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Introduction

In the last years artificial intelligence and, more specifically, machine

learning algorithms have completely revolutionized the way we deal with

data and are becoming indispensable tools across various sectors. Among

the field of machine learning models, neural networks stand out for their

ability to learn intricate patterns from data and generalizing astoundingly

well as though they were mimicking the complexities of the human brain.

Despite their success, understanding the internal mechanisms of neural net-

works still poses a considerable challenge, and the reason for their great

generalizing capabilities still remains a mystery as formal measures for as-

sessing such information have yet to be identified [34]. Previous approaches

for improving theoretical and practical comprehension focus on interrogating

networks with input data [33][28][29]. This thesis aims to take a different

approach by leveraging topological information. In recent years, due to the

growing availability of large amounts of data, Topological Data Analysis de-

veloped as a useful mathematical theory for analyzing it, benefiting from

the dimensionality reduction guaranteed by topology. In particular, among

Topological Data Analysis tools, that of Persistent Homology has been re-

ceiving more and more interest. In its essence, homology is concerned with

the identification and characterization of holes and voids within shapes. Per-

sistent homology takes this concept further by examining the lifespan of these

topological features as they persist across different scales. As can be seen in

figure 1 persistent homology is able to capture the ‘overall’ information in our

data, in a stable way even in presence of some amounts of noise. In particu-
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6 INTRODUCTION

Figure 1: On the left a point cloud dataset and on the right we can see

its 1-dimensional persistence diagram. Persistence diagrams are summaries

of relevant information captured by the persistent homology groups. The

presence of a point much far from the y = x line indicates the presence of a 1

dimensional component (hole) that persists more than the other components.

lar, Persistent Homology has recently been successfully used in the analysis

of graphs and network structures with promising results. [18] [1] The liter-

ature dedicated to the study of the graph structure naturally associated to

a neural network is yet quite scarce and most importantly lacks a common

mathematical foundation. The aim of this thesis is to provide a formal set-

ting for analyzing the neural network structure using persistent homology

whilst taking into consideration the need for efficiency that is needed for the

application of this tool. In particular we are interested in understanding a

network’s generalizing ability without interrogating it on a portion of the

dataset that was withheld for this specific purpose. Such result in a context

of data scarcity could prove to be an astounding feat. The use of persistent

homology has three main advantages per se: it has a solid theoretical foun-

dation, it is efficiently computable and it is robust to small perturbations[23].

Since we can naturally associate a weighted graph to a neural network, and

to that a weighted simplicial complex, we can develop in a natural way a

filtration that allows the computation of its persistent homology. Moreover,

in papers as [29] the authors were able to detect statistical interactions of any
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order or form captured by a feedforward neural network by examining only

its weight matrices, suggesting that posing an emphasis on the analysis of the

evolution of the weights could be a key factor in understanding the neural

network learning process. Moreover, recently, Persistent homology has been

used for weighted network classification as in [27] and in [19] contributing as

seminal work. As also the authors note in both articles, persistent homol-

ogy could yield interesting results in the field of machine learning. Neural

networks work as knowledge distilling pipelines, meaning that the degree of

feature abstraction increases with the depth of neural networks layers. For

example, images of cats are incrementally abstracted from pixels to diago-

nal lines and ear shapes. [31] Additionally, neural networks can detect cats

based on feature combinations. A deep neural network effectively acts as an

information distillation pipeline, with raw data going in and being repeat-

edly transformed so that information deemed irrelevant is filtered out, and

useful information is magnified and refined. Feature relationships represent

the implementation of knowledge in neural networks, which can be investi-

gated from their structures. Persistent homology is a great tool that can

stably capture redundancy and efficacy of information captured by a net-

work, by analyzing the persistence of its topological features. The definition

of a formal common framework, in this field of study, would also allow an

easy comparison and easier interpretation of the obtained results.

Let us now go into more detail on the structure of this thesis. In chapter 1

we provide an overview of how topology has been used in the field of ma-

chine learning, and where in this classification falls our study. In chapter 2

we provide the mathematical framework necessary to define the concept of

persistent homology and the necessary definitions related to weighted graphs

and weighted complexes. In chapter 3 we give a formal mathematical defini-

tion of neural network and go into detail about the most relevant concepts

that are needed for our considerations about networks. In chapter 4 we de-

scribe the state of the art in terms of analyzing the weighted graph associated

to a neural network using persistent homology, what has been done and the
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results that have been extrapolated. In chapter 5 we go into detail about our

contributions in this topic. We explain the pipeline of processes we devised

that can be used to study the topological properties of the network. More-

over we have proven some results that give us useful tools to advance the

research on this topic. In chapter 6 we show the results of our experiments

and compare them to the existing results, that have been translated into

the methodology that we devised. Finally, we give an overview of our con-

tributions and highlight what could be interesting avenues of further future

research.



Chapter 1

Topological Machine Learning

Before we delve in the formal mathematical framework, let us give an

overview of the fields of study that merge Topological Data Analysis and Ma-

chine Learning. In order to be a bit more concise, from now on we will often

refer to Topological Data Analysis as TDA and Machine Learning as ML. In

the last thirty years, Topological Data Analysis developed as a useful math-

ematical theory for analyzing data[11], benefiting from the dimensionality

reduction guaranteed by topology. Topology can construct low-dimensional

representations of high-dimensional manifolds of data, thereby reducing the

dimensionality of the parameter space. On the other hand, Machine Learning

techniques have shown remarkable success in tasks like classification, regres-

sion, clustering, and pattern recognition. This chapter aims to delve into the

convergence of TDA and ML, a field of study that has been rapidly growing

in the last years, exploring how these two fields can complement each other

to enhance our ability to extract knowledge about a Neural Network’s inner

workings. By leveraging the topological concepts of persistence diagrams,

simplicial complexes, and homology, TDA provides a means to capture the

essential topological features of the Network’s graph structure. As we will

see, the intersection of TDA and ML has recently produced promising results

in various domains, including biology, neuroscience, social sciences, and en-

gineering. Topological ML techniques can be categorized using the following

9
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criteria:

1. By extrinsic we mean that no analysis of the topology of the machine

learning model or the neural network itself is incorporated. The topo-

logical analysis only relates to the data.

2. Intrinsic methods are those which incorporate the topological analysis

of aspects of the machine learning model itself.

Moreover they can be further classified as:

1. Observational methods “observe” the topology of the data or model

but they do not directly influence the model training or architecture.

2. Interventional methods apply topological properties of the data, as well

as analysis of topological features of machine learning models, in order

to inform the architectural design and/or model training.

We will see that most extrinsic approaches are observational, i.e., they do

not inform the choice of model afterwards, while most intrinsic approaches

are interventional, i.e., they result in changes to the choice of model or its

architecture.

1.1 Extrinsic methods

These methods aim at suitably representing topological features in order

to use them as input features for machine learning models. A large class of

such methods consists of vectorisation methods that aim to transform per-

sistent homology information into a feature vector form which is then fed to

machine learning models. There are two predominant strategies for facilitat-

ing the integration of topological features into machine learning algorithms,

namely

1. different representations that give rise to feature vectors,

2. kernel-based methods that allow the integration into classifiers.
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The stability of such representations is based on the fundamental stability

theorem proved in Stability of Persistence Diagrams by H. Edelsbrunner[8].

Let us see some examples of both.

1.1.1 Feature Vectors

Arguably the most simple form of employing topological descriptors in

machine learning tasks uses summary statistics, such as the total persistence

of a persistence diagram, its p-norm, or other scalar parameters. While all

of these approaches result in scalar-valued summary statistics, they are of-

ten not directly applicable to complex machine learning tasks, which require

more expressive representations. There are interventional methods that use

Betti Functions like PLLay[20] where the authors introduce a novel topologi-

cal layer for general deep learning models based on persistence landscapes, or

PersLay[5] where the authors focus on persistence diagrams built on top of

graphs. In figure 1.1 we can see a summary of how the PersLay model works.

On the other hand there are vectorialization observational methods that in-

troduce the concepts of Persistence Images or Persistence Landscapes as also

introduced in the PLLay article by, for instance, using a differentiable pro-

jection function for persistence diagrams with learnable parameters, which

demonstrates that persistence diagrams of a data set can be easily integrated

into any deep learning architecture. Another example is given in [17] where

the authors propose a technique that allows to input topological information

into deep neural networks and learn a task-dependent optimal representation

during training.

1.1.2 Kernel Methods

As an alternative to the previously discussed representations, now we

want to briefly focus on persistence diagrams. The space of persistence dia-

grams can be endowed with metrics, such as the bottleneck distance. How-

ever, there is no natural Hilbert space structure on it, and such metrics tend
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Figure 1.1: How the exstrinsic model, that uses feature vectors, called Per-

sLay is organized.
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to be computationally prohibitive or require the use of complex approxima-

tion algorithms. Kernel methods provide a way of implicitly introducing such

a Hilbert space structure to which persistence diagrams can be mapped via

the feature map of the kernel. By defining a kernel on the set of persistence

diagrams, one obtains a vector representation via the feature map. This

then allows for downstream use in machine learning models. One example

can be seen in [25] where they ground their approach in a heat map applied

to persistence diagrams.

