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Abstract

In today’s society, the use of Machine Learning technologies is increasingly
supporting human activities, from research contexts to work, up to aspects of
daily life. If from one hand this phenomenon has allowed the resolution of indi-
vidual problems at a speed never seen before, on the other hand, it is necessary
to consider that in several fields of application the reliability of these tools is still
far from safe use. The introduction of learning techniques that are less and less
subject to human intervention, such as the review and data labeling, also focuses
attention on the implementation of these new algorithms, to improve their general
performance.

In this thesis work, we intend to deepen the aspects introduced with the
implementation of an algorithm of Deep Learning based on the Self-Supervised
technique, to perform an analysis of the crucial components in model learning and
reinforcement process. This algorithm is designed with an Adversarial Training
module, to evaluate the model and to investigate its costs and benefits in terms
of robustness.



iii

Sommario

Nella società odierna l’impiego delle tecnologie di Apprendimento Automati-
co affiancano sempre di più le attività di impiego umane, dai contesti di ricerca
all’utilizzo lavorativo, fino ad aspetti di vita quotidiana. Se da una parte questo
fenomeno ha permesso la risoluzione di singoli problemi ad una velocità mai vi-
sta prima, dall’altra è doveroso considerare che in diversi campi di applicazione
l’affidabilità di questi strumenti è ancora lontana al fine di un utilizzo in sicu-
rezza. L’introduzione di tecniche di apprendimento sempre meno soggette ad un
intervento umano, come la revisione e l’etichettamento dei dati, focalizza inol-
tre l’attenzione sul funzionamento dei nuovi algoritmi, al fine di migliorarne le
prestazioni generali.

In questo lavoro di tesi si intendono approfondire gli aspetti introdotti con
l’implementazione di un algoritmo di Deep Learning basato sulla tecnica Self-
Supervised, al fine di effettuare un’analisi delle componenti determinanti nel pro-
cesso di apprendimento e rinforzo del modello. In tale algoritmo viene infatti
implementato un modulo per fare Adversarial Training, così da poter valutare
correttamente il modello ed approfondirne costi e benefici in termini di robustezza.
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Chapter 1

Robustness of Deep Learning Models

This Chapter is intended to give to the reader a brief explanation of the main
topics behind this thesis. Section 1.1 explains Adversarial principles and the
basics of Self-Supervision. Section 1.2 serves as headlight before Chapter 5, to
simply illustrate the overall focus in the research and how the working process
was built from the beginning to the end.

1.1 Introduction to the topic

1.1.1 Adversarial Examples
State of the art in deep learning allows the application of numerous algorithms
in a large variety of fields, in which a strict level of precision on the unfold-
ing tasks is requested, to guarantee safe and effective usage. Computer Vision
applications, like self-driving cars and Face Recognition, or Natural Language
Processing application, such as malware detection, are just a few implementa-
tion fields that require a high level of reliability. For this reason, the need for
an analysis of the critical and security aspects of the classifiers arises.

In the contexts presented previously is a wide object of study the sphere of
the so-called adversarial examples, meaning those data that generate incorrect
output despite a high classification accuracy of the model, both for intrinsic
characteristics, both for their manipulation. The existence of this phenomenon
suggests a flaw, not in the data itself (the goal is being able to predict theoreti-
cally all kinds of data in the domain of interest) but rather it’s a sign of feature
generalization lack in the model. Hence the need to develop a so-called robust
model, i.e. a model that can effectively classify even the most intrinsically
complex inputs.
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Speculative explanations in the past suggested adversarial examples exist
due to the extreme non-linearity of deep neural networks, combined with models
overfitting [54]. Following studies proved that previous assertions were not
correct. In fact what makes the difference against adversarial attacks is a
change of nonlinear model families, with a cost in terms of training simplicity.
It is thus more convenient to design more powerful optimization methods that
can successfully train more nonlinear models than to focus on the regularization
of linear ones [16]. To summarize, adversarial examples can be explained as a
property of high-dimensional dot products. They are a result of models being
too linear, rather than too nonlinear.

While the great advantage of Deep Learning lies in the ability to obtain
good representations of data, it has been shown that classifiers do not use the
same human criteria when training and predicting tasks [34]. Rather, in the
specific case of adversarial samples, it was discovered that these deficiencies
in generating an effective representation are due to elements that are often
indistinguishable from the human eye. There are two main ways to describe
this kind of input:

1. Natural real-life examples, where tracing misclassification reasons on an
already trained algorithm is not possible.

2. Pre-given data with even a slightly, man-made alteration in its informa-
tion, in such a way that those changes can deceive the algorithm and
make it substantially unreliable [12].

These definitions are somehow correlated. The first one describes how adversar-
ial examples occur in reality, the second explains the process of training robust
classifiers, forcing the algorithm to inspect hard samples generated from the
set itself. One could sustain that this process is essentially the same as data
augmentation. Training on adversarial examples is somewhat different from
other data augmentation schemes; usually, one augments the data with trans-
formations such as translations or rotations, that is expected to actually occur
in the test set. This form of data augmentation instead uses inputs that are
unlikely to occur naturally but that expose flaws in the ways that the model
conceptualizes its decision function [16].

Introduced the basic principles of the Adversarial phenomenon, in the next
section we explain what kind of model we will submit to Adversarial inputs.
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1.1.2 Reasons Behind Self-Supervision

In this thesis work, we wanted to integrate the aspects mentioned above with
an accurate study of the model used for the experimental phase. Particular
attention has been paid to Self-Supervised Learning (SSL). These models rep-
resent a valid solution in fields such as speech and image recognition. The
Self-Supervised Frameworks do not require labels for training to formulate pre-
defined tasks. This aspect makes SSL models less prone to the problem of data
labeling, which is instead necessary for Supervised Training and requires human
intervention to manually label individual inputs. In a real context to create an
accurate predictor on the desired domain, Deep Neural Networks need to pro-
cess datasets that are thousands, even millions in sample size. Despite the fact
we live in a big data era, still, the cost of high-quality human labeling could
be highly expensive, as Scale.ai1 (data labeling company) witnesses. The scale
aspect when choosing the model type is thus crucial once we focus on efficiency.

It is quite easy to confuse Self-Supervised Learning and Unsupervised Learn-
ing (UL). In some way, SSL can be seen as a sub-branch of UL considering the
same no-label context. Although the Unsupervised approach is mainly aimed
at finding patterns in the data, such as clustering or anomaly detection, self-
supervision concentrates on recovering, a typical supervised behavior [46].

As Chapter 5 explains, typically SSL models are designed to make predic-
tions with the application of data augmentation before providing the input to
the model, for example, to find the context of a sentence or the rotation of
an image [60, 29]. As it will be deepened also in Chapter 3, the choice of the
transformations applied to the data turns out crucial in this field, helping to in-
crease the consistency and the quality of the model [52]. Moreover, it has been
widely demonstrated how, using different types of datasets and Neural Network
architectures, Self-Supervised Learning has achieved even better results than
other Supervised Learning techniques [7].
Thus, the Self Supervised approach turns out to be, in the specific fields of ap-
plication, a good compromise between reliability and scalability of classifiers.

1https://scale.com/pricing

https://scale.com/pricing
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1.2 Main Goals
Self-Supervised Learning and Adversarial Training will be the main objects of
investigation in this research. The initial task is to combine the two machine
learning approaches into a single code: adapting the generation of adversarial
samples according to the model used and collecting data of its behavior based
on multiple parameters and databases. In order to implement SSL, nowadays
there are several implementation techniques, based on different conceptual im-
plementations that will be widely covered in Section 3.3. In the examination
case, SimCLR will be used [7], which is a framework of Contrastive Learning
that affects predictions based on the "similarity" of more inputs. This will also
allow us to apply Adversarial Training in a very specific context, which can
be used to further investigate how the model learns features. To deeply under-
stand how well the model generalizes data, it will then be necessary to introduce
additional elements for feature evaluation, such as fine-tuning the previously
trained models, using natural and adversarial data, to observe the results thus
obtained. The final goal is multiple, combining different learning techniques it
is indeed possible to make several types of analysis:

• Observe how the algorithm generates semantically adversarial samples.

• Identify what features are used by the model during both the contrastive
and standard classification process.

• Understand whether, in examination cases domain, Adversarial Training
actually helps improve model robustness in multiple scenarios:

– When a trained model is used to solve the same identical task.
– When a trained model is subjected to tasks other than the starting

one (like a task in a similar but more complex domain compared
with the first).

• Observe the behavior of the SSL model when only certain training steps
are targeted in Adversarial Training process.

After this brief overview of the covered topics, we can proceed to a more
accurate understanding of the technical aspects that are part of this research
activity. In the next chapter, an introduction of Deep Learning theory is pre-
sented, with a specific eye on the notions useful to better understand the test
phase of this elaboration.
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Deep Learning Overview

With the term Deep Learning (DL) we refer to a set of techniques, structures
and algorithms in the domain of Artificial Intelligence (AI), specifically part
of Machine Learning (ML) domain. Machine learning differs from classical
AI approaches, in ML human does not provide explicit instructions to the
machine, with a case by case analysis to make predictions from a set of prior
knowledge (i.e, data), but designs the architecture that allows the latter to
make inference directly from the input. The relationship between the different
aspects introduced is illustrated with the Venn diagram in Figure 2.1. The
limitations of conventional algorithms represented an incentive in DL research,
strictly related to an analysis of the "raw" data available [10].

Deep Learning algorithms can be defined as multi-layer representation tech-
niques (i.e., based on a multiple layer structure) that allow one to generate a
high-level abstract representation from a set of simple input data. This is made
possible by the use of several nonlinear modules that transform the inputs dur-
ing execution [41]. Due to this peculiarity, the field of Deep Learning has been
associated in recent years with representation learning, where hierarchies of fea-
tures are used so that higher levels are derived from lower ones, and the latter
in turn help to define the former. These models are a mathematical representa-
tion of the relationship between inputs and outputs, where the learning process
is to estimate as accurately as possible the parameters that the model must set
to solve a given task [61].

The architectures commonly used in DL are the Deep Neural Networks
(DNN) or Artificial Neural Networks. Their operation is inspired by the struc-
ture of the human brain, composed of several connections between a multitude
of neurons that, when stimulated with certain signals, are activated and prop-
agate information to their successors in the network. The technical functioning
of the brain is not the only source of inspiration for DNNs, but conceptually it
is the natural demonstration that we learn from experience. Problems that are
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beyond the capabilities of today’s computers can in fact be solved with many
small efficient "modules" that avoid extremely technical solutions at the machine
level [35]. A neural network is much more than a group of neurons connected.
What makes the difference is the layering: this aspect is reproduced in DNNs,
which are divided into multiple groups connected according to specific criteria,
each of which represents a different stage in the learning process. The artificial
neural network is conceptually a graph, where the computational elements are
located in the single nodes, while the weights are located in correspondence of
the arcs.

Figure 2.1: Hierarchy of Fields of Interest. (1) Artificial Intelligence: a program
that can perceive, reason, act, and adapt. (2) Machine Learning: algorithms
whose accuracy increases with the amount of data provided. (3) Deep Learning:
multi-layered neural networks that learn from massive amounts of data [26].

2.1 Core Elements of Deep Neural Networks

2.1.1 Historical Introduction
Although Deep Learning has been widely known commercially for about 20
years, the first studies date back to the 1940s, when McCulloch and Pitts
published the first study focused on the transposition of neuron’s functioning
on a mathematical model, in 1943 [36]. However, such a study represents a
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first, primitive attempt to "map" the human brain. The first widely described
model of a neuron belongs to Frank Rosenblatt, who gave in 1958 the first
definition of Perceptron [45]. Rosenblatt made a great contribution to the
scientific community but did not formulate how a single module should work
in conjunction with the others.

It was not until 1965 that the first supervised deep feedforward multilayer
perceptrons were published (although such a definition did not yet exist). The
study, conducted by Invakhnenko and Lapa, introduced units with polynomial
activation functions combined with addition and multiplication operations [24].
The same Ivakhnenko in 1971 described a deep network with 8 layers trained
with the "Group Method of Data Handling" [25], then maintained by the sci-
entific community in the following decades. This method consists of training
incrementally the layers with regression analysis, starting from a training set of
inputs with their respective outputs. By using regularization, the superfluous
units were discarded, this was possible since it was also used a validation set.
In summary, Ivakhnenko found a way to describe a network that would gen-
erate an internal representation of incoming data through a hierarchical and
distributed structure.

