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Abstract

Van der Waals (vdW) solids have attracted great attention since the discovery of graphene, with
the essential feature being the weak interlayer bonding. The nature of these weak interactions
is decisive for many extraordinary properties, but it is a strong challenge for current theory to
accurately model long-range electron correlations. Nowadays, Titanium disulfide, TiS2, which is
an archetypal vdW solid, is receiving considerable attention. In fact, recent experimental analysis
of chemical bonding in TiS2, based on synchrotron X-ray diffraction data, allowed to obtain an
accurate profile of the electron density in this material.
Comparison with available theoretical electron-density calculations, based on the Density Func-
tional Theory (DFT), shows that, while a quantitative agreement is observed for the chemical
bonding description in the covalent TiS2 slabs, significant differences are instead identified for the
interlayer interactions. In fact, the experiments reveal more electron deformation than theory,
thus suggesting than the interlayer interactions are significantly stronger than the current theo-
retical description predicts.
In order to shed light on this discrepancy and to obtain a complete theoretical description of TiS2,
the Quantum Espresso first principles package, based on the DFT, is applied, by adopting various
theoretical schemes to consider, at different levels, the vdW interactions also including the most
recent developments. Several first principles simulations are carried out to evaluate structural,
electronic and energetic properties of the system. In particular, we obtain the electron density
distributions which can be directly compared with experimental data. Careful data analysis allows
to get a better knowledge of TiS2 properties and also to assess the quality of the newest theoretical
approaches.
Employing some of the most popular DFT functionals, we reach reasonably satisfactory agree-
ments with experimental data, both for structural and electronic properties.
Moreover, we propose a tuning of the q parameter in the original vdW-DF functional of Hamada,
obtaining a value of the charge density at the bond critical point in the S-S interlayer fragment,
in better agreement with experimental data.
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Chapter 1

Introduction

There are a large number of materials with mild stiffness, which are not as soft as tissues and
not as strong as metals. These semihard materials include energetic materials, molecular crystals,
layered materials, and vdW crystals. The integrity and mechanical stability of these materials
are mainly determined by the interactions between instantaneously induced dipoles, the so called
London dispersion force or van der Waals force.
Layered van der Waals (vdW) materials have unique properties, and these two-dimensional solids
are central to current research in solid-state science. Although graphite is probably the most
widely known layered material, nowadays transition metal dichalcogenides (TMDs) are attracting
much attention due to a range of exciting applications, including electrode materials for ion bat-
teries [1] , thermoelectrics [2] , catalysis [3] , topological insulators [4] , superconductors [5] , and
charge-density-wave materials [6]. In addition, single layers of TMDs are available due to the weak
interlayer interaction [7] .
Mono- and few-layer TMDs have unique properties which cannot appear in the bulk [8] , and
heterostructures built layer by layer using different materials have entirely new properties [9] . In
all the numerous fundamental and applied investigations of vdW materials, the weak interlayer
interactions play a central role in the formation, intercalation, exfoliation and layer-by-layer build-
ing of the materials as well as being decisive for their unique properties.
In TMDs, a transition metal atom (M) layer is sandwiched by two chalcogen atom (X) layers. It
is commonly assumed that the MX2 slabs are stacked by vdW interactions, whereas the intralayer
M–X interactions are covalent. The interlayer part of the structure is typically referred to as the
vdW gap. In the condensed-matter field, the vdW term is used typically for London dispersion
forces, which are caused by instantaneously induced dipoles [10].
The quasi two-dimensional nature of MX2 compounds gives rise to a marked anisotropy in trans-
port properties. The most important feature, however, is that the weak interlayer bonding permits
the intercalation of various guests between the layers. Depending on the guest species, unsual and
dramatic changes in the physical properties of the host can occur, and this feature has stimulated
much research interest on these materials.
The strength of the interlayer interaction affects not only the binding and exfoliation energy of
the layers, but also the electronic properties. A combined high-pressure X-ray diffraction and
vdW-modified DFT study of SnS2 , which is isostructural with TiS2, showed that the interlayer
bonding strength significantly influences the electronic structure, including the band-gap [11] but
standard (no vdW) and vdW-corrected DFT calculations show different electronic properties due
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CHAPTER 1. INTRODUCTION

