Restaurato dopo la parziale demolizione dei Veneziani, si presenta oggi come una quinta scenica della piazza, andando ad incorniciarla e chiuderla.

² Piano di Assetto del Territorio Intercomunale, norme tecniche di attuazione, 2008

Figura 1.5: Prospetto Est su Piazza dei Signori

Al suo interno gli ambienti sono stati adibiti ad uffici e sportelli della pubblica amministrazione. L'edificio presenta una forte simmetria, con al centro la Torre dove è situato l'orologio del Dondi. La sezione qui in esame è quella posta alla sinistra (sud) della Torre dell'Orologio, anticamente sede del Capitano (*Fig. 1.6*).

Figura 1.6: Palazzo del Capitanio

Il fronte su corte del Capitaniato (*Fig. 1.7*) non presenta la medesima netta distinzione tra piano terra e piani superiori, ma mantiene la ripartizione verticale ed orizzontale. Ritroviamo le ampie aperture della facciata principale e le lesene decorative che suddividono il fronte in tre sezioni.

La copertura a falde in facciata è conclusa da un cornicione decorato con staccagoccia.

Figura 1.7: Prospetto Nord su Corte del Capitaniato

Dal fronte principale si accede al piano terra, composto da una sala d'aspetto ed una grande aula per il pubblico (*Fig. 1.8*), da uffici e servizi.

Figura 1.8: Piano terra, salone principale

Dal piano terra si giunge al piano interrato, utilizzato come locale tecnico e magazzino.

Al primo piano lo spazio si organizza attorno alla sala centrale (*Fig. 1.9*), similmente al piano terra, ma alla conformazione sottostante si aggiunge un'ala a sud, che va ad insediarsi nell'adiacente edificio delle poste italiane.

In corrispondenza delle due estremità ad est ed ovest troviamo due piani ammezzati.

Figura 1.9: Piano primo, salone principale

Il secondo piano presenta anch'esso un ambiente centrale, che non si legge più a causa delle tramezze interne. Vi sono due piani ammezzati ai lati est e nord ed un'ampia terrazza. Con una piccola scala a muro è possibile accedere al sottotetto (*Fig. 1.10*).

Figura 1.10: Sottotetto

Assetto funzionale

L'edificio ospita prevalentemente sportelli aperti al pubblico ed uffici della pubblica amministrazione, mentre gli ambienti in disuso o degradati sono utilizzati come archivi – magazzini.

Al piano terra sono presenti per lo più uffici per il pubblico, al piano secondo è presente una commistione di spazi utilizzati o meno dal pubblico, mentre al secondo piano le funzioni degli uffici risultano per lo più private.

I piani ammezzati non sono aperti al pubblico: quello orientale è un magazzino, mentre quello settentrionale è presente un ufficio ed un magazzino.

Rilievo degli elementi di interesse storico artistico

Palazzo del Capitanio è un immobile di elevato valore storico - artistico, soprattutto per quanto concerne l'aspetto esteriore dell'edificio: dovendo il palazzo rappresentare la quinta scenica di Piazza dei Signori, le attenzioni maggiori sono state rivolte alla facciata principale; non sono stati trascurati però i prospetti interni, anch'essi decorati.

Sismicità' del luogo

Al fine di caratterizzare compiutamente il sito in cui sorge il manufatto allo studio si è proceduto all'analisi della storia sismica dell'area del padovano, con lo scopo di valutare a quali eventi sismici sia stato sottoposto l'edificio nel corso degli ultimi 1000 anni.

Tale ricerca è possibile consultando il "Database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI11"³.

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1117 01 03 15:15	VERONESE	8	9-10	6.69 ±0.20
1222 12 25 12:30	BASSO BRESCIANO	6	7-8	5.84 ±0.56
1234 03 20	FERRARA	NR	7	5.14 ±0.34
1268 11 04	TREVIGIANO	5	7-8	5.35 ±0.34
1285 12 13	FERRARA	NC	7	5.14 ±0.34
1348 01 25 15:30	CARINZIA	7	9-10	7.02 ±0.18
1365 03 04	FERRARA	5	5	4.79 ±0.72
1410 05 09 22:30	FERRARA	NR	6-7	4.93 ±0.34
1485 09 01	PADOVA	5-6	5	4.30 ±0.87
1491 01 24 23:50	PADOVA	D		
1504 12 31 04:00	BOLOGNESE	5		

³ M. Locati, R. Camassi e M. Stucchi (a cura di), 2011. DBMI11, la versione 2011 del Database Macrosismico Italiano. Milano, Bologna, http://emidius.mi.ingv.it/DBMI11

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1511 03 26 14:40	SLOVENIA	6-7	9	6.98 ±0.17
1511 03 28 12:15	SLOVENIA	5		
1570 11 17 19:10	FERRARA	F	7-8	5.46 ±0.25
1624 03 19 19:45	ARGENTA	F	7-8	5.47 ±0.49
1688 04 11 12:20	ROMAGNA	F	8-9	5.78 ±0.35
1693 07 06 09:15	GOITO	4	7	5.22 ±0.72
1695 02 25 05:30	ASOLANO	7	10	6.48 ±0.18
1717 03 31	PADOVA	5	5	4.30 ±0.34
1741 04 24 09:00	FABRIANESE	4	9	6.21 ±0.13
1743 02 20 16:30	BASSO IONIO	F	9	7.13 ±0.19
1768 10 19 23:00	APPENNINO ROMAGNOLO	F	9	5.87 ±0.21
1774 03 31 15:10	BRESCIANO	4	6	4.72 ±0.34
1776 07 10	TRAMONTI	3-4	8-9	5.78 ±0.38
1779 06 01 23:55	BOLOGNESE	F		
1779 06 04 07:00	BOLOGNESE	3	7	5.24 ±0.52
1779 06 10 08:35	BOLOGNESE	3		
1779 07 14 19:30	BOLOGNESE	F		
1779 11 23 18:30	BOLOGNESE	3	5	4.99 ±0.31
1780 02 06 04:00	BOLOGNESE	4	6	5.13 ±0.57
1780 05 25	RAVENNA	4-5	5-6	4.51 ±0.34
1781 04 04 21:20	ROMAGNA	4	9-10	5.94 ±0.17

- CAP 1 - DESCRIZIONE DEL MANUFATTO

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1781 07 17 09:40	ROMAGNA	F	8	5.58 ±0.26
1781 09 10 11:30	MEDIA VALLE DELL'ADDA	4	6-7	4.90 ±0.67
1786 04 07 00:25	PIANURA PADANA	3	6	5.05 ±0.56
1786 12 25 01:00	RIMINESE	4	8	5.62 ±0.17
1787 07 16 10:00	FERRARA	3	5-6	4.51 ±0.34
1788 10 20 21:15	TOLMEZZO	3	7-8	5.14 ±0.67
1789 08 04	TRAMONTI	4-5	4-5	4.09 ±0.34
1794 06 07 00:45	PREALPI CARNICHE	5	8-9	6.04 ±0.57
1794 06 30 04:45	PREALPI CARNICHE	F	7-8	5.33 ±0.50
1796 10 22 04:00	EMILIA ORIENTALE	5	7	5.61 ±0.36
1799 05 29 19:00	CASTENEDOLO	3	6-7	5.01 ±0.51
1801 10 08 07:52:53	BOLOGNA	3	6	5.07 ±0.83
1802 05 12 09:00	VALLE DELL'OGLIO	4	8	5.64 ±0.22
1806 02 12	NOVELLARA	4-5	7	5.19 ±0.39
1810 12 25 00:45	NOVELLARA	4	6	5.29 ±0.22
1811 07 15 22:44	SASSUOLO	4-5	6-7	5.25 ±0.40
1812 10 25 07:00	SEQUALS	F	7-8	5.71 ±0.35
1813 09 21 07:45	ROMAGNA CENTRALE	3	7	5.27 ±0.94
1818 12 09 18:55	PARMENSE	3	7	5.28 ±0.35
1832 03 11 06:45	CARPI (MO)	3	5	4.80 ±0.37

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1832 03 11 08:45	REGGIANO	3		
1832 03 13 03:30	REGGIANO	F	7-8	5.53 ±0.18
1834 07 04 00:45	LUNIGIANA- PARMENSE	3		
1834 10 04 19:00	BOLOGNESE	3	6	4.85 ±0.43
1836 06 12 02:30	BASSANO	4-5	8	5.50 ±0.32
1841 10 15 22:00	SANGUINETTO	NR	5	4.19 ±0.44
1857 02 01	PARMENSE	F	6-7	5.09 ±0.25
1859 01 20 07:55	COLLALTO	F	6	4.98 ±0.32
1861 10 16	FORLI'	3	6-7	5.10 ±0.48
1870 10 30 18:34	ROMAGNA	3	8	5.58 ±0.27
1873 03 12 20:04	MARCHE MERIDIONALI	3	8	5.95 ±0.10
1873 06 29 03:58	BELLUNESE	5	9-10	6.32 ±0.11
1873 09 17	LIGURIA ORIENTALE	4	6-7	5.43 ±0.15
1875 03 17 23:51	ROMAGNA SUD- ORIENTALE	4-5		5.93 ±0.16
1878 03 12 21:36	BOLOGNESE	3	6	5.06 ±0.30
1879 06 22 04:15	TARCENTO	2-3	5-6	4.79 ±0.24
1881 01 24 16:14	BOLOGNESE	F	7	5.16 ±0.30
1881 01 25 07:06	BOLOGNESE	2		
1885 02 26 20:48	SCANDIANO	5	6	5.19 ±0.15
1885 12 29	VITTORIO VENETO	5-6	6	5.18 ±0.19

- CAP 1 – DESCRIZIONE DEL MANUFATTO

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1887 02 23 05:21:50	LIGURIA OCCIDENTALE	2		6.97 ±0.15
1891 06 07 01:06:14	VALLE D'ILLASI	4	8-9	5.86 ±0.06
1892 01 05	GARDA OCC.	3	6-7	5.02 ±0.15
1892 08 09 07:58	VALLE D'ALPONE	2	6-7	4.91 ±0.11
1893 10 27 16:31	LONGARONE	3	5	4.60 ±0.26
1894 02 09 12:48:05	VALLE D'ILLASI	NF	6	4.77 ±0.15
1894 11 27 05:07	FRANCIACORTA	3	6	5.07 ±0.10
1895 03 23	COMACCHIO	3	6	4.74 ±0.31
1895 04 14 22:17	SLOVENIA	4	8	6.23 ±0.08
1895 05 18 19:55:12	FIORENTINO	NF	8	5.43 ±0.08
1895 05 25 12:42	VILLANOVA MARCHESANA	F	4-5	4.11 ±0.69
1895 06 10 01:47	VALDOBBIADENE	3	6	5.03 ±0.13
1896 10 16	ALBENGA	RS	6	4.92 ±0.21
1897 01 27 01:35	RECOARO	RS	4-5	4.38 ±0.55
1897 06 11 12:45	CORNUDA	3-4	5-6	4.54 ±0.33
1897 07 15 05:57	SLOVENIA	3	6-7	5.25 ±0.23
1898 01 16 12:10:05	ROMAGNA SETTENTRIONALE	NF	6-7	4.79 ±0.33
1898 03 04 21:05	VALLE DEL PARMA	3-4	7-8	5.41 ±0.09
1900 03 04 16:55	VALDOBBIADENE	F	6-7	5.13 ±0.14

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1901 10 30 14:49:58	SALÒ	5-6	8	5.70 ±0.10
1902 06 27 16:48	CASENTINO	RS	6	4.63 ±0.46
1904 04 08 08:22	GARGANO	RS	6	4.91 ±0.42
1905 08 25 20:41	SULMONA	RS	6	5.16 ±0.26
1905 11 26 06:48:44	IRPINIA	RS	7-8	5.21 ±0.13
1907 04 25 04:52	VERONESE	4	6	4.91 ±0.15
1908 03 15 07:38	VALLE DEL CHIAMPO	2-3	5-6	4.96 ±0.31
1908 07 10 02:13	CARNIA	2-3	7-8	5.38 ±0.13
1909 01 13 00:45	BASSA PADANA	5	6-7	5.53 ±0.09
1909 08 25 00:22	MURLO	2	7-8	5.37 ±0.10
1911 02 19 07:18	ROMAGNA MERIDIONALE	4	7	5.28 ±0.11
1914 10 26 03:43	TAVERNETTE	RS	7	5.41 ±0.16
1914 10 27 09:22:36	GARFAGNANA	5	7	5.76 ±0.09
1915 01 13 06:52	AVEZZANO	3	11	7.00 ±0.09
1915 10 10 23:08	REGGIO EMILIA	2-3	6	5.02 ±0.22
1916 05 17 12:49:50	ALTO ADRIATICO	F		5.95 ±0.14
1916 08 16 07:06	ALTO ADRIATICO	F		6.14 ±0.14
1920 09 07 05:55:40	GARFAGNANA	4-5	10	6.48 ±0.09
1922 06 08 07:47	CALDAROLA	RS	6	4.89 ±0.19

- CAP 1 - DESCRIZIONE DEL MANUFATTO

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1924 12 12 03:29:43	CARNIA	4	7	5.38 ±0.19
1926 01 01 18:04:06	SLOVENIA	5	7-8	5.85 ±0.18
1927 10 28 21:49	BEDONIA	RS	6	4.88 ±0.21
1928 03 27 08:32	CARNIA	4	9	5.84 ±0.09
1928 06 13 08:00	CARPI	RS	6	4.78 ±0.23
1929 04 10 05:43:12	BOLOGNESE	4	7	5.03 ±0.13
1929 04 19 04:15:22	BOLOGNESE	3		
1929 04 20 01:09:46	BOLOGNESE	4-5	7	5.34 ±0.13
1929 04 22 08:25:33	BOLOGNESE	3-4		
1929 04 28 19:39:54	BOLOGNESE	3		
1929 04 29 18:35:59	BOLOGNESE	4		
1929 05 11 19:22:48	BOLOGNESE	3-4		
1930 10 30 07:13:13	SENIGALLIA	3	8	5.81 ±0.09
1931 12 25 11:41:17	TARCENTO	3-4	7	5.21 ±0.20
1932 01 02 23:36:43	CROTONESE	RS	5	5.43 ±0.30
1932 02 19 12:57:11	MONTE BALDO	3	7-8	5.02 ±0.28
1934 11 30 02:58:19	ALTO ADRIATICO	4		5.34 ±0.17

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
1935 06 05 11:48:02	FAENTINO	4	6	5.16 ±0.25
1936 10 18 03:10:12	BOSCO CANSIGLIO	5	9	6.12 ±0.09
1945 12 15 05:27	VARZI	NF	6	5.05 ±0.34
1951 05 15 22:54	LODIGIANO	4	6-7	5.39 ±0.14
1956 02 20 01:29:41	ARGENTA	F	5-6	4.82 ±0.18
1963 07 19 05:45:28	MAR LIGURE	F		6.02 ±0.14
1967 12 09 03:09	ADRIATICO MERIDIONALE	RS		
1967 12 30 04:19:20	BASSA PADANA	5	6	5.24 ±0.19
1971 07 15 01:33:23	PARMENSE	4-5	8	5.64 ±0.09
1976 05 06 20:00:12	FRIULI	5-6	9-10	6.46 ±0.09
1976 09 11 16:35:02	FRIULI	5		5.63 ±0.09
1976 09 15 09:21:19	FRIULI	6		5.98 ±0.15
1983 11 09 16:29:52	PARMENSE	3	6-7	5.06 ±0.09
1986 12 06 17:07:20	BONDENO	2-3	6	4.61 ±0.10
1987 05 02 20:43:53	REGGIANO	4	6	4.74 ±0.09
1989 09 13 21:54:01	PASUBIO	5	6-7	4.88 ±0.09
1996 10 15 09:56:02	CORREGGIO	3-4	7	5.41 ±0.09

CAP 1 – DESCRIZIONE DEL MANUFATTO

Data	Epicentro	l _s - intensità al sito (MCS)	l _o - intensità epicentrale (MCS)	Mw (MMS)
2003 09 14 21:42:53	APPENNINO BOLOGNESE	4	6	5.29 ±0.09

F (felt) - avvertito, ma senza presenza di danni; NF (not felt) - non avvertito; RS - registrazione strumentale

Le intensità sono valutate secondo la scala macrosismica Mercalli - Cancani - Sieberg (MCS) applicata sia all'epicentro che al sito; per quando riguarda la misura della magnitudo momento questa è disponibile solo per i terremoti più recenti oppure è frutto di estrapolazione.

Analizzando i dati a nostra disposizione si può constatare che Padova è stata epicentro sismico per quattro volte (1485, 1491, 1717, 1909), inoltre nella sua storia sismica l'edificio è stato soggetto ad un solo evento sismico di intensità macrosismica pari o maggiore di 6 (Friuli 1976, $I_s=6$), intensità corrispettiva ad effetti sui manufatti.

L'edificio non riporta segni fessurativi evidenti dei passati terremoti, ma vi è la possibilità che questi non siano ancora completamente manifesti, valutazione che determinerà l'utilizzo di un livello di conoscenza pari a 1.

Per la valutazione dell'azione sismica si veda il capitolo 7.

Caratterizzazione geotecnica

Al fine di caratterizzare compiutamente il sito, e quindi l'analisi sismica, è stato utilizzato un documento riguardante un edificio sito a breve distanza da Palazzo del Capitanio: la relazione geologico – tecnica di Palazzo della Ragione.

L'esecuzione di prove geognostiche hanno definito l'assetto stratigrafico del terreno, le caratteristiche geomeccaniche e la profondità del livello freatico.

Le indagini svolte nel Luglio del 1998 consistono nell'esecuzione di 2 sondaggi geognostici a rotazione a carotaggio continuo, con annesse prove S.P.T (Standard Penetration Test) e prelievo di campioni indisturbati, 2 sondaggi Penetrometrici statici con Punta Elettrica, spinti fino alla profondità massima di 30,70 m dal piano di calpestio e prove di laboratorio su campioni industarbati.

Le terebrazioni sono state spinte fino alla profondità massima di 30,00 m dal piano di calpestio⁴.

I risultati ottenuti sono stati correlati con le precedenti prove relative al 1987, unitamente all'analisi del quadro geologico, morfologico, idrogeologico e storico ambientale.

La sequenza stratigrafica, a grandi linee, può essere così sintetizzata:

Materiali di Riporto antropico immersi in matrice essenzialmente pelitica, intercalati, specie nella porzione basale, da livelli limo – argillosi e francamente argillosi con inclusi elementi antropici. Lo spessore risulta variabile da 4 a 6 m (Litotipo A).

Ai materiali di riporto, vista la loro eterogeneità, non è possibile attribuire univocamente parametri geomeccanici in quanto questi sono estremamente scadenti e riconducibili a:

Peso di volume γ = 1,6 – 1,8 g/cm³

Angolo d'attrito $\Phi < 20^{\circ}$

Coesione non drenata c = 0.5 - 1.0 kg/cm²

Alternanza di livelli a granulometria variabile da argilla a limo, talvolta con una minima frazione sabbiosa, intercalata da livelli francamente sabbiosi. Tali livelli si intercettano fino ad una profondità variabile da 8,00 – 10,00 m (Litotipo B).

Peso di volume γ = 1,8 – 2,0 g/cm³

Parametri di resistenza al taglio in termini di tensione totale

Angolo d'attrito Φ prossimo allo zero

Coesione c = 0,8 - 1,5 kg/cm²

Modulo Edometrico E_{ed} = 30 – 50 kg/cm²

Nei livelli sciolti si attribuiscono i seguenti parametri:

Parametri di resistenza al taglio in termini di pressione effettiva

Densità Relativa D.R. = 45 - 50 %

Angolo d'attrito interno: 31° - 33°

Modulo Edometrico E_{ed} = 30 – 50 kg/cm²

Si precisa che da un campione prelevato alla base dello strato, in livelli sabbiosi grossolani, si rileva un angolo di attrito interno pari a 39,4°. Tale dato deve essere opportunamente valutato, in quanto è stata eseguita una prova di taglio diretto C.D., il cui piano di taglio risulta predeterminato.

Livelli a granulometria essenzialmente sabbiosa intercalati da livelli con frazione granulometrica pelitica, talvolta persino abbondante, aventi spessore decimetrici. Lo spessore dello strato risulta variabile da 6,00 a 9,00 m (Litotipo C).

Peso di volume γ = 1,8 – 2,0 g/cm³

Angolo d'attrito Φ: 31° - 34 °

Modulo Edometrico E_{ed} = 100 – 150 kg/cm²

⁴ Relazione geologico – tecnica di Palazzo della Ragione, relazione n. 7024 bis, Pozzuoli, Luglio 1998, Tecno in srl

CAP 1 – DESCRIZIONE DEL MANUFATTO

In tali litotipi si riscontra una certa coesione ma questa è soggetta a subire forti modificazioni, pertanto nei calcoli geotecnici deve essere considerata nulla.

Livelli a granulometria sabbiosa da media a grossolana intercalati da livelli con frazione granulometrica fine. Si rinvengono intercalati rari livelli a frazione granulometrica essenzialmente pelitica con spessori decimetrici. Tale livello rappresenta il deposito di bade della successione suddetta ed ha una potenza non inferiore a 10,00 m (Litotipo D).

Peso di volume γ = 1,8 – 2,2 g/cm³ (Generalmente il peso di volume aumenta all'aumentare della profondità).

Angolo d'attrito Φ : 33° - 38 ° (Si precisa che il valore aumenta all'aumentare della profondità, e talvolta risulta perfino maggiore).

Modulo Edometrico $E_{ed} \ge 100 \text{ kg/cm}^2$ (Il valore aumenta considerevolmente all'aumentare della profondità).

La coesione risulta praticamente nulla.

La falda freatica intercettata in fase di sondaggio si attesta ad una profondità di circa 5,00 m dal pc. E' da precisare che tale dato è da ritenersi indicativo in quanto la falda idrica non ha raggiunto l'equilibrio idrostatico con foro di sondaggio.

Dall'analisi effettuata si assume per le analisi sismiche la categoria di sottosuolo C, la quale comprende depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_{s,30} compresi tra 180 m/s e 360 m/s (ovvero 15 < N_{SPT,30} < 50 nei terreni a grana grossa e 70 < $c_{u,30}$ < 250 kPa nei terreni a grana fina⁵).

⁵ Decreto ministeriale infrastrutture del 14-01-2008, Norme Tecniche per le Costruzioni C3.2.2

2. ANALISI STORICA

Evoluzione storica

Il principio: la reggia Carrarese

In contrapposizione all'inquieta mobilità della vita cittadina della tarda età comunale, si fa strada, intorno alla metà del trecento, la tendenza verso un cristallizzarsi delle strutture politiche e della classe dirigente: al posto dei vecchi partiti (guelfi e ghibellini) si delinea il partito 'Carrarese'.

In tale impostazione data alla politica i Carraresi avvertono la necessità di erigere un maestoso complesso edilizio, simbolo del loro potere a Padova.

La scelta del luogo è dettata da vari fattori, tra cui quello che la zona occidentale della città era la zona aristocratica, ma non vi erano insediamenti della società comunale borghese⁶.

Andrea Gloria (1821 - 1911 Padova), paleografo e storico italiano, indica in tal modo i confini del palazzo dei Da Carrara:

«Mi piace chiamarla reggia, sebbene il documento la dica curia magnifici domini domini Francisci de Carraria, non sapendo io con altro nome appellare la grande isola di Padova, che oggi è circuita dal lato occidentale della Piazza dei Signori da quella parte della via Strà Maggiore a cui si unisce il vicolo di S. Nicolò, da questo vicolo rasenta il fianco del palazzo Zigno e quello della chiesa di S. Nicolò e la facciata del palazzo Moschini, dall'altra via dritta che parte dal Teatro Nuovo e giunge al Duomo, e della via che correndo in fianco del Duomo e del Monte di Pietà volge alla Piazza antedetta».

Figura 2.1: Inquadramento, aerofotogramma di Padova (1995)

⁶ N. Nicolini, A. Rossi, *La Reggia dei Carraresi a Padova*, La Casa della Rampa, 2010

Aggiornando il discorso del Gloria alla toponomastica odierna, si possono indicare i confini della reggia Carrarese, l'antica reggia dei Signori di Padova: lato nord di piazza del Duomo, via Monte di Pietà, piazza dei Signori, via Dante fino all'altezza del selciato S. Nicolò, il selciato medesimo e, proseguendo ad ovest, la via che conduce al teatro Verdi; piegando verso sud, via Dondi dell'Orologio e via Accademia, alla fine di quest'ultima, si volge verso est fino a giungere nuovamente piazza del Duomo (*Fig. 2.1*).

Il complesso risultava composto da due corpi di fabbrica: il Palazzo Vecchio o di ponente, situato nella zona sud - ovest dell'insula, la cui edificazione iniziò circa nel 1338 e terminò nel 1343, ed il palazzo di levante (*aliud palatium*), la cui edificazione iniziò prima della morte di Ubertino da Carrara⁷.

Tra i due palazzi si ergeva, monumentale, la torre d'ingresso della Reggia, all'incirca sul luogo del voltone tra "Corte Valaresso" e lo scalone coperto del Capitaniato, sulla quale, secondo Pier Paolo Vergerio, era posto l'orologio di Jacopo Dondi. La torre fortificata fu demolita nel 1390, in seguito ad episodi bellici. La Reggia era circondata da alte mura merlate, in conci di trachite e corsi di mattoni, spesse circa 77 cm, che avevano funzione di difesa contro eventuali moti cittadini: ne risultava una fortezza all'interno di una città murata.

Tale isola cittadina appariva in origine parzialmente interrotta dall'esistenza di un ponte (il cosiddetto traghetto) che collegava la reggia con il castello. Il traghetto permetteva al principe in cavallo di fuggire dalla sua residenza all'interno della città al Castello fortificato. Purtroppo gli ultimi resti del Traghetto furono demoliti nel 1777; l'innesto del traghetto nelle mura dell'insula è tutt'ora documentato da una lapide posta vicino al volto ottocentesco d'ingresso in via Accademia. La reggia rappresentava infatti il simbolo dello sforzo di rifeudalizzazzione dei da Carrara, tentativo di manifesto di autorità, collegata con il centro militare del castello tramite il traghetto ed un tratto delle mura cittadine⁸.

Del complesso originale (edificato durante la Signoria di Ubertino I da Carrara) è rimasto ben poco: il lato orientale (il prospetto su piazza dei Signori), divenuto sede del capitano Veneziano, ha subito nel XVI secolo così tanti rimaneggiamenti che risulta impossibile individuarne la struttura primitiva; della zona sud-ovest è rimasto il loggiato mentre nella zona centrale la sala dei Giganti, ora conglobata nell'edificio del Liviano.

Per ricostruire idealmente almeno parte del complesso ci si affida ad alcuni ricordi scritti, quali cronache medioevali, annali padovani e scritti quattro - cinquecenteschi di Savonarola, Scardeone e Vergerio, poiché i documenti di archivio più antichi del periodo comunale e della signoria dei Carraresi sono andati distrutti nell'incendio del 1420, che ha cancellato così le fonti figurative originali.

Michele Savonarola nel suo Libellus, scritto una quarantina d'anni dopo l'occupazione veneziana, ma prima di grandi trasformazioni, afferma la possibilità di stanziare un migliaio di cavalli nella corte d'accesso centrale dall'attuale piazza da Signori. Tale dato, fine alla funzionalità della corte, attribuisce all'entrata una valenza secondaria, di servizio, mentre attesta l'ipotesi che l'entrata d'onore fosse da piazza Duomo. Era inoltre presente un terzo ingresso su via Accademia.

Accanto al cortile centrale ve ne erano altri due: uno interno, delimitato da loggiati doppi sui quattro lati ed una fontana centrale (il cortile d'onore), e l'altro riservato agli esercizi dei giovani nobili padovani. Il cortile centrale era delimitato dalla parte meridionale da una fabbrica riservata al principe, alla sua famiglia ed agli uffici, dalla parte settentrionale dai servizi, compresi quelli militari.

⁷ L. Puppi, F. Zuliani, *Padova, case e palazzi,* Vicenza, La grafica e stampa, 1977

⁸ N. Nicolini, A. Rossi, *La Reggia dei Carraresi a Padova*, La Casa della Rampa, 2010
La pianta dettagliata più antica della Reggia Carrarese è la Pianta del Palazzo e corte prefettizia di G. B. Savio rilevata nel 1729 e riprodotta nel 1936 su interesse del Rettore dell'Università di Padova Carlo Anti (*Fig. 2.2*).

Figura 2.2: Carta storica, 1729 riprodotta nel 1936

Il documento riporta quanto di più vicino alle descrizioni delle cronache antiche e testimonia lo stato di fatto dei luoghi del complesso Carrarese all'inizio del XVIII secolo.

Per quanto riguarda l'ingegnere costruttore della reggia, i Gatari, cronisti contemporanei dei Carraresi, menzionano Domenico da Firenze. Tale dato non è accertato, è però verosimile che possa esser stato un architetto toscano, date le caratteristiche riscontrate in comune con edifici medioevali di Firenze, dove probabilmente ebbe origine l'impiego di architravi in legno in luogo degli archi, come testimonia una parte della loggia⁹.

Il Palazzo del Capitanio e dei Camerlenghi

Al volgere del XIV secolo la crescente potenza della signoria dei Carraresi preoccupò Venezia, che temeva per la diminuzione delle proprie vie commerciali nell'entroterra e dei confini in terraferma, cosicché dichiarò guerra ai Da Carrara. Il conflitto durò poco meno di un anno e vide vincitrice Venezia, che, nel 1405, occupò Padova e gli ex domini carraresi.

Laddove il potere della signoria si era addensato in luoghi fisici, come il Castello e la Reggia, la sistematicità della cancellazione veneziana non poteva prescindere dal perpetuarsi del messaggio irradiato dalla centralità del ruolo urbanistico dell'edificio.

⁹ L. Puppi, F. Zuliani, *Padova, case e palazzi,* Vicenza, La grafica e stampa, 1977

Infatti nonostante solo la parte nord - orientale della reggia dovesse essere radicalmente modificata, poiché residenza del Capitano veneziano di Padova, neanche la parte sud - occidentale, adibita ad abitazione del Cancelliere e di altri assistenti del Capitano, è giunta a noi, in quanto oggetto di deturpazione dei danni del tempo e dell'incuria umana.

Il processo di restauro dell'ex reggia Carrarese si inseriva in un clima di intensa ripresa costruttiva a carattere civile ed auto celebrativa della classe aristocratica.

Gli interventi architettonici si mantennero per lo più entro i confini murari delle preesistenti costruzioni, senza modificare la trama viaria o la lottizzazione di base, definita nel Trecento.

Le realizzazioni si collocavano in un processo culturale assai allargato, coinvolgente la "forma" e l'immagine" della città; l'operazione si attuò attraverso predisposti punti focali in diretta relazione con un fondale scenico, tecnica desunta dall'architettura teatrale (*Fig. 2.3*).

Figura 2.3: Piazza dei Signori, incisione seicentesca di Cadorin

Piazza dei Signori, già piazza della Signoria, rappresentava il fulcro del sistema urbano di Padova, ragion per cui si decise di spostare su questo fronte l'ingresso principale del Palazzo del Capitanio. L'impianto edilizio infatti rispondeva alle esigenze di "residenza" e "rappresentanza"; sui lati corti erano alloggiate le sedi del potere civile (Reggia) e religioso (San Clemente)¹⁰.

¹⁰ N. Nicolini, A. Rossi, *La Reggia dei Carraresi a Padova*, La Casa della Rampa, 2010

Figura 2.4: Monte di Pietà Palazzo di S. E. Capitanio in Padova, in "Teatro Prospettico. Fabbriche più considerabili della città di Padova", disegno di F. Belluco, inc. di A. Sandi.

Durante la seduta del 5 Luglio 1423 il Consiglio cittadino decretò "per comodo e ornamento civico" la realizzazione di una nuova porta torre, destinata ad accogliere il nuovo orologio astronomico, in memoria di quello distrutto.

Nel 1427 il capitanio Bartolomeo Morosini diede inizio ai lavori di ampliamento ed adeguamento, finalizzati ad accogliere il grande orologio: la forometria della facciata ed altri particolari architettonici furono pensati per consentire il corretto funzionamento del meccanismo; la torre venne sopraelevata di due piani e sormontata dalla parte sommitale con la cupola rivestita di piombo. La sistemazione della torre fu ultimata nel 1430, mentre l'installazione dell'orologio, iniziata nel 1427, si concluse nel 1436.

La torre, costituita da un massiccio corpo di fabbrica in muratura a base quadrangolare, è alta 30 metri, coronata da un attico balaustrato con una cella campanaria centrale a pianta ottagonale e sormontata da una cupola di legno rivestita di lastre di piombo.

Al pianterreno venne aperta la porta di collegamento tra Piazza dei Signori ed il cortile del Capitanio, l'ex "corte d'armi" carrarese.

Nel 1532 Maria Falconetto eresse un nuovo arco d'ingresso per la corte del Capitaniato, che andava a sostituire il portale ad arco acuto, sul quale era posto il grande orologio, riproduzione di quello inventato da Dondi.

Tale arco fu lo stimolo per riorganizzare il sistema volumetrico - spaziale del complesso.

Per quanto concerne la costruzione del palazzo Prefettizio, si doveva concludere una serie di parziali interventi all'interno dei vetusti edifici carraresi, adattati sino allora alla meglio per accogliere residenze ufficiali e gli spazi amministrativi e rappresentativi connessi al governo del capitano.

Il progetto definitivo derivò da elaborati preparatori suggeriti da architetti al servizio della Serenissima, tra cui il proto di S. Marco, Giulio Viola Zanini, e il capomastro Marcantonio Cavazza.

Il Ducale del primo Maggio 1593, a seguito di pressanti richieste circa «*la ruina seguida in alcune* parte del Palazzo e delle stalle pubbliche di quel capitaniato e il pericolo imminente di maggiore danno quando non si faccia la provisione opportuna», disponeva che al restauro fosse destinata una somma di mille ducati.

Il Capitano Antonio Priuli (Ottobre 1598 - Aprile 1660) privilegiò la realizzazione del nuovo Palazzo del Capitanio, a sud dell'arco. I lavori iniziarono sotto la direzione del proto pubblico Lorenzo Giavarina, assunto in carica nel 1598 in sostituzione del deceduto Giulio Viola Zanini.

Tra Gennaio-marzo 1599 venne terminata la costruzione dell'ala del palazzo all'imbocco dell'attuale via Monte di Pietà, a Luglio l'ampio balcone balaustrato del piano nobile e a Settembre l'ornamento architettonico e decorativo dei piani superiori¹¹.

L'opera, portata a termine, rappresentava solo metà del corpo di fabbrica previsto nell'originario progetto d'insieme, ovviamente sviluppato attorno all'asse costituito dall'ingresso falconettiano.

Nel 1603, sotto il reggimento del Capitanio Stefano Viaro, vennero destinati 5000 ducati "ad accomodar due case per li Chiarissimi Camerlenghi sopra la piazza et quella del nodaro della Camera Fiscale ..."

Nel 1605 volse a conclusione la costruzione del cosiddetto palazzo dei Camerlenghi ad opera del proto Pompilio Scotto.

L'organizzazione architettonica del blocco rappresentato nei fogli di progetto è, con leggere varianti, quella portata a termine; ciascun volume è strutturato a partire da un piano basamentale, che si conclude con un balcone balaustrato sostenuto da mensoloni in pietra, mentre i due piani sovrastanti si articolano mediante il vario disporsi di lesene che delimitano gli spazi delle aperture e delle decorazioni funzionali, impianto concluso dal distendersi delle cornici marcapiano e delle strutture di coronamento.

In origine, tra le campiture cieche delimitate dalle paraste, si trovavano insegne in pietra dei rettori succedutisi nel governo di Padova.

Più che la concezione planimetrico - distributiva del nuovo complesso prefettizio, senza dubbio corrispondente a precise richieste funzionali, alla committenza premeva soprattutto l'organizzazione significante del fondale di chiusura della piazza: salvaguardando l'impianto-base si preferì, nel corso della realizzazione, riformare l'intero prospetto, agganciando le sue due ali direttamente alla porta turrita, asse di simmetria del fondale, vero perno della sua coniugazione con l'invaso della piazza¹².

Il Palazzo, realizzato nel segno di una celebrazione retorica del potere della Serenissima su Padova, assumeva maggior risalto nello spazio chiuso della piazza, dalla quale erano state eliminate le ultime abitazione rimaste nel secondo decennio del XV secolo (*Fig. 2.5*).

Figura 2.5: Marino Urbani, Veduta della Piazza detta dei Signori in Padova, 1800

¹¹ R. Lamon, *Il palazzo del Capitanio e la torre dell'orologio*, Padova, 2011

¹² N. Nicolini, A. Rossi, *La Reggia dei Carraresi a Padova*, La Casa della Rampa, 2010

CAP 2 - ANALISI STORICA

Nel 1622 il capitanio Zaccaria Sagredo promosse la ripavimentazione della piazza (*Fig. 2.6*), secondo un reticolato di cordonate che evidenziavano il centro del percorso, il quale volgeva all'entrata principale del palazzo prefettizio.

Figura 2.6: Pianta di Piazza dei Signori, 1790 ASPd, Strade, Piazze, Fabbriche pubbliche

La piazza era diventata un compendio di simboli comuni anche alle altre città assoggettate: il palazzo pubblico, la Loggia, il Monte di Pietà, l'Orologio ed il Leone marciano.

Con l'apertura della piazza si attuò una rifondazione simbolica dello spazio centrale della città, che divenne luogo scelto per cerimonie, trionfi, parate e spettacoli pubblici, ruolo mantenuto anche dopo la caduta di Venezia.

Con la fine della dominazione veneziana (1797), l'edificio fu destinato a magazzini e a caserma ad uso delle truppe che attraversavano il territorio padovano, riportando danni sia per le strutture interne che per quelle esterne, tanto che durante la metà dell'Ottocento si fece strada l'ipotesi di affrontare alla radice i problemi di restauro e di distribuzione interna mediante un'integrale riqualificazione dell'edificio¹³.

Dominazione Austriaca: da Palazzo del Capitanio a Dispensa Sali

All'inizio del XIX secolo il Palazzo ex - Capitaniato, come allora veniva chiamato, passò in proprietà al Demanio come sede dell'I.R. Comando di Piazza e dell'I.R. Commissariato di guerra, mentre alcuni locali del piano terra furono occupati dalla Dispensa Sali.

In questo periodo ebbero luogo le grandi demolizioni, suddivisioni e vendite all'asta, specialmente intorno al 1820 ed al 1873 - 1880, responsabili francesi, austriaci ed italiani.

Nel 1820 il Demanio austriaco metteva in vendita la maggior parte delle colonne del portico di ponente, lungo il *praetto*, come ormai veniva chiamato l'abbandonato brolo carrarese. Tuttavia erano state conservate, libere ed aperte alla vista, le due campate più vicine al 'porticale pubblicò della reggia, sede attuale dell'Accademia Patavina di Scienze, Lettere ed Arti.

¹³ N. Nicolini, A. Rossi, *La Reggia dei Carraresi a Padova*, La Casa della Rampa, 2010

Nel 1859, in seguito alla proposta presentata dal Comune di Padova per l'acquisto dello stabile, l'Intendenza Provinciale di Finanza ordinava la stima dei locali e la perizia dei lavori necessari, affidandone l'incarico all'ingegnere civile Pietro Businari.

Nella relazione l'ingegnere scriveva: *mura guastate nell'intonaco, pavimenti rovinati, solai malandati e serramenti rotti.* Per quanto concerne l'ala sinistra, questa doveva essere utilizzati ad uffici al primo piano (*Figg. 2.7 – 2.8*), riservando il secondo e l'ala destra ad abitazioni, delle quali avrebbe percepito l'affitto il comune stesso.

Tuttavia l'intervento rimase sulla carta, poiché la vicenda del palazzo è legata agli avvenimenti politici che avrebbero portato il Veneto a far parte del Regno d'Italia¹⁴.

Figura 2.7: Progetto del 1859 per il Palazzo del Capitaniato, primo piano

¹⁴ R. Lamon, *II palazzo del Capitanio e la torre dell'orologio*, Padova, 2011

Figura 2.8: Progetto del 1859 per il Palazzo del Capitaniato, prospetto Est

Fine Ottocento: Sede della Borsa

Al 14 Agosto 1867 risale l'atto di compravendita stipulato tra la Regia Intendenza Provinciale delle Finanze di Padova ed il Comune sopra lo stabile, detto ex - Capitaniato.

L'acquisto rientrava in un vasto programma di interventi, finalizzati alla modernizzazione della città, ed aventi come obiettivo la riqualificazione del sistema delle piazze storiche e degli edifici pubblici. Nel 1870 il Comune restaurò l'Arco Vallaresso e l'anno successivo acquistò dal Demanio alcuni edifici per iniziare la riqualificazione dell'area.

Negli anni successivi furono proposti tre interventi: nel 1872 l'ufficio tecnico comunale fu incaricato di redigere un progetto di massima per la realizzazione di scuole elementari, progetto affidato successivamente a Camillo Boito (*Fig. 2.9*), mentre nel 1873 furono commissionati gli altri due progetti, concepiti come un unico piano di risanamento.

Figura 2.9: Edificio del Boito sovrapposto a una planimetria del 1815

Con la realizzazione dell'edificio scolastico si può definire completata la trasformazione dell'area sud ovest della Reggia. Dalla pianta comparativa del 1877 tra lo stato di fatto ed il progetto boitiano si desume che la scuola sorse dove è tutt'ora visibile, previa demolizione del cortile centrale della Reggia (lato sud) e delle ultime due campate del portico di raccordo tra il portico di Ubertino ed il peristilio d'onore centrale.

Il primo progetto del 1873, redatto dall'ingegnere comunale Francesco Turola, riguardava la destinazione della Loggia Carrarese a magazzino per il grano al piano terra e scuola di musica al piano superiore; le costruzioni che ancora sorgevano nel mezzo delle corti sarebbero state demolite per creare un ampio spazio da adibire a mercato delle granaglie, che allora si teneva in Piazza Cavour.

Il progetto venne respinto, mentre fu approvato il secondo progetto, che riguardava il restauro radicale dell'ala sud del Palazzo del Capitanio, per destinarla a sede della Borsa di Commercio e della Società del Casino dei Negozianti.

Nel febbraio 1873, la Camera di Commercio, che fin dalla sua fondazione aveva avuto sede nel Palazzo del Capitanio, aveva infatti deliberato d'istituire una Borsa merci e di collocarla nel locali al pianterreno dello stesso palazzo, per i quali si sarebbe assunta l'onere dell'affitto.

Anche la Società del Casino dei Negozianti, costituitasi a Padova il 3 Gennaio 1872, aveva richiesto al Comune la disponibilità di una sala per poter offrire ai proprio soci "un luogo di quotidiano e decoroso convegno per la ricreazione dello spirito e per promuovere ed appoggiare tutto quanto può influire a vantaggio degli interessi commerciali e industriali della Provincia".

Dalla relazione per la presentazione in Consiglio Comunale di questo secondo progetto (delib. 5 Dicembre 1873) si deduce la grave situazione di degrado in cui si trovava l'ala sinistra del palazzo, «con murature interne solcate da profondi crepacci e corrose dall'umidità e dalla salsedine, con pavimenti quasi inesistenti e solai sostenuti da indecenti puntellature».

L'area oggetto dell'intervento comprendeva sia l'antica residenza del Capitanio, sia la corticella ad ovest, dove si trovavano un pozzo e la scala esterna che conduceva ai piani superiori.

Dal sottoscala si accedeva ai locali destinati a magazzini per la legna e a quelli utilizzati dalla Dispensa Sali.

Il progetto, presentato dall'ingegner Giuseppe Selvelli nel 1873 (*Figg.2.10 – 2.11*), prevedeva al piano terreno un'ampia sala ad uso della Borsa, dei locali per una bottega da caffè e l'abitazione del custode, mentre nel primo piano viene destinato al Casino dei Negozianti. Il secondo piano, con ingresso indipendente, in origine riservato alle abitazioni, fu invece occupato dagli Uffici del Commissariato Militare.

Durante i lavori, iniziati nel 1874, fu demolita la scala esistente nel cortiletto verso ovest, tra l'ala che nel periodo veneziano era stata la residenza del Capitanio e l'edificio ricostruito intorno alla metà del Cinquecento da Andrea Moroni e oggi sede universitaria, e venne eretta verso nord una nuova facciata in stile neorinascimentale, inglobando parte dello stesso cortiletto.

Contemporaneamente, sul fronte principale verso Piazza dei Signori, che allora si chiamava Piazza Unità d'Italia, vennero aperti al pianterreno, all'altezza delle precedenti finestre quadrate, altri quattro archi simili ai tre esistenti: i due archi a destra dovevano servire quali porte d'ingresso alla bottega da caffè.

Lo stesso intervento interessò anche l'ala nord del palazzo, verso via Dante.

Dalla notevole quantità di lavori eseguiti, minuziosamente descritti nei capitolati d'appalto e nelle relative liquidazioni finali, emerge la cura particolare che venne dedicata alla sistemazione dei locali interni, tutti interessati da opere di ricostruzione dei pavimenti, dei soffitti e dei serramenti; la grande sala al primo piano fu decorata con stucchi in stile rinascimentale, mentre un lungo cornicione completava le pareti, ritmate da una serie di lesene ioniche.

CAP 2 - ANALISI STORICA

I lavori, appaltati all'impresa Antonio Masseni e Giovanni Cavazzana, subirono diverse rielaborazioni e si conclusero nel 1877 con il restauro delle facciate destra e sinistra del palazzo e della Torre dell'Orologio. Dopo gli Ottocenteschi lavori di ristrutturazione, la parte dell'edificio destinata al Comune fu interessata solo da parziali interventi di manutenzione¹⁵.

Figura 2.11: Giuseppe Selvelli, Progetto per il Casino dei Negozianti, Pianta pianterreno e primo piano del Palazzo ex Capitaniato, 1873

Figura 2.10: Giuseppe Selvelli, Progetto per il Casino dei Negozianti, Prospetto della facciata, 1873

¹⁵ R. Lamon, *Il palazzo del Capitanio e la torre dell'orologio*, Padova, 2011

Il Novecento: Sede Comunale

L'intero palazzo fu oggetto di un nuovo e radicale intervento di restauro, con relative modifiche interne, solo tra il 1957 e il 1959 quando, nell'obiettivo di conferire ai servizi comunali un'organica sistemazione, si stabilì di trasferire gli Uffici dell'Anagrafe al piano terra dell'ala sinistra, in precedenza occupata dalla succursale delle Poste e Telegrafi, e gli Uffici di Sanità, Igiene, Assistenza, Beneficenza e Amministrativi nell'ala destra, che allora ospitava al piano terreno le Associazioni Combattenti e Reduci, Orfani e Vedove di guerra (*Fig. 2.12*).

Figura 2.12: Progetto del 1957 - 1959 per il Palazzo del Capitaniato

Nulla venne tuttavia fatto per l'esterno, per cui, con l'emergere di una nuova sensibilità estetica, di un gusto per il decoro urbano che con il tempo era diventato prioritario sia per i tecnici che per gli amministratori, il Settore Edilizia Monumentale del Comune fu incaricato di predisporre un progetto di restauro conservativo delle facciate del palazzo.

Nel corso di alcuni sopralluoghi compiuti intorno agli anni 1988 - 1989 era infatti emerso lo stato di degrado in cui si trovavano tali facciate prospicienti Piazza dei Signori e Piazza Capitaniato: le parti lapidee presentavano evidenti tracce di corrosione, con perdite polverulente causate da un generalizzato fenomeno di solfatazione e dal dilavamento delle acque meteoriche. In alcuni punti erano poi stati riscontrati fenomeni localizzati di esfoliazione con conseguente distacco degli intonaci (*Figg. 2.13 – 2.14*). Anche ai medaglioni in calcare tenero di Nanto, presenti in alcuni punti della facciata principale, si trovavano in grave stato di degrado.

Nel 1998 sono iniziati quindi i lavori di salvaguardia e recupero delle facciate del palazzo da parte del Comune di Padova, sotto il controllo della soprintendenza ai Beni Architettonici ed Artistici del Veneto, lavori che hanno riguardato diversi livelli d'intervento: le parti lapidee sono state oggetto di un restauro propriamente inteso, con specifiche azioni di preconsolidamento del materiale più labile e di pulitura delle superfici, mentre le parti murarie hanno subito un intervento di manutenzione straordinaria.

Sulle facciate, dopo la raschiatura del vecchio intonaco, è stato steso un intonachino, costituito da grassello di calce, sabbia di campo e terre colorate, secondo le indicazioni della Sopraintendenza.

CAP 2 - ANALISI STORICA

Durante i lavori, nelle nicchie al primo piano della facciata verso Piazza dei Signori sono state ritrovate due statue: un busto in pietra di Nanto che raffigura S. Prosdocimo, uno dei quattro Santi protettori di Padova, ed un busto di S. Antonio.

Le due opere sono tornate alla luce dopo l'abbattimento dei muretti di tamponamento costruiti nel 1804, come testimonia una scritta a matita lasciata all'interno di uno di questi.

Figura 2.13: Elementi di degrado rilevati durante il sopralluogo del 1988-89

Un altro ciclo di restauri, conclusosi nel 2010, ha coinvolto le strutture interne dell'ala sud del palazzo, dove, nei locali al pianterreno adibiti ad Uffici dell'Anagrafe, è stata riscoperta parte di una muratura appartenente all'antica Reggia Carrarese. In origine i locali erano destinati a magazzini e ad ambienti di servizio per la residenza signorile, mentre durante il periodo di dominazione veneziana furono occupati dal Quartiero de' Benemeriti e dalle prigioni prefettizie¹⁶.

Figura 2.14: Rilievo fotografico della facciata principale, 1988-89

¹⁶ R. Lamon, *II palazzo del Capitanio e la torre dell'orologio*, Padova, 2011

Cronologia essenziale

1338 - 1343: Edificazione del Palazzo Vecchio o di ponente, reggia Carrarese.

1390: Demolizione della torre fortificata in seguito ad episodi bellici

Del complesso originale (edificato durante la Signoria di Ubertino I da Carrara) è rimasto ben poco: il lato orientale (il prospetto su piazza dei Signori), divenuto sede del capitano Veneziano, ha subito nel XVI secolo così tanti rimaneggiamenti che risulta impossibile individuarne la struttura primitiva; della zona sud-ovest è rimasto il loggiato mentre nella zona centrale la sala dei Giganti, ora conglobata nell'edificio del Liviano¹⁷. La pianta dettagliata più antica della Reggia Carrarese è la Pianta del Palazzo e corte prefettizia di G. B. Savio rilevata nel 1729 e riprodotta nel 1936 su interesse del Rettore dell'Università di Padova Carlo Anti.

1405: Occupazione di Padova da parte di Venezia con conseguente distruzione della Reggia Carrarese

1423-1436: Vari processi di restauro interessano l'ex reggia Carrarese, in particolare la realizzazione di una nuova porta torre orologio.

1532: Edificazione di un nuovo arco di ingresso per la corte del Capitaniato

1593-1599: Stanziati mille ducati per il restauro del Palazzo: i lavori iniziarono sotto la direzione del proto pubblico Lorenzo Giavarina, ma l'opera, portata a termine, rappresentava solo metà del corpo di fabbrica previsto nell'originario progetto d'insieme

1603-1605: Vengono destinati 5000 ducati "ad accomodar due case per li Chiarissimi Camerlenghi sopra la piazza et quella del nodaro della Camera Fiscale …"

1622: Il capitanio Zaccaria Sagredo promosse la ripavimentazione della piazza

1797: Fine della dominazione veneziana, l'edificio fu destinato a magazzini (alcuni locali del piano terra furono occupati dalla Dispensa Sali) e a caserma ad uso delle truppe (I.R. Comando di Piazza e I.R. Commissariato di guerra), riportando danni sia per le strutture interne che per quelle esterne,

Ottocento: In questo periodo ebbero luogo le grandi demolizioni, suddivisioni e vendite all'asta, specialmente intorno al 1820 ed al 1873 - 1880, responsabili francesi, austriaci ed italiani.

1859: In seguito alla proposta presentata dal Comune di Padova per l'acquisto dello stabile, l'Intendenza Provinciale di Finanza ordinava la stima dei locali e la perizia dei lavori necessari. Nella relazione vengono annotate mura guastate nell'intonaco, pavimenti rovinati, solai malandati e serramenti rotti.

1867: Atto di compravendita stipulato tra la Regia Intendenza Provinciale delle Finanze di Padova ed il Comune sopra lo stabile, detto *ex-Capitaniato*.

¹⁷ L. Puppi, F. Zuliani, *Padova, case e palazzi,* Vicenza, La grafica e stampa, 1977

1870: Il Comune restaurò l'Arco Vallaresso e l'anno successivo acquistò dal Demanio alcuni edifici per iniziare la riqualificazione dell'area.

1873: Approvato il progetto dell'ingegnere comunale Francesco Turola riguardante il restauro radicale dell'ala sud del Palazzo del Capitanio, per destinarla a sede della Borsa di Commercio e della Società del Casino dei Negozianti. Dalla relazione per la presentazione del progetto si deduce la grave situazione di degrado in cui si trovava l'ala sinistra del palazzo, "con murature interne solcate da profondi crepacci e corrose dall'umidità e dalla salsedine, con pavimenti quasi inesistenti e solai sostenuti da indecenti puntellature".

1874-1877: Inizio e fine dei lavori

Costruzione verso nord una nuova facciata in stile neorinascimentale;

Sul fronte principale verso Piazza dei Signori vennero aperti al pianterreno, all'altezza delle precedenti finestre quadrate, altri quattro archi simili ai tre esistenti;

Sistemazione dei locali interni, tutti interessati da opere di ricostruzione dei pavimenti, dei soffitti e dei serramenti; la grande sala al primo piano fu decorata con stucchi in stile rinascimentale, mentre un lungo cornicione completava le pareti, ritmate da una serie di lesene ioniche.

1957-1959: L'intero palazzo fu oggetto di un nuovo e radicale intervento di restauro, con relative modifiche interne, nell'obiettivo di conferire ai servizi comunali un'organica sistemazione, si stabilì di trasferire gli Uffici dell'Anagrafe al piano terra dell'ala sinistra, in precedenza occupata dalla succursale delle Poste e Telegrafi, e gli Uffici di Sanità, Igiene, Assistenza, Beneficenza e Amministrativi nell'ala destra.

1988 - 1989: Evidenziato lo stato di degrado in cui si trovavano tali facciate prospicienti Piazza dei Signori e Piazza Capitaniato: le parti lapidee presentavano evidenti tracce di corrosione, con perdite polverulente causate da un generalizzato fenomeno di solfatazione e dal dilavamento delle acque meteoriche. In alcuni punti erano poi stati riscontrati fenomeni localizzati di esfoliazione con conseguente distacco degli intonaci.

1998: Iniziano i lavori di salvaguardia e recupero delle facciate del palazzo da parte del Comune di Padova, sotto il controllo della soprintendenza ai Beni Architettonici ed Artistici del Veneto

2010: si conclude un ciclo di restauri delle strutture interne dell'ala sud del palazzo, dove, nei locali al pianterreno adibiti ad Uffici dell'Anagrafe, è stata riscoperta parte di una muratura appartenente all'antica Reggia Carrarese.

Analisi critica

L'analisi storica attraverso le fonti scritte e gli elaborati grafici raccolti ha evidenziato che la maggior parte delle trasformazioni subite dal Palazzo del Capitanio sono legate alle diverse destinazioni d'uso e che quindi hanno interessato principalmente l'organizzazione degli spazi interni del fabbricato.

A partire dall'Ottocento il Palazzo è stato sottoposto a cicli di restauri periodici mirati a risanare i degradi che man mano venivano evidenziati, causati per lo più da incuria dell'amministrazione precedente.

Gli interventi strutturalmente notevoli non sono mai stati estesi all'intero Palazzo, il quale è rimasto pressoché invariato rispetto al 1874, e possiamo ancora notare alcune somiglianze con l'antico sedime Trecentesco.

Grazie alla comparazione delle planimetrie rilevate delle varie epoche è stato possibile determinare l'età delle varie parti dell'edificio e quindi notare laddove possano trovarsi discontinuità nella costruzione o nei materiali.

Ad oggi il Palazzo si trova in un buono stato di conservazione complessivo e non mostra gravi stati fessurativi o di degrado, anche alla luce dei recenti restauri del 2010.

Comparazione planimetrie

Nel seguente paragrafo sono messi a confronto i documenti delle piante, in modo da avere una visione completa circa i cambiamenti avvenuti all'interno dell'edificio.

Attraverso adattamenti delle piante di archivio, che risultano imprecise rispetto l'attuale sedime, sono riportate le variazioni tra documenti successivi: in rosso la nuova costruzione ed in giallo la demolizione.

Figura 2.15: *Planimetria del selciato della Reggia Carrarese risalente al 1729 e relativa schematizzazione della porzione relativa a Palazzo del Capitanio*

Il documento, risalente al 1729, riporta la planimetria del piano terra all'epoca della Reggia Carrarese. E' presente il solo piano terra e, oltre le geometrie, definisce anche la funzione dei vari locali.

Figura 2.16: *Mappa catastale risalente al 1859 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente*

Viene messa in relazione la planimetria del piano terreno ricavata dai documenti datati 1729 con il progetto riportato nel documento datato 1859 relativo alla sola parte di fabbricato a Sud.

L'intervento, che si limita alla trasformazione di una sola parte del fabbricato, interessa la zona delle ex carceri, odierne Poste.

Le trasformazioni riguardano soprattutto la trasformazione degli ambienti interni con la creazione di nuove partizioni e la demolizione di quelle esistenti.

Si nota che vengono demoliti tre collegamenti verticali, uno esterno e due interni.

Figura 2.17: Mappa catastale del piano terra antecedente al 1859 e relativa comparazione rispetto il documento precedente

Viene messa in relazione la planimetria del piano terreno ricavata dai documenti catastali in anno incerto, ma antecedente al 1956, con il progetto di restauro del palazzo del Capitanio degli anni 1956-58. L'intervento si limita alla demolizione e costruzione di partizioni interne.

Interessanti sono le demolizioni di muri di spina al piano terra per la creazione di varchi di passaggio (a sud).

Figura 2.18: *Mappa catastale del piano primo risalente al 1859 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente*

Viene messa in relazione la planimetria del piano terreno ricavata dai documenti catastali in anno incerto, ma antecedente al 1956, con il progetto di restauro del palazzo del Capitanio degli anni 1956-58.

Non sono state attuate modifiche.

Figura 2.19: Mappa catastale del piano secondo risalente al 1859 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Viene messa in relazione la planimetria del piano terreno ricavata dai documenti catastali in anno incerto, ma antecedente al 1956, con il progetto di restauro del palazzo del Capitanio degli anni 1956-58.

L'intervento riguarda principalmente la definizione di nuovi spazi interni.

Figura 2.20: Progetto del piano terra risalente al 1956 e relativa comparazione rispetto il documento precedente

Vengono messi in evidenza gli interventi progettati per il piano terreno nel 1956 secondo i documenti di progetto di restauro del Palazzo del Capitano.

Il progetto di "Sistemazione per i nuovi Uffici di Igiene, Sanità, Assistenza, Beneficienza ed Amministrativi" comporta significativi cambiamenti per la costruzione.

Gli interventi di demolizione sono principalmente finalizzati alla creazione di spazi ampi; notevole tra gli interventi di costruzione è la creazione di un vano ascensore a seguito della demolizione della scala esistente e quindi il probabile rifacimento dei solai in quella zona.

Figura 2.21: Progetto del piano primo risalente al 1956 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Vengono messi in evidenza gli interventi progettati per il piano primo nel 1956 secondo i documenti di progetto di restauro del Palazzo del Capitano.

L'intervento al primo piano ha un impatto minore sulla costruzione, con la variazione sostanziale di alcune partizioni interne.

Importante è la creazione di un passaggio tra la parte nord e quella sud con la definizione di un corridoio a L tangente alla sala principale.

Figura 2.22: Progetto del piano secondo risalente al 1956 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Vengono messi in evidenza gli interventi progettati per il piano secondo nel 1956 secondo i documenti di progetto di restauro del Palazzo del Capitano.

Oltre all'introduzione del vano scale, viene costruita anche una scala che unisce il secondo livello al primo.

Figura 2.23: Progetto del piano secondo risalente al 1958 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Viene messa in relazione la planimetria del secondo piano, ricavata dal progetto di restauro del palazzo del Capitanio degli anni 1956 con le successive modifiche progettate nel 1958.

Successivo all'intervento del 1956, l'intervento del 1958 modifica sostanzialmente il collegamento con la parte settentrionale del Palazzo Capitanio, con la creazione di un passaggio attraverso la Torre dell'Orologio.

Figura 2.24: Progetto del piano terra risalente al periodo 1958-1977 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Viene messa in relazione la planimetria del piano terreno, datata al 1958 con quella di data ignota compresa tra il 1958 e il 1977.

A parte la sistemazione degli ambienti interni, viene definitivamente demolito l'antico muro oggetto di continue trasformazioni, lasciando un solo elemento, ancora oggi presente.

Figura 2.25: Progetto del piano primo risalente al periodo 1958-1977 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Viene messa in relazione la planimetria del piano primo datata al 1958 con quella di data ignota compresa tra il 1958 e il 1977. Nessun intervento rilevante.

Figura 2.26: Progetto del piano secondo risalente al periodo 1958-1977 e relativa comparazione della porzione relativa a Palazzo del Capitanio rispetto il documento precedente

Viene messa in relazione la planimetria del piano secondo datata al 1958 con quella di data ignota, ma compresa tra il 1958 e il 1977. Nessun intervento di notevole spessore

Nessun intervento di notevole spessore.

Figura 2.27: Progetto del piano primo risalente al 1977 e relativa comparazione rispetto il documento precedente

Viene messa in relazione la planimetria del piano primo di data ignota, ma compresa tra il 1958 e il 1977, con quella datata 1977.

Nessun intervento di notevole spessore.

Figura 2.28: Progetto del piano secondo risalente al 1977 e relativa comparazione rispetto il documento precedente

Viene messa in relazione la planimetria del piano secondo di data ignota, ma compresa tra il 1958 e il 1977, con quella datata 1977.

Figura 2.29: Stato di fatto del piano terra e relativa comparazione rispetto il documento precedente

Viene messa in relazione la planimetria del piano primo rilevata allo stato attuale con quella datata 1977.

Una porzione rilevante di edificio è stata inglobata nello stabile delle attuali poste, è stata chiusa la zona sud - occidentale del complesso, mentre in quella nord - occidentale è stato ricavato un locale tecnico, cinto da un muro spesso circa 1,70 metri.

Non è stato possibile rilevare l'interno del locale tecnico per appurare il reale spessore della parete.

Figura 2.30: Stato di fatto del piano primo e relativa comparazione rispetto il documento precedente

Viene messa in relazione la planimetria del piano primo rilevata allo stato attuale con quella datata 1977.

Gli interventi effettuati sono relativi alla porzione attualmente adibita a servizi igienici e locali di servizio, nella quale sono stati variate partizioni interne.

Figura 2.31: Stato di fatto del piano secondo e relativa comparazione rispetto il documento precedente

Viene messa in relazione la planimetria del piano primo rilevata allo stato attuale con quella datata 1977. Gli interventi sono limitati alla tamponatura di aperture in setti di divisione interna delle stanze.

PIANO SECONDO: STATO DI FATTO

PIANO SECONDO: DATAZIONE DELLA MURATURA

- il 1956, dato rilevato dalla
- il 1956, dato rilevato dalla seconda mappa catastale
- agli effettuati intorno
- agli
- ad interventi effettuati dopo il 1977

Le immagini presentano un quadro efficace per l'individuazione di pareti costruite in tempi diversi. Questo dato risulta utile al fine di ottimizzare il piano di indagini: si suppone che interventi dello stesso periodo abbiano caratteristiche simili, pertanto si scelgono campioni rappresentativi per diminuire la quantità di prove ed aumentare il livello di conoscenza.

Inoltre permette di individuare punti critici, nei quali, a causa della costruzione in epoche successive, non è verificato il buon ammorsamento tra le pareti.

3. RILIEVO GEOMETRICO

Poiché il rilievo geometrico serve a definire la geometria del modello da utilizzare nell'analisi sismica, i suoi vincoli ed i carichi agenti, è opportuno verificare che tutte le informazioni necessarie siano state rilevate. In particolare dovranno essere individuati i punti significativi per un modello di calcolo, quali imposte degli orizzontamenti e dei sistemi archi voltati, entità dell'appoggio degli stessi sulle murature d'ambito¹⁸.

Il rilievo geometrico, per quanto riguarda gli spazi interni ed il cortile ovest, è stato svolto in un unico sopralluogo: non è stato possibile verificare tutte le misure, ma, analizzandole a campione tramite l'ausilio di laser distanziometrici e cordella metrica, la documentazione fornita è risultata in genere affidabile. Nelle tavole [TAV. 3.03 - 3.25] il rilievo è disegnato in scala 1:100, ivi viene riportato in scala metrica.

3.1 Rilievo dei prospetti

I prospetti est e nord sono stati rilevati senza difficoltà, mentre i prospetti del cortile ovest e sud sono stati disegnati con l'ausilio delle piante e delle misurazioni fatte in sito, poiché mancanti nella documentazione.

Dal rilievo si nota che l'altezza dell'edificio non è costante:

- il prospetto est è composto da due unità strutturali differenti, di cui la maggiore è divisa su tre piani a quota 0, 4,80 e 10,80 metri, e la minore è suddivisa in due sezioni di tre e quattro piani, con solai allineati, posti a quota 0, 3,80, 6,80 e 9,80 metri;
- il prospetto ovest risulta la sintesi di spazi funzionali di forma ed altezza varia, in cui compaiono entrambe le unità strutturali. Leggendo il prospetto da sinistra si presenta la sezione planimetricamente più occidentale, costituita da quattro piani a quota 0, 3,10, 6,40 e 12,10 metri, la sezione del cortile di due piani, posti a quota 0 e 6,40 metri, e l'unità strutturale minore sopracitata;
- il prospetto nord, diviso in tre fasce verticali apparentemente regolari, presenta invece due zone con diverso numero di piani. Le prime due strisce sono composte da tre piani a quota 0, 4,80 e 10,80 metri, l'ultima è costituita da quattro piani posti a quota 0, 3,10, 6,40 e 12,10 metri;
- il prospetto est, per quanto riguarda la sezione terra cielo, ricalca specularmente l'ultima fascia verticale del prospetto nord, mentre la zona d'accesso alla terrazza si imposta a quota 10,80 metri.

¹⁸ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.4.1.4

Figura 3.2: Prospetto ovest

0 2m 4m 6m 8m 10m

Figura 3.4: Prospetto sud

3.2 Rilievo delle piante

Sono stati disegnati gli ambienti del piano interrato, del piano ammezzato posto a sud, del sottotetto e delle coperture, perché mancanti nella documentazione.

Non è stato possibile rilevare lo spessore dei muri del piano interrato, mentre negli altri piani risulta in genere uno spessore costante per piano o decrescente verso i piani alti.

Il prospetto est è caratterizzato da uno spessore medio per piano di 100, 90 e 60 centimetri, il prospetto nord da uno spessore medio costante pari a 80 centimetri al piano terra e 60 centimetri ai piani superiori, mentre il prospetto ovest è caratterizzato dalla sezione composta da quattro piani con muratura di spessore 66 centimetri al piano terra e 50 centimetri per gli altri piani, e le rimanenti murature perimetrali con spessori medi di 30 centimetri per piano.

Analizzando le murature interne si nota che le tramezzature misurano per lo più 10 centimetri, mentre i muri di spina variano da 30 a 50 centimetri, superando i 90 centimetri in alcune particolarità al piano terra: a sud dell'aula centrale le murature presentano spessori notevoli in corrispondenza del ripostiglio (99 e 190 centimetri su due lati) e degli uffici (120 e 135 centimetri), probabilmente a causa di cavedi attualmente tamponati.

La muratura delle scale passa da 40 centimetri del piano terra e del piano ammezzato, a 30 centimetri del primo piano, mentre il vano ascensore è costituito da pareti verticali di spessore costante 30 centimetri.

I pilastri del piano terra misurano mediamente 40x50 centimetri, che si traducono in 40 centimetri di diametro nelle colonne del piano primo.

Singolare è il caso della muratura d'ambito dell'aula centrale che presenta uno spessore medio di 40 centimetri al piano terra e primo, di 60 centimetri al piano secondo.

Figura 3.5: Piano interrato

Figura 3.6: Piano terra

Figura 3.8: Piani ammezzati

Figura 3.9: Piano secondo

Figura 3.11: Pianta delle coperture

3.3 Rilievo delle sezioni

Sono state disegnate tre sezioni (A - A, B - B e D - D), mentre è stata fornita nella documentazione la sezione C - C: tramite questa e le piante è stato possibile rilevare anche le altre.

Le sezioni mostrano spessori molto diversi dei solai ed interpiani per lo più costanti nell'unità strutturale maggiori e lo sfalsamento dei solai tra le due unità strutturali.

I solai in media misurano circa 30 centimetri, ad eccezione del solaio del piano terra che copre la sala centrale, che misura circa 80 centimetri (sezione A - A) ed in generale i solai relativi all'ala nord misurano dagli 80 ai 120 centimetri (sezioni B - B e D - D).

Tale differenza può essere imputata alla presenza di impianti o ai dati scorretti, forniti e rilevati, a causa della presenza di controsoffitti.

Gli spazi interni presentano interpiani elevati, in particolar modo al piano terra e primo, variabili da 5,50 a 6,20 metri del primo piano.

Il secondo piano risulta di altezza leggermente inferiore, con interpiano pressoché di altezza costante, pari a 4,50 metri.

Differente è il caso dell'unità strutturale meridionale, costituita da un piano ammezzato particolarmente basso (altezza interna di 2,50 metri) ed i restanti livelli con interpiani di 4,70 e 3,60 metri.

Figura 3.12: Sezione A – A

8 m

10 m

4 m

6 m

4. RI	LIEVO FOTOGRAFICO	
4.1	Rilievo dei prospetti	
4.2	Rilievo degli spazi interni	

4. RILIEVO FOTOGRAFICO

Rilievo dei prospetti

I prospetti est e nord sono stati rilevati senza difficoltà, mentre i prospetti del cortile ovest non possiedono una visione d'insieme, a causa dello spazio di passaggio angusto [TAV 4.10].

Prospetto est

Il prospetto est risulta il simbolo di Piazza dei Signori: la torre dell'orologio, porta d'accesso per Piazza Capitaniato, costituisce il fronte scenico che sigilla la piazza, accompagnata da i prospetti simmetrici laterali.

La facciata di Palazzo del Capitanio si presenta pertanto in ottimo stato (*Fig. 4.1*), esternamente lo spazio è scandito da sette file di aperture che delineano tre fasce verticali ed è facile individuare i due solai che dividono lo spazio interno in tre piani.

Al piano terra le alte arcate sono contornate da un effetto bugnato che ben si differenzia dai restanti due piani decorati con lesene di ordine dorico al primo piano e corinzio al secondo, che incorniciano le ampie finestre e ritmano la facciata.

Il prospetto est si compone di un'altra unità che appare con facies differente rispetto lo stile del prospetto principale, il cui piano terra è occupato dall'ufficio postale e dal centro direzionale di un servizio di trasporti (*Fig. 4.2*).

Figura 4.1: Prospetto Est, Piazza dei Signori

Figura 4.2: Prospetto Est, piani ammezzati

Prospetto nord

L'odierno prospetto nord è stato eretto alla fine del XIX secolo, inglobando parte del cortiletto preesistente.

Il fronte su corte del Capitaniato (*Figg.* 4.3 - 4.4) si presenta come una facciata in stile neorinascimentale senza la netta distinzione tra piano terra e piani superiori, ma mantiene la

ripartizione verticale ed orizzontale. Ritroviamo le ampie aperture della facciata principale e le lesene decorative che suddividono il fronte in tre sezioni.

La copertura a falde in facciata è conclusa da un cornicione decorato con staccagoccia.

Figura 4.3: Prospetto Nord su Corte del Capitaniato

Figura 4.4: Prospetto Nord su Corte del Capitaniato e torre dell'orologio

Cortile ovest

Il cortile è uno spazio privato, utilizzato dai dipendenti come parcheggio bici. In qualità di spazio riservato non presenta ordini stilistici o ritmi che scandiscano la facciata: è un fronte di risulta sul quale passano le tubature dei servizi (*Figg. 4.5 – 4.6*).

Figura 4.5: Prospetto Sud sul cortile

Figura 4.6: Prospetto ovest sul cortile

Rilievo degli spazi interni

La planimetria del piano terra si presenta con una forma compatta che si sviluppa attorno l'aula centrale, mentre dal primo piano assume una forma di L, con due corpi longitudinali che si collegano a quello centrale, dei quali quello a sud va ad occupare parte dell'adiacente edificio di proprietà delle Poste [TAV 4.01 – TAV 4.09].

L'ingresso avviene tramite la più estrema delle aperture che vanno a scandire la facciata e si accede alla reception dove gli utenti vengono accolti e smistati nei diversi sportelli.

Piano terra

Dal fronte principale si accede al piano terra in un'ampia aula luminosa connessa allo spazio centrale da due aperture ad arco (*Fig. 4.7*). La continuità della sala principale (*Fig. 4.8*) non è rotta dalla presenza dei divisori preposti ad organizzare l'ambiente aperto al pubblico. Tre aperture, sopra le quali si vedono ancora gli antichi archi oggi tamponati (*Fig. 4.9*), separano il corridoio che conduce agli uffici dalla sala principale (*Fig. 4.10*).

L'atrio preposto agli uffici presenta un pilastro di notevole spessore (*Fig. 4.11*), avvicinandosi al quale si scorge un'apertura di piccole dimensioni, la quale conduce ad un locale stretto e lungo, adibito a magazzino (*Fig. 4.12*).

Dall'atrio si accede ai servizi igienici, al locale tecnico e a due uffici, da uno dei quali si accede ad un altro ufficio, utilizzato come archivio (*Fig. 4.13*).

Ripercorrendo il corridoio oltre la sala centrale, si trova il vano scala sulla destra ed un accesso diretto alla corte dal Capitaniato (*Fig. 4.14*), mentre svoltando a destra dopo il vano scala si giunge all'ascensore. Posto frontalmente all'ascensore è posta un'apertura per la discesa al piano interrato.

Figura 4.7: Sala d'accesso

Figura 4.8: Sala principale

Figura 4.9: Archi tamponati

Figura 4.11: Atrio degli uffici

Figura 4.10: Corridoio

Figura 4.12: Accesso al ripostiglio

CAP 4 – RILIEVO FOTOGRAFICO

Figura 4.13: Ufficio d'ingresso all'archivio

Figura 4.14: Accesso a piazza Capitaniato

Piano interrato

Al piano interrato, parte ormai dimenticata dagli utilizzatori dell'edificio, si accede tramite una scala di servizio (*Fig. 15*), che giunge ad un atrio (*Fig. 4.16*) che conduce a da due ampie stanze voltate a botte, oggi utilizzate come locale tecnico (*Figg. 4.17 – 4.18*). Al loro interno sono percorse da tubature provenienti dai piani superiori e lungo le pareti perimetrali sono disposti materiali per l'edilizia, probabilmente depositati dopo il recente restauro del 2010.

Figura 4.15: Scala di servizio

Figura 4.16: Atrio

Figura 4.17: Prima stanza

Figura 4.18: Seconda stanza

Piano primo

Salendo le prime due rampe di scale si trova un'apertura sul pianerottolo (*Fig. 4.19*), che conduce al piano ammezzato occidentale: vi è un magazzino e l'ufficio certificati storici (*Fig. 4.20*). Percorrendo un'altra rampa di scale si giunge al primo piano: un piccolo disimpegno organizza gli spazi d'accesso agli uffici e ai corridoi. Frontalmente si trova l'ingresso alla sala dei matrimoni (*Fig. 4.21*), a sinistra gli accesi a due uffici minori e a destra l'accesso alla grande aula centrale (*Fig 4.22*).

Svoltando a sinistra invece si percorre un corridoio (*Fig 4.23*) che conduce ad altri due uffici: uno lungo e stretto sulla destra ed uno spazioso frontale, che ricalca l'area del piano ammezzato sottostante.

Continuando a sinistra il corridoio si traduce in spazio d'attesa agli sportelli (*Fig 4.24*). Da questa zona si imbocca un altro corridoio lungo e stresso, che circonda la grande aula centrale, e giunge ad un piccolo atrio: frontalmente si imbocca l'ingresso di un ufficio (*Fig 4.25*), dal quale si accede ad un atro ufficio, mentre a destra si trova un corridoio che gestisce l'accesso ai servizi ed al piano ammezzato. Scendendo le scale si giunge al piano ammezzato, che si articola in due ambienti adibiti ad archivio, di cui uno voltato (*Fig 4.26*).

Figura 4.19: Accesso al piano ammezzato

Figura 4.20: Ufficio del piano ammezzato

CAP 4 – RILIEVO FOTOGRAFICO

Figura 4.21: Sala dei matrimoni

Figura 4.22: Aula centrale

Figura 4.23: Corridoio

Figura 4.24: Spazio d'attesa agli sportelli

Figura 4.25: Ufficio

Figura 4.26: Archivio

Piano secondo

Percorrendo le scale si giunge all'atrio del secondo piano: ci si trova alle spalle un ufficio ed i servizi igienici, a destra la terrazza (*Fig. 4.27*), che si affaccia sul cortile centrale a dividere la sezione del Comune da quella dell'Università, a sinistra l'accesso al sottotetto (*Fig 4.28*) e frontalmente il corridoio che gestisce gli accessi ai vari uffici.

Il corridoio (*Fig. 4.29*) ha un percorso a "T": dopo un breve tratto lineare si giunge ad un bivio, nel quale a sinistra si trova l'accesso alla torre e a destra ad un gruppo di tre uffici per parte(*Fig. 4.30*). Per poter accedere alle stanze meridionali (un ufficio ed un ripostiglio posto al piano ammezzato) è necessario attraversare l'ultimo dei tre uffici prospicienti a Piazza dei Signori.

Figura 4.27: Terrazza

Figura 4.28: Accesso al sottotetto

Figura 4.29: Corridoio

Figura 4.30: Ufficio

CAP 4 – RILIEVO FOTOGRAFICO

Sottotetto

Con una piccola scala a muro è possibile accedere al sottotetto (*Figg. 4.31 – 4.32*), un locale di altezza limitata, ritmato da capriate lignee.

La sezione visibile del sottotetto è quella relativa al braccio settentrionale del palazzo.

Figura 4.31: Capriate

Figura 4.32: Capriate

5. RILIEVO COSTRUTTIVO STRUTTURALE

Il rilievo strutturale è stato condotto tramite l'elaborazione di tavole presentanti le piante dell'edificio, volte a dare informazioni per quanto concerne la struttura, il suo comportamento meccanico e i materiali costituenti.

E' stata poi redatta la scheda della qualità muraria dei paramenti dei quali era visibile la muratura (nell'interrato e nel prospetto nord del terrazzo del secondo piano).

Unità minima di intervento

Il primo step del rilievo strutturale è la definizione dell'Unità Minima di Intervento (UMI) e la sua suddivisione in Unità Strutturali Omogenee (US). In riferimento alle *Linee Guida per il rilievo, l'analisi ed il progetto di interventi di riparazione e consolidamento sismico di edifici in muratura in aggregato (ReLUIS 2010)*, l'Unità Strutturale Omogenea deve comunque avere continuità da cielo a terra, così da contenere al suo interno il flusso delle tensioni dovute ai carichi verticali, e, di norma, sarà delimitata o da spazi aperti, o da giunti strutturali, o da edifici contigui costruiti con tipologie costruttive e strutturali diverse. Ai fini della sua identificazione dovrà inoltre essere tenuta in considerazione l'unitarietà del comportamento strutturale nei confronti delle azioni dinamiche, oltre che di quelle statiche.

In linea con quanto già enunciato dalle precedenti *Linee Guida per gli interventi di miglioramento sismico degli edifici in aggregato nei centri storici (ReLUIS 2009)* viene inoltre definita la Unità Minima di Analisi quella porzione di aggregato, generalmente più ampia della UMI in oggetto (comprendente solitamente alcune Unità Strutturali adiacenti alla UMI), da includere quindi nella fase conoscitiva e di diagnosi del danno sismico e della vulnerabilità, in modo da poter valutare eventuali effetti di interazione, come ad esempio la spinta di sistemi voltati, la presenza di carichi (verticali o orizzontali) provenienti da solai o da pareti di Unità strutturali adiacenti alla UMI.

Da tale analisi risulta che l'edificio oggetto di analisi è composto da due unità strutturali, una maggiore a nord, evidenziata verde, e una minore, in rosso (*Fig. 5.1*). Sono comprese nell'Unità Minima di Analisi la torre dell'orologio a Nord e l'US a Sud-Ovest.

Figura 5.1: Individuazione unità strutturali

Dettagli costruttivi

Le piante rispettano le regole della rappresentazione delle piante strutturali, ossia è in vista ciò che è posto sopra il piano di sezione.

Non sono rappresentate porte o finestre, perché ai fini del comportamento strutturale esse risultano dei vuoti, mentre sono raffigurati i corpi scala per individuare le murature sulle quali poggiano.

Sono stati individuati quattro tipi di muratura, a seconda del materiale costituente: in laterizio pieno, in laterizio forato, in pietra, in calcestruzzo armato.

L'attribuzione del laterizio pieno alla muratura portante verticale è stata possibile grazie all'individuazione di paramenti non intonacati presenti nel piano interrato e nel prospetto della terrazza del primo piano: si è supposto che non fossero presenti discontinuità di costruzione.

L'uso del laterizio forato è stato individuato nei muri di tamponamento, quello della pietra nella coppia di pilastri dell'atrio, utilizzato per sportelli aperti al pubblico, posta in corrispondenza con la coppia di colonne dell'atrio del primo piano (anch'essa in pietra), mentre quello del calcestruzzo nel corpo ascensore e nelle due coppie rimanenti di pilastri dell'atrio del piano terra

Le piante presentano l'orditura e il tipo di solaio, la presenza di travi, archi, volte, muri di tamponamento, nicchie e finestre.

Le informazioni riportate riguardanti i solai sono state espresse sotto l'ipotesi di un intervento di restauro effettuato per unità strutturali, poiché non sono stati reperiti dati circa l'orditura ed il tipo di solaio, è stato quindi previsto nel piano di indagini la scarifica dell'intonaco e l'utilizzo del pacometro per individuare eventuali ferri.

Nell'ipotesi di un intervento unitario, si suppone comunque che i solai dell'unità strutturale maggiore, probabilmente lignei, siano stati sostituiti con solai in laterocemento, intervento documentato per i solai dell'ala destra del complesso. Si suppone che i solai siano tutti in laterocemento, per l'analisi dei carichi si è preso ad esempio un solaio Bausta (*Fig. 5.2*).

Per quanto concerne l'unità strutturale minore sono state fatte due ipotesi circa il tipo di solaio: la prima è che i solai siano tutt'ora lignei (*Fig. 5.3*), in quanto camminando è stato riscontrato una maggiore flessibilità rispetto al resto dell'edificio, mentre la seconda è che sia stato condotto un intervento unitario rispetto a quello effettuato nel piano terra di questa sezione sul solaio tra le poste e l'archivio voltato (*Fig. 5.4*), nel quale è stato sostituito il solaio con uno in laterocemento (solaio *Cirex*)

Si è supposto che l'orditura, per la maggior parte, sia parallela alla campata con direzione minore, ad eccezione dei due atrii, sopracitati.

Non sono state reperite informazioni circa il tipo di fondazione, pertanto è stato previsto nel piano di indagini un pozzetto di ispezione posto al pianto interrato.

Si suppone comunque che le fondazioni siano continue, dato che l'edificio è in muratura.

Tale tesi, basata sull'idea di un intervento unitario, è attestata inoltre dai cedimenti che hanno interessato l'ala destra del complesso, problema risolto nel 1976 con l'inserimento di plinti, collegati da trave rovescia.

Figura 5.2: Solaio in laterocemento Bausta

Figura 5.3: Solaio ligneo con doppio tavolato

Figura 5.4: Solaio Cirex e tavola d'intervento sul solaio attinente alle poste

Piante strutturali

Il piano interrato è costituito da muratura piena, anche se non è stato possibile misurarne la profondità, sia per quanto riguarda gli elementi verticali portanti che gli elementi orizzontali, in quanto costituiti da volte a botte.

Le scale che lo collegano al piano terra non sembrano di recente fattura e probabilmente sono in pietra.

LEGENDA

- Muratura in laterizio pieno
- Muratura di tamponamento
- Muratura in pietra
- Struttura in calcestruzzo armato
- IIII Solaio piano in legno
- Copertura in latero cemento
- Copertura in legno (capriate)

- Trave
- U Volta a botte
- 🖃 Orditura solaio
- E Struttura portante
- Struttura non portante

Figura 5.5: Piano interrato e legenda

Il piano terra è costituito per lo più da muratura in laterizio pieno, con elementi di tamponamento in alcune partizioni interne (uffici dell'ala sud) e finestre (prospetto ovest).

I pilastri dell'aula centrale sono in pietra e calcestruzzo armato: sorreggono un sistema di travi secondarie ed una trave rompi tratta posta in corrispondenza dei pilastri in pietra.

L'ipotesi di costruzione dell'atrio è che originariamente vi fossero unicamente i pilastri in pietra e che i pilastri in calcestruzzo armato siano stati costruiti in sostituzione di pareti demolite per necessità funzionali.

Le scale sono state costruite in una data compresa tra il 1859 ed il 1956, ma presumibilmente negli anni '50, in quanto la soletta strutturale risulta in calcestruzzo armato.

Il vano ascensore risale al 1956, costituito da elementi verticali portanti in calcestruzzo armato.

Figura 5.6: Piano terra

CAP 5 - RILIEVO COSTRUTTIVO STRUTTURALE

Il piano primo è costituito anch'esso da muratura in laterizio pieno, con elementi di tamponamento in alcune partizioni interne (bagni affacciantisi sul cortile ovest).

Le colonne dell'aula centrale sono in pietra e sorreggono lo stesso sistema di travi del piano sottostante.

Il piano ammezzato sopra le poste è voltato a botte, e si presume che la volta sia costituita da una muratura a due teste ed uno strato di massetto di circa 6 cm.

Per quanto concerne gli elementi verticali di collegamento vale quanto detto sopra.

Figura 5.7: Piano primo e piani ammezzati

Il piano secondo è costituito anch'esso da muratura in laterizio pieno, con elementi di tamponamento in alcune partizioni interne (aula centrale e zona di accesso alla torre).

Nell'ala sud sono presenti delle scale che conducono al piano ammezzato: sono anteriori al 1856 e probabilmente in pietra.

Per quanto concerne gli altri elementi verticali di collegamento vale quanto detto sopra.

Figura 5.8: Piano secondo

CAP 5 - RILIEVO COSTRUTTIVO STRUTTURALE

Per quanto concerne il sottotetto è stato possibile visionare solo la copertura posta a nord del palazzo: le piante rappresentano le relative travi principali e capriate lignee.

E' presente una trave in calcestruzzo armato, sulla quale poggia una capriata con il monaco gravante sulla catena e rinforzata agli appoggi con bande metalliche.

La presenza della trave in copertura si attribuisce al collegamento pericoloso dei due elementi lignei della capriata, ma risulta un intervento altrettanto dannoso, in quanto le murature non risulta siano state consolidate e la trave dispone di una rigidezza elevata, non favorevole in caso di eventi sismici.

Per il sottotetto della zona centrale è stata ipotizzata una struttura a capriate, in corrispondenza dei contrafforti esterni, visibili dalla terrazza.

Per quanto riguarda i sottotetti non rilevati è prevista nelle indagini un'ispezione visiva.

Figura 5.9: Sottotetto

Scheda per il rilievo e la tipologia della qualità muraria

La qualità muraria risulta un ottimo parametro di indagine ai fini della valutazione del comportamento della struttura sottoposta ad azioni orizzontali: costituisce il livello zero dell'analisi. Infatti il trasferimento dei carichi in una parete in muratura avviene attraverso il contatto degli elementi resistenti costituenti: maggiore ingranamento significa comportamento monolitico della muratura.

In tal senso è stata redatta la scheda per il rilievo e la tipologia della qualità muraria: sono stati individuati paramenti non intonacati in una nicchia al piano interrato e nel prospetto nord del terrazzo del secondo piano.

L'indagine svolta è stata visiva e limitata al prospetto del paramento, poiché sono assenti sezioni murarie visibili, pertanto mancano informazioni circa la qualità degli elementi resistenti (REL) e la presenza di diatoni (PD).

La muratura costituente, in laterizio pieno, è stata valutata analizzando i seguenti parametri: orizzontalità dei filari (OR), sfalsamento dei giunti (SG), dimensione degli elementi resistenti (DEL), regolarità degli elementi resistenti (FEL), qualità della malta (MA) e presenza di zeppe (ZE). Ad ogni parametro è associato un giudizio: rispettato (R), parzialmente rispettato (PR) e non rispettato (NR).

A seconda del giudizio è stato dato un punteggio per definire l'indice di qualità muraria (IQ) per ognuna della azioni sollecitanti considerate (verticali, orizzontali complanari ed ortogonali).

In base a questo punteggio è stata attribuita una categoria (A, B o C) alla muratura in base all'azione sollecitante.

La muratura del piano interrato risulta di categoria B per le azioni verticali ed orizzontali complanari, di categoria C per le azioni ortogonali, quella del prospetto della terrazza risulta di categoria A per le azioni verticali ed orizzontali complanari, di categoria B per le azioni ortogonali.

L'assenza di informazioni circa la qualità degli elementi resistenti e la presenza di diatoni influenza particolarmente il grado di qualità: il primo perché è l'unico parametro che se non rispettato fa ricadere la muratura in categoria C per tutte e tre le azioni, il secondo perché influenza notevolmente il comportamento fuori piano della parete.

Supponendo che i due parametri fossero parzialmente rispettati, la muratura dell'interrato risulterebbe di categoria A per le azioni verticali e orizzontali complanari e di categoria B per le azioni ortogonali, mentre quella del prospetto della terrazza risulterebbe di categoria A anche per le azioni ortogonali.

La muratura risulta quindi di qualità medio – alta, tuttavia lo stato di conservazione non è ottimale, in quanto gli elementi resistenti presentano patine superficiali e fenomeni di erosione.

Inoltre l'analisi è stata svolta sui campioni disponibili, i quali probabilmente non sono rappresentativi della qualità muraria dell'edificio: è stata prevista una scarifica per poter caratterizzare la muratura con un campione maggiormente indicativo.

PROGETTO

LINEA 10

Rete de Laboratori di Ingegneria Sismica

Parte prima

Ufficio III - Valutazione, Prevenzione e Mitigazione del Rischio Sismico e Attività ed Opere Post-emergenza

PRESIDENZA DEL CONSIGLIO DEI MINISTRI - DIPARTIMENTO DELLA PROTEZIONE CIVILE

SCHEDA DI 1° LIVELLO PER IL RILIEVO DELLA TIPOLOGIA E DELLA QUALITÀ DELLA MURATURA

1. UBICAZIONE / IDENTIFICAZIONE	Spazio riservato
Codic! ISTAT	Aggregato nº Nº Paramenti 1
Regione Veneto 0 5	Edificio nº Nº Sezioni 1 Li
Provincia Padova 0 2 8	Data / / / / / / /
Comune Padova 0 6 0	DATI CATASTALI Foglio Allegato
Fraz./Loc.	Particelle
Indirizzo Piazza dei Signori	Coordinate geografiche (ED50 – UTM 32-33)
Nº Civico _ 2 3	E1111.8889 Fuso
Sezione Censuaria	N4 5]. 4 1 1 + 1
Denominazione Palazzo del Capitanio	Epoca dl costruzione Image: Second seco
POSIZIONE DELL'EDIFICIO - PLANIMETRIA GENERALE	POSIZIONE DELL'EDIFICIO - PLANIMETRIA PARTICOLARE
Scala : 1:2000 🔘	Scala : 1:1000 (0)
FOTO EDIFICIO	FOTO EDIFICIO

SCHEDA PARAMI	ENTO Nº 0 1 ISTAT Pr./Co	om. 0 2 8 / 0 6 0 Aggr. _ E	dificio [
2. TESSITURA DEL PAR	AMENTO		Parte seconda		
		Foro Lege	e disegni scala 1.20 enda: Pletre Vuoti Mattoni Intonaco Malta Vegetazione		
2.1 RUOLO STRUTTURALE	2.2 TIPOLOGIA	2.6 APPARECCHIATURA / ORIZZONTALITÀ DEI FIL	LARI		
Muratura d'ambito Muratura di spina Pilastro Tamponamento Muratura interna 2.3 RICORSI	Pietra Altro Mattoni Altro Blocchi di tufo Blocchi di cls Mista 2.4 ORIZZONT/ LISTATATURE	Irregolare (Orizzontamenti NR) A corsi sub-orizzontali (Orizzontamenti PR) A corsi orizzontali (Orizzontamenti R)			
Assenti 🔀 Presenti 🗆 coni m I. II. I	Assenti 🔀				
In elementi più grandi	Presenti 🗌 ogni m. (0]. (80)	and the second se	N.C.		
In mattoni	2.5 ZEPPE		2.1		
2.7 SEAL SAMENTO DEL CUINT	Assenti X In pietra In cotto	ORGEDVATIONI			
	I VENTICALI	LMT Lines di Minima Transista	1		
 (S.G. NR) Parzialmente rispettato S.G. PR) Rispettato (S.G. R) 		Sfalsamento dei giunti verticali: 140 < LMT < 160 cm su una parete di 1 metro di lunghezza, il paramentro risulta parzialmente rispettato. L'ingranamento sul piano interno del paramento è mediocre.			
3. CARATTERIZZAZION	E MATERIALI DEL PARAMENTO	0			
3.1 ELEMENTI LAPIDEI	312 Permanianas	313 Jaugrations 214 Dista di	concervations		
Arenaria Calcare Travertino Tufo Mattoni cotti Mattoni Altro	crudi Cava	Assente 3.1.4 Stato di Assente Buono Appena sbozzata Mediocre Spigoli finiti e faccia vista non lavorata Cattivo)		
3.1.5 Regolarità (forma) degli e	lementi	3.1.6 Dimensioni degli elementi			
Non rispettato (R.EL. NR) Parzialmente rispettato (R.E Rispettato (R.EL. R)	L. PR)	 Non rispettato (D.EL) < 15 cm Parzialmente rispettato (D.EL) 15 cm + 25 cm Rispettato (D.EL) > 25 cm 			
3.2 MALTA		3.2.7 Qualità della malta /Stato di conservazione /A	derenza		
3.2.1 Funzione Allettamento Stilatura Riempimento 3.2.2 Consistenza Incoerente Friabile Compatta Tenace 3.2.3 Colore malta beige	 3.2.5 Tipo di aggregato Sabbia ☐ Ghiaietto ⊠ Ghiaia 3.2.6 Forma dell'aggregato ☑ Arrotondata ☐ Spigolosa 3.2.4 Colore aggr. grigio chiaro 	 Non rispettato (MA. NR) Parzialmente rispettato (MA. PR) Rispettato (MA. R) 			

6.1

Aggr. | | | | Edificio |

0

Parte Terza

0

060

4. SEZIONE MURARIA

0.5

0.8

Non sono disponibili sezioni visibili del paramento.

TIPOLOGIA MURARIA Nº |0|1| ISTAT Pr./Com. |0|2|8| / |0|6|0| Aggr. | | | | Edificio | | |

DESCRIZIONE DETTAGLIA E COMPLESSIVA DELLA TIPOLOGIA MURARIA CON OSSERVAZIONI QUALITATIVE

10,6

Per valutare la risposta della muratura nei confronti delle azioni verticali, ortogonali e complanari, è stato assegnato un punteggio ad ogni parametro relativo alla regola dell'arte.

Non essendo stato possibile rilevare la sezione della qualità muraria, non è stato preso in considerazione il parametro di maggior rilevanza per contrastare le azioni ortogonali: la presenza di diatoni.

ORIZZONTALITA' DE ISLARI			SFALSAMENTO DEI GIUNTI VERTICALI			REGOLARITA' DEGLI ELEMENTI		
AZIONI	AZIONI ORTOGONALI	AZIONI COMPLANARI	AZIONI VERTICALI	AZIONI ORTOGONALI	AZIONI COMPLANARI	AZIONI VERTICALI	AZIONI ORTOGONALI	AZIONI COMPLANARI
1	· · · ·	0.5	0,5	0.5	· · · · ·	1,5	1 T	- 1 -
DIM	ENSION DEGLI EL	ENENT)	9	UALITA' DELLA M	ALTA	-	PRESENZA DI ZEP	PE
AZIONI	AZION	AZIONI CONRLAMER	AZIONI	AZIÓNE	AZIONI COMPLANADI	AZIONI	AZIONI	AZIONI COMPLANARI

0.5

	CATEGORIA				
	c	В	A		
AZIONI VERTICALI	DHD<	3siQ<5,5	5,5 0<11</td		
AZIONI ORTOGONALI	0x10x4.5	4,5 <iq<7.5< td=""><td>7,5siQ<11</td></iq<7.5<>	7,5siQ<11		
AZIONI ORIZZONTALI COMPLANARI	DHIQ-41,5	3,5%IQ<5,5	5,5 <iq<11< td=""></iq<11<>		

La muratura, in base all'osservazione visiva dei parametri della regola dell'arte, risulta per lo più di media qualità; dato confermato anche dal valore della linea di minimo tracciato, calcolato sul piano interno del paramento che attribuisce alla muratura un livello di vulnerabilità media. La muratura risulta di categoria C per quanto concerne le azioni fuori piano: dato previsto in partenza in mancanza di informazioni circa la presenza di diatoni.

Con riferimento alla tabella 11.D.1 dell'OPCM 3431/05, Allegato 11.D., si può affermare che la muratura in questione rientra nella seguente tipologia: muratura in laterizio con buona tessitura, a corsi sub – orizzontali e con un parziale sfalsamento dei giunti verticali, la malta è di discreta qualità e gli elementi resistenti di medie dimensioni; non sono presenti zeppe né ricorsi. PROGETTO

-may reluis_

Parte prima

PRESIDENZA DEL CONSIGLIO DEI MINISTRI - DIPARTIMENTO DELLA PROTEZIONE CIVILE Utilicio III - Valutazione, Prevenzione e Mitigazione del Rischio Sismico e Attività ed Opere Post-emergenza

SCHEDA DI 1° LIVELLO PER IL RILIEVO DELLA TIPOLOGIA E DELLA QUALITÀ DELLA MURATURA

1. UBICAZIONE / IDENTIFICAZIONE	Spazio risorvato
Codici ISTAT Regione Veneto 0 5 Provincia Padova 0 2 8	Aggregato n* N° Paramenti 1 Edificio n° N° Paramenti 1 Data / / N° Sezioni
Comune Padova 0 6 0	DATI CATASTALI Foglio Allegato
Fraz./Loc.	Particelle
Indirizzo Piazza dei Signori	Coordinate geografiche (ED50 – UTM 32-33)
Nº Civico2 3	E1111.8899 Fuso
Sezione Censuaria	N[4 5], 4 1 1 + 1
Denominazione Palazzo del Capitanio	Epoca di costruzione 🖄 <1919
POSIZIONE DELL'EDIFICIO - PLANIMETRIA GENERALE	POSIZIONE DELL'EDIFICIO - PLANIMETRIA PARTICOLARE
Scala : 1:2000 🔘	Scala : 1:1000 ①
FOTO EDIFICIO	FOTO EDIFICIO

SCHEDA SEZIONE Nº 1011 ISTAT Pr./Com. (0)2(8) /

060 Editicio Apgr.

| Edificio |

Parte Terza

AZIONI

COMPLANARI 2

4. SEZIONE MURARIA

Non sono disponibili sezioni visibili dei paramento.