Having laid the foundations for the deepening of DL, in the following years’
new methods were born to analyze the input data. With Fukushima’s study
(1979-1982) concerning visual pattern recognition, a new space was opened
in the framework of machine learning architectures [13]. Under the name of
"Neocognitron", the first prototype of Convolutional Neural Network (CNN)
was defined, whose aspects will be extensively discussed in Chapter ??. The
model implements a rectangular receptive field with a vector of weights (essen-
tially a filter) that shifts along with a two-dimensional array of input values (in
the practical case, image pixels). This process, iterated along all the networks,
generates a massive number of weights describing the various convolutional
layers, feeding downsampling layers composed of fixed-weight connections orig-
inating from layers below. The network implements the downsampling units
using the Spatial Averaging technique, which activates it only if at least one of
the inputs is active. Later this technique was replaced by the Max-Pooling.

An important year in the development of machine learning was 1989, when
the standard backpropagation algorithm was formulated by Yann Le Cun [31].
The algorithm was applied to recognize handwritten zipper code digits. Basi-
cally, it was a reverse version of the automatic differentiation method1. How-

1Mathematical method applied in Neural Networks consists in computing the derivatives of the
output error concerning each weight. By 1980, automatic differentiation could derive Backpropagation
for any differentiable graph [53].
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ever, the execution timing was not yet such as to make it easily applicable on
the systems of that time. Le Cun’s work was also based on the implementa-
tion of Recurrent Neural Networks (RNNs), later also trated by Schuster and
Paliwal in 1997[47]: these can recreate for/while loops and also do recursion,
besides learning to solve problems of potentially unlimited depth. In general,
however, finding an NN that precisely models a given training set (of input
patterns and corresponding labels) is an NP-complete problem, also in the case
of deep NNs.

All the studies conducted until the beginning of the new millennium brought
several contributions to the scientific community in the field of machine learn-
ing and specifically Deep Learning, but many were the theoretical and practical
complications that did not allow this discipline to become popular in computer
science. Practical flaws such as the time limit of execution of certain algorithms
or the vanishing gradient problem described in more detail in Section 2.2, con-
tributed to discard the NNs as a potential field of study. Only in 2006 DL was
universally recognized for its enormous potential, when the study of Geoffrey E.
Hinton, Simon Osindero and Yee-Whye Teh demonstrated how to eliminate the
difficulties encountered previously using a new, fine-tuned, generative model,
able to perform digit classification better than the best discriminative learning
algorithms [21]. In addition, this model could visualize what the associative
memory had in mind.

2.1.2 Feedforward Artificial Neural Networks
To better understand how the whole Deep Learning process works, we intro-
duce how an Artificial Neural Network is built. Using a "bottom-up" approach
this Section first introduces the single neuron unit, i.e. Perceptron algorithm.
Secondly, we give an overall view of the Feedforward Neural Networks (FNNs),
as combinations of several neurons, also known as Multi-Layer Perceptrons
(MLPs).

2.1.2.1 Perceptron

As we have seen in Section 2.1, the first mathematical model allowing to define
a primordial functioning of the Artificial Neural Networks was the Perceptron
[45]. We can in fact define this model as a single-layer neural network, which
describes (as a unit) a binary classifier. The model is composed of 4 main
sublayers:
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1. An n + 1 dimensional vector of inputs x which contain the information
to be processed.

2. An n dimensional vector of weights W, initially instantiated to 0 or in a
random fashion, plus a bias constant b.

3. A so-called Net Sum, i.e the weighted sum unit of the input vector with
the weight vector.

4. An activation function2 assigned to map the result of the previous sum
into a range (usually (0, 1) or (-1, 1)). Then, depending on the result, this
function indicates whether the perceptron will be activated, or in other
words whether the result is returned as output.

A visual representation of a Perceptron is shown in Figure 2.2. One powerful
aspect of this model lies in the input format. Indeed the model can in practice
be fed with inputs of different algebraic formats, and thus can work with several
types of data. It will be more clear what this means in practice in Section ??,
describing how images are given to each unit.

The weight vector represents the core of the model, because it is the nu-
merical representation of how the model is generalizing the function outlined
by our set of inputs. The more precisely the weights describe the generaliza-
tion function, the better classification will be performed. Moreover, bias is a
fundamental component of a Perceptron, since it shifts the activation function
curve up or down, enhancing the final choice of the unit [41]. All of these
computations result in the output vector y with the following form:

y = fA(WT x + b) = fA(w1x1 + w2x2 + ... + wnxn + b) (2.1)

where wi represents the i-th element of the weights vector, xi the i-th element
of the input vector and fA : R→ R the activation function.

By itself, a perceptron alone is not a versatile classifier, because it can learn
only linearly separable problems. For instance, consider the function OR in a
binary domain: in this case, our model will be able to find a linear function to
classify the outputs, since such a function exists (in the described domain, the
line passing through the points (0, 1) and (1, 0)). However, this does not apply
to other basic operations such as x OR or NXOR, which require a non-linear
function to be mapped. To reach a higher level of generalization, one needs to

2We will better cover the technical aspects of activation functions in Section 2.1.3
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Figure 2.2: Perceptron Structure. The bias is added after the algebraic sum
of the elements of the input vector x, weighted with those of the vector W.
The result is passed (in the figure) to an activation function Heaviside, also
called "Step function", which determines if the information can be released as
an output vector y. [32]

put more of these units together, so that a more complex and flexible structure
can be used to resolve tasks.

2.1.2.2 Multilayer Perceptron

A Multi-Layer Perceptron (MLP) is an ML architecture composed of 3 distinct
sets of layers. Each layer implements a number of perceptrons based on data
format, the amount of complexity and generalization to be obtained, and the
output to analyze. The first is the input layer, which begins the computation.
The last layer, called the output layer performs tasks such as predictions and
classification [1]. The second set is called hidden layer, this is the most impor-
tant part of the structure since what happens here can not be controlled by the
programmer directly, but happens automatically based only on input parame-
ters and regularization techniques that we will see in Section 2.1.4. Moreover,
the number of hidden layers is based on engineering choices and indicates the
depth of the network, while the one containing the largest amount of neurons
determines its width.

In MLPs data flows forward from input to output layer. They are designed
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Figure 2.3: Multilayer Perceptron. [37]

to approximate any continuous function and can solve non-linear problems (i.e.,
which are not linearly separable). A representation of MLPs is given by 2.3.

Usually, we refer to DL when the task to be solved implies the use of a deep
neural network (DNN) N with more than one hidden layer, so when its depth
dN > 1. In order to make DNNs properly useful, non-linearity of activations
functions in hidden layers is essential. The reason behind lies in the fact that
every single unit’s weighted sum of inputs (also shown in (2.1)) is an affine
transformation. If non-linearity is not introduced into the model, then using
more than one layer would be useless since a combination of linear functions
results in a new linear function. Thus it means, more than one hidden layer
can be always reduced mathematically into a single one, foreclosing to explore
a large portion of real problems. Let xi−1 be the input of a single neuron in the
i-th hidden layer, Wi the weight matrix of hidden layer i and bi the respective
bias, then computations taking place in hidden layers are as follows:

hi(xi−1) = fA(Wixi−1 + bi), 0 < i < d (2.2)

with d to be the depth of a DNN N , fA : R→ R and gA : R→ R two non-linear
activation functions, then the output results in:

o(xd−1) = gA(Wdh(xd−1) + bd) (2.3)
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The main purpose of a DNN is to learn the best set ϑ = {Wi, Wd, bi, bd}
such that the expectation of the loss function on relative task is minimized. A
deeper explanation about these aspects is approached in Section 2.1.4.

2.1.3 Activation Functions
As thoroughly explained in the previous section, the nonlinearity of linear func-
tions plays a key role in the proper functioning of DNNs. Making each function
independent from the others is certainly a key aspect, but not the only one.
The use of such functions also serves to give a predetermined meaning to the
data coming out of each unit. When each output has the same fundamental nu-
merical properties, it is possible to relate them to obtain information that leads
to generalization. Since individual weights and biases can have very different
values in complex networks, the activation functions also serve as a normalizer
to standardize the processed data.

One feature to consider when approaching AFs, therefore, is the output
range, which establishes in what neighborhood the result will necessarily be
found. Each function is better suited for certain tasks rather than others, in
other words, some AF are more useful in hidden layers while others, more
suitable for classification, in the output layer. Specifically, we can group the
AFs into two macro-groups, that of functions that simplify the signal, without
drastically limiting it, and that of functions that reduce the input to an interval.
Below we present different types of AF to better understand how they are used
in practice.

2.1.3.1 The "Intermediate" Activations

We define the group of the following functions as "Intermediate" since usually
these classes are used in the middle of the computational process. These AFs
do not distort the input but simplify it by considering only a part of it.

When in 2010 Nair and Hinton first proposed the Rectified Linear Unit
(ReLU)3 function, it quickly became a standard in DNNs architectures [40]. In
the following years were created different variants, each with its own peculiari-
ties. Because of their features they are used for standard computation in hidden
units of the network, which do not have to perform special classifications.

3ReLU function is also used by the ResNet architecture, a neural network with which the exper-
imentation phase has been conducted
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Figure 2.4: Rectified Linear Unit function. Negative abscissae are conform to
zero (y = 0), while positive abscissae follow the trend of the input (y = x). [56]

• ReLU: Among the various commonly used AFs is the most popular since
it demonstrates better performance and greater generalization in DL than
others The ReLU is an "almost-linear" function, which unlike other AFs
turns out to preserve the properties of linear models, a feature that makes
the model easy to optimize by methods of gradient descend [14]. It is a
threshold function, which sends negative inputs to 0 while keeping positive
inputs unchanged. Given the input vector x, ReLU can be defined as
follows:

ReLU(x) = max(0, x) =
⎧⎪⎨⎪⎩xi if xi ≥ 0

0 if xi < 0
(2.4)

The main advantage of using ReLU lies in computational simplicity, as
it does not use exponentials or divisions, which in the context of DNNs
translates into higher execution speed. Among usual AFs, computing
max function is in fact way simpler than previously mentioned opera-
tions. Moreover, it avoids vanishing gradient problems, i.e. prevents the
gradient of the network to become increasingly smaller, which could lead
the algorithm to undesired results. More informations about vanishing
gradient are described in Section 2.2.1.2. However, ReLU is more easily
subject to overfitting than the Sigmoid, a problem that can be solved
with the Dropout technique, which preempts the synchronous optimiza-
tion of all the weights of the network (for details on how dropout works,
see Section 2.2.2.2).
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• Leaky ReLU: When it comes to using ReLU, the negative part is com-
pletely nullified. Instead, we could maintain a diminished part of it cre-
ating the following function:

LeakyReLU(x) = max(0, x) + min(λ · x, 0), (2.5)

where λ is a leak factor which serves to include also a small negative part
in the equation. Also, allowing at least some part of the signal to go
through, reduces the vanishing gradient problem, which we said is more
probable for standard ReLU instead.

• Exponential Linear Unit: This variant is based on the same concept as
leaky, but as the name suggests, the exponential function for the negative
part is introduced. In this way, only a small portion of the negative input
is retained, since the exponential converges to 0 on the abscissae in that
direction.

ELU(x) = max(0, x) + min(ex−1, 0). (2.6)

In practice, ELU performs better than leaky ReLU when compared with
standard ReLU. Furthermore, the use of this function in recent years has
led to its refinement, there exists in fact the Scaled Exponential Linear
Unit (SELU), which is an activation function that allows to self-normalize
the input signal. This translates into an output with zero mean and unit
variance, which actually nullifies batch normalization layers. Moreover,
positive and negative values are scaled using proper constants as follows:

SELU(x) ≈ 1.0507 ·max(0, x) + 1.7580 ·min(ex − 1, 0) (2.7)

Further details on the Exponential Unit and the origin of SELU constants
can be found at [27].