to differences in the strength of the interlayer interaction [12]: this example makes clear that a
precise description of the weak interlayer interactions is vital for theoretical predictions of the
physical properties of these materials.
One of the most important quantity to study in solid state physics is the electron density (ED)
of a given crystal. It probably represents the most information-rich observable available since it
has become possible to determine EDs from analysis of structure factors obtained from accurate
X-ray diffraction data. X-ray ED investigations is used to study chemical bonding in a wide range
of materials.
During the past decade, the accuracy of experimental X-ray diffraction data has increased dra-
matically owing to the use of high-energy synchrotron sources, which significantly limit systematic
errors in the data and, thanks to these modern techniques, nowdays it is possible to evaluate struc-
tural, vibrational, energetic and electronic properties of a wide range of a material in an extremely
accurately way.
Because of this high-level development of the experimental side, it is increasingly challenging for
the theoretical models to accurately predicts the structural and mechanical properties of these
semihard materials, especially in the frame of DFT, where the non-local exchange correlation
functionals are not well known.
Titanium disulfide is a solid whose electronic structure is also nowdays quite disputed, because the
properties observed could be interpreted in terms of metallic, semimetallic and extrinsic semicon-
ductor models, even if some experimental evidences have shown that TiS2 is an extrinsic semicon-
ductor [13].
There is a considerable technological interest in TiS2 as a host material for intercalation reactions
with alkali metals. In particular, it was the typical intercalation cathode material used in early
Li-ion batteries, and it is still considered a candidate, for example, for high-power applications or
all-solid-state batteries [14].
TiS2 has also received attention as an oxygen catalyst for fuel cells [15], as a catalyst for the prepa-
ration of urethanes [16] and linear polyesters [17], as a catalyst in the thermal transformation of
dodecacarbonyltriiron (Fe3(CO)12) [18], and as a solid lubricant [19].
Nowadays, this archetypal vdW solid is receiving considerable attention. In fact, recent exper-
imental analysis of chemical bonding in TiS2, based on synchrotron X-ray diffraction data [20],
allowed to obtain an accurate profile of the electron density in this material.
Comparison with available theoretical electron-density calculations, based on DFT, shows that,
while a quantitative agreement is observed for the chemical bonding description in the covalent
TiS2 slabs, significant differences are instead identified for the interlayer interactions. In fact, the
experiments reveal more electron deformation than theory, thus suggesting than the interlayer
interactions are significantly stronger than the current theoretical description predicts.
At this point, the question that naturally arises, is if the current theoretical approaches are inap-
propriate to correctly describe these vdW materials, like TiS2.
The main purpose of this thesis work is to shed light on this discrepancy. We have applied the
Quantum Espresso [21] DFT packages to include, at different levels, vdW interactions in our
ab-initio calculations, also to assess the quality of some of the newest theoretical approaches.
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Chapter 2

Methods

In this chapter a theoretical overview of the Density Functional Theory (DFT) is made, with
particular emphasis on its use as a framework for ab initio calculations. We also mention and
describe vdW effects in condensed matter physics and, finally, we focus on the most recent DFT
developments, showing different approaches to deal with vdW interactions at different levels.

2.1 The Density Functional Theory

Density functional theory (DFT) is a computational quantum mechanical modeling method used
in physics, chemistry and, in general, in materials science, to investigate the electronic structure
(principally the ground state) of many-body systems, in atoms, molecules, and condensed phases.
Using this theory, the properties of a many-electron system can be determined by using function-
als of the electron density. DFT is certainly the most popular and versatile methods available in
condensed-matter physics, computational physics, and computational chemistry.
In the context of computational materials science, ab-initio DFT calculations allow the predic-
tion and calculation of material behavior on the basis of quantum mechanical considerations. In
principle the calculation is exact and the only ingredients needed are the number and the types
of involved atoms. In practice, a number of approximations are introduced, as described in the
following.
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

Let us consider a many-body quantum system made of N nuclei and M electrons interacting via
the Coulomb potential. Let be the electron mass me, the electron charge e, the ions masses MI

and the ion chargees ZIe: in this way the full Hamiltonian operator of the system, expressed in
atomic units, reads

H =
M∑
i=1

−∇
2
i

2
+

N∑
I=1

− ∇
2
I

2MI

+
1

2

M∑
i 6=j

1

|~ri − ~rj|
+

1

2

N∑
I 6=J

ZIZJ

| ~RI − ~RJ |
−

N,M∑
I,i

ZI

|~ri − ~RI |

the solution of the time-independent problem is given by the many body Schröedinger equation:

H Ψ(~r, ~R) = E Ψ(~r, ~R) (2.1)

where Ψ(~r, ~R) is the wavefunction of the entire system and the pair (~r, ~R) contains all the spatial
coordinates of the electrons and of the nuclei respectively.
It is well known that such a many body quantum problem is not exactly analytically solvable and
hence the need to an alternative approach to solve this wide class of problems.
The purpose of this section is to develop a theoretical overview of the main conceptual steps that
allow us to arrive at the DFT formulation of the many-body problem mentioned above.
First of all, we can observe that the order of magnitude of the ratio between a typical nuclear

mass and the electron mass is
m

MI

≈ 1

104
and this means that the nuclear dynamics occurs on

different energetic and temporal scale with respect to the ones associated to the electrons. As a
consequence, we can decouple nuclear and electronic motion within the so called Born-Oppenheimer
(BO) approximation.
The basic idea on which this approach is built, is to observe that the nuclear dynamics is not affected
by quantum effects because the typical thermal wavelenght of the nucleus at room temperature is
much smaller than the typical interatomic distance a0:

λ
(T )
I =

1

6πMIKbTr
<< a0

where Tr is the room temperature and Kb is the Boltzmann constant.
If the above condition yields, the nuclei evolve according to the Newton’s law and so the many-body
problem can be formulated in the following way

(Te + Vee + Ven + Vnn) ψe(~r, ~R) = ε(~R) ψe(~r, ~R)

[Tn + ε(~R)] Φ(~R) = E Φ(~R)→M
d2R

dt2
= −∂ ε(

~R)

∂(~R)

where Te and Tn are respectively the nuclear and electronic kinetic operators, Vnn is the nucleus-
nucleus Coulombian repulsion and Ven denotes the electron-nucleus Coulombian attraction.
The first equation represents the Schröedinger equation of the electrons in presence of the nuclei
and the associated eigenvalue ε(~R), that appears in the second equation, is a potential that affects
the classical dynamics of the nuclei.
In this spirit, the lowest order approximation is to consider the nuclei as fixed on their equilibrium
positions: in this way the only contributions due to the nuclear presence in the system appear in
the first equation within the terms Vnn and Ven.
Within the BO approximation, the strategy to solve our many body quantum problem is the
following:
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

• The first step is the resolution of the Schröedinger equation for the electronic Hamiltonian:
this allow us to find ε(~R).

• Once ε(~R) is computed, the second equation can be solved and this will give us the nuclear
kinetic energy Tn and the forces acting on the nuclei.

• With the knowledge of both ε(~R) and Tn, it is possible to compute the energy of our many

body system as E = Tn + ε(~R) and an approximation of the exact wave function will be

Ψ (~r, ~R) = Φ (~R)ψe(~r, ~R).

Since the first conceptual step means to solve the electronic many body problem, the obvious
question that arises now is how to determine the wavefunction ψe(~r).
The answer is given by Hohenberg-Khon (HK) theorems [22], the main tools on which DFT is
based.
As before, let us consider a system made of M electrons supposing that all the nuclei are fixed in
their equilibrium position (Tn = 0) and let us also assume that the system is in its non-degenerate
ground state (GS): in this situation all the M electrons are moving in an external potential that
is generated by the nuclear static charges.
The electron density operator can be written as

n(~r) =
M∑
i=1

δ(~r − ~ri)

It is immediate to show that the GS electronic particle density has the following expression:

n0(~r) =

∫
d~r1...d ~rM ψ∗e(0)(~r1, ..., ~rM)ψe(0) (~r1, ..., ~rM)

The meaning of the above equation is that one can associate a single-particle density function
n0(~r) to the GS electronic many-body wavefunction ψe(0).
At this point is clear that, in order to compute n0, one has to know ψe(0), that is a strongly
complicated object.
The HK theorems, applicable to any system consisting of electrons moving under the influence of
an external potential, allow us to give a solution to such an apparently unsolvable problem.

