
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

COMPUTER ENGINEERING MASTER’S DEGREE

HIGH PERFORMANCE AND BIG DATA COMPUTING

A graph approach to settlement instructions
status prediction

Supervisor: Francesco Silvestri

External co-supervisor: Enrico Papalini

Graduate student: Luca Crema

ACADEMIC YEAR 2021-2022

Graduation date 05/12/2022

Abstract

In financial post-trade settlement, participants may fail to fulfill their orders to

deliver the required cash or securities. These orders are called "settlement instruc-

tions" and one of the reasons why they fail could depend on other participants’

failures in a chain fashion. Euronext Securities Milan’s currently predicts whether

an instruction will fail using a neural network model that takes a single instruction

as input, lacking to account for external relationships. In this research we modeled

settlement instructions as graphs to extract and use the relationships information

in the prediction task by applying two different approaches: in the first one we com-

puted node-level metrics on the graph to be used as instructions features, and in

the second one we introduced graph neural networks layers to the prediction model.

Although the target was to improve the prediction model accuracy over the binary

classification task (settles or fails), we used it as a sub-task for the prediction of the

daily imbalance, which is the sum of the credits and debits from the successfully

settled instructions of a client. We managed to achieve the target for some of the

clients we considered, with slight improvements both in classification accuracy and

daily imbalance prediction.

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Subjects covered . 6

1.3 Foundations of financial and post-trade concepts 6

1.3.1 Financial and trading concepts 6

1.3.2 Post-trading concepts . 8

1.3.3 Settlement instructions . 9

1.3.4 Settlement failure . 11

1.4 Problem formalization . 12

1.4.1 Foundations of binary classification problems 14

1.5 Available data . 15

1.6 Review of current approaches . 18

1.6.1 The settlement fails prediction approach 18

1.6.2 The liquidity forecast approach 20

1.6.3 The infrastructure supporting the approaches 22

2 Graph modeling 24

2.1 Participants-centric graphs . 25

2.2 Instruction-centric graphs . 28

2.3 Other details . 30

2.3.1 Amount of data . 30

2.3.2 Additional subsets . 31

3 Approach 1: features extraction 33

3.1 Extracted metrics . 36

3.1.1 Degrees . 37

3.1.2 Closeness & Harmonic centrality 37

1

3.1.3 Betweenness centrality . 40

3.1.4 Pagerank coefficient . 42

3.1.5 Clustering coefficient . 43

3.1.6 Triad census . 44

3.1.7 Communities . 45

3.1.8 Node embeddings . 48

3.2 Feature selection and source graph 50

3.3 Results . 55

4 Approach 2: GNNs 59

4.1 Introduction to GNNs . 59

4.1.1 Message passing framework 59

4.1.2 Basic GNN . 60

4.1.3 Graph Convolutional Networks GCNs 61

4.1.4 Graph SAGE . 62

4.2 Usage . 62

4.3 Models . 63

4.4 Evaluation and results . 64

5 Conclusions and future works 68

2

List of Figures

2.1 Example of graph G and the corresponding line graph L(G) 28

3.1 Conditional Entropy . 35

3.2 Traditional framework for ML with graphs 35

3.3 Conditional Entropy . 44

3.4 XGBoost feature importances . 51

3.5 PP-Score of features . 52

3.6 Client 1: Imbalance prediction accuracy of models (higher is better)

"GRAPH" is (BIC, Failed) . 56

3.7 Client 2: Imbalance prediction accuracy of models (higher is better)

"GRAPH" is (BIC, Complete) . 57

3.8 Client 3: Imbalance prediction accuracy of models (higher is better)

"GRAPH" is (BIC, ISIN) . 58

4.1 Example graph . 60

4.2 Message passing framework computation 61

4.3 Template structure of our GNN-based models 64

4.4 Comparison of the number of errors between GNN-like models and

the naïve over all instructions from April 65

4.5 Client 1: models comparison in the number of errors (lower is better) 65

4.6 Client 2: models comparison in the number of errors (lower is better) 66

4.7 Client 3: models comparison in the number of errors (lower is better) 66

3

List of Tables

1.1 Binary classification contingency table 14

2 Dataset fields table . 15

1.3 Models eval. metrics . 19

1.4 Models eval. metrics using instructions countervalues 19

1 Extracted degree metrics . 37

2 Extracted Closeness centralities features 39

3 Extracted Betweenness centrality features 41

4 Extracted Pagerank coefficient features 42

5 Extracted Clustering coefficient features 44

6 Triad census features . 45

7 Features from community algorithms 48

8 Node2Vec feature vectors . 50

9 Graph-features used in next steps . 52

3.10 Source graphs . 53

11 Clients statistics . 55

12 Client 1 . 56

13 Client 2 . 56

14 Client 3 . 57

4.1 GNN-based models evaluation metrics 65

4.2 Client 1: Prod and GNN-based models evaluation metrics 65

4.3 Client 2: Prod and GNN-based models evaluation metrics 66

4.4 Client 3: Prod and GNN-based models evaluation metrics 67

4

Chapter 1

Introduction

This is a master’s thesis based on my work during an internship in Euronext Se-

curities Milan (ESM) under the supervision of Enrico Papalini from March to

May and again from July to November of 2022. During the internship we used

graph representations of settlement instructions, that ESM sends to the Euro-

pean TARGET2-Securities platform, to predict their final settlement status. In

the next introductory pages, we will review some required financial definitions and

post-trade concepts, we will formalize the problem we are trying to solve, describe

available data, and then overlook the current approach.

1.1 Motivation

The term settlement instruction is a generic term used to describe the (only)

mechanism by which trade settlement (the exchange of securities and cash) is

initiated between seller and buyer.

- Simmons, Michael - Securities operations [1]

While most settlement instructions are settled at the first attempt, some take more

and others may never settle. Successful settlement of a settlement instruction can

depend directly on the behavior of buyer and seller, or it can depend on the success

of other instructions through daisy chains.

Predicting whether an instruction will settle in the intended settlement date is

useful information for market participants that are currently looking to further im-

prove their settlement efficiency, and participants’ treasuries that require a precise

5

cash estimate to minimize funding and reduce fails. This prediction is already com-

puted by the Data Science team in ESM using neural networks. The prediction

model takes as input the information about a single settlement instruction and,

using a few neuron layers, it outputs the predicted settlement status.

This current approach does not employ the information that ESM has about

other participants of the settlement environment, which could be used by the pre-

diction models to account for dependencies between settlement instructions. To

utilize this knowledge, we modeled settlement instructions as graphs and fed this

information to prediction models to improve their accuracy. To accomplish this task

we came up with two approaches that both yielded slightly better results for some

of the clients we considered, and that we will examine in the next pages.

1.2 Subjects covered

The specific subjects covered by this dissertation are:

• Chapter 1: problem definition, description of the available data, and review of

the current approach to settlement status prediction.

• Chapter 2: ways to model settlement instructions as graphs.

• Chapter 3: extraction of graph metrics used as prediction model’s features.

• Chapter 4: introduction of graph neural networks layers to the prediction

model.

1.3 Foundations of financial and post-trade concepts

Let us review some elementary financial concepts and post-trade definitions neces-

sary for understanding the rest of this work.

1.3.1 Financial and trading concepts

A financial asset2 is a liquid asset that gets its value from a contractual right

or ownership claim. Cash, stocks, bonds, mutual funds, and bank deposits are all

examples of financial assets. Financial assets are more liquid than other tangible
2Investopedia. Financial Asset Definition. url: https://www.investopedia.com/terms/f/

financialasset.asp.

6

https://www.investopedia.com/terms/f/financialasset.asp
https://www.investopedia.com/terms/f/financialasset.asp

assets, such as commodities or real estate, and may be traded in financial markets.

A security is a fungible, negotiable financial asset that holds some type of monetary

value. A security is universally uniquely identified by a 12 alphanumeric characters

string called International Securities Identification Number (ISIN). There are two

main locations where financial assets are traded: "regulated markets" (RM) and

"over-the-counter" (OTC). Over-the-counter trading is done directly between two

private parties, and the prices of the trades are usually not made public. In regulated

markets instead, all trades are public so every trader knows the price of traded as-

sets. A participant to a regulated market is an entity that is directly or indirectly

identified in such market and is capable to send and receive transfer orders3. Exam-

ples of participants are credit institutions, investment firms, and public authorities.

A participant is said to be indirect when it relies on another participant for market

access. A stock, also known as equity, is a security that represents the ownership

of a fraction of the issuing corporation4. Units of stock are called "shares" which

entitles the owner to a proportion of the corporation’s assets and profits equal to

how much stock they own. One of the primary advantages of owning stocks is the

regular payment of dividend income. Ordinary dividends are a share of a com-

pany’s profits passed on to the shareholders periodically5. Stock exchanges are

a type of regulated market where shares of listed companies are traded. A stock

broker is a licensed participant of a stock exchange, which is authorized to carry on

the business of trading securities on behalf of other persons or on their own account.

A corporate action is an event carried out by a company that materially impacts

its stakeholders. Common corporate actions include the payment of dividends, stock

splits, tender offers, and mergers and acquisitions6.
3European Central Bank (ECB). Glossary of terms related to Payment, Clearing

and Settlement systems. url: https : / / www . ecb . europa . eu / pub / pdf / other /

glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf.
4Investopedia. Stock. url: https://www.investopedia.com/terms/c/stock.asp.
5Investopedia. Ordinary dividend. url: https://www.investopedia.com/terms/c/ordinary-

dividends.asp.
6Investopedia. Corporate Action. url: https : / / www . investopedia . com / terms / c /

corporateaction.asp.

7

https://www.ecb.europa.eu/pub/pdf/other/glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf
https://www.ecb.europa.eu/pub/pdf/other/glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf
https://www.investopedia.com/terms/c/stock.asp
https://www.investopedia.com/terms/c/ordinary-dividends.asp
https://www.investopedia.com/terms/c/ordinary-dividends.asp
https://www.investopedia.com/terms/c/corporateaction.asp
https://www.investopedia.com/terms/c/corporateaction.asp

1.3.2 Post-trading concepts

After a trade in a market is executed the buyer must make payment for the securities

they purchased, while the seller must deliver the security that was acquired. This

task is part of the post-trade process and the transaction enters the settlement

period. A trade is defined as settled when all the money and the securities are

successfully exchanged. A central securities depository (CSD) is a financial entity

that enables securities transactions to be settled and provides custodial services3.

Each market participant must appoint a domestic or international CSD to transfer

the securities and accomplish the settlement of trades. Euronext Securities Milan7,

formerly "Monte Titoli", is the domestic CSD for the Italian financial market. A

central counterparty (CCP) is an entity that interposes itself between the counter-

parties to the contracts traded, becoming the buyer to every seller and the seller

to every buyer, thereby guaranteeing the performance of open contracts. Only one

central counterparty is authorized in Italy, Cassa di compensazione e garanzia S.p.A.

(CC&G)8. A market is said to be guaranteed when the presence of a central coun-

terparty is mandatory. CCPs are required for regulated markets ’ trades but not in

over-the-counter trades. Financial institutions are uniquely identified by a Bank

Identifier Code (BIC). A BIC comprises a financial institution code (four charac-

ters), a country code (two characters), a location code, and, optionally, a branch

code. Securities are stored in securities accounts (SAC) that are owned by a legal

entity called settlement agent that can be a central bank or a central securities

depository, a central counterparty, or other kinds of institution3.

Settlement agents are uniquely identified by an assigned BIC code. Liquidity

used for cash payments, in relation to securities settlement, is held in dedicated cash

accounts (DCAs). A cash settlement agent is either a central bank or a private

bank used to provide cash on behalf of a CSD participant to support the settlement

of securities; it is the owner of one or more dedicated cash accounts. Trading

members are participants with rights to trade on their own account as well as on
3European Central Bank (ECB). Glossary of terms related to Payment, Clearing

and Settlement systems. url: https : / / www . ecb . europa . eu / pub / pdf / other /

glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf.
7Euronext Securities Milan. url: https : / / www . euronext . com / en / post - trade / euronext -

securities/milan.
8Banca d’Italia. Central counterparty. url: https://www.bancaditalia.it/compiti/sispaga-

mercati/controparte-centrale/index.html.

8

https://www.ecb.europa.eu/pub/pdf/other/glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf
https://www.ecb.europa.eu/pub/pdf/other/glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf
https://www.euronext.com/en/post-trade/euronext-securities/milan
https://www.euronext.com/en/post-trade/euronext-securities/milan
https://www.bancaditalia.it/compiti/sispaga-mercati/controparte-centrale/index.html
https://www.bancaditalia.it/compiti/sispaga-mercati/controparte-centrale/index.html

account of their clients but have no right to clear and settle such trades themselves.

Netting is the agreed offsetting of the value of multiple positions or payments by

participants, this process involves the calculation of net settlement positions and

their legal reduction to a (bilateral or multilateral) net amount. For example, if a

participant buys 40 shares of a security and sells 20 shares of the same security, the

position is a net purchase of 20 shares. Netting is used to reduce settlement, credit,

and other financial risks between two or more parties. From a 2022 ESM report on

bilateral netting "since July 2021, [the number of] settled instructions for market

participants went from 3.4 million to 1.1 million, with a netting ratio of 69%"9.

1.3.3 Settlement instructions

When a trade enters the post-trade process, a pair of settlement instructions

has to be produced. A settlement instruction is an order to absolve a payment

obligation or transfer the title to a security. An instruction contains all the data

required to achieve the settlement of a trade. In general, both parties of a trade will

produce their side of a settlement instruction and dispatch it to a common settlement

system. The two sides are called the "legs" and they differ in "securities direction",

which can be in delivery (valued "DELI ") or in reception (valued "RECE"), and

"cash direction", which can be credit or debit. There exist four main categories of

instructions based on their securities and cash directions10:

• Delivery versus payment (DVP): when securities are exchanged for money.

• Delivery with payment (DWP): when securities and money move in the

same direction.

• Free of payment (FOP): when securities are transferred without a payment,

eg. corporate actions.