TIPOLOGIA MURARIA Nº 1011 ISTAT PrJCom. |D|218| / 060 Aggr. L

DESCRIZIONE DETTAGLIA E COMPLESSIVA DELLA TIPOLOGIA MURARIA CON OSSERVAZIONI QUALITATIVE

Per valutare la risposta della muratura nei confronti delle azioni verticali, ortogonali e complanari, e stato assegnato un punteggio ad ogni parametro relativo alla regola dell'arte.

Non essendo stato possibile nievare la sezione della qualtà muraria, non è stato preso in considerazione il parametro di maggior nievanza per contrastare le azioni ortogonali: la presenza di diatoni.

OR	ZZONTALITA' DEI	FILARI	SFALSAMENTO DEI GIUNTI VERTICALI REGOLARITA' DEGLI			OLARITA' DEGLI EL	ELEMENTI	
AZIONE VERTICALI	AZIONI ORTOGONALI	AZIONI COMPLANARI	AZKONI VERTICALI	AZONI ORTOGONALI	AZIONI COMPLANARI	AZIONI VERTIGALI	AZIONI ORTOGONALI	AZION
2	1	()	0,6	0,6	10000	3	2	1

DIME	INSIGNI DEGLI EL	ENENTI		NALTA DELLA M	ALTA.	1 E	PRESENZA DI ZEP	192
AZIONI VERTIEALI	AZIONI ORTOBOMALI	A2IDNI DOMPLANARI	A2IONI VERTICALI	AZIONI ORTOBONALI	AZION COMPLANÁRI	AZIONI VERTICALI	AZIONI ORTOGENALI	AZKONI COMPLARABI
0,5	0.5	9.3	0,5	9.5	4	a	0	io -

	CATEGORIA				
-	Ū.	8	A		
AZIONI VERTICALI	041043	3<10<5.5	5,5×0×11		
ZIONI ORTOGONALI	051054,5	4,5slQ<7,5	7.5540<11		
AZIONI ORIZZONTALI COMPLANARI	0≤IQ<3,6	3,6<0<5,6	5,5<0<11		

La muratura, in base all'osservazione visiva del parametri della regola dell'arte, risulta per lo più di buona gualità; dato confermato anche dai valore della linea di minimo tracciato, calcolato sui piano interno dei paramento che attribuisce alla muratura un livello di vulnerabilità basso. La muratura risulta di categoria B per quanto concerne le azioni fuori piano: dato previsto in parteriza in mancanza di informazioni circa la presenza di diaton).

Con rfetimento alla tabella \1.D.1 dell'OPCM 3431/05, Allegato 11.D., si può affermare che la mutatura in questione rientra nella seguente tipologia: muratura in laterizio con buona tessitura, la consi sub - orizzontali e con un parziale sfaisamento del giunti verticali, la maita è di discreta qualità e gli. elementi resistenti di medie dimensioni; non sono presenti zeope ne ricorsi.

D. RIL		
6.1	Quadro fessurativo e degrado	
6.2	Analisi critica	113
6.3	Rilievo delle vulnerabilità	
6.4	Meccanismi di danno	

6. RILIEVO CRITICO

Il rilievo critico, inteso estensivamente in termini di rilievo di fessurazione, degrado e schema strutturale, risulta il cardine per una valutazione adeguata dell'azione sismica.

E' una condicio sine qua non perché sia possibile svolgere le analisi di vulnerabilità degli edifici.

Infatti il livello di conoscenza minore, il livello LV1, consente la valutazione dell'azione sismica allo SLV attraverso metodi semplificati, basati su un numero limitato di parametri geometrici e meccanici o che utilizzano dati qualitativi, tra i quali è necessario il rilievo critico.

A questo proposito va sottolineato il fatto che il livello di conoscenza acquisito (ad esempio in termini di rilievo del quadro fessurativo, dell'identificazione delle fasi di trasformazione, etc.) diventa elemento fondamentale sia per la scelta del modello meccanico che per la valutazione della sua affidabilità¹⁹.

Dovrà essere rilevato e rappresentato l'eventuale quadro fessurativo, in modo tale da consentire l'individuazione delle cause e delle possibili evoluzioni delle problematiche strutturali dell'organismo. Le lesioni saranno classificate secondo la loro geometria (estensione, ampiezza) ed il loro cinematismo (distacco, rotazione, scorrimento, spostamento fuori dal piano). Successivamente, considerato che le fasi della conoscenza non sono sequenziali, potrà essere associato ad ogni lesione, o ad un insieme di lesioni, uno o più meccanismi di danno che siano compatibili con la geometria dell'organismo e della sua fondazione, con le trasformazioni subite, con i materiali presenti, con gli eventi subiti.

In maniera similare le deformazioni andranno classificate secondo la loro natura (evidenti fuori piombo, abbassamenti, rigonfiamenti, spanciamenti, depressioni nelle volte, ecc.) ed associate, se possibile, ai rispettivi meccanismi di danno²⁰.

Il riconoscimento dei dissesti presenti nella struttura, attraverso il rilievo del quadro fessurativo e delle deformazioni, è un fattore determinante per la scelta delle strategie di modellazione e di analisi di una costruzione in muratura. Nel caso di stati lesionativi importanti, questi dovranno essere considerati nel modello e, in alcuni casi, la presenza di un meccanismo di dissesto chiaramente riconoscibile, può portare ad identificare il comportamento della costruzione e consentire una modellazione locale di dettaglio²¹.

Il corpo sud di palazzo Capitanio non presenta un significativo stato di degrado o fessurazione sia per quanto concerne la facciata, sia l'interno dell'edificio, probabilmente anche grazie al recente restauro del 2010, del quale non è stato recuperato alcun materiale, ma questo non nega la presenza di meccanismi di danno – fessurazione non completamente manifesti.

¹⁹ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.2.5

²⁰ Ibidem, C.4.1.4

²¹ Ibidem, allegato B, pg. 146

Quadro fessurativo e analisi del degrado

Rilievo dei prospetti

La facciata principale (*Fig. 6.1*) che si apre su Piazza dei Signori presenta prevalentemente alterazione cromatica in corrispondenza del balcone e attorno l'estrema apertura a sinistra. Si possono vedere delle lievi fessurazioni in corrispondenza del piano ammezzato nel corpo delle Poste Italiane. Il primo e il secondo piano non presentano degradi o fessurazioni rilevabili.

Figura 6.1: Prospetto Est, facciata principale

La facciata di Corte Capitaniato, essendo esposta a nord, è afflitta da colonizzazione biologica in corrispondenza delle trabeazioni orizzontali che delineano la successione di piani.

Lateralmente ad una delle uscite secondarie è colpita da rigonfiamento dell'intonaco e vi sono due piccoli graffiti. Questa, come le facciate analizzate successivamente, non presentano fessurazioni o lesioni.

La facciata Ovest dell'edificio non presenta alcun tipo di degrado, a differenza dei prospetti che chiudono la piccola corte interna sui quali si riscontrano ampi casi di alterazione cromatica. Questa si diffonde su tutto il locale pompe, nella facciata parallela alla principale e va ad individuare la presenza di finestre attualmente tamponate (*Fig. 6.2*).

Figura 6.2: Prospetto Nord

Rilievo degli interni

Al piano terra gli unici elementi degradati sono le colonne in pietra dell'aula centrale (*Fig. 6.3*) che presentano della disgregazione alla base.

E' stata segnalata la presenza di un foro nel pavimento di un ufficio causato da lavori mai conclusi. Un'unica stanza presenta un avanzato stato di degrado, legato all'incuria del locale, ed è lo spazio di risulta tra la sala centrale e gli uffici a sud, un corridoio attualmente chiuso ed utilizzato come ripostiglio (*Fig. 6.4*).

Figura 6.3: Rilievo degrado, piano terra

Figura 6.4: Rilievo degrado, piano terra

Le due aule del piano interrato sono le più degradate (*Fig. 6.5*). Si nota una totale assenza del quadro fessurativo, mentre sono ampiamente diffuse patina biologica, distacco, disgregazione delle pareti e delle volte a causa del mancato utilizzo e manutenzione di questi locali oggi non utilizzati.

Figura 6.5: Rilievo degrado, piano interrato

Dal primo piano cominciano a comparire delle lesioni. In corrispondenza del vano scale si ha una fessurazione d'angolo (*Fig. 6.6*) che si ripropone anche al secondo piano (*Fig. 6.10*), probabilmente causata dalla spinta della copertura, ipotesi che non si è potuta verificare a causa dell'assenza di una pianta della copertura e dall' impossibilità di effettuare un rilievo esaustivo di questa.

Figura 6.6: Rilievo degrado, piano primo

La grande aula centrale presenta fenomeni di alterazione cromatica e fessurazioni orizzontali sopra le aperture della parete a nord (*Fig. 6.7*), nella quale è possibile si sia innescato uno stato tensionale a causa della costruzione e successiva demolizione nel 1956 di un muro nella stessa posizione al piano terra [Tav. 2.16, 2.19].

Nella parte a sud del fabbricato è stata rilevata la presenza del pavimento alla veneziana a causa del distacco dello strato di copertura in finto legno (*Fig. 6.8*). Le finestre degli edifici che si aprono a nord presentano, sul balcone, della patina biologica causata dall' esposizione.

Figura 6.7: Rilievo degrado, piano primo

Figura 6.8: Rilievo degrado, piano primo

I piani ammezzati presentano lesioni in corrispondenza della connessione solaio parete probabilmente causato dal martellamento indotto dallo sfalsamento degli orizzontamenti. L'ammezzato a nord presenta una stanza molto degradata utilizzata come ripostiglio, mentre nell'ammezzato a sud vi è una lunga stanza con volta a botte con una lunga lesione orizzontale lungo la parete in contatto con il corpo delle poste italiane (*Fig. 6.9*). Per questa lesione sono state previste indagini per identificare le origini del danno e in caso intervenite con introduzione di tiranti alle reni.

Figura 6.9: Rilievo degrado, piano ammezzato

Al secondo piano sono state rilevate le stesse lesioni ad angolo in corrispondenza del vano scale che si erano notate al primo piano (*Fig. 6.10*). Nella facciata di contatto tra il vano scale e la terrazza vi sono altre fessurazioni causate probabilmente dallo sfalsamento dei piani orizzontali (*Fig. 6.11*).

Analogamente al primo piano si è notato il distacco della pellicola posta sopra i pavimenti in legno di alcuni uffici. Inoltre le tramezze connesse alla facciata principale presentano delle lesioni passanti che indicano un mancato ammorsamento tra queste pareti ortogonali (*Fig. 6.12*).

Figura 6.10: Rilievo degrado, piano secondo

Figura 6.11: Rilievo degrado, piano secondo

Figura 6.12: Rilievo degrado, piano secondo

Il sopralluogo del sottotetto è stato breve e di sola una parte di questo; le travi non presentano un marcato stato di degrado, solo su alcune si è notata la presenza di patina biologica (*Fig. 6.13*).

Figura 6.13: *Rilievo degrado, sottotetto*

Visione d'insieme del quadro fessurativo

Il quadro fessurativo rivela i danni presenti o in atto, ma perché questi possa aiutare nella valutazione di vulnerabilità sismica è necessario trarre un quadro generale, in modo da scindere le cause e gli effetti, spesso correlati e di difficile interpretazione.

Il piano terra, come detto sopra riporta due lesioni molto lievi, mentre i piani primo e secondo, e relativi piani ammezzati, risultano più colpiti da meccanismi di fessurazione, a causa della forza sismica maggiore ai piani alti.

La parete della scala del piano primo e secondo risulta lesionata nella stessa zona: in corrispondenza della lesione c è una trave in c.a. nel sottotetto, probabile causa della lesione.

E' riportato in figg. 614 e 6.15 il quadro fessurativo di maggior rilevanza, relativo ai piani primo e secondo, marcando la posizione e la grandezza della lesione.

Figura 6.14: Quadro lesivo, piano primo

Figura 6.15: Quadro lesivo, piano secondo

Analisi delle vulnerabilità

Lo studio della vulnerabilità di Palazzo Capitanio è basato sull'analisi di quegli aspetti locali, intrinsechi ed estrinsechi all'edificio stesso, che ne condizionano il comportamento strutturale, andando ad incidere sull'ottimale risposta del sistema edilizio a fenomeni esterni, in particolare nel caso di eventi sismici.

Fattori di vulnerabilità

L'edificio in questione presenta caratteristiche tipologiche simili a quelle del "Palazzo", si farà quindi riferimento alla "Scheda Per il rilievo del danno - Palazzi" per evidenziare le vulnerabilità e i possibili meccanismi di danno.

In riferimento alla sopracitata Scheda Palazzi e sintetizzando i dati acquisiti dalle analisi precedentemente svolte (analisi storica, rilievo del danno, sistema strutturale, ...) sono stati analizzati, piano per piano, alcuni indicatori di vulnerabilità:

- Stato di manutenzione generale delle strutture verticali, orizzontali e delle coperture del palazzo graduando il giudizio su quattro livelli (Buono, Discreto, Scadente, Pessimo);
- Regolarità e forma planimetrica: un giudizio relativo alla regolarità o all'irregolarità di pianta, elevazione, disposizione di muri interni e delle aperture, segnalando l'eventuale presenza di logge, porticati, cavedii e atri;
- Regolarità in altezza: presenza di interpiani, piani sfalsati, ...
- Discontinuità costruttive o di materiale: dall'analisi storica è possibile desumere eventuali trasformazioni subite dal palazzo (ampliamenti, soprelevazioni) o gli interventi recenti (consolidamento strutturale, manutenzione straordinaria);
- Presenza di archi, volte o strutture spingenti senza tiranti: dato di particolare rilievo per un'analisi della vulnerabilità sismica.

Stato di manutenzione

Grazie all'analisi del degrado materico è stato possibile valutare lo stato di conservazione delle struttura verticali e degli orizzontamenti, non è stato invece possibile valutare lo stato della coperture. Il livello generale è buono con solo pochi punti dove lo stato di manutenzione può considerarsi scadente, in particolare nei locali interrati e nel sottotetto, dove si riscontrano fenomeni di degrado legati alla scarsa manutenzione ed all'umidità.

L'analisi dello stato fessurativo non ha riportato nessuna grave carenza del sistema.

Il giudizio si è articolato secondo quattro livelli: Buono, Discreto, Scadente e Pessimo, evidenziando anche laddove le informazioni fossero assenti o incomplete.

Regolarità e forma planimetrica

Di particolare importanza per l'analisi di vulnerabilità sismica è la regolarità in pianta, in particolar modo per valutare le eventuali eccentricità tra il centro di massa e il centro di rigidezza e quindi i possibili effetti torsionali interessanti la struttura. L'edificio in analisi si presenta con una forma planimetrica a L, con una disposizione delle partizioni interne solo a volte regolare.

In particolare si è studiata la presenza di ampi spazi (come i saloni sui tre piani) e di cavedii, che in quanto solo ipotizzati sono oggetto di analisi e verifica. Un altro parametro da considerare nella

CAP 6 - RILIEVO CRITICO

definizione di regolarità in pianta è la resistenza e la rigidezza dei solai nel loro piano rispetto agli elementi verticali; ma non è stato possibile rilevare tale dato.

Complessivamente il Palazzo si considera essere non regolare in pianta.

Regolarità in altezza

L'edificio si articola su quattro livelli principali (interrato - piano terra - piano primo - piano secondo) ma sono presenti due piani ammezzati. Inoltre nell'UMI sono presenti due US distinte anche per diversa altezza e livelli di piano. Nonostante lo sfalsamento di alcuni livelli tutti i sistemi resistenti verticali si estendono per tutta l'altezza della costruzione e massa e rigidezza rimangono pressoché costanti ai vari piani.

Nell'analisi sono state considerate anche le costruzioni attigue: a nord la presenza di un elemento alto quale la torre dell'orologio rappresenta una vulnerabilità in quanto possibile causa di fenomeni di martellamento. A Sud-Ovest invece l'US confinante presenta un'altezza simile a quella dell'UMI, anche se andrebbero considerati gli eventuali sfalsamenti di piano presenti, per considerare le spinte orizzontali non contrastate.

Complessivamente il Palazzo si considera essere non regolare in altezza.

Discontinuità costruttive o di materiale

Dallo studio delle trasformazioni subite dal fabbricato è stato possibile individuare quelle zone di discontinuità costruttive o di materiale (es.: tamponature, inserimento di travi in CA in copertura, nuove partizioni interne, ...). Tali discontinuità sono importanti perché possono veicolare i meccanismi di collasso e sono di fondamentale importanza per l'analisi locali dei macroelementi. Palazzo Capitanio ha subito numerose trasformazioni nel corso del tempo dovute principalmente a cambi di destinazione d'uso e ad adeguamenti funzionali (es.: vano ascensore); come intervento strutturalmente invasivo si segnala l'introduzione di travi in CA in copertura a supporto della preesistente struttura a capriate lignee.

Archi/volte senza tiranti

La presenza di strutture spingenti, come archi e volte, in assenza di tiranti può essere considerata una grave vulnerabilità sopratutto in caso di azioni sismiche. Sono presenti dei sistemi voltati non presidiati nei sotterranei, dove però non è stato possibile accertarsi di eventuali altri meccanismi di contrasto (come ringrossi murari o contrafforti).

Rilievo delle vulnerabilità in pianta

E' stata svolta un'analisi per ogni piano evidenziando quei parametri di vulnerabilità sopra citati.

Piano interrato

Nel piano interrato (*Fig. 6.18*) troviamo gli elementi verticali con più basso stato di manutenzione dell'intera struttura (Scadente), i sistemi di copertura orizzontali sono voltati e non è stata rilevata la presenza di catene.

Figura 6.16: Piano interrato e legenda

Piano terra

Al piano terra (*Fig. 6.19*) rileviamo una complessiva buona manutenzione degli elementi verticali e orizzontali. Le maggiori vulnerabilità rilevate sono la presenza di due grandi androni, l'ipotesi di alcuni cavedii in corrispondenza di spessori non uniformi delle murature, l'irregolarità degli spazi interni e la presenza di discontinuità costruttive e dei materiali dovute al processo di evoluzione degli spazi.

Figura 6.17: Piano terra

Piano primo e piano ammezzato 1

Come per il piano terra sono state rilevate le criticità concernenti la presenza di grandi luci e di cavedii. Dallo studio dell'evoluzione storica si sono poi evidenziati i punti di discontinuità di materiali o di costruzione, come ad esempio le zone di contatto tra le due US rilevate (a destra in *Fig. 6.20*). La qualità degli elementi verticali e orizzontali è complessivamente buona.

Il piano (a sinistra in *Fig. 6.20*), che si compone di soli tre locali, si presenta come criticità intrinseca al palazzo (orizzontamenti sfalsati). Inoltre, nel locale di maggiore estensione coperto con volta a botte la parete confinante con l'edificio attiguo presenta fessurazioni diffuse orizzontali (qualità scadente), le cause possono essere la presenza di elementi impiantistici, la presenza di elementi spingenti dell'US confinante o infine causata dalla spinta prodotta dalla volta a botte.

Figura 6.18: Piano ammezzato 1 e primo piano

Piano secondo e piano ammezzato 2

Al secondo piano (a destra in *Fig. 6.21*) ritroviamo le stesse problematiche riscontrate nei livelli precedenti: presenza di grandi sale e il rilievo di discontinuità costruttive / materiche. Lo stato di manutenzione è complessivamente buono.

Il piano ammezzato in analisi (a sinistra in *Fig. 6.21*) si trova nell'ala nord-ovest del palazzo tra il primo e il secondo piano. Presenta un elemento verticale con stato di manutenzione scadente.

Figura 6.19: Piano ammezzato 2 e secondo piano

Sottotetto

Il sottotetto (*Fig. 6.22*) è praticabile e nonostante siano necessarie ulteriori ispezioni, lo stato di manutenzione viene giudicato sostanzialmente scadente. Viene ritenuta critica la presenza di travi in CA a supporto della struttura a capriate lignee.

Figura 6.20: Sottotetto

Rilievo delle vulnerabilità delle sezioni

Dal rilievo emergono maggiormente le vulnerabilità legate allo sfalsamento dei piani nelle due unità strutturali e in corrispondenza dei piani ammezzati e la presenza di grandi atri sui tre piani principali (*Fig.* 23).

Figura 6.21: Sezioni AA e CC

Figura 6.22: Sezioni BB e DD

Rilievo critico dei prospetti

Un discorso a parte è stato fatto per l'analisi dei prospetti (*Fig.* 25 - 27), dove sono stati riconosciuti gli elementi principali dell'organizzazione strutturale che regola il comportamento delle pareti in muratura:

- Maschi murari: a seconda se tozzi o snelli il pannello subisce una rottura a taglio o a flessione
- Fasce di piano: a seconda della rigidezza delle fasce di piano si può assumere un modello a telaio a pareti singole o accoppiate.
- Discontinuità altimetriche e in facciata: la presenza di aggetti o differenze di altezza sono vulnerabilità da tenere in considerazione nell'analisi sismica.

Figura 6.23: Prospetto Nord e Prospetto Ovest

Figura 6.24: Prospetto Sud e Prospetto Ovest su cortile

Figura 6.25: Prospetto Sud e Prospetto Est

Meccanismi di danno

In riferimento alla Scheda Palazzi è stata fatta una scelta circa i meccanismi di collasso più probabili tra i 22 proposti:

Ribaltamento delle pareti

Il meccanismo si manifesta attraverso la rotazione rigida di intere facciate o porzioni di pareti rispetto ad assi in prevalenza orizzontali alla base di esse e che percorrono la struttura muraria sollecitata da azioni fuori dal piano.

Flessione verticale delle pareti

Il meccanismo si manifesta con formazione di una cerniera cilindrica orizzontale che divide la parete in due blocchi ed è descritto dalla rotazione reciproca degli stessi attorno a tale asse per azioni fuori dal piano.

Ribaltamento del cantonale

Il meccanismo si manifesta attraverso la rotazione rigida di un cuneo di distacco, delimitato da superfici di frattura ad andamento diagonale nelle pareti concorrenti nelle angolate libere, rispetto ad una cerniera posta alla base dello stesso. Meccanismi di questo tipo sono frequenti in edifici che presentano spinte concentrate in testa ai cantonali dovute in particolar modo ai carichi trasmessi dai puntoni dei tetti a padiglione.

Taglio nelle pareti esterne: maschi o fasce

I meccanismi di danno a taglio sono di secondo grado, ovvero avvengono quando sono inibiti i meccanismi di primo livello, ovvero quando l'edificio presenta un perfetto comportamento scatolare. Si danneggiano a taglio gli elementi maggiormente rigidi, ovvero i pannelli tozzi.

Danno per irregolarità di forma

I meccanismi causati da irregolarità di forma possono essere determinati da:

- Martellamento, se i due edifici hanno frequenze di vibrazioni differenti;

- Introduzione di un vincolo rigido, che può trasformarsi in cerniera cilindrica con l'attivazione di un meccanismo di ribaltamento;

- Creazione di zone critiche di concentrazione di tensioni.

Osservazioni preliminari all'analisi

Il quadro fessurativo è associato ai meccanismi di danno presenti o in atto, mentre il rilievo delle vulnerabilità è indice della probabilità di accadimento o meno di determinati meccanismi.

La presenza di lesioni verticali, in genere inizianti dagli angoli delle aperture, innescano meccanismi di ribaltamento fuori piano. Nel caso studio non sono presenti lesioni di questo tipo, ma ve ne sono al piano secondo alcune che potrebbero favorirne l'innesco: è il caso della lesione obliqua presente sul muro di confine tra le due unità strutturali, delle lesioni poste sulle due tramezze dell'aula centrale e della lesione della parete esterna, affacciante sulla terrazza (fig. 6.15).

La flessione verticale è innescata invece dalla presenza di impalcati spingenti, quali archi e volte, o spinte localizzate. Nel palazzo è presente una volta al piano ammezzato dell'unità strutturale minore, ma il meccanismo non è attivato dal fatto che le pareti su cui poggia la volta sono interne e vincolate all'unità strutturale adiacente. In compenso è presente una profonda lesione che percorre l'intera lunghezza della stanza, pertanto è bene valutare, tramite indagini, la gravità della stessa.

Il ribaltamento del cantonale, causato dalla spinta della copertura, è probabile che si attivi nell'angolo meridionale dell'unità strutturale 1: questo presenta circa 90 cm nei quali non è vincolato, nei quali si possono concentrare le lesioni.

I meccanismi nel piano, quale il meccanismo di taglio, sono frequenti in pareti con un'elevata quantità di forometrie, che veicolano la lesione da un vertice all'altro delle aperture.

Lesioni oblique a taglio o a croce di sant'Andrea sono visibili nei prospetti della terrazza, è quindi possibile che sia in atto un meccanismo di questo tipo. Ad avvalorare tale ipotesi si tenga conto che le pareti in questione sono poste al terzo livello del Palazzo, subiscono quindi un'accelerazione maggiore e sono costituite ma maschi murari intervallati da numerose aperture.

Danni per irregolarità di forma sono possibili nelle pareti a contatto tra le due unità strutturali, e a questo tipo di meccanismo si può ricondurre la lesione presente sulla facciata orientale delle poste.

Le analisi dei meccanismi locali di collasso si muovono da queste considerazioni, ma in quanto la conoscenza dell'edificio non permette una discriminazione a priori di meccanismi meno probabili, sono stati effettuati i meccanismi possibili, dando comunque un giudizio di maggiore o minore probabilità di accadimento.

Spettri di risposta elastici per i diversi Stati Limite-

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere

7. VALUTAZIONI DELLA SICUREZZA SISMICA

Premesse per la valutazione della sicurezza sismica

Per valutazione della sicurezza si intende un procedimento quantitativo volto a:

- stabilire se una struttura esistente è in grado o meno di resistere alle combinazioni delle azioni di progetto contenute nelle NTC, oppure
- determinare l'entità massima delle azioni, considerate nelle combinazioni di progetto previste, che la struttura è capace di sostenere con i margini di sicurezza richiesti dalle NTC, definiti dai coefficienti parziali di sicurezza sulle azioni e sui materiali²².

Si definiscono le situazioni nelle quali è necessario effettuare la valutazione della sicurezza, che, per le costruzioni esistenti, potrà essere eseguita con riferimento ai soli Stati limite ultimi.

In particolare si prevede che la valutazione della sicurezza dovrà effettuarsi ogni qual volta si eseguano interventi strutturali e dovrà determinare il livello di sicurezza della costruzione prima e dopo l'intervento²³.

Per i beni culturali tutelati, come Palazzo del Capitanio, è necessario attenersi ad interventi di miglioramento, a riparazioni o ad interventi locali.

Con il termine di miglioramento si deve intendere l'esecuzione di opere in grado di far conseguire all'edificio un maggior grado di sicurezza rispetto alle condizioni attuali, con un livello di protezione sismica non necessariamente uguale a quello previsto per l'adeguamento delle costruzioni.

Riparazioni o interventi locali interessano invece porzioni limitate della costruzione, e devono essere soggetti a verifiche locali; nel caso dei beni tutelati è comunque richiesta anche una valutazione della sicurezza complessiva, in forma semplificata, in modo da certificare che non siano peggiorate le condizioni di sicurezza preesistenti²⁴.

Nell'ottica di minimo intervento ed individuazione delle criticità più incisive, la valutazione della sicurezza sismica di Palazzo del Capitanio si articola attraverso un processo di conoscenza, analisi sismica e progetto degli interventi di miglioramento, considerando le esigenze di conservazione del manufatto attraverso la sua fruizione e funzione.

I passaggi fondamentali sono la redazione dei progetti, individuati nell'analisi storico-critica, nel rilievo geometrico-strutturale, nella caratterizzazione meccanica dei materiali, nella definizione dei livelli di conoscenza e dei conseguenti fattori di confidenza, nella definizione delle azioni e nella relativa analisi strutturale.

Per le costruzioni esistenti in muratura, si distingue fra meccanismi di collasso locali e meccanismi d'insieme, stabilendo che la sicurezza della costruzione deve essere valutata nei confronti di entrambi. Per le tipologie in aggregato, particolarmente frequenti nei centri storici, sono definiti i criteri per l'individuazione delle unità strutturali (US) analizzabili separatamente e per la loro analisi

²² Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008, C.8.3

²³ Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008, C.8

²⁴ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.2.2

strutturale, tenuto conto della complessità del comportamento, delle inevitabili interazioni con unità strutturali adiacenti e delle possibili semplificazioni apportabili al calcolo²⁵.

L'US dovrà avere continuità da cielo a terra per quanto riguarda il flusso dei carichi verticali e, di norma, sarà delimitata o da spazi aperti, o da giunti strutturali, o da edifici contigui costruiti, ad esempio, con tipologie costruttive e strutturali diverse, o con materiali diversi, oppure in epoche diverse²⁶.

Vita nominale, classe d'uso e periodo di riferimento per l'azione sismica

Nelle Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, viene definito un livello di sicurezza sismica di riferimento V_R differenziato in funzione delle caratteristiche proprie dei manufatti e del loro uso, e quindi della gravità delle conseguenze di un loro danneggiamento per effetto di un evento sismico:

$$V_R = V_N \bullet C_U$$

Dove:

- V_N è la vita nominale a cui viene riferita la valutazione della sicurezza e per la quale viene eventualmente progettato un intervento di miglioramento sismico. In particolare essa può essere messa in relazione alle caratteristiche del bene culturale, anche sulla base della conoscenza del manufatto, e può essere ridotta al fine di limitare l'invasività dell'intervento;
- C_U è la classe d'uso a cui è sottoposta la costruzione, Classe I uso saltuario o non utilizzato, Classe II uso frequente con normali affollamenti; Classe III uso molto frequente e/o con affollamenti significativi; Classe IV edificio strategico e uso molto frequente e/o con affollamenti significativi.

Nel	caso studio	viene assunta	una vita nominal	e di 50 anni e la	classe d'uso III.

	Vita Nominale
	VN (in anni)
Opere provvisorie - Opere provvisionali - Strutture in fase costruttiva	≤ 10
Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100
Figura 7.1: NTC 2008 Tab. 2.4.L. Vita nominale V., per diversi tipi di opere	

Figura 7.1: NTC 2008, Tab. 2.4.I – Vita nominale V_N per diversi tipi di opere

CLASSE D'USO	I	Ш	III	IV
COEFFICIENTE CU	0.7	1.0	1.5	2.0

Figura 7.2: NTC 2008, Tab. 2.4.II – Valori del coefficiente d'uso C_U

La vita di riferimento risulta: $V_R = V_N \bullet C_U = 50 \bullet 1,5 = 75 anni$

²⁵ Ivi

²⁶ Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008, C.8.A.3

Periodo di ritorno per l'azione sismica

Nelle Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, viene definito in relazione al periodo di riferimento V_R ed allo stato limite considerato, cui è associata una probabilità di superamento P_{VR} nel periodo di riferimento, il periodo di ritorno di riferimento dell'azione sismica T_R:

$$T_R = -\frac{V_R}{\ln\left(1 - P_{VR}\right)}$$

La pericolosità sismica sull'intero territorio nazionale, approvata con D.M. 14 gennaio 2008 (NTC), fornisce i parametri dell'azione sismica in funzione delle coordinate geografiche a partire da un reticolo di lato pari a circa 5 km e per diversi periodi di ritorno, compresi tra 30 e 2475 anni.

Figura 7.3: Valori di pericolosità sismica del territorio nazionale

Per la verifica nei confronti dello SLV si potrà fare riferimento ad azioni sismiche caratterizzate da probabilità di eccedenza del 10% su un periodo di riferimento { $V_R=V_NC_U$ }, ovvero con un periodo di ritorno di riferimento { $T_{R,SLV}$ } calcolato con la formula precedente.

Stati Limite		P _{VR} : Probabilità di superamento nel periodo di riferimento VR
Stati Limita di asarcizia	SLO	81%
Stati Linite di esercizio	SLD	63%
Stati Limita ultimi	SLV	10%
	SLC	5%

Figura 7.4: NTC 2008, Tab. 3.2.1 – Probabilità di superamento P_{VR} al variare dello stato limite considerato

Il periodo di riferimento risulta: $T_R = -\frac{V_R}{\ln(1-P_{VR})} = -\frac{75}{\ln(1-0,1)} = 712 anni$

Livello di conoscenza e fattore di confidenza

La valutazione della sicurezza di un edificio esistente è condizionata dalla conoscenza stessa dell'edificio, in quanto:

- la costruzione riflette lo stato delle conoscenze al tempo della sua realizzazione;

- possono essere insiti e non palesi difetti di impostazione e di realizzazione;

- la costruzione può essere stata soggetta ad azioni, anche eccezionali, i cui effetti non siano completamente manifesti;

- le strutture possono presentare degrado e/o modificazioni significative rispetto alla situazione originaria.

Nella definizione dei modelli strutturali, si dovrà, inoltre, tenere conto che:

- la geometria e i dettagli costruttivi sono definiti e la loro conoscenza dipende solo dalla documentazione disponibile e dal livello di approfondimento delle indagini conoscitive;

- la conoscenza delle proprietà meccaniche dei materiali non risente delle incertezze legate alla produzione e posa in opera ma solo della omogeneità dei materiali stessi all'interno della costruzione, del livello di approfondimento delle indagini conoscitive e dell'affidabilità delle stesse;

- i carichi permanenti sono definiti e la loro conoscenza dipende dal livello di approfondimento delle indagini conoscitive.

Si dovrà prevedere l'impiego di metodi di analisi e di verifica dipendenti dalla completezza e dall'affidabilità dell'informazione disponibile e l'uso, nelle verifiche di sicurezza, di adeguati "fattori di confidenza", che modificano i parametri di capacità in funzione del livello di conoscenza relativo a geometria, dettagli costruttivi e materiali²⁷.

Il livello di conoscenza della struttura è relativo all'approfondimento delle indagini svolte riguardo geometria, dettagli costruttivi e materiali:

- Verifiche in-situ limitate: basate su rilievi di tipo visivo effettuati ricorrendo, generalmente, a rimozione dell'intonaco e saggi nella muratura che consentano di esaminarne le caratteristiche sia in superficie che nello spessore murario, e di ammorsamento tra muri ortogonali e dei solai nelle pareti. I dettagli costruttivi possono essere valutati anche sulla base di una conoscenza appropriata delle tipologie dei solai e della muratura. In assenza di un rilievo diretto, o di dati sufficientemente attendibili, è opportuno assumere, nelle successive fasi di modellazione, analisi e verifiche, le ipotesi più cautelative.
- Verifiche in-situ estese ed esaustive: sono basate su rilievi di tipo visivo, effettuati ricorrendo, generalmente, a saggi nella muratura che consentano di esaminarne le caratteristiche sia in superficie che nello spessore murario, e di ammorsamento tra muri ortogonali e dei solai nelle pareti. L'esame degli elementi è opportuno sia esteso in modo sistematico all'intero edificio²⁸.

Il fattore di confidenza (F_c) è caratterizzato da un valore compreso tra 1 e 1,35 per i beni vincolati, in modo da graduare maggiormente l'attendibilità del modello strutturale.

Viene determinato suddividendo le 4 categorie di indagine ed assegnando a queste un punteggio a seconda del livello di conoscenza raggiunto:

$$F_C = 1 + \sum_{k=1}^{4} F_{CK}$$

²⁷ Decreto ministeriale infrastrutture del 14-01-2008, Norme Tecniche per le Costruzioni C8.2

²⁸ Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008, C.8.A.1.A.2

CAP 7 – VALUTAZIONE DELLA SICUREZZA SISMICA

Rilievo geometrico	identificazione delle specificità storiche e costruttive della fabbrica	Proprietà meccaniche dei materiali	Terreno e fondazioni
rilievo geometrico completo	restituzione ipotetica delle fasi costruttive basata su un limitato rilievo materico e degli elementi costruttivi associato alla comprensione delle vicende di trasformazione (indagini documentarie e tematiche)	parametri meccanici desunti da dati già disponibili	limitate indagini sul terreno e le fondazioni, in assenza di dati geotecnici e disponibilità d'informazioni sulle fondazioni
F _{C1} = 0.05	$F_{c2} = 0.12$	$F_{C3} = 0.12$	$F_{C4} = 0.06$
rilievo geometrico completo, con restituzione grafica dei quadri fessurativi e deformativi F _{Ct} = 0	restituzione parziale delle fasi costruttive e interpretazione del comportamento strutturale fondate su: a) limitato rilievo materico e degli elementi costruttivi associato alla comprensione e alla verifica delle vicende di trasformazione (indagini documentarie e tematiche, verifica diagnostica delle ipotesi storiografiche); b) esteso rilievo materico e degli elementi costruttivi associato alla comprensione delle vicende di trasformazione (indagini documentarie e tematiche) $F_{c2} = 0.06$	limitate indagini sui parametri meccanici dei materiali F _{C3} = 0.06	disponibilità di dati geotecnici e sulle strutture fondazionali; limitate indagini sul terreno e le fondazioni F _{C4} = 0.03
	restituzione completa delle fasi costruttive e interpretazione del comportamento strutturale fondate su un esaustivo rilievo materico e degli elementi costruttivi associato alla comprensione delle vicende di trasformazione (indagini documentarie e tematiche, eventuali indagini diagnostiche)	estese indagini sui parametri meccanici dei materiali	estese o esaustive indagini sul terreno e le fondazioni
	$F_{c2} = 0$	$F_{C3} = 0$	$F_{C4} = 0$

Figura 7.5: Circolare n. 26/2010, Tabella 4.1.Definizione dei livelli di approfondimento delle indagini sui diversi aspetti della conoscenza e relativi fattori parziali di confidenza.

Il fattore di confidenza utilizzato è stato conteggiato assegnando punteggio pieno a tutte le voci presenti, ad eccezion fatta per il rilievo geometrico:

 $F_{\mathcal{C}} = 1 + (0,00 + 0,12 + 0,12 + 0,06) = 1,30$

Valutazione dell'azione sismica

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione.

Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente S_e (T), con riferimento a prefissate probabilità di eccedenza P_{VR} , nel periodo di riferimento V_R . In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla *pericolosità sismica* del sito.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_g accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_c periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale²⁹.

Per definire l'azione sismica di progetto è necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi, in assenza delle quali si può fare riferimento a categorie di sottosuolo di riferimento:

Categoria	Descrizione
^	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s,
~	eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo. pari a 3 m.
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto
B	consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà
, D	meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 > 50
	nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti
C	con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche
	con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei
	terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente
D	consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà
	meccaniche con la profondità e da valori di Vs,30 inferiori a 180 m/s (ovvero NSPT,30 < 15 nei terreni a
	grana grossa e cu,30 < 70 kPa nei terreni a grana fina).
F	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento
	(con Vs > 800 m/s).

Figura 7.6: NTC 2008, Tabella 3.2.11 – Categorie di sottosuolo

Il sottosuolo di Palazzo del Capitanio si ipotizza appartenga alla categoria C, in analogia con quello di Palazzo della Ragione, per il quale è stata eseguita un'indagine geotecnica.

Categoria	Caratteristiche della superficie topografica		
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°		
Т2	Pendii con inclinazione media i > 15°		
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° \leq i \leq 30°		
T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°			
Figura 7.7: NTC 2008, Tabella 3.2.IV – Categorie topografiche			

Utilizzo del programma Spettri

Al fine di valutare l'azione sismica di progetto è stato utilizzato il software "Excel – Spettri NTC v.1.03", messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

Il documento Excel SPETTRI – NTC fornisce gli spettri di risposta rappresentativi delle componenti (orizzontali e verticali) delle azioni sismiche di progetto per il generico sito del territorio nazionale. Palazzo del Capitanio ha coordinate long. 11.87207, lat 45.40796

Figura 7.8: Foglio di calcolo "SPETTRI-NTC", fase 1

Figura 7.9: Foglio di calcolo "SPETTRI-NTC", fase 2

Figura 7.10: Foglio di calcolo "SPETTRI-NTC", fase 3

CAP 7 – VALUTAZIONE DELLA SICUREZZA SISMICA

I valori ottenuti sono i seguenti:

T _R	a _g	Fo	T* _c
[anni]	[g]	[-]	[s]
75	0.043	2.543	0.242
712	0.097	2.612	0.343

I parametri indipendenti relativi al caso studio risultano:

Ss	Cc	ST	q
1.50	0.51	1.00	2.00

I parametri dipendenti relativi al caso studio risultano:

S	Т _в	T _c	Т _D
	[s]	[s]	[s]
1.50	0.17	0.51	1.99

Quale che sia la probabilità di superamento nel periodo di riferimento P_{VR} considerata, lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$0 \le T < T_{B_1} \qquad \qquad S_e\left(T\right) = ag \, S \, \eta \, F_0\left[\frac{T}{T_B} + \frac{1}{\eta \, F_0}\left(1 - \frac{T}{T_B}\right)\right]$$

 $T_B \le T < T_{C_1} \qquad S_e(T) = ag \, S \, \eta \, F_0$

$$T_C \le T < T_{D_1} \qquad S_e(T) = ag S \eta F_0\left(\frac{T_C}{T}\right)$$

$$T_D \le T$$
, $S_e(T) = ag S \eta F_0\left(\frac{T_C T_D}{T_2}\right)$

Dove:

- T ed S_e sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale,
- S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = $S_S \times S_T$, essendo S_S il coefficiente di amplificazione stratigrafica e S_T il coefficiente di amplificazione topografica,
- η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione η = 10/(5 + ξ) ≥ 0,55, dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione,
- F_o è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;

- T_c è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da T_c = C_c ×T_c*, dove T_c* è definito al § 3.2 delle NTC_2008 e C_c è un coefficiente funzione della categoria di sottosuolo,
- T_B è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante, pari a $T_B = T_C /3$,
- T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione: $T_D = 4,0 \frac{a_g}{a} + 1,6$

Analisi dei carichi

7.3.1 Carichi permanenti G

I carichi permanenti sono azioni che agiscono durante tutta la vita nominale della costruzione, la cui variazione di intensità nel tempo è così piccola e lenta da poterle considerare con sufficiente approssimazione costanti nel tempo:

- peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente (G1);

- forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno);

- forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);
- peso proprio di tutti gli elementi non strutturali (G2);
- spostamenti e deformazioni imposti, previsti dal progetto e realizzati all'atto della costruzione;
- pretensione e precompressione (P);
- ritiro e viscosità;
- spostamenti differenziali³⁰.

I carichi permanenti da considerare sono legati ai pesi propri degli elementi che costituiscono il manufatto:

- il peso proprio della muratura,
- il peso proprio dei solai.

I carichi permanenti non strutturali non sono rimovibili durante il normale esercizio della costruzione, quali quelli relativi a tamponature esterne, divisori interni, massetti, isolamenti, pavimenti e rivestimenti del piano di calpestio, intonaci, controsoffitti, impianti ed altro, ancorché in qualche caso sia necessario considerare situazioni transitorie in cui essi non siano presenti.

Essi devono essere valutati sulla base delle dimensioni effettive delle opere e dei pesi dell'unità di volume dei materiali costituenti.

In linea di massima, in presenza di orizzontamenti anche con orditura unidirezionale ma con capacità di ripartizione trasversale, i carichi permanenti portati ed i carichi variabili potranno assumersi, per la verifica d'insieme, come uniformemente ripartiti. In caso contrario, occorre valutarne le effettive distribuzioni.

I tramezzi e gli impianti leggeri di edifici per abitazioni e uffici possono assumersi, in genere, come carichi equivalenti distribuiti, purché i solai abbiano adeguata capacità di ripartizione trasversale.

Per gli orizzontamenti degli edifici per abitazioni e uffici, il peso proprio di elementi divisori interni potrà essere ragguagliato ad un carico permanente portato uniformemente distribuito g_{2k}, purché vengano adottate le misure costruttive atte ad assicurare una adeguata ripartizione del carico.

³⁰ Decreto ministeriale infrastrutture del 14-01-2008, Norme Tecniche per le Costruzioni C2.5.1.3

CAP 7 – VALUTAZIONE DELLA SICUREZZA SISMICA

Il carico uniformemente distribuito g_{2k} ora definito dipende dal peso proprio per unità di lunghezza G_{2k} delle partizioni nel modo seguente:

- per elementi divisori con $G_2 \leq 1,00 \ kN/m$

 $g_2 = 0,40 \text{ kN/m}^2;$

- per elementi divisori con $1,00 < G \le 2,00 \text{ kN/m}$ g₂ = 0,80 kN/m²;
- per elementi divisori con

 $2,00 < G \le 3,00 \text{ kN/m } g_2 = 1,20 \text{ kN/m}^2;$ $3,00 < G \le 4,00 \text{ kN/m } g_2 = 1,60 \text{ kN/m}^2;$

per elementi divisori con 3,
per elementi divisori con 4,

i con $4,00 < G \le 5,00 \text{ kN/m } g_2 = 2,00 \text{ kN/m}^2;$

Elementi divisori interni con peso proprio maggiore devono essere considerati in fase di progettazione, tenendo conto del loro effettivo posizionamento sul solaio.

MATERIALI	PESO UNITÀ DI VOLUME [kN/m ³]					
Calcestruzzi cementizi e malte						
Calcestruzzo ordinario	24,0					
Calcestruzzo armato (e/o precompresso)	25,0					
Calcestruzzi "leggeri": da determinarsi caso per caso	14,0÷20,0					
Calcestruzzi "pesanti": da determinarsi caso per caso	28,0÷50,0					
Malta di calce	18,0					
Malta di cemento	21,0					
Calce in polvere	10,0					
Cemento in polvere	14,0					
Sabbia	17,0					
Metalli e leghe						
Acciaio	78,5					
Ghisa	72,5					
Alluminio	27,0					
Materiale lapideo	Materiale lapideo					
Tufo vulcanico	17,0					
Calcare compatto	26,0					
Calcare tenero	22,0					
Gesso	13,0					
Granito	27,0					
Laterizio (pieno)	18,0					
Legnami						
Conifere e pioppo	4,0÷6,0					
Latifoglie (escluso pioppo)	6,0÷8,0					
Sostanze varie						
Acqua dolce (chiara)	9,81					
Acqua di mare (chiara)	10,1					
Carta	10,0					
Vetro	25,0					
Per materiali non compresi nella tabella si potrà far riferimento a specifiche indagini sperimentali o a normative di comprovata validità assumendo i valori nominali come valori caratteristici.						

Figura 7.11: NTC_2008, Tabella 3.1.1 - Pesi dell'unità di volume dei principali materiali strutturali

Per la tipologia muraria in esame (muratura in mattoni pieni e malta di calce) e il livello di conoscenza raggiunto, la normativa prescrive di considerare pertanto di utilizzare i valori minimi della tipologia muraria "Mattoni pieni e malta di calce".

	$f_{ m m}$	τ ₀	E	G	w	
Tipologia di muratura	(N/cm ²)	(N/cm ²)	(N/mm ²)	(N/mm ²)	(kN/m ³)	
	Min-max	min-max	min-max	min-max		
Muratura in pietrame disordinata (ciottoli, pietre	100	2,0	690	230	1 36.7	
erratiche e irregolari)	180	3,2	1050	350	19	
Muratura a conci sbozzati, con paramento di limitato	200	3,5	1020	340	100	
spessore e nucleo interno	300	5,1	1440	480	20	
Muratura in niatra a chagao aon huana tacaitura	260	5,6	1500	500	21	
Wuratura în pierre a spaceo con buona tessitura	380	7,4	1980	660		
Muratura a conci di pietra tenera (tufo, calcarenite,	140	2,8	900	300	100	
ecc.)	240	4,2	1260	420	16	
Manatani a bla shi buildai suna danti	600	9,0	2400	780	22	
Muratura a biocchi tapidei squadrati	800	12,0	3200	940		
Munchung in matteni simi a malta di salas	240	6,0	1200	400	-	
Muratura in mation pient e mana di caice	400	9,2	1800	600	18	
Muratura in mattoni semipieni con malta cementizia	500	24	3500	875		
(es.: doppio UNI foratura ≤ 40%)	800	32	5600	1400	15	
Muratura in blocchi laterizi semipieni (perc. foratura <	400	30,0	3600	1080		
45%)	600	40,0	5400	1620	12	
Muratura in blocchi laterizi semipieni, con giunti	300	10,0	2700	810	1	
verticali a secco (perc. foratura < 45%)	400	13,0	3600	1080	11	
Muratura in blocchi di calcestruzzo o argilla espansa	150	9,5	1200	300	and a second	
(perc. foratura tra 45% e 65%)	200	12,5	1600	400	12	
Muratura in blocchi di calcestruzzo semipieni	300	18,0	2400	600		
(foratura < 45%)	440	24,0	3520	880	14	

Figura 7.12: Circolare 2 febbraio 2009 n. 617, Tabella C8B.1 - Valori di riferimento dei parametri meccanici (minimi e massimi) e peso specifico medio per diverse tipologie di muratura, riferiti alle seguenti condizioni: malta di caratteristiche scarse, assenza di ricorsi (listature), paramenti semplicemente accostati o mal collegati, muratura non consolidata, tessitura (nel caso di elementi regolari) a regola d'arte; f_m = resistenza media a compressione della muratura, T_0 = resistenza media a taglio della muratura, E = valore medio del modulo di elasticità tangenziale, w = peso specifico medio della muratura.

I parametri relativi alla muratura, diminuiti del fattore di confidenza 1,3 risultano:

TIPOLOGIA	E [N/mm ²]	G	PESO SPECIFICO	fm [N/cm ²]	RESISTENZA A TAGLIO
Muratura in mattoni pieni e malta di calce	1500.00	500.00	18	184.62	4.62
7.3.2 Carichi variabili Q

I carichi variabili (Q): azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:

- di lunga durata: agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;

- di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura³¹;

I carichi accidentali da assegnare alla struttura vanno determinati in funzione della destinazione d'uso dell'opera e possono essere rappresentati da:

• Carichi verticali uniformemente distribuiti q_{κ} [kN/m²]

- Carichi verticali concentrati Q_{κ} [kN]
- Carichi orizzontali lineari H_K [kN/m]³²

³¹ Decreto ministeriale infrastrutture del 14-01-2008, Norme Tecniche per le Costruzioni C2.5.1.3

³² Ibid, C3.1.4

Cat.	Ambienti	q _k [kN/m ²]		H _k [kN/m]
Λ	Ambienti ad uso residenziale. Sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi. (ad esclusione delle aree suscettibili di affollamento)	2,00	2,00	1,00
в	Uffici. Cat. B1 Uffici non aperti al pubblico Cat. B2 Uffici aperti al pubblico	2,00 3,00	2,00 2,00	1,00
С	 Ambienti suscettibili di affollamento Cat. C1 Ospedali, ristoranti, caffè, banche, scuole Cat. C2 Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi Cat. C3 Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre, tribune libere, edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune 	3,00 4,00 5,00	2,00 4,00 5,00	1,00 2,00 3,00
D	Ambienti ad uso commerciale. Cat. D1 Negozi Cat. D2 Centri commerciali, mercati, grandi magazzini, librerie	4,00 5,00	4,00 5,00	2,00 2,00
E	Biblioteche, archivi, magazzini e ambienti ad uso industriale. Cat. E1 Biblioteche, archivi, magazzini, depositi, laboratori manifatturieri Cat. E2 Ambienti ad uso industriale, da valutarsi caso per caso	≥ 6,00	6,00	1,00*
F-G	Rimesse e parcheggi. Cat. F Rimesse e parcheggi per il transito di automezzi di peso a pieno carico fino a 30 kN Cat. G Rimesse e parcheggi per transito di automezzi di peso a pieno carico superiore a 30 kN: da valutarsi caso per caso	2,50	2 x 10,00	1,00**
ü	Coperture e sottotetti Cat. H1 Coperture e sottotetti accessibili per sola manutenzione Cat. H2 Coperture praticabili Cat. H3 Coperture speciali (impianti, eliporti, altri) da valutarsi caso per caso	0,50 secondo c —	1,20 ategoria di ap	1,00 partenenza —

* non comprende le azioni orizzontali eventualmente esercitate dai materiali immagazzinati
 ** per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere valutate caso per caso
 Figura 7.13: NTC_2008, Tabella 3.1.II – Valori dei carichi d'esercizio per le diverse categorie di edifici

Combinazione delle azioni

I carichi permanenti (G) e accidentali (Q) devono essere combinati in modo differente a seconda del tipo di analisi. E' stata utilizzata la combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU) connessi all'azione sismica:

$$E+G_1+G_2+P+\psi_{21}{\cdot}Q_{k1}+\psi_{22}{\cdot}Q_{k2}+\ldots$$

I valori dei coefficienti parziali di sicurezza γ_{Qi} e γ_{Gi} sono:

Categoria/Azione variabile	Ψoj	Ψ1j	Ψ2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota $\leq 1000 \text{ m s.l.m.}$)	0,5	0,2	0,0
Neve (a quota $> 1000 \text{ m s.l.m.}$)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Figura 7.14: NTC_2008, Tabella 2.5.1 – Valori dei coefficienti di combinazione

		Coefficiente YF	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,0 1,5	0,0 1,5	0,0 1,3
⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.					

Figura 7.15: NTC_2008, Tabella 2.6.1 – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

7.3.3 Analisi dei carichi permanenti ed accidentali

I carichi permanenti (G) e accidentali (Q) calcolati per gli impalcati sono stati ipotizzati sulla base di restauri avvenuti nel corso del tempo e di analisi pratiche riguardanti i solai in legno. Sono stati suddivisi i solai in base alla destinazione d'uso dell'ambiente (uffici non aperti ed aperti al pubblico) in modo da poter utilizzare differenti coefficienti parziali di sicurezza.

LEGENDA

- UFFICI APERTI AL PUBBLICO
- UFFICI NON APERTI AL PUBBLICO
- SOLAIO BAUSTA
- SOLAIO IN LEGNO CIREX
- VOLTA IN MURATURA
- SOLAIO DI COPERTURA

Figura 7.16: Pianta primo orizzontamento I solai rappresentati sono quelli di calpestio, in modo da associare la funzionalità agli spazi.

Figura 7.17: Pianta secondo orizzontamento I solai rappresentati sono quelli di calpestio, in modo da associare la funzionalità agli spazi.

Figura 7.18: Pianta sottotetto. I solai rappresentati sono quelli di calpestio, in modo da associare la funzionalità agli spazi.

Calcolo del peso dei solai in laterocemento adibiti ad uffici non aperti al pubblico

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]
Carico	accidentale (Q)	-	2	2
Carico permanente (G)	Pavimento in piastrelle	0,5	0,14	
	Sottofondo sabbia - cemento	5	1,07	
	Cappa in CA	4	1,6	4,53
	Intonaco su rete	1,5	0,32	
	P. totale laterizio	25	1,4	
C	6,53			

Calcolo del peso dei solai in laterocemento adibiti ad uffici aperti al pubblico

Peso per unità di superficie		Spessore [cm]	Peso [kN/m ²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	3	3
	Pavimento in piastrelle	0,5	0,14	
	Sottofondo sabbia - cemento	5	1,07	
Carico permanente (G)	Cappa in CA	4	1,6	4,53
	Intonaco su rete	1,5	0,32	
	P. totale laterizio	25	1,4	
C	7,53			

Calcolo del peso dei solai Cirex adibiti ad uffici non aperti al pubblico, finitura in piastrelle

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	2	2
	Pavimento in piastrelle	1	0,14	
	Sottofondo sabbia - cemento	5	1,07	
Carico permanente (G)	Solaio leggero	-	1,5	3,97
	Travetto	-	0,45	
	P. totale laterizio	20,5	0,81	
Carico accidentale (Q) e permanente (G)				5,97

Calcolo del peso dei solai Cirex adibiti ad uffici non aperti al pubblico, finitura in parquet

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	2	2
Carico permanente (G)	Pavimento in parquet	2	0,14	
	Sottofondo sabbia - cemento	5	1,07	
	Solaio leggero	-	1,5	3,97
	Travetto	-	0,45	
	P. totale laterizio	20,5	0,81	
Carico accidentale (Q) e permanente (G)				5,97

CAP 7 – VALUTAZIONE DELLA SICUREZZA SISMICA

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	3	3
	Pavimento in piastrelle	1	0,14	
	Sottofondo sabbia - cemento	5	1,07	
Carico permanente (G)	Solaio leggero	-	1,5	3,97
	Travetto	-	0,45	
	P. totale laterizio	20,5	0,81	
C	6,97			

Calcolo del peso dei solai Cirex adibiti ad uffici aperti al pubblico, finitura in piastrelle

Calcolo del peso dei solai Cirex adibiti ad uffici aperti al pubblico, finitura in parquet

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	3	3
	Pavimento in parquet	1	0,14	
	Sottofondo sabbia - cemento	5	1,07	
Carico permanente (G)	Solaio leggero	-	1,5	3,97
	Travetto	-	0,45	
	P. totale laterizio	20,5	0,81	
C	6,97			

Calcolo del peso dei solai lignei adibiti ad uffici non aperti al pubblico

Peso per unità di superficie		Spessore [cm]	Peso [kN/m ²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	2	2
Carico permanente (G)	Pavimento in parquet	2	0,14	
	Sottofondo sabbia - cemento	5	1,07	
	Trave lignea	16	0,6	2,14
	Tavolato strutturale	2,5	0,165	
	Tavolato strutturale	2,5	0,165	
Carico accidentale (Q) e permanente (G)				4,14

Calcolo del peso dei solai lignei adibiti ad uffici aperti al pubblico

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]
Carico accidentale (Q)		-	3	3
Carico permanente (G)	Pavimento in parquet	2	0,14	
	Sottofondo sabbia - cemento	5	1,07	
	Trave lignea	16	0,6	2,14
	Tavolato strutturale	2,5	0,165	
	Tavolato strutturale	2,5	0,165	
C	5,14			

Calcolo del peso della volta, con solaio di calpestio adibito ad uffici non aperti al pubblico

Peso per unità di superficie		Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]	
Carico accidentale (Q)		-	2	2	
	Pavimento in linoleum	0,2	0,03		
Carico permanente (G)	Sottofondo sabbia - cemento	5,8	1,07	2,98	
	Mattone pieno	12	0,94		
	mattone pieno	12	0,94		
Carico accidentale (Q) e permanente (G)				4,98	

Calcolo del peso della volta, con solaio di calpestio adibito ad uffici aperti al pubblico

Peso per	Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m ²]	
Carico	-	3	3	
	Pavimento in linoleum	0,2	0,03	
Carico permanente (C)	Sottofondo sabbia - cemento	5,8	1,07	2.08
	Mattone pieno	12	0,94	2,30
	mattone pieno	12	0,94	
C	5,98			

Calcolo del peso dei solai adibiti a copertura e sottotetto

Peso per unità	di superficie	Spessore [cm]	Peso [kN/m²]	Peso totale [kN/m²]
Carico accid	entale (Q)	-	1,3	1,3
	Соррі	-	0,68	
	Ondulina sottocoppo	-	0,06	
Carico permanente (G)	Tavella laterizia	-	0,51	1,62
	Listelli in legno	-	0,14	
	Travi	-	0,23	
Carico	2,92			

8. A	NALISI DEI MECCANISMI LOCALI DI COLLASSO	
8.1	Premessa per l'analisi dei meccanismi locali di collasso	
8.2	Meccanismo di ribaltamento semplice di parete monolitica	
8	2.1 Ribaltamento totale	
8	2.2 Ribaltamento parziale	
8.3	Meccanismo di ribaltamento del cantonale	
8.4	Meccanismo di flessione verticale di parete monolitica	
8.5	Meccanismo di taglio nei maschi murari	
8.6	Approccio cinematico	
8.7	Individuazione macroelementi	
8.8	Analisi dei meccanismi locali di collasso tramite fogli di calcolo, LC 1	
8.9	Analisi dei risultati ottenuti	
8.10	Analisi dei meccanismi locali di collasso tramite fogli di calcolo, LC 2	
8.11	Analisi dei risultati ottenuti	
8.12	2 Analisi dei meccanismi locali di collasso tramite il software C - Sisma	
8	.12.1 Il metodo utilizzato	
8	.12.2 Analisi di un meccanismo locale di collasso	
8.13	Analisi dei risultati ottenuti	
8.14	Confronto dei risultati ottenuti: Excel - C - Sisma	304

8. ANALISI DEI MECCANISMI LOCALI DI COLLASSO

Premessa per l'analisi dei meccanismi locali di collasso

Quando la costruzione non manifesta un chiaro comportamento d'insieme, ma piuttosto tende a reagire al sisma come un insieme di sottosistemi (meccanismi locali), la verifica su un modello globale non ha rispondenza rispetto al suo effettivo comportamento sismico. Particolarmente frequente è il caso delle grandi chiese o di edifici estesi e di geometria complessa non dotati di solai rigidi e resistenti nel piano, né di efficaci e diffusi sistemi di catene o tiranti. In tali casi la verifica globale può essere effettuata attraverso un insieme esaustivo di verifiche locali, purché la totalità delle forze sismiche sia coerentemente ripartita sui meccanismi locali considerati e si tenga correttamente conto delle forze scambiate tra i sottosistemi strutturali considerati³³.

Nel caso in cui l'analisi sismica sia basata sulla valutazione distinta di diversi meccanismi locali potranno essere utilizzati livelli di conoscenza e fattori parziali di confidenza relativi a ciascuna porzione modellata³⁴.Tali verifiche locali sono effettuate, nell'ambito di progetti di intervento su singoli elementi, su macroelementi, porzioni strutturalmente autonome della costruzione³⁵.

Fattore discriminante per la valutazione dell'innesco di cinematismi è la qualità del muro: nel caso in cui questa non soddisfi i parametri della regola dell'arte, la schematizzazione a macroelementi risulta inadeguata, poiché le fessurazioni non costituiscono distacchi netti, bensì sono distribuite su ampie porzioni di muro. Il cinematismo non riesce allora ad evolvere, poiché il mutare di orientamento della risultante dei carichi rispetto alla verticale, conseguente al moto della parete, denuncia il difetto di ammorsature interne e disgrega il corpo murario³⁶.

I meccanismi che possono essere attivati da un'azione sismica sono molteplici e caratteristici della vulnerabilità della struttura stessa, ma vengono suddivisi in due categorie:

- meccanismi di I modo, si innescano quando la parete è investita da azioni sismiche ortogonali e producono un ribaltamento della parete. Il meccanismo è implementato se la vulnerabilità dell'edificio è elevata (scarsa efficacia delle connessioni tra gli elementi strutturali) e si innesca con coefficienti molto bassi;
- meccanismi di II modo, si innescano quando la parete è investita da azioni sismiche complanari e a seguito della fessurazione delle pareti parallele al sisma, ma comportano valori del moltiplicatore di collasso piuttosto elevati, quindi di rado evolvono a collasso.
 Condizione necessaria perché si attivino meccanismi nel piano è che l'edificio denoti un comportamento scatolare (muratura costruita secondo i parametri della regola dell'arte, presenza di ammorsamenti efficaci tra muratura e solai e tra le pareti ortogonali, di cordoli o catene e di solai rigidi) e si manifesta con lesioni nel piano della muratura.

³³ Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008, C.8.7.1.1

³⁴ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.4.2

³⁵ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.5.3.2

³⁶ M. R. Valluzzi, M. Munari, E. Michielon, *Metodi di analisi di edifici esistenti in muratura*

Il controllo di questi meccanismi consente di determinare un coefficiente α di attivazione del meccanismo, ossia il moltiplicatore delle masse sismiche per il quale l'elemento considerato va in crisi, espresso come rapporto di "a/g" (accelerazione critica su accelerazione gravitazionale).

La crisi è rappresentata da condizioni limite di equilibrio alla rotazione dell'elemento murario attorno a cerniere cilindriche, oppure dal raggiungimento delle tensioni ultime di resistenza a compressione o trazione della sezione muraria.

Le basi teoriche del calcolo dell'attivazione dei meccanismi sono desunte dalle *Schede illustrative dei principali meccanismi di collasso locali negli edifici esistenti in muratura e dei relativi modelli cinematici di analisi*³⁷.

L'aspetto più delicato dell'analisi consiste nel riconoscimento delle condizioni che predispongono all'attivazione di meccanismi locali di danno e di collasso: si individuano sconnessioni, presenti nel quadro fessurativo o possibili in seguito all'azione di forze sismiche, che determinano macroelementi suscettibili di instabilità.

Individuati i meccanismi si è dovuto procedere alla formulazioni di ipotesi circa la presenza o meno di ammorsamenti efficaci tra muratura e solai e tra le pareti ortogonali, di cordoli o catene e di solai rigidi: a favore di sicurezza dove sono presenti capochiavi esterni è stato valutato il meccanismo di collasso relativo in assenza di tirantatura.

Per l'applicazione del metodo in via approssimata si assume:

- resistenza nulla a trazione della muratura,
- assenza di scorrimento tra i blocchi,
- resistenza a compressione infinita della muratura.

Per un approccio reale ci considera:

- scorrimento tra i blocchi, utilizzando la forza d'attrito,
- connessioni, anche di resistenza limitata, tra le pareti murarie,
- presenza di catene metalliche,
- resistenza a compressione limitata della muratura, considerando le cerniere adeguatamente arretrate rispetto lo spigolo della sezione,
- presenza di pareti a paramenti scollegati³⁸.

Nella trattazione, a favore di sicurezza, viene considerata limitata la resistenza a compressione, nulla la resistenza a trazione e assente la forza d'attrito generata dallo scorrimento tra i blocchi.

Si riassumono i simboli utilizzati più frequentemente:

- α è il moltiplicatore orizzontale dei carichi agenti sui macroelementi;
- *n* è il numero di piani interessati dal cinematismo;
- Pi è il peso proprio della parete al piano i-esimo o del macroelemento i-esimo;
- *Ni* è il peso del solaio agente sulla parete al piano *i*-esimo;
- *Fhi* è la forza orizzontale agente sulla parete al piano *i*-esimo;
- Ti rappresenta l'azione dei tiranti eventualmente presenti in testa alla parete del piano i-esimo;
- bi è lo spessore della parete al piano i-esimo;
- *hi* è il braccio verticale dell'azione trasmessa dal solaio e/o dal tirante alla parete al piano *i*-esimo;
- Li è la lunghezza del macroelemento i-esimo.

³⁷ L. Milano, A. Mannella, C. Morisi, A. Martinelli (a cura di), *Allegato alle Linee Guida per la Riparazione e il Rafforzamento di elementi strutturali, Tamponature e Partizioni – Schede illustrative dei principali meccanismi di collasso locali negli edifi esistenti in muratura e dei realtivi modelli cinematici di analisi,* Reluis ³⁸ Circolare 2 febbraio 2009, n. 617, cit., C8A.4

Meccanismo di ribaltamento semplice di parete monolitica

8.2.1 Ribaltamento totale

Il meccanismo consiste nella rotazione fuori piano della facciata, o di strisce verticali di pareti, con formazione di una cerniera cilindrica ad asse orizzontale, in corrispondenza dello spiccato delle fondazioni³⁹.

Le cause strutturali sono da ricercarsi nello scarso collegamento delle pareti ortogonali e nell'assenza di catene metalliche e cordoli, presidi sismici che permettono all'edificio un comportamento scatolare.

Il meccanismo può interessare strisce verticali di diversa geometria, a seconda della connessione di solai e murature di controvento con il muro di facciata.

Figura.8.1 – Meccanismo di ribaltamento in vista assonometrica

Figura.8.2 – Schema di calcolo

La parete, investita da un'azione sismica in direzione ortogonale al proprio piano, è soggetta ad un momento ribaltante: la forza statica equivalente, pari al prodotto di massa ed accelerazione sismica, tenderà a far ruotare la parete attorno alla cerniera cilindrica alla base; quanto più la porzione di muratura è in quota, tanto maggiore sarà il momento ribaltante.

Il momento ribaltante è contrastato dal momento stabilizzante, di segno opposto, generato dalla forza peso della parete e dai carichi che vi gravano.

La determinazione del coefficiente di attivazione del meccanismo si ottiene uguagliando i momenti. Dato il polo di rotazione "A", si ottiene:

Momento ribaltante dovuto all'azione sismica:

$$M_{rA} = \alpha \left(\sum_{i=1}^{n} P_i \cdot h_{bar,i} + \sum_{i=1}^{n} N_i \cdot h_i \right)$$

Momento stabilizzante dovuto al peso e ad eventuali tiranti:

³⁹ L. Milano, A. Mannella, C. Morisi, A. Martinelli (a cura di), *Allegato alle Linee Guida per la Riparazione e il Rafforzamento di elementi strutturali, Tamponature e Partizioni – Schede illustrative dei principali meccanismi di collasso locali negli edifi esistenti in muratura e dei realtivi modelli cinematici di analisi,* Reluis

$$M_{SA} = \sum_{i=1}^{n} Pi \cdot \frac{bi}{2} + \sum_{i=1}^{n} Ni \cdot di + \sum_{i=1}^{n} Ti \cdot hi$$

Da cui, uguagliando i momenti:

$$\alpha = \frac{\sum_{i=1}^{n} Pi \bullet \frac{bi}{2} + \sum_{i=1}^{n} Ni \bullet di + \sum_{i=1}^{n} Ti \bullet hi}{\sum_{i=1}^{n} Pi \bullet hbar, i + \sum_{i=1}^{n} Ni \bullet hi}$$

A favore di sicurezza si assume la resistenza della muratura limitata: la cerniera cilindrica si forma lungo una linea più interna rispetto lo spigolo considerato. Indicando con "t" il segmento arretrato, nelle formule ai bracci del momento stabilizzante va sottratto "t".

Per determinare tale valore si considera che l'innesco del cinematismo si manifesti quando la tensione massima al lembo compresso raggiunge il valore di resistenza a compressione del muro, sotto le ipotesi di resistenza a trazione nulla della muratura e di distribuzione lineare di tensioni di compressione nel punto di contatto.

Imponendo una tensione f_m al lembo compresso, la tensione media di compressione è pari al rapporto dello sforzo normale agente sulla sezione e sull'area della sezione stessa:

$$\sigma_{med} = \frac{P+N}{3t \cdot L}$$

La tensione al lembo esterno, che coincide con la massima, è pari a:

$$\sigma_{max} = f_m = 2\sigma_{med} = \frac{2 \cdot (P+N)}{3t \cdot L}$$

Da cui si ricava:

$$t = \frac{2 \cdot (P+N)}{3f_m \cdot L}$$

8.2.2 Ribaltamento parziale

Il meccanismo consiste nella rotazione fuori piano della facciata, o di strisce verticali di pareti, con formazione di una cerniera cilindrica ad asse orizzontale, in corrispondenza di aperture e a livello dei solai⁴⁰.

Le cause strutturali sono da ricercarsi nello scarso collegamento delle pareti ortogonali e nell'assenza di catene metalliche e cordoli, presidi sismici che permettono all'edificio un comportamento scatolare. Il meccanismo può interessare strisce verticali di diversa geometria, a seconda della connessione di solai e murature di controvento con il muro di facciata. Il caso considera il ribaltamento dell'ultimo livello dell'edificio.

Figura 8.3 – Meccanismo di ribaltamento in vista assonometrica

Figura 8.4 – Schema di calcolo

Il momento ribaltante è contrastato dal momento stabilizzante, di segno opposto, generato dalla forza peso della parete dell'ultimo livello e dal carico gravante della copertura.

La determinazione del coefficiente di attivazione del meccanismo si ottiene uguagliando i momenti. Dato il polo di rotazione "A", si ottiene:

Momento ribaltante dovuto all'azione sismica:

$$M_{rA} = \alpha (P \bullet hbar + N \bullet h)$$

Momento stabilizzante dovuto al peso e ad eventuali tiranti:

$$M_{SA} = P \cdot \left(\frac{b}{2} - t\right) + N \cdot (d - t) + T \cdot h$$

Da cui, uguagliando i momenti:

$$\alpha = \frac{P \cdot (\frac{b}{2} - t) + N \cdot (d - t) + T \cdot h}{(P \cdot hbar + N \cdot h)}$$

⁴⁰ L. Milano, A. Mannella, C. Morisi, A. Martinelli (a cura di), *Allegato alle Linee Guida per la Riparazione e il Rafforzamento di elementi strutturali, Tamponature e Partizioni – Schede illustrative dei principali meccanismi di collasso locali negli edifi esistenti in muratura e dei realtivi modelli cinematici di analisi,* Reluis

Meccanismo di ribaltamento del cantonale

Il meccanismo consiste nella rotazione fuori piano di strisce verticali di pareti di un cuneo di distacco, delimitato da superfici di frattura ad andamento diagonale nelle pareti concorrenti nelle angolate libere, rispetto ad una cerniera posta alla base dello stesso⁴¹.

Le cause strutturali sono da ricercarsi nella spinta concentrata in testa ai cantonali, dovuti i particolare ai carichi trasmessi dai puntoni dei tetti a padiglione.

Il meccanismo può interessare strisce di muratura individuate intorno ad un asse passante per la cerniera e perpendicolare al piano verticale, che forma un angolo di 45° con le pareti convergenti con l'angolata.

Figura.8.5 – Meccanismo di ribaltamento in vista assonometrica

Figura.8.6 – Schema di calcolo

La parete, investita da un'azione sismica in direzione ortogonale al proprio piano, è soggetta ad un momento ribaltante: la forza statica equivalente, pari al prodotto di massa ed accelerazione sismica, tenderà a far ruotare la parete attorno alla cerniera cilindrica alla base; quanto più la porzione di muratura è in quota, tanto maggiore sarà il momento ribaltante.

Il momento ribaltante è contrastato dal momento stabilizzante, di segno opposto, generato dalla forza peso della parete e dai carichi che vi gravano.

La determinazione del coefficiente di attivazione del meccanismo si ottiene uguagliando i momenti. Dato il polo di rotazione "A", si ottiene:

Momento ribaltante dovuto all'azione sismica:

$$M_{rA} = \alpha \left(\sum_{i=1}^{n} P_i \bullet h_{bar,i} + \sum_{i=1}^{n} N_i \bullet h_i \right)$$

Momento stabilizzante dovuto al peso e ad eventuali tiranti:

$$M_{SA} = \sum_{i=1}^{n} Pi \cdot \frac{bi}{2} + \sum_{i=1}^{n} Ni \cdot di + \sum_{i=1}^{n} Ti \cdot hi - \sum_{i=1}^{n} Fhi \cdot hi - \sum_{i=1}^{n} Phi \cdot hi$$

⁴¹ L. Milano, A. Mannella, C. Morisi, A. Martinelli (a cura di), *Allegato alle Linee Guida per la Riparazione e il Rafforzamento di elementi strutturali, Tamponature e Partizioni – Schede illustrative dei principali meccanismi di collasso locali negli edifi esistenti in muratura e dei realtivi modelli cinematici di analisi,* Reluis

Da cui, uguagliando i momenti:

$$\alpha = \frac{\sum_{i=1}^{n} Pi \bullet \frac{bi}{2} + \sum_{i=1}^{n} Ni \bullet di + \sum_{i=1}^{n} Ti \bullet hi - \sum_{i=1}^{n} Fhi \bullet hi - \sum_{i=1}^{n} Phi \bullet hi}{\sum_{i=1}^{n} Pi \bullet hbar, i + \sum_{i=1}^{n} Ni \bullet hi}$$

A favore di sicurezza si assume la resistenza della muratura limitata: la cerniera cilindrica si forma lungo una linea più interna rispetto lo spigolo considerato. Indicando con "t" il segmento arretrato, nelle formule ai bracci del momento stabilizzante va sottratto "t".

Per determinare tale valore si considera che l'innesco del cinematismo si manifesti quando la tensione massima al lembo compresso raggiunge il valore di resistenza a compressione del muro, sotto le ipotesi di resistenza a trazione nulla della muratura e di distribuzione lineare di tensioni di compressione nel punto di contatto.

Imponendo una tensione f_m al lembo compresso, la tensione media di compressione è pari al rapporto dello sforzo normale agente sulla sezione e sull'area della sezione stessa:

$$\sigma_{med} = \frac{P+N}{3t \cdot L}$$

La tensione al lembo esterno, che coincide con la massima, è pari a:

$$\sigma_{max} = f_m = 2\sigma_{med} = \frac{2 \cdot (P+N)}{3t \cdot L}$$

Da cui si ricava:

$$t = \frac{2 \cdot (P+N)}{3f_m \cdot L}$$

Meccanismo di flessione verticale di parete monolitica

Il meccanismo consiste nella formazione di una cerniera cilindrica orizzontale che divide la parete in due blocchi ed è descritto dalla rotazione reciproca degli stessi attorno a tale asse per azioni fuori dal piano⁴².

Le cause strutturali sono da ricercarsi nello scarso collegamento delle pareti ortogonali, nel trattenimento efficace in testa alla parete ed in spinte orizzontali localizzate (archi, volte).

Il meccanismo può interessare strisce verticali di diversa geometria, in particolar modo pareti ben connesse la prima al solaio inferiore e la seconda al solaio superiore.

Figura 8.7 – Meccanismo di ribaltamento in vista assonometrica

Figura 8.8 – Schema di calcolo

La parete, investita da un'azione sismica in direzione ortogonale al proprio piano, è soggetta alla rotazione dei due blocchi attorno a tre poli di rotazione: non è possibile uguagliare il momento stabilizzante e quello ribaltante, ma è necessario ricorrere al Principio dei Lavori Virtuali.

Tale metodo consiste nel calcolare gli spostamenti virtuali dei blocchi rispetto ai punti di applicazione dei carichi, quindi scrivere l'uguaglianza tra il lavoro delle forze stabilizzanti ed instabilizzanti.

Si impone una rotazione virtuale ψ = 1 al corpo 1 rispetto la cerniera A, il corpo 2 ruota di conseguenza di un angolo ϕ rispetto la cerniera C:

$$\varphi = \psi \cdot \frac{h1}{h2}$$

Gli spostamenti dei baricentri e del punto di applicazione del carico sono valutati secondo la teoria del primo ordine:

$$\delta P1x = \frac{h1}{2} \bullet \psi$$

⁴² L. Milano, A. Mannella, C. Morisi, A. Martinelli (a cura di), *Allegato alle Linee Guida per la Riparazione e il Rafforzamento di elementi strutturali, Tamponature e Partizioni – Schede illustrative dei principali meccanismi di collasso locali negli edifi esistenti in muratura e dei realtivi modelli cinematici di analisi,* Reluis

$$\delta P2x = \delta cx - \delta cP2x = h1 \cdot \psi - \frac{h2}{2} \cdot \varphi = \frac{h1}{2} \cdot \psi$$
$$\delta N1x = h1 \cdot \psi$$
$$\delta Fhx = h1 \cdot \psi$$

$$\delta N2x = \delta cx - \delta cN2x = h1 \cdot \psi - h2 \cdot \varphi = \infty$$
$$\delta P1y = \frac{b1}{2} \cdot \psi$$

$$\delta P2y = \delta cy + \delta cP2y = b2 \cdot \psi + \left(b2 - \frac{b2}{2}\right) \cdot \varphi = b2\psi \cdot \left(1 + \frac{h1}{2h2}\right)$$

$$\delta N1y = d1 \cdot \psi$$

$$\delta N2y = \delta cy + \delta cN2y = b2 \cdot \psi + (b2 - d2) \cdot \varphi = b2 \psi \cdot \left(1 + \frac{h1}{h2}\right) - d2 \psi \cdot \frac{h1}{h2}$$

Applicando il Principio dei Lavori Virtuali pongo nullo il lavoro esterno:

$$-P1 \cdot \delta P1y - P2 \cdot \delta P2y - N1 \cdot \delta N1y - N2 \cdot \delta N2y + \alpha (P1 \cdot \delta P1x + P2 \cdot \delta P2x + N1 \cdot \delta N1x + N2 \cdot \delta N2x) = 0$$

Da cui si ricava il coefficiente di attivazione del meccanismo:

$$\alpha = \frac{P1 \cdot \frac{h1}{2} + P2 \cdot \frac{h1}{2} + N1 \cdot h_1 + N2 \cdot a - Fh_1}{P1 \cdot \frac{b1}{2} + P2 \cdot b2 \cdot (1 + \frac{h1}{2h_2}) + N1 \cdot d1 + N2 \cdot [b2 \cdot (1 + \frac{h1}{h_2}) - d2 \cdot \frac{h1}{h_2}]}$$

Meccanismo nel piano

Il meccanismo consiste nella formazione di una cerniera sferica alla base della parete, attorno alla quale la parete stessa ruota.

Tuttavia, se l'elemento risponde ai parametri della regola dell'arte, non perde la sua capacità portante.

La capacità di mantenere la stabilità in presenza di lesioni aperte di molti centimetri, indice di dislocazioni significative, attribuisce infatti alla strutture murarie una sorta di duttilità equivalente, che consente di sopportare intensità sismiche notevolmente superiori a quelle che innescano la lesione⁴³.

Le cause strutturali sono da ricercarsi nella presenza di aperture, con conseguente parzializzazione della parete in maschi murari e fasce di piano e il vincolo tra facciata esterna e pareti ortogonali.

Il meccanismo può interessare strisce verticali di diversa geometria, in particolar modo viene esaminato il caso più gravoso nei meccanismi di Il modo: il meccanismo di taglio dei maschi murari.

Figura 8.9 – Schema di calcolo

La valutazione della forza orizzontale distribuita che produce il distacco della parete viene effettuata utilizzando il Principio dei Lavori Virtuali.

Tale metodo consiste nel calcolare gli spostamenti virtuali dei blocchi rispetto ai punti di applicazione dei carichi, quindi scrivere l'uguaglianza tra il lavoro delle forze stabilizzanti ed instabilizzanti.

Si impone una rotazione virtuale ψ = 1 al corpo a rispetto la cerniera A, il corpo 2 ruota di conseguenza di un angolo ϕ rispetto la cerniera B.

⁴³ GIUFFRE' A, CARROCCI C, (1993), *Statica e dinamica delle costruzioni murarie storiche,* in Atti del convegno internazionale CNR "Le pietre da costruzione: il tufo calcareo e la pietra leccese", Mario adda Editore

$$\varphi = \psi \bullet \frac{h}{h} = \psi$$

I corpi sono soggetti ad ugual rotazione ϕ .

Gli spostamenti dei baricentri e del punto di applicazione del carico sono valutati secondo la teoria del primo ordine:

$$\delta P1x = \frac{2h}{3} \cdot \psi$$

$$\delta P2x = \frac{2h}{3} \cdot \psi$$

$$\delta N1x = h \cdot \psi$$

$$\delta N2x = h \cdot \psi$$

$$\delta P1y = \frac{L1}{3} \cdot \psi$$

$$\delta P2y = \frac{L2}{3} \cdot \psi$$

$$\delta N1y = 0.75 L1 \cdot \psi$$

$$\delta N2y = 0.75 L1 \cdot \psi$$

Applicando il Principio dei Lavori Virtuali pongo nullo il lavoro esterno:

$$-P1 \bullet \delta P1y - P2 \bullet \delta P2y - N1 \bullet \delta N1y - N2 \bullet \delta N2y + \alpha (P1 \bullet \delta P1x + P2 \bullet \delta P2x + N1 \bullet \delta N1x + N2 \bullet \delta N2x) = 0$$

Da cui si ricava il coefficiente di attivazione del meccanismo:

$$\alpha = \frac{P1 \cdot \frac{L1}{3} + P2 \cdot \frac{L2}{3} + 0.75 N1 \cdot L1 + 0.75 N2 \cdot L2}{\left(P1 \cdot \frac{2}{3} + P2 \cdot \frac{2}{3} + N1 + N2\right) \cdot h}$$

Approccio cinematico⁴⁴

Svolta l'analisi dei meccanismi locali ritenuti significativi per la costruzione, l'approccio cinematico permette di determinare l'andamento dell'azione orizzontale che la struttura è progressivamente in grado di sopportare all'evolversi del meccanismo.

Tale curva è espressa attraverso un moltiplicatore α , rapporto tra le forze orizzontali applicate ed i corrispondenti pesi delle masse presenti, rappresentato in funzione dello spostamento d_k di un punto di riferimento del sistema. La curva, determinata fino all'annullamento di ogni capacità di sopportare azioni orizzontali (α =0), può essere trasformata nella curva di capacità di un sistema equivalente ad un grado di libertà, nella quale può essere definita la capacità di spostamento ultimo del meccanismo locale, ovvero in accelerazione a₀* e spostamento d* spettrale, da confrontare con la domanda di spostamento richiesta dall'azione sismica.

$$a_{0} * = \frac{\alpha \cdot g}{e * \cdot FC}$$

$$e * = \frac{g \cdot M *}{\sum_{i=1}^{n+m} Pi}$$

$$M * = \frac{(\sum_{i=1}^{n+m} Pi \cdot \delta x, i)^{2}}{g \cdot \sum_{i=1}^{n+m} Pi \cdot \delta x, i^{2}}$$

Dove:

- g è l'accelerazione di gravità;
- $e * \dot{e}$ la frazione di massa partecipante della struttura;
- FC è il fattore di confidenza;
- *n+m* è il numero delle forze peso P_i applicate le cui masse, per effetto dell'azione sismica, generano forze orizzontali sugli elementi della catena cinematica;
- δx , *i* è lo spostamento virtuale orizzontale del punto di applicazione dell'i-esimo peso P_i.

Lo spostamento spettrale d^{*} dell'oscillatore equivalente può essere ottenuto come spostamento medio dei diversi punti nei quali sono applicati i pesi Pi, pesato sugli stessi.

In via approssimata, noto lo spostamento del punto di controllo d_k è possibile definire lo spostamento spettrale equivalente con riferimento agli spostamenti virtuali valutati sulla configurazione iniziale:

$$d *= dk \bullet \frac{\sum_{i=1}^{n+m} Pi \bullet \delta x, i^2}{\delta x, k \bullet \sum_{i=1}^{n+m} Pi \bullet \delta x, i}$$

Dove $\delta x, k$ è lo spostamento virtuale orizzontale del punto k, assunto come riferimento per la determinazione dello spostamento d_k.

Nel caso in cui la curva presenti un andamento lineare, fatto che si verifica quando le diverse azioni vengono mantenute costanti, la curva di capacità assume la seguente espressione:

⁴⁴ Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 Gennaio 2008, C.8.4

$$a * = a_0 * \left(1 - \frac{d *}{d_{o_*}}\right)$$

dove d_0 è lo spostamento spettrale equivalente corrispondente allo spostamento $d_{k,0}$.

La resistenza e la capacità di spostamento relativa allo Stato limite di danno e Stato limite di salvaguardia della vita (rispettivamente SLD e SLV, §§ 2.1 e 2.2 della norma) è valutata sulla curva di capacità, in corrispondenza dei punti seguenti:

- SLD: dalla accelerazione spettrale a*₀, corrispondente all'attivazione del meccanismo di danno;
- SLV: dallo spostamento spettrale d*u, corrispondente al minore fra gli spostamenti così definiti:
 - a) il 40% dello spostamento per cui si annulla l'accelerazione spettrale a*, valutata su una curva in cui si considerino solamente le azioni di cui è verificata la presenza fino al collasso;
 b) lo spostamento corrispondente a situazioni localmente incompatibili con la stabilità degli elementi della costruzione (ad esempio, sfilamento di travi), nei casi in cui questo sia valutabile.

Analisi cinematica lineare

L'analisi cinematica lineare è una verifica semplificata con fattore di struttura q. Nel caso in cui la verifica riguardi un elemento isolato o una porzione della costruzione comunque sostanzialmente appoggiata a terra, la verifica di sicurezza nei confronti dello Stato limite di salvaguardia della vita è soddisfatta se l'accelerazione spettrale a^{*}₀ che attiva il meccanismo soddisfa la seguente disuguaglianza:

$$a_0 * \ge \frac{\arg(Pvr)S}{q}$$

Dove:

- ag è funzione della probabilità di superamento dello stato limite scelto e della vita di riferimento;
- q è il fattore di struttura, che può essere assunto uguale a 2.0 a favore di sicurezza.

Se invece il meccanismo locale interessa una porzione della costruzione posta ad una certa quota, si deve tener conto del fatto che l'accelerazione assoluta alla quota della porzione di edificio interessata dal cinematismo è in genere amplificata rispetto a quella al suolo. Una approssimazione accettabile consiste nel verificare:

$$a_{0} * \geq \max\left\{\frac{a_{g}\left(P_{VT}\right)S}{q} ; \frac{Se\left(T_{1}\right) \bullet \psi(Z) \bullet \gamma}{q}\right\}$$

dove:

- S_e(T₁) è lo spettro elastico funzione della probabilità di superamento dello stato limite scelto (10%) e del periodo di riferimento VR;
- T1 è il primo periodo di vibrazione dell'intera struttura nella direzione considerata; in prima approssimazione è pari a $T_1 = C_1 \cdot H^{-3/4}$, con $C_1 = 0,05$ per gli edifici in muratura e H l'altezza dell'edificio rispetto la fondazione;
- $\psi(Z)$ è il primo modo di vibrazione nella direzione considerata, normalizzato ad uno in sommità all'edificio; in assenza di valutazioni più accurate può essere assunto pari a $\frac{Z}{H}$,

con Z altezza, rispetto alla fondazione dell'edificio, del baricentro delle linee di vincolo tra i blocchi interessati dal meccanismo ed il resto della struttura;

- γ è il coefficiente di partecipazione modale (in assenza di valutazioni più accurate può essere assunto $\gamma = \frac{3N}{2N+1}$, con N numero di piani dell'edificio).

Analisi cinematica non lineare

La verifica di sicurezza dei meccanismi locali nei confronti dello Stato limite di salvaguardia della vita consiste nel confronto tra la capacità di spostamento ultimo d^{*}_u del meccanismo locale e la domanda di spostamento ottenuta dallo spettro di spostamento in corrispondenza del periodo secante T_s.

Definito lo spostamento

$$d_s = 0.4d_u$$

ed individuata sulla curva di capacità l'accelerazione a_{s}^{*} , corrispondente allo spostamento d_{s}^{*} , il periodo secante è calcolato:

$$T_{\rm S} = 2\pi \sqrt{\frac{d_{\rm S}*}{a_{\rm S}*}}$$

La domanda di spostamento $\Delta_d(T_s)$ sarà così ottenuta:

- nel caso in cui la verifica riguardi un elemento isolato o una porzione della costruzione comunque sostanzialmente appoggiata a terra, la verifica di sicurezza nei confronti dello Stato limite di salvaguardia della vita si considera soddisfatta se:

$$d_{\rm u} \ge S_{\rm de}(T_{\rm s})$$

Dove $S_{De}(T_s)$ è lo spettro di risposta elastico in spostamento e si ricava dalla corrispondente risposta in accelerazione $S_e(T)$ mediante la seguente espressione:

$$S_{\text{de}}(T) = S_{\text{e}}(T) \cdot \left(\frac{T}{2\pi}\right)^2$$

- se invece il meccanismo locale interessa una porzione della costruzione posta ad una certa quota, deve essere considerato lo spettro di risposta in spostamento del moto alla quota della porzione di edificio interessata dal cinematismo.

Un' approssimazione accettabile consiste nel verificare:

$$\boldsymbol{d}_{u} * \geq \max\left\{ S_{\text{De}}(\text{Ts}); S_{\text{De}}(\text{T}_{1}) \bullet \boldsymbol{\psi}(\text{Z}) \bullet \boldsymbol{\gamma} \bullet \frac{\left(\frac{\text{Ts}}{\text{T1}}\right)^{2}}{\sqrt{\left(1 - \frac{\text{Ts}}{\text{T1}}\right)^{2} + 0.02 \bullet \frac{\text{Ts}}{\text{T1}}}} \right\}$$

Individuazione macroelementi

Sono stati individuati 21 macroelementi nelle 2 unità strutturali, per ognuno dei quali sono stati verificati meccanismi di ribaltamento totale e parziale, ribaltamento composto, flessione verticale e taglio.

L'individuazione dei macroelementi è stata svolta considerando porzioni più o meno estese della struttura muraria che, nel caso di murature di adeguata qualità, si comportano monoliticamente.

Il meccanismo di collasso di un macroelemento murario consiste nella formazione di zone di localizzazione spinta della deformazione (fessure o "linee" di frattura) che separano il macroelemento in blocchi quasi rigidi i quali assumono, sotto l'azione del sisma, un cinematismo a cui le forze di inerzia imprimono un moto accelerato che si evidenzia nel "crollo."

Le zone di connessione fra i macroelementi della costruzione sono già linee singolari prone a generare meccanismi di disaggregazione per cui un macroelemento può assumere roto traslazioni relative rispetto ai rimanenti⁴⁵.

A tal fine sono state divise le facciate est e nord in 3 macroelementi, e la facciata sud in 2 macroelementi, in corrispondenza del muro portante interno ortogonale alla facciata.

Gli altri macroelementi sono posti a livello altimetrico differente e derivano da componenti strutturali isolati o collegati. Il quadro fessurativo è risultato uno strumento utile all'individuazione dei meccanismi di collasso, in particolare del meccanismo di taglio, ma non essendovi lesioni significative è stata svolta l'analisi per i cinematismi più significativi.

La scelta dei macroelementi dei meccanismi di danno è legata ad alcune considerazioni:

- 1. I settori di parete perimetrale scelti come macroelementi sono vincolati da setti murari portanti, ma all'interno dei macroelementi stessi sono state individuate le porzioni delimitate da aperture, in quanto sono linee preferenziali per la rottura della parete,
- 2. Non sono stati rilevati particolari punti deboli come timpani o camini,
- 3. L'angolata ritenuta meno resistente è stata scelta in quando di confine tra le due unità strutturali.

⁴⁵ A. Di Tommaso , D. Bufo, *Meccanismi di collasso in zona sismica per macroelementi strutturali della edilizia storica ed azione bloccante mediante frp* , Università IUAV di Venezia Dipartimento di Costruzione dell'Architettura Campus Terese

Figura 8.10: Planivolumetrico, individuazione macroelementi

Analisi dei meccanismi locali di collasso tramite fogli di calcolo, LC 1

8.8.1 Macroelemento 1: ribaltamento semplice di parete, totale

Figura 8.11: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Massanismo	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
weccanismo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

DATI GEOMETRICI						AZIONE SISMICA		
b _i [m]	1.00	0.91	0.60	N piani	3	T ₁ [s]	0.42	
d _i [m]	0.75	0.68	0.45	z [m]	0.00	$S_e(T_1)$ [g]	0.38	
h _i [m]	4.85	6.57	5.53	H [m]	16.95	У	1.29	
h _{bar,i} [m]	2.77	8.22	14.04	L [m]	5.70	ψ	0.00	
	CAR	ICHI		ARRETRAMENTO CERNIERA				
P _i [kN]	392.04	606.39	361.58	t [m]	0.14			
N _i [kN]	90.33	90.33	29.58					

Tabella 8.1: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

Ricavati i dati necessari per il calcolo del coefficiente di attivazione del meccanismo, si calcolano il valore del momento ribaltante e di quello stabilizzante; uguagliando i risultati si ricava il valore di α.

$$\begin{split} M_{rA} &= \alpha \left(P_1 \bullet h_{bar1} + N_1 \bullet h_1 + P_2 \bullet h_{bar2} + N_2 \bullet h_2 + P_3 \bullet h_{bar3} + N_3 \bullet h_3 \right) \\ M_{sA} &= P_1 \bullet \left(\frac{b_1}{2} - t \right) + N_1 \bullet (d_1 - t) + P_2 \bullet \left(\frac{b_2}{2} - t \right) + N_2 \bullet (d_2 - t) + P_3 \bullet \left(\frac{b_3}{2} - t \right) + \end{split}$$

$$\alpha = \frac{P_1 \cdot \left(\frac{b_1}{2} - t\right) + N_1 \cdot (d_1 - t) + P_2 \cdot \left(\frac{b_2}{2} - t\right) + N_2 \cdot (d_2 - t) + P_3 \cdot \left(\frac{b_3}{2} - t\right) + N_3 \cdot (d_3 - t)}{P_1 \cdot h_{bar1} + N_1 \cdot h_1 + P_2 \cdot h_{bar2} + N_2 \cdot h_2 + P_3 \cdot h_{bar3} + N_3 \cdot h_3}$$
$$= \frac{500,41}{14524,29} = 0,038$$

Si procede con l'analisi statica lineare: si calcolano gli spostamenti virtuali orizzontali dei punti di applicazione delle forze, ponendo unitario lo spostamento della forza applicata in H.

$$\delta N3x = (h_1 + h_2 + h_3) \cdot \psi = 1$$

$$\psi = \frac{1}{(h_1 + h_2 + h_3)}$$

$$\delta P1x = h_{bar1} \cdot \psi = \frac{h_{bar1}}{(h_1 + h_2 + h_3)} = 0,164$$

$$\delta P2x = h_{bar2} \cdot \psi = \frac{h_{bar2}}{(h_1 + h_2 + h_3)} = 0,487$$

$$\delta P3x = h_{bar3} \cdot \psi = \frac{h_{bar3}}{(h_1 + h_2 + h_3)} = 0,83$$

$$\delta N1x = h_1 \cdot \psi = \frac{h_1}{(h_1 + h_2 + h_3)} = 0,286$$

$$\delta N2x = h_2 \cdot \psi = \frac{h_2}{(h_1 + h_2 + h_3)} = 0,674$$

Determinati gli spostamenti virtuali si possono calcolare la massa partecipante al meccanismo, la frazione di massa partecipante e l'accelerazione spettrale.

$$M * = \frac{(\sum_{i=1}^{n+m} Pi \cdot \delta x, i)^2}{g \cdot \sum_{i=1}^{n+m} Pi \cdot \delta x, i^2} = 127,43 \ kN$$
$$e * = \frac{g \cdot M *}{\sum_{i=1}^{n+m} Pi} = 0,80$$
$$a_0 * = \frac{\alpha \cdot g}{e * \cdot FC} = 0,47 \ \text{m/}_{\text{S}^2}$$

La verifica allo stato limite di salvaguardia della vita consiste nel confrontare questo valore di a_0^* , ottenuto dividendo ulteriormente per il fattore di confidenza a favore di sicurezza, con:

$$a_0 \geq \frac{\operatorname{ag} (\operatorname{Pvr})S}{q} = 0.71 \text{ m/}_{S^2}$$

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE			
MECCANISMO				EQUIVALENTE			
M _{RA} [kNm]	13118.15		M* [kN]	127.43		
M _{sA} [M _{sA} [kNm] 495.97			e*	0.80		
C	χ	0.0)38	$\alpha^*_0[m/s^2]$	0.47		
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA						
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.00	NON VERIFICATO			

Tabella 8.2: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

La verifica non risulta soddisfatta, si procede pertanto con la verifica statica non lineare.

Verifica statica non lineare

Si calcola l'equilibrio dei momenti nella configurazione ruotata, determinando la rotazione finita θ che annulla il coefficiente di attivazione del meccanismo α :

$$R_{Pi} = \sqrt{(h_{bar,i})^2 + (\frac{bi}{2} - t)^2}$$

$$R_{Ni} = \sqrt{(h_i)^2 + (d_i - t)^2}$$

$$\beta_{Pi} = \tan^{-1} \frac{h_{bar,i}}{\frac{bi}{2} - t}$$

$$\beta_{Ni} = \tan^{-1} \frac{h_i}{\frac{di}{di} - t}$$

$$Ms = \sum_{i=1}^n Pi \cdot R_{Pi} \cdot \cos(\beta_{Pi} + \theta) + \sum_{i=1}^n Ni \cdot R_{Ni} \cdot \cos(\beta_{Ni} + \theta) = 0$$

$$\theta = 0.035 \ rad = 2.011^\circ$$

Per la verifica si usa un punto di controllo corrispondente al punto di applicazione della forza H.

$$d_{k0} = H \cdot \sin_{\theta k0} = 0,59 \, m$$

Lo spostamento spettrale d_o* dell'oscillatore equivalente a 1 G.D.L. è pari a:

$$d_0 * = d_{k0} \bullet \frac{\sum_{i=1}^{n+m} Pi \bullet \delta x, i^2}{\delta x, k \bullet \sum_{i=1}^{n+m} Pi \bullet \delta x, i} = 0,39 m$$

Lo spostamento ultimo d_u*, da confrontare con lo spostamento ultimo permesso dalle caratteristiche geometriche legate alla stabilità degli elementi, risulta:

$$du * = 0,4 \bullet d_0 * = 0,16 m$$

Lo spostamento spettrale valutato in conformità con il periodo secante T_s risulta:

$$ds * = 0.4 \bullet d_u * = 0.061 m$$

167

L'accelerazione corrispondente vale:

$$a_{s} * = a_{o} * \left(1 - \frac{d *}{d_{o} *}\right) = 0.37 \text{ m/}_{s^{2}}$$

Il periodo secante:

$$T_{\rm S} = 2\pi \sqrt{\frac{d_S *}{a_S *}} = 2,59 \, s$$

La verifica è soddisfatta se:

$$d_{\rm u} *\geq {\rm S}_{\rm de} ({\rm T}_{\rm S}) = 0,096 \, {\rm m}$$

DA	TI GEOME	VERIEICA STATICA NON						
R _{Pi} [m]	2.79	8.23	14.04			LINFARE ALLO STATC		
R _{Ni} [m]	4.89	11.43	16.95			SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.45	1.53	1.56	θ [rad]	0.035	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.45	1.52	1.55	θ [°]	2.011	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.096	
d _{k0} [m]	0.59	d _u * [m]	0.16	as* [m/s²]	0.37	d _u * [m]	0.00	
d ₀ * [m]	0.39	d _s * [m]	0.06	$T_s[s]$	2.59	VERIFICATO		

Tabella 8.3: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

La verifica statica non lineare risulta soddisfatta al 167%, si procede comunque, a titolo di esempio, con l'inserimento di tiranti, dispositivi metallici che contrastano le azioni fuori piano della parete.