• The first HK theorem states that, once the external potential is fixed, the electronic ground
state wavefunction is a unique functional of the ground state density:

ψe(0) = ψe [n0(~r)]

as a corollary, also the ground state total energy of the system will be a unique functional of
n0:

E0 = E [n0(~r)] = 〈ψe [n0]|Vee + Ven + Te |ψe [n0]〉

• The second HK theorem guarantees that the variational principle holds for the energy func-
tional written above:

min{E [n(~r)]} = E [n0(~r)] = E0

this means that a successful minimization will yield the ground-state density and, conse-
quently, all the other ground-state observables.
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

The crucial point is that, once the number of electrons and the external potential are fixed, the
other terms such as Vee and Te will be the same for all the system with M electrons and so, all the
system with the same number of electrons under the influence of the same external potential, will
have the same ground state density.
This suggests to map the system with M electrons interacting via the real potentials onto a
fictitious and non-interacting system whereby the electrons move within an effective single-particle
potential.
In this way one can write down the equations for a new system in which, according to the HK
theorems, the ground state density n0(~r) is exactly the same as that the real system.
In particular, one can solve the so called Kohn–Sham (KS) equations for the auxiliary and non-
interacting system in which an effective single-particle external potential Veff (~r) appears. In this
framework, the KS equations read[

−∇
2

2
+ Veff (~r)

]
φi(~r) = εiφi(~r) i = 1, ...,M (2.2)

where the orbitals φi, according to HK theorems, reproduce the density n(~r) of the original many-
body system

n(~r) =
M∑
i=1

|φi(~r)|2 . (2.3)

The term Veff (~r) in (2.2) is the sum of the following terms:

Veff (~r) = V (~r) +

∫
d~r′

n(~r′)

|~r − ~r′|
+ VXC [n(~r)] (2.4)

Here, V (~r) denotes the nuclear contribution to the external potential that affects all the fictitious
free electrons. The integral term is the Hartree term, describing the electron-electron Coulomb
repulsion and, finally, there is the so called ”exchange-correlation functional”, that is VXC [n(~r)].
It is common to split this last term into a sum of two factors:

VXC [n(~r)] = VX [n(~r)] + VC [n(~r)]

In this expression the first factor is the exchange energy functional, in which the effects coming from
the antisymmetry of fermionic wavefunctions are accounted. The second term is the correlation
functional and takes into account all the beyond-Hartee-Fock correlation effects.
The Kohn-Sham equations in (2.2) are so far exact: no approximations have been made because
we have simply mapped the fully interacting system onto an auxiliary and non-interacting system,
that yields the same GS density. Unfortunately, the exact expression of the exchange-correlation
functional in term of the electronic density n(~r) is not known, except for the free electron gas, and,
for this reason, the major problem with DFT is to compute VXC through the use of some suitable
approximations.
Now we will discuss more in detail the most popular approaches to include the exchange and
correlation effects in quantum ab initio DFT calculations.
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

2.1.1 The Exchange-Correlation Energy Functional

It is useful to start by expressing the KS equation in terms of functionals of the electronic density
[23]

EKS[n(~r)] = TKS[n(~r)] +

∫
d~rn(~r)V (~r) +

∫
d~rd~r′

n(~r)n(~r′)

|~r − ~r′|
+ EXC [n(~r)] (2.5)

where, through the use of eq. (2.3), one can write

TKS[n(~r)]→ TKS[φ(~r), φ∗(~r)] =
M∑
i=1

∫
d~r

1

2
|∇φi(~r)|2

TKS does not represent the true kinetic energy of the system, but is instead the exact kinetic
energy of a non-interacting system.
The KS equations in their usual form can be obtained from the minimization of (2.5), with the
constraint N =

∫
d~r n(~r).

The relation between VXC and EXC is

VXC(~r) =
δEXC [n(~r)]

δn(~r)

which yields:

δEXC [n(~r)]

δn(~r)
=

δ

δn(~r)

∫
d~r n(~r) εXC [n(~r)] =

∂

∂n(~r)
[n(~r)εXC [n(~r)]]→

VXC = εXC [n(~r)] + n(~r)
∂εXC [n(~r)]

∂n(~r)

That is the explicit expression of the exchange-correlation potential appearing in (2.2) in terms of
energy density εXC .
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

The Local Density Approximation

One of the simplest approximations for the exchange correlation functional is the local-density
approximation (LDA), where the functional depends only on the density at the position where the
functional is evaluated and not, for example, on derivatives of the density.
The spirit of the approximation is in the fact that even if in a real system n(~r) is not uniform,
one uses the EXC [n] expression of the homogeneous electron gas (HEG). This latter is a quantum
mechanical model of interacting electrons in a solid where the positive charges (i.e. atomic nuclei)
are assumed to be uniformly distributed in space and the electron density is a uniform quantity in
space as well.
Usually, in LDA, the exchange correlation functional is expressed as the sum of the two contribution
separately:

EXC [n(~r)] = EX [n(~r)] + EC [n(~r)] (2.6)

The exchange term is still considered at the HF level of theory. In order to explain the physical
nature of this contribution we can make a simplified -but useful- argument according to which we
can image that the exchange term is the one that takes into account that an electron of a given
spin will be surrounded by a region where the density of electrons with the same spin (say, ↑) is
reduced.
Intuitively, the effect of this ”exchange hole” can be estimated by considering a uniform density
inside a sphere of typical radius r0 and zero elsewhere and so, since the hole contains a single
electron, one has immediately

rs = (3/(4πn↑))
1/3 (2.7)

that defines the so called Wigner-Seitz parameter. In this spirit, computing the electrostatic energy
density, one can recover the same dependence on density of the well known Dirac exchange term:

εHEGX = −3

4

(
3

π

)1/3

n1/3 (2.8)

and it immediately leads to the usual expression of the exchange density functional:

ELDA
X = −3

4

(
3

π

)1/3 ∫
d~r n(~r)4/3 (2.9)

The correlation energy, by definition, is not included at the HF level of theory, but is a fun-
damental part of the DFT.
Even for a HEG, a general explicit expression of the correlation energy is not available, except for
the high- and low-density limits (HD and LD respectively).
In the HD limit, the correlation energy can be computed, for example, within the RPA (random
phase approximation) [24], and then the dependence with respect to the Wigner-Seitz parameter
introduced in (2.7) is the following:

εHDC (rs) = A ln(rs) +B + rs(C ln(rs) +D) (2.10)

However, in general, a description of the correlation energy in a wide range of densities requires
a suitable parameterization scheme, based on fitting functions to the near-exact Quantum Monte
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

Carlo (QMC) results of Ceperley and Alder [25]. Examples of correlation functionals obtained
with this method are the Vosko-Wilk-Nusair [26], the Perdew-Wang [27] or the Perdew-Zunger
[28] one. In particular, the former and the latter are the two parameterization of LDA functionals
implemented in Quantum Espresso.
Some of these functional forms, such as the Vosko-Wilk-Nusair one, are usually analytically com-
plicated and inherently contain numerical irregularities.
For completness we end the discussion on the LDA, by mention the local spin-density approxima-
tion (LSDA): this is a straightforward generalization of the LDA to include electron spin. In this
more general apporach the exchange-correlation functional reads

εLSDAXC (n↑(~r);n↓(~r)) =

∫
d~r n(~r) εXC [n↑(~r);n↓(~r)] (2.11)

where εXC [n↑(~r);n↓(~r)] is the exchange-correlation energy for a spin-polarized HEG. The aim of
such a generalization of the LDA is in the description of spin system.

The LDA and LSDA are very successful approximation for many systems of interest, especially
those where the eletronic density is quite uniform such as bulk metals, but also for less uniform
systems such as molecules, semiconductors, and ionic crystals. There are, however, a number of
features that the LDA fails to reproduce: the most dramatic being the following:

• The LDA has a tendency to overestimate the exchange energy and underestimate the cor-
relation energy [29]. However, the errors in the evaluation of the exchange and correlation
parts usually tend to compensate each other to a certain degree, leading to surprisingly good
result in a wide range of systems.

• Electronic densities of atoms in the core region, where the electrons are strongly localized,
is poorly described: the reason is that LDA fails to cancel the self-interaction, which is
important for strongly localized states. To the other side, the electronic density in the valence
region of the atom is much better reproduced, although it still decays into the vacuum with
an incorrected behavior.

• Effects due to truly non local correlation effects, such as the vdW corrections, are not ac-
counted within LDA.
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2.1. THE DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODS

The Generalized Gradient Approximation

To correct for the tendency of LDA to overestimate the exchange energy and underestimate the
correlation one, a common strategy is to take into account the gradient of the density, because
of the non-homogeneity of the true electron density of a given system: this allows for corrections
based on the changes in density away from the considered space coordinate.
These schemes are the so called generalized gradient approximations (GGA)[30] and, in this frame-
work, the exchange correlation functional is of semi-local type and has the following form

EXC [n(~r)] =

∫
d~r n(~r) εXC [n(~r)]FGGA

XC [s(~r)] (2.12)

Here FGGA
XC [s(~r)] is the enhancement factor, where the variable s(~r) is the dimensionless reduced

gradient, defined as:

s(~r) =
1

2 (3π2n(~r))1/3
|∇n(~r)|
n(~r)

(2.13)

The reduced gradient expresses how fast the density varies on the scale of the local Fermi wave-
lenght kf .
It is important to point out that when |∇n(~r)| → 0, we have also s(~r)→ 0 and, with the constraint
FGGA
XC [s(~r)→ 0]→ 1, the LDA is recovered.