• Free of delivery (FOD): when money is transferred without the simultane-

ous exchange for securities, eg. dividend payment or penalties payment.
9ESM. Bilateral netting report - Linkedin. url: https://www.linkedin.com/feed/update/urn:

li:activity:6960205218395402241/.
10Clearstream. Clearstream Banking’s TARGET2-Securities Glossary. 2022. url: https://

www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/t2s-glossary-

data.pdf.

9

https://www.linkedin.com/feed/update/urn:li:activity:6960205218395402241/
https://www.linkedin.com/feed/update/urn:li:activity:6960205218395402241/
https://www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/t2s-glossary-data.pdf
https://www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/t2s-glossary-data.pdf
https://www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/t2s-glossary-data.pdf

Before attempting to process an instruction its two legs must first match. Matching

is accomplished by checking that the two legs’ fields have equal (eg. ISIN, quan-

tity, and amount) and opposite (securities and cash directions) values11. Not all

instructions require both legs (e.g. FOPs), so matching is not always needed.

After the corresponding instructions have been matched, the system will attempt

to settle the transaction. This process involves checking whether the participant

must deliver the securities has enough securities in their account and whether the

buyer has the funds to pay the seller. If one of the two parties do not have the

required securities or funds, the transaction is put on hold and other settlement

attempts will be made later (first on the same accounting day and then, if the

rules of the system provide for “recycling”, over several subsequent days). If the

securities or funds are sufficient, the transaction is said to be “settled” and becomes

“final”.

- [12]

Settlement instructions are usually not settled immediately, instead, their intended

settlement date is set to be two business days after the date of the trade (T +

2 where T is the execution date). A settlement instruction is said to be cross-

border when the two participants appoint different CSDs. To perform cross-border

settlement, the two CSDs use a fictitious account in their own settlement systems

that act as a counterparty to the settlement instruction. These two accounts are

named "Mirror account" on the investor side and "Omnibus account" on the issuer

side; they are synchronized using realignment instructions.

The heterogeneity of settlement practices between different CSDs made it nec-

essary to adopt complex solutions to perform cross-border settlement. To overcome

this issue TARGET2-Securities (T2S13) was created by the European Central Bank.

T2S is the common European securities settlement system, aiming to reduce settle-

ment risk and increase financial stability by using national or international central

bank liabilities for transactions. It has also reduced the costs and complexity of

cross-border settlement by handling realignment instructions generation automati-
11T2S - Matching fields from a message perspective. 2015. url: https://www.ecb.europa.eu/

paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_

t2s.pdf.
13TARGET2-Securities. url: https://www.ecb.europa.eu/paym/target/t2s.

10

https://www.ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_t2s.pdf
https://www.ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_t2s.pdf
https://www.ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_t2s.pdf
https://www.ecb.europa.eu/paym/target/t2s

cally.

ESM developed a pre-settlement platform and T2S -interface called XTRM.

XTRM receives regulated market trades and over-the-counter orders from partici-

pants and converts them into settlement instructions to be sent to T2S. It also deals

with interposing the CCP when needed by splitting trades in two where the CCP

is one of the two parties (from A-B to A-C, C-B, where A and B are the two parties

of the trade and C is the appointed central counterparty). Not all ESM ’s clients

use XTRM, as they can access T2S directly; these clients are called directly con-

nected participants (DCPs), while those that use XTRM are indirectly connected

participants (ICPs).

1.3.4 Settlement failure

When the settlement of a trade does not succeed, it fails.

A trade is said to fail if on the intended settlement date either the seller does

not deliver the securities in due time or the buyer does not deliver funds. While

a relatively low rate of fails can be considered “physiological”, high settlement

fail rates may result in “daisy chains” (a cascading chain of fails), which may

degenerate into a “round robin” (where the last participant in the chain is itself

failing to the first participant), leading to gridlock situations.

- "Settlement fails - report on securities settlement systems" - ECB [14]

The ECB article cited above also proceeds to list three possible reasons for settlement

failure:

• Operational risk: Human or computer errors, e.g. miscommunication be-

tween traders or mistakes in processing by back offices.

• Liquidity problems: Unavailability of the asset due to cascading fails, tech-

nical conditions in other market segments or naked short selling15.
15Investopedia. Naked Short Selling. url: https : / / www . investopedia . com / terms / n /

nakedshorting.asp.

11

https://www.investopedia.com/terms/n/nakedshorting.asp
https://www.investopedia.com/terms/n/nakedshorting.asp

• Lack of incentive to avoid fails: When the costs of delivering the asset are

higher than the cost of failing to deliver, market participants find it preferable

to fail, this phenomena is also called strategic fail. This problem has been

partially tackled in 2019 with the introduction of the settlement discipline16

framework by the ECB to disincentivize this practice.

If an instruction has failed to settle during the current day, it transitions to the next

settlement date (a process named recycling) to try to settle again. After 60 days

of recycling the instruction is removed from the system.

1.4 Problem formalization

It is important to monitor the number of settlement fails to measure the healthiness

of settlement systems. The document "report on security settlement systems"14 lists

three concrete consequences of settlement fail:

• The parties involved continue to be exposed to credit risk or replacement

cost risk.

• Both parties are exposed to liquidity risk on the settlement date: the

seller because of lack of the expected cash and the buyer because of the inability

to use the expected incoming assets to settle back-to-back transactions due on

the same day. If the fail is not promptly resolved, settlement problems may

propagate to other transactions, and potentially trigger a disturbance of the

smooth settlement process.

• The securities lending markets for the securities subject to the significant vol-

ume of fails could also be negatively affected, as lenders may withhold

securities in the fear that the high fails in that security might diminish the

likelihood of the assets being returned to them, and this could negatively af-

fect collateral markets. This withholding of scarce securities could in turn

contribute to increasing the fail rate and prolonging the fail duration.
16T2S Penalty Mechanism. 2017. url: https://ecsda.eu/wp-content/uploads/2019/01/Annex_

I_1_T2S_Penalty_Mechanism.pdf.
14European Central Bank (ECB). “Settlement fails – report on securities settlement systems”.

In: (2011). url: https://www.ecb.europa.eu/pub/pdf/other/settlementfails042011en.pdf.

12

https://ecsda.eu/wp-content/uploads/2019/01/Annex_I_1_T2S_Penalty_Mechanism.pdf
https://ecsda.eu/wp-content/uploads/2019/01/Annex_I_1_T2S_Penalty_Mechanism.pdf
https://www.ecb.europa.eu/pub/pdf/other/settlementfails042011en.pdf

To better grasp the extent of the settlement fails problem we consider some recent

official statistics. The 2020 ESMA report on Trends, Risks and Vulnerabilities

(TRV)17 shows that an average of 2%-4% of the value of all bond trades were unable

to settle between 2018-2020, rising to 6%-12% for equities. A more recent 2022

ESMA TRV report18 exhibits a reduced number of fails in 2021, nevertheless, an

average of 2%-3% of the value of bond trades and 5%-8% of the value of equities

trades failed to settle.

To prevent the above-mentioned settlement failure consequences the securities

settlement system has to be constantly monitored. Predicting whether a trade will

fail can help increase settlement performance by providing settlement participants

with a preview of trades that are most likely to fail. As a CSD, Euronext Securities

Milan is in charge of monitoring the settlement performance of its clients, settle-

ment predictions can help earlier detection of voluntary and involuntary wrongdoing.

Another employment of the predictions can be found in a service that Euronext Secu-

rities Milan provides to some of its clients: cash settlement agents are provided with

an estimate of trades that will settle during the night-time settlement (NTS) period;

the bank’s treasury uses this estimate to precisely allocate money in dedicated cash

accounts for settlement operations.

The prediction problem can be modeled as a supervised binary classification

problem and it is currently solved using machine learning algorithms. The classifi-

cation task is performed over the two possible outcomes of settlement instructions,

which are "settled" (securities and money have been exchanged successfully) or

"failed" (exchange didn’t occur). For the binary classification we will consider set-

tled instructions to have a false value and failed instructions to have a true value.

There exists another possible outcome, that we will consider as failed, which is

"partially settled".

The problem is "supervised" as we have the history of settlement instructions

available, and "imbalanced" because we have seen that on average (much) less than

15% of them fail.
17European Securities and Markets Authority. “ESMA Report on Trends, Risks and Vulnerabili-

ties - 2020”. In: (2020). url: https://www.esma.europa.eu/sites/default/files/library/esma_50-

165-1287_report_on_trends_risks_and_vulnerabilities_no.2_2020.pdf.
18European Securities and Markets Authority. “ESMA Report on Trends, Risks and Vulnerabil-

ities - 2022”. In: (2022). url: https://www.esma.europa.eu/sites/default/files/library/esma50-

165-2061_trv_1-22_statistical_annex.pdf.

13

https://www.esma.europa.eu/sites/default/files/library/esma_50-165-1287_report_on_trends_risks_and_vulnerabilities_no.2_2020.pdf
https://www.esma.europa.eu/sites/default/files/library/esma_50-165-1287_report_on_trends_risks_and_vulnerabilities_no.2_2020.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-165-2061_trv_1-22_statistical_annex.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-165-2061_trv_1-22_statistical_annex.pdf

1.4.1 Foundations of binary classification problems

In this section, we will review the notions needed to understand binary classification

problems. The objective is to find a "(binary) classifier" which is an algorithm that

implements a mathematical function mapping input data to a truth value. In binary

classification there are four possible combinations of actual category and predicted

category:

• TP True Positives: predicted true and actually true

• TN True Negatives: predicted false and actually false

• FP False Positives: predicted true and actually false

• FN False Negatives: predicted false and actually true

and they can be plotted in a 2x2 contingency table (1.1).

Predicted

T F

Actual
T TP FN

F FP TN

Table 1.1: Binary classification contingency table

There are eight ratios that one can compute from this table19, the two most com-

monly used are precision (positive predictive value) defined as TP
TP+FP

and recall

(true positive rate) defined as TP
TP+FN

. Precision measures how many instructions

predicted as failed are actually failed and recall measures how many actually failed

instructions were predicted as failed. These two metrics are more useful in imbal-

anced problems over the conventional accuracy metric (TP+TN
all instances) as they better

capture the quality of classification20. A third metric used in binary classification is
19Wikipedia. Binary classification. url: https : / / en . wikipedia . org / wiki / Binary _

classification.
20Rehmsmeier M Saito T. “The Precision-Recall Plot Is More Informative than the ROC Plot

When Evaluating Binary Classifiers on Imbalanced Datasets”. In: (2015). url: https://doi.org/

10.1371/journal.pone.0118432.

14

https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Binary_classification
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432

the F1-score, which is the harmonic mean of precision and recall

F1 = 2 ∗ precision · recall
precision + recall

it is considered more convenient to work with as one only has to maximize a single

score instead of balancing two.

1.5 Available data

Before proceeding it can be useful to review the details of data available to solve

the problem. The dataset comprises settlement instructions in tabular form, they

are gathered from XTRM, so they mostly cover ESM ’s clients with indirect access

to T2S (ICPs). Data considered in this dissertation spans over four years: from the

1th May 2018 to 1th May 2022. In this timespan there are 208,202,110 settlement

instructions available, for an average of 206,550 per trading day and for a total size

of around 25 GBs. The dataset is updated daily and it is currently stored in an

AWS S3 [21] bucket in Parquet format [22]. "Parquet is an open source column-

oriented data file format designed for efficient data storage and retrieval", one of

its advantages over other classic file formats (es. CSV or JSON) is the integrated

possibility to selectively load rows with a given value for an index column: in our

case, the dataset is indexed by one of the date columns (dt_business, see table 1.2).

The following table (table 1.2) presents an explanation of available fields in the

dataset.

Table 1.2: Dataset fields table

Property Description Property Description

dt_business Date in which

the details

and state of

the instruction

have been

observed

id_matching Identification

code of the

pair of

instruction

legs

Continued on next page

15

Table 1.2: Dataset fields table (Continued)

dt_trade Date in which

the trade was

executed

id_t2s Identification

code of the

single

instruction leg

dt_settl Intended

settlement

date

id_t2s_ctrp

cd_sec_mov Whether

securities are

to be received

or to be

delivered by

the leg’s party

id_dca Identification

code for the

dedicated cash

account of the

leg’s party

cd_credit_debit Whether cash

is to be

delivered

(debit) or

received

(credit) by the

leg’s party

id_isin ISIN of the

exchanged

security

qt_quantity Quantity of

securities to

be moved

am_amt Amount of

cash to be

moved

id_deli_csd BIC code of

the deliverer’s

CSD

id_rece_csd BIC code of

the receiver’s

CSD

id_deli_pty1_sac_t2s Identification

code for the

T2S security

account of the

leg’s party

id_rece_pty1_sac_t2s Identification

code for the

T2S security

account of the

counterparty

Continued on next page

16

Table 1.2: Dataset fields table (Continued)

id_deli_pty1_bic BIC code of

the deliverer’s

settlement

agent

id_rece_pty1_bic BIC code of

the receiver’s

settlement

agent

id_deli_pty2_bic 1 BIC code of

the deliverer’s

trading

member

id_rece_pty2_bic 1 BIC code of

the receiver’s

trading

member

id_ccp_bic BIC code of

the central

counterparty

cd_mkt_type Acronym of

the origin

market of the

instruction

(e.g. EXCH for

regulated

market, OTCO

for over-the-

counter)

cd_sett Target

variable,

whether the

instruction

has settled
1 Filling of the trading member field of instructions is not compulsory for partici-

pants, so it is mostly empty.

The dataset also comprises other fields that we will not consider such as the full name

of the security or a description of the parties. In general both legs of a settlement

instruction are present, although they can be merged as a single instruction because

the dataset only contains matched ones.

17

1.6 Review of current approaches

We will now examine past and current approaches ESM employs to perform the

prediction.