Inserimento di tiranti

Per la verifica del corretto funzionamento dei tiranti vengono presi in considerazione 3 fattori:

- lo snervamento del tirante T' =
- $T' = f_{yd} \bullet A_s = 43,62 \ kN$
- il punzonamento della muratura $T'' = f_{yd} \cdot 2t \cdot$
- $T'' = f_{yd} \bullet 2t \bullet [(a+t) + (b+t)] = 44,31 \, kN$ $T''' = f_{yd} \bullet a \bullet b = 36,92 \, kN$
- la penetrazione dell'ancoraggio

Dove t indica lo spessore della parete, a e b le dimensioni della piastra e As l'area della superficie trasversale del tirante.

ACCIAIO AISI 304 L				VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43		171.43	Snervamento tirante T' [kN] 43.6			
	PIASTRA			Punzonamento muratura T'' [kN]	44.31	
a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	36.92	

Tabella 8.4: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

La verifica statica lineare non risulta soddisfatta:

$$a_0 * = \frac{\alpha \cdot g}{e * \cdot FC} = 0.428 \text{ m/}_{S^2} < a_0 = 0.62 \text{ m/}_{S^2}$$

Si impone allora $a_0 *$ pari al valore per cui viene soddisfatta, e si ricava α per sostituirlo al primo valore ottenuto con l'equilibrio dei momenti:

$$\alpha = \frac{a_0 * \bullet e * \bullet FC}{g} = 0,067 \text{ m}/_{S^2}$$

Si riformula l'equilibrio dei momenti inserendo la forza T del tirante posto al livello dell'ultimo impalcato, unica incognita nell'equazione:

$$T \frac{\alpha (P_1 \cdot h_{bar1} + N_1 \cdot h_1 + P_2 \cdot h_{bar2} + N_2 \cdot h_2 + P_3 \cdot h_{bar3} + N_3 \cdot h_3)}{H} - \frac{P_1 \cdot \left(\frac{b_1}{2} - t\right) + N_1 \cdot (d_1 - t) + P_2 \cdot \left(\frac{b_2}{2} - t\right) + N_2 \cdot (d_2 - t) + P_3 \cdot \left(\frac{b_3}{2} - t\right) + N_3 \cdot (d_3 - t)}{H} = 20,93 \ kN$$

Scelto il numero di tiranti *n* da collocare ad ogni livello di impalcato, si calcola la forza dei tiranti secondo una proporzione lineare:

$$H: T = h_n : T_n$$
$$T_1 = \frac{h_n \cdot T}{H} = 5,84 \ kN$$
$$T_2 = \frac{h_n \cdot T}{H} = 13,75 \ kN$$

Si effettua quindi la verifica dei tiranti: se questa risulta soddisfatta si ritiene soddisfatta anche la verifica statica lineare (si utilizza il valore di a_0 * che verifica la parete).

$$\frac{T_1}{n_1} < \min\{T'; T''; T'''\}$$
$$\frac{T_2}{n_2} < \min\{T'; T''; T'''\}$$
$$\frac{T_3}{n_3} < \min\{T'; T''; T'''\}$$

PORTATA	ORTATA TOTALE NUMERO TIRANTI			VERIFICA PORTATA SINGOLO TIRANTE		
T ₁ [kN]	5.84	n ₁	2	T ₁ [kN] 2.92		VERIFICATO
T ₂ [kN]	13.75	n ₂	2	T ₂ [kN]	6.875	VERIFICATO
T ₃ [kN]	20.93	n ₃	2	$T_3[kN]$	10.465	VERIFICATO

Tabella 8.5: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.2 Macroelemento 1: ribaltamento semplice di parete, parziale

Figura 8.12: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.				
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad				
Meccanismo:	sse orizzontale. La linea di rottura si manifesta generalmente in				
	corrispondenza di aperture e a livello dei solai.				
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e				
Cause strutturali:	orizzontamenti);				
	scarsa resistenza della muratura.				

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

DATI GEOMETRICI			AZIONE SISMICA				
b _i [m]	0.6			N piani	3	T ₁ [s]	0.42
d _i [m]	0.45			z [m]	11.42	$S_e(T_1)$ [g]	0.38
h _i [m]	5.53			H [m]	16.95	У	1.29
h _{bar,i} [m]	2.64			L [m]	5.70	ψ	0.67
CARICHI			ARRETRAMENTO CERNIERA				
P _i [kN]	361.58			+ [m]		0.04	
N _i [kN]	29.58			ιμη	0.04		

Tabella 8.6: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

Ricavati i dati necessari per il calcolo del coefficiente di attivazione del meccanismo, si calcolano il valore del momento ribaltante e di quello stabilizzante; uguagliando i risultati si ricava il valore di α.

$$M_{rA} = \alpha \left(P_1 \bullet h_{bar1} + N_1 \bullet h_1 \right)$$
$$M_{sA} = P_1 \bullet \left(\frac{b_1}{2} - t \right) + N_1 \bullet (d_1 - t)$$

CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

$$\alpha = \frac{P_1 \bullet \left(\frac{b_1}{2} - t\right) + N_1 \bullet (d_1 - t)}{P_1 \bullet h_{bar1} + N_1 \bullet h_1} = \frac{136,44}{1558,92} = 0,093$$

Si procede quindi con l'analisi statica lineare: si calcolano gli spostamenti virtuali orizzontali dei punti di applicazione delle forze, ponendo unitario lo spostamento della forza applicata in H.

$$\delta N1x = h_1 \bullet \psi = 1$$
$$\psi = \frac{1}{h_1}$$
$$\delta P1x = h_{bar1} \bullet \psi = \frac{h_{bar1}}{h_1} = 0.48$$

Determinati gli spostamenti virtuali si calcolano la massa partecipante del meccanismo, la frazione di massa partecipante e l'accelerazione spettrale.

$$M * = \frac{(\sum_{i=1}^{n+m} Pi \cdot \delta x, i)^2}{g \cdot \sum_{i=1}^{n+m} Pi \cdot \delta x, i^2} = 37,21 \ kN$$
$$e * = \frac{g \cdot M *}{\sum_{i=1}^{n+m} Pi} = 0,93$$
$$a_0 * = \frac{\alpha \cdot g}{e * \cdot FC} = 1,01 \ \text{m/}_{S^2}$$

La verifica allo stato limite di salvaguardia della vita consiste nel confrontare questo valore di a_0^* , ottenuto dividendo ulteriormente per il fattore di confidenza a favore di sicurezza, con:

$$a_0 * \ge \max\left\{\frac{a_g(P_{VT})S}{q}; \frac{Se(T_1) \bullet \psi(Z) \bullet \gamma}{q}\right\} = \max\left\{0,71; 1,615\right\} \frac{m}{s^2}$$

COFFE	CIENTE DI	ΑΤΤΙVΑΖΙΟ	NE DEI	CURVA DI CAPACITA' DELL'OSCILLATORE			
COLITI							
	IVIECCA			EQUIVA	ALENTE		
M _{RA} [kNm]	1118.14		M* [kN]	37.21		
M _{sA} [M _{sA} [kNm] 107.69		e*	0.93			
C	χ	0.0)93	$\alpha^*_0[m/s^2]$	0.96		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.615	NON VERIFICATO			

Tabella 8.7: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

La verifica non risulta soddisfatta, si procede pertanto con la verifica statica non lineare.

Verifica statica non lineare

Si calcola l'equilibrio dei momenti nella configurazione ruotata, determinando la rotazione finita θ che annulla il coefficiente di attivazione del meccanismo α :

$$R_{Pi} = \sqrt{(h_{bar,i})^2 + (\frac{bi}{2} - t)^2}$$

$$R_{Ni} = \sqrt{(h_i)^2 + (d_i - t)^2}$$

$$\beta_{Pi} = \tan^{-1} \frac{h_{bar,i}}{\frac{bi}{2} - t}$$

$$\beta_{Ni} = \tan^{-1} \frac{h_i}{\frac{di}{di} - t}$$

$$Ms = \sum_{i=1}^{n} Pi \cdot R_{Pi} \cdot \cos(\beta_{Pi} + \theta) + \sum_{i=1}^{n} Ni \cdot R_{Ni} \cdot \cos(\beta_{Ni} + \theta) = 0$$

$$\theta = 0,096 \ rad = 5,501^\circ$$

Per la verifica si usa un punto di controllo corrispondente al punto di applicazione della forza H.

$$d_{k0} = H \cdot \sin \theta_{k0} = 0,53 m$$

Lo spostamento spettrale d_o* dell'oscillatore equivalente a 1 G.D.L. è pari a:

$$d_0 * = d_{k0} \bullet \frac{\sum_{i=1}^{n+m} Pi \bullet \delta x, i^2}{\delta x, k \bullet \sum_{i=1}^{n+m} Pi \bullet \delta x, i} = 0,29 m$$

Lo spostamento ultimo d_u^* , da confrontare con lo spostamento ultimo permesso dalle caratteristiche geometriche legate alla stabilità degli elementi, risulta:

$$du * = 0.4 \cdot d_0 * = 0.12 m$$

Lo spostamento spettrale valutato in conformità con il periodo secante T_s risulta:

$$ds * = 0.4 \bullet d_u * = 0.05 m$$

L'accelerazione corrispondente vale:

$$a_{S} * = a_{O} * \left(1 - \frac{d *}{d_{O} *}\right) = 0.85 \text{ m}/_{S^{2}}$$

Il periodo secante:

$$T_{\rm S} = 2\pi \sqrt{\frac{d_{\rm S}*}{{\rm a}_{\rm S}*}} = 1,47 \, {\rm s}$$

La verifica è soddisfatta se:

$$\boldsymbol{d}_{u} * \geq \max\left\{ S_{\text{De}}(\text{Ts}); \ S_{\text{De}}(\text{T}_{1}) \bullet \psi(\text{Z}) \bullet \gamma \bullet \frac{\left(\frac{\text{Ts}}{\text{T1}}\right)^{2}}{\sqrt{\left(1 - \frac{\text{Ts}}{\text{T1}}\right)^{2} + 0.02 \bullet \frac{\text{Ts}}{\text{T1}}}} \right\}$$
CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

DA	ATI GEOME	VERIEICA STATIC							
R _{Pi} [m]	2.65					LINEARE ALLO STATIC			
R _{Ni} [m]	5.54					SALVAGUARDIA DE	LLA VITA		
β_{Pi} [rad]	1.47			θ [rad]	0.096	S _{De} (T _s) [m]	0.071		
β_{Ni} [rad]	1.49			θ [°]	5.501	S _{De} (T ₁) [m]	0.002		
		PARA	METRI			d _u * [m]	0.070		
d _{k0} [m]	0.53	d _u * [m]	0.12	as* [m/s ²]	0.85	d _u * [m] 0.025			
d ₀ * [m]	0.29	d _s * [m]	0.05	T _s [s]	1.47	VERIFICATO			

= { 0,071 ; 0,025 }m

Tabella 8.8: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

La verifica statica non lineare risulta soddisfatta al 170%.

8.8.3 Macroelemento 1: flessione verticale di parete

Figura 8.13: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

		DATI GEO	OMETRICI			AZIONE SISMICA	
b _i [m]	0.91	0.60		N piani	3	T ₁ [s]	0.42
d _i [m]	0.68	0.45		z [m]	10.79	$S_e(T_1)$ [g]	0.38
h _i [m]	6.57	5.53		H [m]	16.95	У	1.29
h _{bar,i} [m]	3.39	2.64		L [m]	5.70	ψ	0.68
	CAR	ICHI					
P _i [kN]	606.39	361.58					
N _i [kN]	90.33	29.58					

Tabella.8.9: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

Si impone una rotazione virtuale ψ = 1 ad un blocco, il secondo subirà una rotazione:

$$\varphi = \psi \bullet \frac{h1}{h2}$$

Si valutano gli spostamenti virtuali dei punti di applicazione delle forze:

$$\delta P1x = \frac{h1}{2} \cdot \psi$$

$$\delta P2x = \delta cx - \delta cP2x = h1 \cdot \psi - \frac{h2}{2} \cdot \varphi = \frac{h1}{2} \cdot \psi$$

$$\delta N1x = h1 \cdot \psi$$

$$\delta N2x = \delta cx - \delta cN2x = h1 \cdot \psi - h2 \cdot \varphi = \infty$$

$$\delta P1y = \frac{b1}{2} \cdot \psi$$

$$\delta P2y = \delta cy + \delta cP2y = b2 \cdot \psi + \left(b2 - \frac{b2}{2}\right) \cdot \varphi = b2 \psi \cdot \left(1 + \frac{h1}{2h2}\right)$$

$$\delta N1y = d1 \cdot \psi$$

$$\delta N2y = \delta cy + \delta cN2y = b2 \cdot \psi + (b2 - d2) \cdot \varphi = b2 \psi \cdot \left(1 + \frac{h1}{h2}\right) - d2 \psi \cdot \left(1 + \frac{h1}{h2}\right)$$

Applicando il Principio dei Lavori Virtuali si pone nullo il lavoro esterno:

$$- P1 \cdot \delta P1y - P2 \cdot \delta P2y - N1 \cdot \delta N1y - N2 \cdot \delta N2y + \alpha \left(P1 \cdot \delta P1x + P2 \cdot \delta P2x + N1 \cdot \delta N1x + N2 \cdot \delta N2x \right) = 0$$

Da cui si ricava il coefficiente di attivazione del meccanismo:

$$\alpha = \frac{P1 \cdot \frac{h1}{2} + P2 \cdot \frac{h1}{2} + N1 \cdot h_1 + N2 \cdot \infty}{P1 \cdot \frac{b1}{2} + P2 \cdot b2 \cdot \left(1 + \frac{h1}{2h^2}\right) + N1 \cdot d1 + N2 \cdot \left[b2 \cdot \left(1 + \frac{h1}{h^2}\right) - d2 \cdot \frac{h1}{h^2}\right]} = \frac{768,43}{3773,26} = 0,187$$

Si procede con l'analisi statica lineare: si calcolano gli spostamenti virtuali orizzontali dei punti di applicazione delle forze, ponendo unitario lo spostamento della forza applicata in H.

$$\delta N1x = h_1 \cdot \psi = 1$$

$$\delta P1x = h_{bar1} \cdot \psi = \frac{h_{bar1}}{h_1} = 0,52$$

$$\delta P2x = h_{bar1} \cdot \psi = \frac{h_{bar1}}{h_1 + h_2} = 0,52$$

$$\delta N2x = h_{bar1} \cdot \psi = \frac{h_{bar1}}{h_1 + h_2} = 0,00$$

Determinati gli spostamenti virtuali si possono calcolare la massa partecipante al meccanismo, la frazione di massa partecipante e l'accelerazione spettrale.

$$M * = \frac{(\sum_{i=1}^{n+m} Pi \cdot \delta x, i)^2}{g \cdot \sum_{i=1}^{n+m} Pi \cdot \delta x, i^2} = 101,88 \ kN$$
$$e * = \frac{g \cdot M *}{\sum_{i=1}^{n+m} Pi} = 0,92$$
$$a_0 * = \frac{\alpha \cdot g}{e * \cdot FC} = 1,54 \ m/s^2$$

La verifica allo stato limite di salvaguardia della vita consiste nel confrontare questo valore di a_0^* , ottenuto dividendo ulteriormente per il fattore di confidenza a favore di sicurezza, con:

h1

h2

$$a_0 * \ge \max\left\{\frac{a_g(P_{VT})S}{q}; \frac{Se(T_1) \bullet \psi(Z) \bullet \gamma}{q}\right\} = \max\left\{0,71; 1,62\right\} \frac{m}{s^2}$$

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
Σδ _{xPi} P _i +	- Σδ _{×Ni} Ν _i	377	3.26	M* [kN]	101.88	
Σδ _{yPi} P _i +	⊦Σδ _{γNi} N _i	70	6.4	e* 0.92		
(χ	0.1	L 87	α* _o [m/s ²] 1.54		
VE	ERIFICA STAT	TICA LINEARE	ALLO STATO	D LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.62	NON VERIFICATO		

Tabella.8.10: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

La verifica risulta non soddisfatta, si procede quindi con la verifica statica non lineare.

Verifica statica non lineare

Si calcola l'equilibrio dei momenti nella configurazione ruotata rispetto ai poli A e C di *figura* 6, determinando la rotazione finita θ che annulla il coefficiente di attivazione del meccanismo α :

$$R_{Pi} = \sqrt{(h_{bar,i})^{2} + (\frac{bi}{2})^{2}}$$

$$R_{Ni} = \sqrt{(h_{i})^{2} + (d_{i})^{2}}$$

$$\beta_{Pi} = \tan^{-1} \frac{h_{bar,i}}{\frac{bi}{2}}$$

$$\beta_{Ni} = \tan^{-1} \frac{h_{i}}{di}$$

$$R_{C} = \sqrt{(H)^{2} + (b_{i})^{2}}$$

$$\beta_{C} = \tan^{-1} \frac{H}{b_{i}}$$

$$M_{S} = P_{1} \cdot R_{P_{1}} \cdot \cos(\beta_{P_{1}} + \theta) + N_{1} \cdot R_{N_{1}} \cdot \cos(\beta_{N_{1}} + \theta) + (P_{2} + N_{2}) \cdot R_{c} \cdot \cos(\beta_{c} + \theta)$$

$$+ N_{2} \cdot R_{N_{2}}^{C} \cdot \cos[\beta_{N_{2}}^{C} + (x - 1) \cdot \theta] \frac{R_{c} \cdot \sin(\beta_{c} + \theta)}{h_{2x} \cos[(x - 1) \cdot \theta]} = 0$$

$$\theta = 0,119 \ rad = 6,865^{\circ}$$

Per la verifica si usa un punto di controllo corrispondente al punto di applicazione della forza H.

$$d_{k0} = H \cdot \sin \theta_{k0} = 1.32 m$$

Lo spostamento spettrale d_o* dell'oscillatore equivalente a 1 G.D.L. è pari a:

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

$$d_0 * = d_{k0} \bullet \frac{\sum_{i=1}^{n+m} Pi \bullet \delta x, i^2}{\delta x, k \bullet \sum_{i=1}^{n+m} Pi \bullet \delta x, i} = 0,45 m$$

Lo spostamento ultimo d_u^* , da confrontare con lo spostamento ultimo permesso dalle caratteristiche geometriche legate alla stabilità degli elementi, risulta:

$$du * = 0,4 \bullet d_0 * = 0,18 m$$

Lo spostamento spettrale valutato in conformità con il periodo secante T_s risulta:

$$ds * = 0.4 \bullet d_u * = 0.07 m$$

L'accelerazione corrispondente vale:

$$a_{s} * = a_{o} * \left(1 - \frac{d}{d_{o}}\right) = 1,51 \text{ m/}_{s^{2}}$$

Il periodo secante:

$$T_{\rm S} = 2\pi \sqrt{\frac{d_{S}^{*}}{{\rm a}_{S}^{*}}} = 1,38 \, {\rm s}$$

La verifica è soddisfatta se:

$$\boldsymbol{d}_{u} * \geq \max\left\{ S_{\text{De}}(\text{Ts}); \ S_{\text{De}}(\text{T}_{1}) \bullet \psi(\text{Z}) \bullet \gamma \bullet \frac{\left(\frac{\text{Ts}}{\text{T1}}\right)^{2}}{\sqrt{\left(1 - \frac{\text{Ts}}{\text{T1}}\right)^{2} + 0.02 \bullet \frac{\text{Ts}}{\text{T1}}}} \right\}$$
$$= \{ 0.045; \ 0.064 \}\text{m}$$

DA	TI GEOME	VERIFICA STATIC							
R _{Pi} [m]	3.31	2.78		R _c [m]	2.65	LINEARE ALLO STATC			
R _{Ni} [m]	6.59	5.54		βc [rad]	5.54	SALVAGUARDIA DE	LLA VITA		
β_{Pi} [rad]	1.43	1.46		θ [rad]	0.119	S _{De} (T _s) [m]	0.045		
β_{Ni} [rad]	1.50	1.52		θ [°]	6.865	S _{De} (T ₁) [m]	0.002		
		PARA	METRI			d _u * [m]	0.070		
d _{k0} [m]	0.53	d _u * [m]	0.18	as* [m/s²]	1.51	d _u * [m] 0.025			
d ₀ * [m]	0.45	d _s * [m]	0.07	T _s [s]	1.38	VERIFICATO			

Tabella 8.11: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Figura 8.14: Individuazione macroelemento, pianta e prospetto

Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".
Meccanismo:	rottura a taglio dell'intera facciata.
	in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove
Cause strutturali	sussiste una maggiore concentrazione di tensioni;
	murature di modesta qualità o in presenza di discontinuità.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	DATI GEOMETRICI									AZIONE	SISMICA	
b _i [m]	0.60	0.60	0.84	0.60	0.60	0.60	0.60	0.60	N piani	3	T ₁ [s]	0.42
d _i [m]	0.45	0.45	0.63	0.45	1.45	0.45	2.45	0.45	z [m]	10.79	$S_e(T_1)[g]$	0.38
L _i [m]	1.25	1.90	2.52	1.99	1.99	2.52	2.15	1.93	H [m]	16.95	У	1.29
a _i [m]	2.09	3.56	4.23	3.66	3.66	4.23	3.81	3.04	h _i [m]	4.35	ψ	0.68
Ai [m ²]	2.299	3.916	4.653	4.026	4.026	4.653	4.191	3.344	h _o [m]	1.09		
						CARICHI						
P _i [kN]	29.36	44.63	82.87	46.74	46.74	59.19	50.5	45.33				
N _i [kN]	28.93	49.27	78.46	50.65	50.65	58.54	52.73	42.07				

 Tabella 8.12: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

Si impone una rotazione virtuale ψ = 1 ad un corpo rispetto la cerniera alla base, gli altri corpi ruotano di conseguenza di un angolo φ :

$$\varphi = \psi \bullet \frac{h}{h} = \psi$$

l corpi sono soggetti ad uguale rotazione ψ .

Si valutano gli spostamenti virtuali dei punti di applicazione delle forze:

$$\delta Pix = \frac{2h}{3} \bullet \psi$$
$$\delta Nix = h \bullet \psi$$

$$\delta P1y = \frac{L1}{3} \cdot \psi$$

$$\delta P2y = \frac{L2}{3} \cdot \psi$$

$$\delta P3y = \frac{L3}{3} \cdot \psi$$

$$\delta P4y = \frac{L4}{3} \cdot \psi$$

$$\delta P5y = \frac{L5}{3} \cdot \psi$$

$$\delta P6y = \frac{L6}{3} \cdot \psi$$

$$\delta P7y = \frac{L7}{3} \cdot \psi$$

$$\delta P8y = \frac{L8}{3} \cdot \psi$$

$$\delta N1y = d_1 \cdot \psi$$

$$\delta N2y = d_2 \cdot \psi$$

$$\delta N3y = d_3 \cdot \psi$$

$$\delta N4y = d_4 \cdot \psi$$

$$\delta N5y = d_5 \cdot \psi$$

$$\delta N6y = d_6 \cdot \psi$$

$$\delta N8y = d_8 \cdot \psi$$

Applicando il Principio dei Lavori Virtuali pongo nullo il lavoro esterno:

$$\alpha \left(\sum_{i=1}^{n} P_{i} \cdot \delta P_{ix} + \sum_{i=1}^{n} N_{i} \cdot \delta N_{ix} \right) - \sum_{i=1}^{n} P_{i} \cdot \delta P_{iy} + \sum_{i=1}^{n} N_{i} \cdot \delta N_{iy} = 0$$

Da cui si ricava il coefficiente di attivazione del meccanismo:

$$\alpha = \frac{\sum_{i=1}^{n} P_{i} \cdot \delta P_{iy} + \sum_{i=1}^{n} N_{i} \cdot \delta N_{iy}}{\sum_{i=1}^{n} P_{i} \cdot \delta P_{ix} + \sum_{i=1}^{n} N_{i} \cdot \delta N_{ix}} = \frac{1160,84}{3573,79} = 0,317$$

Determinati gli spostamenti virtuali si possono calcolare la massa partecipante al meccanismo, la frazione di massa partecipante e l'accelerazione spettrale.

$$M * = \frac{\left(\sum_{i=1}^{n+m} Pi \cdot \delta x, i\right)^2}{g \cdot \sum_{i=1}^{n+m} Pi \cdot \delta x, i^2} = 80,06 \ kN$$
$$e * = \frac{g \cdot M *}{\sum_{i=1}^{n+m} Pi} = 0,96$$
$$2 \cdot * = \frac{\alpha \cdot g}{2} = 2.49 \ m/$$

$$a_0 * = \frac{u \cdot g}{e * \cdot FC} = 2,49 \text{ m}/_{S^2}$$

La verifica allo stato limite di salvaguardia della vita consiste nel confrontare questo valore di a_0^* , ottenuto dividendo ulteriormente per il fattore di confidenza a favore di sicurezza, con:

$$a_0 * \ge \max\left\{\frac{a_g(P_{VT})S}{q}; \frac{Se(T_1) \bullet \psi(Z) \bullet \gamma}{q}\right\} = \max\left\{0,71; 1,62\right\} \frac{m}{s^2}$$

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
	MECCA	NISMO		EQUIVALENTE				
Σδ _{xPi} P _i +	- Σ δ_{xNi} N _i	296	4.85	M* [kN]	80.06			
Σδ _{yPi} P _i +	$δ_{yPi} P_i + Σ δ_{yNi} N_i$ 940.61			e* 0.96				
C	χ	0.3	817	α* _o [m/s ²] 2.49				
VE	RIFICA STAT	ICA LINEARE	ALLO STATC	D LIMITE DI SALVAGUARDIA DELLA VITA				
α₀[m/s²]	0.71	α₀[m/s²]	1.62	VERIFICATO				

Tabella 8.13: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

La verifica risulta soddisfatta al 150%.

8.8.5 Macroelemento 2: ribaltamento semplice di parete, totale

Figura 8.15: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanismo	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
weccanismo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

		DATI GEO	DMETRICI	AZIONE SISM			SISMICA
b _i [m]	1.00	0.91	0.60	N piani	3	T ₁ [s]	0.42
d _i [m]	0.75	0.68	0.45	z [m]	0.00	$S_e(T_1)$ [g]	0.38
h _i [m]	4.85	6.57	5.53	H [m]	16.95	У	1.29
h _{bar,i} [m]	2.77	8.22	14.03	L [m]	9.00	ψ	0.00
	CAR	ICHI		ARRETRAMENTO CERNIERA			RA
P _i [kN]	551.16	882.55	530.28	t [m]	0.14		
N _i [kN]	123.65	123.65	40.49				

Tabella 8.14: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	1894	6.88	M* [kN]	183.83	
M _{sA} [kNm]	712	2.31	e* 0.80		
C	χ	0.0)38	α* _o [m/s ²] 0.46		
VE	ERIFICA STAT	TICA LINEARE	ALLO STATO	D LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.00	NON VERIFICATO		

Tabella 8.15: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	TA	VERIFICA STATICA NON						
R _{Pi} [m]	2.84	8.23	14.03			LINEARE ALLO STATC				
R _{Ni} [m]	4.89	11.43	16.95			SALVAGUARDIA DE	LLA VITA			
β_{Pi} [rad]	1.45	1.53	1.56	θ [rad]	0.038	S _{De} (T _s) [m] 0.096				
β_{Ni} [rad]	1.45	1.52	1.55	θ [°]	2.153	S _{De} (T ₁) [m]	0.002			
		PARA	METRI			d _u * [m]	0.096			
d _{k0} [m]	0.64	d _u * [m]	0.16	as* [m/s ²]	0.39	d _u * [m] 0.00				
d ₀ * [m]	0.39	d _s * [m]	0.06	T _s [s]	2.54	VERIFICATO				

Tabella 8.16: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.6 Macroelemento 2: ribaltamento semplice di parete, parziale

Figura 8.16: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI			AZIONE SISMICA				
b _i [m]	0.6			N piani	3	T ₁ [s]	0.42
d _i [m]	0.45			z [m]	11.42	$S_e(T_1)$ [g]	0.38
h _i [m]	5.53			H [m]	16.95	У	1.29
h _{bar,i} [m]	2.63			L [m]	9.00	ψ	0.67
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	530.28			+ [m]		0.04	
N _i [kN]	40.49			ιμη	0.04		

 Tabella 8.17: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
M _{RA} [kNm]	161	8.55	M* [kN]	54.43		
M _{sA} [M _{sA} [kNm] 156.79			e* 0.94			
C	χ	0.0)97	$\alpha^*_0[m/s^2]$	1.016		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
α₀[m/s²]	0.71	α₀[m/s²]	1.615	NON VERIFICATO			

Tabella 8.18: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIEICA STATIC						
R _{Pi} [m]	2.64							
R _{Ni} [m]	5.54					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.47			θ [rad]	0.097	S _{De} (T _s) [m]	0.71	
β_{Ni} [rad]	1.49			θ [°]	5.533	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.071	
d _{k0} [m]	0.53	d _u * [m]	0.12	as* [m/s ²]	0.85	d _u * [m]	0.025	
d ₀ * [m]	0.29	d _s * [m]	0.05	T _s [s]	1.47	VERIFICATO		

Tabella 8.19: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.7 Macroelemento 2: flessione verticale di parete

Figura 8.17: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

		DATI GEO	DMETRICI			AZIONE	SISMICA
b _i [m]	0.91	0.60		N piani	3	T ₁ [s]	0.42
d _i [m]	0.68	0.45		z [m]	10.79	$S_e(T_1)$ [g]	0.38
h _i [m]	6.57	5.53		H [m]	16.95	У	1.29
h _{bar,i} [m]	3.40	2.63		L [m]	9.00	ψ	0.68
	CAR	ICHI					
P _i [kN]	882.55	530.28					
N _i [kN]	123.65	40.49					

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

 Tabella 8.20:
 dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE				
MECCANISMO				EQUIVALENTE				
Σδ _{xPi} P _i +	- Σδ _{×Ni} Ν _i	545	3.57	M* [kN]	147.29			
Σδ _{yPi} P _i +	$Σ δ_{yPi} P_i + Σ δ_{yNi} N_i$ 1024.64			e* 0.92				
C	χ	0.1	L 87	$\alpha^*_0[m/s^2]$	1.55			
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.62	NON VERIFICATO				

Tabella 8.21: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC						
R _{Pi} [m]	3.31	2.78		R _c [m]	2.65			
R _{Ni} [m]	6.59	5.54		βc [rad]	5.54	SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.43	1.46		θ [rad]	0.119	S _{De} (T _s) [m] 0.045		
β_{Ni} [rad]	1.50	1.52		θ [°]	6.865	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.070	
d _{k0} [m]	0.53	d _u * [m]	0.18	as* [m/s²]	1.51	d _u * [m]	0.025	
d ₀ * [m]	0.45	d _s * [m]	0.07	T _s [s]	1.38	VERIFICATO		

Tabella 8.22: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.8 Macroelemento 3: ribaltamento semplice di parete, totale

Figura 8.18: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanisma	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
IVIECCATIISTITO.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI							SISMICA
b _i [m]	1.00	0.91	0.60	N piani	3	T ₁ [s]	0.42
d _i [m]	0.75	0.68	0.45	z [m]	0.00	S _e (T ₁) [g]	0.38
h _i [m]	4.85	6.57	5.53	H [m]	16.95	У	1.29
h _{bar,i} [m]	2.78	8.25	14.07	L [m]	5.70	ψ	0.00
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	ERA
P _i [kN]	399.96	609.17	359.96	t [m]	0.15		
N _i [kN]	90.33	95.64	29.58				

Tabella 8.23: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE					
MECCANISMO				EQUIVALENTE					
M _{RA} [kNm]	1323	3.99	M* [kN]	128.52				
M _{sA} [kNm]	500).15	0.80					
(χ	0.0)38	$\alpha^*_0[m/s^2]$	0.47				
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.00	NON VERIFICATO					

Tabella 8.24: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	2.88	8.26	14.07					
R _{Ni} [m]	4.89	11.43	16.95			SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.44	1.53	1.56	θ [rad]	0.038	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.45	1.52	1.55	θ [°]	2.164	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.096	
d _{k0} [m]	0.64	d _u * [m]	0.16	as* [m/s²]	0.39	d _u * [m]	0.00	
d ₀ * [m]	0.39	d _s * [m]	0.06	$T_s[s]$	2.53	VERIFICATO		

Tabella 8.25: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.9 Macroelemento 3: ribaltamento semplice di parete, parziale

Figura 8.19: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.					
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad					
Meccanismo:	se orizzontale. La linea di rottura si manifesta generalmente in					
	corrispondenza di aperture e a livello dei solai.					
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e					
Cause strutturali:	orizzontamenti);					
	scarsa resistenza della muratura.					

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.6			N piani	3	T ₁ [s]	0.42
d _i [m]	0.45			z [m]	11.42	$S_e(T_1)$ [g]	0.38
h _i [m]	5.53			H [m]	16.95	У	1.29
h _{bar,i} [m]	2.66			L [m]	5.70	ψ	0.67
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	359.96			+ [m]		0.04	
N _i [kN]	29.58			ιμη		0.04	

Tabella 8.26: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	112	1.08	M* [kN]	37.12	
M _{sA} [kNm]	107	.32	e* 0.94		
C	χ	0.0)96	α* _o [m/s ²] 1.005		
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	D LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.615	NON VERIFICATO		

Tabella 8.27: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC							
R _{Pi} [m]	2.67					LINEARE ALLO STATICA NON			
R _{Ni} [m]	5.54					SALVAGUARDIA DE	LLA VITA		
β_{Pi} [rad]	1.47			θ [rad]	0.095	S _{De} (T _s) [m]	0.72		
β_{Ni} [rad]	1.49			θ [°]	5.468	S _{De} (T ₁) [m]	0.002		
	-	PARA	METRI			d _u * [m]	0.072		
d _{k0} [m]	0.53	d _U * [m]	0.12	as* [m/s ²]	0.84	d _u * [m]	0.025		
d ₀ * [m]	0.29	d _s * [m]	0.05	T _s [s]	1.48	VERIFICATO	C		

Tabella 8.28: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.10 Macroelemento 3: flessione verticale di parete

Figura 8.20: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

		DATI GEO	DMETRICI			AZIONE	SISMICA
b _i [m]	0.91	0.60		N piani	3	T ₁ [s]	0.42
d _i [m]	0.68	0.45		z [m]	10.79	$S_e(T_1)$ [g]	0.38
h _i [m]	6.57	5.53		H [m]	16.95	У	1.29
h _{bar,i} [m]	3.39	2.64		L [m]	5.70	ψ	0.68
	CAR	RICHI					
P _i [kN]	606.39	361.58					
N _i [kN]	90.33	29.58					

Tabella.8.29: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI A	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
Σδ _{xPi} P _i +	$\cdot \Sigma \delta_{xNi} N_i$	377	3.26	M* [kN]	101.88	
Σδ _{yPi} P _i +	- Σδ _{γΝi} Ν _i	70	6.4	e* 0.92		
С	χ	0.1	L 87	$\alpha^*{}_{o}[m/s^2]$ 1.54		
VE	RIFICA STAT	ICA LINEARE	ALLO STATC	D LIMITE DI SALVAGUARDIA DELLA VITA		
α₀[m/s²]	0.71	α₀[m/s²]	1.62	NON VERIFICATO		

Tabella.8.30: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC						
R _{Pi} [m]	3.31	2.78		R _c [m]	2.65			
R _{Ni} [m]	6.59	5.54		βc [rad]	5.54	SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.43	1.46		θ [rad]	0.119	S _{De} (T _s) [m] 0.045		
β_{Ni} [rad]	1.50	1.52		θ [°]	6.865	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.070	
d _{k0} [m]	0.53	d _u * [m]	0.18	as* [m/s²]	1.51	d _u * [m] 0.025		
d ₀ * [m]	0.45	d _s * [m]	0.07	T _s [s]	1.38	VERIFICATO)	

Tabella 8.31: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.11 Macroelemento 4: ribaltamento del cantonale

Figura 8.21: Individuazione macroelemento, pianta e prospetto

Danno:	crollo dell'angolata.
N /	rotazione fuori piano dell'angolo per interazione di forze agenti sulle pareti
weccanismo.	ortogonali.
	inefficiente collegamento tra I muri d'ambito;
Causa strutturali:	insufficiente ammorsamento dei solai alle murature perimetrali;
Cause strutturan:	presenza di aperture in vicinanza degli spigoli (la linea di frattura spesso segue
	la distribuzione delle aperture in facciata).

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	AZIONE	SISMICA						
			I CUNEO	II CUNEO				
b _i [m]	0.93		0.72	0.72	N piani	3	T ₁ [s]	0.42
d _i [m]	0.70		0.24 0.54		z [m]	4.85	S _e (T ₁) [g]	0.38
h _i [m]	5.53		2.12	4.45	H [m]	16.95	у	1.29
h _{bar,i} [m]	2.77		1.41	4.35	L [m]	1.20	ψ	0.29
		CARICHI		AR	RETRAMEN	ITO CERNIE	ĒRA	
P _i [kN]	111.09		16.76 70.36		t [m]	0.20		

Tabella 8.32: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	242	0.66	M* [kN]	26.45	
M _{sA} [kNm]	148	3.84	e* 0.89		
(χ	0.0	061	α* _o [m/s²] 0.55		
VE	ERIFICA STAT	TICA LINEARE	ALLO STATO	D LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.34	NON VERIFICATO		

Tabella 8.33: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

	DATI GE	VERIFICA STATIC							
R _{Pi} [m]	3.29		1.69	4.49			LINEARE ALLO STATO		
R _{Ni} [m]	6.58		/	/			SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.52		0.99	1.32	θ [rad]	0.029	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.53		/	/	θ [°]	1.662	S _{De} (T ₁) [m]	0.002	
			PARAMETR	kl –			d _u * [m]	0.096	
d _{k0} [m]	0.22	d _u * [m]	0.16	as* [m/s ²]	0.47		d _u * [m]	0.10	
d ₀ * [m]	0.89	d _s * [m]	0.14	T _s [s]	3.48		VERIFICATO		

Tabella 8.34: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.12 Macroelemento 5: ribaltamento semplice di parete, parziale

Figura 8.22: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare, solaio *Cirex*

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

		DATI GEC	METRICI			AZIONE	SISMICA
b _i [m]	0.45	0.45	0.45	N piani	4	T ₁ [s]	0.38
d _i [m]	0.34	0.34	0.34	z [m]	3.72	$S_e(T_1)$ [g]	0.38
h _i [m]	2.77	4.68	3.63	H [m]	14.8	У	1.33
h _{bar,i} [m]	1.11	5.12	9.53	L [m]	4.75	ψ	0.25
	CAF	RICHI		AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	45.93	151.07	102.63	t [m]	0.70		
N _i [kN]	78.65	73.81	19.83				

Tabella 8.35: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIV	ALENTE	
M _{RA} [kNm]	286	3.68	M* [kN]	49.58	
M _{sA} [kNm]	91	.70	e*	0.76	
(χ	0.0)32	$\alpha^*_0[m/s^2]$	0.41	
VERIFICA STATICA LINEARE ALLO STAT) LIMITE DI SALVAGUARD	DIA DELLA VITA	
$\alpha_0 [m/s^2]$	²] 0.71 α _o [m/s ²] 0.62			NON VEI	RIFICATO	

Tabella 8.36: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare, solaio Cirex

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	TA	VERIFICA STATIC			
R _{Pi} [m]	1.12	5.12	9.53			LINEARE ALLO STATO) LIMITE DI
R _{Ni} [m]	2.78	7.45	14.8			SALVAGUARDIA DE	LLA VITA
β_{Pi} [rad]	1.44	1.54	1.55	θ [rad]	0.034	S _{De} (T _s) [m]	0.096
β_{Ni} [rad]	1.48	1.48	1.54	θ [°]	1.93	S _{De} (T ₁) [m]	0.001
	-	PARA	METRI	-		d _u * [m]	0.096
d _{k0} [m]	0.47	d _u * [m]	0.10	as* [m/s ²]	0.34	d _u * [m]	0.031
d ₀ * [m]	0.25	d _s * [m]	0.04	T _s [s]	2.16	VERIFICATO)

Tabella 8.37: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Verifica statica lineare, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

		DATI GEC	METRICI			AZIONE	SISMICA
b _i [m]	0.45	0.45	0.45	N piani	4	T ₁ [s]	0.38
d _i [m]	0.34	0.34	0.34	z [m]	3.72	S _e (T ₁) [g]	0.38
h _i [m]	2.77	4.68	3.63	H [m]	14.8	у	1.33
h _{bar,i} [m]	1.11	5.12	9.53	L [m]	4.75	ψ	0.25
	CAF	RICHI		AR	ĒRA		
P _i [kN]	45.93	151.07	102.63	t [m]	0.06		
N _i [kN]	78.65	73.81	19.83				

Tabella 8.38: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	266	7.30	M* [kN]	32.85	
M _{sA} [kNm]	81	.21	e* 0.77		
C	χ	0.0)30	$\alpha^*_0[m/s^2]$	0.39	
VERIFICA STATICA LINEARE ALLO STAT) LIMITE DI SALVAGUARD	IA DELLA VITA	
α₀[m/s²]	0.71	α₀[m/s²]	0.62	NON VERIFICATO		

Tabella 8.39: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	TRICI CONI	TA	VERIFICA STATIC			
R _{Pi} [m]	1.12	5.12	9.53			LINEARE ALLO STATC	
R _{Ni} [m]	2.78	7.45	14.8			SALVAGUARDIA DE	LLA VITA
β_{Pi} [rad]	1.44	1.54	1.55	θ [rad]	0.033	S _{De} (T _s) [m]	0.096
β_{Ni} [rad]	1.48	1.48	1.54	θ [°]	1.88	S _{De} (T ₁) [m]	0.001
		PARA	METRI			d _u * [m]	0.096
d _{k0} [m]	0.45	d _u * [m]	0.10	as* [m/s ²]	0.33	d _u * [m]	0.031
d ₀ * [m]	0.25	d _s * [m]	0.04	T _s [s]	2.21	VERIFICATO)

Tabella 8.40: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.13 Macroelemento 5: ribaltamento semplice di parete, parziale

Figura 8.23: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEC	DMETRICI		AZIONE	SISMICA	
b _i [m]	0.45		N piani	4	T ₁ [s]	0.38
d _i [m]	0.34		z [m]	11.17	$S_e(T_1)$ [g]	0.38
h _i [m]	3.63		H [m]	14.8	У	1.33
h _{bar,i} [m]	2.08		L [m]	4.75	ψ	0.75
	CAR	ICHI	AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	102.63		+ [m]		0.02	
N _i [kN]	19.83		ιμη		0.02	

Tabella 8.41: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	285	5.45	M* [kN]	11.78	
M _{sA} [kNm]	27	.50	e*	0.94	
C	χ	0.0)96	$\alpha^*_0[m/s^2]$	1.00	
VERIFICA STATICA LINEARE ALLO STAT			ALLO STATO	D LIMITE DI SALVAGU	ARDIA DELLA VITA	
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.876	NON VE	RIFICATO	

Tabella 8.42: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	TRICI CONI	TA	VERIFICA STATIC				
R _{Pi} [m]	2.09					LINFARE ALLO STATC		
R _{Ni} [m]	3.64					SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.47			θ [rad]	0.096	S _{De} (T _s) [m]	0.033	
β_{Ni} [rad]	1.48			θ [°]	5.475	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.033	
d _{k0} [m]	0.35	d _u * [m]	0.02	as* [m/s ²]	0.84	d _u * [m] 0.053		
d ₀ * [m]	0.06	d _s * [m]	0.01	T _s [s]	0.66	NON VERIFICATO		

Tabella 8.43: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE	
Φ[mm] 18 fyd [MPa] 171.43				Snervamento tirante T' [kN]	43.62
	PIAS	STRA		Punzonamento muratura T" [kN]	27.00
a [m] 0.2 b [m] 0.2			0.2	Penetrazione ancoraggio T''' [kN]	36.92

Tabella 8.44: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE				
T ₁ [kN]	5.34	n ₁	2	T ₁ [kN]	2.67	VERIFICATO

Tabella 8.45: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.14 Macroelemento 6: ribaltamento semplice di parete, parziale

Figura 8.24: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI				AZIONE SISMICA				
b _i [m]	0.45	0.45		N piani	3	T ₁ [s]	0.30	
d _i [m]	0.34	0.34		z [m]	3.72	$S_e(T_1)$ [g]	0.38	
h _i [m]	2.78	4.53		H [m]	11.03	У	1.29	
h _{bar,i} [m]	1.25	4.17		L [m]	4.57	ψ	0.34	
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	ĒRA	
P _i [kN]	77.76	82.62		+ [m]	0.03			
N _i [kN]	25.88	11.14		ιμη				

Tabella 8.46: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE				
MECCANISMO				EQUIVALENTE				
M _{RA} [kNm]	564.13		M* [kN]	16.33			
M _{sA} [kNm]	42	.55	e*	0.81			
С	χ	0.0)75	α* _o [m/s ²] 0.912				
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.808	VERIFICATO				

Tabella 8.47: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

8.8.15 Macroelemento 6: ribaltamento semplice di parete, parziale

Figura 8.25: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI			AZIONE SISMICA				
b _i [m]	0.45			N piani	3	T ₁ [s]	0.30
d _i [m]	0.34			z [m]	6.5	$S_e(T_1)$ [g]	0.38
h _i [m]	4.53			H [m]	11.03	У	1.29
h _{bar,i} [m]	2.27			L [m]	4.57	ψ	0.59
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	ĒRA
P _i [kN]	82.62			+ [m] 0.02			
N _i [kN]	11.14			נווון		0.02	

Tabella 8.48: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFI	CIENTE DI .	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
	MECCA	NISMO		EQUIVALENTE				
M _{RA} [kNm]	237.59		M* [kN]	8.82			
M _{sA} [M _{sA} [kNm] 20.99		.99	e*	0.92			
C	χ	0.088		$\alpha^*_0[m/s^2]$	0.939			
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.412	NON VERIFICATO				

Tabella 8.49: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC						
R _{Pi} [m]	2.27							
R _{Ni} [m]	4.54					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.48			θ [rad]	0.088	S _{De} (T _s) [m]	0.049	
β_{Ni} [rad]	1.49			θ [°]	5.048	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.049	
d _{k0} [m]	0.4	d _u * [m]	0.05	as* [m/s ²]	0.79	d _u * [m]	0.031	
d ₀ * [m]	0.13	d _s * [m]	0.02	T _s [s]	1.03	VERIFICATO		

Tabella 8.50: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.16 Macroelemento 7: ribaltamento semplice di parete, parziale

Figura 8.26: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI			AZIONE SISMICA				
b _i [m]	0.36			N piani	3	T ₁ [s]	0.30
d _i [m]	0.27			z [m]	6.5	S _e (T ₁) [g]	0.38
h _i [m]	4.20			H [m]	11.03	У	1.29
h _{bar,i} [m]	2.10			L [m]	1.20	ψ	0.59
	CAR	ICHI		ARRETRAMENTO CERNIERA			
P _i [kN]	19.44			+ [m]	0.01		
N _i [kN]	2.20						

Tabella 8.51: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
	MECCA	NISMO		EQUIVALENTE				
M _{RA} [kNm]	52	.55	M* [kN] 1.08				
M _{sA} [M _{sA} [kNm] 3.76		e*	0.95				
C	χ	0.0)71	$\alpha^*_0[m/s^2]$	0.74			
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.412	NON VERIFICATO				

Tabella 8.52: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME							
R _{Pi} [m]	2.27							
R _{Ni} [m]	4.54					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.51			θ [rad]	0.026	S _{De} (T _s) [m]	0.048	
β_{Ni} [rad]	1.53			θ [°]	1.486	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.049	
d _{k0} [m]	0.30	d _u * [m]	0.07	as* [m/s ²]	0.62	d _u * [m]	0.031	
d ₀ * [m]	0.18	d _s * [m]	0.03	T _s [s]	1.37	VERIFICATO		

Tabella 8.53: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.17 Macroelemento 8: ribaltamento semplice di parete, parziale

Figura 8.27: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.			
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad			
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in			
	corrispondenza di aperture e a livello dei solai.			
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e			
Cause strutturali:	orizzontamenti);			
	scarsa resistenza della muratura.			

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.64			N piani	3	T ₁ [s]	0.30
d _i [m]	0.46			z [m]	6.5	S _e (T ₁) [g]	0.38
h _i [m]	4.20			H [m]	11.03	У	1.29
h _{bar,i} [m]	2.10			L [m]	1.00	ψ	0.59
CARICHI				AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	23.04			+ [m]		0.02	
N _i [kN]	10.52			. [11]		0.02	

Tabella 8.54: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI A	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [M _{RA} [kNm] 92.57			M* [kN]	3.04	
M _{sA} [kNm]	11.61		e*	0.89	
C	χ	0.125		$\alpha^*_0[m/s^2]$	1.38	
VERIFIC	CA STATICA	LINEARE	ALLO STATO	D LIMITE DI SALVAGU	ARDIA DELLA VITA	
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.412	NON VERIFICATO		

Tabella 8.55: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	2.29					LINEARE ALLO STATO		
R _{Ni} [m]	4.55					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.52			θ [rad]	0.119	S _{De} (T _s) [m]	0.049	
β_{Ni} [rad]	1.51			θ [°]	6.865	S _{De} (T ₁) [m]	0.001	
	PARAMETRI						0.049	
d _{k0} [m]	0.52	d _u * [m]	0.08	as* [m/s ²]	1.16	d _u * [m]	0.031	
d ₀ * [m]	0.20	d _s * [m]	0.03	$T_s[s]$	1.05	VERIFICATO		

Tabella 8.56: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.18 Macroelemento 9: ribaltamento semplice di parete, parziale

Figura 8.28: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.			
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad			
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in			
	corrispondenza di aperture e a livello dei solai.			
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e			
Cause strutturali:	orizzontamenti);			
	scarsa resistenza della muratura.			

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.10	0.10		N piani	3	T ₁ [s]	0.31
d _i [m]	0.08	0.08		z [m]	3.72	S _e (T ₁) [g]	0.38
h _i [m]	2.77	4.68		H [m]	11.03	У	1.29
h _{bar,i} [m]	2.30	6.50		L [m]	1.20	ψ	0.33
CARICHI			AR	RETRAMEN	ITO CERNIE	ERA	
P _i [kN]	5.40	7.20		+ [m]	0.01		
N _i [kN]	8.77	3.21		ιμη	0.01		

Tabella 8.57: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE			
MECCANISMO				EQUIVALENTE			
M _{RA} [kNm]	107	.41	M* [kN]	1.03		
M _{sA} [kNm]	1.16		e*	0.81		
α		0.011		$\alpha^*_0[m/s^2]$	0.13		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
α₀[m/s²]	0.71	$\alpha_0 [m/s^2]$	0.80	NON VERIFICATO			

Tabella 8.58: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .
Verifica statica non lineare, solaio Cirex

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	TRICI CONI	VERIFICA STATIC					
R _{Pi} [m]	2.29	6.50				LINEARE ALLO STATO LIMITE DI		
R _{Ni} [m]	2.77	7.45				SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.57	1.57		θ [rad]	0.009	S _{De} (T _s) [m] 0.06		
β_{Ni} [rad]	1.56	1.57		θ [°]	0.547	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.068	
d _{k0} [m]	0.08	d _u * [m]	0.02	as* [m/s ²]	0.11	d _u * [m]	0.023	
d ₀ * [m]	0.04	d _s * [m]	0.01	T _s [s]	1.49	NON VERIFICATO		

Tabella 8.59: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

Inserimento di tiranti, solaio Cirex

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE			
Φ[mm] 18 fyd [MPa] 171.43			171.43	Snervamento tirante T' [kN] 43.62			
	PIAS	STRA		Punzonamento muratura T'' [kN]			
a [m] 0.2 b [m] 0.2			0.2	Penetrazione ancoraggio T''' [kN]	36.92		

 Tabella 8.60:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUME) TIRANTI	VERIFICA	A PORTATA	SINGOLO TIRANTE
T ₁ [kN]	0.22	n ₁	2	T ₁ [kN]	0.11	VERIFICATO
T ₂ [kN]	0.60	n ₂	2	$T_2[kN]$	0.30	VERIFICATO

Tabella 8.61: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

Verifica statica lineare, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI		AZIONE SISMICA				
b _i [m]	0.10	0.10		N piani	3	T ₁ [s]	0.31	
d _i [m]	0.08	0.08		z [m]	3.72	S _e (T ₁) [g]	0.38	
h _i [m]	2.77	4.68		H [m]	11.03	У	1.29	
h _{bar,i} [m]	2.30	6.50		L [m]	1.20	ψ	0.33	
	CAR	ICHI	-	ARRETRAMENTO CERNIERA				
P _i [kN]	5.40	7.20		+[m] 0.0		0.01		
N _i [kN]	5.25	3.21		ιιιι	0.01			

Tabella 8.62: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	97	.68	M* [kN]	1.76	
M _{sA} [kNm]	1.	00	e*	0.82	
C	χ	0.0	010	$\alpha^*_0[m/s^2]$	0.12	
VERIFIC	CA STATICA	LINEARE	ALLO STATO	D LIMITE DI SALVAGU	ARDIA DELLA VITA	
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.80	NON VERIFICATO		

Tabella 8.63: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI						
R _{Pi} [m]	2.30	6.50				LINEARE ALLO STATICA NON		
R _{Ni} [m]	2.77	7.45				SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.56	1.57		θ [rad]	0.00	S _{De} (T _s) [m] 0.075		
β_{Ni} [rad]	1.55	1.57		θ [°]	0.25	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.075	
d _{k0} [m]	0.08	d _u * [m]	0.02	as* [m/s ²]	0.10	d _u * [m]	0.024	
d ₀ * [m]	0.04	d _s * [m]	0.02	T _s [s]	1.54	NON VERIFICATO		

Tabella 8.64: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

Inserimento di tiranti, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE			
Φ [mm] 18 fyd [MPa] 171.43				Snervamento tirante T' [kN] 43.62			
	PIAS	STRA		Punzonamento muratura T" [kN] 2.			
a [m] 0.2 b [m] 0.2			0.2	Penetrazione ancoraggio T''' [kN]	36.92		

Tabella 8.65: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA	A TOTALE	NUMERC) TIRANTI	VERIFICA PORTATA SINGOLO TIRANTE		
T ₁ [kN]	0.22	n ₁	2	T ₁ [kN]	0.11	VERIFICATO
T ₂ [kN]	0.60	n ₂	2	$T_2[kN]$	0.30	VERIFICATO

Tabella 8.66: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.19 Macroelemento 9: ribaltamento semplice di parete, parziale

Figura 8.29: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.				
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad				
Meccanismo:	sse orizzontale. La linea di rottura si manifesta generalmente in				
	corrispondenza di aperture e a livello dei solai.				
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e				
Cause strutturali:	orizzontamenti);				
	scarsa resistenza della muratura.				

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.10		N piani	3	T ₁ [s]	0.31
d _i [m]	0.08		z [m]	6.50	$S_e(T_1)[g]$	0.38
h _i [m]	4.68		H [m]	H[m] 11.03 y		1.29
h _{bar,i} [m]	2.34		L [m]	1.20	ψ	0.57
	CAR	ICHI	ARRETRAMENTO CERNIERA			
P _i [kN]	7.20		+ [m]	[m] 0.01		
N _i [kN]	3.20		ιμη			

Tabella 8.67: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI A	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
M _{RA} [kNm] 31.85			.85	M* [kN] 0.94			
M _{sA} [kNm]	0.	54	e*	0.89		
C	χ	0.0)17	$\alpha^*_0[m/s^2]$	0.19		
VERIFIC	CA STATICA	LINEARE	ALLO STATO	D LIMITE DI SALVAGUARDIA DELLA VITA			
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.37	NON VERIFICATO			

Tabella 8.68: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	VERIFICA STATIC					
R _{Pi} [m]	2.34					LINEARE ALLO STATICA NON		
R _{Ni} [m]	4.68					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.55			θ [rad]	0.016	S _{De} (T _s) [m] 0.04		
β_{Ni} [rad]	1.56			θ [°]	0.903	S _{De} (T ₁) [m]	0.001	
	-	PARA	METRI			d _u * [m]	0.045	
d _{k0} [m]	0.08	d _u * [m]	0.01	as* [m/s ²]	0.16	d _u * [m]	0.035	
d ₀ * [m]	0.02	d _s * [m]	0.003	T _s [s]	0.92	NON VERIFICATO		

Tabella 8.69: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43			171.43	Snervamento tirante T' [kN] 43.62		
	PIAS	STRA		Punzonamento muratura T" [kN] 2.77		
a [m]	a [m] 0.2 b [m] 0.2		0.2	Penetrazione ancoraggio T''' [kN]	36.92	

Tabella 8.70: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NU		NUMERC) TIRANTI	VERIFICA	A PORTATA	SINGOLO TIRANTE
T ₁ [kN	1.02	n ₁	2	T ₁ [kN]	0.51	VERIFICATO

Tabella 8.71: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.20 Macroelemento 10: ribaltamento semplice di parete, parziale

Figura 8.30: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.45		N piani	4	T ₁ [s]	0.38
d _i [m]	0.34		z [m]	11.03	S _e (T ₁) [g]	0.38
h _i [m]	3.63		H [m]	14.8	У	1.33
h _{bar,i} [m]	1.82		L [m]	8.26	ψ	0.75
	CAR	ICHI	ARRETRAMENTO CERNIERA			ERA
P _i [kN]	242.87		+ [m]		0.02	
N _i [kN]	42.84		t[m]		0.02	

Tabella 8.72: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	596	5.30	M* [kN]	26.56	
M _{sA} [kNm]	61	.97	e*	0.91	
C	χ	0.1	L 0 4	$\alpha^*{}_0[m/s^2]$ 1.12		
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.86	NON VERIFICATO		

Tabella 8.73: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME							
R _{Pi} [m]	1,83					LINFARF ALLO STATIC) LIMITE DI	
R _{Ni} [m]	3,63					SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1,46			θ [rad]	0,104	S _{De} (T _s) [m]	0,03	
β_{Ni} [rad]	1,49			θ[°]	5,933	S _{De} (T ₁) [m]	0,002	
		PARA	METRI			d _u * [m]	0,03	
d _{k0} [m]	0,38	d _u * [m]	0,02	as* [m/s ²]	0,94	d _u * [m]	0,054	
d ₀ * [m]	0,06	d _s * [m]	0,01	T _s [s]	0,62	NON VERIFICATO		

Tabella 8.74: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE			
Φ [mm] 18 fyd [MPa] 171,43			171,43	Snervamento tirante T' [kN] 43,62			
	PIAS	STRA		Punzonamento muratura T" [kN] 27,0			
a [m]	0,2	b [m]	0,2	Penetrazione ancoraggio T''' [kN]	36,92		

 Tabella 8.75: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE				
T ₁ [kN]	26,56	n ₁	2	T ₁ [kN]	13,28	VERIFICATO

 Tabella 8.76:
 valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.21 Macroelemento 11: ribaltamento semplice di parete, parziale

Figura 8.31: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.20		N piani	2	T ₁ [s]	0.25
d _i [m]	0.15		z [m]	5.18	$S_e(T_1)[g]$	0.38
h _i [m]	3.38		H [m]	8.56	У	1.2
h _{bar,i} [m]	1.69		L [m]	1.20	ψ	0.61
	CAR	ICHI	ARRETRAMENTO CERNIERA			RA
P _i [kN]	5.40		+ [m] 0.01			
N _i [kN]	3.57					

Tabella 8.77: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	18	.82	M* [kN]	0.81	
M _{sA} [kNm]	1.	03	e*	0.89	
C	χ	0.0)55	α* _o [m/s ²] 0.46		
VERIFIC	CA STATICA	LINEARE	ALLO STATO	D LIMITE DI SALVAGU	ARDIA DELLA VITA	
α₀[m/s²]	0.71	$\alpha_0 [m/s^2]$	1.35	NON VERIFICATO		

Tabella 8.78: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIEICA STATIC								
R _{Pi} [m]	1.69									
R _{Ni} [m]	3.38					SALVAGUARDIA DE	SALVAGUARDIA DELLA VITA			
β_{Pi} [rad]	1.55			θ [rad]	0.051	S _{De} (T _s) [m]	0.07			
β_{Ni} [rad]	1.55			θ [°]	2.892	S _{De} (T ₁) [m]	0.001			
		PARA	METRI			d _u * [m]	0.065			
0.02	0.16	d _u * [m]	0.05	as* [m/s ²]	0.38	d _u * [m] 0.028				
d ₀ * [m]	n] 0.13 d _s *[m] 0.04 T _s [s] 1.44					NON VERIFICA	АТО			

Tabella 8.79: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE		
Φ[mm] 18 fyd [MPa] 171.43		171.43	Snervamento tirante T' [kN] 43.			
	PIAS	STRA		Punzonamento muratura T" [kN]	8.31	
a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	55.38	

Tabella 8.80: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE					
	T ₁ [kN]	0.66	n ₁	2	T ₁ [kN]	0.33	VERIFICATO

Tabella 8.81: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.22 Macroelemento 12: ribaltamento semplice di parete, parziale

Figura 8.32: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.				
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad				
Meccanismo:	sse orizzontale. La linea di rottura si manifesta generalmente in				
	corrispondenza di aperture e a livello dei solai.				
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e				
Cause strutturali:	orizzontamenti);				
	scarsa resistenza della muratura.				

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.15		N piani	ni 2 T ₁ [s] 0.25		
d _i [m]	0.12		z [m]	5.18	$S_e(T_1)$ [g]	0.38
h _i [m]	3.38		H [m]	8.56 y 1.2		
h _{bar,i} [m]	1.69		L [m]	1.20	ψ	0.61
	CAR	ICHI	ARRETRAMENTO CERNIERA			ERA
P _i [kN]	12.96		+ [m]	0.01		
N _i [kN]	3.57		ιμη	0.01		

Tabella 8.82: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	30	.16	M* [kN]	1.51	
M _{sA} [kNm]	1.	67	e*	0.89	
(χ	0.0)55	α* _o [m/s²] 0.47		
VERIFICA STATICA LINEARE ALLO STATO				O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.35	NON VERIFICATO		

Tabella 8.83: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	1.69					LINEARE ALLO STATC		
R _{Ni} [m]	3.38					SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.53			θ [rad]	0.055	S _{De} (T _s) [m] 0.077		
β_{Ni} [rad]	1.54			θ [°]	3.17	S _{De} (T ₁) [m]	0.001	
	-	PARA	METRI			d _u * [m]	0.077	
d _{k0} [m]	0.17	d _u * [m]	0.04	as* [m/s ²]	1.35	d _u * [m]	0.032	
d ₀ * [m]	0.11	d _s * [m]	0.02	T _s [s]	1.57	NON VERIFICATO		

Tabella 8.84: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE		
Φ[mm]	18	fyd [MPa]	171.43	Snervamento tirante T' [kN]	43.62	
	PIAS	STRA		Punzonamento muratura T'' [kN] 4.85		
a [m] 0.2 b [m] 0.2			0.2	Penetrazione ancoraggio T ^{'''} [kN] 36.92		

Tabella 8.85: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIRANT		TIRANTI	VERIFICA PORTATA SINGOLO TIRANTE			
T ₁ [kN]	1.06	n ₁	2	T ₁ [kN]	0.53	VERIFICATO

Tabella 8.86: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.23 Macroelemento 13: ribaltamento semplice di parete, parziale

Figura 8.33: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanismo:	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
weccanismo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.30		N piani	1	T ₁ [s]	0.13
d _i [m]	0.23		z [m]	0.00	$S_e(T_1)$ [g]	0.32
h _i [m]	3.10		H [m]	3.10	У	1.00
h _{bar,i} [m]	1.55		L [m]	1.00	ψ	0.00
	CAR	ICHI	ARRETRAMENTO CERNIERA			RA
P _i [kN]	16.20		+ [m]	0.03		
N _i [kN]	7.71		[]		0.02	

Tabella 8.87: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	49	.01	M* [kN]	2.17	
M _{sA} [kNm]	3.	75	e*	0.89	
C	χ	0.0)77	α* _o [m/s ²] 0.65		
VERIFICA STATICA LINEARE ALLO STATO			ALLO STATO	D LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_{o}[m/s^{2}]$ 0.71 $\alpha_{o}[m/s^{2}]$ 0.00			0.00	NON VERIFICATO		

Tabella 8.88: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC									
R _{Pi} [m]	1.55										
R _{Ni} [m]	3.10					SALVAGUARDIA DE	LLA VITA				
β_{Pi} [rad]	1.55			θ [rad]	0.017	S _{De} (T _s) [m] 0.0617					
β_{Ni} [rad]	1.54			θ [°]	1.00	S _{De} (T ₁) [m]	0.001				
		PARA	METRI			d _u * [m]	0.0617				
d _{k0} [m]	0.24	d _u * [m]	0.07	as* [m/s ²]	0.55	d _u * [m] 0.00					
d ₀ * [m]	0.18	d _s * [m]	0.03	T _s [s]	1.43	VERIFICATO					

 Tabella 8.89: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.24 Macroelemento 14: ribaltamento semplice di parete, parziale

Figura 8.34: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.				
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad				
Meccanismo:	sse orizzontale. La linea di rottura si manifesta generalmente in				
	corrispondenza di aperture e a livello dei solai.				
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e				
Cause strutturali:	orizzontamenti);				
	scarsa resistenza della muratura.				

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.30			N piani	2	T ₁ [s]	0.33
d _i [m]	0.23			z [m]	5.51	$S_e(T_1)$ [g]	0.38
h _i [m]	5.20			H [m]	10.71	У	1.20
h _{bar,i} [m]	3.31			L [m]	4.86	ψ	0.45
CARICHI			ARRETRAMENTO CERNIERA				
P _i [kN]	308.67			+ [m]	0.01		
N _i [kN]	12.25			ι [11]	0.01		

Tabella 8.90: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
	MECCA	NISMO		EQUIVALENTE				
M _{RA} [kNm]	105	6.57	M* [kN]	6.01			
M _{sA} [kNm]		38.85		e*	0.83			
α		0.04		$\alpha^*_0[m/s^2]$	0.47			
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.02	NON VERIFICATO				

Tabella 8.91: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	3.31							
R _{Ni} [m]	6.63					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.53			θ [rad]	0.037	S _{De} (T _s) [m]	0.085	
β_{Ni} [rad]	1.54			θ[°]	2.11	S _{De} (T ₁) [m]	0.001	
	-	d _u * [m]	0.096					
d _{k0} [m]	0.26	d _u * [m]	0.11	as* [m/s ²]	0.39	d _u * [m]	0.041	
d ₀ * [m]	0.26	d _s * [m]	0.04	T _s [s]	2.5	VERIFICATO		

Tabella 8.92: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.25 Macroelemento 14: meccanismo nel piano

Figura 8.35: Individuazione macroelemento, pianta e prospetto

Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".
Meccanismo:	rottura a taglio dell'intera facciata.
	in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove
Cause strutturali	sussiste una maggiore concentrazione di tensioni;
	murature di modesta qualità o in presenza di discontinuità.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	AZIONE	SISMICA								
b _i [m]	0.30	0.30	0.30	0.15	N piani	2	T ₁ [s]	0.33		
d _i [m]	0.23	0.23	0.23	0.11	z [m]	5.51	$S_e(T_1)$ [g]	0.38		
L _i [m]	0.76	2.27	2.28	2.46	H [m]	12.14	У	1.20		
a _i [m]	1.43	3.61	2.98	2.46	h _i [m]	6.63	ψ	0.45		
Ai [m ²]	2.43	6.14	5.07	4.18	h _o [m]	1.2				
	CARICHI									
P _i [kN]	13.60	40.64	40.81	22.20						
N _i [kN]	20.84	52.60	43.42	27.88						

 Tabella 8.93:
 dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE			
MECCANISMO				EQUIVALENTE			
Σδ _{xPi} P _i +	- Σδ _{×Ni} Ν _i	198	3.29	M* [kN]	25.71		
$\Sigma \delta_{\rm VPi} P_{\rm i} + \Sigma \delta_{\rm VNi} N_{\rm i}$ 15.32		.32	e*	0.96			
α		0.21		α* _o [m/s²]	1.65		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
α₀[m/s²]	0.71	$\alpha_0 [m/s^2]$	1.02	VERIFICATO			

Tabella 8.94: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

8.8.26 Macroelemento 15: ribaltamento semplice di parete, parziale

Figura 8.36: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.				
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad				
Meccanismo:	sse orizzontale. La linea di rottura si manifesta generalmente in				
	corrispondenza di aperture e a livello dei solai.				
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e				
Cause strutturali:	orizzontamenti);				
	scarsa resistenza della muratura.				

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI		AZIONE SISMICA			
b _i [m]	0.40			N piani	3	T ₁ [s]	0.41
d _i [m]	0.30			z [m]	12.14	$S_e(T_1)$ [g]	0.38
h _i [m]	3.49			H [m]	16.68	У	1.29
h _{bar,i} [m]	1.89			L [m]	10.46	ψ	0.73
CARICHI		ARRETRAMENTO CERNIERA			ERA		
P _i [kN]	216.00			+ [m] 0.02			
N _i [kN]	20.81			ιμη	0.02		

Tabella 8.95: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
M _{RA} [kNm]	480	.86	M* [kN]	23.00		
M _{sA} [kNm]		45.57		e*	0.95		
α		0.10		$\alpha^*_0[m/s^2]$	0.98		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.74	NON VERIFICATO			

Tabella 8.96: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

D	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	1.90							
R _{Ni} [m]	3.50					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.47			θ [rad]	0.094	S _{De} (T _s) [m]	0.06	
β_{Ni} [rad]	1.49			θ[°]	5.41	S _{De} (T ₁) [m]	0.002	
		d _u * [m]	0.06					
d _{k0} [m]	0.33	d _u * [m]	0.08	as* [m/s ²]	0.82	d _u * [m]	0.067	
d ₀ * [m]	0.20	d _s * [m]	0.03	T _s [s]	1.24	VERIFICATO		

Tabella 8.97: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.27 Macroelemento 15: meccanismo nel piano

Figura 8.37: Individuazione macroelemento, pianta e prospetto

	Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".		
Meccanismo: rottura a taglio dell'intera facciata.				
		in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove		
	Cause strutturali	sussiste una maggiore concentrazione di tensioni;		
		murature di modesta qualità o in presenza di discontinuità.		

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	AZIONE	SISMICA						
b _i [m]	0.40	0.40	0.40	0.40	N piani	3	T ₁ [s]	0.41
d _i [m]	0.30	0.30	0.23	0.30	z [m]	12.14	$S_e(T_1)$ [g]	0.38
L _i [m]	1.55	2.61	2.64	0.51	H [m]	16.68	У	1.29
a _i [m]	2.08	3.63	3.69	1.03	h _i [m]	2.1	ψ	0.73
Ai [m ²]	4.08	5.63	5.69	3.03	h _o [m]	1.39		
				CARICHI				
P _i [kN]	11.17	19.73	19.96	3.86				
N _i [kN]	28.49	46.91	47.63	16.05				

Tabella 8.98: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE					
	MECCA	NISMO		EQUIVALENTE					
Σδ _{xPi} P _i +	- Σδ _{×Ni} Ν _i	369	.34	M* [kN]	25,7119,27				
Σδ _{yPi} P _i +	⊦Σδ _{γNi} N _i	266	5.81	e*	0.97				
C	α 0.72		$\alpha^*_0[m/s^2]$	5.60					
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
$\alpha_0 [m/s^2]$	0.71	α _o [m/s²] 1.74		VERIFICATO					

Tabella 8.99: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

8.8.28 Macroelemento 16: ribaltamento semplice di parete, parziale

Figura 8.38: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI		AZIONE SISMICA			
b _i [m]	0.30			N piani	3	T ₁ [s]	0.41
d _i [m]	0.23			z [m]	12.14	$S_e(T_1)[g]$	0.38
h _i [m]	4.55			H [m]	16.68	У	1.29
h _{bar,i} [m]	2.28			L [m]	7.35	ψ	0.73
CARICHI			AR	RETRAMEN	ITO CERNIE	RA	
P _i [kN]	119.88			+ [m]		0.02	
N _i [kN]	39.04			נווון		0.02	

Tabella 8.100: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
	MECCA	NISMO		EQUIVALENTE				
M _{RA} [kNm]	450).34	M* [kN]	14.47			
M _{sA} [kNm] 24.28			.28	e*	0.89			
C	α 0.054		α* _o [m/s ²] 0.59					
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.74	NON VERIFICATO				

Tabella 8.101: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC						
R _{Pi} [m]	2.28					LINFARE ALLO STATO LIMITE		
R _{Ni} [m]	4.55					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.51			θ [rad]	0.054	S _{De} (T _s) [m]	0.037	
β_{Ni} [rad]	1.52			θ [°]	3.09	S _{De} (T ₁) [m]	0.002	
	-	PARA	METRI			d _u * [m]	0.037	
d _{k0} [m]	0.24	d _u * [m]	0.02	as* [m/s²]	0.50	d _u * [m]	0.058	
d ₀ * [m]	0.05	d _s * [m]	0.01	T _s [s]	0.77	NON VERIFICATO		

Tabella 8.102: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE		
Φ[mm]	18	18 fyd [MPa] 171.43		Snervamento tirante T' [kN] 43.		
	PIASTRA			Punzonamento muratura T'' [kN]	13.85	
a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	36.92	

Tabella 8.103: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIRANTI		TIRANTI	VERIFICA PORTATA SINGOLO TIRANTE				
	T ₁ [kN]	10.00	n ₁	2	T ₁ [kN]	5.00	VERIFICATO

Tabella 8.104: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.29 Macroelemento 16: meccanismo nel piano

Figura 8.39: Individuazione macroelemento, pianta e prospetto

Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".
Meccanismo:	rottura a taglio dell'intera facciata.
	in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove
Cause strutturali	sussiste una maggiore concentrazione di tensioni;
	murature di modesta qualità o in presenza di discontinuità.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	AZIONE	SISMICA						
b _i [m]	0.30	0.30	0.30	N piani	3	T ₁ [s]	0.41	
d _i [m]	0.23	0.23	0.23	z [m]	12.14	S _e (T ₁) [g]	0.38	
L _i [m]	1.00	2.58	0.86	H [m]	16.68	у	1.29	
a _i [m]	1.50	3.68	1.00	h _i [m]	4.56	ψ	0.73	
Ai [m ²]	4.17	10.23	2.78	h _o [m]	0.45			
	CARICHI							
P _i [kN]	12.31	31.76	5.66					
N _i [kN]	11.49	28.18	7.66					

Tabella 8.105: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE					
	MECCA	NISMO		EQUIVALENTE					
Σδ _{xPi} P _i +	- Σδ _{×Ni} N _i	98	,06	M* [kN]	9,51				
Σδ _{yPi} P _i +	- Σδ _{γNi} N _i	366	5,98	e*	0,96				
С	χ	0,27		$\alpha^*_0[m/s^2]$	2,10				
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
$\alpha_0[m/s^2]$	0,71	α₀[m/s²] 1,74		VERIFICATO					

Tabella 8.106: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

8.8.30 Macroelemento 17: ribaltamento semplice di parete, totale

Figura 8.40: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanismo	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	AZIONE SISMICA							
b _i [m]	0.40	0.50	0.50	0.50	N piani	4	T ₁ [s]	0.41
d _i [m]	0.30	0.38	0.38	0.38	z [m]	0.00	$S_e(T_1)$ [g]	0.38
h _i [m]	2.80	2.86	6.48	4.56	H [m]	16.68	У	1.33
h _{bar,i} [m]	1.42	4.13	9.03	13.98	L[m]	1.00	ψ	0.00
		CARICHI			ARRETRAMENTO CERNIERA			
P _i [kN]	3.60	13.50	36.00	18.00	+ [m]		0.06	
N _i [kN]	3.32	3.32	3.32	1.09	ιμη		0.00	

Tabella 8.107: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	724	.00	M* [kN]	7.02	
M _{sA} [kNm]	16	.61	e* 0.84		
C	χ	0.0)23	α* _o [m/s ²] 0.27		
VERIFIC	CA STATICA	LINEARE	ALLO STATO	O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.00	NON VERIFICATO		

Tabella 8.108: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

	DATI GE	VERIFICA STATICA NON							
R _{Pi} [m]	1.42	4.13	9.03	13.98			LINEARE ALLO STATIC		
R _{Ni} [m]	2.81	5.67	12.14	16.70			SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.51	1.54	1.56	1.56	θ [rad]	0.022	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.51	1.53	1.55	1.56	θ [°]	1.31	S _{De} (T ₁) [m]	0.002	
		I	PARAMETR	:I			d _u * [m]	0.096	
d _{k0} [m]	0.38	d _u * [m]	0.10	as* [m/s²]	0.23		d _u * [m] 0.00		
d ₀ * [m]	0.24	d _s * [m]	0.04	T _s [s]	2.60		VERIFICATO		

Tabella 8.109: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.31 Macroelemento 17: ribaltamento semplice di parete, parziale

Figura 8.41: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI			AZIONE SISMICA				
b _i [m]	0.50			N piani	4	T ₁ [s]	0.41
d _i [m]	0.38			z [m]	12.14	$S_e(T_1)$ [g]	0.38
h _i [m]	4.56			H [m]	16.68	У	1.33
h _{bar,i} [m]	2.99			L [m]	1.00	ψ	0.73
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	18.00			+ [m]		0.01	
N _i [kN]	1.09			ι [III]		0.01	

Tabella 8.110: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	45	.99	M* [kN]	1.86	
M _{sA} [kNm]	4.	64	e*	0.95	
(χ	0.1	L01	α* _o [m/s ²] 1.04		
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.81	NON VERIFICATO		

Tabella 8.111: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATICA NON					
R _{Pi} [m]	2.99					LINEARE ALLO STATO	
R _{Ni} [m]	4.57					SALVAGUARDIA DE	LLA VITA
β_{Pi} [rad]	1.49			θ [rad]	0.073	S _{De} (T _s) [m]	0.039
β_{Ni} [rad]	1.50			θ [°]	4.19	S _{De} (T ₁) [m]	0.002
		PARA	METRI	-		d _u * [m]	0.039
d _{k0} [m]	0.46	d _u * [m]	0.03	as* [m/s²]	0.87	d _u * [m]	0.06
d ₀ * [m]	0.07	d _s * [m]	0.01	T _s [s]	0.71	NON VERIFICA	АТО

Tabella 8.112: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43				Snervamento tirante T' [kN] 43.62		
	PIASTRA			Punzonamento muratura T'' [kN]	32.31	
a [m] 0.2 b [m] 0.2				Penetrazione ancoraggio T''' [kN]	36.92	

 Tabella 8.113:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE		NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE			
T ₁ [kN]	0.50	n ₁	2	T ₁ [kN]	0.25	VERIFICATO	

 Tabella 8.114:
 valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.8.32 Macroelemento 17: flessione verticale di parete

Figura 8.42: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

		DATI GEO	DMETRICI			AZIONE	AZIONE SISMICA	
b _i [m]	0.50	0.50		N piani	4	T ₁ [s]	0.42	
d _i [m]	0.38	0.38		z [m]	11.17	S _e (T ₁) [g]	0.38	
h _i [m]	6.48	4.56		H [m]	16.68	У	1.33	
h _{bar,i} [m]	3.32	2.67		L [m]	1.00	ψ	0.67	
	CAR	ICHI	-		-	-	-	
P _i [kN]	36.00	18.00						
N _i [kN]	3.32	1.09						

Tabella 8.115: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
Σδ _{xPi} P _i +	$-\Sigma\delta_{xNi}N_i$	196	5.95	M* [kN]	5.57	
Σδ _{yPi} Ρ _i +	- Σδ _{γNi} N _i	27	.01	e*	0.94	
C	χ	0.1	L 37	α* _o [m/s ²] 1.04		
VE	RIFICA STAT	FICA LINEARE	ALLO STATO) LIMITE DI SALVAGUARD	IA DELLA VITA	
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.66	NON VERIFICATO		

Tabella 8.116: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC						
R _{Pi} [m]	3.26	2.26		R _c [m]	6.52	LINEARE ALLO STATO LIMITE D		
R _{Ni} [m]	6.52	4.51		βc [rad]	1.49	SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.49	1.46		θ [rad]	0.076	S _{De} (T _s) [m] 0.039		
β_{Ni} [rad]	1.50	1.52		θ [°]	3.445	S _{De} (T ₁) [m]	0.016	
		PARA	METRI			d _u * [m]	0.039	
d _{k0} [m]	0.53	d _u * [m]	0.11	as* [m/s²]	1.15	d _u * [m]	0.064	
d ₀ * [m]	0.27	d _s * [m]	0.04	T _s [s]	1.21	VERIFICATO)	

Tabella 8.117: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.33 Macroelemento 17: meccanismo nel piano

Figura 8.43: Individuazione macroelemento, pianta e prospetto

Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".
Meccanismo:	rottura a taglio dell'intera facciata.
	in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove
Cause strutturali	sussiste una maggiore concentrazione di tensioni;
	murature di modesta qualità o in presenza di discontinuità.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	DA	AZIONE	SISMICA			
b _i [m]	0.50	0.50	N piani	4	T ₁ [s]	0.41
d _i [m]	0.38	0.38	z [m]	12.14	$S_e(T_1)$ [g]	0.38
L _i [m]	0.35	2.84	H [m]	16.68	У	1.29
a _i [m]	1.79	3.68	h _i [m]	3.15	ψ	0.73
Ai [m ²]	1.79	3.68	h _o [m]	1.41		
			CARICHI			
P _i [kN]	4.96	40.26				
N _i [kN]	28.08	53.62				

Tabella 8.118: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE					
	MECCA	NISMO		EQUIVALENTE					
Σδ _{xPi} P _i +	- Σδ _{×Ni} Ν _i	159).74	M* [kN]	12.32				
Σδ _{yPi} P _i +	$\Sigma \delta_{yPi} P_i + \Sigma \delta_{yNi} N_i$ 346.01			e* 0.97					
(χ	0.4	46	α* _o [m/s ²] 3.60					
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.81	VERIFICATO					

Tabella 8.119: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

8.8.34 Macroelemento 18: ribaltamento semplice di parete, totale

Figura 8.44: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanismo:	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Wieccamsmo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	FI GEOMET	RICI	AZIONE SISMICA					
b _i [m]	0.72	0.66	0.66	0.66	N piani	4	T ₁ [s]	0.41
d _i [m]	0.54	0.50	0.50	0.50	z [m]	0.00	$S_e(T_1)$ [g]	0.38
h _i [m]	2.80	2.86	6.48	4.56	H [m]	16.68	У	1.33
h _{bar,i} [m]	1.42	4.13	9.03	13.98	L[m]	7.66	ψ	0.00
		CARICHI		-	AR	RETRAMEN	TO CERNIE	RA
P _i [kN]	215.65	179.51	498.96	260.17	+ [m]	t [m] 0.16		
N _i [kN]	141.89	155.19	155.19	50.82				

Tabella 8.120: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI A	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
M _{RA} [kNm]	1451	5.36	M* [kN]	129.03		
M _{sA} [kNm]	383	3.82	e*	0.76		
С	χ	0.	03	$\alpha^*_0[m/s^2]$	0.34		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
α₀[m/s²]	0.71	α ₀ [m/s ²] 0.00 NON VERIFICATO					

Tabella 8.121: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

	DATI GE	VERIEICA STATIC							
R _{Pi} [m]	1,23	4,10	11,76	13,98			LINFARE ALLO STATICA NON		
R _{Ni} [m]	2,83	5,67	12,14	16,70			SALVAGUARDIA DELLA VITA		
β _{Pi} [rad]	1,40	1,53	1,56	1,56	θ [rad]	0,026	S _{De} (T _s) [m]	0,096	
β_{Ni} [rad]	1,43	1,53	1,54	1,55	θ [°]	1,52	S _{De} (T ₁) [m]	0,002	
		l	PARAMETR	1			d _u * [m]	0,096	
d _{k0} [m]	0,44	d _u * [m]	0,12	as* [m/s ²]	0,29		d _u * [m]	0,00	
d ₀ * [m]	0,30	d _s * [m]	0,05	T _s [s]	2,59		VERIFICATO		

Tabella 8.122: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.35 Macroelemento 18: ribaltamento semplice di parete, totale

Figura 8.45: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.66		N piani	4	T ₁ [s]	0.41
d _i [m]	0.50		z [m]	0.00	$S_e(T_1)$ [g]	0.38
h _i [m]	4.56		H [m]	12.23	У	0.73
h _{bar,i} [m]	2.16		L [m]	7.66	ψ	0.00
	CAR	ICHI	ARRETRAMENTO CERNIERA			ERA
P _i [kN]	260.17		+ [m]	0.02		
N _i [kN]	50.82		ιιιι		0.05	

Tabella 8.123: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
	MECCA	NISMO		EQUIVALENTE				
M _{RA} [kNm]	793	8.71	M* [kN]	28.28			
M _{sA} [M _{sA} [kNm] 101.89			e* 0.89				
C	χ	0.1	L 28	α* _o [m/s ²] 1.085				
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.82	NON VERIFICATO				

Tabella 8.124: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	2.18					LINEARE ALLO STATO LIMITE D		
R _{Ni} [m]	4.58					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.43			θ [rad]	0.128	S _{De} (T _s) [m]	0.078	
β_{Ni} [rad]	1.47			θ[°]	7.32	S _{De} (T ₁) [m]	0.002	
		PARA	METRI		-	d _u * [m]	0.078	
d _{k0} [m]	0.58	d _u * [m]	0.15	as* [m/s ²]	0.91	d _u * [m]	0.08	
d ₀ * [m]	0.36	d _s * [m]	0.06	T _s [s]	1.59	VERIFICATO	<u>с</u>	

Tabella 8.125: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.
8.8.36 Macroelemento 18: flessione verticale di parete

Figura 8.46: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.			
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.			
Cause strutturali: solaio spingente o presenza di archi e volte.				

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

		DATI GEO	DMETRICI	AZIONE SISMI			SISMICA
b _i [m]	0.66	0.66		N piani	4	T ₁ [s]	0.42
d _i [m]	0.50	0.50		z [m]	10.80	S _e (T ₁) [g]	0.38
h _i [m]	6.48	4.56		H [m]	16.68	У	1.33
h _{bar,i} [m]	3.18	2.18		L [m]	7.66	ψ	0.67
CARICHI							
P _i [kN]	498.96	260.29					
N _i [kN]	141.89	46.46					

Tabella 8.126: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
Σδ _{xPi} P _i +	- Σδ _{×Ni} N _i	337	9.39	M* [kN]	83.58	
Σδ _{γΡi} Ρ _i +	⊦Σδ _{γNi} N _i	57	0.3	e*	0.87	
α 0.1		L 61	$\alpha^*_0[m/s^2]$	1.61		
VERIFICA STATICA LINEARE ALLO STATO) LIMITE DI SALVAGUARD	IA DELLA VITA	
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.68	NON VERIFICATO		

Tabella 8.8.127: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC						
R _{Pi} [m]	3.26	2.26		R _c [m]	6.52	LINEARE ALLO STATO		
R _{Ni} [m]	6.52	4.51		βc [rad]	1.49	SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.49	1.46		θ [rad]	0.094	S _{De} (T _s) [m]	0.045	
β_{Ni} [rad]	1.50	1.52		θ [°]	3.445	S _{De} (T ₁) [m]	0.016	
		PARA	METRI			d _u * [m]	0.045	
d _{k0} [m]	0.53	d _u * [m]	0.16	as* [m/s²]	1.26	d _u * [m]	0.066	
d ₀ * [m]	0.39	d _s * [m]	0.06	T _s [s]	1.39	VERIFICATO		

Tabella 8.128: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.37 Macroelemento 18: meccanismo nel piano

Figura 8.47: Individuazione macroelemento, pianta e prospetto

Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".				
Meccanismo: rottura a taglio dell'intera facciata.					
	in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove				
Cause strutturali	sussiste una maggiore concentrazione di tensioni;				
	murature di modesta qualità o in presenza di discontinuità.				

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	DATI GEOMETRICI AZIONE SISMICA											
b _i [m]	0.72	0.66	0.66	0.66	N piani	4	T ₁ [s]	0.41				
d _i [m]	0.54	0.50	0.50	0.50	z [m]	12.14	$S_e(T_1)$ [g]	0.38				
L _i [m]	0.51	1.73	1.91	0.31	H [m]	16.68	У	1.29				
a _i [m]	1.06	2.78	2.96	0.86	h _i [m]	4.00	ψ	0.73				
Ai [m ²]	8.81	13.77	14.28	8.24	h _o [m]	0.65						
				CARICHI								
P _i [kN]	13.22	41.10	45.38	7.37								
N _i [kN]	25.50	47.35	49.71	22.13								

Tabella 8.129: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
Σδ _{xPi} P _i +	- Σδ _{xNi} N _i	864	.26	M* [kN]	24.63		
Σδ _{yPi} P _i +	- Σδ _{yNi} N _i	203	8.15	e*	0.96		
C	χ	0.	24	$\alpha^*_0[m/s^2]$	1.85		
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA						
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.82	VERIFICATO			

Tabella 8.130: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

8.8.38 Macroelemento 19: ribaltamento semplice di parete, totale

Figura 8.48: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Meccanismo:	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
wieccamsmo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DA	TI GEOMET	RICI	AZIONE SISMICA				
b _i [m]	0.80	0.80	0.60	0.60	N piani	4	T ₁ [s]	0.41
d _i [m]	0.60	0.60	0.45	0.45	z [m]	0.00	$S_e(T_1)$ [g]	0.38
h _i [m]	2.80	2.86	6.48	4.56	H [m]	16.68	У	1.33
h _{bar,i} [m]	1.32	4.32	8.43	13.73	L[m]	1.20	ψ	0.00
		CARICHI		-	ARRETRAMENTO CERNIERA			
P _i [kN]	13.82	14.86	58.06	33.18	+ [m]		0.09	
N _i [kN]	10.61	10.61	10.61	3.47	ιιιι	0.09		

Tabella 8.131: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	130	3.96	M* [kN]	12.71	
M _{sA} [kNm]	43	.41	e*	0.80	
α		0.033		$\alpha^*_0[m/s^2]$	0.40	
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	O LIMITE DI SALVAGUARDIA DELLA VITA		
α₀[m/s²]	0.71	$\alpha_0 [m/s^2]$	0.00	NON VERIFICATO		

Tabella 8.132: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

	DATI GE	VERIEICA STATIC							
R _{Pi} [m]	1.34	32.00	8.43	13.73			LINEARE ALLO STATC		
R _{Ni} [m]	2.84	5.67	12.14	16.70			SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.37	1.51	1.55	1.56	θ [rad]	0.023	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.41	1.49	1.54	1.55	θ [°]	1.32	S _{De} (T ₁) [m]	0.002	
		ſ	PARAMETR	1			d _u * [m]	0.096	
d _{k0} [m]	0.45	d _U * [m]	0.11	as* [m/s ²]	0.34		d _u * [m]	0.00	
d ₀ * [m]	0.28	d _s * [m]	0.05	T _s [s]	2.28		VERIFICATO		

Tabella 8.133: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.39 Macroelemento 19: ribaltamento semplice di parete, parziale

Figura 8.49: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.60			N piani	4	T ₁ [s]	0.41
d _i [m]	0.45			z [m]	12.14	$S_e(T_1)$ [g]	0.38
h _i [m]	4.56			H [m]	16.68	У	1.33
h _{bar,i} [m]	2.42			L [m]	1.20	ψ	0.73
	CAR	ICHI		ARRETRAMENTO CERNIERA			RA
P _i [kN]	33.18			t[m] 0.02			
N _i [kN]	3.47			ι[II]		0.05	

Tabella 8.134: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	195	5.43	M* [kN]	7.56	
M _{sA} [kNm]			.59	e*	0.96	
(χ	0.	11	$\alpha^*{}_0[m/s^2]$ 1.12		
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.81	NON VERIFICATO		

Tabella 8.135: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	VERIFICA STATIC							
R _{Pi} [m]	2.44								
R _{Ni} [m]	4.58					SALVAGUARDIA DE	LLA VITA		
β_{Pi} [rad]	1.46			θ [rad]	0.11	S _{De} (T _s) [m] 0.067			
β_{Ni} [rad]	1.48			θ [°]	6.32	S _{De} (T ₁) [m]	0.002		
	-	PARA	METRI			d _u * [m]	0.067		
d _{k0} [m]	0.50	d _U * [m]	0.12	as* [m/s²]	0.94	d _u * [m]	0.071		
d ₀ * [m]	0.29	d _s * [m]	0.05	T _s [s]	1.39	VERIFICATO			

Tabella 8.136: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.40 Macroelemento 19: flessione verticale di parete

Figura 8.50: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

		DATI GEO	DMETRICI			AZIONE SISMICA	
b _i [m]	0.60	0.60		N piani	4	T ₁ [s]	0.42
d _i [m]	0.45	0.45		z [m]	10.80	S _e (T ₁) [g]	0.38
h _i [m]	6.48	4.56		H [m]	16.68	У	1.33
h _{bar,i} [m]	3.20	2.22		L [m]	1.20	ψ	0.67
	CAR	RICHI					
P _i [kN]	58.06	33.18					
N _i [kN]	10.61	3.47					

Tabella 8.137: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
Σδ _{xPi} P _i +	- Σδ _{×Ni} N _i	365	.49	M* [kN]	9.64	
Σδ _{yPi} Ρ _i +	$δ_{yPi} P_i + Σ \delta_{yNi} N_i$ 66.12			e*	0.89	
C	χ	0.1	L 81	$\alpha^*{}_0[m/s^2]$ 1.52		
VE	ERIFICA STAT	ICA LINEARE	ALLO STATO	O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.63	NON VERIFICATO		

Tabella 8.138: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIEICA STATIC						
R _{Pi} [m]	3.27	2.27		R _c [m]	6.53	LINFARF ALLO STATO LIMITE D		
R _{Ni} [m]	6.59	4.51		βc [rad]	1.47	SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.47	1.43		θ [rad]	0.096	S _{De} (T _s) [m] 0.045		
β_{Ni} [rad]	1.50	1.49		θ [°]	3.445	S _{De} (T ₁) [m]	0.002	
		PARA	METRI		-	d _u * [m]	0.070	
d _{k0} [m]	0.53	d _u * [m]	0.15	as* [m/s ²]	1.28	d _u * [m] 0.025		
d ₀ * [m]	0.37	d _s * [m]	0.06	T _s [s]	1.35	VERIFICATO)	

Tabella 8.139: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.41: Macroelementi 19 – 20 - 21: meccanismo nel piano

Figura 8.51: Individuazione macroelemento, pianta e prospetto

Danno:	lesioni diffuse inclinate o a "croce di Sant'Andrea".
Meccanismo:	rottura a taglio dell'intera facciata.
	in presenza di aperture, le lesioni s'innescano dagli spigoli delle stesse, ove
Cause strutturali	sussiste una maggiore concentrazione di tensioni;
	murature di modesta qualità o in presenza di discontinuità.

Verifica statica lineare

Di seguito vengono riportati i valori relativi alle grandezze geometriche derivanti dal rilievo, i pesi propri della parete (al netto delle aperture) ed i pesi dei solai sovrastanti il pannello murario.

	AZIONE	SISMICA								
b _i [m]	0.60 0.60 0.60 0.60 0.60 N piani 3								T ₁ [s]	0.42
d _i [m]	0.45	0.45	0.45	0.45	0.45	0.45	z [m]	12.14	$S_e(T_1)$ [g]	0.38
L _i [m]	2.6	3.09	1.71	1.71	3.09	2.6	H [m]	16.68	У	1.29
a _i [m]	3.25	4.4	1.71	1.71	4.4	3.25	h _i [m]	4.88	ψ	0.73
Ai [m ²]	13.65	18.48	7.182	7.182	18.48	13.65	h _o [m]	0.65		
					CARICHI					
P _i [kN]	[kN] 68.52 81.43 45.06 45.06 81.43 68.52									
N _i [kN]	48.48	65.63	25.51	25.51	39.16	28.93				

 Tabella 8.140:
 dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
Σδ _{xPi} P _i +	- Σδ _{×Ni} N _i	240	6.87	M* [kN]	60.99	
Σδ _{yPi} P _i +	Σδ _{γΡi} Ρ _i + Σδ _{γNi} Ν _i 797.08			e*	0.96	
C	χ	0.3	331	α* _o [m/s ²] 2.60		
VE	RIFICA STAT	TICA LINEARE	ALLO STATC	O LIMITE DI SALVAGUARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.74	VERIFICATO		

Tabella 8.141: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

8.8.42 Macroelemento 20: ribaltamento semplice di parete, totale

Figura 8.52: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanismo	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
wieccariismo.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

		DATI GEC	DMETRICI			AZIONE	SISMICA
b _i [m]	0.80	0.80	0.60	N piani	3	T ₁ [s]	0.42
d _i [m]	0.60	0.60	0.45	z [m]	0.00	$S_e(T_1)$ [g]	0.38
h _i [m]	5.66	6.48	4.56	H [m]	16.68	У	1.29
h _{bar,i} [m]	3.10	8.35	13.64	L [m]	9.25	ψ	0.00
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	ĒRA
P _i [kN]	463.39	421.63	387.83	t [m]	0.13		
N _i [kN]	131.96	235.24	77.03				

Tabella 8.142: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE						
MECCANISMO				EQUIVALENTE						
M _{RA} [kNm]	1513	86.19	M* [kN]	140.36					
M _{sA} [M _{sA} [kNm] 417.69			e* 0.80						
C	χ	0.03		$\alpha^*_0[m/s^2]$	0.34					
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA									
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.00	NON VERIFICATO						

Tabella 8.143: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a₀.