Unlike the LDA, there is no unique form for the GGA, and indeed many possible variations are
possible, each corresponding to a different enhancement factor.
Using this approach, very good results for molecular geometries and ground-state energies have
been achieved.
Taking into account the spatial variation of the electronic density, the GGA exhibits substantial
improvements with respect to the first two deficiencies of LDA mentioned in the previous section.
More specifically, the LDA usually tends to overestimate the binding energies, and, as a direct
consequence, to underestimate bond lenghts in molecular system.
Potentially more accurate than the GGA functionals are the so called meta-GGA functionals, a
natural development beyond the GGA. Meta-GGA DFT functional in its original form includes
the second derivative of the electron density, while GGA, as said before, includes only the density
and its first derivative.

Despite the considerable improvements, the GGA and meta-GGA fail, exactly as the LDA, in
the description of non-local correlation effects. Since in a wide class of systems the mentioned
effects are absolutely non-negligible, these DFT calculation appear to be inadequate.
Starting from LDA and GGA, new methods have been developed to better describe non-local
correlation interactions.
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2.2. VDW-CORRECTED METHODS IN DFT CHAPTER 2. METHODS

2.2 VdW-Corrected Methods in DFT

Identified in 1873 [31], the vdW interaction, is a force that today attracts more interest than ever.
It was first introduced in a doctoral thesis by Johannes Diderik van der Waals “on the continuity
of the gaseous and liquid state” at Leiden University . The existence of the vdW force [32] is
today well established. It is present everywhere, but its variation from one environment to another
and its complex manifestations still pose challenging questions nearly one hundred years after van
der Waals was awarded the Nobel Prize in physics. These questions are relevant for such varied
systems as soft matter, surfaces, and DNA, and in phenomena as different as supramolecular
binding, surface reactions, and the dynamic properties of water.

Figure 2.1: Instantaneously induced dipole, source of London dispersion forces.

In physical-chemistry terminology, the possible sources of the vdW interaction are considered to
be the following

• Two permanent dipoles (Keesom force).

• A permanent dipole and a corresponding induced dipole (Debye force).

• Two instantaneously induced dipoles (London dispersion force) [33].

In the condensed-matter community, instead, typically just the last situation mentioned, which is
a pure quantum phenomenon, is considered the real source of vdW interactions.
A proper theory for atoms and molecules should account for all forces at play, including covalent
bonds, hydrogen bonds, and electrostatic interactions, because such combinations of interactions
are relevant in typical materials and systems: DFT represents such a general framework.
Like all non-relativistic electronic effects, the vdW interactions are present in the exact DFT
exchange-correlation functional, but as discussed before, vdW effects are not properly described
by standard approximate DFT schemes.
The field of vdW interactions in DFT was practically absent before around 1990, but picked up at
the end of the previous century, grew immensely during the first decade of the present one, and
increased exponentially thereafter.
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Overall, there are now several kinds of approaches to include vdW interaction in DFT calcula-
tions. Several of these are based on computing atom-based pair potentials and adding an empirical
damped dispersion correction (see for example ref. [34]), instead others are built on a non-local
exchange-correlation density functional, such as those proposed by Vydrov and Van Voorhis [35].
In this section we will discuss the vdW corrections, at different levels, adopted in this work.

2.2.1 GGA + Grimme-D2

This method [34] represents a development of its original version, Grimme-D1 (GD1) [36], named
also DFT-D. This, as its more recent version, is an empirical method to account for vdW interac-
tions in practical DFT calculations. In this approach a semi-local exchange-correlation functional
(i.e. GGA) is adopted; this choice, as it was pointed out before, does not properly include vdW
effects, since these are of non-local nature.
In its application GD1 has shown different shortcomings [34], the main ones can be summarized
as follows, which are overcome by GD2:

• Consistent atomic parameters (C6 coefficients) are only available for elements H, C–Ne, but
studies of supramolecular structures or problems in material science require parameters for
elements from the whole periodic table.