1.6.1 The settlement fails prediction approach

ESM Data Science team has created a unified model to forecast settlement sta-

tus for any pending ETFs, Corporate bonds, Government bonds and shares related

instructions in T2S. The aim of the model is to forecast the status of a settle-

ment instruction in the next settlement cycle if it has already failed to settle at the

intended settlement date. The first version of the model was implemented using

XGBoost23 as classifier because XGBoost dominates structured or tabular datasets

on classification and regression predictive modeling problems and it is really fast

when compared to other implementations of gradient boosting. The XGBoost li-

brary implements the gradient boosting decision tree algorithm: this is an approach

where new models are created that predict the residuals or errors of prior models

and then added together to make the final prediction. It is called gradient boost-

ing because it uses a gradient descent algorithm to minimize the loss when adding

new models. The XGboost model with an accuracy of about 65% was promoted

in production. Many experiments were conducted to find a better model, optimiz-

ing the pre-processing of the dataset and the hyperparameters selection, using a

data set containing only an asset class or all together, comparing different classifier

architectures, using Neural networks fully connected, 1-dimensional convolutional

neural networks and a combination of models (ensemble techniques with hard and

soft voting). Table 1.3 below shows the evaluation metrics calculated by counting

the number of instructions belonging to TP, FP, TN, FN classes.

Ensemble Learning with Soft Voting Scheme increases the global accuracy by 5,2%

w.r.t. XGBoost in PROD environment. Table 1.4 shows the results of the same

model with the evaluation metrics computed as usual, but in this case each instruc-

tion is represented by its countervalue (expressed as billion e).

Neural Networks and Ensemble with Soft Voting Scheme were able to predict cor-

rectly the 86,2% of the overall amount of the instructions, an increase of 8,5% w.r.t.
23Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, Aug. 2016. doi:

10.1145/2939672.2939785. url: https://doi.org/10.1145%2F2939672.2939785.

18

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%2F2939672.2939785

Model Precision Recall F1 Accuracy ∆ accuracy %

XGBoost PROD 0,676 0,643 0,636 0,643 -

XGBoost NEW 0,694 0,691 0,69 0,691 4,80%

Neural Net FC 0,689 0,691 0,689 0,689 4,60%

Neural Net CONV-1D 0,694 0,696 0,694 0,693 5,00%

Hard Voting 0,696 0,694 0,692 0,694 5,10 %

Soft Voting 0,697 0,695 0,694 0,695 5,20 %

Table 1.3: Models eval. metrics

Model Precision Recall F1 Accuracy ∆ accuracy %

XGBoost PROD 0,815 0,777 0,789 0,777 -

XGBoost NEW 0,854 0,858 0,848 0,858 8,10 %

Neural Net FC 0,859 0,862 0,85 0,862 8,50%

Neural Net CONV-1D 0,86 0,862 0,85 0,862 8,50%

Hard Voting 0,859 0,861 0,85 0,861 8,40%

Soft Voting 0,86 0,862 0,85 0,862 8,50 %

Table 1.4: Models eval. metrics using instructions countervalues

19

XGBoost in PROD environment. ESM Data Science team selected the simpler

model (Neural network fully connected) to be promoted in production, substituting

the XGBoost model.

ESM is not the only company to perform the prediction of the settlement sta-

tus of instructions, there are others. In June 2021, Deloitte published a report on

"Artificial intelligence in post-trade processing"24 which describe a use case in set-

tlement prediction "Smart Chaser" made by the BNP Paribas (2017): this is an

AI trading tool that predicted the likelihood of a delayed "trade matching". BNY

Mellon reports in October 2020 to have a machine-learning model to predict set-

tlement fails on US Treasuries bonds, which objective is "to monitor the intraday

positions much more closely, to manage down their liquidity buffers and offset the

risk of failed settlements". In July 2022 Clearstream launched an AI model25 to

predict the percentage of successful eligibility in settlement by any instruction and

share this information with their customers to have them act on instructions that

are more likely to fail. Euroclear’s "SettlementDrive"26 is another platform that

shows clients the list of the instructions related to them and reports a "settlement

fail rating" for securities. To summarise, an improvement in the prediction quality

of settlement status would be not only directly useful for ESM’s clients, but would

also give ESM an advantage over its competitors.

1.6.2 The liquidity forecast approach

One of the services that ESM provides to its clients is a forecast of the daily im-

balance. Treasuries, dedicated cash accounts owners, are in charge of allocating a

sufficient amount of cash at the beginning of business days to perform successful

instructions settlement. This amount of cash is called the imbalance, and it is the

difference between the sum of credit positions and the sum of debit positions. Not all

positions have to be considered in the sum, only those originating from successfully
24Deloitte. Artificial intelligence in post-trade processing. url: https://www2.deloitte.com/

content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-

processing.pdf.
25Clearstream. Xact Web Portal. url: https://www.clearstream.com/clearstream-en/products-

and- services/connectivity- 1- /clearstreamxact/xactwebportal/xact- web- portal- settlement-

tutorials-3099658.
26SettlementDrive. EasyFocus. url: https://www.euroclear.com/newsandinsights/en/Format/

Webinars/liquidity-drive-and-settlement-drive-am.html.

20

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-processing.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-processing.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-processing.pdf
https://www.clearstream.com/clearstream-en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/xact-web-portal-settlement-tutorials-3099658
https://www.clearstream.com/clearstream-en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/xact-web-portal-settlement-tutorials-3099658
https://www.clearstream.com/clearstream-en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/xact-web-portal-settlement-tutorials-3099658
https://www.euroclear.com/newsandinsights/en/Format/Webinars/liquidity-drive-and-settlement-drive-am.html
https://www.euroclear.com/newsandinsights/en/Format/Webinars/liquidity-drive-and-settlement-drive-am.html

settled instructions, as the failed ones won’t produce an exchange of money.

imbalance =
∑︂

credit settled instr

instramount −
∑︂

debit settled instr

instramount

Therefore the machine learning task that ESM is trying to solve currently is not a

classification task but rather a regression task; still, we will see that the classifica-

tion is still a relevant topic even in this setting. The first solution was to perform

forecast over daily imbalance values, but as stated in Maria Giuseppina Brunelli ’s

Master’s thesis "previous research work found that traditional time series forecast,

such as ARIMA27 and ARMA28 models, were not capable of capturing patterns

of the event."29 So, the ESM Data Science team devised a strategy based on the

supervised classification of settlement instructions that contribute to the imbalance

value. To compute the forecast, the instructions’ future settlement status is pre-

dicted via supervised binary classification, then the value of (predicted) successful

ones is summed to produce the final numeric output. The binary classification is

currently performed by a neural network using a sequence of embedding layers and

dense layers. In an embedding layer output vectors are not computed from the

input using any mathematical operation, instead, each integer input is used as the

index to access a table that contains a vector representation for every possible in-

put value. Embedding can be only applied to categorical features as the set of

values is limited and, usually, known in advance. Categorical input features are

fed to an embedding layer and the output is concatenated together with the vec-

tor of remaining non-categorical input features. The concatenation is then fed to

a variable-sized dense layer followed by a dropout layer and a final fixed-size dense

layer with sigmoid activation producing the prediction "probability" output. The

final step comprises applying a variable threshold (between 0 and 1) to the prob-

ability output to determine the final binary output. This threshold is determined

to minimize the imbalance error on the training set by changing the rate of false

positives and false negatives, although it reduces the overall classification accuracy

of the model. More details about the motivation and the structure of the neural

network can be found in Maria Giuseppina Brunelli ’s Master’s thesis29.
27Wikipedia. Autoregressive integrated moving average model. url: https://en.wikipedia.org/

wiki/Autoregressive_integrated_moving_average.
28Wikipedia. Autoregressive moving average model. url: https://en.wikipedia.org/wiki/

Autoregressive%E2%80%93moving-average_model.
29Maria Giuseppina Brunelli. Cash flow forecasting during night-time settlement cycle as a way

to improve settlement efficiency in target2-securities. 2021.

21

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model

1.6.3 The infrastructure supporting the approaches

Lastly, we review the structure of the computing system that ESM has currently

set up to allow data scientists to work on solving this problem. Data is kept in a

data lake in the AWS cloud where, as previously mentioned, the storage is provided

by S3 (Simple Storage Service)21, the ingestion is carried out by ATHENA using

REDSHIFT as support database , data is transformed in the data lake using Glue

Jobs with Spark SQL support triggered by Lambdas, and other data science-related

work is performed in SageMaker’s Python Jupyter notebooks. We will not analyze

all the above-mentioned technologies, but we will overlook some of the SageMaker30

functionalities and how they are used in ESM. SageMaker is a "fully managed service

to build, train, and deploy machine learning models for any use case with fully

managed infrastructure, tools, and workflows"; some of these tools used by ESM

are:

• Virtual machines running Python Jupyter that can easily read and write data

in S3

• API endpoint to allocate high-performance virtual machines specifically used

to perform model training given the values of hyperparameters

• Storage of trained machine learning models that can be used to perform pre-

dictions over batches of data via an API

SageMaker provides many more useful functionalities like automatic hyperparameter

tuning, although they are currently not available in the AWS Milan region where

ESM is legally bounded to work.

The training of new ML models is structured in three phases: data preprocessing,

model training, and hyperparameters selection. Data preprocessing consists in

adapting data to the model inputs, which includes the normalization of numerical

features and conversion of categorical features to integer values. Original data is

loaded from the S3 data lake, processed by the Jupyter notebook SageMaker virtual

machines, and then stored back into the data lake to be used by the next phase.

Model training is performed by the SageMaker training jobs service; each job re-

ceives a model, a combination of hyperparameters, and other settings like batch size
21AWS. S3. url: https://aws.amazon.com/s3/.
30AWS. Sagemaker. url: https://aws.amazon.com/sagemaker/.

22

https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker/

and early stopping patience. As previously mentioned, SageMaker hyperparameters

autonomous tuning jobs are currently not available, so a grid-search algorithm is

used to explore different hyperparameters combinations. The selection of the best

model is still subject to research in ESM, but as of now the selection is based on

a summary score computed on a collection of metrics like the validation set classi-

fication accuracy score or the mean absolute error (MAE) of the daily imbalance

forecast. The review of the current approach concludes the introductory section,

where we have seen useful definitions and an overview of the state-of-the-art sys-

tem.

23

Chapter 2

Graph modeling

In this section we will provide a detailed explanation of the techniques and tools we

used to transform the tabular settlement instructions datasets into graphs. Before

we can get into the implementation details we briefly review some concepts about

graphs. A graph is a mathematical model used to represent pairwise relationships

between entities. In a graph, entities are represented as vertices, also called nodes,

and relationships are edges, also called arcs, that link two vertices called incident

vertices. The more formal definition of graph is

G = (V,E) where V := set of vertices, E := set of edges (pairs of vertices)

A graph is said to be directed if (u, v) ∈ E is an ordered pair, otherwise it is

undirected. If a graph contains multiple edges between the same two nodes (u, v)

it is called a multigraph. Both vertices and edges can be associated with feature

vectors (also called weights for edges) with details about the entity or the relation-

ship. Graphs can be disconnected, meaning that there can be multiple connected

components V1, ..., Vk ⊆ V such that there are no edges between any Vi and Vj.

One of the possible ways to represent a graph is the adjacency matrix A, which

is defined as:

Ai,j =

⎧⎨⎩1, if edge (i, j) ∈ E

0, otherwise

The adjacency matrix is symmetric for undirected graphs and asymmetric for di-

rected ones. A path in a graph is an ordered sequence of edges; there can be multiple

paths between two nodes (and multiple shortest paths Pu,v). In a graph the dis-

tance between two nodes d(u, v) is the length of the shortest path between them;

24

the maximum distance between any two nodes is called the diameter ∆(G) of the

graph.

d(u, v) = min
p∈Pu,v

l(p) (2.1)

∆(G) = max
u,v ∈V

d(u, v) (2.2)

In general, the graph approach is used when the data is well suited to be repre-

sented as relationships and when we believe that those relationships contain valuable

information to solve the problem. In our case settlement instructions can be modeled

as relationships between market participants (first modeling approach) or entities

related by market participants (second modeling approach), and, for the reasons in

Chapter 1.3.4, we strongly believe that there exist dependencies between them that

can help the prediction of the settlement status.

Before proceeding to the two modeling approaches we will look at the tools we

used. The main ETL (Extract, Transform, and Load) tool is the widely-used Pandas

library31 that we used to load the tabular data in Parquet format from S3.

1 import pandas as pd

2 import boto3

3

4 region_name = "eu-south-1"

5 bucket_name = ... # S3 bucket name

6 remote_filename = "data/dt_business=2020-02-01/"

7 # Define a client to connect to S3

8 s3_client = boto3.client("s3", region_name=region_name)

9 # Using the S3 client, perform a request to read a file given its filename

10 obj = s3_client.get_object(Bucket=bucket_name, Key=remote_filename)

11 # Finally, read the contents of the response as parquet format

12 dataframe = pd.read_parquet(io.BytesIO(obj["Body"].read()))

Listing 2.1: Load data from S3 in pandas dataframe

2.1 Participants-centric graphs

The first and most straightforward approach to graph modeling is based on the

following idea: use the market participants as set of nodes and the settlement in-
31Pandas Python library. url: https://pandas.pydata.org/.

25

https://pandas.pydata.org/

structions as edges.

G = (V,E)

where V = {market participants}

and E = {(u, v) : u and v are two participants of a settlement instruction}

In this approach edges can also be directed and weighted using the orientation of

movement of securities or money in each instruction; for this work we arbitrarily

decided to direct edges with the same orientation as securities movement: from

deliverer to receiver. The resulting graph is then a multi-di-graph, as there can be

multiple edges between two participants and, as previously said, edges are directed.

One of the standard data structures to represent a graph is the edge list. It is

a two-column (or more if edge weights are included) matrix where rows represent

edges as pairs of start vertex and end vertex stored respectively in the first column

and second column. We can employ the inverse of this approach to produce graphs

starting from the available tabular data. We need to select two columns to identify

participants and consider the resulting two-columned table as an edge list. Two

additional columns, amount and quantity, can be also selected as edge weights.

There are multiple choices of columns that identify different "functionalities" of

the two parties of an instruction, we will see the details for two of them:

• SAC: identifies a single securities account (in T2S). Provides higher specificity

for the sources and destinations of the securities account, gives more informa-

tion when a settlement agent owns multiple accounts, and works under the

assumption that they are independent of one another.

• BIC: identifies the settlement agent, owner of the securities account where

securities are stored. Lowers the power to distinguish single securities account

activities, but better performs under the assumption that securities accounts

of the same settlement agent are dependent.