2.1.3.2 The "Final" Activations

Usually, these types of functions are used in the last layer of the network since
the output is always in a finite range, and it is, therefore, possible to perform
feature extraction and classification operations.
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• Tanh: Is the Hyperbolic Tangent function. It is an S-shape function with
an output range of [−1, 1]. It is clear that the output of Tanh function
is zero centered, in this way we can easily map the output as strongly
positive, neutral, or negative with a uniform magnitude.
The function has the following form, for any x ∈ R:

Tanh(x) = (ex − e−x)
(ex + e−x) (2.8)

• Sigmoid: This function takes any real input x ∈ R and maps it into
the range [0, 1]. Because of its range, Sigmoid happens to be a good
choice when it comes to translating data in a probability value, then
easily convertible or interpreted in percentage. It has a similar shape
compared to Tanh and it is computed as follows:

Sigmoid(x) = 1
(1 + e−x) (2.9)

• Softmax: Commonly used in classification problems, it is a generaliza-
tion of a logistic function that compresses a k-dimensional vector z of
arbitrary real values into a k-dimensional vector σ(z) of values within an
interval (0, 1) whose sum is 1. The function appears in the following form:

σ(z) = ezj

K∑︁
k=1

ezk

with j = 1, ..., K. (2.10)

Softmax is particularly useful in DL as it can be used in the output layer
of a DNN to classify an input vector containing probability values and
add up the elements into an output vector containing the final prediction.

2.1.4 Training Process and Optimization Techniques
In previous sections, we analysed how a DNN processes data throughout its
frame. The whole learning process, however, considers several factors, such
as functions and parameters, which have not been tackled yet. We can define
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the training process as the iterative updating of weights and biases within the
network in order to obtain as faithful a representation as possible of the input
data set. This naturally implies fundamental importance in the quality of the
dataset used for the training. A good dataset allows the network to capture the
most important features for classification, allowing it to distinguish the various
set’s classes.

The network parameters are not updated randomly, otherwise achieving
a generalization on the data would take an infinite amount of time consider-
ing that modern networks contain millions of parameters. This activity must
therefore be done automatically and efficiently: we use a loss function L that
computes the error of the model f with parameters ϑ, given the input/output
pair (x, y):

loss = L(f(x; ϑ), y). (2.11)

Our scope is to find the set of parameters ϑ which minimize the expected value
of the loss function in the distribution of data µ, i.e. the cost function:

J(ϑ) = E(x,y)∼D[L(f(x; ϑ), y)]. (2.12)

At this point, we need to point out that our distribution set D is not the
real distribution but just an approximation of it, named empirical distribution.
Thus, we can define the risk as:

R(f) = 1
n

n∑︂
i=1

(y(i) − f(x(i); ϑ)), (2.13)

with total number of samples n, f(x(i); ϑ) and y(i) being respectively the i-th
predicted label and the true label of the training set.

The risk-reducing operation is called Empirical Risk Minimization (ERM):

min
ϑ

R(f). (2.14)

2.1.4.1 Backpropagation Algorithm

Considering a single training cycle, as we previously saw, we get an output
based on internal computations of the DNN. Recalling the MLP algorithm, at
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first the network’s weights can be randomly instantiated or set to 0, thus they
do not represent a generalization of the training set yet. To get the right values
we need to compute ERM in a Deep Neural Networks context. Although, to
perform a minimization operation we need to get the information about the
steepness of the cost function at the current step with current parameters.
This information is the gradient of the function itself, with respect to the set
of parameters ϑ: we will better understand in Section 2.1.4.2 how we can use
it properly.

By now, we just need to find a way to calculate it, since the final cost de-
pends on every single vector weight in all the net. To solve the problem we
can use backpropagation. This algorithm allows computing gradient of the cost
function J(ϑ) for each neuron of the network with respect to its parameters.

As we have seen extensively in Section 2.1.2, the layers of the network are
composed of several units, thus we rely on the chain rule to calculate the gra-
dients. Given then a single weight wl

jk, with l the current level in the network,
the following formula shows a sigle step of the rule:

∂J

∂wl
jk

= ∂J

∂zl
j

∂zl
j

∂wl
jk

= ∂J

∂zl
j

al−1
k , (2.15)

and zl
j can be defined as

zl
j =

m∑︂
k=1

(wl
jkal−1

k + bl
j), (2.16)

with m number of neurons in l− 1 layer and al−1
k being the k-th neuron’s acti-

vated output in layer l − 1.

The same reasoning could be applied to the bias bl
j, which being a constant

does not contribute to the calculation:

∂J

∂bl
j

= ∂J

∂zl
j

∂zl
j

∂bl
j

= ∂J

∂zl
j

1. (2.17)

From 2.15 and 2.16 one can easily get an idea of how many gradients need to
be calculated during a single iteration of the algorithm. (Note: in practice
with the mainly used libraries, the gradient of each vector is computed at the
end of each forward step tracing an acyclic graph whose leaves are the input
tensors and roots are the output tensors. In this way gradients are computed
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automatically). Having introduced the preliminary aspects of DNN gradient
calculation, we can now move on to the formulation of the algorithm on pseu-
docode. The element-wise multiplication is defined by ⊙ operator, Ω(ϑ) is a
regularization parameter, and h represents the output of a designated hidden
layer.

Algorithm 1 Backpropagation Algorithm
1: Compute the gradient of the loss with respect to the output layer:

G← ∇ŷL(ŷ, y)
2: for k = l, l − 1, ..., 1 do
3: Compute the gradient of the loss with respect to the layer’s pre-nonlinear

activation:
G← ∇a(k)J = G ⊙ f ′A(a(k))

4: Compute the gradient of the loss with respect to the layer’s weights and
biases:
∇b(k)J = G + λ∇b(k)Ω(ϑ)
∇W (k)J = G(h(k−1))⊤ + λ∇b(k)Ω(ϑ)

5: Propagate the gradients of the loss with respect to the activations of
the lower-level hidden layer’s activations:
G← ∇h(k−1)J = (W (k))⊤G

6: end for

In short, at first, the gradient of cost function J is calculated on itself. Then,
following the network acyclic graph backward, J gradient is computed with
respect to one of the parents according to 2.16. Doing the same kind of itera-
tion, going upper in the network, we stop when we reach the target ancestor at
level l. There may be a case in which an ancestor is reachable from the output
node through different paths. In this case, it is sufficient to sum the gradients
obtained from all the existent paths.

Now that it’s clear how the gradient is computed in the DNN context, we
can better understand how the optimization process works. In the following
section, we furnish an in-depth explanation of how the cost function can be
effectively minimized.

2.1.4.2 Gradient Descend

Optimization in ML and DL is the process in which we try to lower the cost
function of a certain model by "inspecting" its shape. As introduced earlier, the
cost function J is dependent on its parameters. In the case of neural networks,
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it is therefore necessary to modify the internal weights of the model, on the
basis of the gradient of the cost function ∇J(ϑ).

One way to do so is through the Gradient Descend algorithm (GD). As the
name implies, at the end of each forward step of the network, the algorithm
updates the parameters in the opposite direction of the gradient of cost func-
tion(previously calculated with backpropagation, as we have just seen in Section
2.1.4.1). We define this update as a step, taken in the descending direction of
the cost function J , which has the following form:

ϑs = ϑs−1 − η∇ϑJ(ϑ), (2.18)

where ϑs−1 is the set of parameters at the previous step with respect to the
current optimization process and η is a parameter called learning rate, and it’s
responsible for the size of the step we take in every iteration of GD. Learning
rate value is a crucial component of optimization: if the value is too low the
whole learning process will take too many forward steps to well generalize the
training set, on the other hand, if it’s too big, the risk is to move too fast in
lowering the gradient resulting in a bad generalization.

Using the GD algorithm, the intention is to reach a minimum point, which
we define as a local minimum. In general, it is not possible to know whether
a correctly trained model reaches a global minimum since we do not know the
whole cost function, but we can rely solely on its gradient to at least understand
what it looks like in a neighborhood of the point constituted by the current set
of parameters. When J(ϑ) converges, i.e. when the loss curve calculated in 2.11
for each forward step becomes flat and does not change, the training process is
considered finished, and the model classification accuracy cannot be improved
anymore.

In practice, pure GD as it is shown above can be computationally expensive,
thus resulting in a time-consuming procedure, especially with modern large-
scale learning problems which involve huge sample datasets. In this scenario
other alternative ways to apply GD algorithm arises.

Instead of going through all examples at once, we may use Stochastic gra-
dient Descend (SGD). This GD-variation algorithm performs the parameter
update after a specified number of samples, defining the mini-batch size m.
Therefore, the proper learning phase happens every |Dtrain|/m steps, where
Dtrain represents the cardinality of the training set. We can therefore define the
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partial gradient of a mini-batch k, G(k) as:

G(k) = 1
m
∇ϑ

m∑︂
i=1

L(f(x(i); ϑ), y(i)) (2.19)

Thus, the update operation in SGD has the following form:

ϑs = ϑs−1 − η G(k). (2.20)

It has been shown how approaching an area of local optima, SGD oscillates a
lot while only making hesitant progress along the bottom [55]. This problem
was overcome a decade later using momentum [43]. This technique speeds
up effective regularization processes by exploring further the phenomenon of
gradient "Falling down" to the nearest point of local minima. The method
helps accelerate SGD in the relevant direction and dampens oscillations thanks
to a "velocity vector" v, which is multiplied by each SGD step with a fraction
of itself. The fraction is actually decided from momentum parameter γ The
formula can be seen below.⎧⎪⎨⎪⎩vs = γvs−1 + η∇ϑJ(ϑ)

ϑs = ϑs−1 − vs

(2.21)

We can easily understand the momentum technique if we see the descending
gradient as a ball: when it reaches steeper areas, it starts getting faster and
faster in the direction of the local minimum with γ as acceleration parameter.
As a result, we gain faster convergence and reduced oscillation.

Another way to get better optimization is using a learning rate schedule,
an algorithm that tries to adjust the learning rate during training (using, for
instance, annealing). This process is made according to a pre-defined schedule
or when the change in objective between epochs falls below a threshold. These
schedules and thresholds, however, have to be defined in advance and are thus
unable to adapt to specific datasets. [44]

2.2 DNNs Analysis

2.2.1 Main Flaws
Over the last decade, deep learning has received a great deal of attention not
only in research centers but especially in commercial contexts where data clas-
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sification is increasingly common. In this reality, the need to achieve a high
degree of precision in the performance of tasks by the algorithms has emerged.
Over the years, this has led to an increasing focus on both the power to solve
problems and the reliability of the results. Below are some of the most common
issues encountered in the learning process of deep networks.

2.2.1.1 Overfitting and Underfitting

During the training process, the model tries to fit as better as it can training
dataset, i.e. the algorithm aims to maximize the precision of output predictions.
However, what is intended is something else, namely a good generalization of the
input data. In other words, the model must be able to recognize the internal
features of each class y without making direct comparisons with the images
already analyzed. That being said, we might face two potential problems:

• Overfitting: The condition in which the prediction accuracy on the
training set gets very high in the training phase, but then submitting the
same model on new, fresh data (like on the test set) results in poor per-
formance, making mainly wrong predictions. Usually, this phenomenon
occurs because the model is too complex in relation to the training set,
so a high number of parameters allows, by mistake, an exaggeratedly
accurate classification. Another reason that can trigger overfitting is a
too high number of training epochs4 which causes a high variance in the
model. This means that any variability in the data has been learned, even
that which does not occur in the actual application.

• Underfitting: The opposite case to the previous one occurs when there
are few parameters in the model and there is a high bias in the classifi-
cation. This means that the learning process is too simple or has taken
less time than necessary (i.e. the loss function has not yet converged).
Another cause of underfitting can be an inaccurate training set, which
does not highlight the features to be learned or has less data than the
model needs.

In practical terms, it is possible to apply an intermediate phase between
learning and testing, called the validation phase. This additional process uses
a validation dataset to evaluate the performance of the model on different data
from the training data while tuning the hyperparameters. Validation is a form

4An epoch, in the implementation phase, corresponds to a complete training cycle on the whole
dataset
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of model selection. the validation loss gives an indication of how well the model
is generalizing the data, since it performs forward steps like training, albeit on
different inputs. The result is a curve that can be compared with the shape of
the training loss, there are two cases:

1. The validation loss has the same trend as the training loss, it starts high,
goes down, and then converges in a hyperbolic way towards a similar
circle to the training one. This information shows us that the model is
generalizing well and is a good classifier even on new data.

2. The validation loss starts to converge and then rises exponentially, while
the training loss converges. This behavior suggests that the model is
overfitting, as it is not able to correctly classify data not present in the
training set.

2.2.1.2 Vanishing and Exploding Gradient

When training on feedforward neural networks which utilize the gradient learn-
ing method with backpropagation seen in Section 2.1.4, we may witness a pe-
culiar phenomenon strictly correlated to the optimization procedure. When
calculating the gradients of all the matrices of the weights W in each level l
of the network, these tend to become smaller and smaller, until at some point
they no longer contribute in minimizing the cost function.