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATICA ΝΟΝ						
R _{Pi} [m]	3.11	8.35	13.53					
R _{Ni} [m]	5.68	12.14	16.7			SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.49	1.55	1.56	θ [rad]	0.028	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.49	1.54	1.55	θ [°]	1.581	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.096	
d _{k0} [m]	0.46	d _u * [m]	0.12	as* [m/s²]	0.28	d _u * [m] 0.00		
d ₀ * [m]	0.3	d _s * [m]	0.05	T _s [s]	2.60	VERIFICATO		

Tabella 8.144: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.43 Macroelemento 20: ribaltamento semplice di parete, parziale

Figura 8.53: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI			AZIONE SISMICA				
b _i [m]	0.60			N piani	3	T ₁ [s]	0.42
d _i [m]	0.45			z [m]	12.14	$S_e(T_1)$ [g]	0.38
h _i [m]	4.56			H [m]	16.68	У	1.29
h _{bar,i} [m]	2.23			L [m]	9.25	ψ	0.73
CARICHI			ARRETRAMENTO CERNIERA			RA	
P _i [kN]	387.83			t[m] 0.04			
N _i [kN]	77.03			ιμη		0.04	

Tabella 8.145: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE						
MECCANISMO				EQUIVALENTE						
M _{RA} [kNm]	121	6.11	M* [kN]	42.70					
M _{sA} [M _{sA} [kNm] 134.14			e* 0.90						
С	α 0.11		α* _o [m/s ²] 1.20							
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA									
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.74	NON VERIFICATO						

Tabella 8.146: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIEICA STATIC						
R _{Pi} [m]	2.25							
R _{Ni} [m]	4.58					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.45			θ [rad]	0.109	S _{De} (T _s) [m]	0.068	
β_{Ni} [rad]	1.48			θ [°]	6.294	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.068	
d _{k0} [m]	0.50	d _u * [m]	0.13	as* [m/s²]	1.01	d _u * [m] 0.071		
d ₀ * [m]	0.32	d _s * [m]	0.05	T _s [s]	1.41	VERIFICATO		

Tabella 8.147: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.44 Macroelemento 20: flessione verticale di parete

Figura 8.54: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

		DATI GEO	OMETRICI			AZIONE	AZIONE SISMICA	
b _i [m]	0.60	0.60		N piani	3	T ₁ [s]	0.42	
d _i [m]	0.45	0.45		z [m]	10.96	S _e (T ₁) [g]	0.38	
h _i [m]	6.57	5.53		H [m]	16.68	У	1.29	
h _{bar,i} [m]	2.69	2.33		L [m]	9.25	ψ	0.68	
	CAR	RICHI	-			-	-	
P _i [kN]	421.63	387.83						
N _i [kN]	235.24	77.03						

Tabella 8.148: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE					
MECCANISMO				EQUIVALENTE					
Σδ _{xPi} P _i +	$\delta \Sigma \delta_{xNi} N_i$	338	9.95	M* [kN]	95.4				
Σδ _{γΡi} Ρ _i +	- Σδ _{γΝi} Ν _i	584	.29	e*	0.83				
С	X	0.1	.72	α* _o [m/s ²] 1.51					
VE	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
α₀[m/s²]	0.71	α₀[m/s²]	1.57	NON VERIFICATO					

Tabella 8.149: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATICA NON						
R _{Pi} [m]	3.31	2.78		R _c [m]	2.65	LINFARE ALLO STATICA NON		
R _{Ni} [m]	6.59	5.54		βc [rad]	5.54	SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.43	1.46		θ [rad]	0.094	S _{De} (T _s) [m] 0.04		
β_{Ni} [rad]	1.50	1.52		θ [°]	3.445	S _{De} (T ₁) [m]	0.002	
	•	PARA	METRI			d _u * [m]	0.070	
d _{k0} [m]	0.53	d _u * [m]	0.16	as* [m/s ²]	1.26	d _u * [m]	0.025	
d ₀ * [m]	0.39	d _s * [m]	0.06	T _s [s]	1.39	VERIFICATO		

Tabella 8.150: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

8.8.45 Macroelemento 21: ribaltamento semplice di parete, totale

Figura 8.55: Individuazione macroelemento, pianta e prospetto

Danno:	crollo totale della facciata.
Maccanismo	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
wieccariisiiio.	asse orizzontale, in corrispondenza dello spiccato delle fondazioni.
	scarso collegamento delle pareti ortogonali;
Cause strutturali:	mancanza di catene o cordoli che consentano il comportamento scatolare della
	struttura muraria.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

DATI GEOMETRICI							SISMICA
b _i [m]	0.80	0.60	0.60	N piani	3	T ₁ [s]	0.42
d _i [m]	0.60	0.45	0.45	z [m]	0.00	S _e (T ₁) [g]	0.38
h _i [m]	4.85	6.57	5.28	H [m]	16.68	У	1.29
h _{bar,i} [m]	2.84	8.42	13.73	L [m]	1.20	ψ	0.00
	CAR	ICHI	-	ARRETRAMENTO CERNIERA			RA
P _i [kN]	49.25	59.23	42.51	t [m]	0.18		
N _i [kN]	66.91	66.91	66.91				

Tabella 8.151: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	2676.77		M* [kN]	25.17	
M _{sA} [M _{sA} [kNm] 73.72		e*	0.81		
C	χ	0.0)27	α* _o [m/s ²] 0.45		
VE	ERIFICA STAT	TICA LINEARE	ALLO STATO) LIMITE DI SALVAGUARD	DIA DELLA VITA	
α₀[m/s²]	0.71	α₀[m/s²]	0.00	NON VERIFICATO		

Tabella 8.152: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a₀.

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	TA	VERIFICA STATIC				
R _{Pi} [m]	2.85	8.42	13.73					
R _{Ni} [m]	4.87	11.42	16.70			SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.49	1.56	1.56	θ [rad]	0.027	S _{De} (T _s) [m]	0.096	
β_{Ni} [rad]	1.48	1.55	1.55	θ [°]	1.55	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.096	
d _{k0} [m]	0.46	d _u * [m]	0.12	as* [m/s ²]	0.29	d _u * [m]	0.00	
d ₀ * [m]	0.29	d _s * [m]	0.05	$T_s[s]$	2.59	VERIFICATO		

Tabella 8.153: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.46 Macroelemento 21: ribaltamento semplice di parete, parziale

Figura 8.56: Individuazione macroelemento, pianta e prospetto

Danno:	crollo parziale della facciata.
	rotazione fuori piano della facciata con formazione di una cerniera cilindrica, ad
Meccanismo:	asse orizzontale. La linea di rottura si manifesta generalmente in
	corrispondenza di aperture e a livello dei solai.
	scarso collegamento tra gli elementi resistenti della struttura muraria (pareti e
Cause strutturali:	orizzontamenti);
	scarsa resistenza della muratura.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

		DATI GEC	DMETRICI			AZIONE SISMICA	
b _i [m]	0.60			N piani	3	T ₁ [s]	0.42
d _i [m]	0.45			z [m]	11.42	$S_e(T_1)$ [g]	0.38
h _i [m]	5.28			H [m]	16.68	У	1.29
h _{bar,i} [m]	13.73			L [m]	1.20	ψ	0.68
	CAR	ICHI		AR	RETRAMEN	ITO CERNIE	RA
P _i [kN]	42.51			t [m]	0.04		
N _i [kN]	21.91						

Tabella 8.154: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
	MECCA	NISMO		EQUIVALENTE		
M _{RA} [kNm]	213	.88	M* [kN]	5.57	
1.09		20.11		e*	0.85	
C	χ	0.0)94	$\alpha^*_0[m/s^2]$	1.09	
VE	ERIFICA STAT	TICA LINEARE	ALLO STATO) LIMITE DI SALVAGUARD	DIA DELLA VITA	
α₀[m/s²]	0.71	$\alpha_0 [m/s^2]$	1.64	NON VERIFICATO		

Tabella 8.155: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a₀.

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIFICA STATIC						
R _{Pi} [m]	2.32							
R _{Ni} [m]	5.30					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.46			θ [rad]	0.101	S _{De} (T _s) [m]	0.071	
β_{Ni} [rad]	1.50			θ [°]	5.80	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.071	
d _{k0} [m]	0.49	d _u * [m]	0.25	as* [m/s²]	0.91	d _u *[m] 0.068		
d ₀ * [m]	0.37	d _s * [m]	0.06	$T_s[s]$	1.59	VERIFICATO		

Tabella 8.156: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

8.8.47 Macroelemento 21: flessione verticale di parete

Figura 8.57: Individuazione macroelemento, pianta e prospetto

Danno:	spanciamento della facciata.
Meccanismo:	inflessione verso l'esterno per forte spinta orizzontale.
Cause strutturali:	solaio spingente o presenza di archi e volte.

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

		DATI GEO	DMETRICI			AZIONE	SISMICA
b _i [m]	0.60	0.60		N piani	4	T ₁ [s]	0.42
d _i [m]	0.45	0.45		z [m]	10.80	$S_e(T_1)$ [g]	0.38
h _i [m]	6.48	4.56		H [m]	16.68	У	1.33
h _{bar,i} [m]	3.20	2.22		L [m]	1.20	ψ	0.67
	CAR	ICHI					
P _i [kN]	58.06	33.18					
N _i [kN]	10.61	3.47					

Tabella 8.157: dati geometrici necessari al calcolo del cinematismo e valore dei carichi.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
Σδ _{xPi} P _i +	- Σδ _{xNi} N _i	365.49		M* [kN]	9.64	
$Σ \delta_{yPi} P_i + Σ \delta_{yNi} N_i$ 66.12		.12	e*	0.89		
C	χ	0.1	81	$\alpha^*_0[m/s^2]$	1.52	
VE	ERIFICA STAT	ICA LINEARE	ALLO STATC	LIMITE DI SALVAGUARD	IA DELLA VITA	
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.63	NON VERIFICATO		

Tabella 8.158: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIEICA STATIC						
R _{Pi} [m]	3.27	2.27		R _c [m]	6.53	LINEARE ALLO STATO LIMITE D		
R _{Ni} [m]	6.59	4.51		βc [rad]	1.47	SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.47	1.43		θ [rad]	0.096	S _{De} (T _s) [m]	0.045	
β_{Ni} [rad]	1.50	1.49		θ [°]	3.445	S _{De} (T ₁) [m]	0.002	
		PARA	METRI			d _u * [m]	0.070	
d _{k0} [m]	0.53	d _u * [m]	0.15	as* [m/s ²]	1.28	d _u * [m]	0.025	
d ₀ * [m]	0.37	d _s * [m]	0.06	T _s [s]	1.35	VERIFICATO		

Tabella 8.159: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u^* .

Analisi dei risultati ottenuti

La seguente tabella riporta i risultati ottenuti dall'analisi e verifica dei cinematismi possibili. Per una più facile lettura, sono state utilizzate le lettere L e C rispettivamente per i solai lignei e Cirex dell'unità strutturale minore.

Dove non è stato necessario effettuare l'analisi non lineare è stato utilizzato un tratto orizzontale.

NAE	MECCANISMO	a	ANALISI SLV	ANALISI SLV NON	INSERIMENTO
IVIE	IVIECCANISIVIO	α	LINEARE	LINEARE	TIRANTI
	RIBALTAMENTO SEMPLICE, TOTALE	0.038	NON VERIFICATO	VERIFICATO	-
1	RIBALTAMENTO SEMPLICE, PARZIALE	0.093	NON VERIFICATO	VERIFICATO	-
1	FLESSIONE VERTICALE	0.187	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.317	VERIFICATO	-	-
	RIBALTAMENTO SEMPLICE, TOTALE	0.038	NON VERIFICATO	VERIFICATO	-
2	RIBALTAMENTO SEMPLICE, PARZIALE	0.097	NON VERIFICATO	VERIFICATO	-
2	FLESSIONE VERTICALE	0.187	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.317	VERIFICATO	-	-
	RIBALTAMENTO SEMPLICE, TOTALE	0.038	NON VERIFICATO	VERIFICATO	-
2	RIBALTAMENTO SEMPLICE, PARZIALE	0.096	NON VERIFICATO	VERIFICATO	-
5	FLESSIONE VERTICALE	0.186	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.317	VERIFICATO	-	-
4	RIBALTAMENTO COMPOSTO, PARZIALE	0.061	NON VERIFICATO	VERIFICATO	-
	RIBALTAMENTO SEMPLICE, TOTALE, CIREX	0.032	NON VERIFICATO	VERIFICATO	-
5	RIBALTAMENTO SEMPLICE, TOTALE, LEGNO	0.030	NON VERIFICATO	VERIFICATO	-
	RIBALTAMENTO SEMPLICE, PARZIALE	0.096	NON VERIFICATO	NON VERIFICATO	VERIFICATO
6	RIBALTAMENTO SEMPLICE, PARZIALE	0.075	VERIFICATO	-	-
0	RIBALTAMENTO SEMPLICE, PARZIALE	0.088	NON VERIFICATO	VERIFICATO	-
7	RIBALTAMENTO SEMPLICE, PARZIALE	0.072	NON VERIFICATO	VERIFICATO	-
8	RIBALTAMENTO SEMPLICE, PARZIALE	0.125	NON VERIFICATO	VERIFICATO	-
	RIBALTAMENTO SEMPLICE, PARZIALE, CIREX	0.011	NON VERIFICATO	NON VERIFICATO	VERIFICATO
9	RIBALTAMENTO SEMPLICE, PARZIALE, LEGNO	0.010	NON VERIFICATO	NON VERIFICATO	VERIFICATO
	RIBALTAMENTO SEMPLICE, PARZIALE	0.017	NON VERIFICATO	NON VERIFICATO	VERIFICATO
10	RIBALTAMENTO SEMPLICE, PARZIALE	0.104	NON VERIFICATO	NON VERIFICATO	VERIFICATO
11	RIBALTAMENTO SEMPLICE, PARZIALE	0.055	NON VERIFICATO	NON VERIFICATO	VERIFICATO
12	RIBALTAMENTO SEMPLICE, PARZIALE	0.055	NON VERIFICATO	NON VERIFICATO	VERIFICATO
13	RIBALTAMENTO SEMPLICE, TOTALE	0.077	NON VERIFICATO	VERIFICATO	-
14	RIBALTAMENTO SEMPLICE, PARZIALE	0.040	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.210	VERIFICATO	-	-
15	RIBALTAMENTO SEMPLICE, PARZIALE	0.100	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.720	VERIFICATO	-	-
16	RIBALTAMENTO SEMPLICE, PARZIALE	0.054	NON VERIFICATO	NON VERIFICATO	VERIFICATO
	MECCANISMO NEL PIANO	0.270	VERIFICATO	-	
	RIBALTAMENTO SEMPLICE, TOTALE	0.023	NON VERIFICATO	VERIFICATO	-
17	RIBALTAMENTO SEMPLICE, PARZIALE	0.101	NON VERIFICATO	NON VERIFICATO	VERIFICATO
	FLESSIONE VERTICALE	0.137	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.460	VERIFICATO	-	-
	RIBALTAMENTO SEMPLICE, TOTALE	0.030	NON VERIFICATO	VERIFICATO	-
18	RIBALTAMENTO SEMPLICE, PARZIALE	0.128	NON VERIFICATO	VERIFICATO	-
	FLESSIONE VERTICALE	0.161	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.240	VERIFICATO	-	-
	RIBALTAMENTO SEMPLICE, TOTALE	0.030	NON VERIFICATO	VERIFICATO	-
19	RIBALTAMENTO SEMPLICE, PARZIALE	0.110	NON VERIFICATO	VERIFICATO	-
	FLESSIONE VERTICALE	0.181	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.331	VERIFICATO	-	-

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

	RIBALTAMENTO SEMPLICE, TOTALE	0.033	NON VERIFICATO	VERIFICATO	-
20	RIBALTAMENTO SEMPLICE, PARZIALE	0.110	NON VERIFICATO	VERIFICATO	-
20	FLESSIONE VERTICALE	0.171	NON VERIFICATO	VERIFICATO	-
MECCANISMO NEL PIANO		0.331	VERIFICATO	-	-
	RIBALTAMENTO SEMPLICE, TOTALE	0.027	NON VERIFICATO	VERIFICATO	-
21	RIBALTAMENTO SEMPLICE, PARZIALE	0.094	NON VERIFICATO	VERIFICATO	-
21	FLESSIONE VERTICALE	0.181	NON VERIFICATO	VERIFICATO	-
	MECCANISMO NEL PIANO	0.331	VERIFICATO	-	-

 Tabella 8.160:
 tabella riassuntiva delle analisi dei cinematismi.

L'analisi dei cinematismi probabili ha riscontrato verificati:

- il 100% dei meccanismi di ribaltamento semplice della parete con crollo totale,
- il 52% dei meccanismi di ribaltamento semplice della parete con crollo parziale,
- il 100% dei meccanismi di ribaltamento composto,
- il 100% dei meccanismi di flessione verticale,
- il 100% dei meccanismi nel piano.

Tabella 8.161: risultati delle analisi dei cinematismi svolti

I risultati ottenuti confermano la vulnerabilità dei meccanismi di ribaltamento semplice, in particolar modo per quanto riguarda quelli in quota, soggetti, per normativa, ad una verifica più severa.

I meccanismi di flessione semplice non risultano sempre verificati con l'analisi cinematica lineare, ma con l'analisi non lineare sono tutti verificati.

I meccanismi di taglio risultano verificati anche con l'analisi cinematica lineare, in quanto i meccanismi di secondo modo hanno una vulnerabilità intrinseca minore.

La verifica ha riscontrato maggior vulnerabilità nell'unità strutturale contenente i piani ammezzati e nei prospetti del cortile occidentale, dovuta soprattutto a causa dello scarso spessore della parete muraria o all'ingente presenza di aperture.

E' stata quindi ripetuta l'analisi con un livello di conoscenza maggiore per i macroelementi che non soddisfano le verifiche non lineari.

I parametri relativi alla muratura, diminuiti del fattore di confidenza 1,2, risultano:

TIPOLOGIA	E	G	PESO SPECIFICO	fm	RESISTENZA A TAGLIO
	[N/mm²]	[N/mm²]	[kN/m ³]	[N/cm ²]	[N/cm ²]
Muratura in mattoni pieni e malta di calce	1500,00	500,00	18	200,00	5,00

Analisi dei meccanismi locali di collasso tramite fogli di calcolo, LC 2

8.10.1 Macroelemento 5: ribaltamento semplice di parete, parziale

Figura 8.58: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.45		N piani	4	T ₁ [s]	0.38
d _i [m]	0.34		z [m]	11.17	$S_e(T_1)$ [g]	0.38
h _i [m]	3.63		H [m]	14.8	У	1.33
h _{bar,i} [m]	2.08		L [m]	4.75	ψ	0.75
	CAR	ICHI	ARRETRAMENTO CERNIERA			
P _i [kN]	102.63		+[m] 0.02			
N _i [kN]	19.83		ιμη		0.02	

Tabella 8.162: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
MECCANISMO				EQUIVALENTE			
M _{RA} [kNm]	285	.45	M* [kN]	11.78		
M _{sA} [M _{sA} [kNm] 27.68			e*	0.94		
С	χ	0.0)97	$\alpha^*_0[m/s^2]$	1.01		
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	D LIMITE DI SALVAGU	ARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.876	NON VERIFICATO			

Tabella 8.163: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	TRICI CONI	IGURAZIO	NE RUOTA	TA	VERIFICA STATICA NON		
R _{Pi} [m]	2.09							
R _{Ni} [m]	3.64					SALVAGUARDIA DE	LLA VITA	
β_{Pi} [rad]	1.47			θ [rad]	0.096	S _{De} (T _s) [m] 0.033		
β_{Ni} [rad]	1.48			θ [°]	5.475	S _{De} (T ₁) [m] 0.001		
		PARA	METRI			d _u * [m]	0.033	
d _{k0} [m]	0.35	d _U * [m]	0.02	as* [m/s ²]	0.84	d _u * [m]	0.053	
d ₀ * [m]	0.06	d _s * [m]	0.66	NON VERIFICATO				

Tabella 8.164: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE		
Φ[mm] 18 fyd [MPa] 171.43			171.43	Snervamento tirante T' [kN] 43.62		
	PIAS	STRA		Punzonamento muratura T" [kN] 29		
a [m] 0.2 b [m] 0.2		0.2	Penetrazione ancoraggio T''' [kN]	40.00		

Tabella 8.165: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIRANTI			VERIFICA PORTATA SINGOLO TIRANTE			
T ₁ [kN]	4.76	n ₁	2	T ₁ [kN]	2.38	VERIFICATO

Tabella 8.166: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.10.2 Macroelemento 9: ribaltamento semplice di parete, parziale

Figura 8.59: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA				
b _i [m]	0.10	0.10	N piani	3	T ₁ [s]	0.31	
d _i [m]	0.08	0.08	z [m]	3.72	S _e (T ₁) [g]	0.38	
h _i [m]	2.77	4.68	H [m]	11.03	У	1.29	
h _{bar,i} [m]	2.30	6.50	L [m]	1.20	ψ	0.33	
	CAR	ICHI	ARRETRAMENTO CERNIERA				
P _i [kN]	5.40	7.20	+ [m]	0.01			
N _i [kN]	8.77	3.21	[]				

Tabella 8.167: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
M _{RA} [I	kNm]	107	.41	M* [kN]	1.03		
M _{sA} [M _{sA} [kNm] 1.19			e*	0.81		
0	χ	0.0)11	$\alpha^*_0[m/s^2]$	0.13		
VERIFIC	CA STATICA	LINEARE A	ALLO STATO	D LIMITE DI SALVAGU	ARDIA DELLA VITA		
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.80	NON VERIFICATO			

Tabella 8.168: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare, solaio Cirex

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

DA	ATI GEOME	TRICI CONI	FIGURAZIO	NE RUOTA	TA	VERIFICA STATICA NON		
R _{Pi} [m]	2.29	6.50						
R _{Ni} [m]	2.77	7.45				SALVAGUARDIA DELLA VITA		
β _{Pi} [rad]	1.57	1.57		θ [rad]	0.009	S _{De} (T _s) [m] 0.068		
β_{Ni} [rad]	1.56	1.57		θ [°]	0.547	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.068	
d _{k0} [m]	0.08	d _u * [m]	0.02	as* [m/s ²]	0.11	d _u * [m] 0.02		
d ₀ * [m]	0.04	d _s * [m]	0.01	T _s [s]	1.49	NON VERIFICATO		

Tabella 8.169: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti, solaio Cirex

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43			171.43	Snervamento tirante T' [kN]	43.62	
	PIAS	STRA		Punzonamento muratura T" [kN] 3.0		
a [m] 0.2 b [m] 0.2		0.2	Penetrazione ancoraggio T''' [kN]	40.00		

 Tabella 8.170: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA	A TOTALE	TALE NUMERO TIRANTI			VERIFICA PORTATA SINGOLO TIRANTE			
T ₂ [kN]	0.54	n ₂	2	T ₂ [kN]	0.27	VERIFICATO		

 Tabella 8.171: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

Verifica statica lineare, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA			
b _i [m]	0.10	0.10	N piani	3	T ₁ [s]	0.31
d _i [m]	0.08	0.08	z [m]	3.72	$S_e(T_1)$ [g]	0.38
h _i [m]	2.77	4.68	H [m]	11.03	У	1.29
h _{bar,i} [m]	2.30	6.50	L [m]	1.20	ψ	0.33
	CAR	ICHI	ARRETRAMENTO CERNIERA			
P _i [kN]	5.40	7.20	t [m] 0.01			
N _i [kN]	5.25	3.21	ιμη	0.01		

Tabella 8.172: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
MECCANISMO				EQUIVALENTE				
M _{RA} [kNm]	97	.68	M* [kN]	1.76			
M _{sA} [M _{sA} [kNm] 1.00			e*	0.82			
(χ	0.0	010	α*₀[m/s²]	0.13			
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	0.80	NON VERIFICATO				

Tabella 8.173: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	FIGURAZIO	NE RUOTA	TA	VERIFICA STATIC		
R _{Pi} [m]	2.30	6.50				LINEARE ALLO STATO LIMITE D		
R _{Ni} [m]	2.77	7.45				SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.56	1.57		θ [rad]	0.00	S _{De} (T _s) [m]	0.075	
β_{Ni} [rad]	1.55	1.57		θ [°]	0.25	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.075	
d _{k0} [m]	0.08	d _u * [m]	0.02	as* [m/s²]	0.10	d _u * [m]	0.024	
d ₀ * [m]	0.04	d _s * [m]	0.02	T _s [s]	1.54	NON VERIFICATO		

Tabella 8.174: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti, solaio ligneo

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

		ACCIAIO	AISI 304 L		VERIFICHE		
	Φ[mm] 18 fyd [MPa] 171.43				Snervamento tirante T' [kN] 43.62		
		PIAS	STRA		Punzonamento muratura T" [kN]	3.00	
	a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	40.00	

Tabella 8.175: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA	PORTATA TOTALE NUMERO TIRANTI			VERIFICA PORTATA SINGOLO TIRANTE		
$T_1[kN]$	0.20	n ₁	2	T ₁ [kN]	0.10	VERIFICATO
T ₂ [kN]	0.56	n ₂	2	T ₂ [kN]	0.28	VERIFICATO

Tabella 8.176: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.10.3 Macroelemento 9: ribaltamento semplice di parete, parziale

Figura 8.60: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI	AZIONE SISMICA				
b _i [m]	0.10		N piani	3	T ₁ [s]	0.31	
d _i [m]	0.08		z [m]	6.50	S _e (T ₁) [g]	0.38	
h _i [m]	4.68		H [m]	11.03	У	1.29	
h _{bar,i} [m]	2.34		L [m]	1.20	ψ	0.57	
	CAR	ICHI	ARRETRAMENTO CERNIERA				
P _i [kN]	7.20		t [m] 0.01				
N _i [kN]	3.20			0.01			

Tabella 8.177: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE				
MECCANISMO				EQUIVALENTE				
M _{RA} [kNm]	31	.85	M* [kN] 0.94				
M _{sA} [kNm]	0.54 e* 0.89			0.89			
С	χ	0.0)18	$\alpha^*_0[m/s^2]$	0.21			
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.37	NON VERIFICATO				

Tabella 8.178: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	FIGURAZIO	NE RUOTA	TA			
R _{Pi} [m]	2.34							
R _{Ni} [m]	4.68					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.55			θ [rad]	0.016	S _{De} (T _s) [m]	0.045	
β_{Ni} [rad]	1.56			θ [°]	0.903	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.045	
d _{k0} [m]	0.08	d _u * [m]	0.01	as* [m/s ²]	0.16	d _u * [m]	0.035	
d ₀ * [m]	0.02	d _s * [m]	0.003	$T_s[s]$	0.92	NON VERIFICATO		

Tabella 8.179: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE		
Φ[mm]	Φ[mm] 18 fyd [MPa] 171.43			Snervamento tirante T' [kN] 43		
	PIASTRA			Punzonamento muratura T" [kN] 3		
a [m]	[m] 0.2 b[m] 0.2		0.2	Penetrazione ancoraggio T''' [kN]	40.00	

 Tabella 8.180:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTAT	A TOTALE	NUMERC) TIRANTI	VERIFICA PORTATA SINGOLO TIRANTE		
T ₁ [kN]	0.80	n ₁	2	T ₁ [kN]	0.40	VERIFICATO

 Tabella 8.181: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.10.4 Macroelemento 10: ribaltamento semplice di parete, parziale

Figura 8.61: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.45			N piani	4	T ₁ [s]	0.38	
d _i [m]	0.34			z [m]	11.03	$S_e(T_1)$ [g]	0.38	
h _i [m]	3.63			H [m]	14.8	У	1.33	
h _{bar,i} [m]	1.82			L [m]	8.26	ψ	0.75	
	CAR	ICHI		ARRETRAMENTO CERNIERA				
P _i [kN]	242.87			+[m] 0.02				
N _i [kN]	42.84			ιμη	0.02			

Tabella 8.182: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE					
MECCANISMO				EQUIVALENTE					
M _{RA} [kNm]	596	5.30	M* [kN]	26.56				
M _{sA} [M _{sA} [kNm] 62.51			e*	0.91				
С	X	0.105		$\alpha^*_0[m/s^2]$	1.13				
VERIFIC	VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA								
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.86	NON VERIFICATO					

Tabella 8.183: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	IGURAZIO	NE RUOTA [.]	TA	VERIEICA STATIC		
R _{Pi} [m]	1,83							
R _{Ni} [m]	3,63					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1,46			θ [rad]	0,104	S _{De} (T _s) [m]	0,03	
β_{Ni} [rad]	1,49			θ [°]	5,933	S _{De} (T ₁) [m] 0,002		
		PARA	METRI			d _u * [m]	0,03	
d _{k0} [m]	0,38	d _u * [m]	0,02	as* [m/s ²]	0,94	d _u * [m]	0,054	
d ₀ * [m]	0,06	d _s * [m]	0,01	T _s [s]	0,62	NON VERIFICATO		

Tabella 8.184: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE		
Φ[mm]	mm] 18 fyd [MPa] 171,43		171,43	Snervamento tirante T' [kN]	43,62	
PIASTRA				Punzonamento muratura T" [kN]	27,00	
a [m]	0,2	b [m]	0,2	Penetrazione ancoraggio T''' [kN]	36,92	

 Tabella 8.185:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE NUMERO TIR) TIRANTI	VERIFICA PORTATA SINGOLO TIRAN			
T ₁ [kN]	23.64	n ₁	2	T ₁ [kN]	11.82	VERIFICATO

Tabella 8.186: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.10.5 Macroelemento 11: ribaltamento semplice di parete, parziale

Figura 8.62: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI		AZIONE SISMICA			
b _i [m]	0.20			N piani	2	T ₁ [s]	0.25
d _i [m]	0.15			z [m]	5.18	S _e (T ₁) [g]	0.38
h _i [m]	3.38			H [m]	8.56	У	1.2
h _{bar,i} [m]	1.69			L [m]	1.20	ψ	0.61
CARICHI				ARRETRAMENTO CERNIERA			
P _i [kN]	5.40			+ [m]	0.01		
N _i [kN]	3.57					0.01	

Tabella 8.187: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
	MECCA	NISMO		EQUIVALENTE			
M _{RA} [M _{RA} [kNm] 18.82			M* [kN]	0.81		
M _{sA} [kNm]	1.0	03	e*	0.89		
α 0.0)55	$\alpha^*_0[m/s^2]$	0.51			
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VIT							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.35	NON VERIFICATO			

Tabella 8.188: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	VERIEICA STATIC					
R _{Pi} [m]	1.69					LINFARE ALLO STATO	
R _{Ni} [m]	3.38					SALVAGUARDIA DE	LLA VITA
β_{Pi} [rad]	1.55			θ [rad]	0.051	S _{De} (T _s) [m]	0.07
β_{Ni} [rad]	1.55			θ [°]	2.892	S _{De} (T ₁) [m]	0.001
	PARAMETRI					d _u * [m]	0.065
0.02	0.16	d _u * [m]	0.05	as* [m/s ²]	0.38	d _u * [m]	0.028
d ₀ * [m]	0.13	d _s * [m]	0.04	$T_s[s]$	1.44	NON VERIFICA	АТО

Tabella 8.189: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u^* .

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43		171.43	Snervamento tirante T' [kN]	43.62		
PIASTRA				Punzonamento muratura T'' [kN]	9.00	
a [m]	0.2	0.2 b [m] 0.2		Penetrazione ancoraggio T''' [kN]	60.00	

 Tabella 8.190:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTA	PORTATA TOTALE NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE			
T ₁ [kN]	0.58	n ₁	2	T ₁ [kN]	0.29	VERIFICATO

 Tabella 8.191: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.
8.10.6 Macroelemento 12: ribaltamento semplice di parete, parziale

Figura 8.63: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEO	DMETRICI		AZIONE SISMICA				
b _i [m]	0.15			N piani	2	T ₁ [s]	0.25	
d _i [m]	0.12			z [m]	5.18	S _e (T ₁) [g]	0.38	
h _i [m]	3.38			H [m]	8.56	У	1.2	
h _{bar,i} [m]	1.69			L [m]	1.20	ψ	0.61	
	CARICHI				ARRETRAMENTO CERNIERA			
P _i [kN]	12.96			+ [m]	0.01			
N _i [kN]	3.57				0.01			

Tabella 8.192: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
MECCANISMO				EQUIVALENTE			
M _{RA} [I	kNm]	30.	.16	M* [kN]	1.51		
M _{sA} [_A [kNm] 1.68			e*	0.89		
С	α 0.056)56	α* _o [m/s ²] 0.51			
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.35	NON VERIFICATO			

Tabella 8.193: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	ATI GEOME	TRICI CONI	ГА	VERIEICA STATIC				
R _{Pi} [m]	1.69							
R _{Ni} [m]	3.38					SALVAGUARDIA DELLA VITA		
β_{Pi} [rad]	1.53			θ [rad]	0.055	S _{De} (T _s) [m]	0.077	
β_{Ni} [rad]	1.54			θ [°]	3.17	S _{De} (T ₁) [m]	0.001	
		PARA	METRI			d _u * [m]	0.077	
d _{k0} [m]	0.17	d _u * [m]	0.04	as* [m/s ²]	1.35	d _u * [m]	0.032	
d ₀ * [m]	0.11	d _s * [m]	0.02	$T_s[s]$	1.57	NON VERIFICATO		

Tabella 8.194: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43		171.43	Snervamento tirante T' [kN]	43.62		
	PIAS	STRA		Punzonamento muratura T" [kN] 9.		
a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	60.00	

 Tabella 8.195:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE		NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE		
T ₁ [kN]	0.94	n ₁	2	T ₁ [kN]	0.47	VERIFICATO

 Tabella 8.196:
 valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.10.7 Macroelemento 16: ribaltamento semplice di parete, parziale

Figura 8.64: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.30			N piani	3	T ₁ [s]	0.41	
d _i [m]	0.23			z [m]	12.14	S _e (T ₁) [g]	0.38	
h _i [m]	4.55			H [m]	16.68	У	1.29	
h _{bar,i} [m]	2.28			L [m]	7.35	ψ	0.73	
	CARICHI				ARRETRAMENTO CERNIERA			
P _i [kN]	119.88			+ [m]		0.02		
N _i [kN]	39.04					0.02		

Tabella 8.197: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFI	CIENTE DI A	ATTIVAZIO	NE DEL	CURVA DI CAPACITA' DELL'OSCILLATORE			
MECCANISMO				EQUIVALENTE			
M _{RA} [kNm]	450).34	M* [kN]	14.47		
M _{sA} [kNm]	24	.56	e*	0.89		
С	X	0.055		$\alpha^*_0[m/s^2]$	0.62		
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA							
$\alpha_0[m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.74	NON VERIFICATO			

Tabella 8.198: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

0								
DA	ATI GEOME	TRICI CONI	IGURAZIO	NE RUOTA	ТА			
R _{Pi} [m]	2.28							
R _{Ni} [m]	4.55							
	1 51			A [rad]	0.054	S (T) [m]	0.027	
p _{Pi} [rau]	1.51			Ollan	0.054	$S_{De}(I_s)[III]$	0.057	
β _{Ni} [rad]	1.52			θ [°]	3.09	S _{De} (T ₁) [m]	0.002	
		d _u * [m]	0.037					
d _{k0} [m]	0.24	d _u * [m]	0.02	as* [m/s²]	0.50	d _u * [m]	0.058	
d₀* [m]	0.05	d,* [m]	0.01	T, [s]	0.77	NON VERIFICATO		

Tabella 8.199: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento du*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

ACCIAIO AISI 304 L				VERIFICHE		
Φ [mm] 18 fyd [MPa] 171.43		171.43	Snervamento tirante T' [kN]			
PIASTRA				Punzonamento muratura T" [kN] 15.00		
a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	40.00	

Tabella 8.200: valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA TOTALE		NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE			
T ₁ [kN]	7.50	n ₁	2	T ₁ [kN]	3.75	VERIFICATO	

Tabella 8.201: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

8.10.8 Macroelemento 17: ribaltamento semplice di parete, parziale

Figura 8.65: Individuazione macroelemento, pianta e prospetto

Verifica statica lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica lineare.

	DATI GEOMETRICI				AZIONE SISMICA			
b _i [m]	0.50			N piani	4	T ₁ [s]	0.41	
d _i [m]	0.38			z [m]	12.14	$S_e(T_1)$ [g]	0.38	
h _i [m]	4.56			H [m]	16.68	У	1.33	
h _{bar,i} [m]	2.99			L [m]	1.00	ψ	0.73	
	CAR	ICHI		ARRETRAMENTO CERNIERA				
P _i [kN]	18.00			+ [m]	0.01			
N _i [kN]	1.09			t[m]				

Tabella 8.202: dati geometrici necessari al calcolo del cinematismo, valore dei carichi e dell'arretramento della cerniera.

COEFFICIENTE DI ATTIVAZIONE DEL				CURVA DI CAPACITA' DELL'OSCILLATORE		
MECCANISMO				EQUIVALENTE		
M _{RA} [kNm]	45	.99	M* [kN]	1.86	
M _{sA} [kNm]	4.	66	e*	0.95	
(χ	0.1	L 01	$\alpha^*_{o}[m/s^2]$	1.04	
VERIFICA STATICA LINEARE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA						
$\alpha_0 [m/s^2]$	0.71	$\alpha_0 [m/s^2]$	1.81	NON VERIFICATO		

Tabella 8.203: valori del coefficiente di attivazione del meccanismo, dell'accelerazione spettrale e verifica con il valore di accelerazione a_0 .

Verifica statica non lineare

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica statica non lineare.

DA	TI GEOME	TRICI CONI	IGURAZIO	NE RUOTA	TA	VERIEICA STATIC	
R _{Pi} [m]	2.99					LINFARF ALLO STATC	
R _{Ni} [m]	4.57					SALVAGUARDIA DE	LLA VITA
β_{Pi} [rad]	1.49			θ [rad]	0.073	S _{De} (T _s) [m]	0.039
β_{Ni} [rad]	1.50			θ [°]	4.19	S _{De} (T ₁) [m]	0.002
		PARA	METRI			d _u * [m]	0.039
d _{k0} [m]	0.46	d _u * [m]	0.03	as* [m/s ²]	0.87	d _u * [m]	0.06
d ₀ * [m]	0.07	d _s * [m]	0.01	T _s [s]	0.71	NON VERIFICA	ATO

Tabella 8.204: valori del coefficiente spettrale ultimo e verifica con il valore di spostamento d_u*.

Inserimento di tiranti

Vengono riportate di seguito le tabelle necessarie per la valutazione della verifica dei tiranti.

	ACCIAIO	AISI 304 L		VERIFICHE	
Φ[mm]	18	fyd [MPa]	171.43	Snervamento tirante T' [kN]	43.62
	PIAS	STRA		Punzonamento muratura T" [kN]	35.00
a [m]	0.2	b [m]	0.2	Penetrazione ancoraggio T''' [kN]	40.00

 Tabella 8.205:
 valori di calcolo dei tiranti associati alle caratteristiche della muratura.

PORTATA	TOTALE	NUMERO TIRANTI		VERIFICA PORTATA SINGOLO TIRANTE			
T ₁ [kN]	0.48	n ₁	2	T ₁ [kN]	0.24	VERIFICATO	

Tabella 8.206: valori di portata dei tiranti e verifica di snervamento, punzonamento ed ancoraggio.

Analisi dei risultati ottenuti

ME	MECCANISMO	FC	$\alpha *_0 [m/s^2]$	ANALISI SLV LINEARE	TIRANTI nT	% VERIFICA	% VERIFICA
E		1.3	1.01	Х	5.34	51.71%	AE 200/
5	RIBALIAIVILINIO SLIVIPLICL, PARZIALL	1.2	1.01	Х	4.76	53.84%	45.2070
		1.3	0.13	Х	0.82	16.25%	20 42%
	RIDALIAMENTO SEMIPLICE, PARZIALE, C	1.2	0.13	Х	0.54	16.25%	29.4270
0		1.3	0.12	Х	0.88	15.00%	26 67%
9	RIBALIAIVIENTO SEIVIPLICE, PARZIALE,L	1.2	0.13	Х	0.56	16.25%	20.0776
		1.3	0.19	Х	1.02	13.87%	26 679/
	RIBALTAIVIENTO SEIVIPLICE, PARZIALE	1.2	0.21	Х	0.80	15.33%	20.67%
10		1.3	1.12	Х	26.56	60.22%	44.45%
10	RIBALIAIVIENTO SEIVIPLICE, PARZIALE	1.2	1.13	Х	23.64	60.75%	
11		1.3	0.46	Х	0.66	34.81%	76 0.2%
11	RIBALIAIVIENTO SEIVIPLICE, PARZIALE	1.2	0.51	Х	0.58	37.78%	70.9270
12		1.3	0.46	Х	1.06	34.81%	E1 0E9/
12	RIBALIAIVIENTO SEIVIPLICE, PARZIALE	1.2	0.51	Х	0.94	37.78%	51.95%
16		1.3	0.59	Х	10.00	33.91%	20 66%
10	RIDALIAIVIENTO SEIVIPLICE, PARZIALE	1.2	0.62	Х	7.50	35.63%	59.00%
17		1.3	1.04	Х	0.50	57.46%	60 719/
1/	RIDALIAIVIENTO SEIVIPLICE, PARZIALE	1.2	1.04	Х	0.48	57.46%	00.71%

Sono riassunti i valori ottenuti mediante l'utilizzo dei due fattori di confidenza FC:

I risultati dei cinematismi ottenuti applicando un livello di conoscenza maggiore evidenziano un miglioramento dei valori in accelerazione e in percentuale di verifica del meccanismo.

Poiché comunque si riscontrano meccanismi di collasso non verificati, sono ipotizzati dei tiranti posti a livelli degli impalcati, in maniera da inibire i meccanismi di primo modo.

Nell'analisi si è scelto di considerare l'impiego di tiranti con uguali caratteristiche e si è preferito utilizzare un numero pari di tiranti per ogni meccanismo (sono stati posti due tiranti per ogni impalcato); tuttavia nulla toglie che questi dispositivi vi siano già nella struttura: è quindi necessario verificarne la presenza ed eventualmente l'effettivo funzionamento.

I calcoli svolti con FC pari a 1,2 hanno portato anche nel caso dei tiranti a risultati meno gravosi: nell'ipotesi di realizzare dei presidi sismici ex novo sarà possibile limitare i meccanismi di danno tramite interventi meno invasivi rispetto a quelli previsti dalle analisi in LC1, e nel caso in cui fossero già presenti sarà più probabile verificarne il tiro.

In particolare sono presenti capochiavi esterni all'ultimo livello dei macroelementi 16 e 17: nel caso in cui i dispositivi antisismici fossero effettivamente in tensione, i meccanismi di ribaltamento sarebbero inibiti senza interventi di miglioramento.

In particolare si vuole mettere in luce che le verifiche in LC2 non risolvono i cinematismi, in quanto apportano miglioramenti al massimo del 5%. Ciò che risulta invece importante ai fini dell'individuazione dei cinematismi è la conoscenza stessa dell'edificio: le verifiche in LC2 non sono utili solo per la caratterizzazione della muratura, ma permettono la realizzazione di un quadro conoscitivo maggiore, indirizzato alla valutazione della presenza e dell'eventuale funzionamento di presidi antisismici o di carenze costruttive non individuate precedentemente.

Analisi dei meccanismi locali di collasso tramite il software C – Sisma

8.12.1 Il metodo utilizzato

C-Sisma 3.0 è una procedura che consente di automatizzare il calcolo dei coefficienti di attivazione legati a singoli cinematismi elementari di macroelementi (generalmente pareti o limitati assemblaggi) individuabili negli edifici in muratura⁴⁶

Il programma consente l'analisi di 20 meccanismi fuori piano di strisce verticali di pareti: sono stati svolti tutti i meccanismi possibili, per poi valutarne i più probabili e confrontarli con i risultati ottenuti invece con i calcoli effettuati tramite fogli Excel.

I 20 meccanismi implementati in C - Sisma sono:

- 1.1 Parete 1 piano monolitica semplicemente appoggiata
- 1.2 Parete doppia cortina semplicemente appoggiata
- 1.3 Parete 2 piani monolitica semplicemente appoggiata
- 1.4 Parete 1 piano connessa alla muratura ortogonale
- 1.5 Parete 1 piano trattenuta superiormente da tirante
- 1.6 Parete 2 piani trattenuta da tiranti
- 1.7 Parete 1 piano trattenuta superiormente da cordolo
- 1.8 Parete 1 piano trattenuta superiormente da cordolo ortogonale
- 1.9 Parete 3 piani monolitica semplicemente appoggiata
- 1.10 Parete 3 piani monolitica trattenuta da tiranti
- 1.11 Parete 3 piani: ribaltamento globale (vulnus9)
- 1.12 Parete 3 piani: rottura a trazione ultimo piano (vulnus9)
- 1.13 Parete 2 piani: ribaltamento globale (vulnus9)
- 1.14 Parete 2 piani: rottura a trazione ultimo piano (vulnus9)
- 1.15 Parete 3 piani: ribaltamento globale con coefficiente d'attrito e di compenetrazione (vulnus10)
- 1.16 Parete 2 piani: ribaltamento globale con coefficiente d'attrito e di compenetrazione (vulnus10)
- 1.17 Parete con solai non allineati
- 1.18 Parete trattenuta superiormente da cordolo
- 1.19 Parete 4 piani monolitica semplicemente appoggiata
- 1.20 Parete 4 piani monolitica trattenuta da tiranti

⁴⁶ Manuale d'uso del Programma *c-Sisma 3.0 PRO*, Procedura automatica per il calcolo e la verifica di meccanismi di pareti in muratura, Novembre 2009, Programma di: C. Modena, M.R. Valluzzi, M. Zenere, Contributi di: *Ing. G. Benincà, Ing. E. Barbetta, Ing. M. Munari*

Figura 8.66: Meccanismi implementati in C - Sisma

L'analisi è stata svolta a tappeto, in quanto la conoscenza del comportamento strutturale non è accertata da prove o documenti, ma è stata comunque fatta una selezione adeguata dei meccanismi.

A tal proposito non è stato considerato il ribaltamento di parete a doppia cortina semplicemente appoggiata, poiché si ritiene improbabile che la muratura di mattoni pieni sia costituita da due paramenti disgiunti.

I meccanismi analizzati sono i seguenti:

	Variabili
Ρ,	Peso proprio parete
h ₁	Altezza
b,	Spessore medio
N ₁	Carico agente sulla parete
d ₁	Braccio del carico
N ₁₀	Componente orizzontale spinta volta
T ₁	Tensione nel tirante

Formula con cui c-Sisma calcola c:

$$c = \frac{P_1 \frac{b_1}{2} + N_1 d_1 + (T_1 - N_{1o})h_1}{P_1 \frac{h_1}{2} + N_1 h_1}$$

-	Variabili
P ₁	Peso proprio parete 1
h,	Altezza
b,	Spessore medio
Nt	Carico agente sulla parete 1
N ₁₀	Componente orizzontale spinta volta
d ₁	Braccio del carico
P_2	Peso proprio parete 2
h ₂	Altezza
b ₂	Spessore medio
N_2	Carico agente sulla parete 2
N ₂₀	Componente orizzontale spinta volta
d ₂	Braccio del carico

$$=\frac{P_{1}\frac{b_{1}}{2}+N_{1}d_{1}+P_{2}\frac{b_{2}}{2}+N_{2}d_{2}-N_{1o}h_{1}-N_{2o}h_{tot}}{P_{1}\frac{h_{1}}{2}+N_{1}h_{1}+P_{2}\left(h_{1}+\frac{h_{2}}{2}\right)+N_{2}h_{tot}}$$

Formula con cui c-Sisma calcola c:

dove: $h_{tor} = h_1 + h_2$ Figura 8.68: Meccanismo 1.3

с

	Variabili
P ₁	Peso proprio parete
h ₁	Altezza sola parete
b ₁	Spessore medio parete
f	Coefficiente attrito cordolo-muro
P ₂	Peso proprio cordolo
h ₂	Altezza cordolo
b ₂	Spessore cordolo $(b_2 = b_1 = b)$

Formula con cui c-Sisma calcola c:

$$c = 2f \frac{h_2}{h_1} + \frac{b_1(h_1 + h_2)}{{h_1}^2}$$

	Variabili
P,	Peso proprio parete 1
h,	Altezza
b,	Spessore medio
N ₁	Carico agente sulla parete 1
N10	Spinta orizzontale volta
di	Braccio del carico
P ₂	Peso proprio parete 2
h ₂	Altezza
b ₂	Spessore medio
N ₂	Carico agente sulla parete 2
N20	Spinta orizzontale volta
d ₂	Braccio del carico
P3	Peso proprio parete 3
h ₃	Altezza
b3	Spessore medio
N ₃	Carico agente sulla parete 3
N ₃₀	Spinta orizzontale volta
d ₃	Braccio del carico

Formula con cui c-Sisma calcola c:

$$c = \frac{P_{1} \frac{b_{1}}{2} + N_{1} d_{1} + P_{2} \frac{b_{2}}{2} + N_{2} d_{2} + P_{3} \frac{b_{3}}{2} + N_{3} d_{3} - N_{1a} h_{1} - N_{2a} (h_{1} + h_{2}) - N_{3a} h_{av}}{P_{1} \frac{h_{1}}{2} + N_{1} h_{1} + P_{2} \left(h_{1} + \frac{h_{2}}{2}\right) + N_{2} (h_{1} + h_{2}) + P_{3} \left(h_{1} + h_{2} + \frac{h_{3}}{2}\right) + N_{3} h_{av}}, \text{ con } h_{au} = h_{1} + h_{2} + h_{3} h_{av} + h_{3} h$$

Figura 8.70: Meccanismo 1.9

	Variabili
P ₁	Peso proprio parete 1
h,	Altezza
b ₁	Spessore medio
N ₁	Carico agente sulla parete 1
P ₂	Peso proprio parete 2
h ₂	Altezza
b ₂	Spessore medio
N ₂	Carico agente sulla parete 2
P ₃	Peso proprio parete 3
h ₃	Altezza
b ₃	Spessore medio
N ₃	Carico agente sulla parete 3
P ₁	Forza di contenimento del solaio

Formula con cui c-Sisma calcola c:

$$c = 0.75 \frac{b_1}{h_{tot}} + 3 \frac{p}{W_{tot}}$$

Figura 8.71: Meccanismo 1.11

	Variabili
P ₃	Peso proprio parete 3
h ₃	Altezza
b ₃	Spessore medio
N ₃	Carico agente sulla parete 3
σt	Resistenza a trazione della muratura

Formula con cui c-Sisma calcola c:

$$c = \frac{4}{3} \frac{\sigma_1 b_3^2}{W_{111} h_2} + \frac{2}{3} \frac{b_3}{h_2}$$

Figura 8.72: Meccanismo 1.12

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

	Variabili
P ₁	Peso proprio parete 1
ht	Altezza
bi	Spessore medio
N ₁	Carico agente sulla parete 1
P ₂	Peso proprio parete 2
h ₂	Altezza
b ₂	Spessore medio
N ₂	Carico agente sulla parete 2
p ₁	Forza di contenimento del solaio

Formula con cui *c-Sisma* calcola *c*:

alcola c:

$$c = 0.75 \frac{b_1}{h_{tot}} + 2 \frac{p}{W_{tot}}$$
Figura 8.73: Meccanismo 1.13

Formula con cui c-Sisma calcola c:

 N2
 Carico agente sulla parete 2

 σt
 Resistenza a trazione del materiale

$$c = \frac{4}{3} \frac{\sigma_t b_2^2}{W_{tot} h_2} + \frac{2}{3} \frac{b_2}{h_2}$$

Figura 8.74: Meccanismo 1.14

	Variabili
P ₁	Peso proprio parete 1
h	Altezza
b,	Spessore medio
N ₁	Carico agente sulla parete 1
N ₁₀	Spinta orizzontale volta
d ₁	Braccio del carico
P ₂	Peso proprio piano 2 parete 2
h ₂	Altezza
b ₂	Spessore medio
N ₂	Carico agente sulla parete 2
N ₂₀	Spinta orizzontale volta
d ₂	Braccio del carico
P3	Peso proprio parete 3
h3	Altezza
b3	Spessore medio
N ₃	Carico agente sulla parete 3
N ₃₀	Spinta orizzontale volta
d ₃	Braccio del carico
P ₄	Peso proprio parete 4
h,	Altezza
b ₄	Spessore medio
N ₄	Carico agente sulla parete 4
N40	Spinta orizzontale volta
d,	Braccio del carico

Formula con cui c-Sisma calcola c:

$$c = \frac{P_{1}\frac{b_{1}}{2} + N_{1}d_{1} + P_{2}\frac{b_{2}}{2} + N_{2}d_{2} + P_{3}\frac{b_{3}}{2} + N_{3}d_{3} + P_{4}\frac{b_{4}}{2} + N_{4}d_{4} - N_{1o} \cdot h_{1} - N_{2o} \cdot (h_{1} + h_{2}) - N_{3o} \cdot (h_{1} + h_{2} + h_{3}) - N_{4o} \cdot h_{1oo}}{P_{1}\frac{h_{1}}{2} + N_{1}h_{1} + P_{2}\left(h_{1} + \frac{h_{2}}{2}\right) + N_{2}(h_{1} + h_{2}) + P_{3}\left(h_{1} + h_{2} + \frac{h_{3}}{2}\right) + N_{3}(h_{1} + h_{2} + h_{3}) + P_{4}\left(h_{1} + h_{2} + h_{3} + \frac{h_{4}}{2}\right) + N_{4}h_{tot}}$$

dove $h_{tot} = h_{1} + h_{2} + h_{3} + h_{4}$

Figura 8.75: Meccanismo 1.19

	Variabili
P,	Peso proprio parete 1
h ₁	Altezza
b,	Spessore medio
N ₁	Carico agente sulla parete 1
N _{to}	Spinta orizzontale volta piano 1
d ₁	Braccio del carico
Т,	Tensione nel tirante piano 1
P ₂	Peso proprio parete 2
h2 -	Altezza
b ₂	Spessore medio
N ₂	Carico agente sulla parete 2
N ₂₀	Spinta orizzontale volta piano 2
d ₂	Braccio del carico
T ₂	Tensione nel tirante piano 2
P ₃	Peso proprio parete 3
h ₃	Altezza
b ₃	Spessore medio
N ₃	Carico agente sulla parete 3
N30	Spinta orizzontale volta piano 3
d ₃	Braccio del carico
T ₃	Tensione nel tirante piano 3
P4	Peso proprio parete 4
h4	Altezza
b4	Spessore medio
Na	Carico agente sulla parete 4
N ₄₀	Spinta orizzontale volta piano 4
d4	Braccio del carico
T_	Tensione nel tirante piano 4

Formula con cui *c-Sisma* calcola *c*:

$$c = \frac{P_1 \frac{b_1}{2} + N_1 d_1 + P_2 \frac{b_2}{2} + N_2 d_2 + P_3 \frac{b_3}{2} + N_3 d_3 + P_4 \frac{b_4}{2} + N_4 d_4 + T_1 \cdot h_1 + T_2 \cdot (h_1 + h_2) + T_3 \cdot (h_1 + h_2 + h_3) + T_4 \cdot h_{tot}}{P_1 \frac{h_1}{2} + N_1 h_1 + P_2 \left(h_1 + \frac{h_2}{2}\right) + N_2 (h_1 + h_2) + P_3 \left(h_1 + h_2 + \frac{h_3}{2}\right) + N_3 (h_1 + h_2 + h_3) + P_4 \left(h_1 + h_2 + h_3 + \frac{h_4}{2}\right) + N_4 h_{tot}}$$

con $h_{tot} = h_1 + h_2 + h_3$

8.12.2 Analisi di un meccanismo locale di collasso

A titolo di esempio si riporta il calcolo del meccanismo di collasso 1.9 (parete a 3 piani, monolitica e semplicemente appoggiata) del macroelemento 1.

E' richiesta in primis la determinazione dei valori dell'azione sismica e del fattore di confidenza: i dati, inseriti in archivio, vengono memorizzati e riportati nella schermata di analisi e verifica dei meccanismi.

Activite St	Sillico					
dati di un a Iel suolo. Si	rchivio fanno ril ha comunque	ferimento ad un unico l'opportunità di modific	edificio e quir are l'altezza a	idi ad un'unica a nche prima della	ltezza massir ricerca della	na e alle stesse caratteristic capacità di spostamento.
Archivio	ME20					
Parete	Archivio Dat	i Base				
Altezza tota	le dell'edificio	16,95 m				
Normativa	a Sismica				16.46	
		 Azione sismic Costruzioni d 	a secondo le i cui al D.M. 1	Norme Tecnich 4.1.08	e delle	
Informazior	ni per l'azione s	ismica secondo le No	rme Tecniche SLV	delle Costruzion SLD	i di cui al D.N	1. 14.1.2008
Accelerazi	one orizzontale	massima al sito a g	0,097	0,043		Azione sismica NTC
Fattore am	plificazione spe	ettrale massima F_{*}	2,612	2,543		Fattore amplificazione Fo
Periodo inia	zio tratto veloci	tà costante Spettro T	° 0,343	0,242		Periodo Tc*
Fattore di s	morzamento vi	scoso n 1	Fattore di s	truttura g =	2	Smorzamento viscoso
Categoria s fondazione	suolo di 🛛 🗍 🖸	C - Depositi di terreni a	grana grossa	mediamente ado	densati 💌	Categorie suolo
Coeff. di ar	nplificazione S	it=1 non in vicinanza	di pendii		*	Coefficiente topografico
topografica						

Figura 8.77: Inserimento dei dati relativi all'azione sismica

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

FATTORE DI CONFIDENZA FC		
Fattore di confidenza FC		
← VALORE UTENTE 1.35		
♥ VALORI DA TABELLA LINEE GUIDA VALORI DA TABELLA LINEE GUIDA VALORI	ALUTAZIONE RISCHIO SISMICO DEL PATRIMONIO C	ULTURALE
Rilievo geometrico	Rilievo geometrico completo, con restituzione grafica	FC1=0 🔹
Rilievo materico e dei dettagli costruttivi	Limitato rilievo FC2 = 0,12	*
Proprietà meccaniche dei materiali	Desunti da dati già disponibili FC3 = 0,12	-
Terreno e fondazioni	Limitate indagini sul terreno in assenza dati geologici	FC4 · +
	FC RISULTANTE 1.3	
Informazioni sul Fattore di Confidenza	Salva	Esci

Figura 8.78: Inserimento dei dati relativi all'azione sismica

Dopo aver inserito i dati relativi al sito, sono richiesti quelli geometrici relativi al macroelemento:

Meccanismo 1,1 Piano 1 o cortina intern	Parete 1	piano se	mplicemente appoggiati Piano 2, cortina esterna,	a cordolo, cuneo	muro	ort. Piano 3	Inserimento N°	1 F	Parete ME 20 Piano 4	N	piani 1
ipessore	b1 0,8	m	Spessore	62 D	m	Spessore	b3 0	n Spe	ISSORE	b4 🔟	m
ltezza	ht 5,63	m	Altezza	h2 0	m	Altezza tot	h3 0	n Alte	zza tot	h4 0	m
lateriale	Nº 5	-	Materiale	Nº 0	- 1	Materiale	Nº 0	Mat	eriale	Nº D	-
Carichi permanenti ager	11 N1 1.87	- <u>kN</u>	Carichi permanenti agenti	N2 0	- <u>kN</u>	Carichi permanenti agenti	N3 0	Car	ichi permanenti age	nti N4 🖸	- <u>kt</u>
iraccio carico agente	d1 0,45	m	Braccio carico agente	d2 0	m	Braccio carichi agenti	d3 0	n Bra	coio carichi agenti	d4 0	m
eso (click x calcolo)	P 59,724	kN	Peso (click x calcolo)	PD	- kN	Peso	PØ	N Pes	0	FD	k
pinta orizzontale (volta) N1c	kN	Spinta orizzontale (volta)	N20	- kN	Spinta orizzontale vol.	N3d 0	cN Spir	nta orizzontale vol.	N40	k
zione tirante livello 1	TT D	kN	Azone tirante livello 2	T2 D	kN	Azione tirante livello 3	T3 0	N Azio	one tirante livello 4	T4 D	k
Coefficiente di attrito 1	μ1 🛛	-	Coefficiente di attrito 2	µ2 0		Coefficiente di attrito 3	μ3 0	Coe	efficiente di attrito 4	μ4 0	_
Ultimo piano?	in <u>f</u> o		C si C no	12 10		Ultimo piano?	es la	C,	litimo piano?	1.12	
C parete non partial	itzeta (Combin Combin	azione Sismica 1 - W = azione personalizzata - W =	Gk + 0.3 Gkes $\boxed{7}$ $Gk + \boxed{2}$	s ± 0,2	Dkn <u>C</u> ombin kes + 0 2 Dkn di car	azioni p1 0 ico Val	n conter	kN/m	f D	kN/m
parete parualizzan base	a alla SK AC AF	OVRACCA CODENTA REA DI CA	ARICO brimo biano ALE 2 kN/mq ARICO 0 mq	secondo pia 2 kN/ 0 mq	no te mg [2	erzo piano Neve ultim kN/mg 1.3 kN mg 33.13 mg	opiano 1 k Vmg 2 k 9 8kt	N/m leg N/m me N/m pes N/m con	geri, di, [santi, [Elenco ma (Descrizione Elenco mec	teriali variabil canismi
 parete paralalizati parete paralalizati base Normativa Sismica 	a alla SK AK	OVRACC/ COLDENT REA DI C	ARICO primo piano ALE 2 kN/mq ARICO 0 mq Azione sismica secondo Costruzioni di cui al D.M	secondo pia 2 kN/ 0 mq le Norme Tecn 14,1.08	no te ma [2 [C iche d	erzo piano Neve ultim kN/mq 11.3 kN mq 133.13 m elle	o piano 1 k V/mg 2 k 4 čkt Azione sismica	N/m leg N/m me N/m pes I/m con	geri, di, santi, cordolo	Elenco ma Elenco mec SLD	teriali vanabil canismi
 parece treo paralalizzari parece paralalizzari parece paralalizzari parece treo par	a alfa St At Icio (cambiare	OVRACC/ CCIDENT REA DI C (Valore se	ARICO primo piano ALE 2 kN/mq ARICO 0 mq Azione sismica secondo Costruzioni di cui al D.M maggiore dell'altezza della	secondo pia 2 kN/ 0 mq le Norme Tecn 14.1.08 parete) 10.95	no te mq [2 iche d	erzo piano Neve ultim kN/mq 1.3 kN mq 33.13 mt elle	o piano 1 k V/mg 2 k 4 k Azione sismica meccanismo 1	N/m leg N/m me N/m pes I/m con NTC	geri, di, santi, cordolo SLU con	Elenco ma Elenco mec SLD Analisi Line	teriali vanabil canismi are
 parate der partializzan parate partializzan Normativa Sismica Altezza totale dell'edifi Categoria suolo di fondazione 	a alla St At icio (cambiare C - Depositi	OVRACC/ CCIDENT REA DI G (valore se di terreni ;	ARICO ALE ARICO ARICO Azione sismica secondo Costruzioni di cui al D.M maggiore dell'altezza della a grana grossa mediamente	secondo pia 2 kN/ 0 mq le Norme Tecn 1. 14.1.08 parete) 16.95 addensati	no te ma [2 iche di A n	etzo piano Neve ultim kN/mq 1,3 kN mq 33.13 m elle Itezza quota di imposta del * totale di piani (solo se Zo Fattore di Ca	o piano 1 k 1/mg 4 k 4 k Azione sismica meccanismo 1 >0) 3 onfidenza	N/m leg N/m me N/m pes I/m con NTC	geri, di, cordolo SLU con	Elenco ma Elenco mec SLD Analisi Line Spettro di C	teriali variabil canism are apacit
 parere paralalizzan parere paralalizzan base Normativa Sismica Altezza totale dell'edificategoria suolo di fondazione Coeff. amplificazione topografica 	a alla A(Af icio (cambiare C - Depositi St= 1 non in	OVRACC/ CCIDENT REA DI C (valore se di terreni ; vicinanza	ARICO Drimo biano ALE 2 kN/mq ARICO 0 mq Azione sismica secondo Costruzioni di cui al D.M maggiore dell'altezza della a grana grossa mediamente di pendii	sebondo pia 2 kN/ 10 mg le Norme Teon 14.1.08 parete) 16.95 addensati	no te mq [2 iche d A] n F	etzo piano Neve ultim kN/mq 1.3 kN mq 33.13 m elle Itezza quota di imposta del totale di piani (solo se Zo Fattore di Co C = 1.3	o piano 1 k 2 k 4 k 4 k 4 k 6kl Azione sismica mecoanismo >0) 3 onfidenza Modificare EC	N/m leg N/m me N/m pes I/m con NTC 2,14	santi, cordolo SLU con SLU mediante (Analisi Ciner	Elenco ma Elenco mec SLD Analisi Line Spettro di C natica non L	teriali canism are apacit ineare
 parece des partializzar base Normativa. Sismica Altezza totale dell'edificategoria suolo di fondazione Coeff. amplificazione topografica Azione Sismica secon Accelerazione orizzonta 	icio (cambiare C - Depositi St= 1 non in cio le NTC cel le massima al	DVRACC/ CCIDENT REA DI C. (Valore se di terreni i vicinanza D M M sito a g	ARICO primo piano ALE 2 kN/mq ARICO 0 mq Azione sismica secondo Costruzioni di cui al D.M imaggiore dell'altezza della a grana grossa mediamente di pendii 2008 SLV SLD [0,097 0,043 p	secondo pia 2 KN/ 0 mq le Norme Tecn 1. 14.1.08 parete) 116.95 a addensati • Fattore di smor	no te mq [2 [0 iche d n] n F zamen	erzo piano Neve ultim kN/mq 133.13 kN mq 33.13 m elle Itezza quota di imposta del ⁶ totale di piani (solo se Zo Fattore di Cc C = 1.3 1 to viscoso η = 1	Azione sismica Medicare EC	N/m leg N/m me N/m pes V/m con NTC 2,14	SLU con SLU mediante (Analisi Ciner	Elenco ma Elenco meo SLD Analisi Line Spettro di C natica non L	teriali vanabi canism are apacit ineare

Figura 8.79: Inserimento dei dati relativi al macroelemento

A questo punto è possibile calcolare il coefficiente di attivazione α del relativo cinematismo e verificarne il meccanismo tramite l'analisi statica lineare e non lineare.

Meccanismo 1,1	Parete 1 piano semp	licemente appoggiata	N° piani 1
Inserimento N* 1	Parete ME	20	
Altezza Hmax	Coefficiente di attiva	zione	c=a/g= 0,074 g
6,95	Massa partecipante	$\mathcal{M}^* = \frac{\left(\sum_{i=1}^{n+m} P_i \delta_{x,i}\right)}{\left(\sum_{i=1}^{n+m} P_i \delta_{x,i}\right)}$) ² M*= 111,5604/g
Baricentro 4,194		$g_{i=1}^{n+m} P_i \delta_n^*$	1
Baricentro dalla quota d'imposta	Frazione di massa partecipante al meccanismo	$e^* = \frac{g_{M}}{\sum_{i=1}^{n+m} P_i}$	e*= 0,9021
16,33464	Accelerazione spettrale di attivazior del meccanismo	he $a_0^* = \frac{\alpha_0 \sum_{i=1}^{n+m} P_i}{\frac{P_i^*}{P_i^*}}$	a*.= 6,307693E-02 g
S.L.U.	<u> </u>	S.L.D.	
	NTC 2008		
ag	-	0,097	
S.	01-1	1,5	
accelerazione C84.4	.9 (g) .10 (a)	0,0728	
VERIFICATO	NO		
l.			
Salva su Foglio Exe	sel	Indietro	Ritorno al menù principale

Figura 8.80: Analisi statica lineare

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

Figura 8.81: Analisi statica non lineare

Analisi dei risultati ottenuti

La tabella seguente riassume le analisi dei meccanismi possibili ed individua quelli più probabili per ciascun macroelemento.

La probabilità del meccanismo è stata determinata sulla base di:

- caratteri peculiari dei macroelementi, come la snellezza o l'elevata presenza di aperture,
- quadri fessurativi leggibili, che riportano meccanismi a taglio nei maschi murari di pareti poste all'ultimo piano,
- bassi coefficienti di attivazione del meccanismo, che favoriscono l'innesco, in particolar modo, di ribaltamenti.

La verifica è svolta a favore di sicurezza in quanto, in mancanza di informazioni, non si esclude la presenza di cordoli o catene, ma si preferisce assumere l'ipotesi di assenza di presidi sismici.

				ANALISI SL	V LINEARE		AN	IALISI SLV I	NON LINEA	ARE	
ME	MEC.	α	α* ₀	α*1	α*2		d _u *	d_1^*	d ₂ *		PR
			[m/s ²]	$[m/s^2]$	$[m/s^2]$	VERIFICA	[m]	[m]	[m]	VERIFICA	
	1.1	0.083	0.000	0.714	0.000	0.00%	0.139	0.093	0.083	148.92%	V
	1.3	0.047	0.467	0.714	0.640	65.38%	0.177	0.096	0.043	184.30%	
	1.7	0.109	0.819	0.714	1.615	50.73%	0.118	0.079	0.075	148.24%	
	1.9	0.036	0.344	0.714	-	48.17%	0.151	0.096	-	156.76%	٧
	1.11	0.044	0.334	0.714	-	46.70%	0.198	0.096	-	205.41%	
	1.12	0.072	0.558	0.714	2.006	27.82%	0.117	0.096	0.107	109.24%	
	1.1	0.077	0.759	0.714	1.615	47.02%	0.148	0.096	0.088	154.16%	٧
	1.3	0.047	0.453	0.714	0.693	63.39%	0.225	0.096	0.051	234.20%	
2	1.7	0.139	0.107	0.714	1.615	6.60%	0.179	0.087	0.080	206.46%	
2	1.9	0.028	0.272	0.714	-	38.15%	0.189	0.096	-	196.78%	٧
	1.11	0.055	0.412	0.714	-	57.69%	0.243	0.096	-	252.29%	
	1.12	0.072	0.973	0.714	2.006	48.52%	0.090	0.063	0.082	109.77%	
	1.1	0.094	0.797	0.714	1.615	49.33%	0.158	0.093	0.084	169.27%	٧
	1.3	0.078	0.642	0.714	0.640	89.92%	0.266	0.096	0.048	276.92%	
2	1.7	0.108	0.819	0.714	1.615	50.70%	0.118	0.079	0.075	148.24%	
5	1.9	0.044	0.404	0.714	-	56.63%	0.198	0.096	-	205.61%	٧
	1.11	0.069	0.334	0.714	-	46.70%	0.310	0.096	-	322.56%	٧
	1.12	0.072	1.624	0.714	2.006	80.95%	0.082	0.047	0.071	114.43%	
4	1.4	0.119	0.114	0.714	0.161	15.90%	0.169	0.094	0.078	180.04%	V
	1.1	0.095	0.932	0.714	1.876	49.69%	0.104	0.079	0.076	130.98%	V
	1,3 C	0.042	0.370	0.714	1.876	19.71%	0.098	0.096	0.096	101.46%	
	1,3 L	0.042	0.371	0.714	1.876	19.77%	0.097	0.096	0.095	101.25%	
	1.7	0.124	0.095	0.714	1.827	5.22%	0.089	0.063	0.065	138.02%	
5	1,9 C	0.049	0.471	0.714	0.625	65.93%	0.164	0.094	0.033	175.45%	
	1,9 L	0.049	0.471	0.714	0.625	65.93%	0.147	0.096	0.034	152.60%	٧
	1,11 C	0.031	0.230	0.714	0.538	32.23%	0.089	0.094	0.036	94.46%	
	1,11 L	0.031	0.230	0.714	0.538	32.23%	0.089	0.096	0.032	92.10%	۷
	1.12	0.083	1.548	0.714	0.905	171.01%	0.063	0.041	0.026	152.68%	۷
	1.1	0.080	0.667	0.714	1.375	48.52%	0.104	0.080	0.044	130.34%	۷
6	1.3	0.045	0.340	0.714	0.804	42.32%	0.132	0.096	0.037	136.69%	
	1.7	0.099	0.749	0.714	1.375	54.48%	0.089	0.070	0.039	126.64%	
	1.12	0.066	1.260	0.714	1.854	67.94%	0.074	0.067	0.052	110.39%	۷
7	1.1	0.048	0.361	0.714	1.375	26.22%	0.088	0.094	0.053	93.38%	۷
	1.7	0.088	0.660	0.714	1.413	46.74%	0.069	0.068	0.039	102.06%	
8	1.1	0.108	0.912	0.714	1.373	66.43%	0.151	0.085	0.046	177.65%	٧
	1.7	0.141	0.576	0.714	1.368	42.07%	0.126	0.070	0.039	180.06%	

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

	-					-					
	1.1	0.011	0.081	0.714	1.373	5.92%	0.027	0.094	0.060	28.71%	v
	1,3 C	0.010	0.151	0.714	0.771	19.60%	0.029	0.094	0.036	30.99%	
9	1,3 L	0.010	0.151	0.714	0.771	19.60%	0.029	0.094	0.036	30.99%	v
	1.7	0.021	0.155	0.714	2.326	6.68%	0.019	0.071	0.068	26.45%	
	1.12	0.014	0.653	0.714	1.841	35.48%	0.045	0.094	0.113	40.08%	
	1.1	0.085	0.703	0.714	1.881	37.40%	0.117	0.085	0.080	136.74%	v
10	17	0 124	0 901	0 714	3 198	28 19%	0.089	0.064	0.087	102 76%	
	11	0.124	0.301	0.714	1 315	20.15%	0.063	0.087	0.036	72 78%	V
11	1.1	0.040	0.331	0.714	1 215	22.70%	0.000	0.060	0.030	65 3/1%	
	1.7	0.035	0.447	0.714	1.313	10 50/0	0.035	0.000	0.027	12 520/	
	1.14	0.030	0.323	0.714	1 215	20 16%	0.024	0.030	0.035	43.33%	V
12	1.1	0.035	0.305	0.714	1.315	25.10%	0.040	0.060	0.030	JS. 90/0	v
12	1.7	0.044	0.335	0.714	1.515	25.49%	0.029	0.000	0.027	40.09%	
	1.14	0.030	0.271	0.714	1.744	15.53%	0.026	0.003	0.036	40.98%	
13	1.1	0.083	0.700	0.714	-	98.05%	0.076	0.0/1	-	107.76%	V
	1.7	0.097	0.730	0.736	-	99.18%	0.588	0.541	-	108.69%	
14	1.1	0.032	0.430	0.714	1.020	42.16%	0.098	0.089	0.037	110.16%	V
	1.7	0.545	0.492	0.714	1.020	68.89%	0.986	0.793	0.034	124.34%	
	1.1	0.082	0.620	0.714	1.895	86.86%	0.119	0.092	0.097	122.54%	V
15	1.7	0.115	0.865	0.714	1.892	45.70%	0.079	0.063	0.075	105.06%	
	1.12	0.076	1.129	0.714	2.143	52.66%	0.089	0.047	0.075	117.84%	
	1.1	0.040	0.313	0.714	1.752	17.87%	0.086	0.096	0.101	85.36%	V
16	1.7	0.066	0.497	0.714	1.740	69.63%	0.059	0.072	0.072	81.63%	
	1.12	0.044	0.975	0.714	2.069	47.12%	0.042	0.043	0.070	59.17%	
	1.1	0.082	0.709	0.714	1.807	99.31%	0.126	0.089	0.089	140.38%	V
	1.3	0.033	0.318	0.714	0.859	37.04%	0.096	0.096	0.051	100.00%	
	1.7	0.110	0.843	0.714	1.807	118.05%	0.099	0.072	0.078	126.74%	
17	1.9	0.026	0.262	0.714	0.425	36.62%	0.094	0.093	0.025	101.84%	
	1.12	0.073	0.708	0.714	2.146	99.20%	0.085	0.073	0.093	90.97%	
	1.19	0.018	0.185	0.714	-	25.85%	0.104	0.096	-	108.13%	v
	1.20	0.019	0.188	0.714	-	26.38%	0.083	0.096	-	85.86%	
	1.1	0.096	0.813	0.714	1.807	44.97%	0.161	0.093	0.093	172.38%	v
	1.3	0.030	0.265	0.714	1.807	14 64%	0.093	0.096	0.117	80.02%	v
	17	0 145	1 092	0 714	1 807	60.42%	0 130	0.072	0.078	167.48%	
18	1.7	0.143	0 1/13	0.714	0.417	20.03%	0.150	0.069	0.070	72 11%	
10	1.5	0.014	0.145	0.714	0.417	20.03/0	0.000	0.005	0.010	102.06%	
	1.12	0.057	0.133	0.714	0.750	20.43/0 01 E /0/	0.097	0.055	0.020	240.200/0	
	1.19	0.056	0.502	0.714	-	01.04%	0.240	0.090	-	249.30%	v
	1.20	0.050	0.579	0.714	-	01.1170	0.240	0.090	-	249.09%	
	1.1	0.110	0.933	0.714	1.807	51.64%	0.129	0.078	0.082	157.18%	
	1.3	0.041	0.392	0.714	0.763	51.30%	0.119	0.096	0.047	124.12%	v
10	1.7	0.132	0.993	0.714	1.807	54.96%	0.118	0.072	0.078	152.12%	
19	1.9	0.032	0.323	0.714	0.417	45.24%	0.116	0.069	0.018	166.91%	
	1.12	0.088	0.813	0.714	2.107	38.59%	0.103	0.075	0.033	137.60%	
	1.19	0.031	0.327	0.714	-	45.77%	0.121	0.096	-	125.78%	V
	1.20	0.048	0.508	0.714	-	71.09%	0.222	0.096	-	231.08%	
	1.1	0.110	1.200	0.710	1.740	68.97%	0.130	0.068	0.071	183.10%	V
	1.3	0.032	0.291	0.714	0.818	35.54%	0.119	0.096	0.056	123.28%	
20	1.7	0.132	0.993	0.714	1.742	57.00%	0.118	0.072	0.075	157.81%	
20	1.9	0.029	0.252	0.714	-	35.29%	0.105	0.093	-	112.90%	V
	1.11	0.036	0.276	0.714	-	38.67%	0.156	0.096	-	161.95%	
	1.12	0.088	1.336	0.714	2.070	64.56%	0.087	0.053	0.076	114.80%	
	1.1	0.079	0.631	0.714	1.717	36.74%	0.152	0.096	0.097	157.20%	V
	1.3	0.030	0.284	0.714	0.686	39.74%	0.118	0.096	0.048	122.25%	
24	1.7	0.108	0.835	0.714	1.593	52.41%	0.118	0.079	0.080	147.68%	
21	1.9	0.022	0.118	0.714	-	16.48%	0.127	0.096	-	132.22%	V
	1.11	0.035	0.272	0.714	-	38.13%	0.158	0.096	-	164.35%	
	1.12	0.072	1.130	0.714	2.107	53.65%	0.087	0.058	0.082	106.86%	

 Tabella 8.207:
 Tabella riassuntiva dei risultati ottenuti dalle analisi tramite l'utilizzo di C – Sisma

Si riassumono i risultati in modo da ottenere una visione globale della verifica dei meccanismi, distinguendoli a seconda della probabilità.

Per quanto concerne i meccanismi probabili, i più vulnerabili sono: il ribaltamento di parete monolitica semplicemente appoggiata e la rottura a trazione dell'ultimo piano (parete di 2 o 3 piani).

I macroelementi 1 - 2 - 3 - 4 risultano verificare tutti i meccanismi probabili, ed in generale non presentano carenze costruttive che favoriscano la formazione di una catena cinematica.

I macroelementi 5 – 9 – 10, che di per sé risultano una vulnerabilità del complesso in quanto costituiti da piani con solai sfalsati rispetto all'unità strutturale maggiore, appaiono mediamente vulnerabili, a causa del modico spessore della muratura e della presenza di molti piani, ai meccanismi di ribaltamento di parete monolitica semplicemente appoggiata ed alla rottura a trazione dell'ultimo piano. Alle analisi svolte con i dati in possesso andrebbero aggiunte quelle complete di rilievo del piano terra di questa unità strutturale, in modo da ottenere un quadro completo dei meccanismi di danno.

I macroelementi 6 - 7 - 8 fanno parte dei piani ammezzati dell'unità strutturale minore, ma non rivelano vulnerabilità nei meccanismi di danno fuori piano: questo è dovuto principalmente alla loro bassa altezza interna e dalla limitata percentuale di forometrie nei pannelli murari.

I macroelementi 11 - 12 sono i più vulnerabili del complesso: nonostante la quota di imposta del meccanismo non sia elevata, non soddisfano il 100% dei meccanismi possibili a causa di spessori inadeguati della muratura (10 - 15 cm).

I macroelementi 13 – 14 – 15 rivelano una bassa vulnerabilità: verificano tutti i meccanismi implementati in quanto sono posti a bassa altezza da terra e sono dotati di un discreto spessore murario.

Il macroelemento 16 non verifica le analisi in quanto è situato all'ultimo livello e presenta un'elevata percentuale di forometrie e maschi murari snelli, risultando una grande vulnerabilità del complesso. In compenso sono presenti dei capochiavi esterni di tiranti che, se fossero attivi, inibirebbero i meccanismi di ribaltamento.

I macroelementi 17 – 18 sono composti da quattro piani, di cui uno ammezzato, e presentano una medio bassa vulnerabilità: laddove i meccanismi valutano il ribaltamento di quattro piani la verifica arriva al massimo al 90%, mentre per il resto dei meccanismi non si rilevano particolari vulnerabilità.

I macroelementi 19 - 20 – 21 sono paragonabili ai macroelementi della facciata principale (ME 1-4): verificano ogni meccanismo poiché sono dotati di notevoli spessori murari e non presentano carenze costruttive che possano innescare meccanismi locali.

Tabella 8.208: Istogramma relativo ai meccanismi implementati per macroelementi e relativi meccanismi non verificati tramite l'analisi stativa non lineare.

Tabella 8.209: Istogramma relativo ai meccanismi implementati, relazionati alla mancata verifica ed alla loro probabilità.

Confronto dei risultati ottenuti: Excel - C – Sisma

La tabella seguente riporta i risultati ottenuti dal calcolo manuale in *Excel*, dal software C – *Sisma* e il rispettivo rapporto. Sono evidenziati, tramite un retino rosso chiaro, i valori di rapporto che si discostano maggiormente dall'unità.

In generale i risultati del calcolo manuale sono minori rispetto a quelli di C – *Sisma* e si nota una maggior discordanza nel calcolo dell'analisi non lineare.

Affrontando l'ipotesi di solaio in legno e in laterocemento *Cirex*, sono state abbreviate le due tipologie rispettivamente con L e C.

				<i>I</i>	ANALISI SLV LINEARE				ALISI SLV N	NON LINEA	ARE
ME	MEC.	CALCOLO	α	α*0	α*1	α* ₂		d _u *	d1*	d ₂ *	
				$[m/s^2]$	[m/s ²]	$[m/s^2]$	VERIFICA	[m]	[m]	[m]	VERIFICA
		EXCEL	0.097	1.016	0.710	1.615	62.91%	0.120	0.070	0.025	171.43%
	1.1	C - SISMA	0.083	0.701	0.714	1.584	44.26%	0.139	0.093	0.083	148.92%
1	1.1	EXCEL / C - SISMA	1.174	1.449	0.994	1.020	v	0.866	0.753	0.301	v
1		EXCEL	0.038	0.460	0.710	-	64.79%	0.160	0.096	-	166.67%
	10	C - SISMA	0.036	0.344	0.714	-	48.17%	0.151	0.096	-	156.76%
		EXCEL / C - SISMA	1.070	1.337	0.994	-	v	1.061	0.998	-	v
		EXCEL	0.097	1.016	0.710	1.615	62.91%	0.120	0.071	0.025	169.01%
	1.1	C - SISMA	0.077	0.759	0.714	1.615	47.02%	0.148	0.096	0.088	154.16%
2		EXCEL / C - SISMA	1.266	1.338	0.994	1.000	v	0.809	0.738	0.283	v
		EXCEL	0.038	0.460	0.710	-	64.79%	0.160	0.096	-	166.67%
	1.9	C - SISMA	0.028	0.404	0.714	-	56.63%	0.189	0.096	-	196.78%
	1.5	EXCEL / C - SISMA	1.338	1.137	0.994	-	v	0.845	0.998	-	v
		EXCEL	0.096	1.005	0.710	1.615	62.23%	0.120	0.071	0.025	169.01%
	1.1	C - SISMA	0.094	0.797	0.714	1.615	49.33%	0.158	0.093	0.084	169.27%
2		EXCEL / C - SISMA	1.022	1.262	0.994	1.000	v	0.759	0.760	0.298	v
5		EXCEL	0.038	0.470	0.710	-	66.20%	0.160	0.096	-	166.67%
	19	C - SISMA	0.044	0.404	0.714	-	56.63%	0.198	0.096	-	205.61%
	1.5	EXCEL / C - SISMA	0.860	1.162	0.994	-	v	0.809	0.998	-	v
		EXCEL	0.061	0.550	0.710	1.340	41.04%	0.161	0.096	0.095	167.71%
4	1.4	C - SISMA	0.060	0.497	0.714	1.414	35.12%	0.169	0.094	0.078	180.04%
	1.4	EXCEL / C - SISMA	1.015	1.108	0.994	0.948	v	0.954	1.025	1.223	v
		EXCEL	0.096	1.002	0.710	1.679	59.68%	0.024	0.033	0.048	50.21%
	11	C - SISMA	0.095	0.932	0.714	1.876	49.69%	0.104	0.079	0.076	130.98%
		EXCEL / C - SISMA	1.011	1.075	0.994	0.895	v	0.230	0.416	0.623	x
		EXCEL	0.032	0.410	0.710	0.620	57.75%	0.100	0.096	0.031	104.17%
5	190	C - SISMA	0.049	0.471	0.714	0.625	65.93%	0.164	0.094	0.033	175.45%
	1,5 C	EXCEL / C - SISMA	0.658	0.871	0.994	0.992	v	0.608	1.025	-	v
		EXCEL	0.030	0.390	0.710	0.620	54.93%	0.100	0.096	0.031	104.17%
	1 9 1	C - SISMA	0.049	0.471	0.714	0.625	65.93%	0.147	0.096	0.034	152.60%
	1,5 1	EXCEL / C - SISMA	0.617	0.828	0.994	0.992	v	0.681	0.998	-	v

CAP 8 – ANALISI DEI MECCANISMI LOCALI DI COLLASSO

		EVCEL	0 000	0.020	0 710	1 /12		0.050	0.040	0.021	102 04%
			0.000	0.555	0.710	1.412	40.50%	0.030	0.049	0.031	102.04/0
	1.1	C - SISIVIA	0.080	0.667	0.714	1.375	48.52%	0.104	0.080	0.044	130.34%
		EXCEL /	1.104	1.407	0.994	1.027	v	0.479	0.612	0.711	v
6		C - SISMA				_				-	
Ŭ		EXCEL	0.063	0.833	0.710	0.799	104.27%	-	-	-	-
	1.2	C - SISMA	0.045	0.537	0.714	0.804	66.71%	0.132	0.096	0.037	136.69%
	1.5	EXCEL /	1 207	4 552	0.004	0.000					v
		C - SISMA	1.387	1.552	0.994	0.993	V	-	-	-	~
		EXCEL	0.071	0.740	0.710	1.412	52.41%	0.070	0.049	0.031	142.86%
		C - SISMA	0.062	0.644	0.714	1.413	45.56%	0.071	0.069	0.035	102.02%
7	1.1	EXCEL /	0.001							0.000	101.01/0
			1.145	1.150	0.994	1.000	V	0.992	0.708	0.878	V
			0 125	1 290	0 710	1 /12	07 72%	0.080	0.040	0.021	162 27%
			0.123	0.012	0.710	1.412	<i>51.13/</i> 0	0.000	0.045	0.031	103.27/0
8	1.1	C - SISIVIA	0.108	0.912	0.714	1.373	00.43%	0.151	0.085	0.040	177.05%
		EXCEL/	1.163	1.513	0.994	1.028	V	0.530	0.576	0.674	V
		C - SISMA									
		EXCEL	0.017	0.190	0.710	1.370	13.87%	0.010	0.045	0.035	22.22%
	1.1	C - SISMA	0.011	0.813	0.714	1.373	59.21%	0.027	0.094	0.060	28.71%
	-·-	EXCEL /	1 545	0 234	0 994	0 998	v	0 372	0.480	0 579	v
		C - SISMA	1.545	0.234	0.554	0.550	, v	0.572	0.400	0.575	, v
		EXCEL	0.011	0.130	0.710	0.800	18.31%	0.020	0.068	0.023	29.41%
		C - SISMA	0.010	0.140	0.714	0.771	18.18%	0.029	0.094	0.036	30.99%
9	,3 CIRE	EXCEL/		0.007		1 000		0.007	0.704	0.000	
		C - SISMA	1.134	0.927	0.994	1.038	V	0.687	0.724	0.632	V
	<u> </u>	EXCEL	0.010	0.120	0.710	0.800	15.00%	0.020	0.075	0.024	26.67%
			0.010	0 151	0 714	0 771	19.60%	0.029	0.094	0.036	30.99%
	3 LEGN		0.010	0.151	0.714	0.771	15.0070	0.025	0.054	0.000	30.3370
			1.031	0.794	0.994	1.038	V	0.687	0.799	0.663	V
			0.104	1 1 2 0	0.710	1.000	CO 220/	0.020	0.020	0.054	27.040/
			0.104	1.120	0.710	1.000	00.22%	0.020	0.050	0.054	37.04%
10	1.1	C - SISIVIA	0.085	0.703	0.714	1.881	37.40%	0.057	0.065	0.050	86.66%
		EXCEL /	1.221	1.593	0.994	0.989	V	0.354	0.460	1.071	V
		C - SISMA									
		EXCEL	0.055	0.460	0.710	1.350	34.07%	0.050	0.065	0.028	76.92%
11	1.1	C - SISMA	0.046	0.391	0.714	1.315	29.76%	0.063	0.087	0.036	72.78%
	-·-	EXCEL /	1 188	1 176	0 994	1 027	v	0 792	0 750	0 789	v
		C - SISMA	1.100	1.1/0	0.551	1.02/		0.752	0.750	0.705	
		EXCEL	0.055	0.470	0.710	1.350	34.81%	0.040	0.077	0.032	51.95%
12	11	C - SISMA	0.035	0.383	0.714	1.315	29.16%	0.046	0.086	0.036	53.96%
12	1.1	EXCEL /	1 5 6 2	1 220	0.004	1 0 2 7	N/	0.004	0.007	0.000	V
		C - SISMA	1.503	1.226	0.994	1.027	V	0.864	0.897	0.882	v
		EXCEL	0.077	0.650	0.710	-	91.55%	0.070	0.062	-	112.90%
		C - SISMA	0.083	0.700	0.714	-	98.05%	0.076	0.071	-	107.76%
13	1.1	EXCEL /									
		C - SISMA	0.933	0.928	0.994	-	V	0.916	0.874	-	V
		EXCEL	0.038	0 470	0 710	1 020	46.08%	0 110	0.096	0.041	11/ 58%
			0.022	0.420	0.714	1.020	12 160/	0.000	0.090	0.027	110 16%
14	1.1		0.052	0.450	0.714	1.020	42.10%	0.098	0.089	0.057	110.10%
		EACEL/	1.184	1.093	0.994	1.000	V	1.127	1.084	1.099	V
		C - SISIVIA				4 5 10					110.000
		EXCEL	0.100	0.980	0.710	1.740	56.32%	0.080	0.060	0.067	119.40%
15	1.1	C - SISMA	0.082	0.620	0.714	1.895	86.86%	0.119	0.092	0.097	122.54%
		EXCEL /	1.217	1.580	0.994	0,918	v	0.675	0.656	0.693	v
		C - SISMA	/	2.000	0.004	0.010		0.075	0.000	0.000	

	i	1 1				i	1		i	i	
		EXCEL	0.054	0.590	0.710	1.740	33.91%	0.020	0.037	0.058	34.48%
16	11	C - SISMA	0.040	0.313	0.714	1.752	17.87%	0.086	0.096	0.101	85.36%
10	1.1	EXCEL /	1 260	1 001	0.004	0.002	V	0 222	0.205	0.574	V
		C - SISMA	1.500	1.004	0.994	0.995	v	0.252	0.565	0.574	v
		EXCEL	0.101	1.040	0.710	1.811	57.43%	0.030	0.039	0.060	50.00%
		C - SISMA	0.082	0.696	0.714	1.807	38.49%	0.076	0.089	0.089	84.45%
	1.1	EXCEL /									
		C - SISMA	1.227	1.495	0.994	1.002		0.397	0.438	0.671	V
17		EXCEL	0.023	0.270	0.710	-	38.03%	0.100	0.096	-	104.17%
		C - SISMA	0.018	0.185	0.714	-	25.85%	0.104	0.096	-	108.13%
	1.19	EXCEL /			-						
		C = SISMA	1.250	1.463	0.994	-	V	0.961	0.998	-	V
		FXCEI	0 128	1 085	0 710	1 820	59.62%	0 150	0.078	0.080	187 50%
			0.120	0.813	0.710	1 807	1/ 97%	0.150	0.070	0.000	172 38%
	1.1		0.050	0.015	0.714	1.007	44.3770	0.101	0.055	0.033	172.3070
			1.328	1.335	0.994	1.007	V	0.932	0.835	0.862	V
18			0.020	0.240	0 710		17 000/	0 120	0.006		125 00%
			0.050	0.540	0.710	-	47.09/0 01 E/10/	0.120	0.090	-	240 200/0
	1.19		0.050	0.562	0.714	-	01.34/0	0.240	0.090	-	249.30/0
			0.536	0.584	0.994	-	V	0.500	0.998	-	V
		C - SISIVIA	0.440	4 4 9 9	0 740	4.040	64.000(0.400	0.007	0.074	4.00.040/
		EXCEL	0.110	1.120	0.710	1.810	61.88%	0.120	0.067	0.0/1	169.01%
	1.1	C - SISIMA	0.110	0.933	0.714	1.807	51.64%	0.129	0.078	0.082	157.18%
		EXCEL /	1.001	1.200	0.994	1.002	V	0.929	0.855	0.864	V
19		C - SISMA									
		EXCEL	0.033	0.400	0.710	-	56.34%	0.110	0.096	-	114.58%
	1.19	C - SISMA	0.031	0.327	0.714	-	45.77%	0.121	0.096	-	125.78%
		EXCEL /	1.058	1.224	0.994	-	v	0.909	0.998	-	v
		C - SISMA									
		EXCEL	0.110	1.200	0.710	1.740	68.97%	0.130	0.068	0.071	183.10%
	1.1	C - SISMA	0.090	0.715	0.714	1.742	41.06%	0.160	0.096	0.094	165.84%
		EXCEL /	1 225	1 677	0 994	0 999	v	0 814	0 706	0 756	v
20		C - SISMA	1.223	1.077	0.551	0.555		0.011	0.700	0.750	
		EXCEL	0.033	0.340	0.710	-	47.89%	0.120	0.096	-	125.00%
	19	C - SISMA	0.029	0.252	0.714	-	35.29%	0.105	0.093	-	112.90%
	1.5	EXCEL /	1 131	1 3/19	0 994	_	v	1 1/13	1 032	_	v
		C - SISMA	1.151	1.345	0.554		, v	1.145	1.052		v
		EXCEL	0.094	1.090	0.710	1.640	66.46%	0.250	0.071	0.068	352.11%
	11	C - SISMA	0.079	0.631	0.714	1.717	36.74%	0.152	0.096	0.097	157.20%
	1.1	EXCEL /	1 100	1 720	0.004	0.055	V	1 6 4 9	0 720	0.705	N
21		C - SISMA	1.190	1.720	0.994	0.955	v	1.040	0.756	0.705	v
21		EXCEL	0.027	0.450	0.710	-	63.38%	0.120	0.096	-	125.00%
	1.0	C - SISMA	0.022	0.324	0.714	-	45.37%	0.127	0.096	-	132.22%
	1.9	EXCEL /	4.946	4 222	0.004			0.010	0.000		
		C - SISMA	1.216	1.389	0.994	-	V	0.943	0.998	-	V

Tabella 8.210: Tabella riassuntiva dei risultati ottenuti dall'analisi statica lineare e non lineare dall'utilizzo del calcolo in Excel e in C – Sisma.

Analizzando le tabelle si nota che la maggior parte delle analisi concordano sui risultati delle verifiche, eccezion fatta per i meccanismi di ribaltamento parziale dei macroelementi 5 e 6. La verifica discorda per una percentuale che varia dal 50% al 80%: il macroelemento 5 non verifica per un 60% nell'analisi manuale, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre il macroelemento 6 verifica al 104% nell'analisi manuale già nella verifica lineare, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica al 130% nell'analisi di *C* – *Sisma*, mentre verifica non lineare.

CAP 8 - ANALISI DEI MECCANISMI LOCALI DI COLLASSO

I risultati, suddivisi per valore di accelerazione e di spostamento, riflettono una varietà di risposta, in particolare si noti come il valore di attivazione del meccanismo si discosti pesantemente a seconda del metodo di calcolo utilizzato, mentre i valori di accelerazione spettrale non si discostano da un metodo all'altro.

Per quanto riguarda gli spostamenti spettrali si noti come quello di progetto passi da un 10% a un 200% di rapporto percentuale con i due metodi, mentre quelli da normativa varino perlopiù da un 30% a un 170% di rapporto percentuale.

Tabella 8.211: Istogramma relativo ai valori ottenuti dai rapporti dei risultati, valori percentuali

9. ANALISI DEI MECCANISMI GLOBALI DI COLLASSO	
9.1 Premesse per la valutazione di meccanismi globali di collasso	
9.2 Il metodo utilizzato dal software 3Muri	
9.3 Definizione del modello	
9.4 Analisi statica non lineare	
9.5 Effetti dell'aggregazione sul modello	
9.6 Palazzo del Capitanio, unità strutturale 1	
9.6.1 Modello libero	
9.6.2 Modello con vincoli rigidi	
9.6.3 Modello con vincoli cedevoli elasticamente	
9.7 Palazzo del Capitanio, unità strutturale 2	
9.7.1 Modello libero	
9.7.2 Modello con vincoli rigidi	
9.7.3 Modello con vincoli cedevoli elasticamente	
9.8 Analisi dei risultati ottenuti	
9.9 Il metodo utilizzato dal software ANDILWall	
9.10 Definizione del modello	
9.11 Analisi statica non lineare	
9.12 Effetti dell'aggregazione sul modello	
9.13 Palazzo del Capitanio, unità strutturale 1	
9.13.1 Modello libero	
9.13.2 Modello con vincoli cedevoli elasticamente	
9.14 Palazzo del Capitanio, unità strutturale 2	
9.14.1 Modello libero	43

8 811100000

176 c = 1 c

9. ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Premesse per la valutazione di meccanismi globali di collasso

Nelle costruzioni esistenti in muratura soggette ad azioni sismiche si possono manifestare meccanismi locali e meccanismi d'insieme. Questi meccanismi sono quelli che interessano l'intera costruzione ed impegnano i pannelli murari prevalentemente nel loro piano.

L'analisi sismica globale deve considerare, per quanto possibile, il sistema strutturale reale della costruzione, con particolare attenzione alla rigidezza degli impalcati, alla resistenza dei solai e all'efficacia dei collegamenti degli elementi strutturali.

Nel caso di muratura irregolare, la resistenza a taglio di calcolo per azioni nel piano di un pannello in muratura potrà essere calcolata facendo ricorso a formulazioni alternative rispetto a quelle adottate per opere nuove, purché di comprovata validità.

In presenza di edifici in aggregato, contigui, a contatto o interconnessi con edifici adiacenti, i metodi di verifica di uso generale per gli edifici di nuova costruzione possono non essere adeguati. Nell'analisi di un edificio facente parte di un aggregato edilizio occorre tenere conto delle possibili interazioni derivanti dalla contiguità strutturale con gli edifici adiacenti.

A tal fine dovrà essere individuata l'unità strutturale (US) oggetto di studio, evidenziando le azioni che su di essa possono derivare dalle unità strutturali contigue.

Oltre a quanto normalmente previsto per gli edifici non disposti in aggregato, dovranno essere valutati gli effetti di: spinte non contrastate causate da orizzontamenti sfalsati di quota sulle pareti in comune con le US adiacenti, meccanismi locali derivanti da prospetti non allineati, US adiacenti di differente altezza.

L'analisi globale di una singola unità strutturale assume spesso un significato convenzionale e perciò può utilizzare metodologie semplificate. La verifica di una US dotata di solai sufficientemente rigidi può essere svolta, anche per edifici con più di due piani, mediante l'analisi statica non lineare, analizzando e verificando separatamente ciascun interpiano dell'edificio, e trascurando la variazione della forza assiale nei maschi murari dovuta all'effetto dell'azione sismica. Con l'esclusione di unità strutturali d'angolo o di testata, così come di parti di edificio non vincolate o non aderenti su alcun lato ad altre unità strutturali, l'analisi potrà anche essere svolta trascurando gli effetti torsionali, nell'ipotesi che i solai possano unicamente traslare nella direzione considerata dell'azione sismica.