• BC: A variation of the BIC is the Bank Code (BC) that comprises only the

first 4 digits of the BIC code, removing the additional specificity about the

branch of the settlement agent; assumes that branches of the same settlement

agent share responsibilities during settlement.

These three choices differ in specificity of identification and each works best under

the respective listed assumptions.

26

A positive property of this approach is the limited number of nodes, independent

from the choice of identification field: although the numbers vary depending on the

considered time-frame, on average there are less than 1000 securities accounts, less

than 300 different settlement agents and fewer than 200 bank entities (considering

all branches as one entity). This means that as the number of instructions increases,

the number of nodes remains virtually constant.

We will now proceed to present some of the code we used to implement this

approach. The following code shows how, given the source dataset as pandas

dataframe, we employ the networkx’s function from_pandas_edgelist() to create our

graph. In this example we build different graphs using the three different participant-

identifying fields, then store the produced graphs in a dictionary.

1 import networkx as nx

2

3 identifying_fields: dict[str, tuple[str, str]] = {

4 "sac": ("id_deli_pty1_sac_t2s", "id_rece_pty1_sac_t2s"),

5 "bic": ("id_deli_pty1_bic", "id_rece_pty1_bic"),

6 "bc": ("id_deli_pty1_bc", "id_rece_pty1_bc"),

7 }

8

9 graphs: dict[str, nx.MultiDiGraph] = {}

10 for identifier, fields in identifying_fields.items():

11 graph : nx.MultiDiGraph = nx.from_pandas_edgelist(

12 dataframe,

13 source=fields[0],

14 target=fields[1],

15 edge_attr=[’am_amount’, ’qt_quantity’],

16 create_using=nx.MultiDiGraph

17)

18 graphs[identifier] = graph

Listing 2.2: Networkx graphs from pandas edgelist using different participant

identifying fields.

To wind up, we have seen that the advantages of this approach are the previously

mentioned easiness in transforming the available tabular data as a graph by consid-

ering the data as an edge list, and the restricted number of nodes independently of

27

the chosen node-identifying field.

2.2 Instruction-centric graphs

In some applications it is more convenient or is required to have the classification

target, in our case the settlement instructions, as nodes of the graph. A different and

less-immediate approach to the graph modeling consists of considering the settlement

instructions as nodes that are linked if they share one of the two participants.

G = (V,E)

where V = {settlement instructions}

and E = {(u, v) unordered : u and v are nodes that share a participant}

Note that in this case there could still be multiple edges between two nodes if they

share both participants and that directing edges would not have a meaning, so they

are undirected. The resulting graph in this case is not a multi-di-graph but just a

multi-graph. One possible way to obtain this graph is by computing the line graph of

our previously-shown participant-centric graph. "The line graph L(G) of a graph

G is constructed in the following way: for each edge in G, make a vertex in L(G);

for every two edges in G that have a vertex in common, make an edge between

the corresponding vertices in L(G)"32. Figure 2.1 shows an example of line graph

computation.

Figure 2.1: Example of graph G and the corresponding line graph L(G)

To understand how large the line graph would be we refer to one of its properties:

"for a graph G with n vertices and m edges, the number of vertices of the line graph
32Wikipedia. Line graph. url: https://en.wikipedia.org/wiki/Line_graph.

28

https://en.wikipedia.org/wiki/Line_graph

L(G) is m, and the number of edges of L(G) is half the sum of the squares of the

degrees of the vertices in G, minus m". So in our case, given the original participant-

centric graph G = (V,E) and its line graph GLG = (VLG, ELG), we have:

|VLG| = |E|, |ELG| =
∑︂
v∈V

deg2(v)− |E|

From this property we deduce that this instruction-centric graph is much larger in

size than the previous one, so it will require some planning about its storage.

Let us again go over some of the code, and see how we tackled this approach.

As discussed, there are two steps to reach the target graph: first we transform the

data from a tabular dataset into a participant-centric graph, and secondly we apply

a function that maps the graph to its line graph. To implement the line graph

transformation function we started from the networkx library’s implementation; in

version 2.8.4 the implementation does not propagate the edge attributes from of

G to the vertices of L(G), so we added that functionality to our implementation in

custom_library.line_graph(graph: nx.Graph).

1 import networkx as nx

2 import custom_library as extra

3

4 participants_graph : nx.MultiDiGraph = nx.from_pandas_edgelist(

5 dataframe,

6 source="id_deli_pty1_sac_t2s",

7 target="id_rece_pty1_sac_t2s",

8 edge_attr=[’am_amount’, ’qt_quantity’],

9 create_using=nx.MultiDiGraph

10)

11

12 instructions_graph = extra.line_graph(participants_graph)

Listing 2.3: Line graph using a participants-centric graph where participants

are identified by T2S security account code

To summarize: although this modeling approach is less intuitive and requires

extra attention to memory space occupation, we will see that having the prediction

target as nodes helps the GNN model to better compute predictions (Section 4).

29

2.3 Other details

In the previous sections we have seen two possible graph modeling approaches, but

there exist additional considerations that we need to account for.

2.3.1 Amount of data

The first problem we address is the amount of data that we should consider to

produce a graph, with "settlement instruction" as our unit measure. The two main

points that must be addressed are the partitioning choices, informally which

settlement instructions are deemed logical to be chosen together to build a graph,

and the feasibility in terms of time complexity and space occupation.

Although considering all instructions to a graph is the most informative choice,

sometimes it is easier to extract information by partitioning the data and introduc-

ing a bias. These partitioning choices are usually based on settlement instructions

having a common value for one (or more) features; an indication of what could be

the best feature comes from the frequency of update of data. It was previously

mentioned that the state of settlement instructions is snapshotted once a day during

the data ingestion; to naturally avoid duplicates it makes sense to group instruc-

tions by dt_business, so we partitioned the dataset by date. It is worth mentioning

that longer periods were considered (week, month, and year), removing duplicates

by considering only the last available snapshot per instruction, but the additional

information did not balance the information from removed intermediate states and

the additional difficulty in handling the extra data.

In terms of feasibility, the two modeling approaches differ greatly. The participant-

centric approach clearly has a linear space complexity relative to the tabular dataset

it originates from; in practice partitions of settlement instructions by day, week and

month are able to fit the computing instances memories, while larger timeframes

do not always fit (crashing the instances). Under the assumption that the num-

ber of vertices (participants) is limited to a maximum the time complexity of the

networkx’s library function nx.from_pandas_edgelist it is linear in the number of

edges.

On the other hand, the instruction-centric graph has a much-worse space com-

plexity as the number of edges is quadratic in the number of instructions; we can

compute an approximation by plugging in the average degree deg¯ in the |ELG| equa-

30

tion.

deg¯ =
1

|V |
∑︂
v ∈V

deg(v) =
|E|
|V |

=
200.000

200
= 1000

|ELG| ≈ (|V | · deg(v)¯ 2
)− |E| = (200 · 10002)− 200.000 ≈ 200.000.000

The large number of edges is not only a problem of space, but most importantly of

time taken to compute the line graph. In practice we were not able to work with

the complete set of instructions from a day (whether there were 200.000 of them

or 60.000) as it either took too long to compute or the memory became full and

the instance crashed. To avoid these problems we partitioned the daily dataset into

groups of at most 10.000 instructions; each partition takes a couple of minutes to

be converted to a graph, so a whole day takes less than 20 minutes. By partitioning

the originally ordered dataset of instructions we might be introducing a bias based

on the proximity of instructions in the order, so we apply a permutation before

separating the data. The resulting instruction-centric graphs have 10.000 vertices

and around 10.000.000 edges.

In this chapter we have seen the rationale of the choices for the main partitioning

techniques we applied, in the next one we will see some additional logic partitioning

that was used to extract more specific data.

2.3.2 Additional subsets

In the previous chapter we discussed one of the possible partitioning choices that

were applied to most of our work; in this chapter we will see additional partitioning

choices that we tried to extract different meaningful data. The partitionings we will

see are based on the following financially-based assumptions:

1. When there is a dependency between instructions it is mostly between instruc-

tions processing the same security.

2. Instructions that did not settle can depend on other failed instructions in a

domino effect.

The first assumption suggests applying an additional partition of the daily set-

tlement instruction dataset by security’s isin. The second suggestion implies that

considering failed-only instructions could provide additional information for our pur-

poses. These two extra partitioning choices will be used on our first approach (chap-

ter 3: features extraction).

31

This section concludes chapter 2, in the next two chapters we will see how we

used the different graphs we described to compute the final prediction.

32

Chapter 3

Approach 1: features extraction

In this chapter we will see one of the two approaches we used to exploit the infor-

mation that graph-modeling of settlement instructions can provide to improve on

the classification task. One of the possible reasons why the current classification

model employed by ESM has a limited performance could be the lack of meaningful

features in the available dataset – most categorical features have repeating values

over the instructions, so they usually convey little information; we will confirm this

theory later when we will see how much importance models give to input fields.

One of the possible measures of the meaningfulness of some data is entropy and

conditional entropy to the target field.

In information theory, the entropy of a random variable is the average level

of "information", "surprise", or "uncertainty" inherent to the variable’s possible

outcomes".

- Entropy - Wikipedia

Entropy is computed as H(X) = −
∑︁

x∈X p(x)log p(x) and intuitively it measures

how many bits are required to represent the random variable outcomes.

Conditional entropy H(Y |X) quantifies the amount of information needed to

describe the outcome of a random variable Y given that the value of another

random variable X is known.

- Conditional Entropy - Wikipedia

To compute the conditional entropy H(Y |X) we resort to the chain rule property

that states H(Y |X) = H(X, Y) − H(X) where H(X, Y) is the joint entropy; we

translated this formula in the following lines of Python code (Listings 3.1 and 3.2).

33

1 import numpy as np

2

3 def entropy(Y):

4 _, count = np.unique(Y, return_counts=True)

5 prob = count/len(Y)

6 return -np.sum(prob*np.log2(prob))

Listing 3.1: Python code to compute entropy

1 def jEntropy(Y,X):

2 YX = np.c_[Y,X].astype(str)

3 return entropy(YX)

4

5 def cEntropy(Y, X):

6 return jEntropy(Y, X) - entropy(X)

7

8 for column in df.columns:

9 value = cEntropy(df[column], df.cd_sett)

Listing 3.2: Python code to compute joint and conditional entropy

By using a data sample from the business week of 21/03 - 25/03 we computed the

empirical conditional entropy of the target column cd_sett to each of the columns

in the dataset, and we obtained the results in Figure 3.1. These results can be

interpreted as how informative the variable is in determining the settlement status:

amount and quantities have many different values across instructions, so by knowing

these two values one can easily find the relative (or more than one) instruction in

the history and determine its status; although very informative, amount and quan-

tity are prone to overfitting as newer instructions rarely have the same amount and

quantity (in case of large quantities). The most informative not-as-prone to overfit-

ting column in the figure is id_isin, identifier for the security exchanged, indicating

that in the dataset we considered there are securities that are more likely to fail

than others. Another thing one can notice is the progression of specificity of par-

ticipants’ identifiers: the security account (sac_t2s) is the most specific, the BIC

code (bic) is a little less specific, and the least specific is the bank code (bc); this

supports our specificity theories in Chapter 2. One last detail is that the cash move-

ment (cd_credit_debit) appears more informative than the securities movement

34

Figure 3.1: Conditional Entropy

(cd_sec_mov).

As we have seen, the successful settlement of instructions can depend on chains

of relationships between the participants – this information is available to ESM

but it is currently not exploited by the prediction models. We tried to solve the

problem of lack of features and incorporate relationship information by applying

the traditional framework for machine learning with graphs (Figure 3.2).

Figure 3.2: Traditional framework for ML with graphs

The feature extraction step consists in computing node-level metrics and graph-

level metrics on the input graph, to produce feature vectors that can be concate-

nated to the input features of the learning algorithm. In this first approach we will

mainly work on the feature extraction phase of the framework, by carefully choosing

meaningful and feasible features to be extracted from some of the graphs we have

previously modeled in chapter 2. The structured features we extract will be joined

35

with the settlement instructions features and together they will be fed to a machine

learning model having a similar structure as the one that is currently used to per-

form the prediction by ESM. In our experiments we have only worked with the first

kind of graph-modeling we have seen, the participant-centric one, as it was our first

choice and the easier to manage between the two choices; in future research we plan

to try to consider the instruction-centric kind too.

3.1 Extracted metrics

In this section we will overlook the definitions of the metrics we extracted and the

algorithms we used to compute them. The following is a list of the categories of

metrics we considered:

• Weighted degree

• Weighted closeness centrality

• Weighted betweenness centrality

• Harmonic centrality

• Pagerank coefficient

• Triad counts

• Clustering coefficient

• Girvan-Newman communities

• Louvain’s communities

• Node embeddings

All of the previously listed metrics are node-level, during my internship we did not

consider graph-level ones. Let us continue and have a detailed view of each and one

of them.

36

3.1.1 Degrees

In graph theory the degree of a vertex is the number of edges incident to it. If

the considered graph is directed we also have the notion of in-degree, which is the

number of edges directed to the vertex, and out-degree, which is the number of

outgoing edges. The weighted degree of a vertex in a weighted graph is the sum

of the weights in the incident edges – note that if the graph is also directed we have

weighted-in-degree and weighted-out-degree.

degw(v) =
∑︂

e∈ δ(v)

we

The degree of every vertex can be easily computed in O(|E|) time and O(|V |) space

by iterating over the input edge list and updating a dictionary of type {vertex: counter}.

It would be an algorithm well-suited for distributed and streaming computation

(similar to word count), although in our case the size of the input makes it more

convenient to be computed directly. Directed and weighted degrees can be computed

similarly by accounting for direction and edge weights.

For our purposes we computed the nine degree-type metrics you can see in Table

3.1.

Table 3.1: Extracted degree metrics

Feature Description Feature Description

degree Vertex degree sum_amount
∑︁

e∈ δ(v) amounte

in_degree In-degree in_amount
∑︁

e∈ δ+(v) amounte

out_degree Out-degree out_amount
∑︁

e∈ δ−(v) amounte

sum_quantity
∑︁

e∈ δ(v) quantitye

in_quantity
∑︁

e∈ δ+(v) quantitye

out_quantity
∑︁

e∈ δ−(v) quantitye

3.1.2 Closeness & Harmonic centrality

37

In a connected graph, the closeness centrality of a vertex is a measure of

centrality, calculated as the reciprocal of the sum of the distance (shortest path)

between the vertex and every other vertex in the graph.