• Test calculations for molecules with third-row elements of the periodic table, showed system-
atic errors.

• Adding the dispersion energy to the standard GGA DFT energy leads to inconsistencies for
“normal” thermochemistry (e.g. atomization energies: the dispersion correction is zero for
the free atom and always nonzero (and large) for the molecule).

The inclusion of London dispersion correction with Grimme-D2 (GD2) is made in a post-processed
way: once the energy of the system is computed within the GGA, an empirical damped contribution
that takes into account for the vdW corrections is added

E = EGGA + EGD2 (2.14)

The vdW correction has the following form:

EGD2 = S6

Nat−1∑
i=1

Nat∑
j=1+1

Ci j
6

R6
i j

fd(Ri j) (2.15)

Where, Nat is the number of atom in the system, Ri j is the interatomic distance, Ci j
6 =

√
Ci

6C
j
6

denotes the dispersion coefficient for atom pair i j and S6 is a global scaling factor that depends
only on the DF used: in our case GD2 is coupled with a DF in GGA (PBE [37]) and so S6 = 0.75.
More specifically, it is important to underline a limiting factor of this approach: the values for the
coefficient Ci

6 are tabulated for each element of the periodic table and they are insensitive to the
particular chemical situation (for instance, CC

6 for carbon in methane takes exactly the same value
as that for the one in benzene within this approximation, although the environment of the C atom
is different).
fd is a damping function whose role is to avoid short-range divergences and double counting
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of correlation-energy contributions. The analytic expression of such a damping function is the
following:

fd(Ri j) =
1

1 + e−d(Rij/R
i j
r −1)

(2.16)

Here, d denotes the damping factor and Ri j
r = Ri

r + Rj
r is another tabulated parameter with the

same limitations of Ci j
6 .

2.2.2 GGA + Grimme-D3

This method represents an improved version of the previous one. The philosophy on which the
method is constructed is the same as before but, unlike GD2, GD3 has more flexibility to adapt
itself to predict vdW effects in several systems.
Also in this case the total energy reads:

E = EGGA + EGD3 (2.17)

where

EGD3 = −
Nat∑
i=1

Nat∑
j=i+1

(
fd,6(Rij)

Ci j
6

R6
i j

+ fd,8(Rij)
Ci j

8

R8
i j

)
(2.18)

The main difference between this method and the one presented above is that here, in addiction
to Ci j

6 , the higher order Ci j
8 coefficient is present, and, more importantly, both these coefficients

are geometry-dependent, in such a way to be adjusted on the basis of the local environment
(coordination number) around atoms i and j.
The damping functions fd,n have the following expression:

fd,n(Rij) =
Sn

1 + 6 (Ri j /R
i j
r )−αn

(2.19)

where Ri j
r =

√
Ci j

8

Ci j
6

, the parameters α6, α8 and S6 are fixed respectively to 14, 16 and 1 and S8

is adjusted on the basis of the choice of the exchange-correlation functional.
Although their high level accuracy for the description of a wide class of physical and chemical
processes, robustness, applicability to all kinds of systems (from molecules to condensed bulk
phases) and fast computational time, these semi-local DF approaches are inadequate to describe
many different cases, particularly extended systems.
Therefore the need arises to introduce truly non local exchange-correlation functionals that are
able to account accurately for vdW corrections. Two of the most popular methods used in recent
first-principle studies based on non local exchange-correlation functionals, are presented in the
following two subsections.
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2.2.3 rVV10

rVV10 [35] (revised Vydrov and Van Voorhis) belongs to the class of functional designed to min-
imize the error of the binding energies and interaction energies curves in a certain collection of
materials, such as the S22 data set [38] made of molecular dimers, aiming for a general use for all
materials.
In this scheme the exchange energy is computed within the GGA (2.12), as it was described in the
previous section.
The correlation energy contribution really includes non-local effects and has the following form:

ErV V 10
C =

∫
d~r n(~r)

[
1

32

(
3

b2

)3/4

+
1

2

∫
d~r′ n(~r′) Φ(~r; ~r′)

]
(2.20)

where Φ(~r, ~r′) is the non local correlation kernel (NLCK) (i.e. it depends on two different radius
vector: ~r and ~r′). More specifically, the expression of the rVV10 NLCK is the following