Qualora i solai dell'edificio siano flessibili si potrà procedere all'analisi delle singole pareti o dei sistemi di pareti complanari, ciascuna parete essendo soggetta ai carichi verticali di competenza ed alle corrispondenti azioni del sisma nella direzione parallela alla parete⁴⁷.

L'edificio oggetto d'analisi presenta due unità strutturali distinte, appartenenti ad un aggregato pressoché ricalcante il sedime della vecchia Reggia Carrarese.

L'unità strutturale maggiore è schematizzabile tramite solai infinitamente rigidi: durante il sopralluogo si è ritenuta valida l'ipotesi che gli orizzontamenti lignei siano stati sostituiti con impalcati in laterocemento. L'unità strutturale minore è invece costituita da solai lignei (flessibili) e in laterocemento (rigidi): sono stati svolti due modelli differenti, in quanto la presenza di solai *Cirex* (laterocemento) è attestata nell'intervento eseguito sul solaio del piano terra delle poste, mentre non si hanno dati circa i piani superiori, che sono stati modellati sia in legno che in laterocemento.

⁴⁷ Decreto ministeriale infrastrutture del 14-01-2008, Norme Tecniche per le Costruzioni C8.7.1

Il metodo utilizzato dal software 3Muri

3Muri è un programma di calcolo per le strutture in zona sismica, secondo il DM 14/01/2008 "Norme Tecniche per le Costruzioni".

Il modello di riferimento è il metodo FME (Frame by Macro Element), che schematizza la struttura a telaio equivalente tridimensionale, a cui vengono associati gli elementi resistenti (maschi verticali interconnessi da fasce orizzontali) ed i nodi rigidi.

Maschi e fasce sono modellate con macroelementi finiti bidimensionali, rappresentativi di pannelli murari, a due nodi con tre gradi di libertà per nodo (u_x , u_z , rot_y).

Le restanti porzioni di parete vengono considerate come nodi rigidi bidimensionali di dimensioni finite, a cui sono connessi i macroelementi; questi ultimi trasmettono, ad ognuno dei nodi incidenti, le azioni lungo i tre gradi di libertà del piano.

La modellazione non limita l'analisi agli edifici in muratura, ma la estende agli edifici misti: permette di inserire travi e cordoli in c.a., individuati nel piano dalla posizione dei due nodi di estremità, e dispositivi catena, strutture metalliche sprovviste di rigidezza flessionale e resistenza a compressione.

3Muri risulta al passo con la normativa vigente, che associa la resistenza sismica al necessario fattore duttilità, cioè la capacità della struttura di deformarsi a carico pressoché costante una volta superata la fase elastica, e di dissipare l'energia del sisma attraverso fenomeni di isteresi.

La misura della duttilità è data dal rapporto tra il massimo spostamento raggiungibile prima del collasso e lo spostamento al limite elastico: *3Muri* valuta lo spostamento di un punto di controllo (generalmente baricentrico e posto all'ultimo piano dell'edificio) rispetto alla forza agente alla base della struttura, ottenendo così la curva di capacità in spostamento.

Nel caso lo spostamento offerto fosse superiore a quello richiesto, la struttura risulterebbe verificata, altrimenti *3Muri* fornisce informazioni sulle zone critiche sulle quali intervenire.

Limite e punto di forza del programma è la schematizzazione stessa del modello: gli edifici esistenti sono caratterizzati da uno schema strutturale asimmetrico ed iperstatico, composto da murature ravvicinate e non seguenti uno schema ordinato, con il quale si ipotizza un comportamento simile a quello reale. Questo schema non è scevro di approssimazioni, che costituiscono al contempo un modello ipoteticamente diverso da quello reale, ma con minor onere computazionale.

Il limite del metodo FME risulta meno invasivo quando si analizzano le alternative dei metodi d'analisi utilizzabili: i metodi POR e FEM (Metodo agli Elementi Finiti).

Il metodo POR presuppone la modellazione delle travi in muratura come infinitamente rigide, escludendo così la possibilità che queste possano danneggiarsi e rompersi: oltre a non essere coerente con il comportamento effettivo delle costruzioni, il metodo non fornisce nemmeno le sollecitazioni agenti su tali elementi, non consentendone la verifica.

Inoltre, a differenza dei metodi a telaio equivalente, non consente di effettuare analisi che rispettino l'equilibrio, né a livello locale né globale: analizzando separatamente la risposta dei singoli piani della costruzione non è possibile valutare la variazione delle azioni verticali connesse all'applicazione delle forze orizzontali, né garantire l'equilibrio nel passaggio tra un maschio e quello corrispondente al piano superiore.

Oltre agli aspetti legati al superamento o meno delle verifiche prescritte dalle diverse normative, è opportuno rilevare come l'analisi a telaio equivalente (macroelementi) sia in grado di simulare in maniera più corretta la risposta reale, consentendo quindi una valutazione più affidabile ed una consapevole scelta dei più efficaci metodi di consolidamento

Il metodo FEM invece consente un'analisi particolarmente accurata, con richiesta elevata di oneri computazionali, purchè siano note le caratteristiche meccaniche degli elementi strutturali.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Questo metodo trova scarsa applicabilità nelle strutture esistenti in muratura, delle quali sono richiesti dati circa i parametri meccanici ad un livello di dettaglio non esplicitamente contemplato nelle normative, la cui valutazione si può ricavare solo attraverso accurate analisi sperimentali.

L'analisi è tanto più significativa quanto maggiore è il grado di dettaglio della mesh, quindi risulta "mesh dependent" e fortemente condizionata dalle operazioni di definizione.

Per le difficoltà che pone, tale modellazione è indicata per analisi specialistiche di strutture monumentali (chiese, torri, ponti in muratura), ma non adeguata a rispondere alle esigenze di velocità e conoscenza del manufatto.

Definizione del modello

Il modello viene definito riportando gli assi strutturali nel DWG delle piante, operando una schematizzazione degli elementi resistenti e discretizzando in linee gli elementi spesso non allineati. Il file viene quindi importato nel programma *3Muri*, nel quale viene ricalcato lo schema strutturale e sono assegnate le proprietà geometriche e meccaniche relative alle murature, alle travi e ai pilastri.

Sono poi introdotti i solai, con le relative proprietà meccaniche e caratteristiche geometriche, associandoli all'area su cui insistono, ed infine vengono poste le forometrie.

Modellazione delle pareti

Il software *3Muri* è stato implementato sulla base di osservazioni di pareti danneggiate a seguito di eventi sismici.

Sono stati individuate tre tipologie di rotture, localizzate su porzioni di muratura delimitate da aperture, che si differenziano a seconda della geometria, delle caratteristiche proprie dei materiali e delle condizioni di vincolo:

- rottura per pressoflessione e schiacciamento negli spigoli;
- rottura per scorrimento;
- rottura per taglio.

Figura 9.1: Meccanismi di rottura di porzioni di muratura

Dalle osservazioni svolte deriva l'ipotesi di schematizzazione delle pareti a macroelementi, intesi come porzioni di muratura suddivise in maschi, fasce ed elementi rigidi.

L'elemento maschio è la porzione a fianco delle aperture, l'elemento fascia invece è quella sopra o sotto l'apertura; entrambi gli elementi sono modellati come elementi lineari.

La muratura restante, adiacente alle fasce, è definita come infinitamente rigida.

Collegando gli elementi definiti dalle porzioni di muratura si ottiene lo schema a telaio equivalente.

Figura 9.2: S.T.A. DATA, Manuale d'uso di 3Muri, p.12 - *Rappresentazione della suddivisione in macroelementi mediante mesh e telaio equivante*

Il modello a telaio equivalente esemplifica in modo corretto il comportamento delle strutture in muratura, inoltre semplifica l'analisi, riducendo i gradi di libertà rispetto alla modellazione FEM.

Lo schema a telaio equivalente riproduce anche la struttura di edifici irregolari (in pianta e in prospetto) e costituiti con materiali disomogenei (c.a., acciaio, legno...).

L'elemento trave in c.a. è un elemento a sei gradi di libertà con resistenza limitata e comportamento elastico – perfettamente plastico, nel quale i limiti di resistenza coincidono con il valore ultimo, poiché non è preso in considerazione il fenomeno dell'incrudimento.

Figura 9.3: S.T.A. DATA, Manuale d'uso di 3Muri, p.16 - *Rappresentazione della suddivisione in macroelementi mediante mesh di una struttura irregolare*

Figura 9.4: S.T.A. DATA, Manuale d'uso di 3Muri, p.16 - *Rappresentazione della suddivisione in macroelementi mediante mesh di una struttura non omogenea*

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Nel modello del caso studio, le proprietà meccaniche delle pareti sono state determinate sulla base delle indicazioni fornite dalla normativa italiana: è stata utilizzata la tipologia costituita da mattoni pieni e malta di calce e, per le modifiche dell'unità strutturale minore, da muratura in mattoni semipieni con malta cementizia, definite nella *Tabella C8B.1* della *Circolare 2 febbraio 2009 n. 617,* con un livello di conoscenza pari a 1,3 secondo la *Tabella 4.1.* della *Circolare n. 26/2010.*

TIPOLOGIA	E	G	PESO SPECIFICO	fm	RESISTENZA A TAGLIO
	[N/mm²]	[N/mm²]	[kN/m ³]	[N/cm ²]	[N/cm ²]
Muratura in mattoni pieni e malta di calce	1500,00	500,00	18	184,62	4,62
TIPOLOGIA	E	G	PESO SPECIFICO	fm	RESISTENZA A TAGLIO
	[N/mm²]	[N/mm²]	[kN/m ³]	[N/cm ²]	[N/cm ²]
Muratura in mattoni semipieni e malta cementizia	4500,00	1137,50	15	370,37	17,78

Per quanto concerne le proprietà meccaniche del setto dell'ascensore e dei pilastri in cemento armato del piano terra, non sono state reperite informazioni. Si è proceduto quindi con la ricerca delle normative vigenti negli anni '60, periodo di costruzione del vano scale – ascensore, in modo da utilizzare materiali simili a quelli realmente utilizzati, salvo diminuirli del fattore di confidenza 1,3.

Rilevante per la definizione dell'acciaio è la *Circolare 23 Maggio 1957 n° 1472: Armatura delle strutture in cemento armato,* la quale abroga i suggerimenti precedenti espressi nel campo dell'acciaio, ed esprime la possibilità di utilizzo dei soli acciai Aq 42, Aq 50 ed Aq 60.

A favore di sicurezza è stato adottato nel modello un acciaio Aq 42 liscio, confrontabile per comportamento e caratteristiche meccaniche con un FeB22k, di diametro Φ 12 - Φ 14, in quanto maggiormente utilizzati nel range Φ 8 ai Φ 20 delle barre.

I dati riportati, divisi per il fattore di confidenza 1,3, sono i valori minimi ottenuti da 729 prove fatte su barre d'acciaio relative al 1960, esposte nell'articolo *Le proprietà meccaniche degli acciai degli anni impiegati nelle strutture in c.a. realizzate negli anni '60,* G.M. Verderame, A. Stella, E. Cosenza.

TIPOLOGIA	E [N/mm²]	G [N/mm²]	PESO SPECIFICO [kN/m ³]	fm [N/cm ²]	fu [N/mm²]
Acciaio armatura Aq 42	200000,0	76923,30	78,5	203,85	323,15

Per il calcestruzzo la *Circolare 4 Maggio 1961 n° 1042* dispone l'adozione cemento del 600 e 730, e viene utilizzato il cemento 600 per le travi dell'unità strutturale minore nell'intervento di ampliamento del piano terra.

I valori della resistenza cubica a 28 gg. del *cemento 600* varia da 27,1 a 29,5 MPa: a favore di sicurezza si utilizza un cemento C20/25 per il vano ascensore e un C25/30 per i pilastri.

TIPOLOGIA	E [N/mm ²]	G [N/mm²]	PESO SPECIFICO [kN/m ³]	fm [N/mm ²]	fck [N/mm²]
C 20 /25	29962,0	12484,00	25	21,54	20,00
TIPOLOGIA	E [N/mm ²]	G [N/mm²]	PESO SPECIFICO [kN/m ³]	fm [N/mm ²]	fck [N/mm²]
C 25/30	31476,0	13115,00	25	25,38	25,00

Modellazione dei solai

Per trasmettere i carichi verticali e le sollecitazioni orizzontali sismiche alle pareti è necessario modellare i solai.

Per quanto concerne la trasmissione dei carichi verticali, il software trascura la deformazione del solaio, in quanto non interessa l'analisi sismica.

Per quanto riguarda invece le sollecitazioni orizzontali, *3Muri* considera la rigidezza nel piano dei solai, definiti come diaframmi; ciò comporta una valutazione differente dei solai rigidi rispetto a quelli deformabili: i primi ricevono una quota parte dell'azione sismica proporzionale alla rigidezza della parete, i secondi invece sono investiti da un carico doppio nei setti centrali.

Questa caratteristica appare più evidente dopo il limite elastico: con solai flessibili il cedimento della parete centrale determina il cedimento della struttura, mentre con solai rigidi le pareti laterali collaborano al sistema, anche nel caso di cedimento localizzato.

Figura 9.5: S.T.A. DATA, Manuale d'uso di 3Muri, p.14 - *Rappresentazione del comportamento di un solaio flessibile sollecitato da forze orizzontali*

Figura 9.6: S.T.A. DATA, Manuale d'uso di 3Muri, p.14 - *Rappresentazione del comportamento di un solaio rigido sollecitato da forze orizzontali*

Nonostante i solai rigidi siano auspicabili, in caso di interventi di recupero o adeguamento sismico di strutture esistenti la sostituzione di solai lignei con solai rigidi comporta l'aumento delle masse, con relativo incremento delle azioni sismiche.

Risulta quindi necessario valutare correttamente la rigidità del solaio, in modo da stimare il reale comportamento della struttura.

Nella modellazione i solai sono anisotropi, per determinare le rigidezze diverse nelle due direzioni principali, e definiti con elementi finiti superficiali con comportamento membranale, in modo da trasmettere gli sforzi nel piano, assegnando i parametri di rigidezza ed esaminando le tipologie ricorrenti, comprese le volte.

Nel caso studio sono stati modellati quattro tipologie di orizzontamenti: solai in laterocemento *Bausta e Cirex,* in legno con doppio tavolato e volte in muratura.

Per ciascun tipo sono state definite le caratteristiche geometriche e meccaniche degli elementi resistenti: dimensioni ed interasse delle travi, modulo di elasticità e di taglio.

Per le travi in cemento armato sono stati utilizzati acciao Aq 42 e calcestruzzo C25/30, definiti per gli elementi verticali in c.a.

TIPOLOGIA	E _x [N/mm ²]	E _y [N/mm ²]	G [N/mm²]	SPESSORE [cm]	INTERASSE [cm]	ALTEZZA SOLAIO [cm]
Solaio in laterocemento Bausta	66000	30000	12500	4,00	50,00	28,00

TIPOLOGIA	E _x [N/mm ²]	E _y [N/mm ²]	G [N/mm²]	SPESSORE [cm]	INTERASSE [cm]	ALTEZZA SOLAIO [cm]
Solaio in laterocemento Cirex	102272,7	/	1000,00	4,00	50,00	25,00

TIPOLOGIA	E [N/mm ²]	G [N/mm²]	TRAVE [cm]	INTERASSE [cm]	ALTEZZA SOLAIO [cm]
Solaio in legno	14545,5	600,00	20 x 20	55,00	20,00

TIPOLOGIA	E _x [N/mm ²]	E _y [N/mm²]	G [N/mm²]	V	ALTEZZA SOLAIO [cm]
Volta a botte	705,00	705,00	235,00	0,20	25,00

Per la definizione dei valori di carico sono stati utilizzati i valori precedentemente determinati per gli impalcati nelle analisi locali, suddividendo i carichi permanenti in strutturali $G_{k,agg}$.

Le coperture sono state modellate come solai piani, ai quali è stato aggiunto il carico G_k al valore di carico del sottotetto.

Le scale sono state schematizzate con solai rigidi monodirezionali.

Schematizzazione

Il modello, nonostante si accinga a rappresentare indicativamente quello reale, non è privo di approssimazioni:

- dove si presentavano murature con basso angolo di inclinazione tra loro, sono stati rettificati gli assi strutturali, causa una mancata lettura della parete da parte del software;

Figura 9.7: Schematizzazione assi

 in presenza di murature parallele con piccoli disassamenti è stato rettificato l'asse, poiché avrebbe comportato il formarsi di piccoli tratti di parete poco significativi che avrebbero fuorviato la natura del calcolo;

Figura 9.8: Schematizzazione pareti

- le forometrie con terminazione ad arco, relative in particolare ai prospetti est e nord, sono state schematizzate con corpi rettangolari ricalcanti le dimensioni massime.

Figura 9.9: Schematizzazione forometrie

Terminato il modello, si passa all'analisi globale previo generazione delle mesh di pareti, pilastri, travi e solai.

I parametri relativi all'azione sismica sono ricavati dal software inserendo la localizzazione geografica dell'edificio (Padova), la vita nominale (50 anni) e la classe d'uso (III).

	SLV	SLD	SLO
T _r [anni]	712	75	45
$A_g [m/s^2]$	0,94	0,42	0,35
Fo	2,62	2,53	2,54
T _c * [s]	0,35	0,28	0,24
S	1,5	1,5	1,5
T _b [s]	0,17	0,15	0,13
T _c [s]	0,52	0,45	0,4
T _d [s]	1,98	1,77	1,74

Tabella 9.1 Valori dei parametri sismici definiti nella città di Padova, utilizzati nell'analisi dal software 3Muri

Analisi statica non lineare

L'analisi statica non lineare caratterizza il sistema sismico resistente tramite curve di capacità, il cui inviluppo dei punti massimi rappresenta l'analisi "push – over".

Affinché sia possibile si richiede che al sistema strutturale reale venga associato un sistema strutturale equivalente ad un grado di libertà.

L'analisi consiste nell'applicare alla struttura i carichi gravitazionali e, per la direzione considerata dell'azione sismica, un sistema di forze orizzontali distribuite, ad ogni livello della costruzione, proporzionalmente alle forze d'inerzia ed aventi risultante (taglio alla base) F_b.

Tali forze sono scalate in modo da far crescere monotonamente, sia in direzione positiva che negativa e fino al raggiungimento delle condizioni di collasso locale o globale, lo spostamento orizzontale d_c di un punto di controllo coincidente con il centro di massa dell'ultimo livello della costruzione. Il diagramma F_b - d_c rappresenta la curva di capacità della struttura.⁴⁸

Lo spostamento ultimo corrisponde, oltre al punto di massima forza, ad una riduzione della forza pari al 20% della forza massima.

Questo metodo di analisi è utilizzabile per costruzioni il cui comportamento, sotto la componente del terremoto considerata, sia governato da un modo di vibrare naturale principale caratterizzato da una significativa partecipazione di massa (60% per edifici di nuova costruzione).

Per quanto riguarda gli edifici esistenti l'analisi statica non lineare può essere utilizzata per la risposta globale della struttura indipendentemente dalla percentuale di massa partecipante del primo modo di vibrare, purché si adottino come distribuzione principale e secondaria la prima distribuzione del gruppo 1 (proporzionale alle forze statiche) e la prima distribuzione del gruppo 2 (distribuzione uniforme) appresso illustrate.

Gruppo 1 - Distribuzioni principali:

- distribuzione proporzionale alle forze statiche di cui al § 7.3.3.2 del Decreto ministeriale infrastrutture del 14-01-2008, applicabile solo se il modo di vibrare fondamentale nella direzione considerata ha una partecipazione di massa non inferiore al 75% ed a condizione di utilizzare come seconda distribuzione la 2 a);
- distribuzione corrispondente ad una distribuzione di accelerazioni proporzionale alla forma del modo di vibrare, applicabile solo se il modo di vibrare fondamentale nella direzione considerata ha una partecipazione di massa non inferiore al 75%;
- distribuzione corrispondente alla distribuzione dei tagli di piano calcolati in un'analisi dinamica lineare, applicabile solo se il periodo fondamentale della struttura è superiore a T_c.

Gruppo 2 - Distribuzioni secondarie:

- *a)* distribuzione uniforme di forze, da intendersi come derivata da una distribuzione uniforme di accelerazioni lungo l'altezza della costruzione;
- *b)* distribuzione adattiva, che cambia al crescere dello spostamento del punto di controllo in funzione della plasticizzazione della struttura.

Le analisi sono statiche in quanto la forzante esterna è applicata staticamente alla struttura, e non lineari a causa del modello comportamentale assunto per gli elementi resistenti della struttura, che passano dalla fase elastica alla fase plastica ed infine a rottura.

Le fasi di carico individuano step diversi a seconda del danneggiamento della struttura: definito il punto di riferimento per la costruzione della curva si applicano le forze, al crescere delle quali alcuni elementi arriveranno al limite del comportamento elastico, poi alla fase plastica ed infine a rottura; l'elemento giunto a rottura non contrasta più i carichi orizzontali, ma è ancora attivo per quelli verticali.

⁴⁸ Decreto ministeriale infrastrutture del 14-01-2008, Norme Tecniche per le Costruzioni C7.3.4.1

Figura 9.10: S.T.A. DATA, Manuale d'uso di 3Muri, p.21 – Fasi dell'analisi statica non lineare (push – over)

L'analisi completa della struttura si traduce in 24 analisi, combinazioni derivanti dalla definizione di direzione e verso dell'azione sismica (\pm X, \pm Y), distribuzione delle forze sismiche (proporzionali alle masse o al primo modo di vibrare) ed eccentricità accidentale del centro di massa rispetto al centro di rigidezza (\pm 5% della dimensione massima dell'edificio misurata perpendicolarmente alla direzione di applicazione dell'azione sismica).

La curva di capacità portante può essere tracciata riferendosi allo spostamento di un nodo di controllo o allo spostamento medio di piano.

Le verifiche che il programma permette di effettuare sono:

stato limite di salvaguardia della vita (SLV)
 D_{max} ≤ D_u, dove
 D_{max} è lo spostamento massimo richiesto dalla normativa, individuato dallo spettro elastico,
 D_u è lo spostamento massimo efforte della struttura corrigonadante el decadimente della

Du è lo spostamento massimo offerto dalla struttura corrispondente al decadimento della curva push – over di un valore pari al 20% di quello massimo, a condizione che q* < 3,

dove q* è il rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente.

- stato limite di danno (SLD)

 $D^{SLD}_{max} \leq D_d$, dove

 D^{SLD}_{max} è lo spostamento massimo richiesto dalla normativa, calcolato in base allo spettro sismico definito per lo stato limite di danno,

 D_{d} è lo spostamento che genera un drift di interpiano pari allo 0,3% dell'altezza di interpiano.

- stato limite di operatività (SLO)

 $D^{SLO}_{max} \leq D_{o}$, dove

 D^{SLO}_{max} è lo spostamento massimo richiesto dalla normativa, calcolato in base allo spettro sismico definito per lo stato limite di operatività,

Do è lo spostamento che genera un drift di interpiano pari allo 0,2% dell'altezza di interpiano.

In seguito si calcolano gli indicatori di rischio sismico $\alpha_u e \alpha_e$, secondo l'OPCM 3362⁴⁹, dove α_u corrisponde all'indicatore del rischio di collasso, mentre α_e all'indicatore del rischio di inagibilità dell'opera:

$$\alpha_u = \frac{PGA_{DS}}{PGA_{10\%}}$$
$$\alpha_e = \frac{PGA_{DL}}{PGA_{50\%}}$$

Dove:

- PGA_{DS} è l'accelerazione stimata di danno severo;
- PGA_{DL} è l'accelerazione stimata di danno lieve;
- PGA_{10%} è l'accelerazione al suolo attesa con la probabilità del 10% in 50 anni;
- PGA_{50%} è l'accelerazione al suolo attesa con la probabilità del 50% in 50 anni;

⁴⁹ O.P.C.M. 3362 dell'8 luglio 2004, *Modalità di attivazione del Fondo interventi straordinari della Presidenza del Consiglio dei Ministri, istituito ai sensi dell'articolo 32 – bis del D.L. 30 settembre 2003, n.269, convertito con modificazioni dalla L.24 novembre 2003, n.326.*

Effetti dell'aggregazione sul modello

La scelta della modellazione è condizionata da diversi fattori: nel caso di una costruzione inserita in un contesto di aggregato urbano, sarebbe necessario considerare questi integralmente, ma spesso ciò è improponibile, sia per la difficoltà di accedere e conoscere le parti adiacenti, sia per la complessità e gli oneri computazionali⁵⁰.

La suddivisione di Palazzo del Capitanio in due unità strutturali comporta la scissione dell'analisi globale, che rifletterà risultati non coincidenti con quelli reali.

E' necessario quindi valutare il contributo offerto dagli edifici limitrofi o connessi alla struttura tramite la modellazione di carichi lineari gravanti sulla muratura e derivanti dai solai degli edifici connessi, e l'apposizione di collegamenti, a martellamento o a connessione piana.

Nel primo caso gli edifici sono a contatto tra loro o possiedono pareti in comune, la connessione viene modellata attraverso nodi rigidi, che uniscono le fasce di piano degli edifici; nel secondo caso gli edifici sono fisicamente separati, l'interazione si attua nel momento in cui questi vengono a contatto tra loro e la connessione è rappresentata da un elemento con tensione nulla, in grado di offrire unicamente resistenza a compressione.

Da notare che sotto l'azione sismica il collegamento a martellamento restituisce comportamenti diversi qualora le due strutture oscillino nella stessa direzione o meno: da quanto osservato, se lo spostamento avviene con versi opposti le strutture non riportano danni. Diversamente, il collegamento a connessione piana fornisce unitarietà all'aggregato e di conseguenza danni confrontabili per entrambe le direzioni di spostamento.

Dall'osservazione di sperimentazioni di diversi modelli, si è giunti alla conclusione che i parametri più influenti riguardano le altezze degli edifici e le modalità di connessione tra di essi.

Analogamente si è potuto osservare come l'aggregato tende a migliorare la risposta delle strutture più flessibili a scapito di quelle più rigide, che devono sopportare un quantitativo di energia maggiore.

Inoltre, rispetto alla singolarità, che presenta danni concentrati nei piani inferiori, l'aggregato individua le zone critiche in quota, con danni ancor più marcati in caso di prospetti con differenti altezze, nei quali i setti murari che non presentano continuità longitudinale vanno incontro a danni per pressoflessione nel piano con conseguente collasso per schiacciamento del nodo alla base⁵¹.

Le strutture dell'aggregato in esame risultano connesse con gli edifici limitrofi, pertanto sono stati modellati collegamenti a connessione piana, assegnando diversa rigidezza ai vincoli: seguono due modelli rappresentativi dell'aggregato collegati tramite vincoli rigidi e cedevoli con legge elastica.

Per quanto riguarda i vincoli rigidi, la modellazione del nodo si è limitata all'apposizione di vincoli traslazionali nella direzione del vincolo stesso.

Un'elaborazione differente è stata svolta per i vincoli cedevoli: sono state calcolate le misure relative ai setti limitrofi per ricavarne il valore di rigidezza, il quale è stato calibrato nel modello *3Muri* con un metodo iterativo, in modo da trovare un valore di rigidezza congruente con la risposta reale dell'edificio.

Il valore di rigidezza teorico si ricava schematizzando i setti confinanti con il nodo da vincolare come mensole incastrate alla base, sulle quali agisce in sommità una forza orizzontale, e considerando i parametri meccanici del materiale componente le pareti stesse (si è ipotizzata una muratura in mattoni pieni e malta di calce in quanto I 'aggregato è stato costruito nella stessa epoca).

⁵⁰ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, allegato B

⁵¹ M. Pengo, Analisi di vulnerabilita sismica finalizzata agli interventi di miglioramento strutturale di Palazzo Ca Borin

La rigidezza è espressa tramite la seguente formula:

$$K = \frac{1}{\frac{h3}{3EJ} + 1,2 \frac{h}{GA}}$$

Dove:

- J è il momento di inerzia della sezione del setto, espresso in m⁴, _
- E è il modulo di elasticità normale dei setti, nel caso di muratura in mattoni pieni e malta di calce è pari a 1500 MPa⁵²,
- G è il modulo di elasticità tangenziale dei setti, nel caso di muratura in mattoni pieni e malta di calce è pari a 500 MPa⁵³,
- A è l'area della sezione del setto, espressa in metri, _
- h è l'altezza del setto, espressa in metri. -

I vincoli sono stati applicati alle pareti evidenziate in rosso in fig. 10.11 e riportate in tabella 10.2.

Figura 9.11: Setti vincolati del piano terra, piano ammezzato, piano secondo e piano terzo

⁵² Circolare n.617 del 2/2/2009 – Tabella C8A.2.1 ⁵³ Ibid

				L	S	h	J	А	К	DIREZIONE
UNITA	PARETE			[m]	[m]	[m]	[m ⁴]	[m ²]	[N/m]	VINCOLO
		1	2	1.00	0.90	5.20	0.08	0.90	23229.72	Х
		-	37	1.00	0.90	5.20	0.08	0.90	23229.72	х
	0	2	3	7.72	0.60	11.10	23.00	4.63	527363.31	х
	0	2	38	7.72	0.60	11.10	23.00	4.63	527363.31	Х
		2	4	7.72	0.50	15.30	19.17	3.86	195965.12	х
		5	225	7.72	0.50	15.30	19.17	3.86	195965.12	х
		1	200	12.56	0.45	5.50	74.30	5.65	3529763.81	х
1	2	-	201	12.56	0.45	5.50	74.30	5.65	3529763.81	Х
1	2	2	203	12.56	0.45	9.60	74.30	5.65	1487541.59	х
			202	12.56	0.45	9.60	74.30	5.65	1487541.59	х
		2	48	9.00	0.45	11.10	27.34	4.05	565130.30	Y
	11		183	9.00	0.45	11.10	27.34	4.05	565130.30	Y
		2	49	9.00	0.45	15.30	27.34	4.05	261912.15	Y
		5	184	9.00	0.45	15.30	27.34	4.05	261912.15	Y
	27	2	52	6.70	0.45	11.10	11.28	3.02	279468.40	х
	27	2	184	6.70	0.45	11.10	11.28	3.02	279468.40	Х
		1	8	10.00	0.30	5.50	25.00	3.00	1701001.70	х
	2	-	12	10.00	0.30	5.50	25.00	3.00	1701001.70	х
	2	2	9	10.00	0.30	12.90	25.00	3.00	340116.62	х
2	2	5	13	10.00	0.30	12.90	25.00	3.00	340116.62	Х
2		2	3	20.00	0.80	5.50	533.33	16.00	11181643.47	Х
	5		52	20.00	0.80	5.50	533.33	16.00	11181643.47	Х
	5	2	4	20.00	0.60	9.60	400.00	12.00	4146762.21	Х
		5	53	20.00	0.60	9.60	400.00	12.00	4146762.21	Х

CAP 9 – ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

 Tabella 9.2:
 Valori di calcolo delle rigidezze da applicare ai nodi delle unità strutturali

I valori di rigidezza riportati in tabella sono stati inseriti nel modello diminuendoli di un ordine di grandezza, ad eccezione dei valori relativi alla parete 5 dell'unità strutturale minore, i quali sono stati diminuiti di due ordini di grandezza, in quanto apportavano dei valori di rigidezza troppo elevati.

Palazzo del Capitanio, unità strutturale 1

Il primo corpo analizzato è quello vincolato alla Torre dell'Orologio, definito da un sistema abbastanza regolare di pareti in muratura (definite in muratura di mattoni pieni e malta di calce⁵⁴) e travi in c.a. poste nell'aula del piano terra e primo.

Sono state apportate alcune modifiche al piano terra, dove sono state riportate sullo stesso asse le murature dello sgabuzzino e degli uffici, in quanto l'angolo di inclinazione minimo avrebbe impossibilitato il calcolo del modello globale.

Tutti i solai intermedi sono stati modellati in laterocemento, come definito precedentemente, mentre il sottotetto e la copertura sono in legno, con travetti affiancati e tavolato doppio.

Sono stati aggiunti dei carichi lineari per simulare il peso dei solai gravanti sulle murature dell'unità strutturale in questione, laddove si conosce il carico strutturale.

Ν° ΓΑΒΙΓΟ		τιρο	SOLAIO	G _K	G _{K,agg}	Q _K
N CARCO			JOLAIO	[kN/m]	[kN/m]	[kN/m]
1	1	LINEARE	VOLTA	4,00	2,20	2
2	1	LINEARE	LIGNEO	3,00	0,60	2
3	1	LINEARE	CIREX	4,15	1,80	2
4	2	LINEARE	LIGNEO	6,00	1,20	3
5	2	LINEARE	LIGNEO	3,50	0,90	2
6	3	LINEARE	LIGNEO	3,00	0,60	2

Figura 9.12: Vista assonometrica del modello completa e per livelli

⁵⁴ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, Tab C8B.1

9.6.1 Modello libero

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, nel quale l'unico vincolo è quello con le fondazioni.

Tale modello non rispecchia fedelmente il comportamento reale, ma risulta rappresentativo di un'analisi ideale del singolo edificio.

L'analisi è stata condotta rispetto al nodo N144, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del vano ascensore, situato nell'ala nord ovest del Palazzo.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

					SL	V			SLD			SLO			
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0,00	1,57	3,95	1,68	Sì	0,54	2,00	Sì	0,45	2,00	Sì	1,78	3,02
2	+X	1° modo	0,00	2,05	2,54	2,13	Sì	0,72	1,91	Sì	0,60	1,45	Sì	1,21	2,35
3	-X	Masse	0,00	1,33	3,87	1,41	Sì	0,47	2,75	Sì	0,39	2,50	Sì	2,12	4,40
4	-X	1° modo	0,00	1,86	2,75	1,84	Sì	0,65	1,47	Sì	0,55	1,47	Sì	1,39	2,03
5	+Y	Masse	0,00	1,08	2,71	1,35	Sì	0,37	1,87	Sì	0,30	1,87	Sì	1,94	3,65
6	+Y	1° modo	0,00	1,51	5,41	1,61	Sì	0,51	5,41	Sì	0,42	5,41	Sì	1,86	4,32
7	-Y	Masse	0,00	1,05	2,18	1,39	Sì	0,34	1,82	Sì	0,29	1,82	Sì	1,68	3,65
8	-Y	1° modo	0,00	1,33	3,84	1,48	Sì	0,45	2,46	Sì	0,37	2,46	Sì	2,02	4,02
9	+X	Masse	143,70	1,54	3,95	1,69	Sì	0,52	2,00	Sì	0,43	2,00	Sì	1,77	3,08
10	+X	Masse	-143,70	1,60	3,92	1,68	Sì	0,55	2,31	Sì	0,46	1,91	Sì	1,79	3,39
11	+X	1° modo	143,70	2,02	2,42	2,14	Sì	0,71	2,31	Sì	0,59	1,96	Sì	1,17	2,84
12	+X	1° modo	-143,70	2,09	2,86	2,16	Sì	0,74	1,54	Sì	0,61	1,17	Sì	1,32	1,90
13	-X	Masse	143,70	1,32	3,75	1,44	Sì	0,46	2,85	Sì	0,38	2,85	Sì	2,08	4,59
14	-X	Masse	-143,70	1,39	4,30	1,42	Sì	0,50	2,27	Sì	0,41	2,08	Sì	2,12	3,61
15	-X	1° modo	143,70	1,88	2,97	1,86	Sì	0,66	2,53	Sì	0,55	2,34	Sì	1,48	3,26
16	-X	1° modo	-143,70	1,81	2,19	1,87	Sì	0,62	1,67	Sì	0,52	1,38	Sì	1,17	2,33
17	+Y	Masse	170,60	1,17	2,64	1,39	Sì	0,40	1,83	Sì	0,33	1,83	Sì	1,81	3,41
18	+Y	Masse	-170,60	0,98	2,66	1,32	Sì	0,33	1,58	Sì	0,27	1,58	Sì	2,02	3,38
19	+Y	1° modo	170,60	1,62	5,18	1,69	Sì	0,55	5,18	Sì	0,46	5,18	Sì	1,77	4,11
20	+Y	1° modo	-170,60	1,31	5,92	1,50	Sì	0,44	4,35	Sì	0,36	4,35	Sì	2,00	4,65
21	-Y	Masse	170,60	1,15	2,16	1,44	Sì	0,38	1,84	Sì	0,32	1,84	Sì	1,57	3,48
22	-Y	Masse	-170,60	0,97	2,10	1,36	Sì	0,32	1,43	Sì	0,27	1,43	Sì	1,69	3,17
23	-Y	1° modo	170,60	1,42	3,15	1,57	Sì	0,48	2,28	Sì	0,40	2,28	Sì	1,87	3,61
24	-Y	1° modo	-170,60	1,24	3,26	1,45	Sì	0,42	1,96	Sì	0,35	1,96	Sì	2,08	3,46

 Tabella 9.3: Risultati dell'analisi push – over, Unità Strutturale 1

Le analisi più gravose risultano la 11 e la 21, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità +143,70, e in direzione - Y, con una forza sismica proporzionale alle masse e con un'eccentricità pari a +170,60.

l valori di α_u sono pari a 1,17 e 1,57: la struttura è in grado di sopportare una percentuale del 117% e del 157% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per tutti gli stati limite.

Figura 9.13: Curva di capacità dell'analisi più gravosa in direzione X, analisi 11

Nell'analisi 11 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce dell'ultimo piano del prospetto orientale e della facciata occidentale, nella porzione affacciantesi sulla terrazza, e il prospetto nord, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne maggiormente danneggiate risultano la 9 e la 24, con una percentuale di danneggiamento rispettivamente del 100% e del 32,26%.

Le pareti perpendicolari alla direzione del sisma non riportano un grave stato di danneggiamento. Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

					PGA _D (TR) [m/s ²]		TR _C		TR=cost	
	TR _C	TR _D	α_{TR}	[m/s ²]		F ₀ (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _C [m/s ²]	α_{PGA}
SLV	1235	712	1735.00	1.07	0.94	2.65	0.36	1.15	1.10	1.17
SLD	1119	75	5.13	1.04	0.42	2.66	0.35	2.48	1.19	2.84
SLO	737	45	4.69	0.90	0.35	2.66	0.35	2.56	1.09	3.14
Taballa	A. Taka	lla dain		a a la a la ti di	wanta Kanali					

 Tabella 9.4: Tabella dei parametri calcolati durante l'analisi 11

		PARAME	TRI DI ANA	LISI						
T*	M*	w	Г	F* _y	d _y *	d _u *				
[s]	[kg]	[kg]		[kN]	[cm]	[cm]				
0.36	0.36 2327407.24 4623704.08 1.35 3994.00 0.57 1.80									

 Tabella 9.5:
 Tabella dei parametri di analisi calcolati nell'analisi 11

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna prospiciente Piazza dei Signori presenta una distribuzione elevata e regolare di aperture: le fasce di piano sono la porzione maggiormente danneggiata, nella quale si raggiunge la rottura per trazione e per pressoflessione nell'ultimo livello, mentre nei maschi murari si manifesta un danneggiamento per pressoflessione soprattutto nell'ultimo livello.

Figura 9.14: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 25, 49

La parete 9 è composta da un sistema di travi e pilastri in c.a, mista a muratura in mattoni. Il primo livello è costituito da pilastri e travi in stato integro, mentre al secondo livello è presente una parete di muratura in falso, che allo stato ultimo è gravemente danneggiata per pressoflessione e rotta in fase elastica nei maschi murari, mentre a trazione nelle fasce di piano.

Figura 9.15: Individuazione parete 9, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 25, 49

La parete 14 è composta da travi in c.a e pareti in muratura di mattoni.

Il primo livello è costituito da pareti in stato integro, ad eccezione della parete su cui poggiano le travi, che appare rotta per pressoflessione.

In corrispondenza di un'apertura di ingenti dimensioni, la parete superiore del secondo livello risulta rotta in fase elastica, mentre le restanti pareti sono per lo più integre.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Figura 9.16: Individuazione parete 14, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 25, 49

L'analisi rivela uno stato generale di integrità per quanto riguarda i livelli inferiori, con rottura per trazione nelle fasce di piano, mentre l'ultimo livello denota uno stato di rottura per pressoflessione o in fase elastica negli interassi delle finestre, ed una fase plastica per pressoflessione nei maschi murari.

Figura 9.17: Stato di danneggiamento, sottopasso 1

Figura 9.18: Stato di danneggiamento, sottopasso 49

Analisi 21, direzione Y

Figura 9.19: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 21

Nell'analisi 21 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce del secondo e terzo livello del prospetto settentrionale ed alcune porzioni del prospetto orientale.

La parete più danneggiata risulta la 9, con un danneggiamento pari al 74%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale, ma il quadro complessivo non rivela grandi danneggiamenti.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

		TR _D		PGA _c (TR) [m/s ²]			TR _c		TR=cost	
	TR _C		α _{TR}		[m/s ²]	F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _c [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	0.94	1.36	2.61	0.37	1.45	1.47	1.57
SLD	2087	75	27.68	0.42	1.28	2.62	0.37	3.06	1.45	3.47
SLO	2087	45	46.13	0.35	1.28	2.62	0.37	3.69	1.54	4.45

 Tabella 9.6:
 Tabella dei parametri calcolati durante l'analisi 21

		PARAME	TRI DI ANAI	LISI								
T*	M* w F* _y d _y * d _u *											
[s]	[kg]	[kg]		[kN]	[cm]	[cm]						
0.26	2374529.92	4623704.08	1.41	6064.00	0.43	1.53						

Tabella 9.7: Tabella dei parametri di analisi calcolati nell'analisi 21

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- dy* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

Singolare è la parete esterna prospiciente Piazza dei Signori: la rottura (per pressoflessione e per taglio) si manifesta nel primo e secondo livello dell'edificio.

La parete denota uno stato plastico, in particolar modo nei maschi murari, mentre le fasce di piano risultano rotte per taglio.

Figura 9.20: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 19, 37.

La parete 9 è composta da un sistema di travi e pilastri in c.a, mista a muratura in mattoni.

Il primo livello è costituito da pilastri e travi in stato integro, mentre al secondo livello è presente una parete di muratura in falso, che allo stato ultimo è gravemente danneggiata: è rotta in fase elastica nei maschi murari e a trazione nelle fasce di piano, mentre risulta in stato plastico per pressoflessione il maschio murario più snello.

Figura 9.21: Individuazione parete 9, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 19, 37.

La parete 14 è composta da travi in c.a e pareti in muratura di mattoni.

Il primo livello è costituito da pareti in stato plastico per pressoflessione o per taglio, ad eccezione della parete su cui poggiano le travi, che appare in stato integro.

I maschi di maggiori dimensioni sono caratterizzati da uno stato plastico per taglio, sia al primo che al secondo livello, il quale risulta danneggiato in minor modo rispetto al piano inferiore.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Figura 9.22: Individuazione parete 14, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 19, 37.

L'analisi rivela uno stato generale plastico, per pressoflessione nei maschi murari più snelli e per taglio in quelli più tozzi.

Le fasce di piano risultano rotte per trazione ed alcune per pressoflessione.

Il primo e il terzo livello sono quelli maggiormente danneggiati, mentre il secondo appare integro o al più in stato plastico per pressoflessione.

Figura 9.23: Stato di danneggiamento, sottopasso 1

Figura 9.24: Stato di danneggiamento, sottopasso 37

9.6.2 Modello con vincoli rigidi

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono presenti vincoli rigidi, per simulare l'interazione di unità strutturali contigue, e vincoli di fondazione.

Tale modello non rispecchia fedelmente il comportamento reale, ma si accinge ad esserlo.

L'analisi è stata condotta rispetto al nodo N144, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del vano ascensore, situato nell'ala nord ovest del Palazzo.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

				SL	V			SLD		SLO					
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0,0	0,13	1,36	0,32	Sì	0,06	1,09	Sì	0,06	1,09	Sì	4,58	9,36
2	+X	1° modo	0,0	0,24	1,00	0,63	Sì	0,11	0,63	Sì	0,10	0,63	Sì	2,24	4,07
3	-X	Masse	0,0	0,12	1,17	0,35	Sì	0,05	0,73	Sì	0,05	0,73	Sì	4,24	7,84
4	-X	1° modo	0,0	0,18	1,09	0,67	Sì	0,08	0,60	Sì	0,08	0,60	Sì	2,54	4,27
5	+Y	Masse	0,0	0,56	2,58	0,51	Sì	0,24	2,50	Sì	0,20	2,50	Sì	3,08	7,37
6	+Y	1° modo	0,0	0,43	2,07	1,01	Sì	0,18	1,96	Sì	0,15	1,96	Sì	2,41	5,86
7	-Y	Masse	0,0	0,28	7,03	0,43	Sì	0,13	0,97	Sì	0,11	0,97	Sì	7,02	6,07
8	-Y	1° modo	0,0	0,31	6,31	0,76	Sì	0,14	0,57	Sì	0,11	0,57	Sì	3,95	3,44
9	+X	Masse	143,7	0,16	1,27	0,32	Sì	0,07	0,65	Sì	0,07	0,65	Sì	4,17	7,26
10	+X	Masse	-143,7	0,10	0,79	0,31	Sì	0,05	0,64	Sì	0,04	0,64	Sì	4,00	8,28
11	+X	1° modo	143,7	0,28	1,93	0,64	Sì	0,13	1,11	Sì	0,11	1,11	Sì	3,02	5,01
12	+X	1° modo	-143,7	0,19	0,91	0,61	Sì	0,09	0,53	Sì	0,08	0,53	Sì	2,38	4,23
13	-X	Masse	143,7	0,12	1,54	0,35	Sì	0,05	0,98	Sì	0,05	0,98	Sì	4,84	8,86
14	-X	Masse	-143,7	0,10	0,79	0,35	Sì	0,05	0,55	Sì	0,04	0,55	Sì	3,76	7,38
15	-X	1° modo	143,7	0,20	1,02	0,63	Sì	0,09	0,50	Sì	0,08	0,50	Sì	2,44	3,97
16	-X	1° modo	-143,7	0,17	0,77	0,66	Sì	0,08	0,48	Sì	0,07	0,48	Sì	2,19	4,01
17	+Y	Masse	170,6	1,12	6,15	0,46	Sì	0,48	5,48	Sì	0,40	5,48	Sì	4,14	9,38
18	+Y	Masse	-170,6	0,23	2,38	0,54	Sì	0,10	2,12	Sì	0,09	2,00	Sì	4,28	9,25
19	+Y	1° modo	170,6	1,20	2,85	0,82	Sì	0,52	2,50	Sì	0,43	2,50	Sì	2,33	4,28
20	+Y	1° modo	-170,6	0,29	2,04	0,92	Sì	0,13	1,89	Sì	0,11	1,89	Sì	2,94	6,79
21	-Y	Masse	170,6	0,39	1,75	0,36	Sì	0,17	1,38	Sì	0,14	1,32	Sì	3,39	7,21
22	-Y	Masse	-170,6	0,20	0,70	0,45	Sì	0,09	0,70	Sì	0,08	0,70	Sì	2,55	5,61
23	-Y	1° modo	170,6	0,36	1,74	0,69	Sì	0,15	0,93	Sì	0,13	0,88	Sì	2,60	4,41
24	-Y	1° modo	-170,6	0,26	13,40	0,85	Sì	0,12	0,37	Sì	0,10	0,37	Sì	3,53	2,76

Tabella 9.8: Risultati dell'analisi push – over, Unità Strutturale 1

Le analisi più gravose risultano la 16 e la 19, rispettivamente in direzione – X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità -143,70, e in direzione + Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità pari a +170,60. I valori di α_u sono pari a 2,19 e 1,94: la struttura è in grado di sopportare una percentuale del 219% e del 194% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per tutti gli stati limite.

Figura 9.25: Curva di capacità dell'analisi più gravosa in direzione X, analisi 16

Nell'analisi 16 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce dell'ultimo piano del prospetto orientale e della facciata occidentale, nella porzione affacciantesi sulla terrazza, e il prospetto nord, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne maggiormente danneggiate all'ultimo passo risultano la 9 e la 7, con una percentuale di danneggiamento rispettivamente del 100% e del 20,79%.

Le pareti perpendicolari alla direzione del sisma non riportano un grave stato di danneggiamento.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

					PGA _D (TR) [m/s ²]		TR _c		TR=cost	
	TR _C	TR _D	α_{TR}	$[m/s^2]$		F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _C [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	1.36	0.94	2.61	0.37	1.45	2.05	2.19
SLD	>2475	75	>33,00	1.36	0.42	2.61	0.37	3.25	1.67	4.08
SLO	>2475	45	>55,00	1.36	0.35	2.61	0.37	3.92	1.57	4.54

Tabella 9.9: Tabella dei parametri calcolati durante l'analisi 16

	PARAMETRI DI ANALISI												
T* M* w F*y dy* du*													
[s]	[kg]	[kg]	1	[kN]	[cm]	[cm]							
0.12	1258455.80	4613435.71	1.66	5661.00	0.16	0.47							

Tabella 9.10: Tabella dei parametri di analisi calcolati nell'analisi 16

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna del prospetto settentrionale presenta una distribuzione uniforme di aperture: le fasce di piano sono la porzione maggiormente danneggiata, nella quale si raggiunge la rottura per trazione e per pressoflessione nell'ultimo livello, mentre nei maschi murari si manifesta una rottura per pressoflessione nell'ultimo livello.

Figura 9.26: Individuazione parete 7, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 12, 25.

La parete 9 è composta da un sistema di travi e pilastri in c.a, mista a muratura in mattoni. Il primo livello è costituito da pilastri e travi in stato integro, mentre al secondo livello è presente una parete di muratura in falso, che allo stato ultimo è gravemente danneggiata: è rotta per pressoflessione e in fase elastica nei maschi murari, mentre a trazione nelle fasce di piano.

Figura 9.27: Individuazione parete 9, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 12, 25.

La parete 10 è composta da travi in c.a e pareti in muratura di mattoni.

Il primo e il secondo livello sono costituiti da pareti in stato integro, o al più da pannelli in stato plastico per pressoflessione.

L'ultimo livello invece è costituito da maschi murari in stato plastico per pressoflessione, fasce di piano rotte a trazione e porzioni di muratura, tra le aperture della terrazza, rotte per taglio e per pressoflessione. Laddove le forometrie si concludono in passaggi interni gli interassi delle aperture risultano in stato plastico per pressoflessione.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Figura 9.28: Individuazione parete 10, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 12, 25.

L'analisi rivela uno stato generale di integrità per quanto riguarda i livelli inferiori, con rottura per trazione nelle fasce di piano, mentre l'ultimo livello denota uno stato di rottura per pressoflessione negli interassi delle finestre della porzione nord occidentale.

Figura 9.29: Stato di danneggiamento, sottopasso 1

Figura 9.30: Stato di danneggiamento, sottopasso 25

Analisi 19, direzione Y

Figura 9.31: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 19

Nell'analisi 19 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce del secondo e terzo livello del prospetto settentrionale ed alcune porzioni del prospetto orientale.

Le pareti interessate dell'azione del sisma sono in direzione parallela alla direzione della forza orizzontale, mentre le pareti in direzione perpendicolare non subiscono danneggiamenti di grande entità. Le pareti interne maggiormente danneggiate all'ultimo passo risultano la 9 e la 7, con una percentuale di danneggiamento rispettivamente del 100% e del 20,79%.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

							TR _C		TR=cost	
	TR _C	TR _D	α _{TR}	[m/s ²]	$[m/s^2]$	F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _c [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	1.36	0.94	2.61	0.37	1.45	1.81	1.94
SLD	>2475	75	> 33,00	1.36	0.42	2.61	0.37	3.25	1.79	4.28
SLO	>2475	45	> 55,00	1.36	0.35	2.61	0.37	3.92	3.92	5.36

Tabella 9.11: Tabella dei parametri calcolati durante l'analisi 19

		PARAME	TRI DI ANAI	LISI		
T*	M*	w		F* _y	d _v *	d _u *
[s]	[kg]	[kg]		[kN]	[cm]	[cm]
0.32	1803748.24	4613435.71	1.25	8115.00	1.17	2.28

Tabella 9.12: Tabella dei parametri di analisi calcolati nell'analisi 19

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete 5 è composta da un sistema di travi in c.a mista a muratura in mattoni.

Il primo e il secondo livello risultano integri o plastici per pressoflessione, mentre il terzo livello è caratterizzato da maschi murari rotti per pressoflessione, con fasce di piano rotte per trazione.

Figura 9.32: Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 23, 46.

La parete 9 è composta da un sistema di travi e pilastri in c.a, mista a muratura in mattoni. Il primo livello è costituito da pilastri e travi in stato integro, mentre al secondo livello è presente una parete di muratura in falso, che allo stato ultimo è gravemente danneggiata: è rotta in fase elastica e per pressoflessione nei maschi murari e a trazione nelle fasce di piano.

Figura 9.33: Individuazione parete 9, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 23, 46

La parete 10 è composta da un sistema di travi e pilastri in c.a, e pareti in muratura di mattoni. Il primo e il secondo livello sono costituiti da pareti in stato integro, o al più da pannelli in stato plastico per pressoflessione.

L'ultimo livello invece è costituito da maschi murari in stato plastico per pressoflessione, fasce di piano rotte a trazione e porzioni di muratura, tra le aperture della terrazza, in stato integro Laddove le forometrie si concludono in passaggi interni gli interassi delle aperture risultano in stato plastico per pressoflessione.

Figura 9.34: Individuazione parete 10, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 23, 46.

L'analisi rivela uno stato generale plastico, per pressoflessione nei maschi murari più snelli e per taglio in quelli più tozzi.

Le fasce di piano risultano rotte per trazione ed alcune per pressoflessione.

Il primo e il terzo livello sono quelli maggiormente danneggiati, mentre il secondo appare integro o al più in stato plastico per pressoflessione.

Figura 9.35: Stato di danneggiamento, sottopasso 1

Figura 9.36: Stato di danneggiamento, sottopasso 46

9.6.3 Modello con vincoli cedevoli elasticamente

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono presenti vincoli elastici, per simulare l'interazione di unità strutturali contigue, e vincoli di fondazione.

Tale modello rispecchia in maggior modo il comportamento reale dell'aggregato.

L'analisi è stata condotta rispetto al nodo N144, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del vano ascensore, situato nell'ala nord ovest del Palazzo.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

					SĽ	V			SLD		SLO				
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0,0	0,40	1,16	0,46	Sì	0,17	0,95	Sì	0,14	0,75	Sì	2,46	5,29
2	+X	1° modo	0,0	0,58	0,98	0,79	Sì	0,25	0,87	Sì	0,21	0,67	Sì	1,45	3,22
3	-X	Masse	0,0	0,29	1,30	0,52	Sì	0,12	0,82	Sì	0,10	0,82	Sì	2,77	5,18
4	-X	1° modo	0,0	0,42	1,24	0,90	Sì	0,18	0,93	Sì	0,15	0,74	Sì	1,83	3,73
5	+Y	Masse	0,0	0,58	4,45	0,66	Sì	0,25	4,45	Sì	0,21	4,45	Sì	4,15	10,58
6	+Y	1° modo	0,0	1,22	3,40	0,85	Sì	0,53	3,30	Sì	0,44	3,30	Sì	1,85	5,27
7	-Y	Masse	0,0	0,28	7,03	0,43	Sì	0,13	0,97	Sì	0,11	0,97	Sì	7,02	6,07
8	-Y	1° modo	0,0	0,52	7,67	0,80	Sì	0,23	1,56	Sì	0,19	1,56	Sì	3,76	4,78
9	+X	Masse	143,7	0,35	0,97	0,47	Sì	0,15	0,97	Sì	0,13	0,97	Sì	2,35	5,53
10	+X	Masse	-143,7	0,36	3,40	0,67	Sì	0,16	0,78	Sì	0,13	0,66	Sì	4,28	4,09
11	+X	1° modo	143,7	0,52	1, 2 6	0,80	Sì	0,22	0,93	Sì	0,19	0,93	Sì	1,75	3,52
12	+X	1° modo	-143,7	0,59	0,88	0,97	Sì	0,25	0,68	Sì	0,21	0,56	Sì	1,24	2,54
13	-X	Masse	143,7	0,32	1,39	0,45	Sì	0,14	0,93	Sì	0,12	0,93	Sì	2,91	5,72
14	-X	Masse	-143,7	0,30	1,12	0,58	Sì	0,13	0,91	Sì	0,11	0,66	Sì	2,38	5,09
15	-X	1° modo	143,7	0,42	1,49	0,83	Sì	0,18	0,85	Sì	0,15	0,85	Sì	2,10	3,63
16	-X	1° modo	-143,7	0,43	1,02	0,98	Sì	0,19	0,79	Sì	0,16	0,60	Sì	1,53	3,19
17	+Y	Masse	170,6	0,64	3,90	0,71	Sì	0,28	4,00	Sì	0,23	4,00	Sì	3,51	9,09
18	+Y	Masse	-170,6	0,58	5,39	0,59	Sì	0,25	5,56	Sì	0,21	5,56	Sì	4,94	11,88
19	+Y	1° modo	170,6	1,46	4,79	0,85	Sì	0,63	4,39	Sì	0,52	4,39	Sì	2,60	6,06
20	+Y	1° modo	-170,6	0,64	2,47	0,96	Sì	0,28	2,36	Sì	0,23	2,22	Sì	2,31	5,60
21	-Y	Masse	170,6	0,57	2,25	0,66	Sì	0,25	1,81	Sì	0,20	1,81	Sì	2,55	5,41
22	-Y	Masse	-170,6	0,47	2,11	0,52	Sì	0,20	1,83	Sì	0,17	1,60	Sì	2,91	6,50
23	-Y	1° modo	170,6	0,67	4,22	0,72	Sì	0,29	1,95	Sì	0,24	1,95	Sì	3,63	5,09
24	-Y	1° modo	-170,6	0,45	13,26	0,85	Sì	0,19	0,72	Sì	0,16	0,72	Sì	3,53	3,16

Tabella 9.13: Risultati dell'analisi push – over, Unità Strutturale 1

Le analisi più gravose risultano la 6 e la 12, rispettivamente in direzione +Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità nulla, e in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità pari a – 143,70.

l valori di α_u sono pari a 2,41 e 2,38: la struttura è in grado di sopportare una percentuale del 241% e del 238% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per tutti gli stati limite.

Analisi 6, direzione Y

Figura 9.37: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 6

Nell'analisi 6 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce del secondo e terzo livello del prospetto settentrionale, e in generale le porzioni che si affacciano sul cortile occidentale.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

					PGA _D (TR) [m/s ²]		TR _c		TR=cost	
	TR _C	TR _D	α_{TR}	[m/s ²]		F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _c [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	0.94	1.36	2.61	0.37	1.45	1.99	2.84
SLD	>2475	75	> 33,00	0.42	1.36	2.61	0.37	3.25	2.20	5.28
SLO	>2475	45	> 55,00	0.35	1.36	2.61	0.37	3.92	2.33	6.73

Tabella 9.14: Tabella dei parametri calcolati durante l'analisi 6

		PARAME	TRI DI ANAI	ISI	PARAMETRI DI ANALISI												
Т*	M*	w	F	F* _y	d _y *	d _u *											
[s]	[kg]	[kg]		[kN]	[cm]	[cm]											
0.32	1717984.28	4613611.24	1.27	9252.43	0.67	2.47											

Tabella 9.15: Tabella dei parametri di analisi calcolati nell'analisi 6

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_v* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna del prospetto settentrionale presenta una distribuzione uniforme di aperture: le fasce di piano sono la porzione maggiormente danneggiata, nella quale si raggiunge la rottura per trazione già al primo passo e per pressoflessione nell'ultimo livello, mentre nei maschi murari si manifesta una rottura per pressoflessione nell'ultimo livello.

Figura 9.38: Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 28, 57.

La parete 9 è composta da un sistema di travi e pilastri in c.a, mista a muratura in mattoni.

Il primo livello è costituito da pilastri e travi in stato integro, mentre al secondo livello è presente una parete di muratura in falso, che allo stato ultimo è gravemente danneggiata: è rotta in fase elastica e per pressoflessione nei maschi murari e a trazione nelle fasce di piano.

Figura 9.39: Individuazione parete 9, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 28, 57

La parete 14 è composta da un sistema di travi in c.a, e pareti in muratura di mattoni.

Il primo livello è costituito da pareti in stato integro, o al più da un setto in stato plastico per pressoflessione.

L'ultimo livello invece è costituito da maschi murari in stato integro e da un setto rotto in fase elastica, fasce di piano rotte a trazione e porzioni di muratura sopra le aperture in stato plastico per pressoflessione o rotte in fase elastica.

Figura 9.40: Individuazione parete 14, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 28, 57.

L'analisi rivela uno stato generale plastico per pressoflessione nei maschi murari del primo e secondo livello, che giungono a rottura per pressoflessione al terzo livello, in particolare lungo il lato nord ovest della struttura.

Le fasce di piano e gli interassi tra le aperture risultano rotte per trazione ed alcune in fase elastica.

Il primo e il terzo livello sono quelli maggiormente danneggiati, mentre il secondo appare integro o al più in stato plastico per pressoflessione.

Figura 9.41: Stato di danneggiamento, sottopasso 1

Figura 9.42: Stato di danneggiamento, sottopasso 57

Analisi 12, direzione X

Figura 9.43: Curva di capacità dell'analisi più gravosa in direzione X, analisi 12

Nell'analisi 12 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce dell'ultimo piano del prospetto orientale e della facciata occidentale, nella porzione affacciantesi sulla terrazza, e il prospetto nord, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne maggiormente danneggiate all'ultimo passo risultano la 9 e la 15, con una percentuale di danneggiamento rispettivamente del 74,01% e del 24,77%.

Le pareti perpendicolari alla direzione del sisma non riportano un grave stato di danneggiamento.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

							TR _c	TR=cost		
	TR _C TR _D o	α_{TR}	$PGA_{C}(TR)$ [m/s ²]	$[m/s^2]$ $[m/s^2]$	F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _c	α_{PGA}	
							_		[m/s²]	
SLV	1922	712	2.142	1.15	0.94	2.64	0.36	1.23	1.16	1.47
SLD	1009	75	13.45	1.00	0.42	2.66	0.35	2.40	1.06	2.54
SLO	698	45	15.511	0.88	0.35	2.66	0.35	2.55	0.92	2.67

Tabella 9.16: Tabella dei parametri calcolati durante l'analisi 12

	PARAMETRI DI ANALISI												
T* M* w _r F* _y d _y * d _u *													
[s]	[kg]	[kg]	I	[kN]	[cm]	[cm]							
0.24	1957529.78	4613611.24	1.14	7426.00	0.53	0.77							

 Tabella 9.17: Tabella dei parametri di analisi calcolati nell'analisi 12

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

Il prospetto orientale presente un elevata presenza di aperture con distribuzione regolare, nel quale si identificano maschi murari in stato integro o al più plastico per pressoflessione, nei primi due livelli, e fasce di piano rotte a trazione.

Il terzo livello invece è costituito da maschi murari rotti a pressoflessione e fasce di piano plastiche per taglio.

Figura 9.44: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 7,13.

La parete 9 è composta da un sistema di travi e pilastri in c.a, mista a muratura in mattoni. Il primo livello è costituito da pilastri e travi in stato integro, mentre al secondo livello è presente una parete di muratura in falso, che allo stato ultimo è gravemente danneggiata: è rotta in fase elastica nel maschio murario più tozzo e a trazione nelle fasce di piano.

Figura 9.45: Individuazione parete 9, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 7, 13.

La parete 15 è composta da maschi murari tozzi, una grande apertura al primo livello ed una piccola apertura al terzo livello.

Il primo e il secondo livello sono costituiti da pareti in stato integro, mentre l'ultimo livello è costituito da maschi murari in stato plastico per taglio e per pressoflessione, e da fasce di piano rotte a trazione.

Figura 9.46: Individuazione parete 15, legenda del grado di dai danneggiamento della parete, sottopasso 1, 7, 13.

L'analisi rivela uno stato generale di integrità per quanto riguarda i livelli inferiori, con rottura per trazione nelle fasce di piano, mentre l'ultimo livello denota uno stato di rottura per pressoflessione nei maschi murari del lato orientale.

Figura 9.47: Stato di danneggiamento, sottopasso 1

Figura 9.48: Stato di danneggiamento, sottopasso 13

Palazzo del Capitanio, unità strutturale 2

Il secondo corpo analizzato è quello posto sopra alle poste ed all'attuale centro direzionale dell'APS, definito da un sistema regolare di pareti in muratura (definite in muratura di mattoni pieni e malta di calce⁵⁵), pilastri e travi in c.a. posti nell'ala occidentale del piano terra e primo.

Sono state apportate alcune modifiche al piano terra: sono state riportate sullo stesso asse le murature di confine delle poste e degli uffici dell'APS, in quanto l'angolo di inclinazione minimo avrebbe impossibilitato il calcolo del modello globale.

I solai intermedi sono stati modellati in laterocemento e in legno, come definito precedentemente, mentre il sottotetto e la copertura sono in legno, con travetti affiancati e tavolato doppio.

Per questa unità sono stati definiti due modelli, in quanto le informazioni reperite relative ai solai riguardano esclusivamente il primo orizzontamento: nell'ipotesi di un intervento unitario per unità strutturale si suppone che i solai lignei siano stati sostituiti con quelli *Cirex* lungo tutto il vano delle poste, ma il sopralluogo ha dato adito alla supposizione che i solai superiori siano tutt'ora lignei. Il primo modello esaminato è costituito da solai in laterocemento, mentre il secondo prevede solo il

primo livello in laterocemento.

Figura 9.49: Vista assonometrica dei modelli completa e per livelli

⁵⁵ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, Tab C8B.1

Svolte le analisi con entrambi i modelli sono stati ottenuti risultati concordi: le analisi in direzione x variavano di un fattore massimo 0,2, mentre le analisi in direzione y risultavano identiche, con una variazione massima di un fattore 0,05.

E' stato scelto quindi un solo modello di calcolo, prediligendo quello con solai in legno: l'ipotesi di persistenza di tali solai risulta più accreditata rispetto a quella della sostituzione totale, e i risultati dei modelli lignei risultano più penalizzanti rispetto a quelli in laterocemento.

Sono stati aggiunti dei carichi lineari per simulare il peso dei solai gravanti sulle murature dell'unità strutturale in questione, laddove si conosce il carico strutturale.

N° CARICO		τιρο	SOLAIO	G _κ	$G_{K,agg}$	Q _K
			502.00	[kN/m]	[kN/m]	[kN/m]
1	2	LINEARE	LATEROCEMENTO	11,00	4,00	3
2	3	LINEARE	LATEROCEMENTO	11,00	4,00	2

Figura 9.50: Vista assonometrica del modello completa e per livelli

9.7.1 Modello libero

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, nel quale l'unico vincolo è quello con le fondazioni.

Tale modello non rispecchia fedelmente il comportamento reale, ma risulta rappresentativo di un'analisi ideale del singolo edificio.

L'analisi è stata condotta rispetto al nodo N27, polo situato al quarto livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del telaio in c.a. utilizzato al piano terra nel vano delle poste.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

					SL	V			SLD		SLO				
Ν.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0,0	2,59	2,40	3,66	No	0,96	1,75	Sì	0,76	1,75	Sì	0,82	1,77
2	+X	1° modo	0,0	3,64	3,24	3,97	No	1,36	2,01	Sì	1,01	2,01	Sì	0,76	1,48
3	-X	Masse	0,0	2,09	2,01	3,26	No	0,72	1,93	Sì	0,57	1,93	Sì	0,92	2,14
4	-X	1° modo	0,0	2,71	3,59	3,64	No	1,02	2,19	Sì	0,79	2,19	Sì	0,82	1,91
5	+Y	Masse	0,0	0,35	1,03	0,77	Sì	0,16	0,86	Sì	0,13	0,86	Sì	1,77	3,65
6	+Y	1° modo	0,0	0,93	2,05	1,54	Sì	0,25	0,70	Sì	0,21	0,70	Sì	1,70	2,06
7	-Y	Masse	0,0	0,37	3,60	0,64	Sì	0,17	1,83	Sì	0,14	1,83	Sì	4,02	6,04
8	-Y	1° modo	0,0	0,81	3,20	1,21	Sì	0,27	1,67	Sì	0,23	1,67	Sì	2,44	3,78
9	+X	Masse	136,5	2,44	1,80	3,71	No	0,89	1,72	Sì	0,70	1,72	Sì	0,76	1,85
10	+X	Masse	-136,5	2,46	2,33	3,78	No	0,90	1,62	Sì	0,71	1,62	Sì	0,79	1,73
11	+X	1° modo	136,5	3,42	3,31	4,14	No	1,28	1,79	Sì	0,95	1,79	Sì	0,73	1,40
12	+X	1° modo	-136,5	3,79	4,19	3,94	No	1,41	2,23	Sì	1,05	2,23	Sì	0,76	1,58
13	-X	Masse	136,5	1,99	1,98	3,27	No	0,68	1,74	Sì	0,52	1,74	Sì	0,92	2,13
14	-X	Masse	-136,5	2,19	2,13	3,31	No	0,77	2,13	Sì	0,61	2,13	Sì	0,91	2,11
15	-X	1° modo	136,5	2,55	3,78	3,66	No	0,95	1,82	Sì	0,75	1,82	Sì	0,82	1,86
16	-X	1° modo	-136,5	2,87	1,88	3,63	No	1,10	1,74	Sì	0,83	1,74	Sì	0,67	1,57
17	+Y	Masse	71,2	0,40	3,72	0,84	Sì	0,18	3,72	Sì	0,15	3,72	Sì	3,58	8,01
18	+Y	Masse	-71,2	0,30	0,97	0,76	Sì	0,14	0,54	Sì	0,12	0,54	Sì	1,84	3,17
19	+Y	1° modo	71,2	1,09	2,02	1,73	Sì	0,28	0,63	Sì	0,23	0,63	Sì	1,55	1,74
20	+Y	1° modo	-71,2	0,85	1,71	1,45	Sì	0,23	0,58	Sì	0,19	0,58	Sì	1,56	1,95
21	-Y	Masse	71,2	0,43	3,34	0,71	Sì	0,19	1,81	Sì	0,16	1,81	Sì	3,42	5,54
22	-Y	Masse	-71,2	0,34	3,48	0,57	Sì	0,16	1,79	Sì	0,13	1,79	Sì	4,21	6,31
23	-Y	1° modo	71,2	0,99	3,52	1,32	Sì	0,31	1,67	Sì	0,26	1,67	Sì	2,27	3,44
24	-Y	1° modo	-71,2	0,70	3,52	1,12	Sì	0,25	1,82	Sì	0,21	1,82	Sì	2,67	4,25

Tabella 9.18: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 16 e la 19, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità -137, e in direzione + Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità pari a +71,2.

I valori di α_u sono pari a 0,67 e 1,55: la struttura è in grado di sopportare una percentuale di 67% e 155% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni.

Per l'analisi 16 la verifica non risulta soddisfatta allo SLV, mentre per l'analisi 19 la verifica risulta soddisfatta per tutti gli stati limite.

Analisi 16, direzione X

Figura 9.51: Curva di capacità dell'analisi più gravosa in direzione X, analisi 16

Nell'analisi 16 lo spostamento richiesto dalla normativa risulta essere maggiore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce dell'ultimo piano del prospetto orientale e della facciata occidentale, nella porzione affacciantesi sulla terrazza, e il prospetto nord, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne maggiormente danneggiate all'ultimo passo risultano la 1 e la 10, con una percentuale di danneggiamento rispettivamente del 3,17% e del 6,88%.

Le pareti perpendicolari alla direzione del sisma non riportano un grave stato di danneggiamento.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

									TR=cost		
	TR _C	TR _D	α_{TR}	$[m/s^2]$	PGA _D (TR) [m/s ²]	F ₀ (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _c [m/s ²]	α_{PGA}	
SLV	275	712	0.39	0.94	0.64	2.62	0.33	0.69	0.63	0.67	
SLD	235	75	3.13	0.42	0.61	2.55	0.31	1.46	0.65	1.57	
SLO	235	45	5.22	0.35	0.61	2.55	0.31	0.32	0.73	2.11	

Tabella 9.19: Tabella dei parai	netri calcolati durante l'analisi 16
---------------------------------	--------------------------------------

				PARAMETR	I DI ANALIS	51		
T* [s]	M*	[kg]	w	[kg]	Г	F* _y [kN]	d _y * [cm]	d _u * [cm]
0.44	487	012.50	92	28465.50	1.40	492.86	0.50	1.34

Tabella 9.20: Tabella dei parametri di analisi calcolati nell'analisi 16

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione ed in minor nodo per pressoflessione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato per pressoflessione.

Figura 9.52: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 13, 24

La parete 10 è caratterizzata da un sistema di travi e pilastri in c.a. e un setto in muratura, il primo e il secondo livello sono privi di fonometrie, mentre il terzo ha un'apertura centrale.

Il primo e il secondo livello sono in stato plastico per taglio, mentre il terzo livello rivela uno stato plastico per pressoflessione nei maschi murari e rottura per trazione e pressoflessione nelle fasce di piano.

Figura 9.53: Individuazione parete 10, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 13, 24

La parete 13 presenta un livello al primo piano, costituita da un sistema di travi e pilastri, ed un livello al secondo piano in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

Il maschio murario risulta plastico a pressoflessione, il pilastro è in stato integro, mentre la fascia di piano è rotta per trazione.

Figura 9.54: Individuazione parete 13, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 13, 24

L'analisi rivela uno stato generale di integrità per quanto riguarda i livelli inferiori, con rottura per trazione nelle fasce di piano e stato plastico per taglio nei pannelli privi di aperture, mentre il terzo livello denota a fascia muraria rotta per trazione.

Figura 9.55: Stato di danneggiamento, sottopasso 1

Figura 9.56: Stato di danneggiamento, sottopasso 24

Figura 9.57: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 19

Nell'analisi 19 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del secondo e terzo livello della facciata occidentale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 12 e la 13, con una percentuale di danneggiamento rispettivamente del 23,09% e del 95,31%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale, in particolar modo si nota la rottura per pressoflessione di pareti dotate di scarso spessore.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

									TR=cost		
	TR _C	TR _D	α _{TR}	$[m/s^2]$	PGA _C (TR) [m/s ²]	F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _C [m/s ²]	α_{PGA}	
SLV	>2475	712	>3,476	0.94	1.45	2.61	0.37	1.45	1.45	1.55	
SLD	333	75	4.44	0.42	0.73	2.63	0.33	1.64	0.73	1.75	
SLO	333	45	7.40	0.35	0.75	2.63	0.33	1.98	0.75	2.16	

Tabella 9.21: Tabella dei parametri calcolati durante l'analisi 19

	PARAMETRI DI ANALISI												
Т*	M*		-	F* _y	d _y *	d _u *							
[s]	[kg]	w [kg]	I	[kN]	[cm]	[cm]							
0.20	277111.11	928465.50	1.73	589.95	0.22	1.16							

Tabella 9.22: Tabella dei parametri di analisi calcolati nell'analisi 19

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione del lato destro, giunto a rottura.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Figura 9.58: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 9, 18

La parete che divide le poste dagli uffici APS è caratterizzata da i primi livelli integri, mentre il livello terzo e quarto presentano maschi murari plastici per pressoflessione e fasce di piano rotte per trazione.

Figura 9.59: Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 9, 18

La parete 13 presenta un livello al primo piano, costituita da un sistema di travi e pilastri, ed un livello al secondo piano in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

Il maschio murario risulta plastico a pressoflessione, il pilastro è in stato integro, mentre la fascia di piano è rotta per trazione.

Figura 9.60: Individuazione parete 13, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 9, 18

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione o in fase elastica nelle fasce di piano e stato plastico o di rottura per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti in direzione x poste nel lato occidentale del palazzo.

Figura 9.61: Stato di danneggiamento, sottopasso 1

Figura 9.62: Stato di danneggiamento, sottopasso 18

9.7.2 Modello con vincoli rigidi

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono presenti vincoli rigidi, per simulare l'interazione di unità strutturali contigue, e vincoli di fondazione.

Tale modello non rispecchia fedelmente il comportamento reale, ma si accinge ad esserlo.

L'analisi è stata condotta rispetto al nodo N27, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del telaio in c.a. utilizzato al piano terra nel vano delle poste.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

					SL	V			SLD			SLO			
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0.00	0,33	0,64	0,91	Sì	0,14	0,64	Sì	0,12	0,64	Sì	1,43	3,43
2	+X	1° modo	0.00	0,60	0,68	1,30	Sì	0,20	0,68	Sì	0,17	0,68	Sì	1,08	2,62
3	-X	Masse	0.00	0,34	0,74	0,88	Sì	0,15	0,57	Sì	0,12	0,57	Sì	1,55	3,19
4	-X	1° modo	0.00	0,57	1,67	1,01	Sì	0,24	1,07	Sì	0,20	1,00	Sì	1,99	3,52
5	+Y	Masse	0.00	0,27	0,92	0,78	Sì	0,12	0,44	Sì	0,11	0,44	Sì	1,84	2,99
6	+Y	1° modo	0.00	0,80	2,23	1,42	Sì	0,22	0,99	Sì	0,18	0,99	Sì	1,95	2,77
7	-Y	Masse	0.00	0,30	1,74	0,58	Sì	0,14	0,96	Sì	0,12	0,96	Sì	2,83	4,71
8	-Y	1° modo	0.00	0,68	3,20	1,16	Sì	0,23	3,20	Sì	0,19	3,20	Sì	2,60	6,03
9	+X	Masse	136.50	0,37	0,62	0,98	Sì	0,16	0,62	Sì	0,13	0,62	Sì	1,28	3,08
10	+X	Masse	-136.50	0,31	0,70	1,18	Sì	0,10	0,31	Sì	0,08	0,31	Sì	1,54	2,40
11	+X	1° modo	136.50	0,64	1,15	1,05	Sì	0,26	1,19	Sì	0,22	1,19	Sì	1,44	3,60
12	+X	1° modo	-136.50	0.61	1.28	1.75	Sì	0.17	0.48	Sì	0.14	0.28	Sì	1.93	4.27
13	-X	Masse	136.50	0,40	0,87	0,95	Sì	0,17	0,75	Sì	0,14	0,75	Sì	1,54	3,40
14	-X	Masse	-136.50	0,32	0,72	0,77	Sì	0,14	0,66	Sì	0,12	0,66	Sì	1,66	3,78
15	-X	1° modo	136.50	0,68	1,10	1,10	Sì	0,27	0,78	Sì	0,23	0,70	Sì	1,35	2,58
16	-X	1° modo	-136.50	0,56	0,92	1,32	Sì	0,18	0,57	Sì	0,15	0,57	Sì	1,37	2,46
17	+Y	Masse	71.20	0,30	2,26	0,82	Sì	0,14	0,71	Sì	0,12	0,71	Sì	2,95	3,40
18	+Y	Masse	-71.20	0,25	0,94	0,68	Sì	0,12	0,85	Sì	0,11	0,85	Sì	2,03	4,36
19	+Y	1° modo	71.20	0,97	3,31	1,46	Sì	0,28	3,26	Sì	0,23	3,26	Sì	2,06	4,78
20	+Y	1° modo	-71.20	0,74	2,58	1,35	Sì	0,21	2,28	Sì	0,17	2,28	Sì	2,21	5,14
21	-Y	Masse	71.20	0,33	3,22	0,63	Sì	0,15	3,22	Sì	0,13	3,22	Sì	3,93	9,25
22	-Y	Masse	-71.20	0,29	3,40	0,52	Sì	0,13	3,40	Sì	0,12	3,40	Sì	4,58	10,77
23	-Y	1° modo	71.20	0,81	3,41	1,25	Sì	0,26	3,14	Sì	0,22	3,14	Sì	2,39	5,56
24	-Y	1° modo	-71.20	0,58	3,32	1,05	Sì	0,23	3,32	Sì	0,19	3,32	Sì	2,79	6,62

 Tabella 9.23: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 2 e la 5, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità -136,50, e in direzione + Y, con una forza sismica proporzionale alle masse.

I valori di α_u sono pari a 1,08 e 1,84: la struttura è in grado di sopportare una percentuale del 108% e del 184% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per tutti gli stati limite.

Analisi 2, direzione X

Figura 9.63: Curva di capacità dell'analisi più gravosa in direzione X, analisi 2

Nell'analisi 2 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del terzo livello della facciata occidentale, che si rompono in un setto per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 13, con una percentuale di danneggiamento rispettivamente del 1,35% e del 4,00%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Le pareti perpendicolari alla direzione del sisma non riportano un grave stato di danneggiamento.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

						TRC	2		TR=cost		
	TR _C	TR _D α	α_{TR}	$[m/s^2]$	PGA _D (TR) [m/s ²]	F ₀ (TR)	T _C *(TR)	α _{PGA} (TR)	PGA _C [m/s ²]	α_{PGA}	
SLV	993	712	1.40	0.94	0.60	2.66	0.35	1.06	1.01	1.08	
SLD	993	75	13.24	0.42	0.60	2.66	0.35	2.39	1.09	2.62	
SLO	993	45	22.07	0.35	0.60	2.66	0.35	2.88	1.13	3.27	

Tabella 9.24: Tabella dei parametri calcolati durante l'analisi 2

	PARAMETRI DI ANALISI												
T*	T* M* w F [*] _y d _y * d _u *												
[s]	[kg]	[kg]		[kN]	[cm]	[cm]							
0.24 596408.83 930774.95 0.87 1680.00 0.41 0.78													

Tabella 9.25: Tabella dei parametri di analisi calcolati nell'analisi 2Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e gli interasse delle forometrie risultano in stato integro o plastico per pressoflessione.

Figura 9.64: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 5, 10

La parete 10 è caratterizzata da un sistema di travi e pilastri in c.a. e un setto in muratura, il primo e il secondo livello sono privi di fonometrie, mentre il terzo ha un'apertura centrale.

Il primo livello è in stato plastico per taglio, lo stato di danneggiamento del secondo livello è nullo, mentre il terzo livello rivela uno stato plastico per pressoflessione nei maschi murari e rottura per trazione nelle fasce di piano.

Figura 9.65: Individuazione parete 10 legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 5, 10

La parete 13 presenta un livello al primo piano, costituita da un sistema di travi e pilastri, ed un livello al secondo piano in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

Il maschio murario risulta plastico a pressoflessione, il pilastro è in stato integro, mentre la fascia di piano è rotta per trazione.

Figura 9.66: Individuazione parete 13, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 5, 10

L'analisi rivela uno stato generale di integrità per quanto riguarda i setti privi di aperture, ad eccezione di una parete in stato plastico per taglio, rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari.

Figura 9.67: Stato di danneggiamento, sottopasso 1

Figura 9.68: Stato di danneggiamento, sottopasso 10

Analisi 6, direzione Y

Figura 9.69: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 6

Nell'analisi 6 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del quarto livello e la facciata orientale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 3, con una percentuale di danneggiamento rispettivamente del 4,97% e del 9,88%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

						TRC	2		TR=cost		
	TR _C	TR _D	α _{TR}	$[m/s^2]$	PGA _c (TR) [m/s²]	F ₀ (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _c [m/s²]	α_{PGA}	
SLV	>2475	712	>3,476	0.94	1.36	2.61	0.37	1.45	1.72	1.84	
SLD	2383	75	31,77	0.42	1.36	2.63	0.37	3.21	1.25	2.99	
SLO	2383	45	52,96	0.35	1.36	2.63	0.37	3.87	1.19	3.43	

Tabella 9.26: Tabella dei parametri calcolati durante l'analisi 19

	PARAMETRI DI ANALISI											
T*	M*	w	F	F* _y	d _y *	d _u *						
[s]	[kg]	[kg]	1	[kN]	[cm]	[cm]						
0.14	271231.29	930774.95	1.77	1121.93	0.19	0.52						

Tabella 9.27: Tabella dei parametri di analisi calcolati nell'analisi 19

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,

- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione del lato destro, giunto a rottura.

Da evidenziare che il maschio murario più snello, vincolato a sinistra con l'edificio del Monte di Pietà, risulta in stato integro per quanto riguarda i primi due livelli, per giungere ad uno stato plastico per pressoflessione al terzo livello.

Figura 9.70: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 5, 10

La parete 3 divide le poste dall'unità strutturale maggiore, con la quale è vincolata al secondo, terzo e quarto livello. E' caratterizzata da i primi due livelli integri, mentre il livello terzo e quarto presentano maschi murari in stato plastico pressoflessione e fasce di piano rotte per trazione.

Figura 9.71: Individuazione parete 3, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 5, 10

La parete che divide le poste dagli uffici APS è caratterizzata da i primi livelli integri, mentre il livello terzo e quarto presentano maschi murari plastici fino a rottura per pressoflessione e fasce di piano rotte per trazione e pressoflessione.

LEGENDA

Figura 9.72: Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 5, 10

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti in direzione x poste nel lato occidentale del palazzo, che denotano un'ampia percentuale di muratura plastica per pressoflessione.

Figura 9.73: Stato di danneggiamento, sottopasso 1

Figura 9.74: Stato di danneggiamento, sottopasso 10

9.7.3 Modello con vincoli cedevoli elasticamente

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono presenti vincoli elastici, per simulare l'interazione di unità strutturali contigue, e vincoli di fondazione.

Tale modello rispecchia in maggior modo il comportamento reale dell'aggregato.

L'analisi è stata condotta rispetto al nodo N27, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del telaio in c.a. utilizzato al piano terra nel vano delle poste.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over. Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

					SL	.V		SLD			SLO				
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0.00	2,19	1,68	2,97	No	0,77	1,68	Sì	0,61	1,68	Sì	0,81	2,00
2	+X	1° modo	0.00	3,77	4,01	2,28	Sì	1,40	4,01	Sì	1,04	3,75	Sì	1,06	2,85
3	-X	Masse	0.00	1,97	1,57	2,84	No	0,66	1,57	Sì	0,52	1,57	Sì	0,83	2,09
4	-X	1° modo	0.00	3,65	4,12	2,43	Sì	1,36	3,70	Sì	1,01	2,72	Sì	1,13	2,72
5	+Y	Masse	0.00	0,35	2,60	0,80	Sì	0,16	0,80	Sì	0,13	0,80	Sì	3,06	3,47
6	+Y	1° modo	0.00	0,89	3,34	1,47	Sì	0,25	0,66	Sì	0,20	0,66	Sì	2,04	2,05
7	-Y	Masse	0.00	0,36	3,59	0,63	Sì	0,17	1,79	Sì	0,14	1,79	Sì	4,06	5,98
8	-Y	1° modo	0.00	0,78	3,24	1,21	Sì	0,26	1,65	Sì	0,22	1,65	Sì	2,47	3,82
9	+X	Masse	136.50	2.33	1.92	3.15	No	0.84	1.92	Sì	0.67	1.92	Sì	0.84	2.13
10	+X	Masse	-136.50	2.05	1.73	3.33	No	0.71	1.73	Sì	0.55	1.73	Sì	0.86	2.09
11	+X	1° modo	136.50	4,19	3,81	1,89	No	1,56	3,81	Sì	1,16	3,16	Sì	0,91	2,44
12	+X	1° modo	-136.50	3,36	2,87	2,68	No	1,27	2,28	Sì	0,94	2,28	Sì	0,85	1,79
13	-X	Masse	136.50	1,94	1,55	2,85	No	0,65	1,55	Sì	0,51	1,55	Sì	0,82	2,09
14	-X	Masse	-136.50	2,06	1,60	2,81	No	0,70	1,60	Sì	0,56	1,60	Sì	0,80	2,03
15	-X	1° modo	136.50	3,33	3,75	2,64	Sì	1,26	3,20	Sì	0,93	2,13	Sì	1,13	2,54
16	-X	1° modo	-136.50	3,24	4,28	2,75	Sì	1,24	4,28	Sì	0,92	3,26	Sì	1,09	2,74
17	+Y	Masse	71.20	0,37	4,07	0,78	Sì	0,17	3,44	Sì	0,14	3,44	Sì	3,84	8,47
18	+Y	Masse	-71.20	0,30	2,78	0,70	Sì	0,14	2,43	Sì	0,12	2,43	Sì	3,60	7,68
19	+Y	1° modo	71.20	0,99	2,75	1,63	Sì	0,26	0,60	Sì	0,22	0,60	Sì	1,85	1,81
20	+Y	1° modo	-71.20	0,79	3,19	1,35	Sì	0,23	0,56	Sì	0,19	0,56	Sì	2,22	2,02
21	-Y	Masse	71.20	0,38	3,49	0,69	Sì	0,17	2,12	Sì	0,14	2,12	Sì	3,79	6,39
22	-Y	Masse	-71.20	0,32	3,43	0,57	Sì	0,15	1,76	Sì	0,13	1,76	Sì	4,29	6,42
23	-Y	1° modo	71.20	0,96	3,56	1,32	Sì	0,30	1,65	Sì	0,25	1,65	Sì	2,27	3,45
24	-Y	1° modo	-71.20	0,68	3,18	1,12	Sì	0,25	1,81	Sì	0,20	1,81	Sì	2,59	4,29

 Tabella 9.28: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 1 e la 19, rispettivamente in direzione + X, con una forza sismica proporzionale alle masse, e in direzione + Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità pari a +71,20.

l valori di α_u sono pari a 0,79 e 1,85: la struttura è in grado di sopportare una percentuale del 83% e del 180% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per gli stati limite di operatività e di danno, mentre per lo stato limite di salvaguardia della vita sono soddisfatte quattro delle dodici analisi.

Figura 9.75: Curva di capacità dell'analisi più gravosa in direzione X, analisi 1

Nell'analisi 14 lo spostamento richiesto dalla normativa risulta essere maggiore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del quarto livello della facciata orientale e meridionale, che si rompono per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 4 e la 10, con una percentuale di danneggiamento rispettivamente del 52,00% e del 39,91%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

		TR _D				TR=cost				
	TR _C		α _{tr}	$[m/s^2]$	PGA _D (TR) [m/s ²]	F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _c [m/s ²]	α_{PGA}
SLV	417	712	0.59	0.94	0.74	2.66	0.34	0.79	0.74	0.79
SLD	417	75	5.56	0.42	0.74	2.66	0.34	1.77	0.84	2.01
SLO	417	45	9.27	0.35	0.74	2.66	0.34	2.14	0.90	2.59

Tabella 9.29: Tabella dei parametri calcolati durante l'analisi 1

PARAMETRI DI ANALISI										
T*	M*	w	F	F* _y	d _y *	d _u *				
[s]	[kg]	[kg]	1	[kN]	[cm]	[cm]				
0.35	486637.13	930774.95	1.41	603.20	0.40	1.19				

Tabella 9.30: Tabella dei parametri di analisi calcolati nell'analisi 1

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete 4 è composta da un setto in muratura, scandito da due aperture, ed una trave in c.a.che collega la parete stessa al setto longitudinale settentrionale.

Presenta maschi murari laterali in stato plastico per pressoflessione ed un maschio murario centrale rotto a taglio a livello delle forometrie, fasce di piano rotte a trazione e la trave in stato integro.

Figura 9.76: Individuazione parete 4, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 11, 22

La parete 6 è caratterizzata da un primo livello con un'ampia apertura, un secondo e terzo livello dotati di una piccola forometria ed un quarto livello privo di aperture.

Lo stato di danneggiamento dei primi due livelli rivela uno stato plastico per taglio, ad eccezione del maschio murario più snello, che risulta integro in quanto vincolato all'unità strutturale maggiore al secondo livello e plastico per pressoflessione al terzo livello, e quello del terzo e quarto uno stato integro.

Figura 9.77: Individuazione parete 6, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 11, 22

La parete 10 è caratterizzata da un sistema di travi e pilastri in c.a. e un setto in muratura, il primo e il secondo livello sono privi di fonometrie, mentre il terzo ha un'apertura centrale.

Il primo livello è in stato plastico per taglio, lo stato di danneggiamento del secondo livello è nullo, mentre il terzo livello rivela uno stato plastico per pressoflessione nei maschi murari e rottura per trazione nelle fasce di piano.

Figura 9.78: Individuazione parete 10 legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 11, 22

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti poste al quarto livello, che denotano un'ampia percentuale di muratura plastica e rotta per pressoflessione.

Figura 9.79: Stato di danneggiamento, sottopasso 1

Figura 9.80: Stato di danneggiamento, sottopasso 22

Analisi 19, direzione Y

Figura 9.81: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 19

Nell'analisi 19 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del quarto livello e la facciata orientale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 3, con una percentuale di danneggiamento rispettivamente del 12,92% e del 9,88%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

			α_{TR}	PGA _D (TR) [m/s ²]		TRC	TR=cost			
	TR _C	TR_{D}			PGA _C (TR) [m/s ²]	F _o (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _c [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	0.94	1.36	2.61	0.37	1.45	1.73	1.85
SLD	369	75	4.92	0.42	0.72	2.64	0.33	1.72	0.76	1.84
SLO	369	45	8.20	0.35	0.72	2.64	0.33	2.05	0.77	1.24

Tabella 9.31: Tabella dei parametri calcolati durante l'analisi 19

PARAMETRI DI ANALISI											
T*	M*	w	F	F* _y	d _y *	d _u *					
[s]	[kg]	[kg]	I	[kN]	[cm]	[cm]					
0.19	276665.64	930774.95	1.73	624.75	0.21	1.59					

Tabella 9.32: Tabella dei parametri di analisi calcolati nell'analisi 19

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_v* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione del lato destro, giunto a rottura.

Da evidenziare che il maschio murario più snello, vincolato a sinistra con l'edificio del Monte di Pietà, risulta in stato integro per quanto riguarda i primi due livelli, per giungere ad uno stato plastico per pressoflessione al terzo livello.

Figura 9.82: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 16, 32

La parete 3 divide le poste dall'unità strutturale maggiore, con la quale è vincolata al secondo, terzo e quarto livello. E' caratterizzata da i primi due livelli integri, mentre il livello terzo e quarto presentano maschi murari in stato plastico pressoflessione e fasce di piano rotte per trazione.

Figura 9.83: Individuazione parete 3, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 16, 32

La parete che divide le poste dagli uffici APS è caratterizzata da i primi livelli integri, mentre il livello terzo e quarto presentano maschi murari plastici fino a rottura per pressoflessione e fasce di piano rotte per trazione e pressoflessione.

Figura 9.84: Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 16, 32

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti poste al quarto livello, che denotano un'ampia percentuale di muratura plastica e rotta per pressoflessione.

Figura 9.85: Stato di danneggiamento, sottopasso 1

Figura 9.86: Stato di danneggiamento, sottopasso 32

Analisi dei risultati ottenuti

In presenza di beni tutelati, la normativa predilige l'attenersi ad interventi di miglioramento piuttosto che effettuare interventi di adeguamento. Come citato precedentemente, per miglioramento si intende l'esecuzione di opere in grado di far conseguire all'edificio un maggior grado di sicurezza rispetto alle condizioni iniziali, con un livello di protezione sismica che potrebbe essere inferiore rispetto a quello richiesto in caso di adeguamento.

Al fine di quantificare il livello di sicurezza attuale o raggiungibile tramite un intervento di miglioramento, i valori di riferimento per ciascun stato limite possono essere confrontati con quelli per i quali si raggiunge effettivamente lo stato limite.

In particolare è possibile definire un indice di sicurezza sismica, dato dal rapporto tra il periodo di ritorno T_{SL} dell'azione sismica che porta al generico stato limite (SL = SLV, SLD, SLA) ed il corrispondente periodo di ritorno di riferimento $T_{R,SL}^{56}$.

Particolarmente significativo è l'indice di sicurezza sismica I_{S SLV} riferito allo SLV:

$$I_{S,SLV} = \frac{T_{SLV}}{T_{R.SLV}} = \frac{X}{712}$$

Dove:

- T_{SLV} è il periodo di ritorno dell'azione sismica che porta al raggiungimento dello SLV.

Se l'indice di sicurezza sismica raggiungibile, che tiene conto della pericolosità del sito, delle caratteristiche del manufatto e della sua destinazione d'uso, è maggiore o uguale ad uno, l'intervento di miglioramento è pienamente soddisfacente anche dal punto di vista della sicurezza, valutata attraverso un procedimento quantitativo; se l'indice di sicurezza sismica raggiungibile è inferiore a quello auspicabile, ovvero sarebbero necessari interventi troppo invasivi, si può giustificare l'intervento ricorrendo anche a valutazioni qualitative, che dovranno essere tradotte in termini quantitativi, adeguatamente giustificati in una relazione esplicativa ad integrazione della relazione di calcolo⁵⁷.

Nel caso di progettazione di un intervento di miglioramento sismico può essere opportuno valutare la vita nominale corrispondente allo stato attuale e quella ottenibile a seguito dell'intervento:

$$V_N = \frac{T_{SLV}}{C_u} \ln(1 - P_{VR})$$

Dove:

- T_{SLV} è il periodo di ritorno dell'azione sismica che porta al raggiungimento dello SLV;

- P_{VR} è la probabilità di superamento relativa allo stato limite considerato (10% per lo SLV);

- C_u è il coefficiente d'uso relativo alla classe d'uso (C_u = 1,5 per la classe d'uso III).

Nel caso specifico *3Muri* fornisce il periodo di ritorno T_{SLV} dell'azione sismica, che porta al raggiungimento dello SLV con P_{VR} 10%, pari a 145 anni.

 ⁵⁶ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C2.4
 ⁵⁷ Ibid, C2.2

Utilizzando tali parametri è possibile stilare un confronto tra le strutture modellate in *3Muri*, che fornisce i valori di PGA_D (Pick Ground Acceleration relativa alla domanda per un periodo di ritorno pari a 712 anni e percentuale di superamento in 50 anni del 10% relativa allo SLV) e di PGA_C (Pick Ground Acceleration relativa alla capacità reale della struttura), entrambi espressi in $\frac{m}{s^2}$.

Dividendo questi ultimi per l'accelerazione di gravità g si ottengono i valori di a_g corrispondenti, da cui è possibile ricavare i parametri sismici.

Ottenuto il valore di a_g si può risalire ai parametri sismici utilizzando il software Spettri NTC, e moltiplicando il valore di S per a_g si ottiene il valore effettivo di PGA_C.

Si riporta il procedimento di calcolo per la valutazione di PGA_C [g] e PGA_D [g] per il modello libero dell'unità strutturale 1, per gli altri modelli si rimanda all'allegato relativo al capitolo.

 $PGA_{D} = 0.94 \text{ m/s}^{2}$ $PGA_{C} = 1.21 \text{ m/s}^{2}$ $a_{g} = \frac{PGA_{C}}{g} = 0.12 \text{ g}$

La valutazione di T_{SLV} è svolta tramite l'interpretazione dei dai forniti dal programma Spettri NTC: T_{SLV} = 1772 anni, a cui corrisponde una vita nominale VN = 124 anni.

I parametri spettrali risultano: $F_0 = 2,63 \text{ e } T^*c = 0,36 \text{ s}$

Per un suolo di categoria C si calcola $S_s = 1,70 - 0,6 F_0 \frac{a_g}{g} = 1,51$, da normativa S_s = 1,5 se risulta maggiore di 1,5.