- Closeness centrality - Wikipedia

We will refer to closeness centrality as the Wasserman-Faust33 formulation of the

centrality, which accounts for multiple connected components and applies normal-

ization.

C(v) =
n− 1

N − 1
· n− 1∑︁

u∈CG(v) d(v, u)

Where G is the graph, N = |V |, CG(v) is the connected component of vertex v,

n = |CG(v)| number of vertices reachable by v and d(v, u) is the distance (shortest

path) from vertex v to vertex u. In a weighted graph the distance function d(v, u) will

account for the weight of the edges when computing the shortest path. Although

the centrality measures are intuitively more informative when computed on the

MultiDiGraph, we also computed them on the undirected version to have more

features to test. To compute the closeness centrality we did not use an approximation

algorithm (Eppstein-Wang34) as the exact computation algorithm was deemed fast

enough for our purposes. We used the networkx implementation of the algorithm35

which is similar to the following code (Listing 3.3).
33S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. pg. 201.

1994.
34David Eppstein and Joseph Wang. “Fast Approximation of Centrality”. In: (2000). doi:

10.48550/ARXIV.CS/0009005. url: https://arxiv.org/abs/cs/0009005.
35Networkx. Closeness centrality. url: https://networkx.org/documentation/stable/reference/

algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html.

38

https://doi.org/10.48550/ARXIV.CS/0009005
https://arxiv.org/abs/cs/0009005
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html

1 def closeness_centrality(G, weight: str = None):

2 closeness_dict : dict[node, float] = {}

3 for v in G.nodes:

4 # Compute the shortest paths to all reachable nodes from v

5 distances : dict[node, float] = shrt_paths(G, v)

6 sum_dist : float = sum(distances.values())

7 cc : float = 0

8 if sum_dist > 0.0:

9 cc = (len(distances)-1)/(len(G.nodes)-1)

10 cc = cc * (len(distances)-1)/sum_dist

11 closeness_dict[v] = cc

12 return closeness_dict

Listing 3.3: Python code to compute exact closeness centrality

Another approach to multiple connected components is the Harmonic centrality,

which is similar to closeness centrality but requires the distance function d(v, u) to

be equal to inf when there is no path between u and v, thus 1
d(v,u)

= 0.

CH(v) =
∑︂
u̸=v

1

d(v, u)

Twelve features were extracted using closeness and harmonic centralities, six on the

MultiDiGraph and six on the undirected version of the graph (Table 3.2).

Table 3.2: Extracted Closeness centralities features

Feature Description Feature Description

Closeness centrality

c_centrality Unweighted

directed

c_centrality_u Unweighted

undirected
amount_c_centrality Amount-

weighted

directed

amount_c_centrality_u Amount-

weighted

undirected
quantity_c_centrality Quantity-

weighted

directed

quantity_c_centrality_u Quantity-

weighted

undirected

Continued on next page

39

Table 3.2: Extracted Closeness centralities features (Continued)

Harmonic centrality

h_centrality Unweighted

directed

h_centrality_u Unweighted

undirected
amount_h_centrality Amount-

weighted

directed

amount_h_centrality_u Amount-

weighted

undirected
quantity_h_centrality Quantity-

weighted

directed

quantity_h_centrality_u Quantity-

weighted

undirected

3.1.3 Betweenness centrality

The betweenness centrality, similarly to closeness centrality, is a vertex centrality

measure based on shortest paths. The betweenness centrality CB(v) of a vertex

v ∈ G is defined as the fraction of shortest paths between any pair of nodes in the

graph that pass through node v.

CB(v) =
∑︂
s,t∈V

σ(s, t|v)
σ(s, t)

Where σ(s, t) is the number of shortest paths between vertices s and t, and σ(s, t|v)
is the number of shortest paths between s and t that include vertex v. Once again we

used the networkx implementation of the algorithm36 for exact computation (similar

to Listing 3.4).
36Networkx. Betweenness centrality. url: https : / / networkx . org / documentation / stable /

reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html.

40

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html

1 def betweenness_centrality(G, weight: str = None):

2 # Dictionary that counts how many shortest paths pass through a

node

3 passing_paths : dict[node, int] = defaultdict(0)

4 # Counter of how many shortest paths there are in G

5 n_paths = 0

6 for s in G.nodes for t in G.nodes:

7 # List of shortest paths from s to t

8 paths : list[list[node]] = shortest_paths(G, s, t)

9 n_paths += len(paths)

10

11 for path in paths:

12 for node in path:

13 passing_paths[node] += 1

14

15 betweenness_dict : dict[node, float] = {}

16 for node in G.nodes:

17 betweenness_dict[node] = passing_paths[node]/n_paths

18

19 return betweenness_dict

Listing 3.4: Python code to compute exact betweenness centrality

The networkx library provides an approximate computation algorithm for between-

ness centrality but we did not make use of it as the time for the exact computation

(less than a minute per graph) was feasible for our purposes. The six features in

Table 3.3 were extracted using this metric, three on the MultiDiGraph and three on

the undirected version of the graph (Table 3.3).

Table 3.3: Extracted Betweenness centrality features

Feature Description Feature Description

b_centrality Unweighted

directed

b_centrality_u Unweighted

undirected

Continued on next page

41

Table 3.3: Extracted Betweenness centrality features (Continued)

amount_b_centrality Amount-

weighted

directed

amount_b_centrality_u Amount-

weighted

undirected
quantity_b_centrality Quantity-

weighted

directed

quantity_b_centrality_u Quantity-

weighted

undirected

3.1.4 Pagerank coefficient

The Pagerank coefficient37, known for its application in Google Search, measures

the importance of a vertex based on incoming edges. It is based on the following

simplified equation:

PR(v) =
∑︂

u∈ δ−(v)

PR(u)

|δ+(u)|

where PR(v) is the Pagerank coefficient. As one can see the definition could be

recursive depending on the shape of the graph (eg. if u has both an inbound edge

and outbound edge with v, PR(u) would require PR(v), which we see in the equa-

tion that requires PR(u)). For this reason computation is carried out in multiple

iterations until the coefficient values converge or the number of iterations reaches a

threshold. As implementation we used the networkx’s library one38, and given its

complexity we will not transcribe the code.

Table 3.4 reports the features extracted using this metric.

Table 3.4: Extracted Pagerank coefficient features

Feature Description

pgrank Unweighted directed

pgrank_amount Amount-weighted directed

pgrank_quantity Quantity-weighted directed

37Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to the Web. Technical

Report 1999-66. Previous number = SIDL-WP-1999-0120. Stanford InfoLab, Nov. 1999. url:

http://ilpubs.stanford.edu:8090/422/.
38Networkx. Pagerank coefficient. url: https://networkx.org/documentation/stable/_modules/

networkx/algorithms/link_analysis/pagerank_alg.html.

42

http://ilpubs.stanford.edu:8090/422/
https://networkx.org/documentation/stable/_modules/networkx/algorithms/link_analysis/pagerank_alg.html
https://networkx.org/documentation/stable/_modules/networkx/algorithms/link_analysis/pagerank_alg.html

3.1.5 Clustering coefficient

Another metric we considered is the local clustering coefficient, that measures

how much connected nodes are between them. The metric is based on the ra-

tio between actual number of "triplets" that a vertex forms with any two pair of

neighbors and the potential number of them. The number of potential triangles

a vertex v can form with its neighbours is deg(v) · (deg(v) − 1), while the actual

number is the cardinality of the set of neighbors that have an edge between them,

|{eu,w : u,w ∈ Nv, eu,w ∈ E}|.

LCC(v) =
|{eu,w : u,w ∈ Nv, eu,w ∈ E}|

deg(v) · (deg(v)− 1)

We only computed the clustering coefficient for the undirected version of the graph

because we could not find a clear definition and utility of it on multi-graphs. The

algorithm implementation is pretty straightforward:

1 def lcc(G):

2 # Counter of how many triangles a vertex actually forms

3 triangles : dict[node, int] = defaultdict(0)

4 for v in G.nodes:

5 for u in G.neighbors(u):

6 for w in G.neighbors(u):

7 if (u, w) in G.edges:

8 triangles[u] += 1

9

10 # Compute the local clustering coefficients

11 lccs : dict[node, float] = {

12 node: actual_triangles/(G.degree(u) * (G.degree(u) - 1))

13 for node, actual_triangles in triangles.items()

14 }

15

16 return lccs

Listing 3.5: Python code to compute local clustering coefficient

Table 3.5 contains the three features extracted.

43

Table 3.5: Extracted Clustering coefficient features

Feature Description

cc_coeff Unweighted undirected

amount_cc_coeff Amount-weighted undirected

quantity_cc_coeff Quantity-weighted undirected

3.1.6 Triad census

A triad is defined (by Wasserman, Faust39) as one of the possible 16 settings of

three nodes that can appear in a directed graph, Figure 3.3 contains a visualization

and the relative assigned codes. The triad census is a graph-level metric that

Figure 3.3: Conditional Entropy

consists in the count of how many of the 16 possible types of triads are present in a

directed graph. We included the triad census in our features because we believe that
39Faust Wasserman. “Social Network Analysis: Methods and Applications”. In: (1994). doi:

https://doi.org/10.1017/CBO9780511815478.

44

https://doi.org/https://doi.org/10.1017/CBO9780511815478

it can provide us some of the information about dependencies between instructions

and participants that the settlement environment has. To compute the triad census

we refer to Vladimir Batagelj and Andrej Mrvar’s subquadratic algorithm40 which

is implemented in networkx’s under networkx.algorithms.triads.triadic_census.

The algorithm they proposed is able to compute the census for a given subset of V ,

and we used this capability to transform the triad census in a node-level metric by

computing it for each node in the graph. Table 3.6 reports the features extracted

with this method.

Table 3.6: Triad census features

Feature Description

triad_003 Count of triads of type 003 the node is part of.

...
...

triad_300 Count of triads of type 300 the node is part of.

3.1.7 Communities

The task to find graph communities consists in partitioning V into (non-overlapping)

groups of vertices that are "similar" between them and "different" from vertices in

other groups. There can be many definitions of the similarity and dissimilarity func-

tions, but the main intuition is that similarity between vertices is represented by

the edges. We used two of the availabe community-finding algorithms: the Girvan-

Newman algorithm and the Louvain’s algorithm.

The idea behind the Girvan-Newman41 algorithm is to iteratively remove the

most "central" edge in the graph until we reach an acceptable number of partitions.

Various definitions of centrality for edges can be used, but the most common one

is link betweenness: similarly to betweenness centrality, let σs,t be the number of

shortest paths from s to t and σs,t(e) the number of them that pass through edge e,
40Vladimir Batagelj and Andrej Mrvar. “A subquadratic triad census algorithm for large sparse

networks with small maximum degree”. In: Soc. Networks 23 (2001), pp. 237–243.
41M. Girvan and M. E. J. Newman. “Community structure in social and biological networks”.

In: PNAS (2002). doi: https://dx.doi.org/10.1073/pnas.122653799. url: https://www.pnas.

org/doi/full/10.1073/pnas.122653799.

45

https://doi.org/https://dx.doi.org/10.1073/pnas.122653799
https://www.pnas.org/doi/full/10.1073/pnas.122653799
https://www.pnas.org/doi/full/10.1073/pnas.122653799

link betweenness of e in graph G is:

b(e,G) =
∑︂

s,t∈V : s ̸=t

σs,t(e)

σs,t

By removing the most central edge we are left with multiple connected components

in G, they will represent our partition of V . We can also obtain a dendogram from

this process by keeping track of which connected components are separated at each

iteration. Once again we used the algorithm implementation provided by networkx

in networkx.algorithms.community.girvan_newman that can be summed up as the

pseudo-code in Listing 3.6.

1 def girvan_newman(G) -> Iterator[tuple[set[node]]]:

2 # First iteration returns nodes in the original conn. components

3 yield (set(cc.nodes) for cc in G.connected_components())

4 g = G.to_undirected().remove_self_loops()

5 while len(g.edges) > 0:

6 n_communities = len(g.connected_components())

7 new_communities = n_communities

8 # Remove edges until we form a new conn. component

9 while n_communities >= new_communities:

10 # Find most central edge

11 e = max(link_betweenness, g.edges)

12 # Remove such edge

13 g.remove_edge(e)

14 # Check if removing the edge formed a new component

15 new_communities = len(g.connected_components())

16 # return the tuple of nodes in the connected components

17 yield (set(cc.nodes) for cc in g.connected_components())

Listing 3.6: Girvan Newman algorithm

Another possible community algorithm is the Louvain’s algorithm, which is

based on modularity. The idea behind the concept of modularity is that a com-

munity should contain more edges than expected in a random graph (from the

Chung-Lu random graph model), so given a graph G = (V,E) and a subset S ⊆ V

the modularity M(S) is defined as:

M(S) =
1

2

∑︂
u,v ∈S

deg(u)deg(v)

2|E|

46

The modularity of the partitioning of V in communities is the sum of the modularity

of each community.

M(C) =
∑︂
C ∈C

M(C)

The Louvain’s algorithm finds the partitioning with maximum modularity using a

greedy agglomerative approach: it starts from an initial partitioning where each node

is its own community, then merges the pair of communities Ci, Cj that maximize the

modularity improvement when merged δ(C, Ci, Cj) = M(C −Ci −Cj + (Ci ∪Cj))−
M(C) (Listing 3.7). The algorithm continues iteratively until the best modularity

improvement is below a given non-negative threshold. Listing 3.8 summarizes the

networkx’s implementation of the algorithm found in networkx.algorithms.communi

ty.louvain_communities.