1.2 Intrinsic methods

This section focuses on methods that either incorporate topological infor-

mation directly into the design of a machine learning model itself, or leverage

topology to study aspects of such a model. The latter will be the approach

we have taken in consideration.

1.2.1 Regularization techniques

Topological information is often used for regularization: As a recent ex-

ample, Moor et al. propose a topological autoencoder[22], which aims to

preserve topological features of the input data in low-dimensional represen-

tations. This is achieved via a regularization term that rewards when the

persistence diagrams of both the latent and input space are topologically sim-

ilar. Conversely, in A Topological Regularizer for Classifiers via Persistent

Homology[6] the authors develop a measure of the topological complexity

(in terms of connected components) of the classification boundary of a given

classifier. Said topological information is then used for regularization in order

to force the topological complexity of the decision boundary to be simpler,

containing fewer features of low persistence. Thus, topological information

serves as a penalty during classification so that training the classifier itself

can be improved.
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1.2.2 Model Analysis

In a different direction, the topological analysis of the intrinsic structure

of a classifier, such as a neural network, makes it possible to improve a variety

of tasks and, as we said previously, this is the direction we will be focusing

on. This includes the analysis of training behavior as well as model selection

or architecture selection in the case of neural networks. While the literature

dedicated to the better understanding of deep neural networks has typically

focused on its functional properties, in [26] the authors took a different per-

spective to focus on the graph structure of a neural network. Specifically, the

authors treat a (feedforward) neural network as a stack of bipartite graphs.

From this view, the authors propose “neural persistence”, a complexity mea-

sure which summarizes topological features that emerge when calculating a

filtration of the neural network graph, where the filtration weights are given

by the network parameters. The authors showed that neural persistence can

distinguish between well-trained and badly-trained networks. This measure

is oblivious to the functional behavior of the underlying network, but only

focuses on its weighted structure. Nevertheless, the authors showed that it

can be used for guiding early stopping solely based on topological proper-

ties of the neural network, potentially saving validation data used for the

early stopping decision. A similar research has been carried out in [15]. In

their study, the authors propose a novel approach to monitor the training of

neural networks: instead of relying on a validation (holdout) set to estimate

the model’s generalization, the authors advocate for the use of Persistent

Homology by examining the evolution of PH diagram distances during the

neural network training process, utilizing simplicial complex representations.

Multiple network architectures and datasets are considered. The findings

reveal a significant correlation between the PH diagram distance measured

between consecutive states of the neural network and the corresponding val-

idation accuracy, therefore suggesting that it may be possible to intrinsically

estimate a neural network’s generalization error without the need for a sepa-

rate validation set. Another very interesting approach is given by Carrlson et
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Al. in Exposition and Interpretation of the Topology of neural networks[12],

where the authors show that the weights of convolutional layers encode simple

global structures which dynamically change during training of the network

and correlate with the network’s ability to generalize to unseen data. More-

over, the authors find that topological information on the trained weights

of a network can lead to improvements in training efficiency and reflect the

generality of the data set on which the training was performed. We will go

more in depth regarding this topic in chapter 5.
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Chapter 2

Persistent Homology

Firstly, let us define the building blocks required to reach the definition

of persistent homology.

2.1 Simplexes

Definition 1. Let us consider d+1 affinely independent points x0, . . . , xd ∈
Rn. The convex hull of those points sd := conv(x0, ..., xd) is called d-simplex.

For instance, as can be seen in figure 2.1 a 0-simplex in R3 is a point,

a 1-simplex is a line, a 2-simplex is necessarily a triangle, a 3-simplex is a

tetrahedron and so on. . .

Definition 2. If we consider a d-simplex sd, given by the convex closure

Figure 2.1: Example of simplices.
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conv(x0, ..., xd), a face of sd is the convex closure of some of the generating

points of sd.

For example: Let us consider a 3-simplex in R3: s3 = conv
(( 1

0
0

)
,
( 0
1
0

)
,
( 0
0
1

)
,
( 0
0
0

))
This full tetrahedron has 24 faces, for instance a couple of them could be

conv
(( 1

0
0

)
,
( 0
0
1

)
,
( 0
0
0

))
or conv

( 0
0
0

)
.

Definition 3. A geometrical simplicial complex K is a set of simplexes of

any dimension such that

1. if sn ∈ K and sd is a face of sn then also sn ∈ K.

2. if sn, sm ∈ K then their intersection is either empty or a common face

of sn and sm.

3. any simplex of K cannot be face of infinitely many simplexes of K.

The dimension of a complex K is defined as the largest dimension of its

simplexes.

It is possible to give a more abstract definition of simplicial complex,

which follows.

Definition 4. An abstract simplicial complex is a set of finite non-empty

sets, closed under inclusion. Formally, let X be a set, and let K be a collection

of subsets of X. K is an abstract simplicial complex if it satisfies the following

conditions:

1. If σ ∈ K and τ ⊂ σ, then τ ∈ K.

2. If σ ∈ K and τ ∈ K, then their intersection σ ∩ τ is also in K.

The elements of K are called simplices, and the dimension of a simplex

σ is defined as |σ| − 1, where |σ| is the number of elements in σ. The

dimension of the abstract simplicial complex K is the maximum dimension

of its simplices. Sometimes a simplicial complex of dimension d will be called

simplicial d−complex. An example of what is and what is not a simplicial

complex can be seen in figure 2.2. We will only be considering finite simplicial

complexes.
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Figure 2.2: On the left (a) is a simplicial complex whereas on the right

(b) is not a simplicial complex as it doesn’t respect the closedness under

intersection.

2.1.1 Weighted graphs

We are interested in feedforward neural networks, to which we can nat-

urally associate a structure as weighted graphs, hence why we need the fol-

lowing definitions. Firstly, let us define what a weighted simplicial complex

is:

Definition 5. A weighted simplicial complex is a pair (K,w) where K is a

simplicial complex and w is a function w : K → R.

Definition 6. We will say that w is monotone if w(σ) ≤ w(τ) for all σ ⊆
τ ∈ K.

Since we want to consider the simplicial 1-complex associated to a weighted

graph we need the following definitions:

Definition 7. A weighted graph is a tern Gw = (V,E,w) where (V,E) is a

graph and w is a function w : E → R.

We will only be considering undirected graphs meaning graphs such that

(u, v) ∈ E =⇒ (v, u) ̸∈ E. Moreover we will always assume that our

graphs do not present self-loops. To such graphs we can naturally associate

a simplicial complex in the following way
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Definition 8. The simplicial complex K(G) associated to the graph G is

formed by taking all non-empty subsets of V and all non-empty subsets of E

and considering them as simplices. Specifically, any v ∈ V is a 0-simplex

in K(G), and any e ∈ E is a 1-simplex in K(G). Formally K(G) =

{{u, v} for (u, v) ∈ E} ∪ {v for v ∈ V }.

This definition clearly respects the inclusion requirements to be a sim-

plicial complex. Moreover, for a weighted graph, we can define an induced

weight function on K(Gw), which is defined as follows.

Definition 9. Given a (undirected) weighted graph Gw the induced weighted

complex is (K(G), w̄) where w̄ : K(G)→ R, defined asw̄(v) = 0 for every 0-simplex of K.

w̄(u, v) = w(u, v) for every 1-simplex of K.

Please note that there are multiple possible definitions for the induced

weight function, and the chosen one is based on our objective which is con-

sidering the weighted simplicial complex associated to the weighted graph

that represents a neural network. We will now give the abstract definition

of homology, determine the simplicial homology groups associated to a com-

plex K and then we will be ready to introduce the definition of persistent

homology, the main tool we will be using in our study.

2.2 Homology

Definition 10. We will call chain the following pair G =
(
{Gj}j∈Z, {∂j}j∈Z

)
where each Gk is a commutative group and each ∂j : Gj → Gj−i is a group

homomorphism called jth−border operator. The border operators must satisfy

∂j−1 ◦ ∂j = 0.

One could visualize a chain as the following sequence:

. . .
∂j−1←− Gj−1

∂j←− Gj
∂j+1←− Gj+1

∂j+2←− . . .
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Definition 11. Given a chain G we will call

• k-cycles elements of the group Zk(G) := ker(∂k) ⊆ Gk.

• k-borders elements of the group Bk(G) := Im(∂k+1) ⊆ Gk.

Notice how the property ∂j−1 ◦ ∂j = 0 implies Bk(G) ⊆ Zk(G).

Definition 12. Given a chain G we will call kth−homology group of the

chain G the quotient

Hk(G) := Zk(G)/Bk(G)

. Elements of Hk(G) are called homology classes.

Intuitively one could think that homology classes are ’surviving’ cycles,

i.e. cycles that are not borders of anything.