This event is called Vanishing Gradient, and is a common problem, espe-
cially when using very deep FNNs, as in the case of VGG [49]. The reason
behind this behavior is in fact a direct cause of the number of iterations that
the chain rule (also described in 2.15) performs during the execution of back-
propagation.

To better understand, we give a mathematical representation. Consider a
deep neural network with l layers and with parameters at each layer represented
as W[1], W[2], ..., W[l]. For simplicity let’s state the following:

• A linear activation funtion, fA = z

• Null bias, i.e b[i] = 0, ∀i : 0 < i ⩽ l

Then the output of the model is of the form: ŷ = W[l]W[l−1]....W[2]W[1]x.
Let’s define the weight matrix in level i as:

W[i] =
⎡⎣n 0
0 n

⎤⎦ (2.22)
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with n ∈ R and n < 1 except last layer. Than we then have:

ŷ = W[i]
⎡⎣n 0
0 n

⎤⎦i−1

x, (2.23)

thus, it is easy to see that when l is big, and W < I then the gradient will tend
to be 0. On the other hand, the opposite problem happens when W > I, but
in that case, we assist to the so-called Exploding Gradient, i.e. it becomes so
big the model gets in the same bottleneck issues of the previous case.

2.2.2 How to solve instability: Regularization
In the previous Section we went through some problems that may occur during
DNNs training. In the following, we present solutions to make Artificial Neural
Networks more stable and less prone to common issues like the ones reported.
The method of applying some additional operation to improve training is called
Regularization.

2.2.2.1 Early Stopping

Let’s suppose we start training a DNN while making validation after every fixed
number of forward cycles. Keeping track of both training and validation loss,
we realize at some point that the model starts to overfit. As we previously saw,
or the model is too complex, or the data is not sufficient. One might wonder
whether there is a way to obtain an acceptable model without necessarily having
to change the reference dataset or make the model less complex. There are
indeed some ways to make regularization, i.e. trying to keep the model stable
while it is being trained and prevent overfitting. If the learner is using an
iterative method (as in the case of the Gradient Descend) and the validation
loss reaches an acceptable level (resulting in good classification accuracy), it is
possible to use the Early Stopping technique to block the algorithm as soon as
the curve, previously in convergence, starts to rise again. In this way, we can
save the parameters that best fit both the training and validation data, thus
the ones that make the best classifier with the fixed starting parameters, as
soon as the performance starts to degrade. We could also see early stopping
as a proper model selection action since we actively choose the model to keep
based on evaluation parameters.
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Note that all models if trained too long, sooner or later end up overfitting
the training data, as the set is finite and the model has limited complexity.
That being said, it is necessary to choose a trigger for the evaluation scheme.
Choosing to stop as soon as the performance on the validation dataset decreases
is certainly a good idea, but the fluctuations of the model must also be taken
into account. It is, therefore, necessary to consider a suitably wide range to
establish if the validation is getting worse [6].

2.2.2.2 Dropout

One of the main issues regarding DL when it was not a fully launched field
yet, was mainly the propensity of DNNs to end up overfitting. Building up
wider and deeper networks could just rise model complexity, what they were
lacking in fact was a proper regularization technique. Some methods started to
be used in the early 2000s, such as L1 and L2 weight penalties [54], however,
they did not solve the problem completely. In fact, what happens in that
condition is called co-adaptation: learning all the weights together makes some
connections have more predictive capability than others. This means after a
complete training phase some node connections are more trained and some are
weaker, thus ignored by the algorithm most of the time, making the algorithm
almost deterministic in weight choice.

A decade after, a revolutionary method called Dropout was introduced and
it finally gave the tools to improve the field of Machine Learning. This tech-
nique manages to overcome the problem described above of networks focusing
only on certain connections, without losing the main purpose, as a regulator,
to prevent overfitting. The main idea of dropout is to use only certain con-
nections in the network and to change, at each forward cycle, the nodes to be
considered active and inactive. This is done by operating each time on a new
network, derived from the architecture set up initially, removing some inputs
or hidden nodes, along with their connections. To establish which elements of
the original network must be discarded we use a dropout rate δ ∼ B(p), i.e.
equal to the Bernoulli distribution. Therefore, δ is equal to 0 with probability
p and 1 otherwise [5]. Since p(1 − p), the usual value to keep variable p is 0.5
for intermediate layers, which gives the maximum regularization possible. For
input, layer should be set to 0.2 or lower, since dropping input data can lead
to unexpected behavior. Setting p > 0.5 is instead not recommended, since it
does not improve generalization and cut away too much of the network.

Dropout allows to produce a "minimized-loss" network the same way as a
regularized network does, with all the benefits explained before.
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Training Paradigms

Machine Learning discipline comprehend a vast number of models able to gen-
eralize a task from a pre-made set of samples [2]. Each algorithm elaborates
data using different statistical indices, and thanks to them, after a learning
procedure, it can perform prediction on whatever new similar information to
the input dataset. In this chapter, we discuss some approaches in defining the
learning model by distinguishing not only the learning task we need to tackle
but also what kind of data we possess. This analysis’s fundamental since the
learning process can involve different kinds of information based on what we
actually know about the input set. The principle distinction on samples is
based on classification knowledge. If input examples do not contain a classi-
fied label, it will be harder to generalize (i.e. find common patterns) in our
dataset, mainly because we don’t know how many different classes are actually
contained in the input set, and also because the algorithm does not dispose
of information that can help the optimization of the feature learning process.
To summarize the different approaches, we can categorize three main learning
techniques:

• Supervised Learning: it requires a dataset with labeled inputs,

• Unsupervised Learning: can perform learning tasks without the use
of any label on samples,

• Self-Supervised Learning: a mixed paradigm between supervised and
unsupervised which partially requires labels to execute.

The next sections of the chapter are dedicated to the deepening of the
aforementioned techniques. Particular attention is given to self-supervision
since it is the main topic of the study.
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3.1 Supervised Learning
Supervised tasks in machine learning define the problem of generalizing and
predicting patterns inside a set of homogeneous data. Applications of such a
learning paradigm can be found in many data analysis contexts as computer
vision, speech recognition, spam detection, information retrieval, and other
specific disciplines. What distinguishes supervised learning from the other ap-
proaches is the use of labels to indicate the belonging category of each sample, in
order to evaluate the prediction rate of the algorithm and perform the training
step.

Given a distribution of input points DSL, we define the training examples
as a set features xi and labels yi such that:

DSL = {(x1, y1), ..., (xN , yN)} . (3.1)

The goal of the learning process is finding a function g : X → Y , with X
denoting the input space and Y the output, i.e. label space. In practice there
exist different g which satisfy the requirements, some more complex than others
based on the number of parameters. The aim, in general, is to find a function
of average complexity, to avoid cases of extreme complexity, that causes over-
fitting, and opposite too simple functions, turning into underfitting, i.e. poor
generalization.

Many supervised models make use of a scoring function to determine an
improvement of the learning process. This function can be defined as f :
X × Y → R and it serves to better outline the target task:

g(x) = arg min
y

f(x, y) (3.2)

This generalization principle can be found in any supervised learning algorithm
although it shows in different forms as probabilistic models. For instance, we
recall the empirical risk minimization defined in Section 2.1.4 and Equation
2.13, which shows the principle of score function minimization applied in a
deep learning context. Anyway, there exist also other kinds of self-supervised
algorithms. For a deeper comprehension we report some of them:

• Linear Regression: learning model which assumes the existence of a
linear relationship between the vector of input samples x, also called
regressors, and each dependent variable, i.e. each label y.
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• Logistic Regression: it allows to solve classification problems using the
Logistic function flog ∈ [0, 1], that is the same Sigmoid function defined in
2.9, to predict the outcome of input data. The criterion used to minimize
the risk is the maximum likelihood estimation (MLE), which we refer to
[39] for an in-depth explanation of how it works.

• Support-Vector Machines (SVM): lies in the definition of hyperplane
in order to set boundaries that help the classification of input data. Points
that lie on the same hyperplane are identified as belonging to the same
category. While logistic regression "compresses" points within the range
[0, 1], the SVM threshold is set as [−1, 1] and serves to identify sample
classes. The optimization process aims at maximizing the margin between
data points and the hyperplanes. We report the Hinge Loss function
without any other regularization, to give an expression of cost in the
SVM context:

c(x, y, f(x)) =
⎧⎪⎨⎪⎩0 if y · f(x) ≥ 1

1− y · f(x) otherwise
(3.3)

Finally, the most effective and powerful expressions of the supervised learn-
ing paradigm are deep neural networks. To avoid useless repetitions, we recall
Chapter 2, where we gave an in-depth and accurate explanation of the training
process.

3.2 Unsupervised Learning
Supposing we have a large amount of chaotic data on which we want to make
generalizations to classify fresh data inside the same macro-group. Previously
supervised paradigms would not be able to perform such a task since this prob-
lem lacks the knowledge about the actual classes in which our data is semanti-
cally divided. Instead, what we can do is to find some patterns that may allow
us to distinguish every input point in a finite number of classes, thus giving
data some meaning by just analyzing its properties: in other words, clustering.
This is a quite hard task to perform, in terms of complexity, time of execution,
and quality/accuracy of the obtained results.

For clarification purposes only, we give a brief explanation on how some of
these algorithms works, so that we can make an idea of the computation steps
and overall complexity:
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• K-means Clustering: it relies on setting an arbitrary number of clus-
ters we expect to find using parameter K, which denote the number of
centroids, i.e. the reference points in the output space which denotes each
cluster region [17]. We define the centroid set as:

C = C1, C2, ..., CK (3.4)

Moreover, some requirements need to be satisfied in order to consider the
algorithm correct:

– The union of clusters must contain all starting items,
– Each item belongs to one and only one cluster,
– Each cluster must contain at least one item and no cluster can con-

tain all items.

K-means aims at minimizing the following cost function:

fKmeans(C) =
K∑︂

i=1

∑︂
Xj∈Pi

||Xj − Ci||2 , (3.5)

where Pi denotes the i-th partition over the set P = P1,P2, ...,PK and
Xj is the j-th item of the input set.

• Principal Component Analysis (PCA): based on linear transforma-
tions of input variables, it defines a new space system in which the original
component with most variance is settled on the first of the axes, the sec-
ond biggest-in-variance component is settled on new second axes, and
so on. We recall the study [59] to deepen the aspects of this unsuper-
vised method since it is a complex algorithm that is not necessary for
experiments implementation.

3.3 Self-Supervised Learning
Previously learning methods are an attempt to achieve the same goal in two
opposite ways. Having label data can surely make the workflow easier and
returns back effective and accurate models, but is still too much prone to ad-
versarial examples due to its feature learning structure. Furthermore, labeling
data as already pointed out in Section 1.1.2, can be a long process, especially
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on modern dataset sizes. On the other side, clustering thousands of inputs with
unsupervised techniques leads to less precise inputs grouping, which needs the
intervention of a human to interpret and perform the actual labeling. If we
also take into account the computationally expensive process, it gets even less
useful in terms of results than the supervised approach.

As the need for more advanced techniques raised, in past years came up the
concept of Self-Supervised Learning (SSL): this method allows learning effective
feature representations without the need for labels. To be more precise labels
are just used in certain parts of the framework, to initialize network weights and
calculate accuracies [11]. Despite this property which recalls the unsupervised
method, self-supervised takes advantage of the same supervised deep neural
network architecture. What really makes a difference is the "wrapper" logic
part that encloses such networks, which usually includes some data processing
such as data augmentation1 or performs some particular elaboration of the
results thus obtained.

State of the art in deep learning brings us different paradigms when it comes
to self-supervised models. As just stated these frameworks share the majority
of their entire architecture: the goal is to perform training on a deep neural
network, and as a result have a generalized model in the form of a deep neural
network with preset weights. Thus it is possible to perform different feature
learning processes changing the outlined framework. The most common and
effective paradigms, also described in [33] are the following:

• Generative Learning

• Contrastive Learning [8] [15]

• Discriminative Learning

Given a brief introduction of self-supervised methods, we are now going to
dive deep into the concept of Contrastive Learning, since is the fundamental
tool with which the experiments were conducted.

3.3.1 Contrastive Learning
Recent self-supervised models managed to reach performances that have over-
come some of the best supervised algorithms used so far. Most of this success
can be attributed to Contrastive Learning, which is a paradigm to perform

1the process in which a slight modification is applied to input data to increase the number of
samples in a dataset, or to prepare the model to perform some specific feature selection.
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high-feature learning using a paired comparison between examples. It is in-
spired by the way humans recognize unknown objects by correlating their dis-
tinctive features with similar ones also present in objects they already know.
This characteristic is defined as prior knowledge.