1 def compute_deltas(G, partitioning) -> dict[(int, int), float]:

2 mod = modularity(G, partitioning)

3 mod_deltas: dict[(int, int), float] = {}

4 for i, c_i in enumerate(partitioning):

5 for j, c_j in enumerate(partitioning[i:]):

6 new_partitioning = partitioning.remove_at(i)

7 .remove_at(j)

8 .append(c_i + c_j)

9 mod_deltas[(i, j)] = modularity(G, new_partitioning) - mod

10 return mod_deltas

Listing 3.7: Python function to compute modularity difference of joining

communities

47

1 def louvain(G) -> list[set[node]]:

2 partitioning = [{u} for u in G.nodes]

3 while True:

4 # Compute modularity differences

5 mod_deltas = compute_improvements(G, partitionings)

6 # Stop if there are no improving partitionings

7 if max(mod_deltas.values()) <= 0:

8 break

9 # Update partitioning

10 i, j = max(mod_deltas, key=mod_deltas.values())

11 partitioning = partitioning.remove_at(i)

12 .remove_at(j)

13 .append(c_i + c_j)

14 return partitioning

Listing 3.8: Louvain’s greedy agglomeriative algorithm

The output of both community-finding algorithms is a mapping of nodes to the

arbitrary index of the community they belong to, we could not use the commu-

nity index as a feature by itself as it could change in value when computed on

the same input graph so would just be noise. Instead, we create a binary feature

same_xx_community to be added to settlement instruction features vector that is val-

ued 1 when the two participants belong to the same community and 0 otherwise.

Table 3.7: Features from community algorithms

Feature Description

Whether the two participants of the instruction belong to

the same community on the participants graph:

same_gn_community when applying the Girvain-Newman algorithm.

same_lv_community when applying the Louvain algorithm.

3.1.8 Node embeddings

The following approach is based on the concept of node embedding. The embedding

zv of a node v in a graph G is a point in Rd, where d is the dimensionality of

48

the embedding space, obtained applying a function f : V → Rd called encoder.

The goal of the encoder is to learn a representation that preserves the similarities

between nodes in the graph and their embeddings. The embeddings zv of all nodes

in the graph can be concatenated column-wise to obtain the Z matrix. The target

dimensionality of the embedding space (d) is an input parameter of the embedding

algorithms. The learning process is based on the encoder-decoder framework,

which requires the definition of 4 components:

• Nodes similarity function S(u, v)

• Encoder function f(u)

• Embeddings similarity function D(zu, zv)

• Loss function ℓ(D(zu, zv), S(u, v)))

One of the possible definitions of these components is given by node2vec42 that

is a random-walk approach. The idea behind random-walk approaches is that

the similarity between nodes u and v is given by the probability of visiting v on a

random walk of length k starting at node u, which we define as Pk[v|u] = S(u, v).

One property of such probability is that it can be easily and reliably approximated:

consider computing s random walks of length k from node u, let nRW,k,s(v|u) be the

number of such walks containing node v, then:

E
[︃
nRW,k,s(v|u)

s

]︃
= Pk[v|u]

In practice node2vec uses biased random-walks where the bias is based on two

parameters p, q, where p determines the probability to go back to the previous node

and q determines the ratio between "BFS" moves and "DFS" moves (see node2vec

paper42 for details). When the edges of the graphs are weighted the weights can

also be used to regulate the bias of the next step. As embeddings similarity function

D(zu, zv) node2vec uses the negative sampling technique:

D(zu, zv) = log
(︁
σ(zTu zv)

)︁
−

r∑︂
i=1

log
(︁
σ(zTu zi))

)︁
Where i is a node chosen from V with probability proportional to its degree and

σ(·) is the sigmoid function. As loss function the random-walk approaches use the

cross-entropy H(p, q) = −
∑︁

x∈X p(x) log q(x).
42Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. 2016.

doi: 10.48550/ARXIV.1607.00653. url: https://arxiv.org/abs/1607.00653.

49

https://doi.org/10.48550/ARXIV.1607.00653
https://arxiv.org/abs/1607.00653

Summarizing, the optimization problem that node2vec intends to solve is:

ZZZ∗ = argmin
Z

−
∑︂
u∈V

∑︂
v∈V

nRW,k,s(v|u)
s

(︄
log
(︁
σ(zTu zv)

)︁
−

r∑︂
i=1

log
(︁
σ(zTu zi)

)︁)︄

and it tries to do so by using stochastic gradient descent.

The implementation of the node2vec algorithm we used is provided by Elior

Cohen on Github43 which easily integrates with the networkx’s library. Using this

algorithm we extracted a 8-dimensional feature vector (the embedding z) for each

node in every graph, including the unweighted version of the algorithm, and the one

biased using the amount and quantity edge weights (Table 3.8).

Table 3.8: Node2Vec feature vectors

Feature Description

n2v_0 ... n2v_7 Unweighted embedding.

n2v_amt_0 ... n2v_amt_7 Embedding weighted on the amount.

n2v_qty_0 ... n2v_qty_7 Embedding weighted on the quantity.

3.2 Feature selection and source graph

At the end of the extraction process, we have more than 50 features to add to

participants’ data, we will now move on to address two issues that arise when using

these features. The first issue is that the new feature vector we produce is even

larger than the previously available features, and most of them look noisy and not

informative. The second issue is related to chapter 2, in particular, we have to

determine what partitioning choice to apply to produce the source graphs to

extract the features.

To solve the first issue we computed the features on the original MultiDiGraph,

then applied feature selection using a few different scores. The first score we tried is

(Pearson’s) correlation coefficient44, which measures the linear correlation between

two sets of data. To compute the correlation we used the Pandas’ corr method

applied to all the features against the target variable (cd_sett). Unfortunately, the

score of graph-extracted features has a very low value, less than the absolute value
43Elior Cohen. Node2Vec - Github. url: https://github.com/eliorc/node2vec.
44Wikipedia. Pearson correlation coefficient. url: https://en.wikipedia.org/wiki/Pearson_

correlation_coefficient.

50

https://github.com/eliorc/node2vec
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

of 0.06, much lower than other already-available features. Although disappointing

this only proved that there is no evidence of a direct linear correlation between the

features and the target variable, but there could be more complicated relationships so

we moved on to the next score. A second score is based on training an explainable45

machine learning model and observing how much they weigh each input feature.

The model we chose for this experiment is the widely-used XGBoost46 (as seen in

chapter 1.6.1), which provides three metrics of "feature importance": weight, gain

and cover. We won’t dwell on the details of these three metrics, but intuitively

the higher the average of the three values, the more important the variable. The

results in figure 3.4 show that the model uses some of the added features to make

the prediction. One last score that we will only marginally cite is the predictive

Figure 3.4: XGBoost feature importances

power score (or pp-score), which is able to detect non-linear relationships between

a feature and a target variable. In brief, the pp-score trains a ML model on a single

feature, then it computes its F1 and normalizes it over the F1 score of the naive

model that always predicts the most frequent/average value. Results showed that

the pp-score of some of the new features is not significantly higher than most of the

already-available features (Figure 3.5).

From the previous analyses, we selected a subset of the available graph-extracted

features to be used in the next steps; we choose the features with the following

criteria: they have to have an appreciable amount of variance per participant, they

must have been weighted by XGBoost in at least one training and have a relatively
45Wikipedia. Explainable AI. url: https://en.wikipedia.org/wiki/Explainable_artificial_

intelligence.
46Github Distributed Machine Learning Community. XGBoost. url: https://github.com/dmlc/

xgboost.

51

https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost

Figure 3.5: PP-Score of features

high pp-score. The resulting list of 16 features is described in Table 3.9

Table 3.9: Graph-features used in next steps

degree out_degree in_degree in_amount

out_amount in_quantity out_quantity cc_coeff

c_centrality c_centrality_u h_centrality h_centrality_u

b_centrality b_centrality_u pgrank_amount pgrank_quantity

As one can see from the table, triads, communities and node embeddings were

discarded, although since our first attempts we optimized the handling of features

so we are now able to use more of them, thus we will probably consider them in

future analyses.

Now that we have reduced the number of features and kept only the most mean-

ingful ones, we can proceed to solve the second issue: the choice of the type of graph

to extract features from. To tackle this second issue we performed a "grid search":

we tried two of the possible node identifiers, SAC and BIC, with all three possible

instructions subsets (complete, failed instructions only, grouped by security), for a

total of six possible features "source" graphs (table 3.10).

We will now review how we modified the current approach to include the graph

features. The first step was to create the nine graphs, extract the node-level features

and store them for later use. One day of instructions data is loaded in a pandas

DataFrame from S3, a filtering function is applied based on the chosen subset, and

the DataFrame is converted into MultiDiGraph graph using nx.from_pandas_edgelist.

The MultiDiGraph G is converted to a simple undirected graph uG and stored, it

will be used to compute metrics on the undirected version of the graph. A custom

52

Identifier Subset Description

BIC

Complete All instructions, BIC as node identifier

Failed Only previously-failed instructions, BIC as node identifier

ISIN One graph per security, BIC as node identifier

SAC

Complete All instructions, SAC as node identifier

Failed Only previously-failed instructions, SAC as node identifier

ISIN One graph per security, SAC as node identifier

Table 3.10: Source graphs

python module we developed takes as input the two graphs and a list of metrics

to compute, it applies the previously seen algorithms for the chosen metrics and

it returns them as a DataFrame indexed by node identifier (SAC or BIC). When

completed, each daily DataFrame is uploaded to S3 as a partition of a parquet file.

When the metrics for all dates are computed, we can use them in the preprocess-

ing phase of the machine learning pipeline. During preprocessing the "raw" data

is loaded in the SageMaker instance to be "cleaned", to extract new features from

and to be encoded, ready to be fed to a machine learning model. Together with

raw data we also load the graph metrics; to merge them together we use the pan-

das DataFrame "join" method that, similarly to SQL joins, combines fields of one

table with fields from another table when the value on one or more common fields

matches. In our case we join the graph features table twice, once for the deliverer

party and once for the receiver party, so the new feature column names will be in the

form of [feature]_DELI and [feature]_RECE; which columns to use in the join of the

two datasets depends on the chosen node identifier of the graph features. Note that

the relationship between a row of the raw dataset and the graph features dataset is

many-to-two (one for the deliverer and one for the receiver, unless they coincide).

Listing 3.9 shows how to perform the join.

53

1 # Rename columns as {c}_PTY

2 deli_gfeat = gfeat_df.rename(columns={c: f"{c}_DELI" for c in

gfeatures_df.columns if c not in ["date", "node"]})

3

4 # Append party (one) features

5 pd.merge(

6 left=raw_df, right=pty_gfeat,

7 left_on=("id_deli_sac_t2s", "dt_business"), right_on=("node_id",

"date"),

8 how="left", validate="m:1"

9)

10

11 # Similarly to rece party

12 ...

Listing 3.9: Join raw data and graph-extracted data

An alternative possible way to join the two datasets would be to use Glue Spark jobs:

one could load the two datasets from S3 in Spark Dataframes and perform the join

in SparkSQL for better performance. In ESM a different machine-learning model is

trained for each client, this requires that the training dataset for each model only

contains instructions regarding that client. For this reason the preprocessed dataset

is split by participant and stored in S3 to be used to train models in SageMaker

training jobs. A custom module launches a training job for each combination of

hyperparameters in a grid search fashion; for our experiments we used the same

hyperparameters as the already-in-use models to have a fairer comparison. When

the training jobs are completed, they get compared and the best 5 models are

retained while the others are deleted. Although the models we train are binary

classificators over the instructions settlement state, the evaluation metrics are based

on the final task of regression (prediction of the imbalance):

• Mean Absolute Error: 1
n

∑︁n
i=1 |Yi − Ŷ i|

• Root Mean Squared Error: 1
n

√︃∑︁n
i=1

(︂
Yi − Ŷ i

)︂2
This difference in evaluation is due to the optimization process already in place:

because the final task is the imbalance prediction, the best classification models are

54

chosen based on the counter value of the correctly classified instructions so that the

process may choose models with lower accuracy than the best available ones. In

this approach, we are able to optimize for imbalance prediction because a model

only considers client-related instructions and it is easy and clear how to compute

the regression.

3.3 Results

With the previously described setup we extracted features and trained models for

three ESM clients over the same raw data source, they were chosen as we have

custom and better-performing prediction models to compare our models to. The

new "graph-based" models will be compared with two "baseline" models, the naïve

model which predicts 100% of the instructions as settled, and the production models

which are the prediction models that are currently providing predictions for each

client.

To better contextualize the results we provide some settlement statistics about

clients in table 3.11; note that the clients’ names were anonymized for privacy.

Table 3.11: Clients statistics

Client

Daily imbalance % instr.

under avg.

amount
mean ± SD. min. max.

Client 1 3.85e6 e± 74.6e6 e -0.99e9 e 1.0e9 e 97.5%

Client 2 2.89e7 e± 11.7e7 e -54.0e7 e 72.0e7 e 94.8%

Client 3 1.10e9 e± 2.13e9 e -10.7e9 e 9.23e9 e 86.3%

Continuing to the results of the approach, tables 3.14, 3.13, and 3.12 report the

best evaluation metrics of trainings for each combination of input graph-extracted

features, each followed by a line chart of three models accuracies of imbalance pre-

diction over the validation and test set: the naive model (naïve), the current produc-

tion model (prod), and the best-performing graph-based model from the respective

client’s table (see figure’s caption).

55

Table 3.12: Client 1

Identifier Subset MAE RMSE ∆ MAE
naïve 24.7e6 4.3e7 +17.7e6

prod 7.0e6 1.6e7 -

BIC Complete 5.5e6 1.3e7 -1.5e6

BIC Failed 5.6e6 1.1e7 -1.4e6
BIC ISIN 2.4e6 4.4e6 -4.6e6
SAC Complete 7.2e6 1.4e7 +0.2e6

SAC Failed 5.4e6 8.8e6 -1.5e6
SAC ISIN 6.5e6 1.2e7 -0.5e6

Figure 3.6: Client 1: Imbalance prediction accuracy of models (higher is better)

"GRAPH" is (BIC, Failed)

Table 3.13: Client 2

Identifier Subset MAE RMSE ∆ MAE
naïve 13.6e7 16.3e +7.8e7

prod 5.8e7 12.4e7 -

BIC Complete 4.3e7 5.9e7 -1.5e7

BIC Failed 5.1e7 7.2e7 -0.7e7
BIC ISIN 4.4e7 6.9e7 -1.4e7
SAC Complete 5.1e7 9.5e7 -0.7e7

Continued on next page

56

Table 3.13: Client 2 (Continued)

SAC Failed 4.9e7 8.2e7 -0.9e7
SAC ISIN 4.8e7 6.8e7 -1.0e7

Figure 3.7: Client 2: Imbalance prediction accuracy of models (higher is better)

"GRAPH" is (BIC, Complete)

Table 3.14: Client 3

Identifier Subset MAE RMSE ∆ MAE
naïve 12.2e8 10.6e8 +7.5e8

prod 4.7e8 5.7e8 -

BIC Complete 5.7e8 7.3e8 +1.0e8

BIC Failed 5.5e8 8.4e8 +0.8e8

BIC ISIN 5.2e8 6.7e8 +0.5e8

SAC Complete failed1

SAC Failed failed1

SAC ISIN failed1

1 Instance kept shutting down due to full memory, we were not able optimize the

training process in time.