Let us recall that any finitely generated commutative group G has a

decomposition as G =
r
⊕Z⊕ Zi1 ⊕ · · · ⊕ Zis . The number r is called rank of

the group G.

Definition 13. Given a chain G we will call kth−Betti number βk the rank

of the group Hk(G).

2.3 Simplicial Homology

Given any topological space X, we could define its associated chain G(X).

Then, the associated homology groups are the tool used to formalize the

notion of k-dimensional holes of X. For the purpose of introducing persistent

homology, and for the scope of this thesis, we will just define the homology

groups associated to a complex K. Thus our first objective is to define a chain

associated to K, for which we need to define the commutative groups and

the boundary operators.

Definition 14. Let K be a simplicial complex. We represent with Si(K)

the free commutative group generated by the i-dimensional simplexes. Hence

elements of Si(K) are formal linear combinations, with coefficients in Z, of
all simplexes of K of dimension i.
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Figure 2.3: An example of how the boundary operator works, it associates

to a d−simplex the formal sum of its (d− 1)−simplices.

Notice how the only possibly non-empty groups are the ones indexed from

0 to the dimension of the complex.

Let us now define the boundary operator ∂i : Si(K)→ Si−1(K):

Definition 15. The border of an i-dimensional simplex s = conv(x0 . . . xi)

is defined as ∂i(s) :=
i∑

k=0

(−1)kconv(x0 . . . x̂k . . . xi) where the hat denotes

that the point has been removed. The border is then linearly extended to all

elements of Si(K).

Notice how the composition of two borders has to be zero. In the context

of abstract simplicial complexes, the boundary operator, denoted as ∂, is

used to define the boundary of simplices. For a simplex σ in the complex,

∂(σ) is a formal sum of its (k−1)-dimensional faces, where k is the dimension

of σ.

The orientation of an abstract simplicial complex is given as follows:

Definition 16. An orientation of a simplex σ in an abstract simplicial com-

plex is a choice of ordering for its vertices. More formally, for a simplex σ

with vertices {v0, v1, . . . , vk}, an orientation specifies a permutation of these

vertices, which determines a consistent ordering.

The choice of orientation is typically represented as a signed permutation,

and the sign indicates whether the orientation is ”positive” or ”negative.” The

sign depends on the parity (even or odd) of the permutation. An orientation

of a simplex induces orientations of its faces. If σ is a k-dimensional simplex,
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and τ is one of its k-dimensional faces, then the orientation of σ induces an

orientation on τ by considering the ordering of vertices in τ based on the

ordering in σ.

We can now define the boundary operator in the case of abstract simplicial

complexes:

Definition 17. • For a 0-dimensional simplex (vertex), ∂(σ) is the zero

chain, representing an empty boundary.

• For higher-dimensional simplices, ∂(σ) is defined as the formal sum

of its (k − 1)-dimensional faces with appropriate orientations. This

ensures that each face is counted with the correct sign. Mathematically,

if σ is a k-dimensional simplex with vertices {v0, v1, . . . , vk}, then:

∂(σ) =
k∑

i=0

(−1)i[v0, v1, . . . , vi−1, vi+1, . . . , vk]

Where i ranges from 0 to k, representing the k different (k−1)-dimensional

faces of σ, and [v0, v1, . . . , vi−1, vi+1, . . . , vk] represents the (k − 1)-

dimensional face obtained by removing the i-th vertex from σ.

Hence we have successfully created the chain

. . .
∂i−1←− Si−1(K)

∂i←− Si(K)
∂i+1←− Si+1(K)

∂i+2←− . . .

Definition 18. If S(K) is the chain associated to K, we call ith− simplicial

homology group the group Hi(K) := Hi(S(K)).

Now, β0 coincides with the number of connected components of the com-

plex, β1, its tunnels and its holes, β2, the shells surrounding voids or cavities,

and so on... For the analysis of real-world data sets, however, Betti numbers

turn out to be of limited use because their representation is too unstable,

hence welcoming the definition of persistent homology. Given a weighted

simplicial complex K with weights a0 ≤ a1 ≤ . . . ≤ am−1 ≤ am, which

are commonly thought to represent the idea of a scale, the filtration can be

seen as the ’growth’ of K as the scale is being changed. During this growth
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process, topological features can be created (new vertices may be added, for

example, which creates a new connected component) or destroyed (two con-

nected components may merge into one). Persistent homology tracks these

changes and represents the creation and destruction of a feature as a point

(ai, aj) ∈ R2 for indices i ≤ j with respect to the filtration. The collection of

all points corresponding to d-dimensional topological features is called the d-

th persistence diagram Dd which can be seen as a collection of Betti numbers

at multiple scales. Given a point (x, y) ∈ Dd, the quantity pers(x, y) := |y−x|
is referred to as its persistence. Typically, high persistence is considered to

correspond to features, while low persistence is considered to indicate noise

[10].

2.3.1 Persistent Homology

We are now ready to define persistent homology.

Definition 19. A filtration of a simplicial complex K is a finite sequence of

(sub)complexes of K in ascending order ∅ = K0 ⊆ K1 ⊆ . . . Km−1 ⊆ Km =

K.

In the special case of weighted simplicial complexes we will consider the

’sublevel set filtration’ defined as:

Definition 20. Let (K,w) be a weighted simplicial complex with w ∈ [0, 1]

and 0 = w1 ≤ w2 ≤ ... ≤ wn = 1 be a sequence of numbers. Then the

associated sublevel set filtration is ∅ = K0 ⊆ K1 ⊆ . . . Kn−1 ⊆ Kn = K

where K0 := ∅ and Ki := {σ ∈ K|w(σ) ≤ wi}.

Definition 21. For b, d ∈ {0 . . .m} we call the (b, d)−persistent ith−simplicial

homology group H
(b,d)
i (K) := Im(L

(b,d)
i ) where L

(b,d)
i is the linear map L

(b,d)
i :

Hi(K
b)→ Hi(K

d) induced by the inclusion Kb ↪→ Kd.

While homology captures cycles in a shape by factoring out the cycles

that are actually boundaries of something, persistent homology allows for

the retrieval of cycles that are non boundary elements in a certain step of
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the filtration but that will turn into boundaries in some subsequent step.

The persistence of a cycle during the filtration gives quantitative information

about the relevance of the cycle itself for the shape.

Definition 22. Now, let γ be a class in Hp(Ki) =: H i
p. We say that γ

is born in Ki if γ /∈ H i−1,i
p . Let fp

i,j : Hp(Ki) −→ Hp(Kj) be the induced

homomorphism by the inclusion Ki ⊆ Kj. On the other hand, if γ is born in

Ki, we say that it dies entering Kj if f
i,j−1
p (γ) /∈ H i−1,j−1

p but f i,j
p (γ) ∈ H i−1,j

p ,

which means that γ either merges with another ”older” class or is ”killed” as

the boundary of a chain.

The couple of birth and death of the p−dimensional class γ (i, j) is called

persistence pair. In these terms, we observe that when two classes merge, the

one that survives is always the one that was born first. Furthermore, taking

into account the last definition, we have that the persistent homology group

H i,j
p is formed by the homology classes of Ki that are still alive in Kj, and

βi,j
p precisely counts these classes. Formally, we have:

H i,j
p =

Zp(Ki)

Bp(Kj) ∩ Zp(Ki)

Example

Let us see a simple example to better illustrate how persistence pairs are

evaluated. Let us consider the simplicial 2-complex K of figure 2.4, and the

filtration of figure 2.5. Since this is a 2-complex we will have only three

possibly non empty homology groups. Let us track the free commutative

groups associated to each complex of the filtration in table 2.1. In table 2.2

see what are the simplicial homology groups associated to each chain

∅ ∂0←− S0(Ki)
∂1←− S1(Ki)

∂2←− S2(Ki)
∂3←− ∅

For instance, what happens from H0(K
1) to H0(K

2) is the fact that since all

vertices are elements ofKer(∂0) but not boundaries of anything (Im(∂1) = ∅)
they are all generators. However, in H0(K

2) we have that ∂1(AB) = A + B
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Figure 2.4: The simplicial complex K.

Figure 2.5: A filtration associated to our simplicial complex. K0 = ∅ is not
shown, but we have, starting from the left, K1, K2, K3 and K4 = K.

hence in the quotient A = B so B is no longer a generator and merges

with the class A. The same happens for C and D. Moreover, H1(K
2) has

dimension 1 since ∂1(AB − BC + CA) = A − B + B − C + C − A = 0

hence that is a cycle but Im(∂2) = ∅ hence it is not boundary of anything.

However, this cycle dies at H1(K
2) since it is the boundary of ABC ∈ S2.

As we can see from the terms we have use it becomes natural to think about

the birth and death (or merging) of the homology classes. By tracking the

births and death of component we can get the three multisets of persistence

pairs (which summarize the persistent homology groups) that can be seen in

table 2.3.