Successivamente si calcola $PGA_C = S a_g = 0,19 g$ Svolgendo lo stesso procedimento si calcola $PGA_D = 0,14 g$.
	UNITA	A' STRUTTU	RALE 1	UNITA	A' STRUTTU	RALE 2
	LIBERO	VINCOLI	VINCOLI	LIBERO	VINCOLI	VINCOLI
		RIGIDI	CEDEVOLI		RIGIDI	CEDEVOLI
ANALISI X	11	16	12	16	2	1
αυ	1.17	2.19	1.24	0.67	1.08	0.81
T _{SLV}	1235	2475	1922	275	993	417
I _{S,SLV}	1.73	3.48	2.70	0.39	1.39	0.59
VN	87	174	135	19	70	29
PGA _c [m/s ²]	1.07	2.05	1.16	0.64	1.06	0.77
PGA _D [m/s ²]	0.94	0.94	0.94	0.94	0.94	0.94
a _g [g]	0.11	0.21	0.12	0.07	0.11	0.08
PGA _c [g]	0.19	0.31	0.18	0.10	0.09	0.12
PGA _D [g]	0.14	0.14	0.14	0.14	0.14	0.14
ANALISI Y	21	19	6	19	5	19
αυ	1.57	1.94	1.85	1.55	1.84	1.81
T _{SLV}	2475	2475	2475	2475	2475	2475
I _{S,SLV}	3.48	3.48	3.48	3.48	3.48	3.48
VN	174	174	174	174	174	174
PGA _c [m/s ²]	1.5	1.81	1.99	1.45	1.93	1.69
PGA _D [m/s ²]	0.94	0.94	0.94	0.94	0.94	0.94
a _g [g]	0.15	0.18	0.20	0.15	0.20	0.17
PGA _c [g]	0.23	0.28	0.30	0.25 0.30		0.26
PGA _D [g]	0.14	0.14	0.14	0.14	0.14	0.14

Tabella 9.33: Risultati maggiormente significativi delle analisi relative ai modelli libero, con vincoli rigidi e vincoli cedevoli elasticamente

Confrontando i valori ottenuti dall'analisi dei modelli delle due unità strutturali è evidente la disparità di risultati prodotti dalle analisi in direzione X piuttosto che in Y, le quali forniscono in ogni caso valori soddisfacenti in termini di vita nominale, fenomeno amplificato nelle analisi svolte per la seconda unità strutturale.

Per l'unità strutturale 1 i valori dalla vita nominale sono elevati anche per le analisi svolte in direzione X, in particolare si noti come, per l'analisi più gravosa, si ottenga un valore maggiore per il modello con vincoli rigidi, a discapito del modello libero, che risulta come il peggior caso dei tre considerati, con una vita nominale di 87 anni.

Per l'unità strutturale 2 invece i valori della vita nominale in direzione X sono di un ordine di grandezza inferiori rispetto al corrispettivo in direzione Y, in particolare si evince che il modello con vincoli rigidi dia risultati migliori, con una vita nominale di 70 anni, a discapito del modello libero, che con i suoi 19 anni di vita nominale risulta il peggiore delle elaborazioni.

Sono state riprodotte le curve di capacità, bilineari equivalenti, delle analisi più sfavorevoli di ciascun modello, suddivise a seconda della direzione considerata.

Tali curve rappresentano l'evoluzione della risposta della struttura all'aumentare della forza sismica orizzontale, dalla condizione iniziale integra, alla formazione delle lesioni, alla perdita di equilibrio, fino al collasso.

Sono caratterizzate dal valore di snervamento di taglio alla base e dai valori di spostamento d_y (corrispondente alla condizione di plasticizzazione) e di spostamento ultimo d_u (capacita di spostamento massima dell'edificio).

Sono state usate le seguenti sigle:

- US, unità strutturale;
- ML, modello libero;
- MVC, modello con vincoli cedevoli;
- MVR, modello con vincoli rigidi;
- LC1, livello di conoscenza con un fattore di confidenza pari a 1,3;
- LC2, livello di conoscenza con un fattore di confidenza pari a 1,2.

Tabella 9.34: Confronto delle curve di capacità delle analisi peggiori in direzione X per ciascun modello di ciascuna unità strutturale, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.35: Confronto delle curve di capacità delle analisi peggiori in direzione Y per ciascun modello di ciascuna unità strutturale, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Le curve di capacità riportano valori di resistenza di un ordine di grandezza di differenza per le due unità strutturali: l'US1 sopporta un taglio alla base compreso tra 4000 kN (analisi in direzione X del modello libero) e 12000 kN (analisi in direzione Y del modello con vincoli rigidi), mentre l'US2 raggiunge un valore massimo di taglio alla base di 1900 kN (analisi in direzione Y del modello con vincoli rigidi).

Inoltre si nota che la capacità di sopportazione di taglio alla base e la relativa escursione in campo elastico aumenta con l'apposizione di vincoli nel modello: il modello libero sopporta valori inferiori di forza rispetto al modello con vincoli cedevoli, che sopporta valori inferiori rispetto al modello con vincoli rigidi.

In genere anche il tratto di plasticizzazione varia a seconda dei vincoli: nei modelli liberi è più lungo rispetto a quelli vincolati.

Considerando i risultati delle analisi dell'unità strutturale 2, si osserva che il valore della vita nominale VN, a seconda del modello scelto, oscilla tra 19 e 70 anni.

Il valore di vita nominale precedentemente scelto per questa struttura è pari a 50 anni, quindi solo il modello con vincoli rigidi soddisfa la richiesta di vita nominale.

Per i beni di interesse culturale esposti ad azioni sismiche, fermo restando che è in ogni caso possibile limitarsi ad interventi di miglioramento effettuando la relativa valutazione della sicurezza (comma 4 dell'art. 29 del D.lgs. 22 gennaio 2004, n. 42 "Codice dei beni culturali e del paesaggio"; punto 8.4 delle NTC), appare comunque opportuno definire un livello di sicurezza sismica di riferimento, differenziato in funzione delle caratteristiche proprie dei manufatti e del loro uso, e quindi delle conseguenze più o meno gravi di un loro danneggiamento per effetto di un evento sismico⁵⁸. Tale livello di sicurezza non è prescritto in modo inflessibile: valori della vita nominale maggiori di 20 anni possono comunque considerarsi ammissibili per un edificio tutelato, la cui conservazione è stata garantita in passato attraverso il ricorso ad una periodica revisione (monitoraggio) e manutenzione.

⁵⁸ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C2.4

Poichè la vita nominale del modello libero risulta di poco inferiore ai 20 anni suggeriti dalla norma, l'analisi è stata ripetuta su un nuovo modello con un livello di conoscenza maggiore.

	UNIT	A' STRUTTURALE 2	2, LC2
	LIBERO		VINCOLI
			CEDEVOLI
ANALISI X	2	10	12
αυ	0.79	1.21	0.84
T _{SLV}	432	1415	491
I _{S,SLV}	0.61	1.99	0.69
VN	30	99	34
PGA _c [m/s ²]	0.76	1.12	0.75
PGA _D [m/s ²]	0.94	0.94	0.94
a _g [g]	0.08	0.11	0.08
PGA _C [g]	0.11	0.09	0.12
PGA _D [g]	0.14	0.14	0.14
ANALISI Y	20	17	5
αυ	1.76	1.74	1.68
T _{SLV}	2475	2475	2475
I _{S,SLV}	3.48	3.48	3.48
VN	174	174	174
PGA _C [m/s ²]	1.64	1.36	1.36
PGA _D [m/s ²]	0.94	0.94	0.94
a _g [g]	0.17	0.14	0.14
PGA _C [g]	0.25	0.27	0.26
PGA _D [g]	0.14	0.14	0.14

Tabella 9.36: *Risultati maggiormente significativi delle analisi relative ai modelli libero, con vincoli rigidi e vincoli cedevoli elasticamente dell'unità strutturale 2 in LC2*

Confrontando i valori permane la disparità di risultati prodotti dalle analisi in direzione X piuttosto che in Y, le quali forniscono gli stessi valori soddisfacenti, in termini di vita nominale, del modello in LC1.

I valori della vita nominale in direzione X sussistono di un ordine di grandezza inferiori rispetto al corrispettivo in direzione Y, in particolare si evince che il modello con vincoli rigidi dia risultati migliori, con una vita nominale di 99 anni, a discapito del modello libero, che con i suoi 30 anni di vita nominale risulta il peggiore delle elaborazioni.

Con la modellazione in LC2 si nota un lieve incremento della vita nominale dei modelli vincolati (circa un 2%), mentre si osserva un incremento del 40% della vita nominale del modello libero, che da19 anni di vita nominale raggiunge i 30 anni.

Sono state riprodotte le curve di capacità, bilineari equivalenti, delle analisi più sfavorevoli di ciascun modello (in LC1 e LC2), suddivise a seconda della direzione considerata.

Tabella 9.37: Confronto delle curve di capacità delle analisi peggiori in direzione X per ciascun modello dell'unità strutturale 2, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.38: Confronto delle curve di capacità delle analisi peggiori in direzione Y per ciascun modello dell'unità strutturale 2, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Le curve di capacità dei modelli in LC1 e LC2 riportano valori di resistenza fino a 300 kN di differenza per le analisi svolte in direzione X e fino a 600 kN di differenza per le analisi svolte in direzione Y.

Per quanto riguarda l'estensione del tratto elastico, le analisi con un livello di conoscenza maggiore riportano una maggiore escursione, mentre il tratto di plasticizzazione non varia a seconda del livello di conoscenza utilizzato.

I risultati ottenuti con l'incremento del livello di conoscenza hanno apportato un discreto miglioramento nel comportamento globale dell'US2, e quindi ad un aumento della vita nominale. Per diminuire ulteriormente il livello di vulnerabilità sismica potrebbe essere utile considerare la maggior criticità in direzione X piuttosto che in direzione Y. Questa considerazione risulta molto importante sia nel valutare l'ipotesi che ci siano degli elementi in grado di ridurre questa vulnerabilità, sia nell'ottica di un eventuale intervento. L'adozione di misure mirate in grado di rafforzare la struttura in direzione X potrebbe essere sufficiente a garantire un sostanziale miglioramento del comportamento globale.

Il metodo utilizzato dal software ANDILWall

ANDILWall è un software per la verifica strutturale di edifici in muratura portante o a struttura portante mista in zona sismica, secondo il DM 14/01/2008 "Norme Tecniche per le Costruzioni".

Il modello di riferimento è il metodo SAM II (Seismic Analysis of Masonry walls), codice di calcolo basato su ipotesi formulate da G. Magenes e G. M. Calvi nel 1996, di cui si è mantenuto l'acronimo SAM.

Anche questo software, come *3Muri*, schematizza la struttura a telaio equivalente, telaio costituito da elementi monodimensionali, ad asse verticale e orizzontale, posizionati spazialmente in corrispondenza dell'asse baricentrico dei rispettivi assi strutturali e delimitati da nodi usualmente posti alle intersezioni con gli altri assi baricentrici ai quali sono collegati.

Gli elementi costituenti si suddividono in maschi murari, fasce di piano e, laddove si presenti una sezione a L o a T, elementi infinitamente rigidi: il collegamento mediante tali bracci garantisce, a livello dei solai, la compatibilità degli spostamenti verticali delle pareti.

Si assume inoltre che gli elementi del telaio equivalente siano caratterizzati da un comportamento anelastico di tipo elasto – plastico con limite in deformazione, con resistenza equivalente definita in funzione della risposta flessionale e a taglio.

La deformazione limite allo stato limite ultimo è definita in funzione del tipo di rottura⁵⁹, mentre lo stato limite di danno e di operatività vengono valutati in termini di spostamento interpiano, con un valore limite, normalizzato rispetto all'altezza interpiano, pari a 3‰ e 2‰⁶⁰

Tale modello di calcolo determina le azioni interne e gli spostamenti generalizzati di tutti gli elementi del modello a telaio equivalente, sia nel caso di analisi elastiche lineari, sia nel caso di analisi statiche non lineari, e permette di svolgere la verifica a pressoflessione fuori piano di singoli pannelli di muratura.

Nonostante il metodo utilizzato per *ANDILWall* risulti simile a quello usato per *3Muri*, sono doverose alcune precisazioni di notevole importanza relative al programma:

- la schematizzazione a telaio equivalente risulta accettabile solo nel caso in cui la geometria delle pareti della struttura e la distribuzione delle aperture in esse presenti siano caratterizzate da una certa regolarità, in particolare per quanto riguarda l'allineamento delle aperture;
- il codice di calcolo SAM II è nato ed è stato sviluppato per la progettazione di nuovi edifici in muratura portante, pertanto l'utilizzo del software per la valutazione della sicurezza di edifici esistenti è possibile solo in determinati casi, nei quali la configurazione geometrica dell'edificio permetta una modellazione a telaio equivalente.

Definizione del modello

Il modello viene definito riportando le pareti, le aperture, i pilastri, le travi e i solai nel DWG delle piante, operando una schematizzazione degli elementi resistenti e discretizzando in rettangoli gli elementi trapezoidali. Il file viene quindi aperto nel programma *ANDILWall*, nel quale vengono importati gli elementi verticali e orizzontali assegnando l'altezza corretta, e sono attribuite le proprietà geometriche e meccaniche relative alle murature, alle travi, ai pilastri e ai solai.

⁵⁹ Circolare n.617 del 2/2/2009, C8.7.1.4

⁶⁰ Ibid, C.7.8.1.5.4

Modellazione delle pareti

Il software *ANDILWall* ha sviluppato tre tipologie di rotture per i maschi murari non armati degli edifici esistenti, coincidenti con quelli precedentemente illustrati per il software *3Muri:*

- rottura per pressoflessione e schiacciamento negli spigoli;
- rottura per scorrimento;
- rottura per taglio.

Figura 9.87: Meccanismi di rottura di porzioni di muratura

In particolare appare rilevante segnalare che i criteri di rottura sono formulati in modo tale per cui, all'annullarsi della compressione verticale su un elemento, si annullano sia la resistenza a pressoflessione sia la resistenza a taglio; si assume infatti che la muratura sia non reagente a trazione. Inoltre è possibile utilizzare le formulazioni di rottura per scorrimento e taglio contemporaneamente: in questo caso il codice individua e applica in corrispondenza di ciascun passo di carico la condizione critica più gravosa.

Nella modellazione di edifici esistenti, le travi in muratura adeguatamente ammorsate agli elementi strutturali verticali possono avere una funzione strutturale di accoppiamento tra pareti verticali (*Fig. 9.88 a*).

L'accoppiamento fornito dalle travi in muratura è principalmente funzione della compressione a cui esse sono soggette in direzione orizzontale, in quanto fornisce la resistenza flessionale che impedisce l'attivazione del meccanismo di ribaltamento (*Fig. 9.88 b*).

Il comportamento meccanico di questi elementi può essere studiato analogamente a quello dei pannelli murari, tenendo presente che l'orientamento dei letti di malta è parallelo all'asse orizzontale dell'elemento e l'azione assiale dovuta ai soli carichi da gravità è solitamente esigua, se non nulla.

In presenza di elementi resistenti a trazione, quali catene e cordoli, il meccanismo di ribaltamento, che genera una dilatazione globale della parete in senso orizzontale, è contrastato dall'incremento di compressione e dal relativo incremento di resistenza a pressoflessione: si instaura così il meccanismo di puntone inclinato che garantisce l'accoppiamento dei setti (*Fig. 9.88 c*).

Figura 9.88: ANDILWall, Manuale d'uso, p.67 – *Risposta delle fasce murarie ad azioni di tipo sismico* Nel definire lo schema resistente equivalente verticale è necessario individuare ogni pannello in muratura, pilastro e setto in c.a. come elementi verticali distinti. A tal fine si scompongono gli

CAP 9 – ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

elementi strutturali verticali a sezione composta nella combinazione di pannelli a sezione rettangolare, collegati mediante intersezioni a L o a T:

- in corrispondenza di intersezioni a L, ciascun pannello deve essere esteso, nella propria direzione di massimo sviluppo in pianta, fino all'intersezione degli assi baricentrici principali dei pannelli stessi;
- in corrispondenza di intersezioni a T il pannello incidente deve essere esteso sino al filo interno del pannello sul quale incide.

Figura 9.89: ANDILWall, Manuale d'uso, p.27 – Criterio di modellazione di pareti flangiate in muratura ordinaria secondo il metodo SAM.

Considerando che il software *ANDILWall* è stato sviluppato per la verifica di edifici in muratura, le verifiche di resistenza degli elementi strutturali in cemento armato vengono svolte nell'ipotesi di duttilità CD "B", poiché non è prevista la possibilità di considerare edifici a struttura portante in c.a. La valutazione delle resistenze, per edifici esistenti, è svolta nel rispetto delle prescrizioni del D.M 14/01/2008 e della *Circolare n.617, C8.7.2.* In particolare è necessario distinguere elementi duttili (travi, pilastri e parete inflesse) e fragili (meccanismi di taglio in travi, pilastri e pareti), come prescritto nella *Circolare n.617, C8.7.2.4*.

Per gli elementi parete, pilastro, trave e cordolo si assumono gli stessi modelli di comportamento:

- duttile a flessione, di tipo elastico perfettamente plastico con limite in deformazione,
- comportamento elasto fragile a taglio.

Dalle osservazioni svolte deriva l'ipotesi di schematizzazione delle pareti a macroelementi, intesi come porzioni di muratura suddivise in maschi, fasce ed elementi infinitamente rigidi (offset rigido). L'elemento maschio è la porzione di muratura che si estende per tutta l'altezza della struttura, l'elemento fascia invece è la porzione al di sopra o sotto l'apertura, l'elemento infinitamente rigido è la porzione di muratura che si estende nuratura.

Collegando tali elementi si ottiene lo schema a telaio equivalente.

Figura 9.90: ANDILWall, Manuale d'uso, p.36 - *Rappresentazione della suddivisione in macroelementi mediante telaio equivalente senza cordoli in c.a.*

L'introduzione di bracci infinitamente rigidi alle estremità degli elementi maschi murario, trave o fascia muraria consente di modellare la ridotta deformabilità dei campi di muratura delimitati dalle aperture (zone di nodi strutturali).

Figura 9.91: ANDILWall, Manuale d'uso, p.25 – Schematizzazione di nodo strutturale

Le proprietà meccaniche della muratura, dell'acciaio da armatura e del calcestruzzo inserite nel modello sono le stesse utilizzate in *3Muri*, ad eccezione del fattore di confidenza, pari a 1,35, in quanto non è presente la scelta di fattori diversi da quelli corrispettivi ai tre livelli di conoscenza.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

TIPOLOGIA	E G [N/mm ²] [N/mm ²]		PESO SPECIFICO [kN/m ³]	fm [N/cm ²]	RESISTENZA A TAGLIC [N/cm ²]	
Muratura in mattoni pieni e malta di calce	1500,00	500,00	18	184,62	4,62	
TIPOLOGIA	E G [N/mm ²] [N/mm ²		PESO SPECIFICO [kN/m ³]	fm [N/cm ²]	RESISTENZA A TAGLIO [N/cm ²]	
Muratura in mattoni semipieni e malta cementizia	4500,00	1137,50	15	370,37	17,78	
TIPOLOGIA	E [N/mm²]	G [N/mm²]	PESO SPECIFICO [kN/m ³]	fm [N/cm ²]	fu [N/mm²]	
Acciaio armatura Aq 42	200000,0	76923,30	78,5	203,85	323,15	

TIPOLOGIA	E G PESO SPECI [N/mm ²] [N/mm ²] [kN/m ³]		PESO SPECIFICO [kN/m ³]	fm [N/mm²]	fck [N/mm ²]
C 20 /25	29962,0	12484,00	25	21,54	20,00
TIPOLOGIA	E [N/mm²]	G [N/mm²]	PESO SPECIFICO [kN/m ³]	fm [N/mm²]	fck [N/mm²]
C 25/30	31476,0	13115,00	25	25,38	25,00

Modellazione dei solai

Per quanto concerne la trasmissione dei carichi, verticali e orizzontali, il software trascura la deformazione del solaio, che viene considerato infinitamente rigido. In tal modo i gradi di libertà della struttura si riducono a tre per piano, mentre le masse e i momenti di inerzia si considerano concentrati in corrispondenza del centro di gravità di ciascun piano, come prescritto nella *Circolare n.617, C7.2.6.*

Questa approssimazione non risulta però a favore di sicurezza: la distribuzione delle forze sismiche proporzionale alle rigidezze innesca meccanismi deformativi di minor entità dei corrispettivi solai deformabili.

Si tenga conto però che *ANDILWall* è stato implementato per edifici nuovi, infatti la modellazione di solai a diaframmi deformabili è in fase di sviluppo.

Nel caso studio sono stati modellati tre tipologie di orizzontamenti: solai in laterocemento *Bausta e Cirex, e* in legno con doppio tavolato. Per le travi in cemento armato sono stati utilizzati acciao Aq 42 e calcestruzzo C25/30, definiti per gli elementi verticali in c.a.

Per la definizione dei valori di carico sono stati utilizzati i valori precedentemente determinati per gli impalcati nelle analisi locali, suddividendo i carichi permanenti in strutturali $G_{k,agg}$. Le coperture sono state modellate come solai piani, ai quali è stato aggiunto il carico G_k al valore di carico del sottotetto.

TIPOLOGIA	E _x [N/mm ²]	E _y [N/mm ²]	G [N/mm²]	SPESSORE [cm]	INTERASSE [cm]	ALTEZZA SOLAIO [cm]
Solaio in laterocemento Bausta	66000	30000	12500	4,00	50,00	28,00

TIPOLOGIA	E _x [N/mm ²]	E _y [N/mm ²]	G [N/mm²]	SPESSORE [cm]	INTERASSE [cm]	ALTEZZA SOLAIO [cm]
Solaio in laterocemento Cirex	102272,7	/	1000,00	4,00	50,00	25,00

TIPOLOGIA	E [N/mm ²]	G [N/mm²]	TRAVE [cm]	INTERASSE [cm]	ALTEZZA SOLAIO [cm]	
Solaio in legno	14545,5	600,00	20 x 20	55,00	20,00	

Schematizzazione

Il modello è stato adattato alle necessità del software, causa impossibilità di portare a termine le analisi:

- dove si presentavano murature con basso angolo di inclinazione tra loro, sono stati rettificati gli assi strutturali;

Figura 9.92: Schematizzazione assi

 in presenza di murature parallele con piccoli disassamenti è stato rettificato l'asse, poiché avrebbe comportato il formarsi di piccoli tratti di parete poco significativi che avrebbero fuorviato la natura del calcolo;

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Figura 9.93: Schematizzazione pareti

 le forometrie con terminazione ad arco, relative in particolare ai prospetti est e nord, sono state schematizzate con corpi rettangolari ricalcanti le dimensioni massime.

Figura 9.94: Schematizzazione forometrie

Queste schematizzazioni, attuate anche per 3*Muri*, risultano di lieve entità rispetto alle successive adottate esclusivamente per *ANDILWall:* a causa delle condizioni poste dal programma per svolgere le analisi si è dovuto attuare una pesante discretizzazione della struttura, in particolar modo per l'unità strutturale 1.

Tale aspetto della modellazione è influenzato maggiormente dalla limitazione del programma nel computare edifici irregolari, anche solo per la disposizione non simmetrica delle aperture.

- nell'unità strutturale maggiore si è adottato uno schema simmetrico rispetto all'asse verticale, riducendo l'angolo di inclinazione tra la facciata principale e la parete confinante con la seconda unità strutturale, e la facciata principale e il prospetto settentrionale.

Figura 9.95: Schematizzazione struttura US1

- nell'unità strutturale minore si è ridotto l'angolo di inclinazione tra la facciata principale e la parete confinante con la prima unità strutturale.

Figura 9.96: Schematizzazione struttura US2

- l'asse dei maschi murari è stato allineato verticalmente laddove si presentavano forometrie sfalsate di pochi centimetri.
- in assenza di solai voltati le volte sono state modellate come impalcato e gli archi come cordoli.
- le travi sono state modellate come cordoli nell'unità strutturale maggiore in quanto l'utilizzo dell'elemento trave portava alla mancata convergenza delle analisi.

I parametri relativi all'azione sismica non sono ricavati dal software (inserendo la localizzazione geografica dell'edificio) in quanto apparivano non coincidenti con i parametri utilizzati nella modellazione di *3Muri.* Sono stati quindi immessi i dati utilizzati precedentemente, in modo da poter redigere un confronto diretto tra i due software.

	SLV	SLD	SLO
T _r [anni]	712	75	45
A _g [g]	0,096	0,043	0,035
Fo	2,62	2,53	2,54
T _c * [s]	0,35	0,28	0,24
S	1,5	1,5	1,5
T _b [s]	0,17	0,15	0,13
T _c [s]	T _c [s] 0,52		0,4
T _d [s]	1,98	1,77	1,74

 Tabella 9.39
 Valori dei parametri sismici definiti nella città di Padova, utilizzati nell'analisi dal software

 ANDILWall

Analisi statica non lineare

L'analisi statica non lineare è svolta tramite curve di capacità, ugualmente al software 3Muri. L'analisi completa della struttura si traduce in 16 analisi, combinazioni derivanti dalla definizione di direzione e verso della forzante (\pm X, \pm Y), distribuzione delle forze sismiche (distribuzione principale, gruppo 1, e distribuzione secondaria, gruppo 2) ed eccentricità accidentale del centro di massa rispetto al centro di rigidezza (\pm 5% della dimensione massima dell'edificio misurata perpendicolarmente alla direzione di applicazione dell'azione sismica).

La curva di capacità portante può essere tracciata riferendosi allo spostamento di un nodo di controllo o allo spostamento medio di piano.

analisi	F	ea	distribuzione	analisi	F	ea	distribuzione
1	$+ F_{x'}$	$+ e_{a,x'}$	principale (Gruppo 1)	9	$+ F_{y'}$	$+ e_{a,y}$,	principale (Gruppo 1)
2	$+ F_{x'}$	$-e_{a,x'}$	principale (Gruppo 1)	10	$+ F_{y}$.	$-e_{ay}$	principale (Gruppo 1)
3	$-F_{x'}$	$+ e_{a,x'}$	principale (Gruppo 1)	11	$-F_{y}$	$+ e_{a,y}$	principale (Gruppo 1)
4	$-F_{x}$	$-e_{a,x'}$	principale (Gruppo 1)	12	$-F_{y'}$	- e _{a,y} ,	principale (Gruppo 1)
5	$+ F_{x'}$	$+ e_{a,x}$	secondaria (Gruppo 2)	13	$+ F_{y'}$	$+ e_{a,y}$	secondaria (Gruppo 2)
6	$+F_{x'}$	$-e_{a,x'}$	secondaria (Gruppo 2)	14	$+F_{y'}$	- e _{ay} .	secondaria (Gruppo 2)
7	$-F_{x}$	$+ e_{a,x}$	secondaria (Gruppo 2)	15	$-F_{y'}$	+ e _{a,y} .	secondaria (Gruppo 2)
8	$-F_{x}$	$-e_{a,x}$	secondaria (Gruppo 2)	16	$-F_{y'}$	$-e_{a,y'}$	secondaria (Gruppo 2)

Figura 9.97: ANDILWall, Manuale d'uso, p.126 – *Analisi statiche non lineari da considerare per ciascuna direzione principale*

La verifica di sicurezza consiste nel confronto tra la capacità di spostamento e la domanda di spostamento dell'edificio, in condizione di stato limite ultimo e di esercizio (Figura 9.99). Il procedimento di verifica è basato sulla trasformazione della curva di capacità in una curva riferita al sistema bilineare equivalente ad un grado di libertà. Su tale curva si valuta la massima risposta in termini di spostamento del sistema equivalente e la risposta effettiva dell'edificio, che deve essere controllata con la capacità di spostamento.

Il software permette di variare alcuni parameti relativi all'analisi push over:

- Criterio di convergenza (energia, forze, spostamenti o tutti) e relativa tolleranza,
- Passi carico (10000 di default),
- Iterazioni (valore di default 10),
- % di forza sismica (valore di default 2%)
- Taglio residuo (valore di default 0,8)
- Passi stampa (valore consigliato 5)
- Angolo azioni.

Per le analisi sono stati utilizzati i valori di default, ad eccezione per il numero di iterazioni, abbassato a 5, in quanto valori maggiori non permettevano la convergenza del modello.

Figura 9.98: ANDILWall, Manuale d'uso, p.291 – Curva forza spostamento, rappresentata in rosso. La curva bilineare del sistema equivalente è rappresentata in blu, le linee tratteggiate/punteggiate verticali arancio, verdi scuro e magenta identificano la richiesta/capacità di spostamento, rispettivamente con riferimento allo stato limite di operatività, danno ed allo stato limite ultimo (le linee tratteggiate si riferiscono alle richieste mentre quelle punteggiate alla capacità); il programma evidenzia, se presenti, la capacità ultima di spostamento per ogni stato limite relativamente al valore limite q* = 3 (con una scritta contornata da un "fumetto").

Effetti dell'aggregazione sul modello

La suddivisione di Palazzo del Capitanio in due unità strutturali comporta la scissione dell'analisi globale, che rifletterà risultati non coincidenti con quelli reali.

La modellazione dei vincoli traslazionali è stata simulata tramite l'apposizione di pareti esterne poste nella direzione del vincolo, assegnando le caratteristiche della muratura utilizzata per la stessa l'unità strutturale. Non è stato sviluppato il modello con vincoli rigidi in quanto il programma non permette l'assegnazione di un tale vincolo.

La lunghezza e lo spessore delle pareti è stata calcolata in modo da ottenere il valore di rigidezza teorico utilizzato per la modellazione di *3Muri*, ricavato schematizzando i setti confinanti come mensole incastrate alla base, sulle quali agisce in sommità una forza orizzontale, e considerando i parametri meccanici del materiale componente le pareti stesse.

La rigidezza, calcolata nel capitolo precedente, è espressa tramite la seguente formula:

$$K = \frac{1}{\frac{h3}{3EJ} + 1,2 \frac{h}{GA}}$$

Dove:

- J è il momento di inerzia della sezione del setto, espresso in m⁴, _
- E è il modulo di elasticità normale dei setti, nel caso di muratura in mattoni pieni e malta di calce è pari a 1500 MPa⁶¹,
- G è il modulo di elasticità tangenziale dei setti, nel caso di muratura in mattoni pieni e malta di calce è pari a 500 MPa⁶²,
- A è l'area della sezione del setto, espressa in metri, -
- h è l'altezza del setto, espressa in metri.

I vincoli sono stati applicati alle pareti evidenziate in rosso in fig. 9.100, similmente a quanto svolto nella modellazione in 3Muri.

Figura 9.99: Setti vincolati del piano terra, piano ammezzato, piano secondo e piano terzo

⁶¹ Circolare n.617 del 2/2/2009 – Tabella C8A.2.1 ⁶² Ibid

			L	S	h	J	A	К	DIREZIONE
UNITA	PAREIE		[m]	[m]	[m]	[m ⁴]	[m ²]	[N/m]	VINCOLO
	48	1	1.00	0.90	5.20	0.08	0.90	23229.72	х
	30	2	7.72	0.60	11.10	23.00	4.63	527363.31	Х
	22	3	7.72	0.50	15.30	19.17	3.86	195965.12	Х
1	13	1	12.56	0.45	5.50	74.30	5.65	3529763.81	Х
-	42	2	12.56	0.45	9.60	74.30	5.65	1487541.59	Х
	44	2	9.00	0.45	11.10	27.34	4.05	565130.30	Y
	31	3	9.00	0.45	15.30	27.34	4.05	261912.15	Y
	41	2	6.70	0.45	11.10	11.28	3.02	279468.40	Х
	7	1	10.00	0.30	3.00	25.00	3.00	3787878.79	Х
	7	2	10.00	0.30	5.50	25.00	3.00	1701001.70	Х
	6	3	10.00	0.30	10.30	25.00	3.00	557005.97	Х
2	6	3	10.00	0.10	5.50	8.33	1.00	567000.57	Х
2	1	1	20.00	0.80	9.60	533.33	16.00	5529016.28	Х
	1	2	20.00	0.80	12.90	533.33	16.00	3534251.09	Х
	1	3	20.00	0.60	9.60	400.00	12.00	4146762.21	X
	1	4	20.00	0.60	12.90	400.00	12.00	2650688.32	X

Tabella 9.40: Valori di calcolo delle rigidezze, assegnati ai setti vincolati previo diminuizione di un ordine di grandezza del valore della rigidezza

Palazzo del Capitanio, unità strutturale 1

Il primo corpo analizzato è quello vincolato alla Torre dell'Orologio.

Al piano terra sono state riportate sullo stesso asse le murature dello sgabuzzino e degli uffici, schematizzazione attuata anche per il software 3Muri, ma per l'analisi del modello ANDIWall sono state apportate delle modifiche più sostanziali alla struttura, quali la simmetria delle aperture. Tale schematizzazione è possibile per il prospetto orientale e settentrionale, in quanto l'edificio presenta una distribuzione regolare di forometrie, mentre per gli altri prospetti sono stati definiti per la muratura assi baricentrici quanto più allineati.

Tutti i solai intermedi sono stati modellati in laterocemento, come definito precedentemente, mentre il sottotetto e la copertura sono in legno, con travetti affiancati e tavolato doppio.

Sono stati aggiunti dei carichi lineari per simulare il peso dei solai gravanti sulle murature dell'unità strutturale in questione, laddove si conosce il carico strutturale.

N° CARICO	LIVELLO	TIPO	SOLAIO	G _k [kN/m]	G _{K,agg} [kN/m]	Q _k [kN/m]
1	1	LINEARE	VOLTA	4,00	2,20	2
2	1	LINEARE	LIGNEO	3,00	0,60	2
3	1	LINEARE	CIREX	4,15	1,80	2
4	2	LINEARE	LIGNEO	6,00	1,20	3
5	2	LINEARE	LIGNEO	3,50	0,90	2
6	3	LINEARE	LIGNEO	3,00	0,60	2

Figura 9.100: Vista assonometrica del modello completa e per livelli

9.13.1 Modello libero

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, in cui l'unico vincolo è quello con le fondazioni.

La tabella riporta la richiesta (RISP) e la capacità di spostamento (CASP) per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), il rapporto tra la forza di risposta elastica allo stato limite considerato e la forza di snervamento del sistema bilineare equivalente e la capacità di spostamento per q*=3.

Le analisi più gravose, individuate tramite il minor rapporto capacità – richiesta di spostamento allo SLV, sono evidenziate in arancione, in verde quelle soddisfatte.

			SL	.0	SL	.D	SL	.V	SL	0	SL	.D	SL	.V
N°	Analisi	Verifica	risp [cm]	casp [cm]	risp [cm]	casp [cm]	risp [cm]	casp [cm]	SLO q*	SLO q*=3 [cm]	SLD q*	SLD q*=3 [cm]	SLV q*	SLV q*=3 [cm]
1	+X' Ecc+ Dist 1	v	0.95	1.66	1.35	2.60	3.67	3.77	0.67	4.26	0.95	4.26	2.59	4.26
2	+X' Ecc- Dist 1	v	0.98	1.95	1.39	3.13	3.80	4.36	0.61	4.82	0.87	4.82	2.36	4.82
3	-X' Ecc+ Dist 1	v	0.89	1.74	1.26	2.71	3.43	7.16	0.52	5.18	0.73	5.18	1.99	5.18
4	-X' Ecc- Dist 1	v	0.89	1.76	1.26	2.38	3.44	4.59	0.65	4.14	0.91	4.14	2.49	4.14
5	+X' Ecc+ Dist 2	v	0.70	1.78	0.94	2.79	2.49	6.13	0.74	2.85	0.99	2.95	2.33	3.27
6	+X' Ecc- Dist 2	v	0.73	1.93	1.03	2.68	2.65	7.47	0.68	3.25	0.95	3.27	2.23	3.62
7	-X' Ecc+ Dist 2	v	0.63	1.92	0.81	2.34	2.13	5.99	0.54	3.59	0.69	3.85	1.61	4.29
8	-X' Ecc- Dist 2	v	0.55	1.28	0.70	1.70	1.96	2.56	0.61	2.88	0.78	3.09	1.83	3.44
9	+Y' Ecc+ Dist 1	v	0.34	1.40	0.43	1.82	1.00	3.01	0.32	3.91	0.41	4.22	0.96	4.73
10	+Y' Ecc- Dist 1	v	0.41	1.37	0.53	1.67	1.24	3.09	0.24	6.00	0.30	6.47	0.71	7.23
11	-Y' Ecc+ Dist 1	v	0.59	1.53	0.75	2.24	1.77	4.84	0.33	5.47	0.42	5.87	0.99	6.53
12	-Y' Ecc- Dist 1	v	0.45	1.96	0.57	2.99	1.34	5.86	0.32	4.71	0.41	5.07	0.95	5.67
13	+Y' Ecc+ Dist 2	v	0.32	1.97	0.40	2.89	0.95	6.33	0.18	6.58	0.23	7.10	0.55	7.97
14	+Y' Ecc- Dist 2	v	0.29	2.00	0.38	2.94	0.88	17.82	0.16	7.29	0.20	7.88	0.47	8.85
15	-Y' Ecc+ Dist 2	v	0.45	1.61	0.57	2.54	1.35	7.22	0.24	6.21	0.31	6.69	0.73	7.47
16	-Y' Ecc- Dist 2	V	0.30	2.18	0.38	2.62	0.88	5.64	0.24	4.85	0.30	5.24	0.71	5.89

 Tabella 9.41: Risultati dell'analisi push – over, Unità Strutturale 1

Le analisi più gravose risultano la 1 e la 11, rispettivamente in direzione + X, con una forza sismica proporzionale e con un'eccentricità positiva, e in direzione - Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità positiva.

Figura 9.101: Curva di capacità dell'analisi più gravosa in direzione X, analisi 1

Nell'analisi 1 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione, e in generale i piani primo e secondo dell'edificio.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

PARAMETRI DI ANALISI										
T*	M*	w	K*	F	F* _۷	d _y *				
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]				
0.58	1797.70	3285611	212833.15	1.40	3390.58	1.42				

Tabella 9.42: Tabella dei parametri di analisi calcolati nell'analisi 1Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,

- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_v* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno si nota che in prima battuta arrivano a rottura per pressoflessione le fasce murarie dei tre livelli, per poi danneggiarsi i maschi murari più snelli. Infine giungono a rottura i maschi murari più tozzi del primo livello.

Figura 9.102: Stato di danneggiamento, sottopasso 1

Figura 9.103: Stato di danneggiamento, sottopasso 9, SLO

Figura 9.104: Stato di danneggiamento, sottopasso 14, SLD

Figura 9.105: Stato di danneggiamento, sottopasso 20, SLV

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati unicamente elementi ad asse orizzontale. Al primo passo giungono a rottura la trave in c.a che schematizza gli archi del secondo piano e due travi del piano primo, mentre all'ultimo passo, coincidente con i sottopassi di due stati limite, si danneggiano anche fasce murarie del corpo nord occidentale.

Figura 9.106: Stato di danneggiamento, sottopasso 1

Figura 9.107: Stato di danneggiamento, sottopasso 9, 14 (SLO, SLD)

Figura 9.108: Stato di danneggiamento, sottopasso 20, SLV

Analisi 11, direzione Y

Figura 9.109: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 11

Nell'analisi 11 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

PARAMETRI DI ANALISI									
T*	M*	w	К*	F	F* _۷	d _y *			
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]			
0.39	1831.64	3285611	465876.22	1.30	8361.92	1.79			

Tabella 9.43: Tabella dei parametri di analisi calcolati nell'analisi 11

Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_v^* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come dalla rottura delle sole fasce murarie esterne dei piani primo e secondo e di alcuni setti del secondo piano, si giunga alla rottura di tutte le fasce di piano della struttura e di numerose pareti esterne.

In particolare il prospetto settentrionale è danneggiato da cielo a terra nei setti murari laterali e le pareti esterne situate in direzione ortogonale al sisma risultano pesantemente danneggiate.

Figura 9.110: Stato di danneggiamento, sottopasso 1

Figura 9.111: Stato di danneggiamento, sottopasso 9, SLO

Figura 9.112: Stato di danneggiamento, sottopasso 13, SLD

Figura 9.113: Stato di danneggiamento, sottopasso 29, SLV

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati esclusivamente elementi ad asse orizzontale. Al primo passo giungono a rottura quattro travi in c.a. del secondo piano e delle fasce murarie del corpo nord occidentale, mentre allo stato limite di salvaguardia della vita si danneggia un'altra fascia muraria e un setto portante del piano terra, appartenente anch'esso al corpo nord orientale, posto in direzione parallela al sisma.

Figura 9.114: Stato di danneggiamento, sottopasso 1

Figura 9.115: Stato di danneggiamento, sottopasso 9, 13 (SLO, SLD)

Figura 9.116: Stato di danneggiamento, sottopasso 29, SLV

9.13.2 Modello con vincoli cedevoli elasticamente

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono stati posti vincoli elastici, che simulino l'interazione con gli edifici limitrofi, e vincoli con le fondazioni.

La tabella riporta la richiesta (RISP) e la capacità di spostamento (CASP) per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), il rapporto tra la forza di risposta elastica allo stato limite considerato e la forza di snervamento del sistema bilineare equivalente e la capacità di spostamento per q*=3.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

			SLO		SLD		SLV		SLO		SLD		SLV	
N°	Analisi	Verifica	risp [cm]	casp [cm]	risp [cm]	casp [cm]	risp [cm]	casp [cm]	SLO q*	SLO q*=3 [cm]	SLD q*	SLD q*=3 [cm]	SLV q*	SLV q*=3 [cm]
1	+X' Ecc+ Dist 1	V	0.78	1.06	1.41	1.50	4.08	6.78	0.45	7.01	0.64	7.01	1.75	7.01
2	+X' Ecc- Dist 1	v	1.06	1.34	1.50	1.97	4.09	5.65	0.34	9.34	0.48	9.34	1.32	9.34
3	-X' Ecc+ Dist 1	V	0.71	1.57	0.93	2.17	2.18	3.83	0.32	6.58	0.42	6.92	0.99	7.68
4	-X' Ecc- Dist 1	V	0.52	1.41	0.66	2.21	1.56	3.03	0.31	5.61	0.39	6.04	0.92	6.74
5	+X' Ecc+ Dist 2	v	0.75	2.13	1.06	3.20	2.49	7.39	0.29	7.72	0.41	7.75	0.97	8.59
6	+X' Ecc- Dist 2	V	0.78	1.94	1.10	2.87	2.67	7.63	0.30	7.71	0.43	7.71	1.03	8.39
7	-X' Ecc+ Dist 2	v	0.39	1.86	0.50	2.72	1.18	8.02	0.21	6.73	0.27	7.26	0.64	8.13
8	-X' Ecc- Dist 2	V	0.35	2.30	0.45	2.90	1.06	6.90	0.21	6.29	0.27	6.79	0.64	7.62
9	+Y' Ecc+ Dist 1	V	0.42	1.42	0.54	2.01	1.27	7.20	0.22	6.33	0.28	6.80	0.65	7.58
10	+Y' Ecc- Dist 1	V	0.36	1.65	0.46	2.34	1.08	6.56	0.21	5.99	0.26	6.45	0.62	7.21
11	-Y' Ecc+ Dist 1	v	0.51	1.26	0.65	1.88	1.56	5.37	0.36	4.36	0.45	4.67	1.07	5.20
12	-Y' Ecc- Dist 1	V	0.37	1.71	0.47	2.40	1.10	4.48	0.29	4.31	0.37	4.64	0.87	5.19
13	+Y' Ecc+ Dist 2	v	0.28	1.71	0.35	2.41	0.83	5.35	0.14	7.30	0.18	7.88	0.43	8.84
14	+Y' Ecc- Dist 2	V	0.22	1.88	0.28	2.76	0.66	5.45	0.13	7.09	0.16	7.67	0.38	8.63
15	-Y' Ecc+ Dist 2	V	0.34	1.76	0.44	2.49	1.02	7.79	0.20	5.95	0.26	6.41	0.60	7.17
16	-Y' Ecc- Dist 2	V	0.27	2.03	0.35	2.97	0.81	3.90	0.19	5.49	0.24	5.93	0.56	6.65

Tabella 9.44: Risultati dell'analisi push – over, Unità Strutturale 1

Le analisi più gravose risultano la 2 e la 12, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità negativa, e in direzione - Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità negativa.

Analisi 2, direzione X

Figura 9.117: Curva di capacità dell'analisi più gravosa in direzione X, analisi 2

Nell'analisi 2 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione, e in generale i piani primo e secondo dell'edificio.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

PARAMETRI DI ANALISI										
T* [s]	M* w [kg] [kg]		K* [kN/m]	Г	F* _y [kN]	d _y * [cm]				
0.63	2056648	3767.12	207735.94	1.44	6766.39	3.07				

Tabella 9.45: Tabella dei parametri di analisi calcolati nell'analisi 2

Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,

- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno si nota che in prima battuta arrivano a rottura per pressoflessione la totalità fasce murarie, per poi danneggiarsi i maschi murari più snelli e posti agli ultimi livelli ed infine giungono a rottura i maschi murari più tozzi del prospetto settentrionale e meridionale. Le pareti esterne in direzione x, danneggiate soprattutto al secondo e terzo livello, simulano l'iterazione con le unità strutturali limitrofe, risulta quindi di minor interesse valutarne il grado danneggiamento per quanto concerne lo studio dell'unità strutturale.

Figura 9.118: Stato di danneggiamento, sottopasso 1

Figura 9.119: Stato di danneggiamento, sottopasso 7, SLO

Figura 9.120: Stato di danneggiamento, sottopasso 10, SLD

Figura 9.121: Stato di danneggiamento, sottopasso 28, SLV

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati unicamente elementi ad asse orizzontale. Al primo passo giungono a rottura la trave in c.a. che schematizza gli archi del secondo piano e due travi del piano secondo, mentre all'ultimo passo, coincidente con i sottopassi dei tre stati limite, si danneggiano le fasce murarie del corpo nord occidentale.

Figura 9.122: Stato di danneggiamento, sottopasso 1

Figura 9.123: Stato di danneggiamento, sottopasso 7, 10, 28 (SLO, SLD, SLV)

Analisi 12, direzione Y

Figura 9.124: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 12

Nell'analisi 12 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione e i setti di lunghezza considerevole paralleli alla direzione del sisma.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

PARAMETRI DI ANALISI										
T*	M*	w	К*	Г	F* _y	d _v *				
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]				
0.34	2068373	3767121	720239.09	1.11	9143.28	1.27				

Tabella 9.46: Tabella dei parametri di analisi calcolati nell'analisi 12Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente.

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come già dal primo passo risultino giunti a rottura le fasce di piano delle pareti esterne e alcuni maschi murari dell'ultimo livello. All'aumentare dei passi di carico il danneggiamento si ripercuote anche sui livelli inferiori, in particolar modo giungono a rottura setti in muratura privi di aperture posti in direzione parallela al sisma al terzo livello.

Figura 9.125: Stato di danneggiamento, sottopasso 1

Figura 9.126: Stato di danneggiamento, sottopasso 14, SLO

Figura 9.127: Stato di danneggiamento, sottopasso 19, SLD

Figura 9.128: Stato di danneggiamento, sottopasso 35, SLV
CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati elementi ad asse orizzontale e verticale. Al primo passo giungono a rottura la trave in c.a che schematizza gli archi del secondo piano ed alcune fasce di piano del corpo nord occidentale del terzo livello.

Con l'aumento dei passi di carico giungono a rottura le fasce di piano del secondo livello, sottostanti alle fasce già danneggiate al primo passo, mentre all'ultimo passo si giunge alla rottura della parete del secondo livello simmetrica rispetto alle fasce di piano danneggiate.

Figura 9.129: Stato di danneggiamento, sottopasso 1

Figura 9.130: Stato di danneggiamento, sottopasso 14, SLO

Figura 9.131: Stato di danneggiamento, sottopasso 19, 35 (SLD, SLV)

Palazzo del Capitanio, unità strutturale 2

Il secondo corpo analizzato è quello posto sopra alle poste ed all'attuale centro direzionale dell'APS.

Al piano terra è stata riportata sullo stesso asse la muratura di confine delle poste e degli uffici dell'APS, schematizzazione attuata anche per il software 3Muri, ma per l'analisi del modello ANDIWall è stato necessario porre in modo simmetrico la pianta del piano terra relativa alla zona delle poste e le aperture sono state allineate sullo stesso asse

I solai intermedi sono stati modellati: in laterocemento per il primo livello e in legno per gli altri livelli, compresi il sottotetto e la copertura, analogamente al modello 3Muri.

Sono stati aggiunti dei carichi lineari per simulare il peso dei solai gravanti sulle murature dell'unità strutturale in questione, laddove si conosce il carico strutturale.

N° CARICO	LIVELLO	TIPO	SOLAIO	G _k [kN/m]	G _{K,agg} [kN/m]	Q _k [kN/m]
1	2	LINEARE	LATEROCEMENTO	11,00	4,00	3
2	3	LINEARE	LATEROCEMENTO	11,00	4,00	2

Figura 9.132: Vista assonometrica del modello completa e per livelli

9.14.1 Modello libero

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, in cui l'unico vincolo è quello con le fondazioni.

La tabella riporta la richiesta (RISP) e la capacità di spostamento (CASP) per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), il rapporto tra la forza di risposta elastica allo stato limite considerato e la forza di snervamento del sistema bilineare equivalente e la capacità di spostamento per q*=3.

Le analisi più gravose, individuate tramite il minor rapporto capacità – richiesta di spostamento allo SLV, sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non soddisfatte.

			SL	.0	SL	.D	SL	.V	SL	0	SL	D	SL	V
N°	Analisi	Verifica	risp [cm]	casp [cm]	risp [cm]	casp [cm]	risp [cm]	casp [cm]	SLO q*	SLO q*=3 [cm]	SLD q*	SLD q*=3 [cm]	SLV q*	SLV q*=3 [cm]
1	+X' Ecc+ Dist 1	V	0.92	1.66	1.33	1.66	3.55	8.12	0.60	4.59	0.87	4.59	2.29	4.68
2	+X' Ecc- Dist 1	x	0.96	1.83	1.38	1.83	3.74	3.18	0.56	5.13	0.81	5.13	2.19	5.13
3	-X' Ecc+ Dist 1	V	1.05	1.69	1.51	2.17	4.08	5.84	0.68	4.61	0.98	4.61	2.65	4.61
4	-X' Ecc- Dist 1	×	1.04	1.36	1.50	1.94	4.05	3.21	0.81	3.86	1.17	3.86	3.14	3.86
5	+X' Ecc+ Dist 2	V	0.77	1.46	1.04	1.46	2.61	6.66	0.46	5.05	0.62	5.27	1.45	5.83
6	+X' Ecc- Dist 2	v	0.80	1.60	1.13	1.60	2.76	6.86	0.41	5.81	0.58	5.91	1.36	6.52
7	-X' Ecc+ Dist 2	V	0.68	1.54	0.87	1.54	2.37	8.25	0.65	3.18	0.84	3.45	1.95	3.83
8	-X' Ecc- Dist 2	v	0.80	1.84	1.11	1.84	2.82	7.51	0.56	4.28	0.78	4.38	1.82	4.83
9	+Y' Ecc+ Dist 1	V	0.12	0.60	0.15	0.60	0.66	1.92	0.70	0.86	0.89	0.95	2.09	1.07
10	+Y' Ecc- Dist 1	v	0.16	0.65	0.20	0.65	0.80	4.52	0.70	1.02	0.90	1.12	2.10	1.26
11	-Y' Ecc+ Dist 1	v	0.27	0.47	0.35	0.47	1.09	3.03	0.60	1.68	0.77	1.84	1.79	2.05
12	-Y' Ecc- Dist 1	v	0.37	0.92	0.47	1.28	1.21	1.92	0.42	2.90	0.54	3.16	1.25	3.52
13	+Y' Ecc+ Dist 2	V	0.12	0.67	0.15	0.67	0.43	1.36	0.39	1.51	0.50	1.67	1.17	1.88
14	+Y' Ecc- Dist 2	v	0.16	0.80	0.21	1.06	0.51	2.11	0.35	2.09	0.44	2.30	1.04	2.59
15	-Y' Ecc+ Dist 2	v	0.18	0.53	0.23	0.53	0.55	4.42	0.35	2.23	0.44	2.44	1.04	2.74
16	-Y' Ecc- Dist 2	V	0.16	1.17	0.20	1.57	0.46	4.64	0.25	2.81	0.32	3.09	0.75	3.47

 Tabella 9.47: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 4 e la 12, rispettivamente in direzione - X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità negativa, e in direzione - Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità negativa.

Analisi 4, direzione X

Figura 9.133: Curva di capacità dell'analisi più gravosa in direzione X, analisi 4

Nell'analisi 4 lo spostamento richiesto dalla normativa risulta essere maggiore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione, e in generale i piani primo e secondo dell'edificio.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

	PARAMETRI DI ANALISI											
T*	M*	Г	F* _y	d _y *								
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]						
0,57	0,57 437452 943456 53066,08 1,56 683,33 1,29											

 Tabella 9.48:
 Tabella dei parametri di analisi calcolati nell'analisi 4

Dove:

- T* è il periodo elastico del sistema equivalente,

- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_v* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come già dal primo passo risultino giunti a rottura le fasce di piano del prospetto orientale e alcuni maschi murari degli ultimi due livelli. All'aumentare dei passi di carico il danneggiamento si ripercuote anche sui livelli inferiori, in particolar modo giungono a rottura setti in muratura posti in direzione parallela al sisma.

Figura 9.134: Stato di danneggiamento, sottopasso 1

Figura 9.135: Stato di danneggiamento, sottopasso 5, SLO

Figura 9.136: Stato di danneggiamento, sottopasso 7, SLD

Figura 9.137: Stato di danneggiamento, sottopasso 12, SLV

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati unicamente elementi ad asse orizzontale. Al primo passo giungono a rottura la trave in c.a che schematizza gli archi del secondo piano e due travi del piano terra, mentre all'ultimo passo, coincidente con i sottopassi dei tre stati limite, si danneggiano le fasce murarie del corpo nord occidentale.

Figura 9.138: Stato di danneggiamento, sottopasso 1, 5, 7 (SLO, SLD)

Figura 9.139: Stato di danneggiamento, sottopasso 12, SLV

Analisi 11 direzione Y

Figura 9.140: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 11

Nell'analisi 11 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

	PARAMETRI DI ANALISI											
T* [s]	M* [kg]	Г	F* _y [kN]	d _y * [cm]								
0,29 551205 943456 245812,65 1,06 1121.266 0,46												

Tabella 9.49: Tabella dei parametri di analisi calcolati nell'analisi 11Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come dalla rottura delle sole fasce murarie esterne del prospetto orientale e di alcuni setti del terzo piano, si giunga alla rottura di tutte le fasce di piano del corpo settentrionale e delle pareti del quarto livello.

Figura 9.141: Stato di danneggiamento, sottopasso 1

Figura 9.142: Stato di danneggiamento, sottopasso 10, (SLO, SLD)

Figura 9.143: Stato di danneggiamento, sottopasso 49, SLV

CAP 9 – ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Per quanto riguarda invece la rottura a taglio nel piano, non vi sono elementi danneggiati.

Figura 9.144: Stato di danneggiamento, sottopasso 1, 10, 49 (SLO, SLD, SLV)

9.14.2 Modello con vincoli cedevoli elasticamente

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono stati posti vincoli elastici, che simulino l'interazione con gli edifici limitrofi, e vincoli con le fondazioni.

La tabella riporta la richiesta (RISP) e la capacità di spostamento (CASP) per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), il rapporto tra la forza di risposta elastica allo stato limite considerato e la forza di snervamento del sistema bilineare equivalente e la capacità di spostamento per q*=3.

Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

			SL	0	SL	D	SL	V	SL	0	SL	D	SL	V
N°	Analisi	Verifica	risp [cm]	casp [cm]	risp [cm]	casp [cm]	risp [cm]	casp [cm]	SLO q*	SLO q*=3 [cm]	SLD q*	SLD q*=3 [cm]	SLV q*	SLV q*=3 [cm]
1	+X' Ecc+ Dist 1	V	0.24	0.80	0.31	0.80	0.80	8.18	0.37	3.00	0.47	3.29	1.09	3.70
2	+X' Ecc- Dist 1	v	0.26	0.86	0.33	0.86	0.86	8.75	0.37	3.06	0.47	3.36	1.11	3.77
3	-X' Ecc+ Dist 1	V	0.25	0.82	0.32	0.82	0.89	6.24	0.39	2.85	0.50	3.13	1.17	3.52
4	-X' Ecc- Dist 1	V	0.27	0.98	0.35	0.98	0.93	28.47	0.38	3.08	0.49	3.38	1.14	3.80
5	+X' Ecc+ Dist 2	V	0.17	0.69	0.22	0.69	0.50	7.49	0.28	3.14	0.36	3.47	0.83	3.91
6	+X' Ecc- Dist 2	V	0.18	0.76	0.23	0.76	0.53	8.45	0.28	3.20	0.36	3.52	0.84	3.97
7	-X' Ecc+ Dist 2	V	0.17	1.48	0.22	2.16	0.55	8.00	0.35	2.53	0.45	2.79	1.04	3.15
8	-X' Ecc- Dist 2	V	0.19	0.78	0.24	0.78	0.56	8.49	0.30	3.11	0.39	3.42	0.90	3.86
9	+Y' Ecc+ Dist 1	V	0.24	0.93	0.31	0.93	0.78	1.76	0.40	2.05	0.51	2.23	1.19	2.49
10	+Y' Ecc- Dist 1	V	0.21	1.30	0.27	2.08	0.70	4.78	0.41	1.85	0.52	2.02	1.21	2.26
11	-Y' Ecc+ Dist 1	V	0.30	0.78	0.38	0.78	0.97	7.59	0.43	2.20	0.55	2.39	1.28	2.66
12	-Y' Ecc- Dist 1	v	0.27	1.43	0.34	2.03	0.93	5.90	0.51	1.72	0.65	1.87	1.52	2.08
13	+Y' Ecc+ Dist 2	V	0.20	0.93	0.26	1.26	0.61	2.04	0.24	3.12	0.30	3.41	0.70	3.81
14	+Y' Ecc- Dist 2	V	0.17	1.06	0.22	1.06	0.50	1.19	0.22	3.04	0.28	3.33	0.64	3.72
15	-Y' Ecc+ Dist 2	v	0.22	1.51	0.28	2.15	0.76	8.64	0.44	1.75	0.56	1.91	1.32	2.13
16	-Y' Ecc- Dist 2	V	0.20	0.54	0.26	0.54	0.65	4.90	0.38	1.92	0.48	2.10	1.13	2.35

 Tabella 9.50: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 1 e la 13, rispettivamente in direzione + X, con una forza sismica proporzionale alle masse e con un'eccentricità positiva, e in direzione + Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità positiva.

Analisi 3, direzione X

Figura 9.145: Curva di capacità dell'analisi più gravosa in direzione X, analisi 3

Nell'analisi 5 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione, e in generale i piani primo e secondo dell'edificio.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

	PARAMETRI DI ANALISI										
T* M* w K* F F* _γ d _γ ³ [s] [kg] [kg] [kN/m] Γ [kN] [cm]											
0.23 861986 1458773 682923,54 1.59 3010.55 0.64											

Tabella 9.51: Tabella dei parametri di analisi calcolati nell'analisi 2Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,

- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_v* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Dal primo passo risultano giunte a rottura le fasce di piano del prospetto, mentre all'aumentare dei passi di carico il danneggiamento si ripercuote anche sui livelli inferiori, in particolar modo giungono a rottura setti in muratura posti in direzione parallela al sisma. Le pareti esterne in direzione x, danneggiate soprattutto al secondo livello, simulano l'iterazione con le unità strutturali limitrofe, risulta quindi di minor interesse valutarne il grado danneggiamento per quanto concerne lo studio dell'unità strutturale.

Figura 9.146: Stato di danneggiamento, sottopasso 1

Figura 9.147: Stato di danneggiamento, sottopasso 14, (SLO, SLD)

Figura 9.148: Stato di danneggiamento, sottopasso 149, SLV

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati elementi ad asse orizzontale e verticale. Al primo passo la struttura è completamente integra e giunge a rottura unicamente la trave in c.a sulla quale poggiano i livelli superiori.

Figura 9.149: Stato di danneggiamento, sottopasso 1

Figura 9.150: Stato di danneggiamento, sottopasso 14, 149 (SLO, SLD, SLV)

Analisi 11 direzione Y

Figura 9.151: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 11

Nell'analisi 9 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

	PARAMETRI DI ANALISI											
T*	T* M* w K* F*, dy*											
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]						
0,37 1053695 1458773 308005,84 0,75 1795.84 0,69												

Tabella 9.52: Tabella dei parametri di analisi calcolati nell'analisi 11Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come dalla rottura delle sole fasce murarie esterne del prospetto orientale, si giunga alla rottura di tutte le fasce di piano delle facciate esterne e di due pareti esterne del quarto livello poste in direzione parallela del sisma.

Figura 9.152: Stato di danneggiamento, sottopasso 1

Figura 9.153: Stato di danneggiamento, sottopasso 10, (SLO, SLD)

Figura 9.154: Stato di danneggiamento, sottopasso 95, SLD

Per quanto riguarda invece la rottura a taglio nel piano, non vi sono elementi danneggiati.

Figura 9.155: Stato di danneggiamento, sottopasso 1, 10, 95 (SLO, SLD, SLV)

Analisi dei risultati ottenuti

L'analisi dei risultati relativa alle verifiche effettuate con ANDILWall è stata confrontata direttamente con quella svolta per 3Muri: è stato definito l'indice di sicurezza sismica $I_{S, SLV}$ e la vita nominale residua *VN* della struttura tramite le seguenti formule

$$I_{S,SLV} = \frac{T_{SLV}}{T_{R,SLV}} = \frac{X}{712}$$
$$V_N = \frac{T_{SLV}}{C_u} \ln(1 - P_{VR})$$

Dove:

- T_{SLV} è il periodo di ritorno dell'azione sismica che porta al raggiungimento dello SLV;
- P_{VR} è la probabilità di superamento relativa allo stato limite considerato (10% per lo SLV);
- C_u è il coefficiente d'uso relativo alla classe d'uso (C_u = 1,5 per la classe d'uso III).

ANDILWall non fornisce però il periodo di ritorno che porta al raggiungimento dello stato limite di salvaguardia della vita, necessario per il calcolo degli indici sopra citati, che è stato quindi ricavato tramite iterazioni.

Laddove tutte le analisi risultavano verificate è stata aumentata la vita nominale dell'edificio, fino al punto in cui un'analisi per direzione (X, Y) non fosse verificata: a data vita nominale corrisponde il periodo di ritorno per il quale la struttura raggiunge lo stato limite di salvaguardia della vita.

Il processo è stato svolto in ugual modo per i modelli in cui non tutte le analisi erano verificate, a differenza che la vita nominale è stata diminuita fino a che tutte le analisi risultavano verificate.

Tramite questo procedimento sono state ricavate le analisi più gravose, assumendo come tali quelle che per prime raggiungevano la mancata verifica.

ANALISI IN	UNITA' STR	UTTURALE 1	UNITA' STRUTTURALE 2			
DIREZIONE		VINCOLI		VINCOLI		
Х	LIDENO	CEDEVOLI	LIBERO	CEDEVOLI		
TSLV	855	2475	361	2475		
IS, SLV	1.20	3.48	0.51	3.48		
VN	60	173	25	174		

Tabella 9.53: *Risultati maggiormente significativi delle analisi relative al modello libero e con vincoli cedevoli elasticamente in direzione x.*

ANALISI IN	UNITA' STR	UTTURALE 1	UNITA' STRUTTURALE 2			
DIREZIONE		VINCOLI		VINCOLI		
Y	LIBERO	CEDEVOLI	LIBERO	CEDEVOLI		
TSLV	2475	2475	2475	2475		
IS, SLV	3.48	3.48	3.48	3.48		
VN	174	174	174	174		

Tabella 9.54: *Risultati maggiormente significativi delle analisi relative al modello libero e con vincoli cedevoli elasticamente in direzione x.*

I valori di indice di sicurezza e vita nominale denotano una bassa vulnerabilità per la prima unità strutturale, mentre per la seconda unità strutturale si evince una disparità di risultati.

Tenendo presente che le analisi in direzione y soddisfano qualsiasi verifica, la seconda unità strutturale riporta una vita nominale moderata, pari a 25 anni, relativa all'analisi più gravosa in direzione X del modello libero, mentre per quanto concerne il modello con vincoli cedevoli la struttura non presenta problematiche.

Si riportano di seguito le curve di capacità delle analisi più gravose di ciascun modello, suddivise a seconda della direzione considerata.

Sono state usate le seguenti sigle:

- US, unità strutturale;
- ML, modello libero;
- MVC, modello con vincoli cedevoli;
- LC1, livello di conoscenza con un fattore di confidenza pari a 1,3;
- LC2, livello di conoscenza con un fattore di confidenza pari a 1,2.

Tabella 9.55: Confronto delle curve di capacità delle analisi peggiori in direzione X per ciascun modello di ciascuna unità strutturale, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.56: Confronto delle curve di capacità delle analisi peggiori in direzione Y per ciascun modello di ciascuna unità strutturale, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Le curve di capacità riportano valori di resistenza di un ordine di grandezza di differenza per le due unità strutturali: l'US1 sopporta un taglio alla base compreso tra 3000 kN (analisi in direzione X del modello libero) e 9150 kN (analisi in direzione Y del modello con vincoli cedevoli), mentre l'US2 raggiunge un valore massimo di taglio alla base di 3000 kN (analisi in direzione Y del modello con vincoli cedevoli).

Come nel caso di 3Muri la capacità di sopportazione di taglio alla base e la relativa escursione in campo elastico aumenta con l'apposizione di vincoli nel modello: il modello libero sopporta valori inferiori di forza rispetto al modello con vincoli cedevoli, mentre il tratto di plasticizzazione non risulta necessariamente più lungo nei modelli liberi.

Dalle analisi precedenti si denota che unicamente l'unità strutturale 2, relativamente alle analisi in direzione x, risulta non soddisfare requisiti richiesti dalla normativa, in quanto la vita nominale residua assume un valore pari a 25 anni.

Nonostante per i beni di interesse culturale esposti ad azioni sismiche sia possibile ammettere valori di vita nominali pari a 20 anni, a favore di sicurezza è stato confrontato un modello libero in LC2 della seconda unità strutturale.

ANALISI IN	UNITA' STRUTTURALE 2			ANALISI IN	UNITA' STR	UTTURALE 2
DIREZIONE X	LIBERO LC1 LIBERO LC2			DIREZIONE Y	LIBERO LC1	LIBERO LC2
TSLV	361 399			TSLV	2475	2475
IS, SLV	0.51	0.56		IS, SLV	3.48	3.48
VN	25	28		VN	174	174

Tabella 9.57: *Risultati maggiormente significativi delle analisi relative al modello libero dell'unità strutturale 2 in LC2, confronto con il modello in LC1.*

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

Confrontando i valori permane la disparità di risultati prodotti dalle analisi in direzione X piuttosto che in Y, le quali forniscono gli stessi valori soddisfacenti, in termini di vita nominale, del modello in LC1.

Con la modellazione in LC2 si nota un lieve incremento della vita nominale del modello (circa un 3%).

Sono state riprodotte le curve di capacità, bilineari equivalenti, delle analisi più sfavorevoli di ciascun modello (in LC1 e LC2), suddivise a seconda della direzione considerata.

Tabella 9.58: Confronto delle curve di capacità delle analisi peggiori in direzione X per il modello libero dell'unità strutturale 2, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.59: Confronto delle curve di capacità delle analisi peggiori in direzione Y per il modello libero dell'unità strutturale 2, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Le curve di capacità dei modelli in LC1 e LC2 riportano valori di resistenza di 400 kN di differenza per le analisi svolte in direzione X e di 600 kN di differenza per le analisi svolte in direzione Y. Per quanto riguarda l'estensione del tratto elastico e plastico, le analisi con un livello di conoscenza maggiore riportano una maggiore escursione.

Riguardo le criticità del modello vale quanto detto per 3Muri: l'incremento della conoscenza porta a risultati migliori, ma per migliorare notevolmente il comportamento globale è di maggior appoggio un intervento mirato a diminuire la vulnerabilità dell'aggregato in direzione X.

Confronto dei risultati ottenuti: 3Muri - ANDILWall

Le elaborazioni, svolte tramite software differenti, hanno prodotto risultati diversi a livello di vulnerabilità dell'edificio, capacità di spostamento e taglio massimo.

La tabella 9.60 riassume le analisi più gravose ottenute dalle elaborazioni: si tenga conto che 3Muri svolge 24 analisi, in quanto considera anche l'eccentricità nulla per ciascuna direzione e distribuzione delle forze, mentre ANDILWall ne svolge 16.

Solamente le elaborazioni dei modelli libero e vincolato dell'unità strutturale 1 coincide in 3Muri e ANDILWall, le altre risultano differire in genere per un parametro, in genere la direzione della forza o la sua eccentricità.

ANALISI PIU'	GRAVOSE	3Muri	ANDILWall
	MODELLO	X+ D1 +	X+ D1 e+
1151	LIBERO	Y- D2 e+	Y- D1 e+
031	MODELLO	X+ D1 e-	X+ D1 e-
	VINCOLATO	Y+ D1 /	Y- D1 e-
	MODELLO	X- D1 e+	X- D1 e-
1192	LIBERO	Y+ D1 e+	Y- D1 e+
032	MODELLO	X+ D2 /	X- D1 e+
	VINCOLATO	Y+ D1 e+	Y- D1 e+

Tabella 9.60: Confronto delle analisi più gravose: per ogni analisi si indica direzione, distribuzione delle forze ed eccentricità.

Per quanto riguarda la verifica delle analisi, per l'unità strutturale 1 tutte le analisi di entrambi i software soddisfano la richiesta di capacità, mentre per l'unità strutturale 2 solo le analisi in Y risultano verificate in tutti i modelli.

La tabella 9.61 riporta le analisi in direzione X della seconda unità strutturale con la rispettiva percentuale di verifica, sia per il modello libero che per il modello con vincoli, rigidi e cedevoli.

Per valutare la percentuale di verifica in ANDILWall è stata rapportata la richiesta di spostamento allo stato limite di salvaguardia della vita con la capacità di spostamento allo stato limite di salvaguardia della vita.

Lo studio in ANDILWall ha portato a risultati di verifica molto superiori rispetto il primo software, dato riscontrabile anche dal confronto delle curve di capacità, analizzando le quali si attesta un maggiore spostamento del punto di controllo.

DIREZIONE	CARICO	ECC.		3MURI	ANDILWALL		
SISMA	SISMICO	[cm]	LIBERO	VINCOLATO	VINCOLATO	LIBERO	VINCOLATO
				RIGIDO	CEDEVOLE		
X+	D1	/	82%	143%	81%	/	/
X+	D2	/	76%	108%	106%	/	/
X-	D1	/	92%	155%	83%	/	/
Х-	D2	/	82%	199%	113%	/	/
X+	D1	e+	76%	128%	84%	132%	463%
X+	D1	e-	79%	154%	86%	85%	522%
X+	D2	e+	73%	144%	91%	113%	389%
X+	D2	e-	76%	193%	85%	95%	400%
X-	D1	e+	92%	154%	82%	223%	780%
Х-	D1	e-	91%	166%	80%	232%	717%
X-	D2	e+	82%	135%	113%	160%	573%
Х-	D2	e-	67%	137%	109%	171%	633%

 Tabella 9.61: Confronto dei risultati delle analisi ottenuti tramite le elaborazioni in 3Muri e ANDILWall.

Sono state poi confrontate le vite nominali residue che si ricavano dalle analisi più gravose: la tabella 9.62 ritrae un confronto delle analisi in direzione X, mentre la tabella 9.63 in direzione Y.

Per le analisi in X si nota una certa diversità di risultati, che può variare dai 40 a 130 anni di vita nominale residua, mentre per quelle in direzione Y i risultati non presentano differenze.

In particolare, per quanto riguarda la prima tabella, si può affermare che i modelli della prima unità strutturale, per quanto non riportino gli stessi risultati, a livello di valutazione della vulnerabilità rispondo tutti con un elevato valore, superiore ai 50 anni anni previsti dalla normativa. Per quanto concerne la seconda unità strutturale, i valori del modello libero sono pressochè uguali, con uno scarto di 6 anni tra I uno e l'altro software, mentre i valori del modello vincolato subiscono un'ingente variazione, che in termini di valutazione delle verifiche imposte da normativa producono dei risultati non soddisfacenti e soddisfacenti le norme tecniche (29 anni di VN per 3Muri e 174 per ANDILWall).

C'è da precisare però che nel caso di beni tutelati si ritiene soddisfatta una verifica che riporti un vita nominale pari almeno a 20 anni: in quest'ottica di valutazione di vulnerabilità di Palazzo del Capitanio si considerano soddisfatte entrambe le verifiche.

ANALISI X		UNITA' STRUTTURALE 1		UNITA' STRUTTURALE 2	
		LIBERO	VINCOLI	LIBERO	VINCOLI
			CEDEVOLI		CEDEVOLI
T _{SLV}	3Muri	1235	1922	275	417
	ANDILWall	855	2475	361	2475
I _{s, slv}	3Muri	1.73	2.70	0.43	0.67
	ANDILWall	1.20	3.48	0.51	3.48
VN	3Muri	86	135	19	29
	ANDILWall	60	174	25	174

Tabella 9.62: Confronto delle analisi più gravose in direzione X, svolte in 3Muri e ANDILWall

CAP 9 - ANALISI DEI MECCANISMI GLOBALI DI COLLASSO

ANALISI Y		UNITA' STRUTTURALE 1		UNITA' STRUTTURALE 2	
		LIBERO	VINCOLI	LIBERO	VINCOLI
			CEDEVOLI		CEDEVOLI
T _{slv}	3Muri	2475	2475	2475	2475
	ANDILWall	2475	2475	2475	2475
I _{s, slv}	3Muri	3.48	3.48	3.48	3.48
	ANDILWall	3.48	3.48	3.48	3.48
VN	3Muri	174	174	174	174
	ANDILWall	174	174	174	174

 Tabella 9.63: Confronto delle analisi più gravose in direzione Y, svolte in 3Muri e ANDILWall

Si riportano di seguito le curve di capacità delle analisi più gravose di ciascun modello, suddivise a seconda della direzione considerata.

Sono state usate le seguenti sigle:

- US, unità strutturale;
- ML, modello libero;
- MVC, modello con vincoli cedevoli.

Il grafico 9.64 è relativo alle analisi in direzione X dell'unità strutturale 1: i valori di forza e di rigidezza valutati con 3Muri sono superiori rispetto a quelli valutati con ANDILWall, mentre i valori di spostamento ultimo sono maggiori nel secondo software. In particolare i modelli liberi si discostano di poco in genere come curve di capacità, mentre i modelli vincolati registrano un divario maggiore.

Il grafico 9.65 è relativo alle analisi in direzione X dell'unità strutturale 2: i valori di forza e spostamento sono superiori nel modello ANDILWall relativamente al modello vincolato, mentre per il modello libero i valori di forza coincidono.

Il grafico 9.66 è relativo alle analisi in direzione Y dell'unità strutturale 1: i valori di forza e di rigidezza valutati con 3Muri differiscono di pochi kN (nell'ordine della decina) con quelli valutati con ANDILWall, mentre i valori di spostamento ultimo sono maggiori nel secondo software (2 - 3 cm).

Il grafico 9.67 è relativo alle analisi in direzione Y dell'unità strutturale 2: analogamente alle analisi in direzione X i valori di forza e spostamento sono superiori nel modello ANDILWall, soprattutto relativamente al modello vincolato, con un'escursione massima di 600 kN, mentre i modelli liberi si equivalgono.

In generale i modelli liberi hanno dato risposte simili e confrontabili in entrambi i programmi, mentre i modelli vincolati, soprattutto in riferimento all'unità strutturale 2, vedono una sostanziale differenza di valori di taglio alla base. Tale diversità è dovuta al modo in cui sono stati apposti i vincoli ai modelli: mentre per 3muri si impone un valore di rigidezza, per ANDILWall si schematizzano i setti stessi che fungono da vincolo.

Inoltre i valori di spostamento del punto di controllo si discostano di 2 – 3 cm: in media 3Muri schematizza un tratto plastico minore rispetto ANDILWall, in particolare nei modelli vincolati.

Tabella 9.64: Confronto delle curve di capacità delle analisi peggiori in direzione X per ciascun modello dell'unità strutturale 1, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.65: Confronto delle curve di capacità delle analisi peggiori in direzione X per ciascun modello dell'unità strutturale 2, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.66: Confronto delle curve di capacità delle analisi peggiori in direzione Y per ciascun modello dell'unità strutturale 1, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

Tabella 9.67: Confronto delle curve di capacità delle analisi peggiori in direzione Y per ciascun modello dell'unità strutturale 2, in ascissa è indicato lo spostamento del punto di controllo, in ordinata il valore del taglio alla base.

In conclusione i risultati prodotti dalle elaborazioni hanno riscontrato una rilevante corrispondenza per quanto riguarda una vulnerabilità qualitativa del complesso: entrambi i software attestano un buon comportamento dell'unità strutturale 1 sotto l'azione di forze orizzontali, e una discreta vulnerabilità dell'unità strutturale 2 sotto l'azione di forze in direzione X. La maggior percentuale di verifica ottenuta in ANDILWall deriva da una superiore capacità di spostamento attribuita alla struttura, in particolare considerando i modelli vincolati si nota una maggiore discrepanza dei risultati di verifica.

La scelta dello strumento di analisi appare quindi un importante discriminante ai fini di una buona modellazione. A tale scopo si mettono in luce alcune caratteristiche dei due software, in quanto qualsiasi programma venga utilizzato è sempre necessario valutarne le caratteristiche in relazione al caso studio.

E' presumibile che il comportamento dei modelli vincolati sviluppati da ANDILWall sia quello che schematizzi meglio la realtà, in quanto vincola la struttura ai setti stessi, non a valori di rigidezza imposti tramite semplificazioni.

L'utilizzo di ANDILWall ad ogni modo è possibile solo in caso di edifici abbastanza regolari, o che comunque permettano la schematizzazione a telaio equivalente.

Nell'ipotesi in cui il caso studio fosse una struttura irregolare, la sua semplificazione porrebbe in essere l'analisi di una compagine ben diversa da quella in esercizio. Inoltre non è possibile valutare il comportamento globale in presenza di grande vulnerabilità quali sono archi e volte.

3Muri fornisce risultati di spostamento ultimo e capacità in media inferiori, quindi si può affermare che il suo utilizzo produca una stima a favore di sicurezza.

Nell'ottica però del minimo intervento il suo impiego potrebbe favorire la progettazione e l'esecuzione di interventi non strettamente necessari alla messa in sicurezza.

In compenso è possibile analizzare per ogni parete la percentuale di verifica ed individuare le zone maggiormente vulnerabili, in modo da sviluppare interventi mirati. Infatti, mentre 3Muri visualizza per ogni setto la schematizzazione a telaio equivalente ad ogni passo di carico, ANDILWall presenta solo una visione complessiva della struttura per ogni passo, segnalando però quali siano i sottopassi degli stati limite.

Shear wave tomography

10. PIANO DI INDAGINI

Premesse per la progettazione del piano di indagini

La progettazione di un valido piano di indagini è alla base di una corretta valutazione della vulnerabilità sismica, in particolar modo nel momento in cui entrano in gioco beni tutelati, quale Palazzo del Capitanio. Le problematiche relative ad un'adeguata analisi della struttura sono imputabili alla conoscenza delle caratteristiche originarie della fabbrica e delle modifiche subite nel corso del tempo, di natura antropica o materica.

Tuttavia una campagna di indagini estesa potrebbe risultare oltremodo invasiva per l'edificio stesso: da qui nasce la necessità di redigere un piano critico, volto a caratterizzare la struttura tramite elementi chiave.

La scelta di appropriate indagini diagnostiche in sito si basa sulla verifica del complesso dei problemi evidenziati dall'analisi preliminare e dalla documentazione storica.

Il percorso della conoscenza può essere ricondotto alle seguenti attività:

- l'identificazione della costruzione, la sua localizzazione in relazione a particolari aree a rischio, ed il rapporto della stessa con il contesto urbano circostante;
- il rilievo geometrico della costruzione nello stato attuale, inteso come completa descrizione stereometrica della fabbrica, compresi gli eventuali fenomeni fessurativi e deformativi;
- l'individuazione della evoluzione della fabbrica, intesa come sequenza delle fasi di trasformazione edilizia, dall'ipotetica configurazione originaria all'attuale;
- l'individuazione degli elementi costituenti l'organismo resistente, nell'accezione materica e costruttiva, con una particolare attenzione rivolta alle tecniche di realizzazione, ai dettagli costruttivi ed alla connessioni tra gli elementi;
- l'identificazione dei materiali, del loro stato di degrado, delle loro proprietà meccaniche;
- la conoscenza del sottosuolo e delle strutture di fondazione, con riferimento anche alle variazioni avvenute nel tempo ed ai relativi dissesti⁶³.

In generale le indagini su manufatti storici si dividono in:

- Prove non distruttive (NDT):
 - passive
 - attive
- Prove debolmente distruttive (MDT)
- Prove distruttive:
 - in laboratorio
 - in sito

Qualora si vogliano misurare le caratteristiche meccaniche e di deformabilità in modo quantitativo ed esatto bisogna ricorrere a prove di tipo distruttivo. Le altre tecniche consentono di ottenere risultati qualitativi sulle caratteristiche del pannello murario, difficilmente correlabili alla resistenza e al modulo elastico, o risultati quantitativi, ma puntuali, difficilmente estendibili a tutta la muratura. Questi tipi di prova, per la loro caratteristica di non invasività, sono i più applicabili alle strutture storiche.

⁶³ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.4.1.1

Prove non distruttive

Le prove sperimentali non distruttive (Non Destructive Testing), atte ad indagare lo stato in cui si trova la muratura in riferimento alla consistenza, alla forma e alla natura dei materiali che la compongono, si effettuano senza prelievo di saggi o campioni e senza danneggiamento dell'integrità della muratura stessa.

Oltre al mantenimento dell'integrità, le prove non distruttive si distinguono per la rapidità di esecuzione e la possibilità d'immediata interpretazione dei dati.

Sono tuttavia prove che forniscono risultati sostanzialmente di tipo qualitativo e sono applicabili principalmente come risultati comparativi.

Le tecniche non distruttive possono essere impiegate con diverse finalità:

- individuazione di elementi nascosti come strutture di solai, archi, pilastri, ...

- qualificazione della muratura e dei materiali componenti, mappatura di zone non omogenee;

- valutazione dell'estensione del danno meccanico in strutture fessurate;
- verifica delle proprietà meccaniche e morfologiche di porzioni di muratura e dei materiali;
- controllo di alcune tecniche di riparazione come iniezioni, ristilatura dei giunti, ...

Le prove non distruttive possono inoltre essere classificate in base al tipo di strumentazione utilizzate e si distinguono quindi:

- test di tipo passivo: sono rilievi diretti, misurazione di fenomeni spontanei.
- test di tipo attivo: si basano sulla misurazione di fenomeni fisici indotti sulla muratura per eccitazione artificiale di tipo meccanico, elettrico o termico.

Prove mediamente distruttive

Le prove in sito mediamente distruttive consentono misure dirette di caratteristiche di resistenza e deformabilità degli elementi strutturali e dello stato di sforzo agente sulla struttura stessa; oltre a queste misure qualitative, permettono valutazioni qualitative sua composizione della muratura.

A differenza delle NDT, si effettuano con prelievi di materiale o con l'esecuzione di tagli o fori.

Fra le MDT di particolare interesse si segnalano i carotaggi, i martinetti piatti singoli e doppi, il prelievo e l'analisi delle malte e infine le prove Resistograph® sugli elementi lignei.

Normalmente un piano di indagine si basa su un'opportuna combinazione di prove mediamente distruttive e prove non distruttive al fine di valutare:

- lo stato tensionale e le proprietà elastiche;
- l'efficacia degli interventi di consolidamento;
- lo spessore murario;
- la disomogeneità della muratura (paramenti diversi, sconnessioni e fessurazioni, distacchi dell'intonaco, distacchi dei paramenti, disomogeneità dei materiali, presenza di vuoti e canne fumarie);
- l'individuazione della presenza di umidità, valutazione del contenuto di umidità e di sali, controllo dell'efficacia di interventi deumidificanti.
CAP 10 – PIANO DI INDAGINI

Prova NDT	Prova MDT	Vantaggi
Prove soniche	Martinetti piatti	Determinazione della posizione adatta allo svolgimento del test di martinetto (assenza di cavità e muratura il più possibile omogenea)
Endoscopia	Carotaggi	Utilizzo del foro realizzato dal carotaggio per eseguire anche l'analisi endoscopica
Analisi malte	Martinetti piatti carotaggi	Analisi della malta rimossa se ancora integra; in alternativa si può procedere ad un prelievo senza la necessità di ulteriori scassi.

Prove distruttive

Le prove distruttive consentono misure dirette di caratteristiche di resistenza e deformabilità e una valutazione sulle proprietà meccaniche delle murature. Queste prove, avendo un carattere distruttivo, possono essere eseguite solo su elementi da eliminare o in edifici destinati alla demolizione.

Fra le prove a carattere distruttivo più diffuse ci sono le prove a compressione monoassiale e le prove di compressione a taglio-compressione (in configurazione verticale o diagonale)

Progetto del piano di indagini

Il piano di indagini prevede prove non distruttive (NDT) e prove debolmente distruttive (MDT), di seguito sono riportate le prove proposte.

Prove soniche (NDT)

Si basano sull'emissione di un'onda a bassa frequenza tramite un impulso generato da un martello con testa ammorbidita, collegato ad un amplificatore di potenza. La prova valuta la velocità che l'onda impiega a raggiungere il ricevitore: il risultato qualitativo riguarda quindi l'omogeneità del materiale e la presenza di vuoti. In base alla posizione delle sonde, si suddividono in:

- dirette, se i punti di emissione e di ricezione dei segnali sono sui due lati opposti della parete muraria, alla stessa altezza dal suolo e in modo che la congiungente sia perpendicolare alle superfici;
- indirette, nel caso di disponibilità di una sola superficie si possono eseguire misure con punti di emissione e ricezione posti sullo stesso alto, lungo una linea retta (verticale o orizzontale)
- tomografie, se le sonde sono disposte lungo una griglia di punti. Questa metodologia, utilizzata prettamente per elementi come colonne e pilastri, permette di ricavare mappe della distribuzione della velocità di propagazione delle onde longitudinali lungo sezioni

piane. Per l'elaborazione la sezione viene discretizzata attraverso una griglia a maglie rettangolari.

Indagini magnetometriche (NDT)

Si effettuano con il pacometro, strumento che viene trascinato sulla superficie muraria per individuare elementi in ferro attraverso scansioni che generano un campo magnetico. Può essere utilizzato anche per individuare i tiranti.

Endoscopia (MDT)

Si tratta di sonde elettriche (tradizionali o fibra ottica) da collocare all'interno di un pertugio (nel caso in cui non sia presente è eseguibile previo carotaggio). La prova permette di ottenere fotografie/video dell'interno dello spessore murario, fornendo quindi informazioni sulle caratteristiche strutturali delle murature, quali spessore, morfologia e composizione interna; sulla presenza di vuoti e fessure. Inoltre permettono valutazioni sull'iniettabilità e sull'efficacia dell'intervento di iniezione.

La prova viene considerata debolmente distruttiva in quanto deve essere prevista la foratura, anche se di diametro limitato, della muratura.

Scarifica (MDT)

E' un'incisione dello strato superficiale della muratura per una indagine visiva dell'apparato murario, delle connessioni tra pareti ortogonali o tra pareti e orizzontamenti.

Resistograph® (MDT)

SI tratta di un trapano strumentato in modo da registrare la resistenza che il legno oppone all'ingresso di una punta dotata di un movimento combinato di rotazione e di avanzamento a velocità costante. Questo strumento permette di ottenere informazioni sullo stato di conservazione degli elementi lignei.

Prelievi (MDT)

Il prelievo di malta di allettamento è finalizzato a test di laboratorio per la caratterizzazione dell'apparato murario di origine.

Pozzetto fondazioni (MDT)

Risulta necessario scavare un pozzetto per l'ispezione delle fondazioni.

Piano interrato

Sono previsti prelievi di malta (sfruttando il fatto che la muratura è facciavista), l'uso generalizzato del Resistograph® per testare le travi del solaio ligneo e, infine, lo scavo di un pozzetto per l'ispezione delle fondazioni.

Piano terra

Al piano terra le indagini sono per lo più finalizzate a identificare e caratterizzare le diverse tipologie di muratura presenti con l'utilizzo di prove soniche dirette, tomografie e endoscopie (principalmente per identificare cavedi). Le prove sono stare localizzate sulla base degli studi dell'evoluzione storica del Palazzo, così da andare a verificare laddove sono previste discontinuità. Le indagini magnetometriche sono state previste per confermare l'ipotesi di strutture in CA; è stata inoltre rimarcata la necessità di accedere ad alcune zone che non sono state ancora ispezionate (in particolare il vano tecnico a nord ovest e il corpo scale nel prospetto orientale).

Figura 10.2: Schematizzazione e legenda della posizione delle prove del piano terra

Piani primo e ammezzati

Nel piano ammezzato meridionale è stato evidenziato uno stato fessurativo generalizzato su un'intera parete; allo scopo di capirne la causa è stato ipotizzato di procedere per fasi:

1- Scarifica e verifica della presenza di eventuali passaggi impiantistici (che giustificherebbero la lesione che si presenta orizzontale)

2- Richiesta di ispezione della proprietà confinante per la verifica di eventuali cause di danno

3- Endoscopia al fine di valutare gli appoggi della volta a botte gravante sulla parete.

Al primo piano sono state previste delle prove soniche di caratterizzazione della muratura e verifica delle informazioni storiche laddove sono previste discontinuità e delle prove di caratterizzazione degli orizzontamenti tramite indagini magnetometriche ove previsti solai in laterocemento o scarifiche per la verifica della tipologia presente (le scarifiche sono state pensate in locali poco utilizzati come stanzini o magazzini).

Figura 10.3: Schematizzazione e legenda della posizione delle prove del piano primo e ammezzato

Secondo piano

Come ai piani precedenti si è proceduto con la caratterizzazione degli elementi verticali (tramite prove soniche) e gli orizzontamenti (tramite scarifica, in modo anche da analizzare l'ammorsamento tra le pareti e il solaio). E' stato previsto anche un prelievo di malta dall'apparato facciavista esterno verso la terrazza.

Figura 10.4: Schematizzazione e legenda della posizione delle prove del piano secondo

Sottotetto

Si prevede un'ispezione dettagliata del sottotetto e l'utilizzo del Resistograph® per la valutazione dello stato di conservazione degli elementi lignei delle capriate presenti. A seguito di una ispezione completa sarà possibile redigere un piano di indagini maggiormente dettagliato.

Figura 10.5: Schematizzazione e legenda della posizione delle prove del sottotetto

471	11. PROPOSTE DI INTERVENTO
471	Premesse per la progettazione degli interventi
	Progetto degli interventi

11. PROPOSTE DI INTERVENTO

Premesse per la progettazione degli interventi

Constatato che per la conservazione delle strutture in condizioni di sicurezza nei riguardi dell'azione sismica sia necessario disporre innanzitutto di validi strumenti di analisi e di valutazione del rischio, appare evidente l'importanza della corretta progettazione degli interventi.

Come già accennato, per i beni tutelati si parla di interventi di miglioramento, riparazioni e interventi locali, dove con il termine miglioramento si intende l'esecuzione di opere che permettano il raggiungimento di un maggior grado di sicurezza, con un livello di protezione sismica non necessariamente uguale a quello previsto per l'adeguamento delle costruzioni, mentre per riparazioni o interventi locali si intendono interventi che interessino porzioni limitate della costruzione.

Coerentemente con il concetto probabilistico di sicurezza, la struttura può considerarsi sicura nei riguardi di un terremoto con periodo di ritorno più breve rispetto a quello dell'azione sismica di riferimento; in tal senso la vita nominale rappresenta il parametro attraverso il quale programmare gli interventi di mitigazione del rischio: conseguito l'intervento si valuta il miglioramento con riferimento alla VN, confrontando tale parametro prima e dopo l'intervento.

La scelta delle tecniche d'intervento è determinata in accordo con i principi del restauro: uso di materiali e tecnologie originarie, compatibilità chimico – fisica, conservazione del comportamento statico, reversibilità, minimo intervento, riconoscibilità e durabilità.

L'obiettivo principale resta quindi la conservazione non solo della materia, ma anche del funzionamento strutturale accertato, qualora questo non presenti carenze tali da poter comportare la perdita del bene. Inoltre l'esecuzione di interventi su porzioni limitate dell'edificio va comunque valutata e giustificata nel quadro di una indispensabile visione d'insieme, tenendo conto degli effetti della variazione di rigidezza e resistenza degli elementi⁶⁴.

Infine non deve essere trascurata la possibilità di ricorrere ad opere provvisionali, che per la loro intrinseca spiccata reversibilità appaiono interessanti nei riguardi della conservazione e possono risultare, dopo attenta valutazione, anche una soluzione definitiva nel caso di un bene tutelato⁶⁵.

La strategia di intervento può appartenere a una, o più, delle seguenti categorie:

- rinforzo di parte o di tutti gli elementi resistenti, al fine di aumentarne selettivamente la resistenza, la rigidezza, la duttilità o una combinazione di esse (ponendo sempre estrema attenzione alle modifiche indotte allo schema strutturale);
- inserimento di nuovi elementi, compatibili con quelli esistenti, al fine di eliminare la vulnerabilità locale di alcune parti della costruzione e migliorare il funzionamento complessivo in termini di resistenza o duttilità;
- introduzione di una protezione passiva mediante strutture di controvento dissipative e/o isolamento alla base (considerando accuratamente tutte le possibili ricadute sulla conservazione, ed in particolare la presenza di substrati archeologici);
- riduzione delle masse (con le dovute precauzioni);

⁶⁴ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.6.1

⁶⁵ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.6.3.1

- limitazione o cambiamento della destinazione d'uso dell'edificio (in questo caso sarà obbligatoria una verifica di compatibilità alle trasformazioni urbanistiche previste nei piani attuativi e nei cambi di destinazione d'uso degli edifici).

La scelta sarà effettuata inoltre in ragione del suo costo, rapportandolo all'entità del beneficio da esso prodotto ed all'effettiva necessità.

Le principali tipologie di interventi proposti dalle Linee Guida rientrano nelle seguenti categorie:

- Interventi volti a ridurre le carenze dei collegamenti;
- Interventi volti a ridurre le spinte di archi e volte ed al loro consolidamento
- Interventi volti a ridurre l'eccessiva deformabilità dei solai ed al loro consolidamento
- Interventi in copertura
- Interventi volti ad incrementare la resistenza degli elementi murari;
- Interventi su elementi non strutturali;
- interventi in fondazione.

Infine si sottolinea che il controllo periodico della costruzione rappresenta il principale strumento per una consapevole conservazione, in quanto consente di programmare la manutenzione ed attuare in tempo, quando realmente necessari, gli interventi di ripara zione, in caso di danno strutturale, e di consolidamento, finalizzato alla prevenzione.

Progetto degli interventi

Le analisi svolte a livello locale e globale hanno prodotto risultati differenti di vulnerabilità sismica: le prime hanno riportato gravi lacune a livello di sicurezza sismica dovuta meccanismi di ribaltamento, mentre le seconde hanno riportato un buon livello di sicurezza sismica del Palazzo, con una vita nominale superiore ai 20 anni già nei modelli in LC1.

Per tale motivo gli interventi proposti sono volti unicamente a ridurre le carenze dei collegamenti, in modo da inibire i meccanismi fuori piano delle pareti ed assicurare un migliore comportamento di insieme senza intervenire in modo invasivo sugli elementi resistenti, giudicati di buona gualità.

Inoltre si ricorda che solo in seguito a dettagliate analisi sperimentali si potrà redigere un piano degli interventi coerente con l'edificio analizzato.

L'ipotesi di intervento consiste nella realizzazione di tiranti metallici a livello dei solai ed in corrispondenza delle pareti portanti, ancorati alle murature mediante capochiave (a paletto o a piastra).

La scelta di questo intervento, piuttosto dell'inserimento di cerchiature esterne o cordoli, è stata compiuta in base al principio del minimo intervento. Inoltre sono presenti nel caso studio capochiavi esterni, a cui probabilmente sono associati tiranti attivi: nel caso in cui tali dispositivi fossero presenti basterebbe accertarne l'efficienza, confrontando l'azione agente con quella richiesta da normativa.

L'inserimento di tiranti può favorire il comportamento d'assieme del fabbricato, in quanto conferisce un elevato grado di connessione tra le murature ortogonali e fornisce un efficace vincolo contro il ribaltamento fuori piano dei pannelli murari, quando ciò non appaia garantito dai solai o da altre strutture, e migliora il comportamento nel piano di pareti forate, in quanto consente la formazione del meccanismo tirante-puntone nelle fasce murarie sopra porta e sotto finestra.

CAP 11 – PROPOSTE DI INTERVENTO

Per il capochiave possono essere utilizzati paletti semplici (bolzoni) o piastre; ad eccezione dei casi di murature particolarmente scadenti, realizzate con elementi di piccole dimensioni, è preferibile l'uso di bolzoni, in quanto essi vanno ad interessare una porzione di muratura maggiore rispetto alle piastre. In ogni caso il dimensionamento del capochiave deve tener conto delle caratteristiche dell'elemento murario (colonna, pilastro) collegato.

I tiranti dovranno in via generale essere disposti in posizione affiancata alle murature principali, a livello degli orizzontamenti. Nei casi in cui sia indispensabile forare la parete in direzione longitudinale (casi che si cercherà il più possibile di evitare), si dovrà di regola dare la preferenza a catene inserite in guaina e non iniettate, per rendere reversibile l'intervento, consentire l'eventuale ripresa di tesatura, evitare l'insorgenza di sollecitazioni indesiderate. Per quanto riguarda la tesatura dei tiranti, si dovranno adottare tensioni limitate, tali da produrre nelle murature tensioni di compressione nettamente inferiori ai valori ritenuti ammissibili⁶⁶.

Le principali fasi di esecuzione sono:

- Preparazione delle pareti: al fine di creare un'area di appoggio del paletto di ancoraggio adeguata a contrastare le sollecitazioni agenti dopo la messa in tensione della catena e opportuno intervenire sulla muratura con la scrostatura dell'intonaco, se necessario, e con eventuali operazioni di consolidamento mediante iniezioni nelle zone interessate dagli ancoraggi.
- Dimensionamento delle catene e tracciamento dei livelli e degli assi dei tiranti: come precedentemente accennato, e bene ricordare che per quanto riguarda i criteri da adottare nel posizionamento dei presidi, le catene vanno inserite a livello degli orizzontamenti ed e bene mantenere eventuali simmetrie in pianta, in modo da evitare l'insorgere di effetti torsionali della struttura.
- Foratura delle pareti ed inserimento dei tiranti: nel processo di foratura devono essere utilizzate perforatrici che non producano scuotimenti e vibrazioni sulla muratura che potrebbero comportare l'instaurarsi di fenomeni fessurativi sulle zone di ancoraggio. Le catene devono poi essere protette dall'azione degli agenti atmosferici con opportuni trattamenti o con guaine protettive. In genere sono da preferirsi catene inguainate, che permettono di poter effettuare operazioni di ritesaggio per compensare eventuali allentamenti.
- Messa in tensione dei tiranti: il tiro della catena deve essere calcolato in modo che sia in grado di assorbire la forza sismica orizzontale dovuta alla massa delle murature comprese trai punti medi degli interassi di catene contigue, sia in orizzontale che in verticale, attraverso l'equazione di equilibrio tra momenti stabilizzanti ed instabilizzanti illustrata nella fase di verifica dei cinematismi.
- Allungamento a caldo: una volta assicurata la perfetta rappresa del letto di malta cementizia ad elevate proprietà anti ritiro, interposto tra la muratura e la piastra di ancoraggio, si procede con il tiraggio delle catene. Dopo aver posto in opera la catena, se ne riscalda il tratto centrale fino all'all'allentamento dei capochiave. Successivamente, bloccando gli ancoraggi attraverso il manicotto o attraverso i dadi di testa, la catena svilupperà il suo tiraggio raffreddandosi.
- Allungamento a freddo: e possibile solo se le catene hanno almeno a un estremo una filettatura e il capochiave e forato per permetterne il passaggio. Il tiraggio avviene avvitando il dado sull'estremo filettato della catena, fino a raggiungere l'allungamento calcolato.

⁶⁶ Circolare n. 26/2010 - Linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale, C.6.3.2

Invece del dado di testa, che contrasta sul capochiave, il tiraggio può avvenire per mezzo di un manicotto intermedio con filettatura destra – sinistra⁶⁷.