The tables show that results vary between clients. Both client 1 and client 2

have models with consistently better results than the current production models;

client 1 also has one outstanding model with 35% of the production error. Unfor-

tunately, client 3 shows no sign of improvement over multiple tests, this might be

57

Figure 3.8: Client 3: Imbalance prediction accuracy of models (higher is better)

"GRAPH" is (BIC, ISIN)

due to the client having few but large instructions which means that little changes

in the classification accuracy lead to large forecasting errors. When using features

extracted from source graphs built using SAC identifier the training kept failing for

full memory, this is still under investigation.

58

Chapter 4

Approach 2: GNNs

In this last chapter we will introduce another approach we employed to extract

information from graphs which is also based on the traditional framework we

have seen earlier.

4.1 Introduction to GNNs

Graph neural networks (GNNs) are neural networks whose structure changes

based on the input graph; they take as input a graph G = (V,E), where vertices

have an associated feature vector xv, and apply a layer-styled processing to each xv

using the data from neighboring vertices xi : i ∈ N (v). The problem that graph

neural networks solve is node embeddings that we have seen in chapter 3.1.8, which

is to find a way to represent a node v ∈ G as a d-dimensional vector zv such that

its similarity to other nodes is preserved. One of the advantages of using a graph

neural network to produce embeddings is that we can incorporate node features in

the computation of the embedding to obtain better representations.

4.1.1 Message passing framework

But how could we include graph information in a neural network computation? A

naïve approach would be to concatenate the adjacency matrix vector Av of node v

to its feature vector xV and feed it to a multi-layered neural network. Unfortunately,

this approach would not work as it depends on the arbitrary ordering of the nodes

(not permutation equivariant) and would not be applicable on new graphs if they

were to differ in the number of nodes.

59

To solve these problems, graph neural networks use the message passing

framework. In the message passing framework the computation proceeds in it-

erations, at iteration k the "intermediate" embedding of node v is h
(k)
v and it

is computed using its previous embedding and the embeddings of its neighbors

u ∈ N . At each iteration (also called layer) two functions are applied for each node

of the graph: AGGREGATE(k)
(︂
h
(k)
u ,∀u ∈ N (v)

)︂
which produces message m

(k)
N (v) and

UPDATE(k)
(︂
h
(k)
v ,m

(k)
N (v)

)︂
. In general, these two functions can be any differentiable

function to produce a functioning neural network. The AGGREGATE function

takes as input the intermediate embedding of the neighbors of v and produces a

vector we call the message of iteration k. The UPDATE function takes the previous

intermediate embedding of node v and the aggregation message to produce the em-

bedding of iteration k + 1. For the GNN to be permutation equivariant these two

function must be "proper" functions working on unordered sets. Figure 4.1 contains

an example reference graph that is used in figure 4.2 to show two layers of message

passing framework’s computation for node A.

A

B

C

D E

F

G

Figure 4.1: Example graph

A GNN "family" is defined by the AGGREGATE and the UPDATE functions,

we will now see three examples: the most basic version of GNN, graph convolutional

networks and graph SAGE.

4.1.2 Basic GNN

The most basic version of a GNN is given by:

• m
(k)
N (v) = AGGREGATE(k)({h(k)

u ,∀u ∈ N (v)}) =
∑︁

u∈N (v) h
(k)
u

• h
(k+1)
v = UPDATE(k)(h(k)

v ,m
(k)
N (v)) = σ

(︂
W

(k+1)
self h

(k)
v +W

(k+1)
neigh m

(k)
N (v) + b(k+1)

)︂
60

Ak+1 AGGREGATE

Ak

UPDATE

Bk

Ck

Dk

Ak-1

AGGREGATEUPDATE

Ck-1

Bk

Figure 4.2: Message passing framework computation

Where W
(k+1)
self and W

(k+1)
neigh are trainable weight matrices of iteration k, with

W
(k+1)
self ,W

(k+1)
neigh ∈ Rd(k+1)×d(k) , b(k+1) is the bias, and σ(·) is an elementwise non-linear

function (e.g. ReLU). Putting it all together, for each node v at each iteration:

h(k+1)
v = σ

⎛⎝W
(k+1)
self h(k)

v +W
(k+1)
neigh

∑︂
u∈N (v)

h(k)
u + b(k+1)

⎞⎠
We can also define the basic GNN using graph-level equations:

H(k+1) = σ
(︂
H(k)W

(k+1)
self + AH(k)W

(k+1)
neigh +B

)︂
where A is the adjacency matrix of G, H(k) is the matrix where each row is the

embedding of a node at layer k, and B is the bias matrix where each row is b. The

graph-level equation shows that GNNs can be efficiently implemented with a small

number of matrix operations.

We can reduce the number of parameters (and the complexity of the model) by

sharing parameters across iterations, meaning that W
(k+1)
self = Wself, W

(k+1)
neigh =

Wneigh, and b(k+1) = b for all k.

4.1.3 Graph Convolutional Networks GCNs

Another simplification that can be applied to the basic GNN is introducing self-

loops: the previous intermediate embedding h(k)v of node v is considered in the

AGGREGATE(k) function and the UPDATE(k) function only takes the message as input

h(k+1)
v = σ

⎛⎝W (k+1)
∑︂

u∈N (v)∪{v}

h(k)
u + b(k+1)

⎞⎠
61

An issue of the basic GNN is the high sensitivity to node degrees, to solve this

problem we can normalize the AGGREGATE function taking into account the node

degree with a process called neighborhood normalization

m
(k)
N (v) =

∑︂
v∈N (u)

h
(k)
v√︁

|N (u)||N (v)|

Introduced by Kipf and Welling in "Semi-supervised classification with graph

convolutional networks"47, graph convolutional networks are similar to basic GNNs

but they use self-loops and neighborhood normalization.

4.1.4 Graph SAGE

The previous two families of GNNs both used the sum of embeddings as AGGREGATE

operator, Graph SAGE48 was the first to generalize the AGGREGATE function and

use concatenation between the previous embedding and the message in the UPDATE

function.

h(k+1)
v = σ

(︂
W

(k+1)
self h(k)

v ·W (k+1)
neigh m

(k)
N (v)

)︂
Common choices for the AGGREGATE function are:

• mean of h(k)
v : m

(k)
N (v) =

∑︁
u∈N (v)

h
(k)
u

|N (v)|

• element-wise max pooling: m
(k)
N (v) = max

(︂
{σ
(︂
W

(k)
poolh

(k)
u + b

)︂
,∀u ∈ N (v)}

)︂
• first apply a neural network to each h

(k)
v with learnable parameters θ and then

apply an element-wise operator γ such as mean or max:

m
(k)
N (v) = γ

(︂
{NNθ(h

(k)
u),∀u ∈ N (v)}

)︂

4.2 Usage

In chapter 3 we have seen the traditional framework for machine learning with

graphs (figure 3.2), and we have chosen a list of hand-picked features to carry some
47Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional

Networks”. In: CoRR abs/1609.02907 (2016). arXiv: 1609.02907. url: http://arxiv.org/abs/

1609.02907.
48William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation Learning on

Large Graphs”. In: CoRR abs/1706.02216 (2017). arXiv: 1706.02216. url: http://arxiv.org/

abs/1706.02216.

62

https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216

of the information contained in graphs to a machine learning model. With GNNs

we want to skip the process of selection and computation of node-level features,

and let a training algorithm determine the best way to transform (embed) a node

into a vector that can be fed to a machine-learning model. GNNs are capable of

embedding nodes but not edges, although there are some possible workarounds we

deemed not suitable for our purposes; for this reason in GNNs we will only use

instruction-centric graphs that we have seen in chapter 2.2, where nodes represent

the instructions that we will classify. For this task we chose to use graphs built with

all the instructions from one day, using the SAC as node identifier. Contrary to the

previous approach, we will not develop a different prediction model for each of the

clients by filtering the input instructions to build the graph because we would lose

information about the rest of the settlement environment. Now that we have chosen

the graph modeling for the input data we are only left with the task of defining a

suitable model.

4.3 Models

We have seen that GNNs proceed in iteration/layers, we can mix these layers with

other typical neural network layers to obtain better results. To define the model we

will start from the current prediction model: a categorical embedding layer followed

by a few dense layers and one last neuron with sigmoid activation function for binary

classification, for more details see Maria Giuseppina Brunelli’s thesis29. We edited

this model by adding one highly-dimensional dense layer after the categorical em-

bedding and two graph neural network layers between that and the few dense layers,

figure 4.3 shows the template structure of our GNN-based model. The choice of the

number of GNN layers for our model is to avoid oversmoothing. Oversmoothing is

a graph neural networks issue where if the number of layers is too high the final em-

bedding of a node will depend on many nodes, leading to a similar embedding for all

nodes. Because our graphs have a small diameter, we have to choose a small number

of GNN layers (two) to prevent most embeddings to be based on the majority of the

graph.

To implement the model we used TensorFlow together with Python DGL li-
29Maria Giuseppina Brunelli. Cash flow forecasting during night-time settlement cycle as a way

to improve settlement efficiency in target2-securities. 2021.

63

hv
1

hv
2

hv
3

hv
4

E
M
B
E
D
D
I
N
Ghv

G
N
N

L
A
Y
E
R

1

G
N
N

L
A
Y
E
R

2

σ

Figure 4.3: Template structure of our GNN-based models

brary49 for graph neural networks, which has the advantage of easily integrating with

networkx. DGL provides different implementations of GNN layers in TensorFlow,

among which we used GraphConv for graph convolutional networks and SAGEConv for

graph SAGE. The training of the model is performed in batches of graphs of (max-

imum) size of 10.000 vertices, because, as explained in 2, it has reasonable memory

size and conversion-from-instructions time. The following models are trained

4.4 Evaluation and results

Contrarily to the previous approach, we evaluated the model using binary classifi-

cation metrics such as accuracy, F1-score and precision-recall AUC. Given that the

model takes all instructions from a day as input, we want it to perform better than

the naive classification model; optionally we would also want it to have comparable

performances to the current production models that are specialized in single clients.

We tested the models using settlement instructions from April 2022, and the fol-

lowing figures show the comparison in the number of incorrectly classified settlement

instructions per day per model. From the comparison (figure 4.4) one can clearly

see that the SAGE-based model performs much better than the GCN-based one as

it makes much less errors than the naive model; this intuition is confirmed by the

evaluation metrics in table 4.1

We also compared the two models to the current three company-related produc-

tion models; these three models were trained with instructions until 31-03-22 and

we compared predictions for April 2022.
49Deep Graph Library. url: https://www.dgl.ai/.

64

https://www.dgl.ai/

(a) GraphConv (b) SAGEConv

Figure 4.4: Comparison of the number of errors between GNN-like models and the

naïve over all instructions from April

Model Accuracy F1-score PR-AUC

Naïve 93.05 % 96.40 % 95.52 %

GCN-based 94.25 % 96.41 % 96.64 %

SAGE-based 95.13 % 96.84 % 97.18 %

Table 4.1: GNN-based models evaluation metrics

Figure 4.5: Client 1: models comparison in the number of errors (lower is better)

Model Accuracy MAE RMSE ∆ MAE

Naïve 98.2 % 2.9e6 4.1e6 +2.0e6

Prod 98.6 % 8.7e5 1.8e6 -

GCN-based 98.2 % 2.9e6 4.1e6 +2.0e6

SAGE-based 98.2 % 2.9e6 4.1e6 +2.0e6

Table 4.2: Client 1: Prod and GNN-based models evaluation metrics

65

Figure 4.6: Client 2: models comparison in the number of errors (lower is better)

Model Accuracy MAE RMSE ∆ MAE

Naïve 96.4 % 42.2e6 78.2e6 0

Prod 96.9 % 42.2e6 78.2e6 -

GCN-based 96.8 % 42.2e6 78.2e6 0

SAGE-based 97.2 % 41.8e6 78.2e6 -0.4e6

Table 4.3: Client 2: Prod and GNN-based models evaluation metrics

Figure 4.7: Client 3: models comparison in the number of errors (lower is better)

66

Model Accuracy MAE RMSE ∆ MAE

Naïve 92.3 % 1.34e9 1.48e9 +5.9e6

Prod 93.2 % 1.34e9 1.48e9 -

GCN-based 92.3 % 1.34e9 1.48e9 +5.8e6

SAGE-based 92.4 % 1.34e9 1.48e9 +5.3e6

Table 4.4: Client 3: Prod and GNN-based models evaluation metrics

The tables show that the results vary between clients. Only customer 2 has the

SAGE-based model with consistently better results than current production models;

client 1 and client 3 did not benefit from this technique. The explanation for this

behavior could lie in the fact that client 2 has a greater focus on equities, which are

more affected by the effects of daisy chains and volatility than the other two clients

who manage mainly government bonds.

67

Chapter 5

Conclusions and future works

In this last section we will review the topics covered and the results obtained from our

research. We applied two approaches to employ relationships information to improve

the prediction of settlement status of settlement instructions, both based on graphs;

the first approach was to extract node-level metrics as feature vectors to concatenate

to existing features, and the second one was to introduce graph neural network

layers to the machine learning model. Before applying the information extraction

approaches we have also seen how to transform a list of settlement instructions into

participant-centric graphs and instruction-centric graphs, by using different node

identifiers and partitioning choices. For the first approach we have seen the list

of node-level metrics we have extracted and the respective algorithms we used to

compute them; as for results we showed their feature importance and their impact on

the predictions, which was positive for two of ESM clients, but negative for Client 1.