2.3.2 Vietoris-Rips homology

In the particular case of a metric space X one of the most used tools in

TDA is the Vietoris-Rips complex filtration. Let X be a metric space with
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Simplices S0 S1 S2

K0 ∅ ∅ ∅
K1 < A,B,C,D > ∅ ∅
K2 < A,B,C,D,E > < AB,BC,CA,CD > ∅
K3 < A,B,C,D,E > < AB,BC,CA,CD,DE > < ABC >

K4 < A,B,C,D,E > < AB,BC,CA,CD,DE,BE > < ABC >

Table 2.1: Table with the associated groups to each simplicial complex.

Generators H0 H1 H2

K0 ∅ ∅ ∅
K1 {[A], [B], [C], [D]} ∅ ∅
K2 {[A], [E]} {[AB −BC + CA]} ∅
K3 {[A]} ∅ ∅
K4 {[A]} {[CD −DE + EB −BC]} ∅

Table 2.2: Table with the generators of the homology groups associated to

each simplicial complex of the filtration.

metric d : X ×X → R, and let r ≥ 0. The Vietoris-Rips complex VRr(X) is

defined as follows:

1. Vertex Set: The vertex set of VRr(X) is the set of points in X.

2. Simplex Inclusion: For each subset S ⊆ X such that the pairwise

distances between points in S are all less than or equal to r, include the

simplex spanned by the points in S in VRr(X). The simplex can be of

any dimension, including 0 (vertices), 1 (edges), 2 (triangles), and so

on.

Hence, formally, the Vietoris-Rips complex VRr(X) is then given by:

VRr(X) = {σ ⊆ X | ∀p, q ∈ σ : d(p, q) ≤ r}

Here, σ represents a simplex in the complex, and the condition d(p, q) ≤ r

ensures that the simplex is included if and only if the pairwise distances
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Persistence Pairs D0 D1 D2

Filtration of K {(1, 2), (1, 2), (1, 2), (2, 3), (1,+∞)} {(2, 3), (4,+∞)} ∅

Table 2.3: Table with the persistence pairs for dimensions 0, 1 and 2.

between its vertices are less than or equal to r. Now since if r ≤ s ∈ [0,∞),

there is a simplicial inclusion map

ιr,s : VRr(X) ↪→ VRs(X).

Then we can define the Vietoris-Rips filtration as the nested collection of the

following complexes:

VR(X) = {VRr(X)}r∈[0,diam(X)).

2.4 Representations of persistence

Let us reiterate the meaning of the terms birth and death. An i-dimensional

homology class σ is born at Kb if it is not in the image of the map induced

by the inclusion Kb−1 ⊆ Kb i.e. in H
(b−1,b)
i (K). Furthermore, if σ is born at

Kb it dies entering Kd if the image of the map induced by Kb−1 ⊆ Kd−1 does

not contain the image of σ but the image of the map induced by Kb−1 ⊆ Kd

does. Formally, σ is born at Kb and dies in Kd if σ belongs to H
(b−1,d−1)
i (K)

but not to H
(b−1,d)
i (K). We say that σ is born at time b, died at time d

and persisted for d− b. We can represent these information using persistence

diagrams, one for each dimension.

Definition 23. The ith−persistence diagram is the collection of couples (b, d)

tracking the times of birth and death of every i-dimensional homology classes.

Each diagram is now a multiset since classes can be born simultaneously

and they can die simultaneously. The rank of the image of a map L
(b,d)
i :

Hi(K
b) → Hi(K

d) i.e. the Betti number of H
(b,d)
i (K) is the number of i-

dimensional homology classes that are born at or before Kb and are still alive

at Kd . This includes the essential classes of K, meaning the ones that do



CHAPTER 2 29

0 1 2 3 4 5
birth

0

1

2

3

4

5

de
at

h

 3x(1, 2) 3x(1, 2) 3x(1, 2)

 (2, 3)

 (1, 5)
Persistence Diagram for D0

0 1 2 3 4 5
birth

0

1

2

3

4

5

de
at

h (2, 3) 

(4, 5) 
Persistence Diagram for D1

0 1 2 3 4 5
birth

0

1

2

3

4

5

de
at

h

Persistence Diagram for D2

Figure 2.6: Persistence diagrams of dimensions 0,1 and 2 associated to the

filtration of the complex K.

Figure 2.7: An example of how persistence barcodes are evaluated for a

Vietoris-Rips complex filtration.

not die within the filtration. It is convenient to represent an essential class

born at Kb by the point (b,∞) in the diagram.

For instance, in figure 2.6 are the persistence diagrams associated to the

example of the previous section.

Other representations for persistent homology features are persistence

barcodes, which can be seen in figure 2.7, whose main goal is the one of

highlighting couples with the longest persistence. Finally, another equivalent

representation for persistence diagrams is the one of persistent landscapes,

so called for their similarity to a mountainview. They are equivalent to
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Figure 2.8: An example of persistence diagram on the left, and the corre-

sponding persistent landscape on the right.

persistence diagrams, but rotated at a 45 degree angle as can be seen in

figure 2.8.



Chapter 3

Neural networks

A neural network is a computational model inspired by the behavior of

biological neurons, the basic building blocks of the brain. It consists of

interconnected artificial neurons or nodes organized into layers. Each neu-

ron processes information, performs mathematical operations on input data,

and communicates the results to other neurons. This communication occurs

through weighted connections between neurons. A node (or neuron) in a

neural network typically has the following characteristics:

• Input: Nodes receive input from other nodes or external sources, and

they process this input as part of the network’s computation.

• Weights and Biases: Nodes are associated with weights and biases,

which determine the strength of connections with other nodes and in-

troduce flexibility into the node’s behavior. Weights and biases re-

spectfully are the parameters that allow an affine transformation of the

input.

• Activation Function: Nodes often apply an activation function to the

weighted sum of their inputs, introducing non-linearity and enabling

the node to model complex relationships in the data.

• Output: The result of a node’s computation, after applying the acti-

vation function, is transmitted as output to other nodes in subsequent

31
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layers of the neural network.

An activation function, denoted as f , is a mathematical function that op-

erates on the weighted sum of inputs and introduces non-linearity into the

neural network’s computations. It is applied to the output of each neuron

(or node) in the network, shaping the neuron’s output based on the weighted

input. Activation functions are essential because they determine whether a

neuron should be activated (fired) or not, and to what degree. Mathemati-

cally, the activation function takes the weighted sum z as input and produces

the neuron’s output a:

a = f(z)

Activation functions serve multiple purposes in neural networks, including

adding non-linearity, enabling the network to learn complex functions, and

introducing sparsity[16]. Each activation function has its unique charac-

teristics and use cases. Let’s introduce some of the most commonly used

activation functions:

• Sigmoid Activation (Logistic): The sigmoid function maps the input

to a range between 0 and 1.

f(z) =
1

1 + e−z

• Hyperbolic Tangent (Tanh): Tanh is similar to the sigmoid but maps

the input to a range between -1 and 1. It has often been used in hidden

layers.

f(z) =
ez − e−z

ez + e−z

• Rectified Linear Unit (ReLU): ReLU is a popular choice for hidden

layers and has the advantage of not suffering the Vanishing Gradient

Problem[13]. It sets all negative inputs to zero and leaves positive

inputs unchanged.

f(z) = max(0, z)
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Figure 3.1: An illustration of the construction of a single neuron, without

bias.

The choice of an activation function often depends on the specific task and

the architecture of the neural network. In figure3.1 we can see how all these

notions come together in building a single neuron.

3.1 Multi layer network with bias

Let us mathematically define a feedforward q-layer network with bias

terms.[21] We talk about feedforward neural networks in cases where there

are no loops, and recurrent neural networks in cases where at least one loop

is present.

• Inputs: x = [x1, x2, . . . , xn]
T ;

• Outputs: y = [y1, y2, . . . , ym]
T ;

• Input Layer, j = 1: neuron(1, i), where i = 1, 2, . . . , p1, with generic

weight γ
(1)
ik and bias b

(1)
i , where k = 0, 1, 2, . . . , n. In matrix form,

denoting f(·) as the activation function, w
(1)
i = [γ

(1)
ik ]T , and W (1) =

[w
(1)
i ]: s(1) = W (1)u+ b(1)

z(1) = f(s(1))
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• Intermediate Layers, 1 < j < q: neuron(j, i), where i = 1, 2, . . . , pj

with generic weight γ
(2)
ik and bias b

(j)
i , where k = 0, 1, 2, . . . , pj−1. In

matrix form, with f(·) as the activation function, w
(j)
i = [γ

(2)
ik ]T , and

W (j) = [w
(j)
i ]: s(j) = W (j)z(j−1) + b(j)

z(j) = f(s(j))

• In the output layer, denoted by j = q, we have neuron(q, i) for i =

1, 2, . . . , pq with generic weight γ
(q)
ik and bias b

(q)
i , where k = 0, 1, 2, . . . , pq−1.