Inserimento di tiranti

Durante analisi dei meccanismi locali, laddove si riscontrava un meccanismo di ribaltamento non verificato, si sono poste delle soluzioni volte a contrastare il cinematismo.

Di seguito si riporta il quadro completo dei tiranti calcolati in LC1 con le rispettive visualizzazioni grafiche.

	TIRANTE		DIMENSIONI	FORZA DI	FORZA DI	
			CAPOCHIAVE [cm]	CALCOLO [KN]	PROGETTO [KN]	
5	T1	2ф18	20 x 20	2.67	5.00	IV
0	T2	1φ18	20 x 20	0.56	1.00	Ш
9	Т3	1φ18	20 x 20	0.88	1.00	
10	T4	2ф18	20 x 20	13.28	15.00	IV
11	T5	1φ18	20 x 20	0.66	1.00	Ш
12	Т6	1φ18	20 x 20	1.06	5.00	Ш
16	T7	2ф18	20 x 20	5.00	5.00	
17	T8	1φ18	21 x 20	0.5	1	111

 Tabella 11.1: Sintesi dei tiranti calcolati tramite le analisi locali

Poiché i macroelementi 5 e 9 corrispondono rispettivamente ai lati orientale e occidentale dello stesso vano, i tiranti T1 e T4 coincidono: per il calcolo della forza di tiro è stato assegnato il valore più elevato tra i due, quindi 15 kN.

Inoltre, nel caso in cui siano attivi i tiranti del prospetto meridionale, non sarebbe necessaro porre in operai dispositivi T7 e T8.

⁶⁷ G. Bettiol, M. Munari, F. Da Porto, L. Milano, C. Modena (a cura di), *Esempio di calcolo su rafforzamento locale di edifici in muratura con tiranti.*

Figura 11.1: Schematizzazione della posizione dei tiranti, livello II

Figura 11.2: Schematizzazione della posizione dei tiranti, livello III

Figura 11.3: Schematizzazione della posizione dei tiranti, livello IV

Figura 11.4: Schematizzazione della posizione dei tiranti, prospetto orientale

Figura 11.5: Schematizzazione della posizione dei tiranti, prospetto occidentale

Figura 11.6: Schematizzazione della posizione dei tiranti, prospetto settentrionale

Figura 11.7: Schematizzazione della posizione dei tiranti, prospetto meridionale

CONCLUSIONI

L'elaborato riguarda l'analisi di vulnerabilità sismica di Palazzo del Capitanio di Padova e il confronto di modelli per l'analisi di meccanismi locali e globali.

Il manufatto è situato nel centro storico, racchiuso dalle cinte murarie duecentesche e cinquecentesche, lungo via Monte di Pietà e Piazza Capitaniato.

La fabbrica, nata come Reggia Carrarese, venne rasa al suolo dall'arrivo della signoria veneziana, che alla fine del XVII secolo eresse il Palazzo del Capitanio. Tale destinazione non durò più di un secolo: con la dominazione austriaca il palazzo divenne la dispensa Sali, finché nel 1867 la regia intendenza provinciale delle finanze di Padova stipulò l'atto di compravendita per utilizzare l'edificio come sede della borsa. Solo verso la metà del secolo scorso il fabbricato assunse il ruolo attuale di palazzo comunale.

La comparazione delle planimetrie ha rivelato numerosi interventi nell'unità strutturale minore, in quanto il piano terra è stato ampliato per far spazio all'odierna sede delle poste, mentre per l'unità strutturale maggiore si sono riscontrate alcune modifiche dovute a necessità di adeguamento alle nuove funzioni: l'atrio del piano terra è stato liberato di setti longitudinali, per porre in essere dei pilastri in c.a. allineati con quelli esistenti in pietra, nel lato settentrionale è stata spostata la scala per aggiungere il vano ascensore, alcuni setti sono stati demoliti per generare degli spazi di accesso e molte tramezze sono state spostate a seconda della necessità.

Il rilievo geometrico è stato svolto tramite l'utilizzo di cordelle metriche e misuratori laser, ma non tutti gli ambienti sono accessibili: il vano tecnico del piano terra, il ripostiglio del secondo piano e il sottotetto relativo all'ala meridionale.

I prospetti principali (orientale e settentrionale) sono costituiti da una distribuzione regolare di aperture e si presentano in ottimo stato, mentre i prospetti volti verso il cortile non presentano ordini stilistici o ritmi che scandiscano la facciata. Gli interni, così come gli esterni, risultano intonacati, eccezion fatta per il piano interrato, il sottotetto e i prospetti affacciantesi sulla terrazza del cortile.

In mancanza di indagini approfondite, sono state formulate delle ipotesi circa la composizione strutturale di pareti e solai: da ispezioni visive delle murature si è supposto che queste siano in mattoni pieni e malta di calce, mentre i solai siano di tipo Bausta per la prima unità strutturale, in modo da attribuire una rigidezza qualitativamente simile a quella registrata durante il sopralluogo, mentre per la seconda unità strutturale di tipo Cirex per il piano terra (dato pervenuto dal progetto di ampliamento delle poste) e di tipo ligneo per gli impalcati soprastanti.

Per la definizione di acciaio e calcestruzzo si fa riferimento a pratiche costruttive dell'epoca: per l'acciaio la *Circolare 23 Maggio 1957 n° 1472* esprime la condizione di utilizzare i soli acciai Aq 42, Aq 50 ed Aq 60 (a favore di sicurezza è stato adottato un acciaio Aq 42 liscio, confrontabile per comportamento e caratteristiche meccaniche con un FeB22k), mentre per il calcestruzzo la *Circolare 4 Maggio 1961 n° 1042* dispone l'adozione del cemento 600 e 730 (a favore di sicurezza è stato adottato il *cemento 600,* confrontabile con un calcestruzzo C25/30).

I dati riportati sono poi divisi per il fattore di confidenza 1,3, relativo ad una conoscenza limitata.

L'indagine strutturale è stata accompagnata da un rilievo critico, volto a individuare le vulnerabilità e le lesioni, alle quali sono associati i meccanismi di danno.

Le lesioni rilevate caratterizzano i piani ammezzati e l'ultimo livello, in particolare se ne riscontra una buona percentuale in direzione Y.

Ad ogni modo il quadro critico di danno appare di lieve entità, ma è bene accertarsene tramite prove locali (non distruttive o debolmente distruttive), caratterizzanti per estensione analogica il sistema strutturale, in modo da valutare l'effettiva valenza delle ipotesi condotte. Per la valutazione della sicurezza si assumono parametri sismici di progetto relativi ad una vita di riferimento pari a 75 anni, ad una categoria di suolo di tipo C e ad una superficie topografica piana. Nonostante i cinematismi siano frequenti in chiese o edifici estesi e di geometria complessa, sprovvisti di solai rigidi e di efficaci dispositivi antisismici, lo studio della valutazione della sicurezza si è svolto dapprima tramite la valutazione di meccanismi locali. Infatti la Circolare 2 Febbraio 2009 n 617 afferma: quando la costruzione non manifesta un chiaro comportamento d'insieme, ma piuttosto tende a reagire al sisma come un insieme di sottosistemi (meccanismi locali), la verifica su un modello globale non ha rispondenza rispetto al suo effettivo comportamento sismico.

L'individuazione dei macroelementi, soggetti a meccanismi di I o II modo (rispettivamente fuori piano e nel piano), è determinata dal riconoscimento di parti costruttivamente riconoscibili per caratteristiche omogenee nella fabbrica. L'aspetto più delicato consiste invece nel riconoscimento delle condizioni che predispongono all'attivazione di meccanismi locali di danno e di collasso: si individuano sconnessioni, presenti nel quadro fessurativo o possibili in seguito all'azione di forze sismiche, che determinano macroelementi suscettibili di instabilità.

I risultati relativi ai 21 macroelementi evidenziano la vulnerabilità dei meccanismi di ribaltamento semplice: la metà non soddisfa questa verifica.

Ipotizzando un livello di conoscenza superiore (LC2) sono state ripetute le analisi: la percentuale di verifica ha subito un aumento massimo del 3%. Coerentemente con quanto ipotizzato, le verifiche in LC2 non hanno apportato modifiche sostanziali, ma ciò che risulta necessario di un livello di conoscenza superiore è la realizzazione di un quadro conoscitivo completo, al fine di valutare la presenza o meno di presidi antisismici, o di altre vulnerabilità.

Reiterando l'operazione con il software C – Sisma si sono ottenuti risultati simili.

L'analisi sismica globale è stata svolta con i software 3Muri e ANDILWall, che sviluppano analisi di tipo push - over tramite una schematizzazione a telaio equivalente.

Il primo è implementato studiando i meccanismi di rottura degli edifici esistenti, mentre il secondo è consigliato per edifici di nuova costruzione, ma utilizzabile nel caso la configurazione geometrica della fabbrica permetta una modellazione a telaio equivalente.

In entrambi i casi le due unità strutturali sono state modellate dapprima separatemente, poi imponendo vincoli traslazionali rigidi e cedevoli, che simulassero l'iterazione con gli edifici limitrofi.

La struttura è stata schematizzata per entrambi attraverso allineamenti di piccoli disassamenti e con forometrie a terminazione circolare ricalcanti le dimensioni massime; con il secondo software però è stato necessario ortogonalizzare le pareti di entrambe le unità strutturali.

I risultati ottenuti rivelano un ottimo comportamento ed una verifica totale delle analisi dell'unità strutturale maggiore e dell'aggregato nel complesso sollecitato da forze in direzione Y.

Ad ogni modo anche l'analisi più gravosa, relativa all'unità strutturale minore del modello libero di 3Muri in direzione X, sopporta il 70% del sisma di progetto, una percentuale accettabile in termini di miglioramento sismico; inoltre considerando che il modello cedevole è quello più fedele allo stato di fatto, la percentuale di verifica si alza al 83%.

La vita nominale minima risulta comunque di 19 anni per 3Muri e 25 anni per ANDILWall.

Per questa unità strutturale sono state ripetute le verifiche in LC2 raggiungendo 32 / 28 anni, superiori ai 20 anni suggeriti dalle Linee Guida per i beni culturali. pertanto non sono stati proposti interventi

I modelli sviluppati in ANDILWall hanno riportato una maggior percentuale di verifica, in particolare considerando i modelli vincolati si nota una più rilevante discrepanza dei risultati di verifica.

E' presumibile che il comportamento di tali modelli sia quello che schematizzi meglio la realtà, ma nel caso in cui si eseguisse una stima per difetto si potrebbero causare danni ingenti.

3Muri, viceversa, fornendo risultati di spostamento ultimo e capacità in media inferiori, produce una stima a favore di sicurezza: nell'ottica del minimo intervento il suo impiego potrebbe favorire l'esecuzione di interventi non strettamente necessari alla messa in sicurezza.

Pertanto i risultati ottenuti dai due software sono comparabili sicuramente a livello qualitativo, in quanto entrambi segnalano vulnerabilità in direzione X dell'unità strutturale minore, e a livello quantitativo, soprattutto relativamente ai modelli liberi. Si consiglia però l'utilizzo di ANDILWall esclusivamente per edifici abbastanza regolari, in quanto si rischia di semplificare il modello ed astrarlo dal suo schema originale.

Infine sono stati progettati interventi atti a ridurre le carenze di collegamenti, in modo da inibire i meccanismi fuori piano non verificati con l'analisi locale. L'intervento consiste nell'inserimento di tiranti metallici a livello dei solai o di pareti portanti, ancorati alla muratura mediante capochiave. L'elevata possibilità che questi siano già in essere rende ancora più chiara l'importanza della conoscenza della fabbrica: interventi superflui che modifichino lo stato di tensioni e carichi sono facilmente evitabile tramite una piano critico di indagini che conduca ad un livello di conoscenza superiore.

BIBLIOGRAFIA

RICERCA STORICA

BORSELLA, La torre dell'Orologio, in "Padova e il suo territorio", n. 145, p. 6-8.

G. BRESCIANI ALVAREZ, *L'architettura civile del barocco a Padova,* in Padova, case e palazzi, a cura di L. PUPPI, F. ZULIANI, Vicenza, Neri Pozza Ed, 1977, p. 141-179.

M. CHECCHI, L. GAUDENZIO, L. GROSSATO, Padova: guida ai monumenti e alle opere d'arte, Venezia, Neri Poppi Ed, 1961.

P. FANTELLI, G. BRESCIANI ALVAREZ, Rilievi di antiche fabbriche padovane, La Garangola, Padova, 1997.

F.LLI ALINARI, Padova L'immagine urbana attraverso gli archivi alinari, Firenze, 1981, p. 18-20.

F.F.D'ONOFRIO, La città di Padova nel suo Catasto Storico (1815-1873), Archivio di Stato di Padova, Canova Edizioni.

C. GASPAROTTO, *La Reggia dei Da Carrara, il Palazzo di Ubertino e le nuove stanze dell'Accademia patavina,* in "Atti e memorie della R. Accademia di Scienze, Lettere ed Arti in Padova", anno LXXIX (1966-1967), p. 73-116.

S. GHIRONI, Padova, Piante e vedute, Padova, 1988.

P. GIURIATI, Padova fra passato e presente, Raffronti fotografici, Il leggio libreria editrice, 1995, p. 74-79.

R. LAMON, Il palazzo del Capitanio e la torre dell'orologio, Padova, 2011.

N. NICOLINI, A. ROSSI, La Reggia dei Carraresi a Padova, La Casa della Rampa, 2010.

P. MARETTO, I portici della città di Padova, Silvana Editoriale, 1986.

M. CHECCHI, L. GAUDENZIO, L. GROSSATO, Padova, Guida ai monumenti e alle opere d'arte, Neri Pozza Editore, Venezia, 1961.

Padova, I fotografi e la fotografia nell'Ottocento, a cura di G. VALZELLA, Venezia, 1997.

Padova, I rilievi del centro storico, a cura di G. CROCE, La Garangola, 1998. Padova, Una storia per immagini città e provincia dall'Ottocento ai giorni nostri, volume 2 1900 – 1915.

L. PIGATTO, La Specola di Padova, da torre medievale a Museo, Padova, Signum Editrice, 2007.

L. PUPPI, E. BEVILACQUA, Padova, II volto della città dalla pianta del Valle al fotopiano, Editoriale Programma, 1987.

L. PUPPI, G. TOFFANIN, Guida di Padova, Arte e storia tra vie e piazze, Trieste, Edizione Lint, 1991.

Relazioni dei Rettori veneti di Terraferma, vol. IV, *Podestaria e Capitaniato di Padova*, a cura di A. TAGLIAFERRI, Milano, Giuffrè, 1975.

C. SEMENZATO, Padova illustrata. La città e il territorio in piante e vedute dal XVI al XX secolo, Padova, Editoriale programma, 1989.

G.STELLA, Storia illustrata di Padova dai Carraresi al XX secolo, Soede, 1990.

M. URBANI, *Padova nel primo '800,* Cat. A cura di L. GROSSATO, Padova, Oratorio di S. Rocco 2-24 ottobre 1971, Padova, 1971.

NORMATIVA DI RIFERIMENTO

Decreto Ministeriale del 14/01/08. Norme Tecniche per le Costruzioni (G.U. n. 29 del 4/2/08 suppl. ord. n.30): *Capitolo 8.*

Circolare Ministero delle Infrastrutture e dei Trasporti n. 617 del 2/2/2009. Istruzioni per l'applicazione delle "Norme Tecniche per le Costruzioni" di cui al D.M. 14/01/2008. G.U. n. 47 del 26/2/09 suppl. ord. n. 27: *Capitoli C8 e C8.A.*

Linee guida per il rilievo, l'analisi ed il progetto di interventi di riparazione e consolidamento sismico di edifici in muratura in aggregato. ReLUIS (www.reluis.it), Bozza - Ottobre 2010. *Capitoli 1, 2, 3 e Appendice A.*

DECRETO P.C.M. 9 Febbraio 2011 (G.U. n.47, 26/2/11 suppl. ord. n.54). Linee Guida per la valutazione e la riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme Tecniche sulle costruzioni D.M. 14/01/08: *Capitolo 4, Allegato A e Schema di Capitolato Prestazional*e11. Allegati.

SITOGRAFIA

- http://andilwall.com
- http://maps.google.it
- http://www.padovanet.it
- http://www.reluis.it
- http://stadata.com

RINGRAZIAMENTI

Un sentito ringraziamento alla professoressa Francesca Da Porto, relatrice della tesi, per avermi trasmesso la passione per le problematiche relative alle costruzioni in zona sismica, tramite una politica di sensibilizzazione nei confronti dei danni causati a beni e persone.

Grande riconoscenza va anche alla professoressa Maria Rosa Valluzzi, per avermi appassionata ai temi del restauro.

Un grazie di cuore all'ing. Marco Munari, per la disponibilità che dimostra nei confronti di tutte le persone che si presentino a chiedergli un consiglio, e agli ingegneri Giulia Bettiol, Mattia Pengo e Diego Bonaldo.

Ringrazio inoltre coloro che mi hanno stimolata a camminare con le mie gambe.

Un grazie doveroso lo devo alla mia famiglia: a mio padre, che prova sempre a capire ciò di cui parlo; a mia madre, che si preoccupa per ciò a cui non penso, e a mia sorella, sempre pronta a sostenermi. Infine ringrazio Daniele e i mie amici, che mi hanno accompagnata finora in questo percorso.

ALLEGATI

ALLEGATO A: analisi statica non lineare, 3Muri

Definizione del modello, unità strutturale 1

Al fine di evitare ripetizioni, per la descrizione dell'unità strutturale 1 si è scelto di utilizzare il modello libero, in quanto la schematizzazione del telaio equivalente risulta analoga per gli altri due modelli.

Definizione dei nodi

Figura A. 1: Definizione dei nodi in pianta, livello 1

Figura A. 2: Definizione dei nodi in pianta, livello 1

Figura A. 3: Definizione dei nodi in pianta, livello 3

Definizione delle pareti

Parete 1

Nodi 3D

Nodo	X [cm]	Y [cm]	Z [cm]	Livello
5	-2.975	1.898	0	0
129	-2.237	1.898	0	0
60	-2.168	1.898	0	0
71	-1.738	1.898	0	0
76	-1.349	1.898	0	0
28	-864	1.898	0	0
1	63	1.898	0	0
6	-2.975	1.898	520	1
130	-2.237	1.898	520	1
61	-2.168	1.898	520	1
72	-1.738	1.898	520	1
77	-1.349	1.898	520	1
29	-864	1.898	520	1

2	63	1.898	520	1
7	-2.975	1.898	1.110	2
131	-2.237	1.898	1.110	2
62	-2.168	1.898	1.110	2
30	-864	1.898	1.110	2
3	63	1.898	1.110	2
8	-2.975	1.898	1.530	3
132	-2.237	1.898	1.530	3
31	-864	1.898	1.530	3
4	63	1.898	1.530	3

Nodi 2D

Nodo	X locale	Z [cm]	Livello
	[cm]		
185	376	0	0
187	2.425	0	0
186	376	520	1
188	2.425	520	1
189	376	1.110	2
190	1.238	1.110	2
191	1.617	1.110	2
192	2.425	1.110	2
193	376	1.530	3
194	1.238	1.530	3
195	1.617	1.530	3
196	2.425	1.530	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
30	Muratura	-	100,0	222,0	384,0	376	192	185	186
31	Muratura	-	100,0	269,7	384,0	816	192	60	61
32	Muratura	-	100,0	166,9	384,0	1.228	192	71	72
33	Muratura	-	100,0	160,1	384,0	1.627	192	76	77
34	Muratura	-	100,0	256,1	384,0	2.029	192	28	29
35	Muratura	-	100,0	146,3	384,0	2.425	192	187	188
29	Muratura	-	100,0	70,6	462,2	35	231	5	6
36	Muratura	-	100,0	346,7	462,2	2.865	231	1	2
38	Muratura	-	91,0	270,0	430,0	376	735	186	189
39	Muratura	-	91,0	317,7	430,0	816	735	61	62
40	Muratura	-	91,0	235,9	430,0	1.238	735	72	190
41	Muratura	-	91,0	229,1	430,0	1.617	735	77	191
42	Muratura	-	91,0	304,1	430,0	2.029	735	29	30
43	Muratura	-	91,0	194,3	430,0	2.425	735	188	192

37	Muratura	-	91,0	94,6	522,5	47	781	6	7
44	Muratura	-	91,0	370,7	522,5	2.853	781	2	3
45	Muratura	-	60,0	94,6	357,5	47	1.344	7	8
52	Muratura	-	60,0	370,7	357,5	2.853	1.344	3	4
46	Muratura	-	60,0	270,0	295,0	376	1.378	189	193
47	Muratura	-	60,0	317,7	295,0	816	1.378	62	132
48	Muratura	-	60,0	235,9	295,0	1.238	1.378	190	194
49	Muratura	-	60,0	229,1	295,0	1.617	1.378	191	195
50	Muratura	-	60,0	304,1	295,0	2.029	1.378	30	31
51	Muratura	-	60,0	194,3	295,0	2.425	1.378	192	196

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
1	Muratura	-	100,0	170,0	136,0	168	452	6	186
2	Muratura	-	100,0	170,0	136,0	584	452	186	130
3	Muratura	-	100,0	170,0	136,0	1.047	452	61	72
4	Muratura	-	100,0	191,0	136,0	1.429	452	72	77
5	Muratura	-	100,0	170,0	136,0	1.804	452	77	29
6	Muratura	-	100,0	170,0	136,0	2.254	452	29	188
7	Muratura	-	100,0	170,0	136,0	2.595	452	188	2
8	Muratura	-	91,0	146,0	160,0	168	1.030	7	189
10	Muratura	-	91,0	146,0	160,0	584	1.030	189	131
12	Muratura	-	91,0	146,0	160,0	1.047	1.030	62	190
14	Muratura	-	91,0	146,0	160,0	1.429	1.030	190	191
16	Muratura	-	91,0	146,0	160,0	1.804	1.030	191	30
18	Muratura	-	91,0	146,0	160,0	2.254	1.030	30	192
20	Muratura	-	91,0	146,0	160,0	2.595	1.030	192	3
9	Muratura	-	60,0	146,0	120,0	168	1.170	7	189
11	Muratura	-	60,0	146,0	120,0	584	1.170	189	131
13	Muratura	-	60,0	146,0	120,0	1.047	1.170	62	190
15	Muratura	-	60,0	146,0	120,0	1.429	1.170	190	191
17	Muratura	-	60,0	146,0	120,0	1.804	1.170	191	30
19	Muratura	-	60,0	146,0	120,0	2.254	1.170	30	192
21	Muratura	-	60,0	146,0	120,0	2.595	1.170	192	3
22	Muratura	-	60,0	146,0	5,0	168	1.528	8	193
23	Muratura	-	60,0	146,0	5,0	584	1.528	193	132
24	Muratura	-	60,0	146,0	5,0	1.047	1.528	132	194
25	Muratura	-	60,0	146,0	5,0	1.429	1.528	194	195
26	Muratura	-	60,0	146,0	5,0	1.804	1.528	195	31
27	Muratura	-	60,0	146,0	5,0	2.254	1.528	31	196
28	Muratura	-	60,0	146,0	5,0	2.595	1.528	196	4

```
Parete 2
```


Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
9	-3.348	4.363	0	0
53	-3.290	3.976	0	0
47	-3.218	3.504	0	0
63	-3.066	2.498	0	0
5	-2.975	1.898	0	0
10	-3.348	4.363	520	1
54	-3.290	3.976	520	1
48	-3.218	3.504	520	1
64	-3.066	2.498	520	1
6	-2.975	1.898	520	1
49	-3.218	3.504	1.110	2
65	-3.066	2.498	1.110	2
7	-2.975	1.898	1.110	2
66	-3.066	2.498	1.530	3
8	-2.975	1.898	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
197	221	0	0
199	2.190	0	0
198	221	520	1
201	1.378	520	1
200	2.190	520	1
202	1.378	1.110	2

203	2.190	1.110	2
204	2.190	1.530	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
62	Muratura	-	30,0	42,9	150,0	221	225	197	198
61	Muratura	-	30,0	119,1	335,0	60	252	9	10
63	Muratura	-	30,0	69,3	335,0	357	252	53	54
57	Muratura	-	89,0	1.495,2	520,0	1.139	260	47	201
58	Muratura	-	151,0	606,7	520,0	2.190	260	199	200
64	Muratura	-	187,0	31,9	496,0	1.902	768	64	65
65	Muratura	-	187,0	444,7	496,0	2.271	768	200	203
59	Muratura	-	60,0	1.017,4	590,0	1.378	815	201	202
60	Muratura	-	124,0	606,7	420,0	2.190	1.320	203	204

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
53	Muratura	-	30,0	80,0	150,0	159	75	9	197
55	Muratura	-	30,0	80,0	150,0	282	75	197	53
54	Muratura	-	30,0	80,0	220,0	159	410	10	198
56	Muratura	-	30,0	80,0	220,0	282	410	198	54

Parete 3

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
9	-3.348	4.363	0	0
127	-2.716	4.468	0	0
11	-1.998	4.588	0	0
10	-3.348	4.363	520	1
128	-2.716	4.468	520	1
12	-1.998	4.588	520	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
66	Muratura	-	30,0	1.369,0	520,0	685	260	127	128

Parete 4

Nod	X [cm]	Y [cm]	Z [cm]	Livello
о				
13	-2.032	4.221	0	0
11	-1.998	4.588	0	0
14	-2.032	4.221	520	1
12	-1.998	4.588	520	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
68	Muratura	-	25,0	102,0	430,8	51	215	13	14
69	Muratura	-	25,0	115,7	430,8	310	215	11	12

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
67	Muratura	-	25,0	150,0	310,0	177	365	14	12

Parete 5

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
16	-1.016	4.702	0	0
32	-990	4.221	0	0
81	-984	4.116	0	0
164	-968	3.823	0	0
136	-934	3.197	0	0
133	-912	2.788	0	0
177	-887	2.322	0	0
28	-864	1.898	0	0
17	-1.016	4.702	520	1
33	-990	4.221	520	1
82	-984	4.116	520	1

165	-968	3.823	520	1
137	-934	3.197	520	1
134	-912	2.788	520	1
178	-887	2.322	520	1
29	-864	1.898	520	1
18	-1.016	4.702	1.110	2
34	-990	4.221	1.110	2
83	-984	4.116	1.110	2
166	-968	3.823	1.110	2
138	-934	3.197	1.110	2
135	-912	2.788	1.110	2
30	-864	1.898	1.110	2
19	-1.016	4.702	1.530	3
84	-984	4.116	1.530	3
139	-934	3.197	1.530	3
31	-864	1.898	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
207	242	0	0
209	1.193	0	0
208	242	520	1
210	1.193	520	1
212	2.150	520	1
211	1.193	1.110	2
213	2.150	1.110	2
205	2.383	1.110	2
214	344	1.530	3
206	880	1.530	3
215	1.199	1.530	3

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
86	Muratura	-	40,0	76,8	217,5	242	156	207	208
89	Muratura	-	80,0	621,0	392,0	2.127	196	133	212
85	Muratura	-	40,0	103,7	433,9	52	217	16	17
88	Muratura	-	80,0	130,1	465,0	1.572	232	136	137
90	Muratura	-	80,0	172,4	465,0	2.721	232	28	29
87	Muratura	-	40,0	196,2	345,0	489	240	32	33
82	Muratura	-	40,0	627,5	520,0	1.193	260	209	210
92	Muratura	-	50,0	280,6	282,5	344	661	208	34
91	Muratura	-	50,0	103,7	489,3	52	765	17	18
93	Muratura	-	50,0	2,4	492,2	585	766	82	83

94	Muratura	-	60,0	130,1	511,0	1.572	775	137	138
95	Muratura	-	60,0	100,4	511,0	1.866	775	134	135
96	Muratura	-	90,0	54,0	511,0	2.410	775	178	205
97	Muratura	-	90,0	172,4	511,0	2.721	775	29	30
83	Muratura	-	40,0	627,5	590,0	1.193	815	210	211
84	Muratura	-	75,0	466,7	590,0	2.150	815	212	213
99	Muratura	-	50,0	280,6	207,5	344	1.289	34	214
98	Muratura	-	50,0	103,7	360,0	52	1.290	18	19
101	Muratura	-	30,0	54,5	370,0	614	1.295	83	84
102	Muratura	-	30,0	118,4	370,0	820	1.295	166	206
106	Muratura	-	60,0	592,8	370,0	1.803	1.295	135	139
107	Muratura	-	60,0	607,7	370,0	2.504	1.295	205	31
100	Muratura	-	50,0	2,4	285,0	585	1.324	83	84
103	Muratura	-	40,0	119,9	285,0	940	1.324	166	206
105	Muratura	-	40,0	107,7	285,0	1.453	1.324	138	139
104	Muratura	-	40,0	159,9	150,0	1.199	1.335	211	215

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
71	Muratura	-	40,0	110,0	95,0	336	48	207	32
70	Muratura	-	40,0	100,0	255,0	154	393	17	208
72	Muratura	-	80,0	179,0	128,0	1.727	456	137	134
73	Muratura	-	80,0	198,0	128,0	2.536	456	178	29
74	Muratura	-	50,0	100,0	325,0	154	948	18	34
75	Muratura	-	50,0	100,0	440,0	534	1.040	34	83
76	Muratura	-	50,0	100,0	155,0	154	1.453	19	214
77	Muratura	-	50,0	100,0	120,0	534	1.470	214	84
78	Muratura	-	30,0	120,0	120,0	701	1.470	84	206
79	Muratura	-	40,0	120,0	120,0	1.059	1.470	206	215
80	Muratura	-	40,0	120,0	120,0	1.339	1.470	215	139
81	Muratura	-	60,0	100,0	120,0	2.150	1.470	139	31

Parete 6

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
13	-2.032	4.221	0	0
73	-1.738	4.221	0	0
78	-1.349	4.221	0	0
32	-990	4.221	0	0
14	-2.032	4.221	520	1
74	-1.738	4.221	520	1
79	-1.349	4.221	520	1
33	-990	4.221	520	1
15	-2.032	4.221	1.110	2
75	-1.738	4.221	1.110	2
80	-1.349	4.221	1.110	2
34	-990	4.221	1.110	2

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
113	Muratura	-	30,0	71,8	420,0	36	279	13	14
115	Muratura	-	30,0	68,3	420,0	1.008	279	32	33
114	Muratura	-	30,0	761,9	320,0	523	310	78	79
116	Muratura	-	30,0	39,3	470,0	20	841	14	15
118	Muratura	-	30,0	532,4	470,0	776	841	79	80
117	Muratura	-	30,0	200,3	350,0	274	885	74	75

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
108	Muratura	-	30,0	70,0	150,0	107	75	13	73
110	Muratura	-	30,0	70,0	150,0	939	75	78	32
109	Muratura	-	30,0	102,5	240,0	107	590	14	74
111	Muratura	-	30,0	135,0	50,0	107	1.085	15	75
112	Muratura	-	30,0	135,0	50,0	442	1.085	75	80

Parete 7

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
16	-1.016	4.702	0	0
20	-93	4.772	0	0
17	-1.016	4.702	520	1
21	-93	4.772	520	1
18	-1.016	4.702	1.110	2
22	-93	4.772	1.110	2
19	-1.016	4.702	1.530	3
23	-93	4.772	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
216	452	0	0
217	452	520	1
218	311	1.110	2
219	604	1.110	2
220	311	1.530	3
221	604	1.530	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
131	Muratura	-	66,0	103,3	435,0	52	280	16	17
133	Muratura	-	66,0	125,1	435,0	863	280	20	21
132	Muratura	-	66,0	477,2	350,0	452	310	216	217
135	Muratura	-	50,0	194,5	215,0	311	788	217	218
136	Muratura	-	50,0	172,7	215,0	604	788	217	219
134	Muratura	-	50,0	103,3	402,5	52	808	17	18
137	Muratura	-	50,0	125,1	402,5	863	808	21	22
138	Muratura	-	50,0	103,3	317,5	52	1.339	18	19
141	Muratura	-	50,0	125,1	317,5	863	1.339	22	23
139	Muratura	-	50,0	194,5	215,0	311	1.378	218	220
140	Muratura	-	50,0	172,7	215,0	604	1.378	219	221

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
119	Muratura	-	66,0	110,0	135,0	158	68	16	216
122	Muratura	-	66,0	110,0	135,0	746	68	216	20
120	Muratura	-	66,0	110,0	35,0	158	503	17	217
123	Muratura	-	66,0	110,0	35,0	746	503	217	21
121	Muratura	-	50,0	110,0	160,0	158	600	17	217
124	Muratura	-	50,0	110,0	160,0	746	600	217	21
125	Muratura	-	50,0	110,0	375,0	158	1.083	18	218
126	Muratura	-	50,0	110,0	375,0	463	1.083	218	219
127	Muratura	-	50,0	110,0	375,0	746	1.083	219	22
128	Muratura	-	50,0	110,0	45,0	158	1.508	19	220
129	Muratura	-	50,0	110,0	45,0	463	1.508	220	221
130	Muratura	-	50,0	110,0	45,0	746	1.508	221	23

Parete 8

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
20	-93	4.772	0	0
85	-60	4.164	0	0
124	-42	3.831	0	0
109	-25	3.531	0	0
43	-7	3.196	0	0
1	63	1.898	0	0
21	-93	4.772	520	1
86	-60	4.164	520	1
125	-42	3.831	520	1
110	-25	3.531	520	1
44	-7	3.196	520	1
37	15	2.788	520	1
2	63	1.898	520	1
22	-93	4.772	1.110	2
87	-60	4.164	1.110	2
126	-42	3.831	1.110	2
111	-25	3.531	1.110	2
45	-7	3.196	1.110	2
38	15	2.788	1.110	2
3	63	1.898	1.110	2
23	-93	4.772	1.530	3
88	-60	4.164	1.530	3
112	-25	3.531	1.530	3
46	-7	3.196	1.530	3
4	63	1.898	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
222	2.454	1.110	2
226	2.666	1.110	2
224	915	1.530	3
225	2.085	1.530	3
223	2.454	1.530	3
227	2.666	1.530	3

Macroelementi Maschi

÷									
N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
168	Muratura	-	80,0	312,6	404,0	527	287	85	86
169	Muratura	-	80,0	141,0	404,0	924	287	124	125
170	Muratura	-	80,0	194,5	404,0	1.226	287	109	110
171	Muratura	-	80,0	300,7	404,0	1.644	287	43	44
167	Muratura	-	80,0	235,6	431,5	118	292	20	21
172	Muratura	-	80,0	949,1	431,5	2.404	292	1	37
173	Muratura	-	60,0	245,6	460,5	123	826	21	22
178	Muratura	-	60,0	959,1	460,5	2.399	826	37	222
174	Muratura	-	60,0	350,1	331,0	536	846	86	87
175	Muratura	-	60,0	178,5	331,0	915	846	125	126
176	Muratura	-	60,0	232,0	331,0	1.235	846	110	111
177	Muratura	-	60,0	338,2	331,0	1.635	846	44	45
185	Muratura	-	60,0	41,3	370,0	2.434	1.295	222	223
184	Muratura	-	60,0	330,5	277,5	2.085	1.309	38	225
166	Muratura	-	87,0	424,3	420,0	2.666	1.320	226	227
179	Muratura	-	60,0	245,6	337,5	123	1.334	22	23
180	Muratura	-	60,0	350,1	255,0	536	1.358	87	88
181	Muratura	-	60,0	178,5	255,0	915	1.358	126	224
182	Muratura	-	60,0	232,0	255,0	1.235	1.358	111	112
183	Muratura	-	60,0	338,2	255,0	1.635	1.358	45	46

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
142	Muratura	-	80,0	135,0	170,0	303	85	20	85
147	Muratura	-	80,0	135,0	170,0	1.062	85	124	109
152	Muratura	-	80,0	135,0	170,0	1.862	85	43	1
145	Muratura	-	80,0	142,5	55,0	768	493	86	125
150	Muratura	-	80,0	142,5	55,0	1.409	493	110	44
143	Muratura	-	80,0	125,0	7,0	303	517	21	86
148	Muratura	-	80,0	125,0	7,0	1.062	517	125	110

153	Muratura	-	80,0	125,0	7,0	1.862	517	44	37
144	Muratura	-	60,0	125,0	160,0	303	600	21	86
146	Muratura	-	60,0	142,5	160,0	768	600	86	125
149	Muratura	-	60,0	125,0	160,0	1.062	600	125	110
151	Muratura	-	60,0	142,5	160,0	1.409	600	110	44
154	Muratura	-	60,0	125,0	160,0	1.862	600	44	37
155	Muratura	-	60,0	115,0	219,0	303	1.121	22	87
156	Muratura	-	60,0	115,0	219,0	768	1.121	87	126
157	Muratura	-	60,0	115,0	219,0	1.062	1.121	126	111
158	Muratura	-	60,0	115,0	219,0	1.409	1.121	111	45
159	Muratura	-	60,0	115,0	219,0	1.862	1.121	45	38
165	Muratura	-	60,0	163,0	120,0	2.331	1.470	225	223
160	Muratura	-	60,0	115,0	45,0	303	1.508	23	88
161	Muratura	-	60,0	115,0	45,0	768	1.508	88	224
162	Muratura	-	60,0	115,0	45,0	1.062	1.508	224	112
163	Muratura	-	60,0	115,0	45,0	1.409	1.508	112	46
164	Muratura	-	60,0	115,0	45,0	1.862	1.508	46	225

Parete 9

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
35	-2.402	2.788	0	0
140	-2.168	2.788	0	0
145	-1.738	2.788	0	0
150	-1.349	2.788	0	0
133	-912	2.788	0	0
36	-2.402	2.788	520	1
141	-2.168	2.788	520	1
146	-1.738	2.788	520	1
151	-1.349	2.788	520	1
134	-912	2.788	520	1

37	15	2.788	520	1
135	-912	2.788	1.110	2
38	15	2.788	1.110	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
187	Muratura	-	30,0	221,9	495,1	1.601	768	134	135
188	Muratura	-	30,0	544,8	495,1	2.144	768	37	38

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
186	Muratura	-	30,0	160,0	270,0	1.792	975	135	38

Parete 10

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
39	-2.478	3.197	0	0
142	-2.168	3.197	0	0
147	-1.738	3.197	0	0
152	-1.349	3.197	0	0
136	-934	3.197	0	0
100	-576	3.197	0	0
93	-387	3.197	0	0
43	-7	3.196	0	0
40	-2.478	3.197	520	1
143	-2.168	3.197	520	1
148	-1.738	3.197	520	1

153	-1.349	3.197	520	1
137	-934	3.197	520	1
103	-744	3.197	520	1
101	-576	3.197	520	1
94	-387	3.197	520	1
44	-7	3.196	520	1
41	-2.478	3.197	1.110	2
144	-2.168	3.197	1.110	2
149	-1.738	3.197	1.110	2
154	-1.349	3.197	1.110	2
138	-934	3.197	1.110	2
104	-744	3.197	1.110	2
102	-576	3.197	1.110	2
95	-387	3.197	1.110	2
45	-7	3.196	1.110	2
42	-2.478	3.197	1.530	3
139	-934	3.197	1.530	3
96	-387	3.197	1.530	3
46	-7	3.196	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
228	1.724	0	0
229	2.281	520	1
230	2.281	1.110	2
231	366	1.530	3
232	719	1.530	3
233	1.115	1.530	3

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
204	Muratura	-	84,0	169,8	430,8	85	215	39	40
205	Muratura	-	84,0	40,5	430,8	290	215	142	143
206	Muratura	-	55,0	26,7	430,8	1.916	215	100	101
207	Muratura	-	55,0	406,5	430,8	2.268	215	93	229
202	Muratura	-	102,0	358,6	520,0	1.724	260	228	103
208	Muratura	-	84,0	169,8	490,3	85	765	40	41
209	Muratura	-	84,0	40,5	490,3	290	765	143	144
203	Muratura	-	40,0	379,6	590,0	2.281	815	229	230
216	Muratura	-	30,0	411,1	300,0	2.108	1.260	95	96
215	Muratura	-	30,0	188,6	370,0	1.639	1.295	138	139
217	Muratura	-	30,0	27,1	370,0	2.458	1.295	45	46

210	Muratura	-	40,0	160,9	285,0	80	1.324	41	42
214	Muratura	-	40,0	182,1	285,0	1.453	1.324	138	139
211	Muratura	-	40,0	210,8	150,0	366	1.335	144	231
212	Muratura	-	40,0	295,2	150,0	719	1.335	149	232
213	Muratura	-	40,0	295,2	150,0	1.115	1.335	154	233

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
189	Muratura	-	84,0	100,0	310,0	220	365	40	143
190	Muratura	-	55,0	135,0	310,0	1.997	365	101	94
191	Muratura	-	84,0	100,0	380,0	215	920	41	144
192	Muratura	-	40,0	100,0	150,0	215	1.185	41	144
194	Muratura	-	40,0	100,0	150,0	522	1.185	144	149
196	Muratura	-	40,0	100,0	150,0	917	1.185	149	154
198	Muratura	-	40,0	100,0	150,0	1.312	1.185	154	138
193	Muratura	-	40,0	100,0	120,0	211	1.470	42	231
195	Muratura	-	40,0	100,0	120,0	522	1.470	231	232
197	Muratura	-	40,0	100,0	120,0	917	1.470	232	233
199	Muratura	-	40,0	100,0	120,0	1.312	1.470	233	139
200	Muratura	-	30,0	170,0	120,0	1.818	1.470	139	96
201	Muratura	-	30,0	130,0	120,0	2.379	1.470	96	46

Parete 11

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
47	-3.218	3.504	0	0
182	-2.553	3.597	0	0
48	-3.218	3.504	520	1
183	-2.553	3.597	520	1
49	-3.218	3.504	1.110	2
184	-2.553	3.597	1.110	2

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
234	336	0	0
235	336	520	1
236	336	1.110	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
218	Muratura	-	135,0	671,5	520,0	336	260	234	235
219	Muratura	-	10,0	671,5	590,0	336	815	235	236

Parete: 12

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
50	-2.648	4.106	0	0
57	-2.168	4.196	0	0
13	-2.032	4.221	0	0
51	-2.648	4.106	520	1
58	-2.168	4.196	520	1
14	-2.032	4.221	520	1
52	-2.648	4.106	1.110	2
59	-2.168	4.196	1.110	2
15	-2.032	4.221	1.110	2

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
237	238	0	0
239	558	0	0
238	238	520	1
240	558	520	1
241	558	1.110	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
225	Muratura	-	42,0	131,8	490,0	238	245	237	238
226	Muratura	-	42,0	74,5	491,8	451	246	57	58
224	Muratura	-	42,0	21,9	520,0	11	260	50	51
222	Muratura	-	104,0	138,8	520,0	558	260	239	240
223	Muratura	-	30,0	138,8	590,0	558	815	240	241
227	Muratura	-	15,0	167,6	405,0	84	816	51	52
228	Muratura	-	15,0	190,6	405,0	393	816	58	59

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
220	Muratura	-	15,0	79,2	190,0	165	615	51	238
221	Muratura	-	15,0	130,0	180,0	233	1.020	52	59

Parete: 13

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
53	-3.290	3.976	0	0
55	-2.641	4.067	0	0
54	-3.290	3.976	520	1
56	-2.641	4.067	520	1

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
242	328	0	0
243	328	520	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
229	Muratura	-	30,0	655,3	520,0	328	260	242	243

Parete: 14

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
57	-2.168	4.196	0	0
121	-2.168	3.813	0	0
142	-2.168	3.197	0	0
140	-2.168	2.788	0	0
172	-2.168	2.322	0	0
60	-2.168	1.898	0	0
58	-2.168	4.196	520	1
122	-2.168	3.813	520	1
143	-2.168	3.197	520	1
141	-2.168	2.788	520	1
173	-2.168	2.322	520	1
61	-2.168	1.898	520	1
59	-2.168	4.196	1.110	2
123	-2.168	3.813	1.110	2
144	-2.168	3.197	1.110	2
174	-2.168	2.322	1.110	2
62	-2.168	1.898	1.110	2

Nodi 2D

Nod X locale [cm]		Z [cm]	Livello
0			
244	1.437	1.110	2

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
236	Muratura	-	40,0	987,0	464,3	1.492	232	140	141
237	Muratura	-	40,0	122,2	464,3	2.237	232	60	61
234	Muratura	-	40,0	114,3	520,0	440	260	121	122
235	Muratura	-	40,0	141,9	520,0	928	260	142	143
238	Muratura	-	60,0	455,4	490,3	610	765	122	123
239	Muratura	-	60,0	80,8	490,3	958	765	143	144
240	Muratura	-	65,0	136,8	496,0	1.943	768	173	174
241	Muratura	-	65,0	136,9	496,0	2.230	768	61	62
233	Muratura	-	80,0	875,5	590,0	1.437	815	141	244

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
230	Muratura	-	40,0	170,0	130,0	2.083	455	173	61
231	Muratura	-	60,0	80,0	380,0	878	920	123	144
232	Muratura	-	65,0	150,0	264,0	2.086	978	174	62

Parete: 15

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
63	-3.066	2.498	0	0
67	-2.366	2.596	0	0
64	-3.066	2.498	520	1
68	-2.366	2.596	520	1
65	-3.066	2.498	1.110	2
69	-2.366	2.596	1.110	2
66	-3.066	2.498	1.530	3
70	-2.366	2.596	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
245	353	520	1
246	353	1.110	2

Macroelementi Maschi

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
244	Muratura	-	120,0	223,7	520,0	112	260	63	64
245	Muratura	-	120,0	223,1	520,0	595	260	67	68
243	Muratura	-	71,0	706,8	590,0	353	815	245	246
246	Muratura	-	45,0	550,7	350,0	275	1.285	246	66
247	Muratura	-	45,0	76,1	350,0	669	1.285	69	70

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
242	Muratura	-	45,0	80,0	210,0	591	1.425	66	70

Parete: 16

Nod	X [cm]	Y [cm]	Z [cm]	Livello
о				
71	-1.738	1.898	0	0
170	-1.738	2.322	0	0
145	-1.738	2.788	0	0
147	-1.738	3.197	0	0
167	-1.738	3.817	0	0
73	-1.738	4.221	0	0
72	-1.738	1.898	520	1
171	-1.738	2.322	520	1
146	-1.738	2.788	520	1
148	-1.738	3.197	520	1
168	-1.738	3.817	520	1
74	-1.738	4.221	520	1
149	-1.738	3.197	1.110	2
169	-1.738	3.817	1.110	2
75	-1.738	4.221	1.110	2

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
76	-1.349	1.898	0	0
175	-1.349	2.322	0	0
150	-1.349	2.788	0	0
152	-1.349	3.197	0	0
158	-1.349	3.820	0	0
78	-1.349	4.221	0	0
77	-1.349	1.898	520	1
176	-1.349	2.322	520	1
151	-1.349	2.788	520	1
153	-1.349	3.197	520	1
159	-1.349	3.820	520	1
79	-1.349	4.221	520	1
154	-1.349	3.197	1.110	2
160	-1.349	3.820	1.110	2
80	-1.349	4.221	1.110	2

Parete: 18

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
81	-984	4.116	0	0
97	-626	4.134	0	0
89	-439	4.144	0	0
85	-60	4.164	0	0
82	-984	4.116	520	1
98	-626	4.134	520	1
90	-439	4.144	520	1
86	-60	4.164	520	1
83	-984	4.116	1.110	2
99	-626	4.134	1.110	2
91	-439	4.144	1.110	2
87	-60	4.164	1.110	2
84	-984	4.116	1.530	3
92	-439	4.144	1.530	3
88	-60	4.164	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
247	305	1.530	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
250	Muratura	-	166,0	925,4	520,0	463	260	89	90
251	Muratura	-	30,0	925,4	590,0	463	815	90	91
253	Muratura	-	30,0	183,4	210,0	305	1.215	99	247
252	Muratura	-	30,0	93,4	350,0	47	1.285	83	84
254	Muratura	-	30,0	408,6	350,0	721	1.285	91	92

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
248	Muratura	-	30,0	120,0	210,0	153	1.425	84	247
249	Muratura	-	30,0	120,0	210,0	457	1.425	247	92

Parete: 19

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
89	-439	4.144	0	0
155	-422	3.828	0	0
117	-416	3.716	0	0
105	-404	3.510	0	0
93	-387	3.197	0	0
90	-439	4.144	520	1
156	-422	3.828	520	1
118	-416	3.716	520	1
106	-404	3.510	520	1

94	-387	3.197	520	1
91	-439	4.144	1.110	2
157	-422	3.828	1.110	2
119	-416	3.716	1.110	2
252	-410	3.613	1.110	2
107	-404	3.510	1.110	2
95	-387	3.197	1.110	2
92	-439	4.144	1.530	3
120	-416	3.716	1.530	3
253	-410	3.613	1.530	3
108	-404	3.510	1.530	3
96	-387	3.197	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0	ļ		
248	373	0	0
249	373	520	1
250	792	1.110	2
251	792	1.530	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
260	Muratura	-	42,0	67,7	430,8	669	215	105	106
261	Muratura	-	42,0	51,6	430,8	923	215	93	94
257	Muratura	-	42,0	112,4	520,0	373	260	248	249
262	Muratura	-	30,0	110,2	490,3	690	765	106	107
263	Muratura	-	30,0	94,1	490,3	902	765	94	95
258	Muratura	-	30,0	429,3	590,0	215	815	156	157
264	Muratura	-	30,0	46,2	350,0	23	1.285	91	92
265	Muratura	-	30,0	263,1	350,0	298	1.285	157	120
259	Muratura	-	30,0	314,4	420,0	792	1.320	250	251

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
255	Muratura	-	42,0	152,5	310,0	800	365	106	94
256	Muratura	-	30,0	120,0	210,0	106	1.425	92	120

Parete: 20

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
97	-626	4.134	0	0
161	-609	3.826	0	0
100	-576	3.197	0	0
98	-626	4.134	520	1
162	-609	3.826	520	1
101	-576	3.197	520	1
99	-626	4.134	1.110	2
163	-609	3.826	1.110	2
102	-576	3.197	1.110	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
267	Muratura	-	42,0	434,1	430,8	526	215	161	162
268	Muratura	-	42,0	103,4	430,8	887	215	100	101
269	Muratura	-	30,0	684,3	590,0	342	815	162	163
270	Muratura	-	30,0	44,9	590,0	917	815	101	102

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
266	Muratura	-	42,0	148,1	310,0	788	365	162	101

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
105	-404	3.510	0	0
258	-296	3.516	0	0
113	-187	3.522	0	0
109	-25	3.531	0	0
106	-404	3.510	520	1
259	-296	3.516	520	1
114	-187	3.522	520	1
110	-25	3.531	520	1
107	-404	3.510	1.110	2
260	-296	3.516	1.110	2
115	-187	3.522	1.110	2
111	-25	3.531	1.110	2
108	-404	3.510	1.530	3
261	-296	3.516	1.530	3
116	-187	3.522	1.530	3
112	-25	3.531	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
254	299	0	0
255	299	520	1
256	299	1.110	2
257	299	1.530	3

Macroelementi Maschi

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
271	Muratura	-	42,0	161,5	520,0	299	260	254	255
272	Muratura	-	30,0	161,5	590,0	299	815	255	256
273	Muratura	-	30,0	161,5	420,0	299	1.320	256	257

Parete: 22

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
24	-198	3.727	0	0
262	-192	3.625	0	0
113	-187	3.522	0	0
25	-198	3.727	520	1
263	-192	3.625	520	1
114	-187	3.522	520	1
26	-198	3.727	1.110	2
264	-192	3.625	1.110	2
115	-187	3.522	1.110	2

27	-198	3.727	1.530	3
265	-192	3.625	1.530	3
116	-187	3.522	1.530	3

Parete: 23

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
117	-416	3.716	0	0
266	-307	3.721	0	0
24	-198	3.727	0	0
118	-416	3.716	520	1
267	-307	3.721	520	1
25	-198	3.727	520	1
119	-416	3.716	1.110	2
268	-307	3.721	1.110	2
26	-198	3.727	1.110	2
120	-416	3.716	1.530	3
269	-307	3.721	1.530	3
27	-198	3.727	1.530	3

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
121	-2.168	3.813	0	0
167	-1.738	3.817	0	0
158	-1.349	3.820	0	0
164	-968	3.823	0	0
161	-609	3.826	0	0
155	-422	3.828	0	0
124	-42	3.831	0	0
122	-2.168	3.813	520	1
168	-1.738	3.817	520	1
159	-1.349	3.820	520	1
165	-968	3.823	520	1
162	-609	3.826	520	1
156	-422	3.828	520	1
125	-42	3.831	520	1
123	-2.168	3.813	1.110	2
169	-1.738	3.817	1.110	2
160	-1.349	3.820	1.110	2

166	-968	3.823	1.110	2
163	-609	3.826	1.110	2
157	-422	3.828	1.110	2
126	-42	3.831	1.110	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
288	Muratura	-	48,0	294,6	210,0	1.860	105	155	156
287	Muratura	-	48,0	548,8	257,5	1.329	129	164	165
285	Muratura	-	48,0	159,9	305,0	406	153	167	168
286	Muratura	-	48,0	151,2	305,0	790	153	158	159
289	Muratura	-	48,0	53,7	430,8	2.100	215	124	125
284	Muratura	-	48,0	110,1	440,5	55	220	121	122
294	Muratura	-	48,0	294,6	210,0	1.860	625	156	157
293	Muratura	-	48,0	578,3	305,0	1.314	723	165	166
295	Muratura	-	48,0	53,7	490,3	2.100	765	125	126
290	Muratura	-	48,0	153,1	495,0	77	817	122	123
291	Muratura	-	48,0	251,9	400,0	409	820	168	169
292	Muratura	-	48,0	229,7	400,0	780	820	159	160

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
277	Muratura	-	48,0	110,0	310,0	1.658	365	162	156
278	Muratura	-	48,0	65,0	310,0	2.040	365	156	125
274	Muratura	-	48,0	173,0	315,0	218	463	122	168
275	Muratura	-	48,0	179,0	315,0	600	463	168	159
276	Muratura	-	48,0	159,5	315,0	960	463	159	165
282	Muratura	-	48,0	110,0	380,0	1.658	920	163	157
283	Muratura	-	48,0	65,0	380,0	2.040	920	157	126
279	Muratura	-	48,0	130,0	90,0	218	1.065	123	169
280	Muratura	-	48,0	130,0	90,0	600	1.065	169	160
281	Muratura	-	48,0	130,0	90,0	960	1.065	160	166

Parete: 25

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
179	-2.316	2.322	0	0
172	-2.168	2.322	0	0
170	-1.738	2.322	0	0
175	-1.349	2.322	0	0
177	-887	2.322	0	0
180	-2.316	2.322	520	1
173	-2.168	2.322	520	1
171	-1.738	2.322	520	1
176	-1.349	2.322	520	1
178	-887	2.322	520	1
181	-2.316	2.322	1.110	2
174	-2.168	2.322	1.110	2

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
270	798	0	0
271	798	520	1
272	798	1.110	2

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
296	Muratura	-	192,0	147,6	520,0	798	260	270	271
297	Muratura	-	157,0	147,6	590,0	798	815	271	272

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
50	-2.648	4.106	0	0
55	-2.641	4.067	0	0
51	-2.648	4.106	520	1
56	-2.641	4.067	520	1

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
273	20	0	0
274	20	520	1

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
298	Muratura	-	30,0	40,0	520,0	20	260	273	274

Parete: 27

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
127	-2.716	4.468	0	0
50	-2.648	4.106	0	0
55	-2.641	4.067	0	0
182	-2.553	3.597	0	0
39	-2.478	3.197	0	0
35	-2.402	2.788	0	0
67	-2.366	2.596	0	0
179	-2.316	2.322	0	0
129	-2.237	1.898	0	0
128	-2.716	4.468	520	1
51	-2.648	4.106	520	1
56	-2.641	4.067	520	1
183	-2.553	3.597	520	1
40	-2.478	3.197	520	1
36	-2.402	2.788	520	1
68	-2.366	2.596	520	1
180	-2.316	2.322	520	1
130	-2.237	1.898	520	1
52	-2.648	4.106	1.110	2
184	-2.553	3.597	1.110	2
41	-2.478	3.197	1.110	2
69	-2.366	2.596	1.110	2
181	-2.316	2.322	1.110	2
131	-2.237	1.898	1.110	2
42	-2.478	3.197	1.530	3
70	-2.366	2.596	1.530	3
132	-2.237	1.898	1.530	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
278	1.807	0	0
280	2.044	0	0
283	1.090	520	1
279	1.807	520	1
281	2.044	520	1
285	2.399	520	1
282	627	1.110	2
284	1.090	1.110	2
287	1.501	1.110	2
275	1.709	1.110	2
286	2.399	1.110	2
288	1.501	1.530	3
276	1.709	1.530	3
277	2.183	1.530	3

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
310	Muratura	-	30,0	198,3	210,0	457	105	55	56
309	Muratura	-	30,0	277,7	430,8	139	215	127	128
311	Muratura	-	30,0	250,1	430,8	761	215	182	183
314	Muratura	-	135,0	120,5	464,3	2.244	232	179	180
315	Muratura	-	135,0	120,5	464,3	2.554	232	129	130
312	Muratura	-	100,0	28,3	520,0	900	260	182	183
313	Muratura	-	100,0	444,9	520,0	1.487	260	39	40
301	Muratura	-	130,0	195,2	520,0	1.807	260	278	279
302	Muratura	-	45,0	278,9	520,0	2.044	260	280	281
303	Muratura	-	30,0	518,2	590,0	627	815	56	282
304	Muratura	-	50,0	406,7	590,0	1.090	815	283	284
305	Muratura	-	40,0	611,7	590,0	1.599	815	36	287
316	Muratura	-	90,0	14,4	590,0	1.912	815	68	69
317	Muratura	-	90,0	14,5	590,0	2.176	815	180	181
306	Muratura	-	65,0	431,0	590,0	2.399	815	285	286
318	Muratura	-	90,0	161,9	361,3	2.264	1.291	181	277
319	Muratura	-	90,0	169,1	361,3	2.530	1.291	131	132
307	Muratura	-	60,0	416,5	420,0	1.501	1.320	287	288
308	Muratura	-	75,0	474,1	420,0	1.946	1.320	69	70

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
299	Muratura	-	30,0	80,0	310,0	318	365	128	51
300	Muratura	-	90,0	100,0	150,0	2.395	1.455	277	132

Definizione del modello, unità strutturale 2

Al fine di evitare ripetizioni, per la descrizione dell'unità strutturale 2 si è scelto di utilizzare il modello libero, in quanto la schematizzazione del telaio equivalente risulta analoga per gli altri quattro modelli (in LC1 e LC2).

Definizione dei nodi

Figura A. 4: Definizione dei nodi in pianta, livello 1, 2, 3, 4.

Definizione delle pareti

Parete 1

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
6	-2.110	-175	0	0
18	-1.633	-120	0	0
1	-875	-31	0	0
7	-2.110	-175	300	1
19	-1.633	-120	300	1
2	-875	-31	300	1
8	-2.110	-175	550	2
20	-1.633	-120	550	2

3	-875	-31	550	2
9	-2.110	-175	960	3
21	-1.633	-120	960	3
4	-875	-31	960	3
22	-1.633	-120	1.290	4
5	-875	-31	1.290	4

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
73	237	0	0
75	867	0	0
74	237	300	1
76	867	300	1
77	237	550	2
78	867	550	2
79	237	960	3
80	867	960	3
81	867	1.290	4

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
16	Muratura	-	61,0	94,8	260,0	237	130	73	74
19	Muratura	-	45,0	169,1	270,0	867	135	75	76
15	Muratura	-	61,0	29,7	281,4	15	141	6	7
17	Muratura	-	61,0	35,8	281,4	462	141	18	19
18	Muratura	-	45,0	72,0	285,8	516	143	18	19
20	Muratura	-	45,0	61,8	285,8	1.212	143	1	2
21	Muratura	-	61,0	44,7	200,0	22	436	7	8
23	Muratura	-	61,0	50,8	200,0	455	436	19	20
24	Muratura	-	45,0	122,0	200,0	541	436	19	20
26	Muratura	-	45,0	111,8	200,0	1.187	436	2	3
22	Muratura	-	61,0	124,8	150,0	237	455	74	77
25	Muratura	-	45,0	269,1	150,0	867	455	76	78
28	Muratura	-	61,0	124,8	202,0	237	731	77	79
31	Muratura	-	45,0	269,1	202,0	867	731	78	80
27	Muratura	-	61,0	44,7	306,0	22	747	8	9
29	Muratura	-	61,0	50,8	306,0	455	747	20	21
30	Muratura	-	45,0	122,0	306,0	541	747	20	21
32	Muratura	-	45,0	111,8	306,0	1.187	747	3	4
33	Muratura	-	45,0	122,0	250,0	541	1.125	21	22
34	Muratura	-	45,0	269,1	170,0	867	1.125	80	81
35	Muratura	-	45,0	111,8	250,0	1.187	1.125	4	5
Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
1	Muratura	-	61,0	145,0	120,0	110	320	7	74
2	Muratura	-	61,0	145,0	120,0	365	320	74	19
3	Muratura	-	45,0	180,0	110,0	667	325	19	76
4	Muratura	-	45,0	180,0	110,0	1.066	325	76	2
5	Muratura	-	61,0	130,0	100,0	110	580	8	77
6	Muratura	-	61,0	130,0	100,0	365	580	77	20
7	Muratura	-	45,0	130,0	100,0	667	580	20	78
8	Muratura	-	45,0	130,0	100,0	1.066	580	78	3
9	Muratura	-	61,0	130,0	128,0	110	896	9	79
10	Muratura	-	61,0	130,0	128,0	365	896	79	21
11	Muratura	-	45,0	130,0	208,0	667	936	21	80
12	Muratura	-	45,0	130,0	208,0	1.066	936	80	4
13	Muratura	-	45,0	130,0	80,0	667	1.250	22	81
14	Muratura	-	45,0	130,0	80,0	1.066	1.250	81	5

Parete: 2

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
10	-2.299	1.105	0	0
6	-2.110	-175	0	0
11	-2.299	1.105	300	1
7	-2.110	-175	300	1
12	-2.299	1.105	550	2
8	-2.110	-175	550	2
13	-2.299	1.105	960	3
9	-2.110	-175	960	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
82	647	0	0
83	647	300	1
84	647	550	2
85	647	960	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
36	Muratura	-	30,0	1.294,3	300,0	647	150	82	83
37	Muratura	-	30,0	1.294,3	250,0	647	425	83	84
38	Muratura	-	30,0	1.294,3	410,0	647	755	84	85

Parete: 3

Nodi 3D

	-			
Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
14	-2.092	2.430	0	0
36	-2.056	2.229	0	0
69	-1.864	1.164	0	0
46	-1.757	572	0	0
23	-1.726	397	0	0
18	-1.633	-120	0	0
15	-2.092	2.430	300	1
37	-2.056	2.229	300	1
54	-1.957	1.680	300	1
59	-1.907	1.403	300	1
70	-1.864	1.164	300	1
47	-1.757	572	300	1
24	-1.726	397	300	1

19	-1.633	-120	300	1
55	-1.957	1.680	550	2
60	-1.907	1.403	550	2
71	-1.864	1.164	550	2
48	-1.757	572	550	2
25	-1.726	397	550	2
20	-1.633	-120	550	2
72	-1.864	1.164	960	3
49	-1.757	572	960	3
26	-1.726	397	960	3
21	-1.633	-120	960	3
27	-1.726	397	1.290	4
22	-1.633	-120	1.290	4

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
92	102	0	0
86	1.349	0	0
94	1.408	0	0
88	1.467	0	0
96	2.118	0	0
90	2.169	0	0
98	2.380	0	0
93	102	300	1
87	1.349	300	1
95	1.408	300	1
89	1.467	300	1
97	2.118	300	1
91	2.169	300	1
99	2.380	300	1
100	2.328	960	3
101	2.328	1.290	4

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
42	Muratura	-	13,0	204,5	300,0	102	150	92	93
43	Muratura	-	64,0	1.144,8	300,0	777	150	69	54
44	Muratura	-	26,0	117,5	300,0	1.408	150	94	95
45	Muratura	-	64,0	599,4	300,0	1.766	150	46	47
46	Muratura	-	10,0	103,1	300,0	2.118	150	96	97
47	Muratura	-	64,0	421,4	300,0	2.380	150	98	99
50	Muratura	-	64,0	630,4	240,4	1.602	420	89	48
51	Muratura	-	64,0	553,8	240,4	2.314	420	99	25

48	MURATURA	-	26,0	524,8	250,0	1.024	425	59	60
	ANNI 60								
54	Muratura	-	64,0	553,8	405,1	2.314	753	25	100
52	Muratura	-	64,0	220,2	280,0	1.397	760	71	72
53	Muratura	-	64,0	310,2	275,0	1.762	763	48	49
49	Muratura	-	64,0	524,5	330,0	2.328	1.125	100	101

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
39	Muratura	-	64,0	120,0	20,0	1.977	540	48	25
40	Muratura	-	64,0	100,0	110,0	1.557	905	72	49
41	Muratura	-	64,0	120,0	10,0	1.977	955	49	26

Parete: 4

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
14	-2.092	2.430	0	0
40	-1.695	2.490	0	0
16	-1.269	2.555	0	0
15	-2.092	2.430	300	1
41	-1.695	2.490	300	1
17	-1.269	2.555	300	1

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
103	238	0	0
104	238	300	1
102	521	300	1

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
59	Muratura	-	13,0	109,3	185,0	55	157	14	15
61	Muratura	-	13,0	34,7	185,0	384	157	40	41
60	Muratura	-	13,0	117,0	70,0	238	185	103	104

Macroelementi Fasce

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
55	Muratura	-	13,0	70,0	150,0	144	75	14	103
57	Muratura	-	13,0	70,0	150,0	331	75	103	40
56	Muratura	-	13,0	70,0	80,0	144	260	15	104
58	Muratura	-	13,0	70,0	80,0	331	260	104	41

Parete: 5

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
16	-1.269	2.555	0	0
38	-1.238	2.353	0	0
44	-1.073	1.271	0	0
50	-982	673	0	0
28	-954	486	0	0
1	-875	-31	0	0
17	-1.269	2.555	300	1
39	-1.238	2.353	300	1
45	-1.073	1.271	300	1
51	-982	673	300	1
29	-954	486	300	1
2	-875	-31	300	1
52	-982	673	550	2
30	-954	486	550	2
3	-875	-31	550	2
53	-982	673	960	3
31	-954	486	960	3
4	-875	-31	960	3
32	-954	486	1.290	4
5	-875	-31	1.290	4

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
105	2.354	0	0
107	1.998	300	1
106	2.354	300	1
108	1.998	550	2
109	2.354	550	2
110	1.998	960	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
64	Muratura	-	45,0	2.092,8	300,0	1.046	150	44	45
65	Muratura	-	150,0	523,4	300,0	2.354	150	105	106
66	Muratura	-	64,0	189,0	250,0	1.998	425	107	108
67	Muratura	-	180,0	523,4	250,0	2.354	425	106	109
69	Muratura	-	180,0	158,6	372,8	2.172	736	30	31
70	Muratura	-	180,0	234,8	372,8	2.499	736	3	4
68	Muratura	-	64,0	189,0	410,0	1.998	755	108	110
71	Muratura	-	125,0	158,6	315,7	2.172	1.118	31	32
72	Muratura	_	125,0	234,8	315,7	2.499	1.118	4	5

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
62	Muratura	-	180,0	130,0	84,0	2.316	918	31	4
63	Muratura	-	125,0	130,0	30,0	2.316	1.275	32	5

Parete: 6

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
23	-1.726	397	0	0
28	-954	486	0	0
24	-1.726	397	300	1
29	-954	486	300	1
25	-1.726	397	550	2
30	-954	486	550	2
26	-1.726	397	960	3
31	-954	486	960	3
27	-1.726	397	1.290	4
32	-954	486	1.290	4

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
115	87	0	0
111	174	0	0
113	590	0	0
117	684	0	0
116	87	300	1
112	174	300	1
114	590	300	1
118	684	300	1
119	389	960	3
120	389	1.290	4

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
74	Muratura	-	60,0	173,6	300,0	87	150	115	116
75	Muratura	-	60,0	187,0	300,0	684	150	117	118
77	Muratura	-	30,0	448,4	236,0	224	418	112	25
78	Muratura	-	30,0	208,7	236,0	673	418	118	30
79	Muratura	-	30,0	448,4	405,1	224	753	25	119
80	Muratura	-	30,0	208,7	405,1	673	753	30	31
76	Muratura	-	45,0	777,1	330,0	389	1.125	119	120

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
73	Muratura	-	30,0	120,0	30,0	508	535	25	30

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
64	-1.548	2.306	0	0
121	-1.507	2.029	0	0
56	-1.467	1.755	0	0
61	-1.426	1.476	0	0
66	-1.390	1.228	0	0
65	-1.548	2.306	300	1
122	-1.507	2.029	300	1
57	-1.467	1.755	300	1
62	-1.426	1.476	300	1
67	-1.390	1.228	300	1
33	-1.302	632	300	1
58	-1.467	1.755	550	2
63	-1.426	1.476	550	2
68	-1.390	1.228	550	2
34	-1.302	632	550	2

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
123	902	300	1
125	1.548	300	1
124	902	550	2
126	1.548	550	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
87	MURATURA	-	26,0	281,7	250,0	902	425	123	124
	ANNI 60								
88	MURATURA	-	26,0	115,7	165,0	1.101	429	62	63
	ANNI 60								

89	MURATURA ANNI 60	-	26,0	15,1	165,0	1.286	429	67	68
90	MURATURA	-	26,0	86,0	165,0	1.337	429	67	68
	ANNI 60								
92	MURATURA	-	26,0	179,7	165,0	1.807	429	33	34
	ANNI 60								
91	MURATURA	-	26,0	96,8	80,0	1.548	440	125	126
	ANNI 60								

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
81	MURATURA	-	26,0	120,0	100,0	1.219	350	62	67
	ANNI 60								
83	MURATURA	-	26,0	120,0	100,0	1.440	350	67	125
	ANNI 60								
85	MURATURA	-	26,0	120,0	100,0	1.657	350	125	33
	ANNI 60								
82	MURATURA	-	26,0	120,0	70,0	1.219	515	63	68
	ANNI 60								
84	MURATURA	-	26,0	120,0	70,0	1.440	515	68	126
	ANNI 60								
86	MURATURA	-	26,0	120,0	70,0	1.657	515	126	34
	ANNI 60								

Parete: 8

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
36	-2.056	2.229	0	0
42	-1.667	2.288	0	0
64	-1.548	2.306	0	0
38	-1.238	2.353	0	0
37	-2.056	2.229	300	1
43	-1.667	2.288	300	1
65	-1.548	2.306	300	1
39	-1.238	2.353	300	1

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
97	Muratura	-	13,0	71,8	260,0	36	130	36	37
98	Muratura	-	13,0	256,0	260,0	265	130	42	43
101	Muratura	-	26,0	19,3	281,4	523	141	64	65
102	Muratura	-	26,0	163,8	281,4	745	141	38	39
99	Muratura	-	26,0	10,5	225,0	398	158	42	43
100	Muratura	-	26,0	10,5	225,0	509	158	64	65

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
94	Muratura	-	26,0	100,0	100,0	453	50	42	64
93	Muratura	-	13,0	65,0	100,0	104	250	37	43
95	Muratura	-	26,0	100,0	50,0	453	275	43	65
96	Muratura	-	26,0	130,0	40,0	598	280	65	39

Parete: 9

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
40	-1.695	2.490	0	0
42	-1.667	2.288	0	0
41	-1.695	2.490	300	1
43	-1.667	2.288	300	1

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
127	102	0	0
128	102	300	1

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
103	Muratura	-	13,0	204,4	300,0	102	150	127	128

Parete: 10

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
10	-2.299	1.105	0	0
69	-1.864	1.164	0	0
66	-1.390	1.228	0	0
44	-1.073	1.271	0	0
11	-2.299	1.105	300	1
70	-1.864	1.164	300	1
67	-1.390	1.228	300	1
45	-1.073	1.271	300	1
12	-2.299	1.105	550	2
71	-1.864	1.164	550	2
68	-1.390	1.228	550	2
13	-2.299	1.105	960	3
72	-1.864	1.164	960	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
129	219	0	0
130	219	300	1
131	219	550	2

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
105	Muratura	-	30,0	438,7	300,0	219	150	129	130
106	Muratura	-	30,0	438,7	250,0	219	425	130	131
107	Muratura	-	30,0	142,9	280,0	71	760	12	13
108	Muratura	-	30,0	195,8	280,0	341	760	71	72

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
104	Muratura	-	30,0	100,0	110,0	193	905	13	72

Parete: 11

N50

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
46	-1.757	572	0	0
50	-982	673	0	0
47	-1.757	572	300	1
33	-1.302	632	300	1
51	-982	673	300	1
48	-1.757	572	550	2
34	-1.302	632	550	2
52	-982	673	550	2

49	-1.757	572	960	3
35	-1.302	632	960	3
53	-982	673	960	3

Nodi 2D

Nod	X locale [cm]	Z [cm]	Livello
0			
132	229	300	1
133	229	550	2
134	229	960	3

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
112	MURATURA	-	13,0	458,9	250,0	229	425	132	133
	ANNI 60								
114	Muratura	-	15,0	76,4	205,0	497	443	33	34
115	Muratura	-	15,0	76,4	205,0	743	443	51	52
116	Muratura	-	13,0	76,4	285,0	497	742	34	35
117	Muratura	-	13,0	76,4	285,0	743	742	52	53
113	Muratura	-	13,0	458,9	410,0	229	755	133	134

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
109	Muratura	-	15,0	170,0	90,0	620	345	33	51
110	Muratura	-	13,0	170,0	80,0	620	590	34	52
111	Muratura	-	13,0	170,0	170,0	620	875	35	53

Parete: 12

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
54	-1.957	1.680	300	1
57	-1.467	1.755	300	1
55	-1.957	1.680	550	2
58	-1.467	1.755	550	2

Macroelementi Maschi

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
119	MURATURA	-	13,0	75,0	236,0	38	418	54	55
	ANNI 60								
120	MURATURA	-	13,0	300,6	236,0	345	418	57	58
	ANNI 60								

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
118	MURATURA	-	13,0	120,0	30,0	135	535	55	58
	ANNI 60								

Parete: 13

Nodi 3D

Nod	X [cm]	Y [cm]	Z [cm]	Livello
0				
59	-1.907	1.403	300	1
62	-1.426	1.476	300	1
60	-1.907	1.403	550	2
63	-1.426	1.476	550	2

Ν.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sopra	sotto
						[cm]	[cm]		
122	MURATURA	-	13,0	348,5	236,0	174	418	59	60
	ANNI 60								
123	MURATURA	-	13,0	17,9	236,0	477	418	62	63
	ANNI 60								

Macroelementi Fasce

N.	Materiale	Rinforzo	Spessore	Base	Altezza	Baricentro	Baricentro	Nodo	Nodo
			[cm]	[cm]	[cm]	Х	Z	sinistr	destro
						[cm]	[cm]	0	
121	MURATURA ANNI 60	-	13,0	120,0	30,0	409	535	60	63

Unità strutturale 2, modelli in LC2

Modello libero

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, nel quale l'unico vincolo è quello con le fondazioni.

Tale modello non rispecchia fedelmente il comportamento reale, ma risulta rappresentativo di un'analisi ideale del singolo edificio.

L'analisi è stata condotta rispetto al nodo N27, polo situato al quarto livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze, il quale si discosta da quello geometrico a causa del telaio in c.a. del piano terra.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over. Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

	Car			SLV				SLD			SLO				
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0	2,54	2,73	3,15	No	0,94	2,65	Sì	0,75	2,65	Sì	0,95	2,21
2	+X	1° modo	0	3,71	2,94	3,42	No	1,38	2,10	Sì	1,02	2,10	Sì	0,79	1,52
3	-X	Masse	0	2,11	2,03	2,79	No	0,73	2,03	Sì	0,58	2,03	Sì	0,97	2,46
4	-X	1° modo	0	2,82	2,28	3,07	No	1,09	2,12	Sì	0,82	2,12	Sì	0,82	1,93
5	+Y	Masse	0	0,36	1,03	0,76	Sì	0,16	0,83	Sì	0,14	0,83	Sì	1,78	3,63
6	+Y	1° modo	0	0,92	2,17	1,52	Sì	0,25	0,69	Sì	0,21	0,69	Sì	1,78	2,04
7	-Y	Masse	0	0,39	3,48	0,63	Sì	0,17	1,78	Sì	0,15	1,78	Sì	3,84	5,90
8	-Y	1° modo	0	0,82	3,55	1,20	Sì	0,28	1,81	Sì	0,23	1,81	Sì	2,51	3,96
9	+X	Masse	137	2,54	2,69	3,10	No	0,94	2,69	Sì	0,76	2,69	Sì	0,97	2,25
10	+X	Masse	-137	2,57	2,94	3,23	No	0,96	2,62	Sì	0,76	2,62	Sì	0,93	2,16
11	+X	1° modo	137	3,54	3,04	3,73	No	1,32	2,03	Sì	0,98	2,03	Sì	0,80	1,54
12	+X	1° modo	-137	3,93	3,57	3,31	No	1,46	2,48	Sì	1,08	2,48	Sì	0,91	1,69
13	-X	Masse	137	2,02	1,99	2,78	No	0,68	1,99	Sì	0,54	1,99	Sì	0,99	2,51
14	-X	Masse	-137	2,21	2,06	2,79	No	0,78	1,57	Sì	0,62	1,57	Sì	0,94	1,86
15	-X	1° modo	137	2,65	3,07	3,07	No	1,00	2,32	Sì	0,78	2,32	Sì	0,98	2,25
16	-X	1° modo	-137	2,97	2,90	3,26	No	1,15	1,84	Sì	0,85	1,84	Sì	0,92	1,60
17	+Y	Masse	71.2	0,39	1,97	0,84	Sì	0,17	0,81	Sì	0,14	0,81	Sì	2,38	3,35
18	+Y	Masse	-71.2	0,30	0,90	0,74	Sì	0,14	0,54	Sì	0,12	0,54	Sì	1,79	3,20
19	+Y	1° modo	71.2	1,06	3,09	1,70	Sì	0,27	0,63	Sì	0,23	0,63	Sì	1,77	1,79
20	+Y	1° modo	-71.2	0,81	1,98	1,38	Sì	0,23	0,57	Sì	0,19	0,57	Sì	1,76	2,00
21	-Y	Masse	71.2	0,45	3,41	0,70	No	0,20	1,78	Sì	0,16	1,78	Sì	3,40	5,45
22	-Y	Masse	-71.2	0,32	3,36	0,56	No	0,15	1,93	Sì	0,13	1,93	Sì	4,22	6,78
23	-Y	1° modo	71.2	0,98	3,36	1,28	No	0,32	1,65	Sì	0,27	1,65	Sì	2,31	3,39
24	-Y	1° modo	-71.2	0,68	3,52	1,10	No	0,25	1,81	Sì	0,21	1,81	Sì	2,72	4,25

Tabella A. 1: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 2 e la 20, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare, e in direzione + Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità pari a - 71,2.

I valori di α_u sono pari a 0,79 e 1,76: la struttura è in grado di sopportare una percentuale di 79% e 176% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni.

Per l'analisi 2 la verifica non risulta soddisfatta allo SLV, mentre per l'analisi 20 la verifica risulta soddisfatta per tutti gli stati limite.

Analisi 2, direzione X

Nell'analisi 2 lo spostamento richiesto dalla normativa risulta essere maggiore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del secondo e terzo livello della facciata occidentale e della facciata orientale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 10, con una percentuale di danneggiamento rispettivamente del 16,22% e del 30,49%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

			α _{TR}			TRC	2		TR=c	cost	
	TR _C	TR _D		$PGA_D(IR)$	PGA _D (TR)	E (TD)	т */тр)	а (тр)	PGA _c	~	
				[m/s]	[m/s ²]	Γ ₀ (ΙΝ)		u _{PGA} (IK)	[m/s ²]	Фрда	
SLV	431	712	0.61	0.94	0.76	2.65	0.34	0.81	0.75	0.81	
SLD	195	75	2.60	0.42	0.58	2.59	0.32	1.38	0.64	1.54	
SLO	195	45	4.33	0.35	0.58	2.59	0.32	1.67	0.72	2.08	

Tabella A. 2:	Tabella dei	parametri calcolati	durante l'analisi 2
---------------	-------------	---------------------	---------------------

			PARAM	ETRI DI ANA	ALISI								
-	Γ*	M*	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
[[s]	[kg]	M* w [kg] [kg]		[kN]	[cm]	[cm]						
0	.55	487012.50	928465.50	1.40	496.64	0.77	2.10						

Tabella A. 3: Tabella dei parametri di analisi calcolati nell'analisi 2

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione ed in minor nodo per pressoflessione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico, ad eccezione di un maschio murario giunto a rottura per pressoflessione.

Figura A. 6: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 19, 37.

La parete 10 è caratterizzata da un sistema di travi e pilastri in c.a. e un setto in muratura, il primo e il secondo livello sono privi di fonometrie, mentre il terzo ha un'apertura centrale.

Il primo livello è in stato plastico per pressoflessione, il secondo livello è in stato plastico per taglio, mentre il terzo livello giunge a rottura per pressoflessione nei maschi murari e rottura per trazione nelle fasce di piano.

Figura A. 7: Individuazione parete 10 legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 19, 37.

La parete 11 presenta tre livelli, di cui il primo costituito da travi in c.a. Il primo e il secondo piano sono costituiti da una parete in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

La parete priva di aperture risulta integra al secondo livello e in stato plastico per pressoflessione al terzo, mentre il setto contenente l'apertura è in stato plastico per pressoflessione al secondo livello, per giungere a rottura al terzo livello.

Figura A. 8: Individuazione parete 11, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 19, 37.

L'analisi rivela uno stato generale di integrità o di plasticizzazione per quanto riguarda i livelli inferiori, con rottura per trazione nelle fasce di piano, mentre il terzo livello denota uno stato plastico o di rottura per pressoflessione nei maschi murari o di rottura in fase elastica negli interassi delle finestre, mentre il quarto livello risulta plastico per pressoflessione nei maschi murari forati da aperture.

Figura A. 9: Stato di danneggiamento, sottopasso 1

Figura A. 10: Stato di danneggiamento, sottopasso 37

Analisi 20, direzione Y

Figura A. 11: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 20

Nell'analisi 20 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del secondo e terzo livello della facciata occidentale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 3, con una percentuale di danneggiamento rispettivamente del 12,92% e del 9,88%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

						TRC		TR=cost		
	TR _C	TR _D	α _{TR}	PGA _D (TR) [m/s ²]	PGA _c (TR) [m/s ²]	F ₀ (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _C [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	0.94	1.64	2.61	0.37	1.45	1.65	1.45
SLD	485	75	6.47	0.42	0.83	2.63	0.33	1.68	1.68	1.87
SLO	485	45	10.78	0.35	0.85	2.63	0.33	2.01	2.02	2.25

Tabella A. 4: Tabella dei parametri calcolati durante l'analisi 20

			PARAM	ETRI DI AN	ALISI								
ר	*	M*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
[s]	[kg]	[kg] [kg]		[kN]	[cm]	[cm]						
0.	.18	277111.11	928465.50	1.73	739.54	0.23	1.14						

Tabella A. 5: Tabella dei parametri di analisi calcolati nell'analisi 20

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione del lato destro, giunto a rottura.

Figura A. 12: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 16, 33.

La parete 3 divide le poste dall'unità strutturale maggiore, con la quale è vincolata al secondo, terzo e quarto livello. E' caratterizzata da i primi due livelli integri, mentre il livello terzo e quarto presentano maschi murari in stato plastico pressoflessione e fasce di piano rotte per trazione.

Figura A. 13: Individuazione parete 3, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 16, 33.

La parete che divide le poste dagli uffici APS è caratterizzata da i primi livelli integri, mentre il livello terzo e quarto presentano maschi murari plastici fino a rottura per pressoflessione e fasce di piano rotte per trazione.

LEGENDA

Figura A. 14: *Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 16, 33.*

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione o in fase elastica nelle fasce di piano e stato plastico o di rottura per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti in direzione x poste nel lato occidentale del palazzo, che denotano un'ampia percentuale di muratura rotta per pressoflessione.

Figura A. 16: Stato di danneggiamento, sottopasso 33

Modello con vincoli rigidi

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono presenti vincoli rigidi, per simulare l'interazione di unità strutturali contigue, e vincoli di fondazione.

Tale modello non rispecchia fedelmente il comportamento reale, ma si accinge ad esserlo.

L'analisi è stata condotta rispetto al nodo N27, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del telaio in c.a. utilizzato al piano terra nel vano delle poste.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over. Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

				SLV				SLD			SLO				
Ν.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0,0	0,31	0,38	0,80	Sì	0,13	0,45	Sì	0,11	0,45	Sì	1,25	3,12
2	+X	1° modo	0,0	0,61	0,93	1,27	Sì	0,21	0,93	Sì	0,18	0,93	Sì	1,31	3,23
3	-X	Masse	0,0	0,34	0,79	0,87	Sì	0,15	0,57	Sì	0,12	0,57	Sì	1,62	3,23
4	-X	1° modo	0,0	0,56	1,61	1,00	Sì	0,24	1,16	Sì	0,20	1,16	Sì	1,95	3,78
5	+Y	Masse	0,0	0,28	0,90	0,72	Sì	0,13	0,83	Sì	0,11	0,83	Sì	1,88	4,06
6	+Y	1° modo	0,0	0,80	2,13	1,41	Sì	0,22	1,94	Sì	0,18	1,94	Sì	1,89	4,47
7	-Y	Masse	0,0	0,31	3,27	0,57	Sì	0,14	3,27	Sì	0,12	3,27	Sì	4,23	9,95
8	-Y	1° modo	0,0	0,68	3,24	1,15	Sì	0,24	3,24	Sì	0,20	3,24	Sì	2,62	6,07
9	+X	Masse	136,5	0,37	0,69	0,94	Sì	0,16	0,69	Sì	0,13	0,69	Sì	1,39	3,34
10	+X	Masse	-136,5	0,27	0,40	0,94	Sì	0,12	0,40	Sì	0,10	0,40	Sì	1,21	2,87
11	+X	1° modo	136,5	0,73	1,04	0,71	Sì	0,32	1,07	Sì	0,26	1,07	Sì	1,41	3,36
12	+X	1° modo	-136.50	0.60	1.20	1.60	Sì	0.17	0.78	Sì	0.14	0.28	Sì	2.13	5.32
13	-X	Masse	136,5	0,39	0,89	0,93	Sì	0,17	0,75	Sì	0,14	0,75	Sì	1,58	3,45
14	-X	Masse	-136,5	0,32	0,73	0,76	Sì	0,14	0,66	Sì	0,11	0,66	Sì	1,69	3,85
15	-X	1° modo	136,5	0,66	1,57	1,04	Sì	0,28	0,79	Sì	0,23	0,74	Sì	1,76	2,63
16	-X	1° modo	-136,5	0,55	0,92	1,31	Sì	0,18	0,58	Sì	0,15	0,58	Sì	1,38	2,48
17	+Y	Masse	71,2	0,30	0,89	0,78	Sì	0,14	0,70	Sì	0,12	0,70	Sì	1,74	3,49
18	+Y	Masse	-71,2	0,25	0,98	0,69	Sì	0,12	0,85	Sì	0,11	0,85	Sì	2,07	4,34
19	+Y	1° modo	71,2	0,99	3,49	1,44	Sì	0,29	3,40	Sì	0,24	3,40	Sì	2,09	4,85
20	+Y	1° modo	-71,2	0,74	2,57	1,35	Sì	0,21	2,34	Sì	0,17	2,34	Sì	2,22	5,15
21	-Y	Masse	71,2	0,33	3,24	0,62	Sì	0,15	3,24	Sì	0,13	3,24	Sì	3,95	9,28
22	-Y	Masse	-71,2	0,29	3,37	0,51	Sì	0,13	3,37	Sì	0,12	3,37	Sì	4,59	10,78
23	-Y	1° modo	71,2	0,81	3,46	1,24	Sì	0,26	3,19	Sì	0,22	3,19	Sì	2,41	5,61
24	-Y	1° modo	-71,2	0,58	3,11	1,05	Sì	0,23	3,11	Sì	0,19	3,11	Sì	2,65	6,62

 Tabella A. 6: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 10 e la 17, rispettivamente in direzione + X, con una forza sismica proporzionale alle masse e con un'eccentricità -136,50, e in direzione + Y, con una forza sismica proporzionale alle masse e con un'eccentricità pari a +71,20.

l valori di α_u sono pari a 1,21 e 1,74: la struttura è in grado di sopportare una percentuale del 121% e del 174% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per tutti gli stati limite.

Figura A. 17: Curva di capacità dell'analisi più gravosa in direzione X, analisi 10

Analisi 10, direzione X

Nell'analisi 10 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del terzo livello della facciata occidentale, che si rompono in un setto per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 3, con una percentuale di danneggiamento rispettivamente del 16,21% e del 9,88%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Le pareti perpendicolari alla direzione del sisma non riportano un grave stato di danneggiamento.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

						TRC		TR=c	ost	
	TR _C	TR _D	α_{TR} PGA _D (TR) [m/s ²]		PGA _c (TR) [m/s²]	F ₀ (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _c [m/s²]	α_{PGA}
SLV	1415	712	1.99	0.94	1.12	2.64	0.36	1.19	0.62	1.21
SLD	1415	75	18.87	0.42	1.12	2.64	0.36	2.69	0.64	2.87
SLO	1415	45	31.44	0.35	1.12	2.64	0.36	3.24	0.65	3.50

Tabella A. 7: Tabella dei parametri calcolati durante l'analisi 10

		PARAM	ETRI DI AN	ALISI		
T*	M*	w	Г	F* _y	d _y *	d _u *
[s]	[kg]	[kg]		[kN]	[cm]	[cm]
0.18	596408.83	930774.95	0.87	2330.24	0.33	0.46

 Tabella A. 8: Tabella dei parametri di analisi calcolati nell'analisi 10

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e gli interasse delle forometrie risultano in stato integro o plastico per pressoflessione.

Figura A. 18: *Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.*

La parete 3 divide le poste dall'unità strutturale maggiore, con la quale è vincolata al secondo, terzo e quarto livello. E' caratterizzata da i primi due livelli integri, mentre il livello terzo e quarto presentano maschi murari in stato plastico pressoflessione e fasce di piano rotte per trazione..

Figura A. 19: *Individuazione parete 3, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.*

La parete 13 presenta un livello al primo piano, costituita da un sistema di travi e pilastri, ed un livello al secondo piano in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

Il maschio murario risulta plastico a pressoflessione, il pilastro è in stato integro, mentre la fascia di piano è rotta per trazione.

Figura A. 20: Individuazione parete 13, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.

L'analisi rivela uno stato generale di integrità per quanto riguarda i setti privi di aperture, ad eccezione di una parete in stato plastico per taglio, rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari.

Figura A. 21: Stato di danneggiamento, sottopasso 1

Figura A. 22: Stato di danneggiamento, sottopasso 7

Analisi 17, direzione Y

Figura A. 23: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 17

Nell'analisi 17 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del quarto livello e la facciata orientale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 3 e la 5, con una percentuale di danneggiamento rispettivamente del 9,88% e del 10,48%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

						TRC		TR=cost		
	TR _C	TR _D	α_{TR}	PGA _D (TR) [m/s ²]	PGA _C (TR) [m/s ²]	F ₀ (TR)	T _c *(TR)	$\alpha_{PGA}(TR)$	PGA _C [m/s ²]	α_{PGA}
SLV	>2475	712	>3,476	0.94	1.36	2.61	0.37	1.45	1.95	2.09
SLD	>2476	75	>33,00	0.42	1.36	2.61	0.37	3.25	2.02	4.85
SLO	>2477	45	>55,00	0.35	1.36	2.61	0.37	3.92	2.02	5.82

Tabella A. 9: Tabella dei parametri calcolati durante l'analisi 17

		PARAM	ETRI DI AN	ALISI									
T*	M*	M* w Γ F* _y d _y * d _u *											
[s]	[kg]	[kg]	I	[kN]	[cm]	[cm]							
0.14	271231.29	930774.95	1.77	1149.26	0.22	0.50							

Tabella A. 10: Tabella dei parametri di analisi calcolati nell'analisi 17

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione del lato destro, giunto a rottura.

Da evidenziare che il maschio murario più snello, vincolato a sinistra con l'edificio del Monte di Pietà, risulta in stato integro per quanto riguarda i primi due livelli, per giungere ad uno stato plastico per pressoflessione al terzo livello.

Figura A. 24: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.

La parete 3 divide le poste dall'unità strutturale maggiore, con la quale è vincolata al secondo, terzo e quarto livello. E' caratterizzata da i primi due livelli integri, mentre il livello terzo e quarto presentano maschi murari in stato plastico pressoflessione e fasce di piano rotte per trazione.

Figura A. 25: Individuazione parete 3, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.

La parete 13 presenta un livello al primo piano, costituita da un sistema di travi e pilastri, ed un livello al secondo piano in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

Il maschio murario risulta plastico a pressoflessione, il pilastro è in stato integro, mentre la fascia di piano è rotta per trazione.

Figura A.26: Individuazione parete 13, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti in direzione x poste nel lato occidentale del palazzo, che denotano un'ampia percentuale di muratura plastica per pressoflessione.

Figura A. 27: Stato di danneggiamento, sottopasso 1

Figura A. 28: Stato di danneggiamento, sottopasso 7

Modello con vincoli cedevoli elasticamente

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, ma sono presenti vincoli elastici, per simulare l'interazione di unità strutturali contigue, e vincoli di fondazione.

Tale modello rispecchia in maggior modo il comportamento reale dell'aggregato.

L'analisi è stata condotta rispetto al nodo N27, polo situato al terzo livello dell'edificio e decentrato rispetto al baricentro geometrico, ma posto nel nodo più vicino al centro delle rigidezze.

Il centro delle rigidezze si discosta da quello geometrico a causa del telaio in c.a. utilizzato al piano terra nel vano delle poste.

La tabella riporta gli spostamenti massimi e ultimi per lo stato limite per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), l'indicatore del rischio di collasso α_u e quello del rischio di inagibilità dell'opera α_e , risultati delle 24 analisi push over. Le analisi più gravose sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non verificate.

				SLV				SLD			SLO				
N.	Dir. sisma	Car. sismico prop.	Ecc. [cm]	DMa x [cm]	Du [cm]	q* SLU	Ver.	DMa x [cm]	Dd [cm]	Ver.	DMa x [cm]	D0 [cm]	Ver.	Alfa u	Alfa e
1	+X	Masse	0.00	2,12	1,74	3,82	No	0,64	0,93	Sì	0,57	2,04	Sì	0,85	1,71
2	+X	1° modo	0.00	3,30	3,73	2,65	Sì	1,25	3,73	Sì	0,93	3,73	Sì	1,13	2,88
3	-X	Masse	0.00	1,87	1,66	2,48	No	0,61	1,66	Sì	0,49	1,66	Sì	0,91	2,29
4	-X	1° modo	0.00	2,96	3,94	2,47	Sì	1,16	3,90	Sì	0,86	3,16	Sì	1,22	2,87
5	+Y	Masse	0.00	0,33	0,90	0,78	Sì	0,15	0,63	Sì	0,13	0,63	Sì	1,69	3,20
6	+Y	1° modo	0.00	0,89	2,03	1,46	Sì	0,25	0,66	Sì	0,20	0,66	Sì	1,72	2,05
7	-Y	Masse	0.00	0,36	3,41	0,62	Sì	0,17	1,61	Sì	0,14	1,61	Sì	3,92	5,65
8	-Y	1° modo	0.00	0,79	3,22	1,18	Sì	0,27	1,49	Sì	0,23	1,49	Sì	2,46	3,51
9	+X	Masse	136.50	2.28	1.99	2.75	No	0,81	1.76	Sì	0.65	1.76	Sì	0.89	2,00
10	+X	Masse	-136.50	2,03	1,73	2,62	No	0,69	1,73	Sì	0,55	1,73	Sì	0,87	2,20
11	+X	1° modo	136.50	3,68	4,54	2,43	Sì	1,37	4,45	Sì	1,02	4,45	Sì	1,23	3,24
12	+X	1° modo	-136.50	3,27	2,73	2,61	No	1,24	1,95	Sì	0,92	1,95	Sì	0,84	1,57
13	-X	Masse	136.50	1,85	1,63	2,49	Sì	0,60	1,63	Sì	0,49	1,63	Sì	0,90	2,27
14	-X	Masse	-136.50	1,99	1,70	2,45	No	0,66	1,70	Sì	0,54	1,70	Sì	0,87	2,20
15	-X	1° modo	136.50	3,00	3,77	2,37	Sì	1,17	3,29	Sì	0,87	2,30	Sì	1,25	2,81
16	-X	1° modo	-136.50	3,09	4,16	2,46	Sì	1,20	4,08	Sì	0,89	3,74	Sì	1,22	2,96
17	+Y	Masse	71.20	0,36	1,26	0,76	Sì	0,17	0,96	Sì	0,14	0,96	Sì	1,95	3,87
18	+Y	Masse	-71.20	0,30	2,75	0,69	Sì	0,14	2,41	Sì	0,12	2,41	Sì	3,58	7,65
19	+Y	1° modo	71.20	1,00	2,22	1,60	Sì	0,26	0,80	Sì	0,22	0,80	Sì	1,75	2,13
20	+Y	1° modo	-71.20	0,78	3,07	1,34	Sì	0,23	1,92	Sì	0,19	1,92	Sì	2,23	4,42
21	-Y	Masse	71.20	0,42	3,38	0,69	Sì	0,19	1,76	Sì	0,15	1,76	Sì	3,53	5,54
22	-Y	Masse	-71.20	0,31	3,31	0,56	Sì	0,14	1,76	Sì	0,12	1,76	Sì	4,28	6,58
23	-Y	1° modo	71.20	0,95	3,60	1,28	Sì	0,31	1,49	Sì	0,26	1,49	Sì	2,34	3,22
24	-Y	1° modo	-71.20	0,66	3,30	1,09	Sì	0,25	1,64	Sì	0,21	1,64	Sì	2,66	4,01

Tabella A. 11: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 12 e la 5, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità -136,50, e in direzione + Y, con una forza sismica proporzionale alle masse.

I valori di α_u sono pari a 0,84 e 1,69: la struttura è in grado di sopportare una percentuale del 84% e del 169% del sisma di progetto relativo allo stato limite ultimo di salvaguardia della vita, per un tempo di ritorno di 712 anni. La verifica delle 24 analisi risulta soddisfatta per gli stati limite di operatività e di danno, mentre per lo stato limite di salvaguardia della vita sono soddisfatte quattro delle dodici analisi in direzione X e tutte quelle in direzione Y.

Analisi 5, direzione Y

Figura A. 29: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 5

Nell'analisi 5 lo spostamento richiesto dalla normativa risulta essere maggiore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del quarto livello della facciata orientale e meridionale, che si rompono per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 4 e la 13, con una percentuale di danneggiamento rispettivamente del 4,97% e del 4,00%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

	TR _c	TR _D	α _{tr}	PGA _D (TR) [m/s ²]	TRC				TR=cost	
					PGA _D (TR) [m/s²]	F ₀ (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _C [m/s ²]	α_{PGA}
SLV	>2475	712	>3.48	0.94	1.36	2.61	0.37	1.45	1.58	1.69
SLD	>2476	75	>33.00	0.42	1.36	2.61	0.37	3.25	1.33	3.19
SLO	>2477	45	>55.00	0.35	1.36	2.61	0.37	3.92	1.35	3.89

 Tabella A. 12: Tabella dei parametri calcolati durante l'analisi 5

PARAMETRI DI ANALISI											
T*	M*	w	г	F* _y	d _y *	d _u *					
[s]	[kg]	[kg]	•	[kN]	[cm]	[cm]					
0.15	276434.43	930774.95	1.74	1198.01	0.24	0.52					

Tabella A. 13: Tabella dei parametri di analisi calcolati nell'analisi 5

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_v* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione del lato destro, giunto a rottura.