The main idea around contrastive learning is defined by the splitting task
between data which is similar and data that is dissimilar, for any given sample
inside a distribution DSSL, i.e. the reference dataset. This criterion overcomes
the strict label-referring task of pure supervision, to deepen more what features
matter for the final classification activity.

Let’s consider an input sample x ∈ DSSL, we can thus define the contrastive
task as the attempt to learn an encoder fenc(·) through the comparison of other
similar inputs, called positive samples x+, and dissimilar ones, i.e. negative
samples x−, such that:

sim(fenc(x), fenc(x+))≫ sim(fenc(x), fenc(x−)) (3.6)

where sim is a similarity metric, essential to compute how much a sample pair
is semantically consistent with itself. It can be, for instance, the dot product
or any other kind of algebraic distance between vectors [3].

Then, in order to properly train our classifier, we formally define the loss
function in order to push the learning process in labeling positive pairs within
the same class (and thus preventing miscalssifications with negative pairs):

ℓN = −Ex∼DSSL

⎡⎣log exp (fenc(x)⊤fenc(x+))
exp(fenc(x)⊤fenc(x+)) + ∑︁N−1

k=1 exp(fenc(x)⊤fenc(xk))

⎤⎦ ,

(3.7)

where numerator takes into account positives with respect to input x, whereas
denominator contains the totality of N examples, divided into the positives and
the remaining N − 1 negatives. The factors in 3.7 are to be considered as the
product of the encoder and a pooling operation2. ℓN is a particular loss used
specifically for contrastive learning, which is commonly named InfoNCE loss.

Now the just explained procedure includes the basic elements composing
the learning process through contrastive samples. Nonetheless there exist many
different kinds of approaches when dealing with this paradigm, as many past
studies highlighted [4], [20], [22], [42]. However, one contrastive framework

2operation which aims to simplify the semantic meaning of resulted data, from computations such
as a base encoder fenc(·)
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stood out by considerably improving performances of self-supervised technique.
In the next Section we introduce the model we reproduced to conduct the
experiments on the thesis, the so-called SimCLR.

3.3.2 SimCLR
3.3.2.1 Introductory Notes

Many state-of-the-art pieces of research have proven the efficacy of self-supervised
learning, especially in terms of feature representation quality. SimCLR is one
of the best explanations of this approach: it provides a simple and intuitive
framework that applies all the notions about contrastive learning pointed out
in Section 3.3.1, with some more intuitions that improve the model perfor-
mance. SimCLR was presented in 2020 with the paper "A Simple Framework
for Contrastive Learning of Visual Representations" from Google Research [7].

To better examine how the whole process works, let’s separate the different
logic parts in which the algorithm is composed. We can distinguish 3 main
sequences:

1. Mini-Batch creation and Augmentation of Samples

2. Deep Neural Network Processing and Feature Representation

3. Feature Learning with Loss Minimization

Step 1 is executed only at the beginning of the algorithm, and it is necessary
to properly organize samples for feature learning. Then, steps 2 and 3 iterate
through each mini-batch of the dataset and as many times as the number of
predetermined epochs. After that, if the other learning parameters were well
set and evaluation metrics on the trained model are good enough, it is ready
to be used on similar tasks.

3.3.2.2 Mini-Batch creation and Augmentation of Samples

First to manage modern dataset sizes, a proper splitting of all the input samples
is required. Similarly to what happens for common supervised techniques, we
separate data into different mini-batches in a random manner:

DSSL = {x1, x2, ..., xM} , (3.8)

such that each batch has same size N , resulting in |DSSL|
N = M different batches.
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One of the core aspects introduced in Section 3.3.1, is the concept of pos-
itive and negative samples. SimCLR incorporates this principle by using data
augmentation on each mini-batch xk: every sample is augmented with different
techniques such as random cropping, resizing, flipping, color distortion, and
also by applying image noises. This action is made twice in order to create
two different augmentations from the original input, as shown in Figure 3.1.
These new samples are then positioned within the original order consecutively
in a new mini-batch containing 2N data points. Given an input mini-batch xk,
data augmentation will generate two views from the original data, which we
recall as x̃i and x̃j.

Figure 3.1: Positive Pair Creation [57]

SimCLR does not define positive and negative examples explicitly, instead,
it takes advantage of the new mini-batch created to restrict the concept on the
encoding part of the algorithm. In a nutshell, the model will de facto consider
each augmented pair as positive and all the other 2(N−1) samples as negatives.
However this distinction does not take place in this sequence of the algorithm,
but it is part of the optimization process as we will cover next.
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3.3.2.3 Deep Neural Network Processing and Feature
Representation

Now that is clear how the model prepare the sample data to be processed,
we introduce the encoder fenc(·), i.e. the neural network, to define the actual
learning strategy. In practical terms, SimCLR allows the implementation of
different kinds of architectures. Nevertheless, in this work, we follow the au-
thor’s choice of using ResNet architecture, a deep residual neural network with
good performances [18], [19]. Let’s consider again an input mini-batch xk, given
its augmented views to the encoder we receive the following output after the
average pooling process:⎧⎪⎨⎪⎩hi = fenc(x̃i)

hj = fenc(x̃j) with hi, hj ∈ R .
(3.9)

The results thus obtained do not represent the final features to be optimized.
We need one more computation to apply the contrastive loss, which is basically
what makes the model learn the input features based on positive and negative
samples. In order to map the points hi, hj we introduce the projection head g(·),
which is simply an MLP with a single hidden layer and a ReLU function (we
recall Section 2.1.2.2 and Section 2.1.3.1 where we deeply covered the topics):⎧⎪⎨⎪⎩zi = g(hi) = W (2)ReLU(W (1)hi)

zj = g(hj) = W (2)ReLU(W (1)hj)
(3.10)

The reason behind the use of a projection head lies in the representation
quality of the given output. In fact, by leveraging g(·) it is possible to keep
a larger amount of information, by just compressing the images into a latent
space representation to give a better weight on crucial features. This fact
makes better performance on the contrastive loss operation, which has been
empirically proven by the authors.

3.3.2.4 Feature Learning with Contrastive Loss Minimization

As previously stated, the purpose of the contrastive loss function is to affect
the learning process to make positive pairs (i.e. same feature data) to attract
and negative ones to reject each other. In order to perform this step, it is nec-
essary for this task to define the concept of similarity between samples. Calling
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back the fact we treat input data as vectors, it comes convenient to use cosine
similarity of output representation to express how much different two samples
actually are in terms of features. It is indeed trivial to realize that similar
pieces of information in the representation space are closer in an algebraic per-
spective than different ones. According to 3.7 we adapt the contrastive loss
function for a subset of inputs {x̃k} to define the contrastive prediction task,
using Normalized Temperature-scaled Cross-Entropy Loss (NT-Xent):

ℓi,j = − log exp(sim(zi, zj)/τ)∑︁2N
k=1 ⊮[k ̸=i] exp(sim(zi, zk)/τ) , (3.11)

where sim(zi, zj) describes the previously cited cosine similarity

sim(zi, zj) = z⊤i zj

||zi|| · ||zj||
, (3.12)

and ⊮[k ̸=i] ∈ {0, 1} has value 1 if and only if k ̸= i, and serves to iden-
tify only negative pairs respect to positive. Moreover, constant τ represents a
temperature parameter.

The optimization process is crucial in performing an efficient visual rep-
resentation, in fact, it represents the evaluation factor in feature processing.
It is possible empirically to track the distance of positive pair representations
during training: what can be seen is an initial wide distance between positive
pairs, which gets smaller and smaller the more the algorithm keeps optimizing
its feature visualization on dataset classes. This trivial mathematical behavior
translates into an architecture that generalizes a set of classes without the need
of using any label, as we just described in these last sections.

3.3.2.5 Last Remarks

SimCLR is without doubt an effective self-supervised learning model, which
exploits different math and image processing concepts to reach good general-
ization rates for specified tasks. There are some remarkable notes to point out
to better understand how architecture works. It was proven as to how much
important is the role of data augmentation in pair generation at the beginning
of the algorithm: in particular, a combination of augmentations turns out to
be indispensable to make SimCLR work properly at its best, in fact, single
transformations did not get good enough representations during testing of the
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model. For instance, cropping and color distortion is crucial and necessarily
need to be included in the augmentation process.

Furthermore, mini-batch size N turned out to be another fundamental prop-
erty in defining SimCLR effectiveness. Performing on the same training tasks
but with different sizes (from 256 to 8192) the authors found out that general-
ization benefits more by bigger batch sizes than smaller ones. This result can
be found also in other kinds of models [51], and it is correlated with the fact
that batch management is compulsory since state-of-the-art architectures can
not receive directly very large datasets entirely at once, for a matter of space
and computation complexity. Another consideration can be made regarding
mini-batch sizes: in contrastive logic of positive and negative pairs, there exists
one flaw which lies in having casually a lot of samples of the same class inside
one batch. In this scenario what happens is a lot of samples classified as neg-
atives by NT-Xent loss should have been classified as positive instead. In the
original version of the paper, this problem was not tackled in any way. Thus,
using large batch sizes could also benefit in terms of generalization due to the
fact it was less probable such an event could happen.

Having covered the main different aspects of deep learning and defined the
respective tasks, we can now move on to the next fundamental topic of this the-
sis. In the next chapter, we are going to understand accurately how adversarial
learning works, and its effect on the training process of the network.





Chapter 4

Adversarial Training

In Section 1.1.1 we gave an overview about what adversarial examples are and
the main problems correlated to these data, which basically shows the limitation
of trained models with current deep learning techniques. Past research has
shown how adversarial training can be a solution to effectively overcome this
flaw. The process does not represent a cost-free solution though: as we deeply
acknowledge on experimentations, robustness comes with a trade-off in accuracy
on general predictions. We link to the Chapter 5 for more detail about this
behavior.

In the next section, we provide some general ideas to introduce adversarial
techniques.

4.1 Basic Principles
Since non-robust models are subject to classification errors on adversarial sam-
ples, what we need is to tackle the problem before it shows up on a completely
trained architecture. The core idea when it comes to adversarial training lies
in feeding the network with adversarial samples so that it can better generalize
and produce robust features. In a common situation, we do not have these
kinds of samples, or we do not dispose of a large amount of them, thus the only
way to perform robust training is to artificially generate adversarial examples.

The process of producing adversarial samples is called attack, meaning we
are preparing every single sample, in order to challenge the network more in
finding out solid representations for our dataset. The attack phase generally
happens right before the samples are given to the model, and this is important
to notice since in most cases we need some additional information to perform
the actual attack.

Before getting into the proper adversarial generation mechanism, it is crucial
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to show all the capabilities we can exploit using this method. Firstly, when it
comes to deciding how to attack a model, it is definitely useful to make threat
modeling, which means to analyze how it performs training to better choose how
to design the attack [38]. We can subdivide attacks into two main principles:

• Black Box: An attack that does not consider any information about
how the model works. This kind of attack provides a general way to
return adversarial examples without expensive computations, nonetheless,
it is obviously a weak adversarial process, since does not target specific
features.

• White Box: When attacking procedure takes into account model infor-
mation (usually parameters at each step, like gradients). In this way, it
is possible to apply a more effective attack, "confusing" the model right
in the feature learning process. White box techniques are way more effec-
tive than a black box, but they come with a higher computational cost.
Usually, since training time matter less than the robustness of a model,
these kinds of attacks are preferred with respect to black-box ones.

What really matters when we are facing the problem of designing adversarial
training is the meaning of the applied attack. As we largely deepen in Chapter
2, training is the process of generalizing data starting from inherent elements
which give each sample a defined place into the target space. This elaboration
can be defined also as the model capability to acquire the semantic of each
sample. This property is essential to analyze what makes some models more
robust than the others, that is the flexibility in identifying what features are
critical to classify correctly a given label, and what is not. Designing an attack
that makes the model fail on important sample features instead of on random
parts of it, can twist the performances completely.