In matrix form, using the activation function f(·), we define w
(q)
i =

[γ
(q)
ik ]T , and W (q) = [w

(q)
i ]:s(q) = W (q)z(q−1) + b(q)

y = f(s(q))

The output layer processes the information and computes the final

output y.

The overall input-output relationship in the neural network with bias can be

represented as:

y = f
(
W (q)

(
. . . f

(
W (1)x+ b(1)

)
. . .
)
+ b(q)

)
∈ Rm

This equation describes the relationship between the network’s inputs and

outputs, where m represents the dimension of the output. In figure 3.2 we

can see the global structure of a neural network.

3.2 Training a Neural Network

Training a neural network is the process of making it learn from data.

This involves presenting the network with a labeled dataset, adjusting the

weights and biases, and minimizing the difference between the predicted out-

puts and the ground truth labels. Training is typically performed using op-

timization algorithms, such as gradient descent, which update the weights to
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Figure 3.2: An illustration of a neural network, highlighting the input and

output layers, and showing the number of middle hidden layers.

minimize a loss function that quantifies the prediction errors.[14] Firstly, let

us define the loss function. The loss function, denoted as L(W ), quantifies

the discrepancy between the predicted outputs of the neural network and

the true target values. The primary objective is to minimize this loss by

adjusting the parameters W . The choice of a suitable loss function depends

on the nature of the task and the type of data being used. Commonly used

loss functions include:

• Mean Squared Error (MSE): This is a commonly used loss function

for regression tasks. It measures the average of the squared differences

between predicted and actual values. The MSE loss for a dataset with

N samples is defined as:

L(W ) =
1

N

N∑
i=1

(yi − ŷi)
2

where yi represents the actual target value, ŷi is the predicted value,

and N is the number of samples.

• Cross-Entropy Loss (Log Loss): This loss function is commonly used

for classification tasks. It quantifies the dissimilarity between predicted
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class probabilities and true labels. For binary classification, the cross-

entropy loss is defined as:

L(W ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

where yi is the true label (0 or 1), ŷi is the predicted probability, and

N is the number of samples.

• Categorical Cross-Entropy: This is an extension of cross-entropy for

multi-class classification. It measures the dissimilarity between pre-

dicted class probabilities and one-hot encoded true labels.

The loss function serves as the guiding criterion for the optimization process.

The objective is to find the set of parameters W that minimizes this loss.

We call training loss the measure of the error or discrepancy between the

predicted output of a neural network and the actual target values on the

training dataset i.e. the value of the chosen loss function.

An optimization algorithm is used to update the network’s parameters to

minimize the loss function. Optimization algorithms that use only the gradi-

ent, such as gradient descent, are called first-order optimization algorithms.

Optimization algorithms that also use the Hessian matrix, such as Newton’s

method, are called second-order optimization algorithms. Mathematically,

the aim is to adjust the parameters in the direction that decreases the loss.

The weight update at each iteration is defined as:

Wt+1 = Wt − ε∇L(Wt)

Here, Wt+1 represents the updated parameters, Wt is the current set of

weights, and ε denotes the learning rate, which controls the step size for

parameter updates. The backpropagation algorithm is used to compute the

gradient of the loss function applied to the output of the network with re-

spect to the parameters in each layer. This gradient can then be passed to

the gradient-based optimization algorithm. Various optimization algorithm
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variants have been developed to enhance training efficiency and address chal-

lenges such as slow convergence and local minima. These include Stochastic

Gradient Descent (SGD), Momentum, Adaptive Learning Rate methods like

Adagrad, RMSprop, and Adam, as well as Nesterov Accelerated Gradient

(NAG). Selecting an appropriate optimization algorithm and fine-tuning hy-

perparameters is a crucial aspect of training neural networks, as it directly

affects the model’s convergence and performance.

In traditional optimization algorithms like standard gradient descent, a

fixed learning rate ε is used throughout the training process. While this

approach can work well for some problems, it may lead to slow convergence

or even divergence for others. Adaptive learning rate algorithms address this

issue by dynamically adjusting the learning rate for each parameter based on

the past behavior of the optimization process.

The adaptive learning rate is typically determined by considering the

gradient information, the history of parameter updates, or a combination of

both. These algorithms aim to provide a balance between taking large steps

for faster convergence and small steps for stable optimization.

The commonly used adaptive learning rate algorithms are[14]:

• Adagrad (Adaptive Gradient Descent): Adagrad adapts the learning

rate for each parameter based on the magnitude of its historical gra-

dients. Parameters that have received large gradients in the past will

have their learning rate reduced, while those with small gradients will

receive larger updates.

• RMSprop (Root Mean Square Propagation): RMSprop is similar to

Adagrad but uses a moving average of the squared gradients to adapt

the learning rate. It helps mitigate the diminishing learning rate prob-

lem encountered in Adagrad.

• Adam (Adaptive Moment Estimation): Adam combines the benefits of

both momentum and RMSprop. It maintains moving averages of both

gradients and squared gradients and adapts the learning rate for each
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parameter. Adam is known for its robust performance in various tasks.

These adaptive learning rate algorithms offer different strategies for dynam-

ically adjusting the learning rate, making them well-suited for a variety of

optimization scenarios. The choice of an algorithm depends on the specific

problem and the neural network architecture. Understanding their charac-

teristics and behaviors is essential for effective training. In this context, an

epoch refers to a single pass through the entire training dataset. It consists of

presenting each training sample once to the model, computing the gradients,

and updating the weights of the network. What we actually are interested in

is not the training loss per se, since a very overfitted model, which is actually

’learning by memory’ all the data that it is fed, has an extremely low train-

ing loss. We want to measure the generalization capabilities of the network

hence we study the validation loss. The validation loss is a metric used to

assess the performance of a neural network by using a separate validation

dataset. It quantifies the error or loss of the model on data not used during

training. A lower validation loss indicates better generalization, suggesting

that the model can make accurate predictions on new, unseen data.

3.2.1 Overfitting

Overfitting represents one of the main challenges in machine learning, and

understanding its dynamics would be crucial for model evaluation. Overfit-

ting occurs when a model learns the training data too well, capturing noise

and fluctuations in addition to the underlying patterns. As a result, an over-

fitted model may perform exceptionally well on the training set but fails to

generalize to new, unseen data.

The phenomenon of overfitting can be illustrated graphically by compar-

ing the training and validation loss over epochs. The validation loss is the loss

calculated on a separate validation dataset. In an ideal scenario, as the model

is trained, both the training and validation losses should decrease. However,

overfitting becomes apparent when the training loss continues to decrease,

while the validation loss starts to increase, as can be seen in figure 3.3. In
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Figure 3.3: Illustration of overfitting in a neural network.

the early epochs, both training and validation losses decrease, indicating that

the model is learning and improving its performance. However, as training

progresses, the training loss continues to decrease, approaching zero, while

the validation loss begins to rise. This divergence suggests that the model is

starting to memorize only the training data losing the ability to generalize

to the new data. To mitigate overfitting, various techniques are employed

during the training process: Early Stopping Monitoring refers to the use of

evaluating the validation loss during training and stopping the training pro-

cess when the validation loss stops improving. The main drawback is that in

order to use this approach we need to keep a significant amount of data that

the model cannot see and cannot learn from. Also appropriately choosing the

networks architecture can be very useful in mitigating overfitting, although

there are best practices to do so there are not yet general techniques that

tell us what is the best architecture to choose and why.
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Chapter 4

State of the art

As we have already seen in chapter 1, the application of TDA in the

context of machine learning has been rapidly growing. Since our interest

is to analyze the evolution of the weighted graph structure of the network,

and how it correlates to the validation loss, let us see the state of the art in

this specific research avenue. The use of persistent homology, in particular

Betti numbers applied to a suited function space, has also been theoretically

proven to be of use for expressing a network’s capacity, in particular for com-

paring Deep and Shallow neural networks [3]. The work in [32] begins by

constructing a topological space based on the network’s output (actually, on

the coverings of the boundary of the output set), and then studies the Betti

numbers associated to the Mayer-Vietoris construction built on that space.

The authors provide theoretical bounds for the Betti numbers, and apply

their results in the context of architecture selection rather than validation

error estimation. In [4] a new dimension measure called ‘persistent homol-

ogy dimension’ is created, and proven to be equivalent to the box dimension

which in turn has been proven to be related to the network’s generalization

capabilities [35]. In [7] two types of path homology for fully-connected, feed-

forward neural network architectures is provided, and shown to be able to

detect some information about the network’s initialization. Path homology,

as the name suggests, is defined on a chain of groups whose elements are pos-
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sible paths on the complex. Although technically neural networks do have a

structure of directed graphs, due to the difference in meaning attributed to

positive/negative weights, we have decided to discard the directional infor-

mation from a path-homology point of view. Moreover, we have found two

papers that have an approach that is most similar to ours, and let us go into

detail about their method and their findings in the next sections. Each of

these papers is focused on analyzing the graph structure of the network in

order to assess its generalizing capabilities.