For the second approach we have reviewed the foundations of graph neural networks

and the message-passing framework that they are based on, we have seen how we

introduced two kinds of graph neural network layers in our prediction model and the

results, showing that the SAGE-based model has much better performances than

the naive model in prediction over all instructions, but it is not always better when

compared to already-in-production client-specific models.

This thesis presented a first rough approach to graph information extraction for

the settlement status prediction problem, leaving considerable space for future, more

insightful work. For the topic of graph features extraction (chapter 3) we could

• include features from different source graphs at once

• compute more node-level metrics (e.g. motifs)

68

• include features from previous days (t-1 and t-2)

• compute and include graph-level metrics (e.g. global clustering coefficient)

• optimize or parallelize metrics computation to speed up the computation

As for graph neural networks (chapter 4) there are some points that can be explored

• different choices of UPDATE and AGGREGATE functions (e.g. Graph Isomorphism

Networks, Graph Attention Networks)

• input graphs using different node identifiers (before the computation of the

line graph) and additional subsets (section 2.3.2)

• develop a different model for each client by keeping the same input and apply-

ing a filter to the samples to be considered in the loss function based on the

selected client

69

Bibliography

[1] Michael Simmons. Securities operations. en. The Wiley Finance Series. Nashville,

TN: John Wiley & Sons, Mar. 2002.

[2] Investopedia. Financial Asset Definition. url: https://www.investopedia.

com/terms/f/financialasset.asp.

[3] European Central Bank (ECB). Glossary of terms related to Payment, Clear-

ing and Settlement systems. url: https://www.ecb.europa.eu/pub/pdf/other/

glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf.

[4] Investopedia. Stock. url: https://www.investopedia.com/terms/c/stock.asp.

[5] Investopedia. Ordinary dividend. url: https://www.investopedia.com/terms/

c/ordinary-dividends.asp.

[6] Investopedia. Corporate Action. url: https://www.investopedia.com/terms/

c/corporateaction.asp.

[7] Euronext Securities Milan. url: https://www.euronext.com/en/post-trade/

euronext-securities/milan.

[8] Banca d’Italia. Central counterparty. url: https://www.bancaditalia.it/

compiti/sispaga-mercati/controparte-centrale/index.html.

[9] ESM. Bilateral netting report - Linkedin. url: https://www.linkedin.com/

feed/update/urn:li:activity:6960205218395402241/.

[10] Clearstream. Clearstream Banking’s TARGET2-Securities Glossary. 2022. url:

https://www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/

t2s-glossary-data.pdf.

[11] T2S - Matching fields from a message perspective. 2015. url: https://www.

ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_

fields_from_a_message_perspective_t2s.pdf.

70

https://www.investopedia.com/terms/f/financialasset.asp
https://www.investopedia.com/terms/f/financialasset.asp
https://www.ecb.europa.eu/pub/pdf/other/glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf
https://www.ecb.europa.eu/pub/pdf/other/glossaryrelatedtopaymentclearingandsettlementsystemsen.pdf
https://www.investopedia.com/terms/c/stock.asp
https://www.investopedia.com/terms/c/ordinary-dividends.asp
https://www.investopedia.com/terms/c/ordinary-dividends.asp
https://www.investopedia.com/terms/c/corporateaction.asp
https://www.investopedia.com/terms/c/corporateaction.asp
https://www.euronext.com/en/post-trade/euronext-securities/milan
https://www.euronext.com/en/post-trade/euronext-securities/milan
https://www.bancaditalia.it/compiti/sispaga-mercati/controparte-centrale/index.html
https://www.bancaditalia.it/compiti/sispaga-mercati/controparte-centrale/index.html
https://www.linkedin.com/feed/update/urn:li:activity:6960205218395402241/
https://www.linkedin.com/feed/update/urn:li:activity:6960205218395402241/
https://www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/t2s-glossary-data.pdf
https://www.clearstream.com/resource/blob/1316800/461f1a121cd02eccac538e760de29042/t2s-glossary-data.pdf
https://www.ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_t2s.pdf
https://www.ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_t2s.pdf
https://www.ecb.europa.eu/paym/target/t2s/profuse/shared/pdf/insights_on_matching_fields_from_a_message_perspective_t2s.pdf

[12] François Villeroy de Galhau. Payments and market infrastructures in the dig-

ital era. Banque de France, 2018. url: https://publications.banque-france.

fr/sites/default/files/media/2021/01/07/payments_market.pdf.

[13] TARGET2-Securities. url: https://www.ecb.europa.eu/paym/target/t2s.

[14] European Central Bank (ECB). “Settlement fails – report on securities settle-

ment systems”. In: (2011). url: https://www.ecb.europa.eu/pub/pdf/other/

settlementfails042011en.pdf.

[15] Investopedia. Naked Short Selling. url: https : / / www . investopedia . com /

terms/n/nakedshorting.asp.

[16] T2S Penalty Mechanism. 2017. url: https://ecsda.eu/wp-content/uploads/

2019/01/Annex_I_1_T2S_Penalty_Mechanism.pdf.

[17] European Securities and Markets Authority. “ESMA Report on Trends, Risks

and Vulnerabilities - 2020”. In: (2020). url: https://www.esma.europa.eu/

sites/default/files/library/esma_50-165-1287_report_on_trends_risks_

and_vulnerabilities_no.2_2020.pdf.

[18] European Securities and Markets Authority. “ESMA Report on Trends, Risks

and Vulnerabilities - 2022”. In: (2022). url: https://www.esma.europa.eu/

sites/default/files/library/esma50- 165- 2061_trv_1- 22_statistical_

annex.pdf.

[19] Wikipedia. Binary classification. url: https : / / en . wikipedia . org / wiki /

Binary_classification.

[20] Rehmsmeier M Saito T. “The Precision-Recall Plot Is More Informative than

the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets”.

In: (2015). url: https://doi.org/10.1371/journal.pone.0118432.

[21] AWS. S3. url: https://aws.amazon.com/s3/.

[22] Apache. Parquet. url: https://parquet.apache.org/.

[23] Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, Aug. 2016. doi: 10.1145/2939672.2939785. url: https://doi.

org/10.1145%2F2939672.2939785.

71

https://publications.banque-france.fr/sites/default/files/media/2021/01/07/payments_market.pdf
https://publications.banque-france.fr/sites/default/files/media/2021/01/07/payments_market.pdf
https://www.ecb.europa.eu/paym/target/t2s
https://www.ecb.europa.eu/pub/pdf/other/settlementfails042011en.pdf
https://www.ecb.europa.eu/pub/pdf/other/settlementfails042011en.pdf
https://www.investopedia.com/terms/n/nakedshorting.asp
https://www.investopedia.com/terms/n/nakedshorting.asp
https://ecsda.eu/wp-content/uploads/2019/01/Annex_I_1_T2S_Penalty_Mechanism.pdf
https://ecsda.eu/wp-content/uploads/2019/01/Annex_I_1_T2S_Penalty_Mechanism.pdf
https://www.esma.europa.eu/sites/default/files/library/esma_50-165-1287_report_on_trends_risks_and_vulnerabilities_no.2_2020.pdf
https://www.esma.europa.eu/sites/default/files/library/esma_50-165-1287_report_on_trends_risks_and_vulnerabilities_no.2_2020.pdf
https://www.esma.europa.eu/sites/default/files/library/esma_50-165-1287_report_on_trends_risks_and_vulnerabilities_no.2_2020.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-165-2061_trv_1-22_statistical_annex.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-165-2061_trv_1-22_statistical_annex.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-165-2061_trv_1-22_statistical_annex.pdf
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Binary_classification
https://doi.org/10.1371/journal.pone.0118432
https://aws.amazon.com/s3/
https://parquet.apache.org/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145%2F2939672.2939785

[24] Deloitte. Artificial intelligence in post-trade processing. url: https://www2.

deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-

intelligence-in-post-trade-processing.pdf.

[25] Clearstream. Xact Web Portal. url: https://www.clearstream.com/clearstream-

en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/

xact-web-portal-settlement-tutorials-3099658.

[26] SettlementDrive. EasyFocus. url: https://www.euroclear.com/newsandinsights/

en/Format/Webinars/liquidity-drive-and-settlement-drive-am.html.

[27] Wikipedia. Autoregressive integrated moving average model. url: https://en.

wikipedia.org/wiki/Autoregressive_integrated_moving_average.

[28] Wikipedia. Autoregressive moving average model. url: https://en.wikipedia.

org/wiki/Autoregressive%E2%80%93moving-average_model.

[29] Maria Giuseppina Brunelli. Cash flow forecasting during night-time settlement

cycle as a way to improve settlement efficiency in target2-securities. 2021.

[30] AWS. Sagemaker. url: https://aws.amazon.com/sagemaker/.

[31] Pandas Python library. url: https://pandas.pydata.org/.

[32] Wikipedia. Line graph. url: https://en.wikipedia.org/wiki/Line_graph.

[33] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applica-

tions. pg. 201. 1994.

[34] David Eppstein and Joseph Wang. “Fast Approximation of Centrality”. In:

(2000). doi: 10.48550/ARXIV.CS/0009005. url: https://arxiv.org/abs/cs/

0009005.

[35] Networkx. Closeness centrality. url: https://networkx.org/documentation/

stable/reference/algorithms/generated/networkx.algorithms.centrality.

closeness_centrality.html.

[36] Networkx. Betweenness centrality. url: https://networkx.org/documentation/

stable/reference/algorithms/generated/networkx.algorithms.centrality.

betweenness_centrality.html.

[37] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to

the Web. Technical Report 1999-66. Previous number = SIDL-WP-1999-0120.

Stanford InfoLab, Nov. 1999. url: http://ilpubs.stanford.edu:8090/422/.

72

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-processing.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-processing.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology/us-artificial-intelligence-in-post-trade-processing.pdf
https://www.clearstream.com/clearstream-en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/xact-web-portal-settlement-tutorials-3099658
https://www.clearstream.com/clearstream-en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/xact-web-portal-settlement-tutorials-3099658
https://www.clearstream.com/clearstream-en/products-and-services/connectivity-1-/clearstreamxact/xactwebportal/xact-web-portal-settlement-tutorials-3099658
https://www.euroclear.com/newsandinsights/en/Format/Webinars/liquidity-drive-and-settlement-drive-am.html
https://www.euroclear.com/newsandinsights/en/Format/Webinars/liquidity-drive-and-settlement-drive-am.html
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://aws.amazon.com/sagemaker/
https://pandas.pydata.org/
https://en.wikipedia.org/wiki/Line_graph
https://doi.org/10.48550/ARXIV.CS/0009005
https://arxiv.org/abs/cs/0009005
https://arxiv.org/abs/cs/0009005
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html
http://ilpubs.stanford.edu:8090/422/

[38] Networkx. Pagerank coefficient. url: https://networkx.org/documentation/

stable/_modules/networkx/algorithms/link_analysis/pagerank_alg.html.

[39] Faust Wasserman. “Social Network Analysis: Methods and Applications”. In:

(1994). doi: https://doi.org/10.1017/CBO9780511815478.

[40] Vladimir Batagelj and Andrej Mrvar. “A subquadratic triad census algorithm

for large sparse networks with small maximum degree”. In: Soc. Networks 23

(2001), pp. 237–243.

[41] M. Girvan and M. E. J. Newman. “Community structure in social and biolog-

ical networks”. In: PNAS (2002). doi: https://dx.doi.org/10.1073/pnas.

122653799. url: https://www.pnas.org/doi/full/10.1073/pnas.122653799.

[42] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for

Networks. 2016. doi: 10.48550/ARXIV.1607.00653. url: https://arxiv.org/

abs/1607.00653.

[43] Elior Cohen. Node2Vec - Github. url: https://github.com/eliorc/node2vec.

[44] Wikipedia. Pearson correlation coefficient. url: https://en.wikipedia.org/

wiki/Pearson_correlation_coefficient.

[45] Wikipedia. Explainable AI. url: https://en.wikipedia.org/wiki/Explainable_

artificial_intelligence.

[46] Github Distributed Machine Learning Community. XGBoost. url: https :

//github.com/dmlc/xgboost.

[47] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: CoRR abs/1609.02907 (2016). arXiv: 1609.02907.

url: http://arxiv.org/abs/1609.02907.

[48] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation

Learning on Large Graphs”. In: CoRR abs/1706.02216 (2017). arXiv: 1706.

02216. url: http://arxiv.org/abs/1706.02216.

[49] Deep Graph Library. url: https://www.dgl.ai/.

73

https://networkx.org/documentation/stable/_modules/networkx/algorithms/link_analysis/pagerank_alg.html
https://networkx.org/documentation/stable/_modules/networkx/algorithms/link_analysis/pagerank_alg.html
https://doi.org/https://doi.org/10.1017/CBO9780511815478
https://doi.org/https://dx.doi.org/10.1073/pnas.122653799
https://doi.org/https://dx.doi.org/10.1073/pnas.122653799
https://www.pnas.org/doi/full/10.1073/pnas.122653799
https://doi.org/10.48550/ARXIV.1607.00653
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1607.00653
https://github.com/eliorc/node2vec
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://www.dgl.ai/

	Introduction
	Motivation
	Subjects covered
	Foundations of financial and post-trade concepts
	Financial and trading concepts
	Post-trading concepts
	Settlement instructions
	Settlement failure

	Problem formalization
	Foundations of binary classification problems

	Available data
	Review of current approaches
	The settlement fails prediction approach
	The liquidity forecast approach
	The infrastructure supporting the approaches

	Graph modeling
	Participants-centric graphs
	Instruction-centric graphs
	Other details
	Amount of data
	Additional subsets

	Approach 1: features extraction
	Extracted metrics
	Degrees
	Closeness & Harmonic centrality
	Betweenness centrality
	Pagerank coefficient
	Clustering coefficient
	Triad census
	Communities
	Node embeddings

	Feature selection and source graph
	Results

	Approach 2: GNNs
	Introduction to GNNs
	Message passing framework
	Basic GNN
	Graph Convolutional Networks GCNs
	Graph SAGE

	Usage
	Models
	Evaluation and results

	Conclusions and future works