Let’s consider for instance an attack that applies random noise to an image,
or like it is described in [23], an attack that turns each image negative. It is
easy to realize how applying those kinds of changes does not necessarily make
the model more robust: in fact, in the first case, we don’t know how much
noise we need to apply to make the model fail, and disrupting the signal too
much can translate in losing the fundamental features of the sample, which we
really don’t want to happen to let the parameters set up in a useful way. In
the second case, most of the information (like shapes and contrast) is kept,
but every feature based on colors is completely lost. This can be useful to
make the model understand better, for instance, shape features instead of color
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ones. However, in some datasets may exist examples in which color does not
necessarily matter (it is the case for digits or cars, to mention a few), and in
those cases, the attack turns out to be useless. Both the attacks try to target in
a general way the images, this property makes them black-box attacks, which
can in some cases affect the semantics of the samples, but not necessarily, and
this translates in a poor robustness improvement.

These reasons are just a few to explain how black box attacks are not very
effective in order to get back a more reliable model. It is therefore a solid
solution to check how the model behaves during training and apply some chal-
lenging variations to the architecture input. In the next Section we present the
core idea to make white box adversarial attacks.

4.2 White Box Attacks
Adversarial training concept can be applied to every ML model which considers
a "step by step" procedure in order to rich a proper prediction model. From now
on we focus on deep learning environment on images, being the main subject
of our analysis. Recalling the training process described in Section 2.1.4 let’s
consider a data distribution D over pairs of data samples x ∈ R and label y.
The main goal of training is to perform Empirical Risk Minimization on the
cost function, as described in the formula 2.13. However, this process does not
consider the possibility of encountering adversarial examples. What can help in
finding a solution is inspecting how the model works to improve its cost function
to generalize data: when dealing with deep neural networks the ERM process
can be synthesized by backpropagation and gradient descend algorithms (we
recall Sections 2.1.4.1 and 2.1.4.2 as a reminder of how they work). In fact,
gradients are the information we are looking for when it comes to challenging
the network since it gives the notion of the steepness and magnitude of the cost
function at each iteration step. Normally to minimize the risk we would go in
descending direction, thus updating the weights based on2.18, whereas in this
context we are just interested in the gradient value associated with the targeted
input x.

4.2.1 Fast Gradient Sign Method (FGSM)
What we can do in practice to perform adversarial training, is generate a per-
turbation δ ∈ P , being P a set of allowed perturbations, to apply on an image
x based on the magnitude of the gradient, so that the next iteration of the
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algorithm will generalize less our input. The adversarial (i.e perturbed) image
is on the form x̃ = x + δ. This action can be interpreted as a "loss maximizer",
translated in the image with a slight modification, which has to stay smaller
than the precision of the features to not lose too much of the information. As
suggested [34], it is a way to augment the ERM process, in order to improve
the model in terms of robustness.

One simple application of the concept just explained is represented by Fast
Gradent Sign Method (FGSM) [16] which basically computes the perturbation
accordingly to what prevously mentioned:

δ = ϵsign(∇xJ(ϑ, x, y)) , (4.1)

with ϵ being a small enough coefficient allowing the classifier to assign the same
class to both x and x̃. Now consider the dot product between weight vector
W and an adversarsarial sample x̃:

W⊤x̃ = W⊤x + W⊤δ , (4.2)

thus the adversarial perturbation causes the activation to grow by a factor
W⊤δ. Using sign function in 4.1 we are basically maximizing, in the same
direction of the gradient, the amount of δ which is then handled by ϵ in order
to adapt the attack based on our specific classification problem. The algorithm
is better explained by the pseudocode below:

Algorithm 2 Fast Gradient Sign Method (FGSM)
1: Compute the loss from model logits with respect to the true class:

L(ŷ, y) = fcrit(ŷ, y)
2: Calculate Backpropagation algorithm (2.1.4.1) respect to the loss, in order

to get input gradient:
Gx ← ∇xJ(ϑ, x, y)

3: Compute the perturbation with respect to input gradient sign, as described
in equation 4.1. A factor ϵ allows to choose the amount:
δ = ϵsign(Gx)

4: Generate the adversarial example by adding the perturbation to the input:
x̃ = x + δ

The product of such an algorithm is an image with a small amount of noise,
but way more effective than the black box noise described in Section 4.1. In
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fact, the noise produced by FGSM manages to fool the classifier with a smaller
amount of it, but still in a generalization-oriented environment.

FGSM works well in practice in many conditions, but it presents some
flaws, especially concerning the architecture on which adversarial training is
performed. For instance, the capacity of the network can help increase train-
ing performances, furthermore, large ϵ values do not guarantee a robustness
increase. For these and other reasons in past years, some studies found alter-
native ways to implement this adversarial algorithm, with variations like the
iterative version (I-FGSM) or the targeted version (T-FGSM). We report one
of them for further investigations on the topic [30].

4.2.2 Projected Gradient Descend (PGD)
Having understood the main blocks composing the adversarial examples gener-
ation, it is now possible to analyze a different solution than the simple FGSM
approach. What emerges from the evaluation of the method above is it takes
into account just a single step of the function for each adversarial input created.
This means the attack we are going to apply to the image in this way is still
poor in terms of quality compared to other methods. Also, the previous ap-
proach does not take into account the trend of model loss, but only cares about
the best perturbation to apply to fool the model. What makes a difference
instead when designing robust classifiers, is considering the entire architecture
and the training factors, and trying to put the less modification possible still
improving performances.

Since we aim to reach the condition just described, we are going to optimize
the process the more we can. Let’s define the problem as the need to minimize
the model loss with a set of parameters ϑ, and at the same time "soiling" the
input using some δ from a set of perturbations P . This formulation describes
an adversarial learning problem, the so-called saddle point problem which is
defined by:

min
ϑ

ρ(ϑ), where ρ(ϑ) = E(x,y)∼D

[︄
max
δ∈P

L(x + δ, y; ϑ)
]︄

. (4.3)

This is an example of both non-convex and non-concave problems. Convergence
is not a trivial condition for such a matter, however, it is in practice possible to
find acceptable solutions to the saddle point problem with some conditions. For
example, the large capacity architecture cited before, using some effective first-
order information [50], i.e. the gradient in our case of study, will be enough to
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find the right perturbation, with a cost in terms of time compared to previous
methods, as the problem tackled here belongs to a different scale of complexity.

One algorithm that turns out to be very effective in solving the aforemen-
tioned problem is the Projected Gradient Descend (PGD) algorithm, which as
the name suggests, takes advantage of the GD procedure to solve 4.3. To bet-
ter understand how the algorithm works, the pseudocode of PGD is provided
ahead.

Algorithm 3 Projected Gradient Descend (PGD)
1: Choose a constrain set Q (as example here, ℓ2-norm) and pick an initial

random perturbation which satisfies it:
Q = {x | ∥x− x0∥2 ≤ ϵ}
x0 ← δ with x0 ∈ Q

2: for k = 1, 2, ..., K do
3: Calculate the estimated gradient and pick the descend direction for the

input: −∇f(xk)
4: Update the input value based on step size σ:

x∗k+1 ← xk − σ∇f(xk)
5: Use the projection as optimization step :

xk+1 = arg maxx∈Q ∥x− x∗k+1∥2 ≤ ϵ
6: end for

As can be seen in the algorithm structure, PGD requires some parameters to
function properly. Each of them affects the quantity and the quality of the final
perturbation, thus the adversary output generated:

• Constraint Set: is a set of points within which the algorithm is allowed
to move the initial input. This means it defines how much perturbation
can be applied to the image at each PGD iteration.
There exist different types of effective sets, which usually define a "ball"
around the target sample. The most common constraints are the follow-
ing:

– ℓ2 is also called the Euclidean norm. It is defined as the distance
of the vector coordinate from the origin of the vector space. For,
instance, the ℓ2-norm of a vector x = (x1, x2, x3) is calculated as

∥x∥2 =
√︂

x2
1 + x2

2 + x2
3 , (4.4)
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in other words is the square root of the sum of squared vector values.
– ℓ∞ express the largest magnitude among each element of a vector,

which can simply be defined for a vector x = (x1, x2, x3) as:

∥x∥∞ = max
i
|xi| (4.5)

• "Epsilon" parameter (ϵ): which is the most important parameter in
deciding how much perturbation we want to apply to the input. It basi-
cally sets the radius of the ball centered in the current sample x, within
which we can pick a perturbation to perform the PGD step.

• Step size: it is the magnitude of the attack step taken in direction of
the gradient.

• Iterations (K): the number of PGD attack steps to be performed to
return the desired amount of perturbation.

Figure 4.1: Projected Gradient Descend Visualization: the input sample is
located in a low loss area. Segments 1 and 2 define the paths taken by two
different perturbations inside ℓ2-norm constraint. [28]

To summarize, what the algorithm does, is just choose a point around the
ball defined by constraint setQ, then iteratively (based on the chosen number of
iterations K) step in direction of the greatest loss. Then, if the perturbation falls
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out ofQ, PGD projects it back to satisfy the constraint. A visual representation
of the process is shown in Figure 4.1.



Chapter 5

Experiments and Data Analysis

In Chapter 1 we already remarked the aim of the thesis as a careful analysis on
deep neural networks, in particular in terms of robustness. Having understood
the main functioning of the training process and having acquired the advantages
related to self-supervision technique and adversarial training, we can now delve
into the topic with experiments that will help to understand the dynamics that
regulate models’ robustness. If interested in looking at the source code, we
created a GitHub repository of the project available [48].

5.1 Datasets
When preparing the experiments, in data analysis the choice of the dataset to
use is crucial especially in designing the problem, since it is a key aspect when
it comes to evaluating the model. As explained in Section 3.3.2, our model
makes use of SimCLR contrastive architecture. Since we implemented the same
encoder as the authors, we chose to make use of two datasets also employed
by T.Chen in [7], CIFAR10 and CIFAR100 1. These datasets contain, as the
names suggest, respectively 10 and 100 classes, each composing a set of 60000
color images 32x32 in size. The total amount is then divided into 5 train batches
and one test batch:

DCIFAR = {DTrain
1 ,DTrain

2 ,DTrain
3 ,DTrain

4 ,DTrain
5 ,DTest} (5.1)

such that each batch contains 10000 samples. It is important to notice that
training batches are not distributed homogeneously and may differ in the num-
ber of samples per class.

1https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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That being said we have CIFAR10 with 6000 images per class, which we
report in code form for simplicity:

CIFAR10_classes = [’airplane’, ’automobile’, ’bird’, ’cat’,
’deer’, ’dog’, ’frog’, ’horse’, ’ship’, ’truck’]

Then, CIFAR100 contains 600 samples for each of the 100 classes, gathered
into 20 sub-groups based on common features:

CIFAR100_classes = [
’apple’, ’aquarium_fish’, ’baby’, ’bear’, ’beaver’,

’bed’, ’bee’, ’beetle’,
’bicycle’, ’bottle’, ’bowl’, ’boy’, ’bridge’, ’bus’,

’butterfly’, ’camel’,
’can’, ’castle’, ’caterpillar’, ’cattle’, ’chair’,

’chimpanzee’, ’clock’,
’cloud’, ’cockroach’, ’couch’, ’crab’, ’crocodile’,

’cup’, ’dinosaur’,
’dolphin’, ’elephant’, ’flatfish’, ’forest’, ’fox’,

’girl’, ’hamster’,
’house’, ’kangaroo’, ’keyboard’, ’lamp’, ’lawn_mower’,

’leopard’, ’lion’,
’lizard’, ’lobster’, ’man’, ’maple_tree’, ’motorcycle’,

’mountain’, ’mouse’,
’mushroom’, ’oak_tree’, ’orange’, ’orchid’, ’otter’,

’palm_tree’, ’pear’,
’pickup_truck’, ’pine_tree’, ’plain’, ’plate’, ’poppy’,

’porcupine’,
’possum’, ’rabbit’, ’raccoon’, ’ray’, ’road’, ’rocket’,

’rose’,
’sea’, ’seal’, ’shark’, ’shrew’, ’skunk’, ’skyscraper’,

’snail’, ’snake’,
’spider’, ’squirrel’, ’streetcar’, ’sunflower’,

’sweet_pepper’, ’table’,
’tank’, ’telephone’, ’television’, ’tiger’, ’tractor’,

’train’, ’trout’,
’tulip’, ’turtle’, ’wardrobe’, ’whale’, ’willow_tree’,

’wolf’, ’woman’,
’worm’

]

For our research, it is important to notice that some classes contained in
CIFAR100 may have similarities with others in CIFAR10 in terms of feature
representation. For instance, it is reasonable to think the class ’wolf’ shares
some features with ’dog’, like ’tiger’ with ’cat’, or ’bus’ with ’truck’ and ’car’.
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It is indeed trivial identifying a classification problem on CIFAR100 as more
complex than a corresponding one on CIFAR10, which we would expect to find
also in experimental results in the form of an accuracy drop.