4.1 Neural Persistence

In the paper [26] the proposed study is done for feedforward neural net-

works, which can be seen as a stratified graph, where the authors denote with

W the set of weights. Since W is typically changing during training, at each

training step the function ϕ : E → W that maps edges to weights is required.

If W is the set of weights for the current training step, wmax := maxw∈W |w|.
Then its defined W0 :=

{
|w|

wmax
| w ∈ W

}
, the set of transformed weights in

non-ascending order, such that 1 = w0,0 ≥ w0,1 ≥ . . . ≥ 0. This allows the

definition of a filtration for the k-th layer using the transformed weights of

the edges. The filtration ensures network invariance to scaling (w0 ∈ [0, 1]),

simplifying cross-network comparisons. Then, the authors calculate the 0-

dimensional persistent homology groups for every layer. The focus on 0-

dimensional information is due to it being more efficiently computable and

easily interpretable. Then, the authors define a scalar value associated to the

diagram as

Definition 24. The neural persistence associated to the k-th layer Gk is

NP (Gk) := ||Dk||p =

 ∑
(c,d)∈Dk

pers(c, d)p

 1
p

, (1)

which, for p = 2, captures the Euclidean distance of points in Dk to the

diagonal.
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Then, the authors prove the following upper bound:

Theorem 1. Let Gk be a layer of a neural network according to Definition

1. Furthermore, let ϕk : Ek → W0 denote the function that assigns each edge

of Gk a transformed weight. Using the filtration from Section 3.1 to calculate

persistent homology, the neural persistence NP (Gk) of the k-th layer satisfies

0 ≤ NP (Gk) ≤

(∑
e∈Ek

ϕk(e)− min
e∈Ek

ϕk(e)

) 1
p

(|Vk × Vk+1| − 1)
1
p , (2)

where |Vk × Vk+1| denotes the cardinality of the vertex set, i.e., the number

of neurons in the layer.

which then is used to normalize the neural persistence of a layer, making

it possible to compare layers (and neural networks) that feature different

neural combinations.

Definition 25. (Normalized neural persistence). For a layer Gk following

Definition 1, using the upper bound of Theorem 1, the normalized neural

persistence NP (Gk) is defined as the neural persistence of Gk divided by its

upper bound, i.e.,

NP (Gk) :=
NP (Gk)

NP (G+
k )

.

Finally, the give the following definition, obtaining a parameter on the

whole graph.

Definition 26. (Mean normalized neural persistence). Considering a net-

work as a stratified graph G, the sum of the neural persistence values per layer

is the mean normalized neural persistence, i.e., NP (G) := 1
l

∑l−1
k=0NP (f(Gk)).

Finally, the authors prove upper and lower bounds for the mean nor-

malized neural persistence. The first experimental result is shown in figure

4.1. Then, the authors use the mean normalized neural persistence as an

early stopping criterion, and show their results obtained on FashionMNIST,

MNIST, Cifar10 and IMDB, which we can see in 4.2.
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Figure 4.1: Neural persistence values of trained perceptrons (green), diverg-

ing ones (yellow), random Gaussian matrices (red), and random uniform

matrices (black). The authors performed 100 runs per category and dots

indicate neural persistence while crosses indicate the predicted lower bound

according to their theorem. The upper bounds are not shown as not strict

enough to be meaningful.

4.2 Relevance

The other published paper that uses the same tool to the same end is the

paper [30] by Watanabe and Yamana. In this paper the positive weights con-

necting neurons of adjacent layers are normalized according to the following

calculation: Rij =
wij∑

i,i ̸=j wij
. Then the authors define the relevance between

neurons of distant layers as

Rij = max
(vi,vm1 ,...,vmk

,vj)∈Lij

Rvivm1
· · ·Rvmk

vj ,

where Lij denotes the set of all possible paths from vi to vj. Hence, the au-

thors associated a fully connected graph to the neural network, with weight

function R. Then, the authors consider the weighted simplicial complex asso-

ciated to the above mentioned graph, and consider the sublevel set filtration.

The authors train two neural networks, one on the MNIST dataset, the other

on the CIFAR10 dataset. Then, the authors consider the final weights of the

successfully trained network and plot the associated 0 dimensional persis-

tence diagrams, as can be seen in 4.3. The authors claim that the following

three observations can be made from the figure: (1) points are plotted in the

belt-like area (birth+5 < death < birth+20) parallel to the dialog line; (2)

some figures have points below the belt-like area; and (3) some figures have

points over the belt-like area. With respect to observation (2), the number
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Figure 4.2: Figure (b) depict the differences in accuracy and epoch for all

comparison scenarios of mean normalized neural persistence versus validation

loss, in the case of the FashionMNIST dataset, while the table summarizes

the results obtained on the other data sets.
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Figure 4.3: Persistence diagrams, obtained for a neural network trained on

the MNIST dataset, as some parameters of the network are varied.
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of points below the belt-like area increases from figure (a) to figure (g) and

decreases from figure (h) to figure (j). The authors claim that this pattern

reflects both the excess of the output neurons and problem difficulty. It can

be further observed that the diagrams seem to reflect the degree of confidence

of the models, i.e., the excess of the output neurons reduced the confidence,

whereas the simplicity of the problem increased it.
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Chapter 5

Our Contribution

After having introduced some notions, necessary in our modelization, in

chapter 3 we are now ready to use the concepts we defined to our aim. Our

goal was to propose a sound theoretical setting that can be used to study the

connections between the topological properties of the graph associated to a

neural network. Then, we will use the model we propose in order to find a

connection between the training step, hence the evolution of the weights, and

the validation loss. Finding such correlation would provide firstly a tool that

can be used in conditions of data scarcity since there is no need to withhold a

portion of the dataset, moreover it could be a possible approach in shedding

light on why neural networks possess such great and quick generalization

capabilities.

5.1 Pipeline

Let us now show the steps taken in our process. We have evaluated two

metrics, one which is relative to the global graph structure of the neural

network, the other to the local (layerwise) graph structure of the network.

The general approach is the following: a weighted graph is associated to

the neural network, from this weighted graph a weighted abstract simplicial

complex is defined. We consider the sublevel set filtration defined in Chapter

49
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2. Then, the persistent homology groups associated to this filtration are

calculated and their features represented in persistence diagrams. Finally, a

scalar value is associated to these diagrams, which we will use as a proxy for

the validation loss.

Firstly, let us define the graph associated to a feedforward neural network,

G = (V,E). The connections within the network can be conceptualized as

forming a stratified graph.

Definition 27. A stratified graph is a multipartite graph G = (V,E) such

that V = V0 ∪ V1 ∪ ..., implying that if u ∈ Vi, v ∈ Vj, and (u, v) ∈ E,

then j = i+ 1. Hence, edges are exclusively allowed between adjacent vertex

sets. For a given positive integer k ∈ N, the k-th layer of a stratified graph

is defined as the unique subgraph (Gk := (Vk ∪ Vk+1, Ek := E ∩ {Vk × Vk+1}).

Hence, the following steps will be taken at each iteration of the training

process. Since to each edge, during training, is associated a weight, we

can consider the weight function w(e) : E → R which sometimes will be

noted as w(u, v) for e = (u, v). Notice how at each epoch there will be a

different weight function, although we have omitted this in the notation for

simplification. Let w be the weight function at the current training step. For

the global method we either use directly the associated graph, or define a

graph that spans across layers, and by showing two types of normalizations of

the weights we get two possible filtrations. For the layer method we associate

a graph, and hence a simplicial complex, to each layer, and for each of those

we compute our metric, which we then average at the end. Also for the layer

method we have devised two possible normalization techniques. For each

developed filtration the persistent homology groups are calculated and then,

for dimensions 1 in the global case and dimension 0 for the layer case, the

persistence diagrams are calculated. For each diagram, we then evaluate our

scalar parameter. Since this process is repeated for every step of the training

procedure, we will obtain a history of the parameter as we advance in epochs.

Let us now show specifically how the process differs for the global and layer

method.
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5.1.1 Local normalizaton

The local method consists in evaluating the persistent homology groups

only relative to each layer subgraph. This layerwise approach was inspired

by paper [26]. Let us show this procedure for the generic k-th layer. Let

Gk = (Vk ∪ Vk+1, Ek) be the k-th subgraph.

Now, in order to define a filtration, we use the weights associated to the

network’s edges. For this local method we have evaluated and decided to

compare two different normalization techniques on the weights:

• Probability Normalization: Each layers weights are taken in absolute

value and divided by the sum of the absolute value of the weights that

have the same target neuron. Formally:

w′(u, v) :=
|w(u, v)|∑

p∈Vk
|w(p, v)|

for (u, v) ∈ Ek.

• Layerwise Normalization: Each layers weights are taken in absolute

value and divided by the greatest weight of that layer in absolute value.

Formally:

w′(ek) :=
|w(ek)|

maxsk∈Ek
|w(sk)|

for ek ∈ Ek.