Da evidenziare che il maschio murario più snello, vincolato a sinistra con l'edificio del Monte di Pietà, risulta in stato integro per quanto riguarda i primi due livelli, per giungere ad uno stato plastico per pressoflessione al terzo livello.

Figura A. 30: Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.
La parete 4 è composta da un setto in muratura, scandito da due aperture, ed una trave in c.a.che collega la parete stessa al setto longitudinale settentrionale.

Presenta maschi murari laterali in stato plastico per pressoflessione ed un maschio murario centrale rotto a taglio a livello delle forometrie, fasce di piano rotte a trazione e la trave in stato integro.

Figura A. 31: Individuazione parete 4, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.

La parete 13 presenta un livello al primo piano, costituita da un sistema di travi e pilastri, ed un livello al secondo piano in muratura, interrotta da un'unica apertura, e da un pilastro in continuità con quello sottostante.

Il maschio murario risulta plastico a pressoflessione, il pilastro è in stato integro, mentre la fascia di piano è rotta per trazione.

Figura A.32: Individuazione parete 13, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 3, 7.

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti poste al quarto livello, che denotano un'ampia percentuale di muratura plastica e rotta per pressoflessione.

Figura A. 33: Stato di danneggiamento, sottopasso 1

Figura A. 34: Stato di danneggiamento, sottopasso 7

Analisi 12, direzione X

Figura A. 35: Curva di capacità dell'analisi più gravosa in direzione X, analisi 12

Nell'analisi 12 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le pareti del quarto livello e la facciata orientale, che si rompono in alcuni punti per pressoflessione, mentre le pareti interne ed esterne maggiormente danneggiate all'ultimo passo risultano la 1 e la 3, con una percentuale di danneggiamento rispettivamente del 12,92% e del 9,88%.

Le pareti interessate dell'azione del sisma sono in direzione parallela e perpendicolare alla direzione della forza orizzontale.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

						TRC	2		TR=c	cost
SIV	TR _C	TR _D	α_{TR}	PGA _D (TR) [m/s ²]	PGA _C (TR) [m/s²]	F _o (TR)	T _c *(TR)	α _{PGA} (TR)	PGA _C [m/s ²]	α_{PGA}
SLV	491	712	0.69	0.94	0.75	2.66	0.34	0.84	0.79	0.84
SLD	213	75	2.84	0.42	0.59	2.60	0.32	1.41	0.65	1.57
SLO	213	45	4.73	0.35	0.59	2.60	0.32	1.69	0.73	2.12

 Tabella A. 14: Tabella dei parametri calcolati durante l'analisi 12

		PARAM	ETRI DI AN	ALISI		
T*	M*	w	F	F* _y	d _y *	d _u *
[s]	[kg]	[kg]	1	[kN]	[cm]	[cm]
0.49	487489.93	930774.95	1.41	685.05	0.85	1.94

Tabella A. 15: Tabella dei parametri di analisi calcolati nell'analisi 12

Dove:

- T* è il periodo del sistema equivalente,
- m* è la massa del sistema equivalente,
- w è la massa totale,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente,
- d_u* è lo spostamento ultimo del sistema equivalente.

La parete esterna situata lungo via Monte di Pietà presenta una distribuzione elevata e regolare di aperture: le fasce di piano risultano fortemente danneggiate per trazione, mentre i maschi murari e l'interasse delle fonometrie risultano in stato plastico per pressoflessione, ad eccezione delle fasce del quarto livello, giunte a rottura.

Figura A. 36: *Individuazione parete 1, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 15, 30*

La parete 3 divide le poste dall'unità strutturale maggiore, con la quale è vincolata al secondo, terzo e quarto livello. E' caratterizzata da i primi due livelli integri, mentre il livello terzo e quarto presentano maschi murari in stato plastico pressoflessione e fasce di piano rotte per trazione.

Figura A. 37: Individuazione parete 3, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 15, 30

La parete che divide le poste dagli uffici APS è caratterizzata da i primi livelli integri, mentre il livello terzo e quarto presentano maschi murari plastici fino a rottura per pressoflessione e fasce di piano rotte per trazione e pressoflessione.

LEGENDA

Figura A. 38: Individuazione parete 5, legenda del grado di danno e progredire del danneggiamento della parete, sottopasso 1, 15, 30

L'analisi rivela uno stato generale di integrità per quanto riguarda le pareti prive di aperture, di rottura per trazione nelle fasce di piano e stato plastico per pressoflessione nei maschi murari. Le porzioni più danneggiate sono le pareti poste al quarto livello, che denotano un'ampia percentuale di muratura plastica e rotta per pressoflessione.

Figura A. 39: Stato di danneggiamento, sottopasso 1

Figura A. 40: Stato di danneggiamento, sottopasso 30

ALLEGATO B: analisi statica non lineare, ANDILWall

Definizione del modello, unità strutturale 1

Per la descrizione dell'unità strutturale 1 si è scelto di utilizzare il modello libero, in quanto la schematizzazione del telaio equivalente risulta analoga per gli altri modelli.

Definizione delle piante

Figura B 1: Definizione dei nodi in pianta, livello 1

Figura B 2: Definizione dei nodi in pianta, livello 2

Figura B 3: Definizione dei nodi in pianta, livello 3

Definizione degli elementi strutturali ad asse orizzontale

Piano	Nome	Lun (m)	Sp (m)	Dis (m)	Nodo	Nodo	L ast	Ang	RE I(x)	RE I(y)	RE I(z)	RE J(x)	RE J(y)	RE J(z)
nr		(m)	(m)	(m)	-	J	(m)	()	(m)	(m)	(m)	(m)	(m)	(m)
1	P1	14.821	0.502	0.000	N01	N02	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P10	1.021	0.500	0.000	N05	N06	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P11	0.700	0.480	0.000	N08	N09	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P12	0.628	0.479	0.000	N12	N13	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P13	12.313	1.510	0.000	N16	N17	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P14	9.442	0.300	0.000	N20	N21	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P15	9.247	0.800	0.000	N24	N25	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P16	2.952	0.300	0.000	N27	N28	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P17	1.635	0.300	0.000	N30	N31	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P18	1.702	1.237	0.000	N34	N35	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P19	2.100	0.500	0.000	N38	N39	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P2	5.504	0.366	0.000	N42	N43	4.350	-0.030	0.000	0.000	0.000	0.150	0.000	0.000
1	P20	3.720	1.200	0.000	N45	N46	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P21	3.722	1.200	0.000	N48	N49	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P22	1.885	0.297	0.000	N51	N52	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P23	2.952	0.300	0.000	N54	N55	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P24	1.635	0.300	0.000	N57	N58	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P25	3.394	0.303	0.000	N60	N61	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P26	3.854	0.303	0.000	N64	N65	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P27	14.821	0.502	0.000	N68	N69	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P28	1.240	1.001	0.000	N72	N73	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P29	2.556	1.001	0.000	N76	N77	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000

1 P3 2	1.240	1.001	0.000	N80	N81	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P30 2	2.412	1.001	0.000	N84	N85	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P31 2	2.714	1.001	0.000	N88	N89	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P32	1.021	0.500	0.000	N92	N93	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P33 (0.700	0.480	0.000	N95	N96	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P34 (0.628	0.479	0.000	N99	N100	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P35 2	2.952	0.300	0.000	N103	N104	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P36 2	1.635	0.300	0.000	N107	N108	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P37 :	1.702	1.237	0.000	N111	N112	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P38 3	3.720	1.200	0.000	N114	N115	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P39 3	3.722	1.200	0.000	N117	N118	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P4 2	2.556	1.001	0.000	N121	N36	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P40 1	1.885	0.297	0.000	N124	N125	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P41 (6.011	0.303	0.000	N127	N128	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P42 9	9.442	0.999	0.000	N131	N132	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P43 2	2.952	0.820	0.000	N134	N135	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P44 2	2.341	0.820	0.000	N138	N139	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P45 (0.845	0.820	0.000	N142	N143	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P46 2	2.257	0.820	0.000	N146	N147	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P47 2	2.418	0.820	0.000	N150	N151	4.350	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P48 9	9.557	0.820	0.000	N154	N155	4.350	-89.990	0.000	0.000	0.000	0.150	0.000	0.000
1 P49 2	2.963	0.660	0.000	N157	N158	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P5 2	2.412	1.001	0.000	N160	N161	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P50 2	2.887	0.660	0.000	N164	N165	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P51 1	1.481	0.660	0.000	N168	N169	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P6 2	2.714	1.001	0.000	N171	N172	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1 P7 6	6.385	0.306	0.000	N174	N175	4.350	0.030	0.000	0.000	0.000	0.150	0.000	0.000
1 P8 3	3.261	0.300	0.000	N178	N179	4.350	-0.050	0.000	0.000	0.000	0.150	0.000	0.000
1 P9 2	2.100	0.500	0.000	N181	N182	4.350	0.000	0.000	0.000	0.000	0.150	0.000	0.000
2 P1 1	14.821	0.502	0.000	N02	N185	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P10 1	1.702	1.237	0.000	N35	N188	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P11 2	2.100	0.500	0.000	N39	N191	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P12 /	7.581	0.502	0.000	N194	N195	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P13 1	2.556	1.001	0.000	N73	N198	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 F14 2	2.550	1 001	0.000	N85	N201	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P16	2.412	1.001	0.000	N89	N204	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P17	1 021	0.500	0.000	N93	N210	4 500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P18 (0.700	0.480	0.000	N96	N212	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P19 (0.628	0.479	0.000	N100	N215	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P2	1.240	1.001	0.000	N81	N218	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P20 2	2.952	0.300	0.000	N104	N221	4,500	90,000	0.150	0.000	0.000	0.150	0.000	0.000
2 P21	1.635	0.300	0.000	N108	N224	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P22	1.702	1.237	0.000	N112	N227	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2 P23 4	4.761	0.297	0.000	N229	N230	4.500	-0.020	0.150	0.000	0.000	0.150	0.000	0.000
2 P24 !	5.773	0.303	0.000	N232	N233	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000

2	P26	2.341	0.820	0.000	N139	N239	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P27	0.845	0.820	0.000	N143	N242	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P28	2.257	0.820	0.000	N147	N245	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P29	2.418	0.820	0.000	N151	N248	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P3	2.556	1.001	0.000	N36	N189	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P30	9.557	0.820	0.000	N155	N253	4.500	-89.990	0.150	0.000	0.000	0.150	0.000	0.000
2	P31	2.963	0.450	0.000	N158	N255	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P32	2.887	0.450	0.000	N165	N257	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P33	1.481	0.450	0.000	N169	N260	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P34	3.670	0.300	0.000	N262	N263	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P35	4.772	0.300	0.000	N265	N266	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P36	3.722	0.541	0.000	N118	N269	4.500	-0.020	0.150	0.000	0.000	0.150	0.000	0.000
2	P37	0.476	0.443	0.000	N116	N272	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P38	0.476	0.443	0.000	N129	N275	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P39	1.488	0.502	0.000	N277	N278	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P4	2.412	1.001	0.000	N161	N281	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P40	2.727	0.503	0.000	N284	N285	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P41	9.244	0.303	0.000	N288	N289	4.500	89.990	0.150	0.000	0.000	0.150	0.000	0.000
2	P42	4.020	1.510	0.000	N292	N293	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P43	1.887	1.510	0.000	N296	N297	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P44	6.645	0.300	0.000	N300	N301	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P45	0.800	0.600	0.000	N303	N304	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P46	0.800	0.600	0.000	N306	N307	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P47	1.073	0.600	0.000	N310	N311	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P48	3.182	0.300	0.000	N313	N314	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P49	2.331	0.300	0.000	N317	N318	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P5	2.714	1.001	0.000	N172	N321	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P50	0.500	0.300	0.000	N323	N324	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P6	2.100	0.500	0.000	N182	N334	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P7	1.021	0.500	0.000	N06	N337	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P8	0.700	0.480	0.000	N09	N339	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P9	0.628	0.479	0.000	N13	N342	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P1	8.809	0.502	0.000	N345	N346	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P10	2.556	1.001	0.000	N201	N349	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P11	2.412	1.001	0.000	N204	N352	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P12	2.714	0.480	0.000	N207	N355	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P17	1 670	0.400	0.000	N212	NIGED	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P14	2.020	0.479	0.000		NIGE	4.300	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P15	1.625	0.300	0.000	N221	N269	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	D17	2.035	0.500	0.000	N224	N271	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	Γ1/ D1δ	2.332	0.000	0.000	N230	N27/	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P10	0.845	0.000	0.000	N233	N277	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P7	1 2/10	1 001	0.000	N242	NISSU	4 500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P20	2 257	0.600	0.000	N245	N383	4 500	90.000	0 150	0.000	0.000	0.150	0.000	0.000
3	P21	2.418	0.600	0.000	N248	N386	4,500	90,000	0.150	0.000	0.000	0.150	0.000	0.000
3	P22	9.557	0.600	0.000	N253	N389	4,500	-89,990	0.150	0.000	0.000	0.150	0.000	0.000
Ĩ	1		2.000	2.000						2.000			2.000	2.000

3	P23	2.963	0.450	0.000	N255	N391	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P24	2.887	0.450	0.000	N257	N393	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P25	1.481	0.450	0.000	N260	N396	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P26	3.670	0.300	0.000	N263	N398	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P27	4.772	0.300	0.000	N266	N400	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P28	6.231	0.503	0.000	N403	N404	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P29	4.020	1.510	0.000	N293	N406	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P3	2.556	1.001	0.000	N189	N409	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P30	1.887	1.510	0.000	N297	N412	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P31	6.645	0.300	0.000	N301	N415	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P32	0.800	0.600	0.000	N304	N418	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P33	0.800	0.600	0.000	N307	N420	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P34	1.073	0.600	0.000	N311	N423	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P35	0.999	0.300	0.000	N425	N426	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P36	1.628	0.300	0.000	N428	N429	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P37	1.000	0.479	0.000	N431	N432	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P38	3.723	0.479	0.000	N269	N434	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P39	2.720	0.479	0.000	N437	N438	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P4	2.412	1.001	0.000	N281	N441	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P40	1.000	0.300	0.000	N444	N445	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P5	2.714	1.001	0.000	N321	N453	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P6	2.700	0.480	0.000	N339	N455	4.500	0.010	0.150	0.000	0.000	0.150	0.000	0.000
3	P7	1.702	1.237	0.000	N188	N458	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P8	10.581	0.502	0.000	N460	N461	4.500	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P9	1.240	1.001	0.000	N198	N464	4.500	0.000	0.150	0.000	0.000	0.150	0.000	0.000

Piano nr	Nome	Mat	Area (mq)	Jy (m4)	Jz (m4)	Coeff Rig	Vinc pr I	Vinc or I	Vinc pr J	Vinc or J
1	P1	MUR1	7.435	0.1559416	136.092473 9	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P10	MUR1	0.510	0.0106313	0.0442951	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P11	MUR1	0.336	0.0064431	0.0137143	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P12	MUR1	0.301	0.0057503	0.0098931	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P13	MUR1	18.590	3.5312679	234.854630	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P14	MUR1	2.833	0.0212447	21.0447144	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P15	MUR1	7.398	0.3945536	52.7182065	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P16	MUR1	0.886	0.0066414	0.6429523	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P17	MUR1	0.490	0.0036777	0.1091739	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P18	MUR1	2.106	0.2686389	0.5086346	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P19	MUR1	1.050	0.0218738	0.3858089	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P2	MUR1	2.017	0.0225686	5.0927130	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P20	MUR1	4.464	0.5356584	5.1472621	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P21	MUR1	4.467	0.5360011	5.1571482	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P22	MUR1	0.560	0.0041286	0.1659446	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P23	MUR1	0.886	0.0066414	0.6429523	COEFRIG1	Continuità	Continuità	Continuità	Continuità

1	P24	MUR1	0.490	0.0036777	0.1091739	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P25	MUR1	1.028	0.0078657	0.9868718	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P26	MUR1	1.168	0.0089316	1.4449165	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P27	MUR1	7.435	0.1559416	136.092473	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P28	MUR1	1.241	0.1035747	0.1591081	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P29	MUR1	2.558	0.2134668	1.3929080	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	Р3	MUR1	1.241	0.1035739	0.1591043	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P30	MUR1	2.414	0.2014149	1.1700541	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P31	MUR1	2.716	0.2266136	1.6664372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P32	MUR1	0.510	0.0106313	0.0442951	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P33	MUR1	0.336	0.0064431	0.0137143	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P34	MUR1	0.301	0.0057503	0.0098931	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P35	MUR1	0.886	0.0066414	0.6429523	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P36	MUR1	0.490	0.0036777	0.1091739	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P37	MUR1	2.106	0.2686389	0.5086346	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P38	MUR1	4.464	0.5356584	5.1472621	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P39	MUR1	4.467	0.5360011	5.1571482	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P4	MUR1	2.558	0.2134668	1.3929080	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P40	MUR1	0.560	0.0041286	0.1659446	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P41	MUR1	1.821	0.0139323	5.4843195	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P42	MUR1	9.437	0.7855358	70.1086839	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P43	MUR1	2.420	0.1356250	1.7574028	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P44	MUR1	1.920	0.1076383	0.8772364	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P45	MUR1	0.693	0.0388280	0.0411765	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P46	MUR1	1.851	0.1037761	0.7861560	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P47	MUR1	1.983	0.1111828	0.9667825	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P48	MUR1	7.837	0.4391187	59.6482030	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P49	MUR1	1.955	0.0709792	1.4302229	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P5	MUR1	2.414	0.2014149	1.1700541	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P50	MUR1	1.905	0.0691564	1.3228450	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P51	MUR1	0.977	0.0354737	0.1785372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P6	MUR1	2.716	0.2266136	1.6664372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P7	MUR1	1.952	0.0152084	6.6326068	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P8	MUR1	0.978	0.0073375	0.8670185	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P9	MUR1	1.050	0.0218738	0.3858089	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P1	MUR1	7.435	0.1559416	136.09247	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P10	MUR1	2.106	0.2686389	0.5086346	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P11	MUR1	1.050	0.0218738	0.3858089	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P12	MUR1	3.803	0.0797691	18.2159795	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P13	MUR1	1.241	0.1035747	0.1591081	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P14	MUR1	2.558	0.2134668	1.3929080	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P15	MUR1	2.414	0.2014149	1.1700541	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P16	MUR1	2.716	0.2266136	1.6664372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P17	MUR1	0.510	0.0106313	0.0442951	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P18	MUR1	0.336	0.0064431	0.0137143	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P19	MUR1	0.301	0.0057503	0.0098931	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P2	MUR1	1.241	0.1035739	0.1591043	COEFRIG1	Continuità	Continuità	Continuità	Continuità

2	P20	MUR1	0.886	0.0066414	0.6429523	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P21	MUR1	0.490	0.0036777	0.1091739	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P22	MUR1	2.106	0.2686389	0.5086346	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P23	MUR1	1.416	0.0104288	2.6746780	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P24	MUR1	1.749	0.0133806	4.8581788	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P25	MUR1	2.420	0.1356250	1.7574028	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P26	MUR1	1.920	0.1076383	0.8772364	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P27	MUR1	0.693	0.0388280	0.0411765	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P28	MUR1	1.851	0.1037761	0.7861560	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P29	MUR1	1.983	0.1111828	0.9667825	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P3	MUR1	2.558	0.2134668	1.3929080	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P30	MUR1	7.837	0.4391187	59.6482030	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P31	MUR1	1.333	0.0224976	0.9751520	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P32	MUR1	1.299	0.0219199	0.9019398	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P33	MUR1	0.666	0.0112438	0.1217299	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P34	MUR1	1.101	0.0082575	1.2357817	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P35	MUR1	1.432	0.0107370	2.7166806	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P36	MUR1	2.012	0.0490023	2.3231025	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P37	MUR1	0.211	0.0034438	0.0039830	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P38	MUR1	0.211	0.0034437	0.0039827	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P39	MUR1	0.747	0.0157099	0.1379309	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P4	MUR1	2.414	0.2014149	1.1700541	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P40	MUR1	1.371	0.0288517	0.8497767	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P41	MUR1	2.801	0.0214256	19.9457596	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P42	MUR1	6.069	1.1528242	8.1713989	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P43	MUR1	2.849	0.5412205	0.8455316	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P44	MUR1	1.993	0.0149507	7.3346580	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P45	MUR1	0.480	0.0143883	0.0255956	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P46	MUR1	0.480	0.0143883	0.0255956	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P47	MUR1	0.644	0.0193033	0.0618066	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P48	MUR1	0.955	0.0071603	0.8057346	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P49	MUR1	0.699	0.0052448	0.3166408	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P5	MUR1	2.716	0.2266136	1.6664372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P50	MUR1	0.150	0.0011240	0.0031164	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P6	MUR1	1.050	0.0218738	0.3858089	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P7	MUR1	0.510	0.0106313	0.0442951	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P8	MUR1	0.336	0.0064431	0.0137143	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P9	MUR1	0.301	0.0057503	0.0098931	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P1	MUR1	4.419	0.0926913	28.5802027	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P10	MUR1	2.558	0.2134668	1.3929080	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P11	MUR1	2.414	0.2014149	1.1700541	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P12	MUR1	2.716	0.2266136	1.6664372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P13	MUR1	1.296	0.0248552	0.7872893	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P14	MUR1	0.780	0.0149058	0.1723158	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P15	MUR1	0.886	0.0066414	0.6429523	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P16	MUR1	0.490	0.0036777	0.1091739	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P17	MUR1	1.771	0.0531315	1.2859045	COEFRIG1	Continuità	Continuità	Continuità	Continuità

3	P18	MUR1	1.405	0.0421445	0.6417629	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P19	MUR1	0.507	0.0152026	0.0301237	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P2	MUR1	1.241	0.1035739	0.1591043	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P20	MUR1	1.354	0.0406323	0.5751309	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P21	MUR1	1.451	0.0435323	0.7072724	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P22	MUR1	5.734	0.1720260	43.6450266	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P23	MUR1	1.333	0.0224976	0.9751520	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P24	MUR1	1.299	0.0219199	0.9019398	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P25	MUR1	0.666	0.0112438	0.1217299	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P26	MUR1	1.101	0.0082575	1.2357817	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P27	MUR1	1.432	0.0107370	2.7166806	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P28	MUR1	3.131	0.0659114	10.1314555	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P29	MUR1	6.069	1.1528242	8.1713989	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	Р3	MUR1	2.558	0.2134668	1.3929080	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P30	MUR1	2.849	0.5412205	0.8455316	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P31	MUR1	1.993	0.0149507	7.3346580	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P32	MUR1	0.480	0.0143883	0.0255956	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P33	MUR1	0.480	0.0143883	0.0255956	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P34	MUR1	0.644	0.0193033	0.0618066	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P35	MUR1	0.300	0.0022481	0.0249356	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P36	MUR1	0.489	0.0036638	0.1079402	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P37	MUR1	0.479	0.0091539	0.0399100	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P38	MUR1	1.783	0.0340809	2.0596448	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P39	MUR1	1.303	0.0248973	0.8030019	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P4	MUR1	2.414	0.2014149	1.1700541	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P40	MUR1	0.300	0.0022572	0.0250267	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P5	MUR1	2.716	0.2266136	1.6664372	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P6	MUR1	1.296	0.0248552	0.7872893	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P7	MUR1	2.106	0.2686389	0.5086346	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P8	MUR1	5.308	0.1113352	49.5273836	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	Р9	MUR1	1.241	0.1035747	0.1591081	COEFRIG1	Continuità	Continuità	Continuità	Continuità

Definizione degli elementi strutturali ad asse orizzontale

Cordoli in c.a.

Caratteristiche geometriche

Piano	Nome	Alt	Sp	Nodo	Nodo	L ast	Incl	Ang	RE I(x)	RE I(y)	RE I(z)	RE J(x)	RE J(y)	RE J(z)
nr		(m)	(m)	I	J	(m)	(°)	(°)	(m)	(m)	(m)	(m)	(m)	(m)
1	C1	0.300	0.300	N471	N96	3.078	0.000	89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C1_1	0.300	0.300	N470	N469	3.078	0.000	89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C1_2	0.300	0.300	N73	N470	3.078	0.000	89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C1_3	0.300	0.300	N469	N471	3.078	0.000	89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C13	0.300	0.301	N04	N32	3.236	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C2	0.300	0.300	N474	N09	3.078	0.000	-89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C2_1	0.300	0.300	N473	N472	3.078	0.000	-89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C2_2	0.300	0.300	N81	N473	3.078	0.000	-89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C2_3	0.300	0.300	N472	N474	3.078	0.000	-89.606	0.000	0.000	0.000	0.000	0.000	0.000
1	C22	0.300	0.479	N96	N100	3.664	0.000	0.000	0.350	0.000	0.000	0.314	0.000	0.000
1	C25	0.300	0.301	N71	N109	3.236	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C3	0.300	0.300	N09	N182	6.012	0.000	-89.023	0.000	0.000	0.000	0.000	0.000	0.000
1	C4	0.300	0.300	N96	N39	6.012	0.000	89.023	0.000	0.000	0.000	0.000	0.000	0.000
1	C8	0.300	0.479	N09	N96	3.700	0.000	0.000	0.350	0.000	0.000	0.350	0.000	0.000
1	C9	0.300	0.479	N13	N09	3.664	0.000	0.000	0.314	0.000	0.000	0.350	0.000	0.000
2	C15	0.300	0.479	N212	N361	3.164	0.000	0.000	0.350	0.000	0.000	0.000	0.000	0.000
2	C15_1	0.300	0.479	N361	N215	0.500	0.000	0.000	0.000	0.000	0.000	0.314	0.000	0.000
2	C17	0.300	0.301	N197	N444	2.736	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C17_1	0.300	0.301	N444	N225	0.500	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C28	0.300	0.476	N217	N431	0.500	0.000	-0.030	0.000	0.000	0.000	0.000	0.000	0.000
2	C28_1	0.300	0.476	N431	N275	2.297	0.000	-0.030	0.000	0.000	0.000	0.000	0.000	0.000
2	C29	0.300	0.476	N275	N437	0.563	0.000	0.090	0.000	0.000	0.000	0.000	0.000	0.000
2	C29_1	0.300	0.476	N437	N272	0.360	0.000	0.090	0.000	0.000	0.000	0.000	0.000	0.000
2	C36	0.300	0.300	N290	N425	2.298	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C36_1	0.300	0.300	N425	N343	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C7	0.300	0.479	N339	N212	3.700	0.000	0.000	0.350	0.000	0.000	0.350	0.000	0.000
2	C8	0.300	0.479	N342	N428	0.500	0.000	0.000	0.314	0.000	0.000	0.000	0.000	0.000
2	C8_1	0.300	0.479	N428	N339	3.164	0.000	0.000	0.000	0.000	0.000	0.350	0.000	0.000
2	C9	0.300	0.301	N187	N447	1.337	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C9_1	0.300	0.301	N447	N331	1.899	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000

Piano nr	Nome	Mat	Area (mq)	Jy (m4)	Jz (m4)	Coeff Rig	Vinc pr I	Vinc or I	Vinc pr J	Vinc or J
1	C1	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C1_1	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C1_2	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C1_3	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C13	COR1	0.090	0.0006765	0.0006794	COEFRIG1	Continuità	Continuità	Continuità	Continuità

1	C2	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C2_1	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C2_2	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C2_3	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C22	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C25	COR1	0.090	0.0006764	0.0006793	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C3	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C4	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C8	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C9	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C15	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C15_1	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C17	COR1	0.090	0.0006764	0.0006793	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C17_1	COR1	0.090	0.0006764	0.0006793	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C28	COR1	0.143	0.0010713	0.0026986	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C28_1	COR1	0.143	0.0010713	0.0026986	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C29	COR1	0.143	0.0010713	0.0026986	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C29_1	COR1	0.143	0.0010713	0.0026986	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C36	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C36_1	COR1	0.090	0.0006750	0.0006750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C7	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C8	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C8_1	COR1	0.144	0.0010772	0.0027434	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C9	COR1	0.090	0.0006765	0.0006794	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	C9_1	COR1	0.090	0.0006765	0.0006794	COEFRIG1	Continuità	Continuità	Continuità	Continuità

Quadro di armature

Codice	Descrizione	Copr (cm)	Arm long	Ø staf (mm)	p staf (cm)	Tipo acc	Tipo cls
COR1	Cordolo standard	2.5	4ø16	6	25.0	B450C-CA	CLS-C2530

Travi in muratura ordinaria (superiori)

Piano	Nomo	Alt	Sp	Nodo	Nodo	L ast	Incl	Ang	RE I(x)	RE I(y)	RE I(z)	RE J(x)	RE J(y)	RE J(z)
nr	Nome	(m)	(m)	I	J	(m)	(°)	(°)	(m)	(m)	(m)	(m)	(m)	(m)
1	F1	1.000	1.001	N81	N73	3.531	0.000	0.000	0.620	0.500	0.000	0.620	0.500	0.000
1	F11	1.000	0.300	N108	N104	3.156	0.000	90.000	0.817	0.500	0.000	1.476	0.500	0.000
1	F13	1.000	0.820	N143	N133	3.181	0.000	90.000	0.422	0.500	0.000	0.707	0.500	0.000
1	F15	1.000	0.820	N147	N143	2.525	0.000	90.000	1.129	0.500	0.000	0.422	0.500	0.000
1	F17	1.000	1.001	N161	N36	4.023	0.000	0.000	1.206	0.500	0.000	1.278	0.500	0.000
1	F19	1.000	0.820	N120	N147	3.541	0.000	90.000	0.723	0.500	0.000	1.129	0.500	0.000
1	F21	1.000	0.820	N156	N151	2.269	0.000	90.000	0.000	0.500	0.000	1.209	0.500	0.000
1	F23	1.000	0.820	N139	N135	3.510	0.000	90.000	1.171	0.500	0.000	1.476	0.500	0.000
1	F25	1.000	0.660	N169	N165	3.240	0.000	0.000	0.740	0.500	0.000	1.443	0.500	0.000

1	F27	1.000	0.660	N165	N158	3.981	0.000	0.000	1.443	0.500	0.000	1.481	0.500	0.000
1	F29	1.000	1.001	N172	N161	4.063	0.000	0.000	1.357	0.500	0.000	1.206	0.500	0.000
1	F3	1.000	1.001	N73	N77	4.063	0.000	0.000	0.620	0.500	0.000	1.278	0.500	0.000
1	F5	1.000	1.001	N77	N85	4.023	0.000	0.000	1.278	0.500	0.000	1.206	0.500	0.000
1	F7	1.000	1.001	N85	N89	4.063	0.000	0.000	1.206	0.500	0.000	1.357	0.500	0.000
1	F9	1.000	1.001	N36	N81	4.063	0.000	0.000	1.278	0.500	0.000	0.620	0.500	0.000
2	F1	1.000	1.001	N218	N198	3.531	0.000	0.000	0.620	0.500	0.000	0.620	0.500	0.000
2	F11	1.000	0.820	N245	N242	2.525	0.000	90.000	1.129	0.500	0.000	0.422	0.500	0.000
2	F13	1.000	0.820	N271	N245	3.541	0.000	90.000	0.723	0.500	0.000	1.129	0.500	0.000
2	F15	1.000	0.820	N254	N248	2.269	0.000	90.000	0.000	0.500	0.000	1.209	0.500	0.000
2	F17	1.000	0.820	N239	N236	3.510	0.000	90.000	1.171	0.500	0.000	1.476	0.500	0.000
2	F19	1.000	0.300	N224	N221	3.156	0.000	90.000	0.817	0.500	0.000	1.476	0.500	0.000
2	F21	1.000	0.450	N260	N257	3.240	0.000	0.000	0.740	0.500	0.000	1.443	0.500	0.000
2	F23	1.000	0.450	N257	N255	3.981	0.000	0.000	1.443	0.500	0.000	1.481	0.500	0.000
2	F25	1.000	1.001	N189	N218	4.063	0.000	0.000	1.278	0.500	0.000	0.620	0.500	0.000
2	F27	1.000	1.001	N281	N189	4.023	0.000	0.000	1.206	0.500	0.000	1.278	0.500	0.000
2	F29	1.000	1.001	N321	N281	4.063	0.000	0.000	1.357	0.500	0.000	1.206	0.500	0.000
2	F3	1.000	1.001	N198	N201	4.063	0.000	0.000	0.620	0.500	0.000	1.278	0.500	0.000
2	F5	1.000	1.001	N201	N204	4.023	0.000	0.000	1.278	0.500	0.000	1.206	0.500	0.000
2	F7	1.000	1.001	N204	N207	4.063	0.000	0.000	1.206	0.500	0.000	1.357	0.500	0.000
2	F9	1.000	0.820	N242	N268	3.181	0.000	90.000	0.422	0.500	0.000	0.707	0.500	0.000

Piano	Nome	Mat	Area	۶l	Jz	Coeff	Area cat	Acciaio	Vinc pr	Vinc or	Vinc pr	Vinc or
nr	Nome	mat	(mq)	(m4)	(m4)	Rig	cmq	catena	I	1	J	J
1	F1	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F11	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F13	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F15	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F17	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F19	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F21	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F23	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F25	MUR1	0.660	0.0550000	0.0239580	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F27	MUR1	0.660	0.0550000	0.0239580	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F29	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F3	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F5	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F7	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F9	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F1	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F11	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F13	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F15	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F17	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F19	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F21	MUR1	0.450	0.0375000	0.0075938	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

2	F23	MUR1	0.450	0.0375000	0.0075938	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F25	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F27	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F29	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F3	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F5	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F7	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F9	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

Travi in muratura ordinaria (inferiori)

Piano nr	Nome	Alt (m)	Sp (m)	Nodo	Nodo J	Last (m)	Incl (°)	Ang (°)	RE I(x) (m)	RE I(y) (m)	RE I(z) (m)	RE J(x) (m)	RE J(y) (m)	RE J(z) (m)
1	C10	1 000	1 200	N300	N62	3 322	0.000	0.000	0.400	0.000	0.000	0.923	0.000	0.000
1	C11	1.000	0.300	N31	N329	1.907	0.000	90.000	0.817	0.000	0.000	0.227	0.000	0.000
1	C12	1.000	0.359	N44	N180	0.677	0.000	0.260	0.000	0.000	0.000	0.000	0.000	0.000
1	C14	1.000	0.800	N35	N02	10.063	0.000	90.000	0.851	0.000	0.000	7.410	0.000	0.000
1	C15	1.000	0.300	N58	N55	3.156	0.000	90.000	0.817	0.000	0.000	1.476	0.000	0.000
1	C16	1.000	0.303	N61	N288	2.925	0.000	90.000	1.697	0.000	0.000	0.000	0.000	0.000
1	C16_1	1.000	0.303	N288	N65	2.698	0.000	90.000	0.000	0.000	0.000	1.927	0.000	0.000
1	C20	1.000	0.300	N175	N229	3.448	0.000	0.000	3.193	0.000	0.000	0.000	0.000	0.000
1	C20_1	1.000	0.300	N229	N125	1.438	0.000	0.000	0.000	0.000	0.000	0.942	0.000	0.000
1	C21	1.000	0.500	N39	N93	3.366	0.000	0.000	1.050	0.000	0.000	0.510	0.000	0.000
1	C23	1.000	1.200	N116	N118	3.861	0.000	0.000	0.000	0.000	0.000	1.861	0.000	0.000
1	C26	1.000	0.800	N112	N284	4.016	0.000	90.000	0.851	0.000	0.000	1.364	0.000	0.000
1	C27	1.000	0.303	N232	N467	6.123	0.000	90.000	2.887	0.000	0.000	0.000	0.000	0.000
1	C5	1.000	0.300	N52	N317	3.448	0.000	0.000	0.942	0.000	0.000	1.754	0.000	0.000
1	C6	1.000	0.500	N182	N39	3.905	0.000	0.000	1.050	0.000	0.000	1.050	0.000	0.000
1	C7	1.000	0.500	N06	N182	3.366	0.000	0.000	0.510	0.000	0.000	1.050	0.000	0.000
1	F10	1.000	1.001	N36	N81	4.063	0.000	0.000	1.278	-0.500	0.000	0.620	-0.500	0.000
1	F12	1.000	0.300	N108	N104	3.156	0.000	90.000	0.817	-0.500	0.000	1.476	-0.500	0.000
1	F14	1.000	0.820	N143	N133	3.181	0.000	90.000	0.422	-0.500	0.000	0.707	-0.500	0.000
1	F16	1.000	0.820	N147	N143	2.525	0.000	90.000	1.129	-0.500	0.000	0.422	-0.500	0.000
1	F18	1.000	1.001	N161	N36	4.023	0.000	0.000	1.206	-0.500	0.000	1.278	-0.500	0.000
1	F2	1.000	1.001	N81	N73	3.531	0.000	0.000	0.620	-0.500	0.000	0.620	-0.500	0.000
1	F20	1.000	0.820	N120	N147	3.541	0.000	90.000	0.723	-0.500	0.000	1.129	-0.500	0.000
1	F22	1.000	0.820	N156	N151	2.269	0.000	90.000	0.000	-0.500	0.000	1.209	-0.500	0.000
1	F24	1.000	0.820	N139	N135	3.510	0.000	90.000	1.171	-0.500	0.000	1.476	-0.500	0.000
1	F26	1.000	0.660	N169	N165	3.240	0.000	0.000	0.740	-0.500	0.000	1.443	-0.500	0.000
1	F28	1.000	0.660	N165	N158	3.981	0.000	0.000	1.443	-0.500	0.000	1.481	-0.500	0.000
1	F30	1.000	1.001	N172	N161	4.063	0.000	0.000	1.357	-0.500	0.000	1.206	-0.500	0.000
1	F4	1.000	1.001	N73	N77	4.063	0.000	0.000	0.620	-0.500	0.000	1.278	-0.500	0.000
1	F6	1.000	1.001	N77	N85	4.023	0.000	0.000	1.278	-0.500	0.000	1.206	-0.500	0.000
1	F8	1.000	1.001	N85	N89	4.063	0.000	0.000	1.206	-0.500	0.000	1.357	-0.500	0.000
2	C10	2.000	0.800	N188	N345	7.057	0.000	90.000	0.851	0.000	0.000	4.405	0.000	0.000
2	C14	2.000	0.500	N191	N210	3.366	0.000	0.000	1.050	0.000	0.000	0.510	0.000	0.000

2	C18	2.000	0.800	N227	N403	2.264	0.000	90.000	0.851	0.000	0.000	0.000	0.000	0.000
2	C18_1	2.000	0.800	N403	N285	1.752	0.000	90.000	0.000	0.000	0.000	1.364	0.000	0.000
2	C19	2.000	0.303	N233	N468	6.123	0.000	90.000	2.887	0.000	0.000	0.000	0.000	0.000
2	C27	2.000	0.300	N468	N266	4.259	0.000	0.000	0.873	0.000	0.000	2.386	0.000	0.000
2	C30	2.000	0.476	N272	N269	3.861	0.000	0.000	0.000	0.000	0.000	1.861	0.000	0.000
2	C31	2.000	0.502	N278	N217	3.826	0.000	90.000	0.744	0.000	0.000	1.570	0.000	0.000
2	C32	2.000	0.503	N285	N278	3.620	0.000	90.000	1.364	0.000	0.000	0.744	0.000	0.000
2	C33	2.000	0.300	N307	N311	1.737	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C34	2.000	0.600	N304	N307	1.600	0.000	90.000	0.400	0.000	0.000	0.400	0.000	0.000
2	C35	2.000	0.300	N293	N297	5.086	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C37	2.000	0.300	N318	N230	4.886	0.000	0.000	1.166	0.000	0.000	2.381	0.000	0.000
2	C38	2.000	0.300	N314	N318	4.097	0.000	0.000	1.591	0.000	0.000	1.166	0.000	0.000
2	C39	2.000	0.300	N324	N331	2.547	0.000	0.000	0.250	0.000	0.000	1.297	0.000	0.000
2	C5	2.000	0.500	N334	N191	3.905	0.000	0.000	1.050	0.000	0.000	1.050	0.000	0.000
2	C6	2.000	0.500	N337	N334	3.366	0.000	0.000	0.510	0.000	0.000	1.050	0.000	0.000
2	F10	2.000	0.820	N242	N268	3.181	0.000	90.000	0.422	-1.000	0.000	0.707	-1.000	0.000
2	F12	2.000	0.820	N245	N242	2.525	0.000	90.000	1.129	-1.000	0.000	0.422	-1.000	0.000
2	F14	2.000	0.820	N271	N245	3.541	0.000	90.000	0.723	-1.000	0.000	1.129	-1.000	0.000
2	F16	2.000	0.820	N254	N248	2.269	0.000	90.000	0.000	-1.000	0.000	1.209	-1.000	0.000
2	F18	2.000	0.820	N239	N236	3.510	0.000	90.000	1.171	-1.000	0.000	1.476	-1.000	0.000
2	F2	2.000	1.001	N218	N198	3.531	0.000	0.000	0.620	-1.000	0.000	0.620	-1.000	0.000
2	F20	2.000	0.300	N224	N221	3.156	0.000	90.000	0.817	-1.000	0.000	1.476	-1.000	0.000
2	F22	2.000	0.450	N260	N257	3.240	0.000	0.000	0.740	-1.000	0.000	1.443	-1.000	0.000
2	F24	2.000	0.450	N257	N255	3.981	0.000	0.000	1.443	-1.000	0.000	1.481	-1.000	0.000
2	F26	2.000	1.001	N189	N218	4.063	0.000	0.000	1.278	-1.000	0.000	0.620	-1.000	0.000
2	F28	2.000	1.001	N281	N189	4.023	0.000	0.000	1.206	-1.000	0.000	1.278	-1.000	0.000
2	F30	2.000	1.001	N321	N281	4.063	0.000	0.000	1.357	-1.000	0.000	1.206	-1.000	0.000
2	F4	2.000	1.001	N198	N201	4.063	0.000	0.000	0.620	-1.000	0.000	1.278	-1.000	0.000
2	F6	2.000	1.001	N201	N204	4.023	0.000	0.000	1.278	-1.000	0.000	1.206	-1.000	0.000
2	F8	2.000	1.001	N204	N207	4.063	0.000	0.000	1.206	-1.000	0.000	1.357	-1.000	0.000
3	C1	1.000	1.001	N380	N464	3.531	0.000	0.000	0.620	0.000	0.000	0.620	0.000	0.000
3	C10	1.000	0.300	N368	N365	3.156	0.000	90.000	0.817	0.000	0.000	1.476	0.000	0.000
3	C11 C12	1.000	0.301	N461	N445	8.027	0.000	90.000	5.291	0.000	0.000	0.500	0.000	0.000
3	C12	1.000	0.000	N292	N277	2 525	0.000	90.000	1 1 20	0.000	0.000	0.707	0.000	0.000
3	C13	1.000	0.000	N436	N383	3 541	0.000	90,000	0.723	0.000	0.000	1 129	0.000	0.000
3	C15	1.000	0.600	N390	N386	2 269	0.000	90,000	0.000	0.000	0.000	1 209	0.000	0.000
3	C16	1.000	0.600	N374	N371	3.510	0.000	90.000	1.171	0.000	0.000	1.476	0.000	0.000
3	C17	1.000	0.450	N396	N393	3.240	0.000	0.000	0.740	0.000	0.000	1.443	0.000	0.000
3	C18	1.000	0.450	N393	N391	3.981	0.000	0.000	1.443	0.000	0.000	1.481	0.000	0.000
3	C19	1.000	0.300	N398	N400	5.221	0.000	0.000	1.835	0.000	0.000	2,386	0.000	0.000
3	C2	1.000	1.001	N409	N380	4.063	0.000	0.000	1.278	0.000	0.000	0.620	0.000	0.000
3	C20	1.000	0.503	N404	N364	9.197	0.000	90.000	3.115	0.000	0.000	4.570	0.000	0.000
3	C21	1.000	0.300	N406	N412	5.086	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
3	C22	1.000	0.600	N418	N420	1.600	0.000	90.000	0.400	0.000	0.000	0.400	0.000	0.000
3	C23	1.000	0.600	N420	N423	1.737	0.000	90.000	0.400	0.000	0.000	0.537	0.000	0.000
3	C24	1.000	0.300	N415	N426	5.620	0.000	0.000	3.322	0.000	0.000	0.500	0.000	0.000

3	C25	1.000	0.479	N432	N438	2.860	0.000	0.000	0.500	0.000	0.000	1.360	0.000	0.000
3	C26	1.000	0.479	N438	N434	4.221	0.000	0.000	1.360	0.000	0.000	1.862	0.000	0.000
3	C27	1.000	0.479	N455	N358	3.700	0.000	0.000	1.350	0.000	0.000	1.350	0.000	0.000
3	C28	1.000	0.479	N358	N362	3.164	0.000	0.000	1.350	0.000	0.000	0.814	0.000	0.000
3	C3	1.000	1.001	N441	N409	4.023	0.000	0.000	1.206	0.000	0.000	1.278	0.000	0.000
3	C4	1.000	1.001	N453	N441	4.063	0.000	0.000	1.357	0.000	0.000	1.206	0.000	0.000
3	C5	1.000	0.479	N429	N455	3.164	0.000	0.000	0.814	0.000	0.000	1.350	0.000	0.000
3	C6	1.000	0.800	N458	N346	7.057	0.000	90.000	0.851	0.000	0.000	4.405	0.000	0.000
3	C7	1.000	1.001	N464	N349	4.063	0.000	0.000	0.620	0.000	0.000	1.278	0.000	0.000
3	C8	1.000	1.001	N349	N352	4.023	0.000	0.000	1.278	0.000	0.000	1.206	0.000	0.000
3	C9	1.000	1.001	N352	N355	4.063	0.000	0.000	1.206	0.000	0.000	1.357	0.000	0.000

Piano nr	Nome	Mat	Area (mq)	Ју (m4)	Jz (m4)	Coeff Rig	Area cat cmq	Acciaio catena	Vinc pr I	Vinc or I	Vinc pr J	Vinc or J
1	C10	MUR1	1.200	0.1000000	0.1440000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C11	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C12	MUR1	0.359	0.0299392	0.0038644	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C14	MUR1	0.800	0.0666667	0.0426667	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C15	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C16	MUR1	0.303	0.0252483	0.0023177	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C16_1	MUR1	0.303	0.0252483	0.0023177	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C20	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C20_1	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C21	MUR1	0.500	0.0416667	0.0104167	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C23	MUR1	1.200	0.1000000	0.1440000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C26	MUR1	0.800	0.0666667	0.0426667	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C27	MUR1	0.303	0.0252483	0.0023177	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C5	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C6	MUR1	0.500	0.0416667	0.0104167	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	C7	MUR1	0.500	0.0416667	0.0104167	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F10	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F12	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F14	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F16	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F18	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F2	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F20	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F22	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F24	MUR1	0.820	0.0683458	0.0459726	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F26	MUR1	0.660	0.0550000	0.0239580	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F28	MUR1	0.660	0.0550000	0.0239580	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F30	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F4	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F6	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F8	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C10	MUR1	1.600	0.5333333	0.0853333	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

2	C14	MUR1	1.000	0.3333333	0.0208333	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C18	MUR1	1.600	0.5333333	0.0853333	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C18_1	MUR1	1.600	0.5333333	0.0853333	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C19	MUR1	0.606	0.2019867	0.0046354	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C27	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C30	MUR1	0.952	0.3174267	0.0179909	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C31	MUR1	1.004	0.3345933	0.0210705	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C32	MUR1	1.005	0.3350467	0.0211562	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C33	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C34	MUR1	1.200	0.3998867	0.0359694	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C35	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C37	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C38	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C39	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C5	MUR1	1.000	0.3333333	0.0208333	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C6	MUR1	1.000	0.3333333	0.0208333	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F10	MUR1	1.640	0.5467667	0.0919451	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F12	MUR1	1.640	0.5467667	0.0919451	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F14	MUR1	1.640	0.5467667	0.0919451	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F16	MUR1	1.640	0.5467667	0.0919451	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F18	MUR1	1.640	0.5467667	0.0919451	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F2	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F20	MUR1	0.600	0.2000000	0.0045000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F22	MUR1	0.900	0.3000000	0.0151875	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F24	MUR1	0.900	0.3000000	0.0151875	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F26	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F28	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F30	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F4	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F6	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F8	MUR1	2.001	0.6671333	0.1670169	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C1	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C10	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C11	MUR1	0.301	0.0250533	0.0022644	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C12	MUR1	0.600	0.0500000	0.0180000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C13	MUR1	0.600	0.0500000	0.0180000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C14	MUR1	0.600	0.0500000	0.0180000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C15	MUR1	0.600	0.0500000	0.0180000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C16	MUR1	0.600	0.0500000	0.0180000	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C17	MUR1	0.450	0.0375000	0.0075938	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C18	MUR1	0.450	0.0375000	0.0075938	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C19	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C2	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C20	MUR1	0.503	0.0418808	0.0105781	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C21	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C22	MUR1	0.600	0.0499858	0.0179847	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C23	MUR1	0.600	0.0499858	0.0179847	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

3	C24	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C25	MUR1	0.479	0.0399100	0.0091539	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C26	MUR1	0.479	0.0399100	0.0091539	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C27	MUR1	0.479	0.0398967	0.0091448	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C28	MUR1	0.479	0.0398967	0.0091448	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C3	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C4	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C5	MUR1	0.479	0.0398967	0.0091448	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C6	MUR1	0.800	0.0666667	0.0426667	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C7	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C8	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C9	MUR1	1.001	0.0833917	0.0835085	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

Bracci infinitamente rigidi

Piano nr	Nome	Nodo I	Nodo J	L ast (m)	Incl (°)	Ang (°)
1	P1_brDx	N02	N14	1.399	0.000	90.000
1	P1_brDx_1	N14	N04	6.011	0.000	90.000
1	P10_brSx	N04	N06	0.510	0.000	0.000
1	P12_brSx	N14	N13	0.314	0.000	0.000
1	P13_brDx	N17	N296	0.939	0.000	90.000
1	P13_brDx_1	N296	N303	1.344	0.000	90.000
1	P13_brDx_2	N303	N306	1.600	0.000	90.000
1	P13_brDx_3	N306	N310	1.737	0.000	90.000
1	P13_brDx_4	N310	N19	0.537	0.000	90.000
1	P13_brSx	N18	N292	2.010	0.000	90.000
1	P13_brSx_1	N292	N17	4.147	0.000	90.000
1	P14_brDx	N21	N23	4.721	0.000	0.000
1	P14_brSx	N22	N21	4.721	0.000	0.000
1	P15_brDx	N25	N326	2.725	0.000	90.000
1	P15_brDx_1	N326	N26	1.899	0.000	90.000
1	P15_brSx	N19	N25	4.624	0.000	90.000
1	P16_brDx	N28	N23	1.476	0.000	90.000
1	P16_brSx_1	N329	N28	1.249	0.000	90.000
1	P17_brSx	N32	N31	0.817	0.000	90.000
1	P18_brSx	N36	N35	0.851	0.000	90.000
1	P2_brDx	N43	N44	2.752	0.000	-0.030
1	P2_brSx	N26	N43	2.752	0.000	-0.030
1	P20_brDx	N46	N14	1.860	0.000	0.000
1	P20_brSx_1	N62	N46	0.937	0.000	0.000
1	P21_brDx	N49	N300	1.461	0.000	0.000
1	P21_brSx	N19	N49	1.861	0.000	0.000
1	P22_brSx	N32	N313	0.294	0.000	0.000
1	P22_brSx_1	N313	N52	0.649	0.000	0.000
1	P23_brDx	N55	N22	1.476	0.000	90.000
1	P24_brSx	N26	N58	0.817	0.000	90.000
1	P25_brSx	N62	N61	1.697	0.000	90.000

1	P26_brDx	N65	N67	1.927	0.000	90.000
1	P27_brDx	N69	N102	1.399	0.000	90.000
1	P27_brDx_1	N102	N194	2.221	0.000	90.000
1	P27_brDx_2	N194	N71	3.791	0.000	90.000
1	P27_brSx_1	N277	N69	2.427	0.000	90.000
1	P27_brSx_2	N284	N277	3.620	0.000	90.000
1	P31_brDx	N89	N91	1.357	0.000	0.000
1	P32_brDx	N93	N71	0.510	0.000	0.000
1	P34_brDx	N100	N102	0.314	0.000	0.000
1	P35_brDx	N104	N106	1.476	0.000	90.000
1	P36_brSx	N109	N108	0.817	0.000	90.000
1	P37_brSx	N77	N112	0.851	0.000	90.000
1	P38_brDx	N115	N129	0.937	0.000	0.000
1	P38_brDx_1	N129	N116	0.923	0.000	0.000
1	P38_brSx	N102	N115	1.860	0.000	0.000
1	P39_brDx	N118	N120	1.861	0.000	0.000
1	P40_brDx	N125	N109	0.942	0.000	0.000
1	P41_brDx	N128	N232	0.119	0.000	90.000
1	P41_brSx	N129	N128	3.006	0.000	90.000
1	P42_brDx	N132	N265	2.335	0.000	0.000
1	P42_brDx_1	N265	N133	2.386	0.000	0.000
1	P42_brSx	N109	N262	1.835	0.000	0.000
1	P42_brSx_1	N262	N467	0.962	0.000	0.000
1	P42_brSx_2	N467	N132	1.924	0.000	0.000
1	P43_brDx	N135	N137	1.476	0.000	90.000
1	P44_brSx_1	N133	N139	0.464	0.000	90.000
1	P47_brDx	N151	N120	0.486	0.000	90.000
1	P48_brDx	N155	N91	4.779	0.000	-89.990
1	P48_brSx	N156	N155	4.779	0.000	-89.990
1	P49_brDx	N158	N137	1.481	0.000	0.000
1	P51_brSx	N106	N169	0.740	0.000	0.000
1	P6_brSx	N18	N172	1.357	0.000	0.000
1	P7_brSx_1	N317	N175	1.438	0.000	0.030
1	P8_brDx	N179	N32	1.631	0.000	-0.050
1	P8_brSx	N180	N67	0.464	0.000	-0.050
1	P8_brSx_1	N67	N323	0.250	0.000	-0.050
1	P8_brSx_2	N323	N179	0.917	0.000	-0.050
2	P1_brDx	N185	N343	1.399	0.000	90.000
2	P1_brDx_1	N343	N187	6.011	0.000	90.000
2	P1_brSx_1	N345	N185	3.006	0.000	90.000
2	P10_brSx	N189	N188	0.851	0.000	90.000
2	P12_brDx	N195	N197	3.791	0.000	90.000
2	P12_brSx_1	N217	N460	0.721	0.000	90.000
2	P12_brSx_2	N460	N195	1.500	0.000	90.000
2	P16_brDx	N207	N209	1.357	0.000	0.000
2	P17_brDx	N210	N197	0.510	0.000	0.000
2	P19_brDx	N215	N217	0.314	0.000	0.000

2	P20_brDx	N221	N223	1.476	0.000	90.000
2	P21_brSx	N225	N224	0.817	0.000	90.000
2	P22_brSx	N201	N227	0.851	0.000	90.000
2	P23_brDx	N230	N225	2.381	0.000	-0.020
2	P24_brSx	N275	N233	3.125	0.000	90.000
2	P25_brDx	N236	N238	1.476	0.000	90.000
2	P26_brSx_1	N268	N239	0.464	0.000	90.000
2	P29_brDx	N248	N271	0.487	0.000	90.000
2	P30_brDx	N253	N209	4.779	0.000	-89.990
2	P30_brSx	N254	N253	4.779	0.000	-89.990
2	P31_brDx	N255	N238	1.481	0.000	0.000
2	P33_brSx	N223	N260	0.740	0.000	0.000
2	P34_brDx	N263	N468	0.962	0.000	0.000
2	P34_brSx	N225	N263	1.835	0.000	0.000
2	P35_brDx	N266	N268	2.386	0.000	0.000
2	P36_brDx	N269	N271	1.861	0.000	-0.020
2	P41_brDx	N289	N291	4.622	0.000	89.990
2	P41_brSx	N290	N289	4.622	0.000	89.990
2	P42_brSx	N294	N293	2.010	0.000	90.000
2	P43_brDx	N297	N304	1.344	0.000	90.000
2	P44_brDx	N301	N290	3.322	0.000	0.000
2	P44_brSx	N302	N301	3.322	0.000	0.000
2	P47_brDx	N311	N302	0.537	0.000	90.000
2	P48_brSx_1	N331	N314	0.294	0.000	0.000
2	P5_brSx	N294	N321	1.357	0.000	0.000
2	P50_brSx	N291	N324	0.250	0.000	0.000
2	P7_brSx	N187	N337	0.510	0.000	0.000
2	P9_brSx	N343	N342	0.314	0.000	0.000
3	P1_brDx	N346	N348	4.405	0.000	90.000
3	P12_brDx	N355	N357	1.357	0.000	0.000
3	P14_brDx	N362	N364	0.814	0.000	0.000
3	P15_brDx	N365	N367	1.476	0.000	90.000
3	P16_brSx	N369	N368	0.817	0.000	90.000
3	P17_brDx	N371	N373	1.476	0.000	90.000
3	P18_brSx_1	N402	N374	0.464	0.000	90.000
3	P21_brDx	N386	N436	0.486	0.000	90.000
3	P22_brDx	N389	N357	4.779	0.000	-89.990
3	P22_brSx	N390	N389	4.779	0.000	-89.990
3	P23_brDx	N391	N373	1.481	0.000	0.000
3	P25_brSx	N367	N396	0.740	0.000	0.000
3	P26_brSx	N369	N398	1.835	0.000	0.000
3	P27_brDx	N400	N402	2.386	0.000	0.000
3	P28_brSx	N349	N404	3.115	0.000	90.000
3	P29_brSx	N407	N406	2.010	0.000	90.000
3	P30_brDx	N412	N418	1.344	0.000	90.000
3	P31_brSx	N416	N415	3.322	0.000	0.000
3	P34_brDx	N423	N416	0.537	0.000	90.000

3	P35_brDx	N426	N348	0.500	0.000	0.000
3	P36_brSx	N348	N429	0.814	0.000	0.000
3	P37_brSx	N364	N432	0.500	0.000	0.000
3	P38_brDx	N434	N436	1.862	0.000	0.000
3	P40_brDx	N445	N369	0.500	0.000	90.000
3	P5_brSx	N407	N453	1.357	0.000	0.000
3	P7_brSx	N409	N458	0.851	0.000	90.000
3	P8_brSx_1	N364	N461	0.721	0.000	90.000

Definizione del modello, unità strutturale 2

Per la descrizione dell'unità strutturale 2 si è scelto di utilizzare il modello libero, in quanto la schematizzazione del telaio equivalente risulta analoga per gli altri modelli.

Definizione delle piante

Figura B 4: Definizione dei nodi in pianta, livello 1

Figura B 5: Definizione dei nodi in pianta, livello 2

Figura B 6: Definizione dei nodi in pianta, livello 3

Figura B 7: Definizione dei nodi in pianta, livello 4

Definizione delle pareti

Piano nr	Nome	Lun (m)	Sp (m)	Dis (m)	Nodo I	Nodo J	L ast (m)	Ang (°)	RE I(x) (m)	RE l(y) (m)	RE l(z) (m)	RE J(x) (m)	RE J(y) (m)	RE J(z) (m)
1	P1	2.301	0.900	0.000	N01	N02	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P10	0.300	0.260	0.000	N05	N06	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P11	0.260	0.260	0.000	N09	N10	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P12	0.260	0.260	0.000	N13	N14	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P13	3.773	0.260	0.000	N17	N18	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P14	0.260	0.260	0.000	N20	N21	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P15	0.775	0.130	0.000	N24	N25	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P16	0.580	0.130	0.000	N28	N29	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P17	0.541	0.130	0.000	N32	N33	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P18	1.500	0.130	0.000	N36	N37	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P19	3.778	0.300	0.000	N40	N41	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P2	19.005	0.440	0.000	N44	N45	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P20	0.780	0.603	0.000	N48	N49	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P21	0.783	0.443	0.000	N52	N53	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000

1	P22	1.437	0.260	0.000	N55	N56	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P23	1.441	0.260	0.000	N58	N59	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P24	5.152	0.440	0.000	N62	N63	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P25	0.537	0.130	0.000	N65	N66	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P26	1.437	0.260	0.000	N68	N69	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P27	1.446	0.260	0.000	N71	N72	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P28	4.495	0.440	0.000	N75	N76	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P29	5.594	0.435	0.000	N77	N78	3.450	-89.950	0.000	0.000	0.000	0.150	0.000	0.000
1	Р3	1.670	0.443	0.000	N79	N80	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P30	2.055	0.431	0.000	N83	N84	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P31	7.866	0.668	0.000	N85	N86	3.450	89.960	0.000	0.000	0.000	0.150	0.000	0.000
1	P32	1.999	0.667	0.000	N88	N89	3.450	89.980	0.000	0.000	0.000	0.150	0.000	0.000
1	P33	1.999	0.667	0.000	N92	N93	3.450	89.980	0.000	0.000	0.000	0.150	0.000	0.000
1	P34	1.137	0.665	0.000	N95	N96	3.450	89.890	0.000	0.000	0.000	0.150	0.000	0.000
1	P35	2.099	0.300	0.000	N97	N98	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P36	2.099	0.300	0.000	N100	N101	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P37	0.672	0.300	0.000	N104	N105	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P38	6.205	0.260	0.000	N106	N107	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P4	0.783	0.443	0.000	N108	N109	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P5	0.785	0.603	0.000	N111	N112	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P6	1.000	0.603	0.000	N114	N115	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P7	13.000	0.300	0.000	N118	N119	3.450	90.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P8	2.680	0.500	0.000	N120	N121	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
1	P9	2.684	0.500	0.000	N123	N124	3.450	0.000	0.000	0.000	0.000	0.150	0.000	0.000
2	P1	2.301	0.900	0.000	NU2	N127	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P10	4.495	0.440	0.000		N130	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P11	5.152	0.440	0.000	N03	N132	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P12	0.500	0.150	0.000	N135	N130	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P13	2.203	0.150	0.000	N/11	N133	3.000	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P15	1 000	0.200	0.000	N1//	N142	3 600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P16	1 773	0.130	0.000	N147	N143	3 600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P17	1.600	0.260	0.000	N151	N152	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P18	1.236	0.260	0.000	N155	N156	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P19	1.999	0.667	0.000	N89	N158	3.600	89.980	0.150	0.000	0.000	0.150	0.000	0.000
2	P2	7.866	0.668	0.000	N86	N161	3.600	89.960	0.150	0.000	0.000	0.150	0.000	0.000
2	P20	1.999	0.667	0.000	N93	N163	3.600	89.980	0.150	0.000	0.000	0.150	0.000	0.000
2	P21	2.099	0.300	0.000	N98	N165	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P22	2.099	0.300	0.000	N101	N167	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P23	0.672	0.300	0.000	N105	N170	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P24	2.680	0.500	0.000	N121	N171	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P25	2.684	0.500	0.000	N124	N173	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P26	1.000	0.260	0.000	N176	N177	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P27	1.000	0.260	0.000	N10	N179	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P28	2.303	0.260	0.000	N06	N182	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	Р3	1.670	0.443	0.000	N80	N185	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P4	0.783	0.443	0.000	N109	N188	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000

2	P5	0.785	0.603	0.000	N112	N190	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P6	1.000	0.603	0.000	N115	N192	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P7	13.000	0.300	0.000	N119	N195	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P8	0.780	0.603	0.000	N49	N197	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
2	P9	0.783	0.443	0.000	N53	N199	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P1	2.301	0.900	0.000	N127	N201	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P10	0.500	0.150	0.000	N136	N204	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P11	2.283	0.150	0.000	N139	N207	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P12	3.778	0.260	0.000	N142	N210	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P13	2.099	0.300	0.000	N165	N212	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P14	2.099	0.300	0.000	N167	N215	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P15	7.866	0.668	0.000	N161	N218	3.600	89.960	0.150	0.000	0.000	0.150	0.000	0.000
3	P16	1.999	0.667	0.000	N158	N220	3.600	89.980	0.150	0.000	0.000	0.150	0.000	0.000
3	P17	1.999	0.667	0.000	N163	N223	3.600	89.980	0.150	0.000	0.000	0.150	0.000	0.000
3	P18	2.680	0.500	0.000	N171	N225	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P19	2.684	0.500	0.000	N173	N227	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P2	1.670	0.443	0.000	N185	N230	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	Р3	0.783	0.443	0.000	N188	N233	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P4	0.785	0.603	0.000	N190	N235	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P5	1.000	0.603	0.000	N192	N237	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P6	13.000	0.300	0.000	N195	N240	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P7	0.780	0.603	0.000	N197	N242	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P8	0.783	0.443	0.000	N199	N244	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
3	P9	4.495	0.440	0.000	N130	N246	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P1	2.301	0.900	0.000	N201	N247	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P10	2.198	0.500	0.000	N250	N251	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P11	2.684	0.500	0.000	N227	N254	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P2	1.670	0.443	0.000	N230	N256	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P3	0.783	0.443	0.000	N233	N259	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P4	0.783	0.443	0.000	N244	N262	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000
4	P5	1.999	0.667	0.000	N220	N264	3.600	89.980	0.150	0.000	0.000	0.150	0.000	0.000
4	P6	1.999	0.667	0.000	N223	N266	3.600	89.980	0.150	0.000	0.000	0.150	0.000	0.000
4	P7	1.137	0.665	0.000	N269	N270	3.600	89.890	0.150	0.000	0.000	0.150	0.000	0.000
4	P8	1.835	0.440	0.000	N271	N272	3.600	90.000	0.150	0.000	0.000	0.150	0.000	0.000
4	Р9	2.680	0.500	0.000	N225	N274	3.600	0.000	0.150	0.000	0.000	0.150	0.000	0.000

Piano nr	Nome	Mat	Area (mq)	Ју (m4)	Jz (m4)	Coeff Rig	Vinc pr I	Vinc or I	Vinc pr J	Vinc or J
1	P1	MUR1	2.071	0.1397997	0.9139898	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P10	MUR1	0.078	0.0004394	0.0005850	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P11	MUR1	0.068	0.0003808	0.0003808	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P12	MUR1	0.068	0.0003808	0.0003808	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P13	MUR1	0.981	0.0055268	1.1641009	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P14	MUR1	0.068	0.0003808	0.0003808	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P15	MUR1	0.101	0.0001418	0.0050381	COEFRIG1	Continuità	Continuità	Continuità	Continuità

1	P16	MUR1	0.075	0.0001062	0.0021164	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P17	MUR1	0.070	0.0000991	0.0017182	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P18	MUR1	0.195	0.0002746	0.0365625	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P19	MUR1	1.133	0.0085000	1.3478869	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P2	MUR1	8.362	0.1349103	251.696635	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P20	MUR1	0.470	0.0142660	0.0238265	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P21	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P22	MUR1	0.374	0.0021043	0.0642526	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P23	MUR1	0.375	0.0021110	0.0648717	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P24	MUR1	2.267	0.0365701	5.0132642	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P25	MUR1	0.070	0.0000983	0.0016748	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P26	MUR1	0.374	0.0021043	0.0642526	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P27	MUR1	0.376	0.0021178	0.0654948	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P28	MUR1	1.978	0.0319084	3.3300804	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P29	MUR1	2.436	0.0384760	6.3507252	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	Р3	MUR1	0.740	0.0121091	0.1720301	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P30	MUR1	0.885	0.0136918	0.3115561	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P31	MUR1	5.258	0.1957401	27.1088064	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P32	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P33	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P34	MUR1	0.756	0.0278234	0.0813245	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P35	MUR1	0.630	0.0047234	0.2312902	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P36	MUR1	0.630	0.0047234	0.2312902	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P37	MUR1	0.202	0.0015125	0.0075941	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P38	MUR1	1.613	0.0090876	5.1751253	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P4	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P5	MUR1	0.474	0.0143683	0.0243427	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P6	MUR1	0.603	0.0182977	0.0502742	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P7	MUR1	3.900	0.0292500	54.9250000	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	P8	MUR1	1.340	0.0279172	0.8020796	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	Р9	MUR1	1.342	0.0279550	0.8053431	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P1	MUR1	2.071	0.1397997	0.9139898	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P10	MUR1	1.978	0.0319084	3.3300804	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P11	MUR1	2.267	0.0365701	5.0132642	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P12	MUR1	0.075	0.0001406	0.0015625	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P13	MUR1	0.342	0.0006420	0.1486618	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P14	MUR1	0.982	0.0055332	1.1681686	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P15	MUR1	0.130	0.0001831	0.0108333	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P16	MUR1	0.231	0.0003247	0.0604202	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P17	MUR1	0.416	0.0023435	0.0887467	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P18	MUR1	0.321	0.0018105	0.0409216	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P19	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P2	MUR1	5.258	0.1957401	27.1088064	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P20	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P21	MUR1	0.630	0.0047234	0.2312902	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P22	MUR1	0.630	0.0047234	0.2312902	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P23	MUR1	0.202	0.0015125	0.0075941	COEFRIG1	Continuità	Continuità	Continuità	Continuità

2	P24	MUR1	1.340	0.0279172	0.8020796	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P25	MUR1	1.342	0.0279550	0.8053431	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P26	MUR1	0.260	0.0014647	0.0216667	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P27	MUR1	0.260	0.0014647	0.0216667	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P28	MUR1	0.599	0.0033737	0.2647857	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P3	MUR1	0.740	0.0121091	0.1720301	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P4	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P5	MUR1	0.474	0.0143683	0.0243427	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P6	MUR1	0.603	0.0182977	0.0502742	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P7	MUR1	3.900	0.0292500	54.9250000	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P8	MUR1	0.470	0.0142660	0.0238265	COEFRIG1	Continuità	Continuità	Continuità	Continuità
2	P9	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P1	MUR1	2.071	0.1397997	0.9139898	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P10	MUR1	0.075	0.0001406	0.0015625	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P11	MUR1	0.342	0.0006420	0.1486618	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P12	MUR1	0.982	0.0055332	1.1681686	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P13	MUR1	0.630	0.0047234	0.2312902	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P14	MUR1	0.630	0.0047234	0.2312902	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P15	MUR1	5.258	0.1957401	27.1088064	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P16	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P17	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P18	MUR1	1.340	0.0279172	0.8020796	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P19	MUR1	1.342	0.0279550	0.8053431	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P2	MUR1	0.740	0.0121091	0.1720301	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P3	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P4	MUR1	0.474	0.0143683	0.0243427	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P5	MUR1	0.603	0.0182977	0.0502742	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P6	MUR1	3.900	0.0292500	54.9250000	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P7	MUR1	0.470	0.0142660	0.0238265	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P8	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
3	P9	MUR1	1.978	0.0319084	3.3300804	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P1	MUR1	2.071	0.1397997	0.9139898	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P10	MUR1	1.099	0.0228941	0.4423551	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P11	MUR1	1.342	0.0279550	0.8053431	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P2	MUR1	0.740	0.0121091	0.1720301	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P3	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P4	MUR1	0.347	0.0056829	0.0177112	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P5	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P6	MUR1	1.333	0.0494212	0.4438135	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P7	MUR1	0.756	0.0278234	0.0813245	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P8	MUR1	0.807	0.0130246	0.2264841	COEFRIG1	Continuità	Continuità	Continuità	Continuità
4	P9	MUR1	1.340	0.0279172	0.8020796	COEFRIG1	Continuità	Continuità	Continuità	Continuità

Travi in c.a.

Caratteristiche geometriche

Piano nr	Nome	Alt (m)	Sp (m)	Nodo I	Nodo J	L ast (m)	Incl (°)	Ang (°)	RE I(x) (m)	RE I(y) (m)	RE I(z) (m)	RE J(x) (m)	RE J(y) (m)	RE J(z) (m)
1	C3	0.800	0.300	N64	N06	3.773	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C3_1	0.800	0.300	N06	N275	3.783	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C4	0.300	0.500	N121	N124	4.880	0.000	0.000	1.340	0.000	0.000	1.342	0.000	0.000
1	C5	0.300	0.260	N06	N08	0.150	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C5_1	0.300	0.260	N08	N10	2.502	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C5_2	0.300	0.260	N10	N176	2.000	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C5_3	0.300	0.260	N14	N21	2.500	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C5_4	0.300	0.260	N176	N14	0.500	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C5_5	0.300	0.260	N21	N30	3.094	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C7	0.800	0.401	N27	N47	3.783	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C9	0.300	0.700	N43	N138	1.141	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C9_1	0.300	0.700	N135	N46	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	C9_2	0.300	0.700	N138	N135	2.391	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Caratteristiche sezione e vincoli di estremità

Piano nr	Nome	Mat	Area (mq)	Jy (m4)	Jz (m4)	Coeff Rig	Vinc pr I	Vinc or I	Vinc pr J	Vinc or J
1	C3	TRV1	0.240	0.0128000	0.0018000	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C3_1	TRV1	0.240	0.0128000	0.0018000	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C4	TRV1	0.150	0.0011250	0.0031250	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C5	TRV1	0.078	0.0005850	0.0004394	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C5_1	TRV1	0.078	0.0005850	0.0004394	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C5_2	TRV1	0.078	0.0005850	0.0004394	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C5_3	TRV1	0.078	0.0005850	0.0004394	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C5_4	TRV1	0.078	0.0005850	0.0004394	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C5_5	TRV1	0.078	0.0005850	0.0004394	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C7	TRV1	0.321	0.0171115	0.0043004	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C9	TRV1	0.210	0.0015750	0.0085750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C9_1	TRV1	0.210	0.0015750	0.0085750	COEFRIG1	Continuità	Continuità	Continuità	Continuità
1	C9_2	TRV1	0.210	0.0015750	0.0085750	COEFRIG1	Continuità	Continuità	Continuità	Continuità

Quadro di armature

Codice	Descrizione	Copr (cm)	Arm long sup sx	Arm long inf sx	Ø st sx (mm)	p st sx (cm)	Arm long sup dx	Arm long inf dx	Ø st dx (mm)	p st dx (cm)	Tipo acc	Tipo cls
TRV1	Trave standard	2.5	20ø16	20ø16	4ø8	15.0	20ø16	20ø16	4ø8	15.0	B450C-CA	CLS-C2530

Travi in muratura ordinaria (superiori)

Caratteristiche geometriche

Piano	Nome	Alt	Sp	Nodo	Nodo	L ast	Incl	Ang	RE I(x)	RE I(y)	RE I(z)	RE J(x)	RE J(y)	RE J(z)
nr	Nome	(m)	(m)	I	J	(m)	(°)	(°)	(m)	(m)	(m)	(m)	(m)	(m)
1	F10	1.000	0.443	N80	N53	3.391	0.00	0.000	0.835	0.500	0.000	0.391	0.500	0.000
1	F12	1.000	0.602	N115	N112	2.041	0.00	0.000	0.500	0.500	0.000	0.393	0.500	0.000
1	F6	1.000	0.443	N109	N80	3.391	0.00	0.000	0.391	0.500	0.000	0.835	0.500	0.000
1	F8	1.000	0.602	N49	N115	2.038	0.00	0.000	0.390	0.500	0.000	0.500	0.500	0.000
2	F1	1.000	0.443	N188	N185	3.391	0.00	0.000	0.391	0.500	0.000	0.835	0.500	0.000
2	F3	1.000	0.602	N192	N190	2.041	0.00	0.000	0.500	0.500	0.000	0.393	0.500	0.000
2	F5	1.000	0.602	N197	N192	2.038	0.00	0.000	0.390	0.500	0.000	0.500	0.500	0.000
2	F7	1.000	0.443	N185	N199	3.391	0.00	0.000	0.835	0.500	0.000	0.391	0.500	0.000
2	F9	1.000	0.150	N139	N136	2.391	0.00	0.000 0	1.141	0.500	0.000	0.250	0.500	0.000
3	F1	1.000	0.443	N233	N230	3.391	0.00	0.000	0.391	0.500	0.000	0.835	0.500	0.000
3	F3	1.000	0.443	N230	N244	3.391	0.00	0.000	0.835	0.500	0.000	0.391	0.500	0.000
Caratteri	stiche sez	zione e vir	ncoli di es	stremità										
Diama			A		1 1-			Area ant	Accipio	Vinen	. \/:			Mine en

nuità Continuit
nuità Continuit
nti nti nti nti nti nti nti nti nti

Travi in muratura ordinaria (inferiori)

Piano nr	Nome	Alt (m)	Sp (m)	Nodo I	Nodo J	L ast (m)	Incl (°)	Ang (°)	RE l(x) (m)	RE l(y) (m)	RE l(z) (m)	RE J(x) (m)	RE J(y) (m)	RE J(z) (m)
1	F1	0.300	0.260	N59	N56	2.339	0.000	0.000	0.721	0.000	0.000	0.718	0.000	0.000
1	F11	0.300	0.443	N80	N53	3.391	0.000	0.000	0.835	-0.150	0.000	0.391	-0.150	0.000
1	F13	0.300	0.602	N115	N112	2.041	0.000	0.000	0.500	-0.150	0.000	0.393	-0.150	0.000
1	F2	0.300	0.130	N37	N66	1.618	0.000	0.000	0.750	0.000	0.000	0.268	0.000	0.000
1	F3	0.300	0.260	N69	N72	2.341	0.000	0.000	0.718	0.000	0.000	0.723	0.000	0.000
1	F4	0.300	0.130	N29	N25	1.378	0.000	90.000	0.290	0.000	0.000	0.387	0.000	0.000
1	F5	0.300	0.130	N33	N37	1.621	0.000	0.000	0.271	0.000	0.000	0.750	0.000	0.000
1	F7	0.300	0.443	N109	N80	3.391	0.000	0.000	0.391	-0.150	0.000	0.835	-0.150	0.000
1	F9	0.300	0.602	N49	N115	2.038	0.000	0.000	0.390	-0.150	0.000	0.500	-0.150	0.000
2	C10	0.300	0.500	N171	N173	4.880	0.000	0.000	1.340	0.000	0.000	1.342	0.000	0.000

2	C11	0.300	0.300	N179	N177	2.000	0.000	90.000	0.000	0.000	0.000	0.000	0.000	0.000
2	C12	0.300	0.260	N182	N179	2.652	0.000	90.000	1.152	0.000	0.000	0.500	0.000	0.000
2	C6	0.300	0.130	N145	N148	2.387	0.000	0.000	0.500	0.000	0.000	0.887	0.000	0.000
2	C7	0.300	0.260	N152	N182	2.968	0.000	90.000	0.800	0.000	0.000	1.152	0.000	0.000
2	C8	0.300	0.260	N156	N152	2.618	0.000	90.000	0.618	0.000	0.000	0.800	0.000	0.000
2	C9	0.300	0.665	N160	N164	1.137	0.000	89.890	0.000	0.000	0.000	0.000	0.000	0.000
2	F10	0.300	0.150	N139	N136	2.391	0.000	0.000	1.141	-0.150	0.000	0.250	-0.150	0.000
2	F2	0.300	0.443	N188	N185	3.391	0.000	0.000	0.391	-0.150	0.000	0.835	-0.150	0.000
2	F4	0.300	0.602	N192	N190	2.041	0.000	0.000	0.500	-0.150	0.000	0.393	-0.150	0.000
2	F6	0.300	0.602	N197	N192	2.038	0.000	0.000	0.390	-0.150	0.000	0.500	-0.150	0.000
2	F8	0.300	0.443	N185	N199	3.391	0.000	0.000	0.835	-0.150	0.000	0.391	-0.150	0.000
3	C2	1.000	0.602	N237	N235	2.041	0.000	0.000	0.500	0.000	0.000	0.393	0.000	0.000
3	C3	1.000	0.602	N242	N237	2.038	0.000	0.000	0.390	0.000	0.000	0.500	0.000	0.000
3	C5	1.000	0.150	N207	N204	2.391	0.000	0.000	1.141	0.000	0.000	0.250	0.000	0.000
3	C6	1.000	0.300	N215	N212	2.772	0.000	0.000	1.050	0.000	0.000	1.050	0.000	0.000
3	C7	1.000	0.665	N222	N269	0.568	0.000	89.890	0.000	0.000	0.000	0.000	0.000	0.000
3	C7_1	1.000	0.665	N269	N224	0.568	0.000	89.890	0.000	0.000	0.000	0.000	0.000	0.000
3	C8	1.000	0.500	N225	N250	2.439	0.000	0.000	1.340	0.000	0.000	0.000	0.000	0.000
3	C8_1	1.000	0.500	N250	N227	2.441	0.000	0.000	0.000	0.000	0.000	1.342	0.000	0.000
3	F2	1.000	0.443	N233	N230	3.391	0.000	0.002	0.391	-0.150	0.000	0.835	-0.150	0.000
3	F4	1.000	0.443	N230	N244	3.391	0.000	-0.002	0.835	-0.150	0.000	0.391	-0.150	0.000
4	C1	1.000	0.443	N259	N256	3.391	0.000	0.002	0.391	0.000	0.000	0.835	0.000	0.000
4	C2	1.000	0.443	N256	N262	3.391	0.000	-0.002	0.835	0.000	0.000	0.391	0.000	0.000
4	C3	1.000	0.440	N247	N272	3.067	0.000	90.000	1.151	0.000	0.000	0.917	0.000	0.000

Piano nr	Nome	Mat	Area (mq)	Jy (m4)	Jz (m4)	Coeff Rig	Area cat cmq	Acciaio catena	Vinc pr I	Vinc or I	Vinc pr J	Vinc or J
1	F1	MUR1	0.078	0.0005850	0.0004394	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F11	MUR1	0.133	0.0009972	0.0021763	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F13	MUR1	0.180	0.0013537	0.0054444	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F2	MUR1	0.039	0.0002925	0.0000549	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F3	MUR1	0.078	0.0005850	0.0004394	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F4	MUR1	0.039	0.0002925	0.0000549	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F5	MUR1	0.039	0.0002925	0.0000549	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F7	MUR1	0.133	0.0009972	0.0021763	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
1	F9	MUR1	0.180	0.0013537	0.0054444	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C10	MUR1	0.150	0.0011250	0.0031250	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C11	MUR1	0.090	0.0006750	0.0006750	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C12	MUR1	0.078	0.0005850	0.0004394	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C6	MUR1	0.039	0.0002925	0.0000549	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C7	MUR1	0.078	0.0005850	0.0004394	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	C8	MUR1	0.078	0.0005850	0.0004394	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	С9	MUR1	0.199	0.0014957	0.0073444	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F10	MUR1	0.045	0.0003375	0.0000844	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F2	MUR1	0.133	0.0009972	0.0021763	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

-												
2	F4	MUR1	0.180	0.0013537	0.0054444	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F6	MUR1	0.180	0.0013537	0.0054444	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
2	F8	MUR1	0.133	0.0009972	0.0021763	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C2	MUR1	0.602	0.0501367	0.0181480	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C3	MUR1	0.602	0.0501367	0.0181480	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C5	MUR1	0.150	0.0125000	0.0002813	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C6	MUR1	0.300	0.0250000	0.0022500	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C7	MUR1	0.665	0.0553975	0.0244812	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C7_1	MUR1	0.665	0.0553975	0.0244812	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C8	MUR1	0.500	0.0416667	0.0104167	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	C8_1	MUR1	0.500	0.0416667	0.0104167	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	F2	MUR1	0.443	0.0369325	0.0072542	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
3	F4	MUR1	0.443	0.0369325	0.0072542	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
4	C1	MUR1	0.443	0.0369325	0.0072542	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
4	C2	MUR1	0.443	0.0369325	0.0072542	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità
4	C3	MUR1	0.440	0.0366667	0.0070987	COEFRIG1	2.000	ACCCAT1	Continuità	Continuità	Continuità	Continuità

Bracci infinitamente rigidi

Piano nr	Nome	Nodo	Nodo	L ast (m)	Incl (°)	Ang (°)
1	P1 brDx	N02	N76	3,398	0.000	90.000
1	P1 brSx	N02	N02	1 151	0.000	90,000
1	P13 hrDx	N18	N147	1.101	0.000	0.000
1	P13 brDx 1	N15	N14	0 130	0.000	0.000
1	P13 brDx 2	N147	N15	0.150	0.000	0.000
1	P13 hrSx	N19	N144	0.757	0.000	0.000
1	P13 brSy 1	N144	N18	1 387	0.000	0.000
1	P15_brDy	N144 N25	N10	0.297	0.000	90.000
1	PI3_DIDX	N20	N27	0.367	0.000	90.000
1	P10_DI3x	N24	N29	0.290	0.000	90.000
1	P17_Dr5x	N34	1133	0.271	0.000	0.000
1	P19_brDx	N41	N43	1.889	0.000	0.000
1	P19_brSx	N42	N41	1.889	0.000	0.000
1	P2_brDx	N45	N74	7.448	0.000	90.000
1	P2_brDx_1	N74	N47	2.055	0.000	90.000
1	P2_brSx	N46	N275	6.205	0.000	90.000
1	P2_brSx_1	N275	N45	3.298	0.000	90.000
1	P20_brSx	N50	N49	0.390	0.000	0.000
1	P21_brDx	N53	N03	0.391	0.000	0.000
1	P22_brDx	N56	N30	0.718	0.000	0.000
1	P23_brSx	N60	N59	0.721	0.000	0.000
1	P24_brDx	N63	N19	2.576	0.000	90.000
1	P24_brSx	N64	N63	2.576	0.000	90.000
1	P25_brDx	N66	N27	0.268	0.000	0.000
1	P26_brSx	N30	N69	0.718	0.000	0.000
1	P27_brDx	N72	N74	0.723	0.000	0.000
1	P28_brDx	N76	N126	0.586	0.000	90.000

1	P28_brDx_1	N126	N46	1.661	0.000	90.000
1	P29_brDx	N78	N19	2.797	0.000	-89.950
1	P29_brSx	N60	N78	2.797	0.000	-89.950
1	P30_brDx	N84	N34	1.028	0.000	90.000
1	P30_brSx	N60	N84	1.028	0.000	90.000
1	P31_brDx	N86	N64	3.933	0.000	89.960
1	P31_brSx	N87	N42	1.661	0.000	89.960
1	P31_brSx_1	N42	N86	2.272	0.000	89.960
1	P32_brDx	N89	N91	0.999	0.000	89.980
1	P32_brSx	N90	N89	0.999	0.000	89.980
1	P33_brDx	N93	N87	0.999	0.000	89.980
1	P33_brSx	N94	N93	0.999	0.000	89.980
1	P34_brDx	N96	N94	0.568	0.000	89.890
1	P34_brSx	N91	N96	0.568	0.000	89.890
1	P35_brDx	N98	N64	1.050	0.000	0.000
1	P35_brSx	N105	N98	1.386	0.000	0.000
1	P36_brDx	N101	N105	1.386	0.000	0.000
1	P36_brSx	N102	N101	1.050	0.000	0.000
1	P38_brDx	N107	N151	0.134	0.000	90.000
1	P38_brDx_1	N07	N06	0.150	0.000	90.000
1	P38_brDx_2	N151	N07	2.818	0.000	90.000
1	P38_brSx	N43	N155	0.618	0.000	90.000
1	P38_brSx_1	N155	N107	2.484	0.000	90.000
1	P4_brSx	N90	N109	0.391	0.000	0.000
1	P5_brDx	N112	N90	0.393	0.000	0.000
1	P7_brDx	N119	N102	6.500	0.000	90.000
1	P7_brSx	N50	N119	6.500	0.000	90.000
1	P8_brSx	N87	N121	1.340	0.000	0.000
1	P9_brDx	N124	N126	1.342	0.000	0.000
2	P1_brDx	N127	N130	3.398	0.000	90.000
2	P1_brSx	N128	N127	1.151	0.000	90.000
2	P10_brDx	N130	N175	0.586	0.000	90.000
2	P10_brDx_1	N175	N131	1.661	0.000	90.000
2	P11_brDx	N132	N134	2.576	0.000	90.000
2	P11_brSx	N133	N132	2.576	0.000	90.000
2	P12_brDx	N136	N131	0.250	0.000	0.000
2	P13_brSx	N140	N139	1.141	0.000	0.000
2	P14_brDx	N142	N140	1.889	0.000	0.000
2	P14_brSx	N143	N142	1.889	0.000	0.000
2	P15_brSx	N134	N145	0.500	0.000	0.000
2	P16_brDx	N148	N150	0.887	0.000	0.040
2	P18_brSx	N140	N156	0.618	0.000	90.000
2	P19_brDx	N158	N160	0.999	0.000	89.980
2	P19_brSx	N159	N158	0.999	0.000	89.980
2	P2_brDx	N161	N133	3.933	0.000	89.960
2	P2_brSx	N162	N143	1.661	0.000	89.960
2	P2_brSx_1	N143	N161	2.272	0.000	89.960

2	P20_brDx	N163	N162	0.999	0.000	89.980
2	P20_brSx	N164	N163	0.999	0.000	89.980
2	P21_brDx	N165	N133	1.050	0.000	0.000
2	P21_brSx	N170	N165	1.386	0.000	0.000
2	P22_brDx	N167	N170	1.386	0.000	0.000
2	P22_brSx	N168	N167	1.050	0.000	0.000
2	P24_brSx	N162	N171	1.340	0.000	0.000
2	P25_brDx	N173	N175	1.342	0.000	0.000
2	P26_brDx	N177	N150	0.500	0.000	90.000
2	P4_brSx	N159	N188	0.391	0.000	0.000
2	P5_brDx	N190	N159	0.393	0.000	0.000
2	P7_brDx	N195	N168	6.500	0.000	90.000
2	P7_brSx	N196	N195	6.500	0.000	90.000
2	P8_brSx	N196	N197	0.390	0.000	0.000
2	P9_brDx	N199	N128	0.391	0.000	0.000
3	P1_brDx	N201	N271	3.067	0.000	90.000
3	P1_brSx	N202	N201	1.151	0.000	90.000
3	P10_brDx	N204	N206	0.250	0.000	0.000
3	P11_brSx	N210	N207	3.030	0.000	0.000
3	P12_brSx	N211	N210	1.889	0.000	0.000
3	P13_brDx	N212	N214	1.050	0.000	0.000
3	P14_brSx	N216	N215	1.050	0.000	0.000
3	P15_brDx	N218	N214	3.933	0.000	89.960
3	P15_brSx	N219	N211	1.661	0.000	89.960
3	P15_brSx_1	N211	N218	2.272	0.000	89.960
3	P16_brDx	N220	N222	0.999	0.000	89.980
3	P16_brSx	N221	N220	0.999	0.000	89.980
3	P17_brDx	N223	N219	0.999	0.000	89.980
3	P17_brSx	N224	N223	0.999	0.000	89.980
3	P18_brSx	N219	N225	1.340	0.000	0.000
3	P19_brDx	N227	N229	1.342	0.000	0.000
3	P3_brSx	N221	N233	0.391	0.000	0.000
3	P4_brDx	N235	N221	0.393	0.000	0.000
3	P6_brDx	N240	N216	6.500	0.000	90.000
3	P6_brSx	N241	N240	6.500	0.000	90.000
3	P7_brSx	N241	N242	0.390	0.000	0.000
3	P8_brDx	N244	N202	0.391	0.000	0.000
3	P9_brDx	N246	N229	0.586	0.000	90.000
3	P9_brDx_1	N229	N206	1.661	0.000	90.000
3	P9_brSx_1	N271	N246	0.331	0.000	90.000
4	P1_brSx	N248	N247	1.151	0.000	90.000
4	P10_brDx	N251	N254	2.441	0.000	0.000
4	P10_brSx	N274	N251	2.439	0.000	0.000
4	P11_brDx	N254	N255	1.342	0.000	0.000
4	P3_brSx	N260	N259	0.391	0.000	0.000
4	P4_brDx	N262	N248	0.391	0.000	0.000
4	P5_brDx	N264	N265	0.999	0.000	89.980
4	P5_brSx	N260	N264	0.999	0.000	89.980
---	---------	------	------	-------	-------	--------
4	P6_brDx	N266	N268	0.999	0.000	89.980
4	P6_brSx	N267	N266	0.999	0.000	89.980
4	P7_brDx	N270	N267	0.568	0.000	89.890
4	P7_brSx	N265	N270	0.568	0.000	89.890
4	P8_brDx	N272	N255	0.917	0.000	90.000
4	P9_brSx	N268	N274	1.340	0.000	0.000

Modello libero

Il seguente modello è stato realizzato, come unità strutturale, separatamente agli edifici limitrofi, in cui l'unico vincolo è quello con le fondazioni.

La tabella riporta la richiesta (RISP) e la capacità di spostamento (CASP) per lo stato limite di salvaguardia della vita (SLV), lo stato limite di danno (SLD) e lo stato limite di operatività (SLO), il rapporto tra la forza di risposta elastica allo stato limite considerato e la forza di snervamento del sistema bilineare equivalente e la capacità di spostamento per q*=3.

Le analisi più gravose, individuate tramite il minor rapporto capacità – richiesta di spostamento allo SLV, sono evidenziate in arancione, in verde quelle soddisfatte e in rosso quelle non soddisfatte.

			SLO		SLD		SLV		SLO		SLD		SLV	
N°	Analisi	Verifica	risp [cm]	casp [cm]	risp [cm]	casp [cm]	risp [cm]	casp [cm]	SLO q*	SLO q*=3 [cm]	SLD q*	SLD q*=3 [cm]	SLV q*	SLV q*=3 [cm]
1	+X' Ecc+ Dist 1	v	0.96	1.66	1.39	1.66	3.75	3.81	0.52	5.53	0.75	5.53	2.03	5.53
2	+X' Ecc- Dist 1	×	0.94	1.62	1.35	1.83	3.63	2.90	0.61	4.61	0.88	4.61	2.34	4.65
3	-X' Ecc+ Dist 1	v	0.89	2.06	1.28	2.42	3.39	4.34	0.77	3.49	1.10	3.49	2.79	3.64
4	-X' Ecc- Dist 1	х	0.78	1.55	1.07	1.55	2.67	3.56	0.45	5.27	0.61	5.45	1.43	6.02
5	+X' Ecc+ Dist 2	v	0.77	1.42	1.03	1.42	2.58	7.65	0.46	5.00	0.62	5.24	1.44	5.79
6	+X' Ecc- Dist 2	V	0.79	1.56	1.09	1.56	2.70	3.65	0.43	5.54	0.59	5.69	1.38	6.29
7	-X' Ecc+ Dist 2	v	0.70	1.57	0.90	1.57	2.40	8.04	0.60	3.59	0.76	3.90	1.78	4.32
8	-X' Ecc- Dist 2	V	0.76	1.73	1.02	1.73	2.64	8.21	0.57	4.00	0.77	4.21	1.79	4.65
9	+Y' Ecc+ Dist 1	v	0.39	0.85	0.50	1.26	1.33	1.62	0.47	2.71	0.60	2.95	1.40	3.28
10	+Y' Ecc- Dist 1	V	0.17	0.43	0.22	0.43	0.80	2.63	0.62	1.21	0.79	1.33	1.85	1.50
11	-Y' Ecc+ Dist 1	v	0.36	0.93	0.46	1.35	1.13	5.15	0.37	3.21	0.48	3.50	1.12	3.89
12	-Y' Ecc- Dist 1	v	0.36	1.02	0.46	1.47	1.06	2.49	0.32	3.73	0.41	4.06	0.96	4.52
13	+Y' Ecc+ Dist 2	v	0.10	0.51	0.13	0.51	0.36	4.48	0.38	1.44	0.48	1.59	1.12	1.79
14	+Y' Ecc- Dist 2	v	0.12	0.73	0.16	0.73	0.41	1.07	0.36	1.70	0.46	1.88	1.08	2.12
15	-Y' Ecc+ Dist 2	V	0.33	1.10	0.43	1.51	0.99	35.90	0.15	7.81	0.19	8.51	0.44	9.48
16	-Y' Ecc- Dist 2	V	0.15	1.13	0.19	1.52	0.45	2.17	0.25	2.84	0.31	3.12	0.73	3.51

 Tabella B 1: Risultati dell'analisi push – over, Unità Strutturale 2

Le analisi più gravose risultano la 2 e la 12, rispettivamente in direzione + X, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità negativa, e in direzione - Y, con una forza sismica proporzionale al primo modo di vibrare e con un'eccentricità negativa.

Analisi 2, direzione X

Figura B 8: Curva di capacità dell'analisi più gravosa in direzione X, analisi 2

Nell'analisi 2 lo spostamento richiesto dalla normativa risulta essere maggiore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione, e in generale i piani primo e secondo dell'edificio.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

PARAMETRI DI ANALISI									
T*	M*	w	К*	F	F* _v	d _y *			
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]			
0.51	437452	943456	65489.96	1,56	1116.69	1.54			

 Tabella B 2: Tabella dei parametri di analisi calcolati nell'analisi 2

Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come già dal primo passo risultino giunti a rottura le fasce di piano del prospetto orientale e alcuni maschi murari degli ultimi due livelli. All'aumentare dei passi di carico il danneggiamento si ripercuote anche sui livelli inferiori, in particolar modo giungono a rottura setti in muratura posti in direzione parallela al sisma.

Figura B 9: Stato di danneggiamento, sottopasso 1

Figura B 10: Stato di danneggiamento, sottopasso 8, SLO

Figura B 11: Stato di danneggiamento, sottopasso 9, SLD

Figura B 12: Stato di danneggiamento, sottopasso 15, SLV

Per quanto riguarda invece la rottura a taglio nel piano, risultano danneggiati unicamente elementi ad asse orizzontale. Al primo passo giungono a rottura la trave in c.a. che schematizza gli archi del secondo piano e due travi del piano terra, mentre all'ultimo passo, coincidente con i sottopassi dei tre stati limite, si danneggiano le fasce murarie del corpo nord occidentale.

Figura B 13: Stato di danneggiamento, sottopasso 1, 5, 7 (SLO, SLD)

Figura B 14: Stato di danneggiamento, sottopasso 12, SLV

Figura B 15: Curva di capacità dell'analisi più gravosa in direzione Y, analisi 11

Nell'analisi 11 lo spostamento richiesto dalla normativa risulta essere minore rispetto a quello fornito dalla struttura allo stato limite di salvaguardia della vita.

Le porzioni più vulnerabili dell'edificio sono le fasce di piano, rotte a pressoflessione.

Di seguito si riportano le tabelle relative ai parametri di calcolo dipendenti dallo stato limite ed indipendenti.

PARAMETRI DI ANALISI									
T*	M*	w	К*	Г	F* _y	d _v *			
[s]	[kg]	[kg]	[kN/m]		[kN]	[cm]			
0.34	551205	943456	187268.45	1,06	1749.24	0.96			

Tabella B 3: Tabella dei parametri di analisi calcolati nell'analisi 11

Dove:

- T* è il periodo elastico del sistema equivalente,
- M* è la massa del sistema equivalente,
- W è la massa totale,
- K* è la rigidezza secante del sistema equivalente,
- Γ è il fattore di partecipazione modale,
- F_y* è la forza di plasticizzazione del sistema equivalente,
- d_y* è lo spostamento di plasticizzazione del sistema equivalente.

Per ogni step di calcolo ANDILWall visualizza lo stato di danno raggiunto dagli elementi strutturali, distinguendo in rosso e in verde la rottura a pressoflessione rispettivamente dell'estremo 1 e 2, e in blu la rottura di entrambi gli estremi.

Di seguito vengono riportati dal sottopasso 1 i passi relativi allo stato limite di operatività (SLO), di danno (SLD) e di salvaguardia della vita (SLV).

Analizzando l'evolversi del grado di danno per pressoflessione, si nota come dalla rottura delle sole fasce murarie esterne del prospetto orientale e di alcuni setti del terzo piano, si giunga alla rottura di tutte le fasce di piano del corpo settentrionale e delle pareti del quarto livello.

Figura B 16: Stato di danneggiamento, sottopasso 1

Figura B 17: Stato di danneggiamento, sottopasso 14, SLO

Figura B 18: Stato di danneggiamento, sottopasso 20, SLD

Figura B 19: Stato di danneggiamento, sottopasso 85, SLV

Per quanto riguarda invece la rottura a taglio nel piano, non vi sono elementi danneggiati.

Figura B 20: Stato di danneggiamento, sottopasso 1, 10, 49 (SLO, SLD, SLV)