5.2 Project Set up
In order to conduct efficient classifications in terms of computational complexity
and timing, we tried different training settings and found a reasonable compro-
mise in using a mini-batch size of 256 for both CIFAR10 and CIFAR100, as
they share the same number of samples per set type. Except for mini-batch
partitioning, which is mandatory for running our model, we don’t apply any
further modification directly on the input sets, as being both balanced allows
us to get consistent results. The only exception is made for contrastive data
augmentation, which is secondly made inside the training process as explained
in Section 3.3.2. According to [7] we use the following transformations:

• Random cropping,

• Random horizontal flipping,

• Color jittering with probability p = 0.8,

• Random grayscale with probabiliy p = 0.2,

• Gaussian Blur with a kernel size of a factor 0.1 respect to sample size (i.e,
32 in our case).

Previous transformations were applied twice to generate the two views x̃i

and x̃j described in Section 3.3.2.2, which turned the actual training batch size
to 512.

Conducting a general analysis brought us in defining the workflow in the
"wider" way possible: we first implemented the SimCLR contrastive framework
and, on top of it, we built the adversarial samples generation mechanism. The
hook landed in overriding the forward() method of ResNet architecture, to
first generate the adversarial version of each input mini-batch, by running the
PGD algorithm concerning the mini-batch itself. In this way, it was possible
to perform an adversarial, self-supervised classification problem. Each run was
made different from the others by the use of the PGD ϵ parameter, whose
purpose was deeply described in Section 4.2.2. We found the tasks defined by
CIFAR10 and CIFAR100 to behave similarly, in terms of learning convergence,
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when using the same batch size, which led us to use the same learning rate
during the tests, with adequate results.

To enhance model performance and further test our framework on different
kinds of tasks, after training with the contrastive learning paradigm we fine-
tuned the network on a standard classification problem. It is indeed useful
since changing problems on a pre-trained model allows us to evaluate deeply
the versatility and robustness of previous techniques. It was possible to apply
fine-tuning by loading the contrastive model and freezing all the pre-trained
layers. On top of them, we placed a linear layer that mapped the output space
of SimCLR to the label space, to get the proper classification result. This
process is also explanatory when inspecting feature representation behavior
based on the problem to be tackled.

With some exceptions which we will see later, we standardized training pa-
rameters in order to correctly evaluate the model even considering the different
datasets utilized.

1. SimCLR Contrastive Learning

• Number of epochs: 500
• Batch-size DTrain

i = 512 (256 in two augmented views)
• Learning rate η = 0.0002
• SGD (Section 2.1.4.2) optimization with Adam (same learning rate

η)
• PGD parameters:

– Step-size σ = 1
– Iterations K = 3

2. Standard Classification (Fine-Tuning)

• Number of epochs: 100
• Batch-size DTrain

i = 256
• Learning rate η = 8 · 10−5

• We further optimize the final linear layer with Adam (same learning
rate η) while always keeping the rest of the network as it was loaded

• PGD parameters unchanged, when robust fine-tuning is performed.
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Having the potential of performing adversarial training even in fine-tuning
is an important advantage: it is possible to check how adversary examples affect
different tasks and what is best to use to get the most consistent model.

To further deepen our analysis, we built up a Feature Extractor in order
to inspect layer weights of our trained models. We treat the deep network as
a tree-like structure, where each node represents a specific step of the learning
process. It is thus possible to capture the information stored in any of the nodes
for comparing purposes. The potential of this technique in networks analysis
context will be clear in Section 5.4.3.

In the next section, we are going to explain the experimental criteria to
properly evaluate model robustness.

5.3 Evaluation Metrics
During all the training and test workflow some evaluation cautions were taken
to avoid generalization errors, especially in semantics, such as overfitting. After
training each model and fine-tuning based con ϵ parameter as explained in the
previous section, we proceeded to record performances with test metrics. Every
step was evaluated with different feedbacks, which we report for clarity:

• Loss: For each training cycle we plot the model loss function to assure
model generalization through loss convergence, and detect the possible
presence of vanishing gradient (Section 2.2.1.2).

• Accuracy: One of the most explanatory metrics is a model generaliza-
tion, which can be evaluated in terms of classification precision. For both
training and tests we plot the Top1 and Top52 accuracy curve, making
sure they converge, with appropriate parameters. Training values, es-
pecially in contrastive learning, are reported as an indicator but do not
represent the real accuracy. Besides that, we will only show the final test
accuracies, which represent the actual model predicting capability.

• Confusion Matrix: Every test run is supported with prediction tracking
on each class, with the help of a multiclass confusion matrix, represented
as a N × N grid where N is the number of classes of target dataset
D. Each column indicates the model predictions of inputs, while rows

2In Top1 accuracy, an example is counted as correctly predicted if it is the first model prediction.
In Top5 accuracy, the set of the first most probable output is taken instead, i.e. if the correct label
lays in such set it is considered as correctly predicted.
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represent the actual distribution of examples belonging to the same class.
Based on this definition, we would expect a good classifier to have high
values on the diagonal of its confusion matrix, while low ones on the other
cells.

• Matthews correlation coefficient (MCC): Information related to
confusion matrix are also used to compute other evaluation metrics: Pre-
cision, Recall, F1 Score allows to give a more detailed overview on test per-
formances. However, those metrics are especially effective when datasets
are not class balanced, thus with different numbers of samples per class.
Being CIFAR10 and CIFAR100 balanced, it turns out the outcomes are
very similar to each other. We then decided to make use of the MCC
evaluation, also called the Phi coefficient, which gives a more informative
result than previously cited metrics [9]. Being c the total number of sam-
ples correctly predicted and s the test set cardinality, we define t̂ as the
number of true occurrences of each class and p̂ as the number of predic-
tions of samples within each class, then Matthews correlation coefficient
is in the form:

MCC = cs− t̂ · p̂
√

s2 − p̂ · p̂
√︂

s2 − t̂ · t̂
(5.2)

multiclass MCC ranges in the interval [-1, +1], where -1 indicates com-
plete disagreement between predictions and true classes, 0 no relationship,
and +1 perfect agreement.

• t-Distributed Stochastic Neighbourh Embedding (t-SNE): In or-
der to express and evaluate feature representation and its distribution
in the feature space, we plot t-SNE of different model layers. Particular
attention is given to the last ResNet layer and the linear classification
layer. t-SNE is an unsupervised algorithm that comes very helpful in
data visualization thanks to its non-linear dimensionality reduction [58].
The criteria to evaluate similar data in the projected 2-dimensional space
is the euclidean distance of points, computed on the original space. As
we are going to see in the next section, we use t-SNE in conjunction
to the Feature Extractor introduced in previous section to plot effective
representations of models weights.
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5.4 Experiments
As briefly explained in Section 5.2, we organized the experiments dividing the
training into two parts: the first self-supervised (contrastive) learning with a
generation of adversarial inputs, which followed fine-tuning. We decided to
set a robust tuning, giving to the final linear layer adversarial images with
ϵ ratio equal to the one applied to the correspondent contrastive model. In
this scenario, we explored even further the effects of adversarial training, by
comparing some robust models with no robust fine-tuning as well. The purpose
was to find how much impact adversarial training has on the smaller problem
of one-layer standard classification.

In Figure 5.1 we report an illustration of some natural inputs whose adver-
sarial counterparts were misclassified by our model.

Figure 5.1: Representation of some misclassified inputs and the respective ad-
versarial version. To clearly expose the effect of PGD we set ϵ = 5.

Before moving on to the exposition of the experiments, we introduce a no-
tation that will come in handy for the simplification and understanding of the
results. We recall the use of adversarial training in order to make the classifier
robust to all intents and purposes. According to this aspect, it is thus required
to specify the ϵ value we apply to each model.

Definition. Let RoSSS→T (Robust Self-Supervised) be our fine-tuned self-
supervised model. Then S represents the source classification task, while T
the target classification task.
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5.4.1 Robust Contrastive Model Fine-Tuned on Same
Predicting Task

The first experiment consists of a series of tests on different models. The
unifying criteria is the use of the same classification task (i.e. the dataset
used to train the network is the same when fine-tuning and testing). The
notation defining which set has been utilized is composed of two names: the first
one denotes the contrastive classification task, while the second the standard
classification task.

To set up a proper range on adversarial noise, we ran the same classification
problem with ϵ parameter in the range [0, 1], with intervals of magnitude 0.2.
Moreover, unlike we did in the training phase, we set PGD iterations to K = 20
(instead of 3) to highly increase the challenge for our networks. PGD step size
remains σ = 3 instead. The result is 36 simulations, in which we track all the
evaluation metrics described in Section 5.3.

It is clear from data collected how much impact the PGD method has on
non-robust models: as we expected the higher we push ϵ on test inputs, the
more the performance drops, which shows up with a large accuracy decrease
for less robust models.

Accuracy RoSSC10→C10

Fine-Tuned Evaluation ϵ Parameter
Model ϵ 0 0.2 0.4 0.6 0.8 1

0 74.79 43.45 18.14 5.21 1.12 0.21
0.2 70.81 59.9 47.45 36.72 26.79 17.9
0.4 67.81 60.07 51.19 42.88 35.08 26.88
0.6 65.47 58.63 52.27 45.46 38.68 31.63
0.8 62.56 57.67 52.04 46.92 41.15 35.38
1 57.97 54.61 49.95 46.03 41.81 37.29

Table 5.1: Top1 test accuracy on CIFAR10, of contrastive model fine-tuned
with standard classification on CIFAR10.

Observing carefully each column, we can also notice the limits on both non-
robust and robust models. On natural inputs (evaluation ϵ = 0), a robust
classifier performs worse than a standard one, but the last appears completely
prone to adversarial samples, and will totally fail to classify properly under
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Figure 5.2: Comparison between correct predictions of RoSSC10→C10 (on the
left) and RoSSC100→C100 (on the right). Standard models highly fail to correctly
classify even with a small amount of PGD ϵ.

targeted attacks. Moreover, on the standard model, accuracy and MCC drops
are consistent: an adversarial image with a PGD perturbation of magnitude
ϵ = 0.2 will halve the metrics for a non-robust model, especially on harder
tasks, as CIFAR100 suggests.

Accuracy RoSSC100→C100

Fine-Tuned Evaluation ϵ Parameter
Model ϵ 0 0.2 0.4 0.6 0.8 1

0 46.51 21.84 7.61 2.58 0.67 0.17
0.2 43.89 35.11 27.39 20.87 14.79 10.22
0.4 41.66 35.73 29.81 24.27 19.62 15.34
0.6 39.02 34.5 30.0 25.33 21.37 17.76
0.8 36.67 33.0 29.41 25.9 22.6 19.35
1 33.17 30.33 27.36 24.53 21.82 19.33

Table 5.2: Top1 test accuracy on CIFAR100, of contrastive model fine-tuned
with standard classification on CIFAR100.

On the other hand, using high ϵ values in the training phase leads to more
consistent classifiers, even though on natural samples they lower its perfor-
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mance (for ϵ = 1, specifically of 16.82% on RoSSC10→C10 and of 13.34% on
RoSSC100→C100).

In Figure 5.3 we compare the confusion matrices (CM) of the natural clas-
sifier and robust one on CIFAR10 (we did not show CIFAR100 for the obvious
reason of grid space). We also point out the different scales between matrices in
terms of colors. It is clear how some classes share common features by the fact
all the CM have similar patterns on misclassified samples. Furthermore, when
applying adversary inputs this phenomenon intensifies but does not change in
terms of targets, which we would have expected since we only applied general
PGD with no specific target for each attack.

Figure 5.3: Comparing a standard RoSSC10→C10 on the upper part (ϵ = 0) and
a robust RoSSC10→C10 on the bottom (ϵ = 1). Left represents a complete test
on CIFAR10 with ϵ = 0 while right with ϵ = 1.

Let’s finally consider the distribution of features in the last layer of our con-
trastive model, with and without adversarial learning applied to the training.
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MCC RoSSC100→C100

Fine-Tuned Evaluation ϵ Parameter
Model ϵ 0 0.2 0.4 0.6 0.8 1

0 0.460 0.21 0.067 0.016 -0.003 -0.008
0.2 0.433 0.345 0.267 0.201 0.14 0.093
0.4 0.411 0.351 0.291 0.235 0.188 0.145
0.6 0.384 0.339 0.292 0.246 0.206 0.17
0.8 0.36 0.324 0.287 0.252 0.219 0.186
1 0.326 0.297 0.267 0.238 0.211 0.185

Table 5.3: MCC of SimCLR contrastive model trained on CIFAR100, then
fine-tuned with standard classification on CIFAR100.