We can see a simple example of these normalizations in figure 5.1. Hence we

will be considering the graphs Gk with weights w′.

5.1.2 Global normalization

For the global method the approach is quite different. Consider the graph

associated to the network, and let w denote the weight function on the whole

graph, which is defined only on couples of vertices of adjacent layers. We

again compare two different normalization techniques on the weights:
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Figure 5.1: On the left we can see a single layer, in the middle the same

layer normalized using the Probability Normalization and on the right the

Layerwise Normalization.

• Global Normalization: Each layers weights are taken in absolute value

and divided by the greatest weight amongst all layers, in absolute value.

Formally:

w′(ek) :=
|w(ek)|

maxs∈E |w(s)|
for ek ∈ Ek.

• Probability Normalization: Each layers weights are taken in absolute

value and divided by the sum of the absolute value of the weights that

have the same target neuron. Formally:

w′(u, v) :=
|w(u, v)|∑

p∈Vk
|w(p, v)|

for (u, v) ∈ Ek.

We can see a simple example of these normalizations in figure 5.2. Now, we

can take two different approaches. We can simply consider the graph asso-

ciated to the neural network with normalized weight function w’. The other

approach is to define a new weight function, starting from the normalized

weights w′ called relevance and defined on all V × V , similarly as what was

done in [30]:
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Figure 5.2: On the left we can see a simple graph composed of two layers, in

the middle the same graph normalized using the Probability Normalization

and on the right the graph’s weights normalized using the Global Normal-

ization.

Definition 28. The relevance function is the function R : V × V → R such

that

R(v, u) =


0 if v, u ∈ Vi,

max
y1...ys∈Γv,u

w′(v, y1) . . . w
′(ys, u) otherwise.

Where Γv,u denotes the possible paths from v to u.

We will call the relevance between v and u the max product path from v

to u. The intuition behind the definition is as follows: R0,1 and R1,2 indicate

the contributions of v0 and v1 to the increase in the inputs of v1 and v2,

respectively, and R0,2 indicates the contribution of v0 to the increase in the

input of v2. Hence, the graph we consider in this case is the graph that

has vertices V and edges R. It is important to keep in mind that R clearly

depends on the choice of normalization. In order to find an efficient way to

calculate this we need to define the following matricial product:

Definition 29. Let A ∈ Matn×m(R) and B ∈ Matm×p(R). The grid-max

product of A and B, denoted with A⊙gmax B is the n× p matrix defined as:

(A⊙gmax B)ij = max
k

aik · bkj

Now we can prove the following proposition:

Proposition 1. Let Gw be a stratified feedforward weighted graph and let W i

the matrix representing the weights between layers i and i+1. Let us denote
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with vir the r−th node of the i−th layer.

Then the max product path from vir to vjs is(
((W i ⊙gmax W

i+1)⊙gmax . . .W
j−1)⊙gmax W

j
)
rs

Proof. Without loss of generality let us assume i = 0.

Let us prove this by induction on j: By inductive hypothesis the max product

path from v0r to vj−1
k is crk := (((W i ⊙gmax W

i+1)⊙gmax . . .W
j−1)rk for all

vj−1
k ∈ Vj−1. Then, the possible paths products from vir to vjs are crk ·W j

ks as

k varies. The maximum, as k varies, yields the max product path from vir to

vjs. This is exactly the grid-max product (C ⊙gmax W
j)rs.

This theorem allows for a very efficient computation of the relevance ma-

trix, whose evaluation would otherwise be computationally very expensive.

The final relevance matrix R defined before, which we can compute by it-

eratively applying the grid-max products, represents the weight function for

our new graph.

5.2 Filtration

Now, we have to associate a filtration and a simplicial complex to the

considered weighted graph. Hence, for each choice of normalization, we have

either a sequence of weighted graphs (G1, w
′
1)...(Gn, w

′
n) for the layer by layer

scenario or a weighted graph (G,w′) for the global case. As we have defined in

chapter 2, for each weighted graph, we can consider the associated weighted

simplicial complex (K(G), w̄′).

The filtration we will be considering is the sublevel set filtration, as pre-

viously defined, that we also show here as a reminder.

Definition 30. Given a weighted simplicial complex, with monotone weights

(K,w) and w ∈ [0, 1] then, given 0 = w1 ≤ . . . ≤ wn = 1 the sublevel set

filtration is Ki := {σ ∈ K|w(σ) ≤ wi} and K0 := ∅.

We can actually expand this definition in the following sense:
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Definition 31. Given a weighted simplicial complex, with monotone weights

(K,w) then, given w1 ≤ . . . ≤ wn = maxw we set Ki := {σ ∈ K|w(σ) ≤ wi}
and K0 := ∅. This is called the expanded sublevel set filtration.

Since w is monotone, this still induces a chain of inclusions up to K.

Recall that, since we are comparing two different types of normalization

techniques, they give rise to different filtrations and hence persistent homol-

ogy groups. Due to its algebraic combinatorial nature, persistent homology

groups are very computationally expensive. Only the computation of the 0-

th dimensional diagrams is currently very efficient, and already at dimension

1 the computation becomes more expensive[24]. Currently, the state of the

art in terms of computing the persistence groups, is restricted to the com-

putation of the Vietoris-Rips homology. That is why, in order to make our

computations feasible, we need the following result.

Definition 32. Given a finite set X and a symmetric function f : X×X →
R̄. Then the abstract Vietoris Rips complex at scale r ∈ R̄ is:

VRr(X) = {σ ⊆ P (X) | ∀a, b ∈ σ : f(a, b) ≤ r}

Since each V Rr(X) clearly respects the closure under inclusion and in-

tersection, it actually is an abstract simplicial complex.

Definition 33. Given a finite set X and a function f : X × X → R̄.
Let Im(f) = {w1 ≤ · · · ≤ wN}. Then the abstract Vietoris Rips complex

filtration is the filtration given by:

∅ ⊆ VR0(X) ⊂ VRw1(X) ⊂ · · · ⊂ VRwN
(X)

This is a filtration of the complex VRwN
(X).

Finally, we can prove the following result:

Proposition 2. Let (K,w) be a weighted finite abstract simplicial 1-complex

with monotone weights and wm := maxw. Let X := S0(K) be its 0-simplexes
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and f : S0×S0 → R̄ defined by f(σi, σj) :=


+∞ if {σi, σj} ̸∈ S1(K)

w({σi, σj}) if {σi, σj} ∈ S1(K)

w(σi) if σi = σj

Then the expanded sublevel set filtration associated to Im(w) is isomorphic

to the Vietoris-Rips filtration of VRwm(X).

Proof. Let Im(w) = {w0 ≤ · · · ≤ wm}. Hence VRwi
(X) =

= {σ ⊆ P (X) | ∀a, b ∈ σ : f(a, b) ≤ wi} =
= {σ ∈ K|w(σ) ≤ wi} = Kwi

.

This theorem allows us to evaluate our persistent homology groups, hence

the diagrams, by using the same approach, and the same tools, as when cal-

culating the Vietoris Rips homology groups. From a computational point of

view algorithms developed for the calculation of Vietoris Rips persistent ho-

mology groups are much more efficient. Thus, after considering the weighted

complex associated to the weighted graph, we can calculate the Vietoris Rips

homology groups which have the same persistence. Hence, we have efficiently

evaluated the homology groups and we can consider the associated persis-

tence diagrams. Formally:

Definition 34. Let Dk be the k-th-dimensional persistence diagram associ-

ated to the homology groups of dimension k. If δ := max
(b,d)∈Dk

d we consider

the bounded k-th dimensional persistence diagram as D∗
k := {(b, d) ∈ Dk|d ̸=

+∞} ∪ {(b, δ)|(b,+∞) ∈ Dk}.
Then, let us define the k-th norm persistence as

∥D∗
k∥2 :=

 ∑
(b,d)∈D∗

k

(d− b)2

1/2

Since we are obtaining a scalar value for each layer, when considering

the layerwise method, we then average these results in order to get a single

parameter for the whole graph. This 2-norm represents a sort of mean of

the pair persistences. A higher value corresponds to longer persistences,
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meaning multiple classes being born and not merging for most time. The use

of p-Norm has already been seen in [26] and [9].
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Chapter 6

Experiments

In this section, we show the experimental results obtained comparing

methods that try to estimate the validation loss by extracting topological

information of the neural network. Using the theoretical framework we con-

structed we are able to systematically compare techniques and results, start-

ing from what was done in the papers cited in chapter 5. A graph illustrating

the steps that we take can be seen in figure 6.1 From a computational stand-

point the most complex computation is the one of the homology groups,

and hence the persistence diagrams. Luckily, the state of the art in terms

of persistent homology is represented by the library Ripser [2], which is the

fastest library for the computation of persistent homology [24]. However,

this library only calculates the Vietoris-Rips filtration (and then persistent

homology), but by using the proposition proven in the previous chapter, we

can still use this tool to calculate the persistence diagrams. Our aim is to

compare the results obtained as the following parameters are varied:

• Neural Network’s architecture (Deep or Wide hidden layers).

• The chosen normalization.

• Layerwise, Global construction.

• For the global construction the use of relevance or just considering the

network with its normalized weights.
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Get weight function  at a
certain training step

In order to construct
the associated graph:

Layerwise
construction

Global
construction

Normalize the
weights

Normalize the
weights

Use or don't use the
'Relevance'
construction

Consider the associated
weighted complex

Consider the sub-level set filtration

Calculate the persistent
homology groups

Calculate the persistence
diagrams

Calculate the i-th norm
persistence 

Result: weighted graph with
normalized weights

Figure 6.1: The steps taken in our process.
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• The training dataset.

Using this general approach, results as seen in the papers cited in chapter 5

are retrieved, computed much more efficiently, and able to be compared to

other possible choices of complex construction. For instance, the history of

the 0-th norm persistence, with the layerwise normalization, coincides with

neural persistence. Moreover, the information about the belt-area identified

in the second paper, parallel to the y=x line, could retrieved by the 1-th

norm persistence. That model is parameterized in our context by taking the

probabilistic normalization, ordering the weights in descending order and

using the relevance weight function.

6.0.1 Model Architectures and datasets

The datasets we used when training our network are MNIST, Fashion-

MNIST and Cifar10: The MNIST dataset is a collection of 28x28 grayscale

images of handwritten digits (0 to 9) where each image is labeled with the

corresponding digit. FashionMNIST is comprised 28x28 grayscale images of

fashion items such as clothing, shoes, and accessories which offers a more chal-

lenging and diverse set of objects for image classification tasks. Like MNIST,

each image is labeled with the corresponding fashion category. CIFAR-10,

on the other hand, is a dataset that consists of 32x32 color images across ten

different classes, including various animals, vehicles, and everyday objects.

CIFAR-10 provides the most complex and realistic set of images compared to

MNIST and FashionMNIST. Regarding the chosen architectures, we decided

to employ neural network architectures with variations in depth and width.

For the wide neural networks, we explore architectures with a single hidden

layer, where the width is varied in increments of 200. Additionally, for deep

neural networks, architectures with 2, 3, and 4 hidden layers, each with 100

units, are investigated. Deeper and Wider networks become computation-

ally expensive, in the case of the relevance-graph calculation, because of the

combinatorial explosion of edges in the complex associated to it. We have

always used the optimizer Adam with learning rate 1e − 3, as SGD needed
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too many epochs to be brought to overfitting thus making it not feasible to

evaluate our metrics for so many tries. We have used Cross Entropy as the

loss function. We have trained the network for 100 epochs for each exper-

iment and in order to keep the computational cost not too heavy we have

evaluated our metric at each epoch for the first 40 epochs, then once every

10 epochs.

6.0.2 Expected and observed behaviours

In order to extract relevant information about the network we have used

the following technique: in order to define the filtration, since after normal-

ization weights are sorted from the lowest to the highest, we have considered

as weight function the function 1 − w′. This choice, which is the one also

usually adopted in the literature, is due to what phenomenon we are trying

to enhance; since large weights (after normalization) mean that the flow of

information passing through that edge seems quite relevant, we want to as-

sociate it a high persistence. In order to do so, we would want it to appear

early and ”die” after quite some time in the filtration process. Hence why

we will be considering the graph Gw := (V,E,w := 1− w′) at each training

step. When using the layerwise method we will be considering only the 0-

th norm persistence as the 1 dimensional components (holes) created in the

layerwise graph do not carry any information about the network’s flow of

information. A stable and high 0 dimensional persistence is associated with

sparsity of the associated graph hence an efficient use by the network of the

information coming from the previous layer, at each layer. A lower persis-

tence would indicate that the network probably stopped generalizing and is

constantly readjusting its weights in order to memorize the single data and

thus overfitting. On the other hand, when considering the global network,

whether using the relevance and considering connections across layers or just

considering the whole graph with its normalized weights, since the birth of a

new edge on a layer would kill an homology class in the adjacent layers we

postulate that this would not be an interesting information to gather from



CHAPTER 6 63

Figure 6.2: For the layerwise method we have computed the 0-th norm per-

sistence which can be seen in black, validation loss in red and training loss in

blue. All lines have been normalized in order to have values between 0 and 1

in order to better illustrate their trend. We have shown the results from all

5 experiments on the same figure in order to show the common behaviour.

the graph. In these cases we will be considering the 1-dimensional norm

persistence. Now, the presence of highly persistent classes would indicate

that the information is travelling from the same nodes to the same target

node by different routes. Hence, we would correlate low 1-dimensional norm

persistence with an efficient flow of information. Let us now see a first set of

experiments in order to validate these hypotheses. For each figure we have

trained 5 neural networks on the MNIST dataset, using architectures with

hidden layers of dimensions 200, 400, 600, 800 and 1000. We have plotted

on the same figure the 0-th norm persistence, the validation loss and the

training loss. In figure 6.2 we can see the 0-th norm persistence for these 5

executions. As we can see this metric grows and seems to reach a plateau.

Next, we have compared, using the same setting, the 0-th norm persistence

with the 1-th norm persistence associated to the global method. The results

of these experiments can be seen in figure 6.3. As we predicted the 0-th norm

persistence doesn’t seem to carry any relevant information about the training

procedure. The same comparison has been evaluated for the method where
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Figure 6.3: For the global method we have here computed the 0-th norm

persistence on the left and the 1-th norm persistence on the right which can

be seen in black. Validation loss is in red and training loss in blue. All lines

have been normalized in order to have values between 0 and 1.

the graph is constructed using the relevance weight function and the results

are displayed in figures 6.4.

6.0.3 Early stopping

The main advantage of a proxy for the validation loss would be an early

stopping criterion: since our objective is to stop the training process when

the network has learned the underlying logic behind the data that it has

been training on, we want to stop when its generalizing capabilities are at

maximum and not advance the training. Advancing in the training procedure

would lead to overfitting, and that is precisely the problem that we want to

address. Since we are striving for high and stable 0-th norm persistence we

stop at the first local maximum that is found using a patience parameter that

waits 10 epochs in order to determine if we actually are at a local maximum.

On the other hand since we want low 1-dimensional persistence, for the global

method and the method that uses the relevance construction we stop at the

first local minimum waiting with a patience of 10 epochs. Firstly we can

see the results obtained using the Probabilistic normalization for all models
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Figure 6.4: For the relevance method we have here computed the 0-th norm

persistence on the left and the 1-th norm persistence on the right which can

be seen in black. Validation loss is in red and training loss in blue. All lines

have been normalized in order to have values between 0 and 1.

in figure 6.5. On the x axis we have the difference of the epoch where the

validation loss actually reaches the minimum and the epoch at which the

early stopping is triggered. On the y axis we show the following parameter:

(validation loss at stopping point)− (lowest validation loss)

(validation loss at last epoch)− (lowest validation loss)

this parameter gives us a value between 0 and 1 where 0 indicates that we

stopped at the exact minimum whereas 1 means that the early stopping

criterion was never triggered. As we can see from figure 6.5 this normal-

ization seems better suited for the global method, rather than the layerwise

method which seems to be triggered later than optimal. Now let us com-

pare the results obtained with the Layerwise normalization for the layerwise

method and the corresponding global normalization used for the global and

relevance methods. As we can see from figure 6.6 this kind of normaliza-

tion seems better suited for the layerwise method than the global methods.

The layerwise method, with the layerwise normalization, is very close to the

parameter called ”neural persistence” proposed in [26]. As we can see by

comparing these two figures the global method using the probability normal-

ization achieves slightly better results. By applying our standardized method
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Figure 6.5: In this figure we have mapped a point for each simulation that

was executed. The network’s architecture was varied, by widening the hidden

layer and deepening the structure. Simulations have been made using the

datasets MNIST, FashionMNIST and Cifar10. In red we can see the results

for the layerwise method, in green for the global method and in blue for the

relevance method.

we hence were able to efficiently compare different results.
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Figure 6.6: In red we can see the results for the layerwise method, in green

for the global method and in blue for the relevance method.
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Conclusions

In this thesis we have developed a formal standardized framework that

allows the efficient computation of the persistent homology associated to a

feedforward stratified graph. By leveraging state of the art techniques in

the field of topological machine learning and introducing some novel notions

related to weighted simplicial complexes, we have proved some theoretical

results that allow the use of the most efficient tools present for the concrete

application of these theories. Moreover, we tackled the issue of estimating

the validation loss in data scarcity scenarios. By developing an early stop-

ping criterion based on topological properties of the network, we are able

to prevent overfitting without withholding a portion of the training dataset,

which would be particularly useful in data scarcity scenarios. Some inter-

esting avenues of research could be focused on finding optimal normalization

techniques, particularly ones that address the different subtle differences as-

sociated to positive and negative weights.
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