We show data with a t-SNE plot with target perplexity p = 35 and number of
iterations n_iter = 1500. Results in Figure 5.4 show how robust parameters
appear more sparse and wide in the feature space than the standard ones, again
reinforcing the idea of adversarial training as a model generalization enhancer.

Figure 5.4: Feature representation of RoSSC100→C100 trained with adversarial
learning (right) and without (left). Features tend to spread more when trained
robustly, but appear more agglomerate.



56 CHAPTER 5. EXPERIMENTS AND DATA ANALYSIS

5.4.2 Robust Contrastive Model Fine-Tuned on
Different Predicting Task

The previous experiment demonstrates how adversarial training makes a differ-
ence in preventing classifiers to fail when subjected to adversarial attacks or just
to random adversarial samples. The results obtained in a self-supervised archi-
tecture reinforce the paradigm as better performing than simple supervision.
We now proceed with a second experiment in which we test the architecture
flexibility by changing classification tasks when fine-tuning the network. Since
we aim to find every possible improvement from the based method, we first set
the same parameters linked to adversarial training, according to the previous
experiment. We still execute simulations for different ϵ values in the range
[0, 1] with intervals of 0.2, and using PGD method with iterations K = 20 and
σ = 3. Finally, we set a test batch size of 1024, since we do not change any
parameter. Accuracy results can be seen in Tables 5.4 and 5.5. Switching task
results in a slight drop in performance, in fact, when stronger ϵ was applied, we
assisted to less improvement than previous models: RoSSC100→C10 robust ac-
curacy tends to converge more than RoSSC10→C10 when stronger PGD attacks
are applied, which can be seen looking at the bottom-right area of Table 5.4,
while RoSSC10→C100 performs even worse when trained on ϵ = 1 than ϵ = 0.8,
even though it was a trend manifesting in RoSSC100→C100 too.

Accuracy RoSSC100→C10

Fine-Tuned Evaluation ϵ Parameter
Model ϵ 0 0.2 0.4 0.6 0.8 1

0 69.51 36.15 12.68 3.07 0.58 0.04
0.2 65.11 55.04 44.01 33.18 23.25 15.92
0.4 62.6 55.2 47.08 39.19 32.04 24.89
0.6 59.51 54.04 48.06 42.05 36.25 30.3
0.8 57.27 52.25 47.36 42.73 37.76 33.15
1 53.94 49.96 45.98 42.12 38.18 34.09

Table 5.4: Top1 test accuracy on CIFAR10, of a contrastive model trained on
CIFAR100 and then fine-tuned with standard classification on CIFAR10. Both
pieces of training used the same ϵ value when adversarial learning was applied.

An interesting fact is that performances following a change of classification
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task, are in general not so different from those in which the same task is main-
tained until the end of training. This result leads us in stating that contrastive
learning does not limit performance in the same way fine-tuning does, which
appears more crucial in defining the final model accuracy. This can be linked
with the capacity of self-supervised models to adapt to different tasks, making
use of better feature representations than the supervised counterparts.

We next show in Figure 5.5 confusion matrices comparison exclusively under
adversarial attacks with ϵ = 1. The matrices report a similar situation for both
RoSSC10→C10 and RoSSC100→C10, with a small loss for the second one when
trained robustly, which makes the two models behave almost identically.

Accuracy RoSSC10→C100

Fine-Tuned Evaluation ϵ Parameter
Model ϵ 0 0.2 0.4 0.6 0.8 1

0 42.59 19.52 6.64 1.89 0.47 0.14
0.2 40.52 32.31 25.03 18.58 13.61 9.57
0.4 38.49 33.03 27.19 22.24 17.82 13.81
0.6 35.83 31.4 27.25 23.06 19.24 16.09
0.8 33.09 29.51 26.32 23.06 20.1 17.3
1 28.42 25.85 23.65 21.19 18.85 16.68

Table 5.5: Top1 test accuracy on CIFAR100, of a contrastive model trained on
CIFAR10 and then fine-tuned with standard classification on CIFAR100. Both
pieces of training used the same ϵ value when adversarial learning was applied.

To conclude the analysis on the CIFAR100 classification task, we also look
to the prediction capacity of RoSSC100→C100 in comparison with RoSSC10→C100,
illustrated in Figure 5.6. Prediction tracking detects similar results for each
grade of robustness. In particular for increasing test ϵ values, the models start
behaving more similar in both cases, as the small difference in blue and yellow/-
green counts witnesses. This fact enforces what we previously stated, regarding
contrastive learning being a flexible method for task generalization.
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Figure 5.5: Comparing RoSSC10→C10 on the upper part and RoSSC100→C10 on
the bottom (we now only compare on adversary examples: ϵ = 1). Left shows
non-robust versions of models and right the robust counterpart.

5.4.3 Effects of Adversarial Fine Tuning on Contrastive
Model Robustness

The last experimental results demonstrate how self-supervised training fits well
in learning effective feature representations. Using our contrastive models in
different tasks does not affect consistently in resulting performances.

We now move on focusing on fine-tuning part of the training process. The
aim is to understand how much robust fine-tuning is important to get correct
predictions on critical inputs. We start by running some simulations similarly
to what we made for the other experiments: this time we choose to group the
results based on the test dataset, thus, grouping those classifiers that map their
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Figure 5.6: Comparison between correct predictions of RoSSC100→C100 (on the
left) and RoSSC10→C100 (on the right). Cardinality appears very similar, es-
pecially on classes distribution, even though the contrastive classification task
was different.

output in the same space. In other words, the comparisons are made on the
model’s test classification task.

We first execute a non-robust fine-tuning (setting PGD ϵ = 0) for each
robust contrastive model (each one previously trained with ϵ = 1 on SimCLR).
In this way, we get two different representations of the same classifier, where
the difference, in terms of features, is on the final linear layer, trained with
standard classification. Model testing on CIFAR10 makes the result evident:
adversarial learning helps the model in gaining performance against possible
attacks, as increasing accuracy is detected for adversarial inputs when ϵ rate
gets higher. This phenomenon is best underlined by an 8.47% accuracy gain for
RoSSC100→C10. However, testing on CIFAR100 shows a different perspective:
here accuracy does improve but by a smaller magnitude. In this last case, it
may not be convenient to perform robust fine-tuning, since the risk is to lose
in overall performance. That being said, the maximum absolute performance
is 33.84% on average, which suggests that our architecture generalizes poorly
CIFAR100.
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Accuracy on CIFAR10
Fine-Tuned Evaluation ϵ Parameter

Model 0 0.2 0.4 0.6 0.8 1
RoSSC10→C10 ϵ = 1 58.44 54.58 50.41 45.95 41.62 37.28
RoSSC10→C10 ϵ = 0 61.57 55.41 48.79 41.78 35.23 29.32
RoSSC100→C10 ϵ = 1 53.94 50.0 45.94 42.18 38.28 34.11
RoSSC100→C10 ϵ = 0 57.13 50.73 44.3 37.58 31.53 25.64

Robustness Improvement
RoSSC10→C10 -3,13 -0.83 1.62 4.17 6.39 7.96
RoSSC100→C10 -3,19 -0.73 1.64 4.6 6.75 8.47

Table 5.6: Differences between adversarial and standard fine-tuning on the
CIFAR10 classification task. Results show it is crucial to train adversarially
even in standard classification to improve robustness.

Accuracy on CIFAR100
Fine-Tuned Evaluation ϵ Parameter

Model 0 0.2 0.4 0.6 0.8 1
RoSSC100→C100 ϵ = 1 33.18 30.4 27.35 24.47 21.77 19.33
RoSSC100→C100 ϵ = 0 35.21 30.94 27.19 22.97 19.58 16.15
RoSSC10→C100 ϵ = 1 28.56 25.92 23.62 21.14 18.84 16.64
RoSSC10→C100 ϵ = 0 30.39 27.05 23.36 19.98 16.65 14.17

Robustness Improvement
RoSSC100→C100 -2.03 -0.54 0.16 1.5 2.19 3.18
RoSSC10→C100 -1.83 -1.13 0.26 1.16 2.19 2.47

Table 5.7: Differences between adversarial and standard fine-tuning on the
CIFAR100 classification task.

Tables 5.6 and 5.7 underline a trend that also came up in the experiment
5.4.1: certainly adversarial training works in its attempt to make features less
susceptible to targeted attacks or noise in images, however, it comes with some
losses. In fact, as we noted from the runs, when we apply PGD in training
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inevitably the model becomes less adept at recognizing "clear" samples, i.e.,
those that are not adversarial. We recognize therefore that in the application
of such a technique there is a tradeoff, between the maximum performance
in conditions of optimal inputs, and the robustness that allows the model to
commit, in general, fewer errors. The maximum expression of this phenomenon
is shown in Table 5.1, where on natural samples we retrieved a maximum drop
of 16.82% in accuracy when robustly trained, with a gain, on the other hand,
of 37.08% on strong adversarial samples.

Figure 5.7: t-SNE feature extraction of the last RoSSC10→C10 activation layer
of SimCLR. The comparison is made between standard fine-tuning (left) and
the robust one (right).

We then use the Feature Extractor to highlight weight changes between
different trained models. As an example, we test feature variance loading pre-
trained RoSSC10→C10, with and without robust fine-tuning (as we best found,
ϵ = 0 and ϵ = 1) and tracked the corrisponding features for a full standard
model as well for comparison. The resulting t-SNE plots are illustrated in Fig-
ures 5.7 and 5.8. We utilized a perplexity p = 50 due to the high number of point
samples, and set a number of iterations n_iter = 2500. What emerges, apart
from the same distribution of features in the final activation of the contrastive
layer, is the peculiar distribution in the final layer (on the partial-robust con-
trastive, feature are identical due to same robust learning before fine tutning,
thus they overlap in purple points). While features of full-robust and full-
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Figure 5.8: t-SNE feature extraction of the RoSSC10→C10 linear layer. Colors
represent the non-robust version (green), the completely robust (blue), and the
partially robust (red).

standard models still appear well separated and more bounded, when changing
fine-tuning adversarial criteria, some robust features fall off "clusterized" inside
the standard feature set. It is reasonable to think that the blue stain inside
the standard cluster suggests a property similarity between full-robust features
and partial ones.

A different situation appears for partial robust RoSSC100→C100, whose fine-
tuning produces hybrid features that merge in the same cluster, as shown in
Figure 5.10. This result may also be correlated with the low robust accuracy
gain produced in Table 5.7.

Based on what is widely explained in Section 1.1.1, it is then necessary to
conduct an analysis of the problem to evaluate the convenience of applying
PGD or other methods to a designed model, especially if we want to submit a
strong adversarial training. Anyway, in general, a model prone to adversarial
attacks is not reliable for any application.
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Figure 5.9: t-SNE feature extraction of the last RoSSC100→C100 activation layer
of SimCLR. The comparison is made between standard fine-tuning (left) and
the robust one (right).

Figure 5.10: t-SNE feature extraction of the RoSSC100→C100 linear layer. Colors
represent the non-robust version (green), the completely robust (blue), and the
partially robust (red).





Chapter 6

Conclusions

In the field of deep learning, the state of the art has made tremendous strides,
including in the deepening of self-supervised learning techniques. As research
advances, we have focused on the reliability of these models in terms of robust-
ness. We reproduced SimCLR, a contrastive learning architecture, in a robust
manner. Using Projected Gradient Descend (PGD) to perform Adversarial
Training, we obtained different results, depending on the datasets used. The
role of ϵ parameter turned out to be essential in order to visualize the effects
of network improvement. Moreover, we made use of CIFAR10 and CIFAR100
datasets as support for our analysis. Changing datasets at different stages of
the training framework allowed us to keep track of a wide range of simulations.
We found that some challenging tasks had a negative impact on performances,
as feeding CIFAR100 to our classifiers in fine-tuning step. On the other hand,
different combinations, especially making use of the simpler CIFAR10 task,
proved to work well since we retrieved satisfactory results.

That being said, the process of deep learning robustness improvement is still
a wide object of research, and the state-of-the-art have not found the optimal
solution in tacking adversaries detection yet. The problem might lie in the
limiting premises, around which, deep learning problems are designed. Anyway
this considerations goes beyond the purposes of the thesis, but represent an
interesting point of view for future researches.
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