Φ = −3

2
(k k′)−3/2

[
g g′

k k′

(
g

k
+
g′

k′

)]−1
g = ω0 |~r − ~r′|2 + k

ω0 =

√
c

∣∣∣∣∇n(~r)

n(~r

∣∣∣∣4 +
4π

3
n(~r)

k =
3πb

(576π)1/6
n(~r)1/6

where the primed varibles g′ and k′ are referred to the electronic density computed on point ~r′.
In the original version, namely VV10, the values of the two empirical parameters b and c optimized
by Vydrov and Van Voorhis were found to be b = 5.9 and c = 0.0093, respectively. In the revisited
version, Sabatini and coworkers made the approach more efficient [39], retaining the value of c and
optimizing b with respect to the S22 data set, finding b = 6.3.
Comparing rVV10 to VV10 performances, one finds that VV10 tends to systematically underesti-
mate the binding energy. Therefore, the slightly larger value of b proposed in the rVV10 helps to
reduce the under-binding of the original method.
The functional dependence of the NLCK is

Φ(~r, ~r′)↔ Φ(n(~r), n(~r′), ∇n(~r), ∇n(~r′), |~r − ~r′|)

If the kernel depends separately on densities and gradients in the two points, the double integral
appearing in (2.20) is a 6-dimensional object, very expensive to compute, hence the need of an
efficient intergation method.
Basically, the idea of rVV10 is to reduce the NLCK dependence on density and gradients at
separately points ~r and ~r′, to a dependence through a combined function of these arguments and
to compute this integral in momentum space:

Φ(n(~r), n(~r′), ∇n(~r), ∇n(~r′), |~r − ~r′|)→ Φ(q(n(~r), ∇n(~r)); q(n(~r′),∇n(~r′); |~r − ~r′|)

In this framework, one can pre-calculate the value of the kernel for a number of points in a 2D
q-grid of 20 × 20 points in momentum space and interpolate in between following the procedure
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proposed by G. Roman-Perez [40].
With its efficiency in predicting correctly structural, vibrational and electronical properties, rVV10
maintains the outstanding precision of the original VV10 in non-covalently bound complexes and
performs well in representative covalent, ionic, and metallic solids.

2.2.4 vdW-DF Functionals

Within the DFT framework, the van der Waals density functionals vdW-DF [41],are a family
of functionals able to reproduce both covalent and weak van der Waals (vdW) interactions in a
seamless fashion
The exchange correlation energy EXC , sum of exchange energy EX and correlation energy EC , is
expressed as

EvdW−DF
XC = EGGA

X + ELDA
C + ENL

C (2.21)

where EGGA
X is of the same form of the one introduced in (2.12), ELDA

C is the short-range correlation
energy within the local density approximation and ENL

C is the non local correlation energy.
The non local nature of vdW-DF methods is contained into this latter contribution, whose explicit
expression could be written through a NLCK, in the same form of (2.20)

ENL
C =

1

2

∫
d~r

∫
d~r′ n(~r)Φ(d, d′)n(~r′) (2.22)

In this scheme, the NLCK depends on density and its gradients through the relations

d = q0(n(~r), ∇n(~r))|~r − ~r′|
d′ = q0(n(~r′), ∇n(~r′))|~r − ~r′|

where q0 determines the long-range asymptotic behavior, as well as the short-range damping of
the NLCK Φ.
Ultimately, this choice implicitly implies that the only non-local correlation term is due to vdW
interactions, where the vdW kernel is actually derived in a way to model dispersion interactions.
In general vdW-DF functionals give a reasonable level of accuracy (comparable to rVV10) in wide
class of systems, moreover the additional cost with respect to a standard GGA calculation is only
30 %.
Although it improves the description of vdW interactions over conventional semi-local DFT, a sys-
tematic error of this kind of approach is the consistently overestimate of inter-fragment distances.
This happens because, in its original version, vdW-DF was combined with revPBE [42] exchange
functional that is too repulsive at small separations [43].
By trying to overcome this limitation, subsequent investigations led to the conclusion that the
following properties are required [44] for a suitable exchange functional to equip vdW-DF with.

• If we define an enhancement factor for the exchange functional

FX(s(~r)) = 1 + µs(~r)2 (2.23)

where s has been introduced in (2.13) and µ ≈ 0.1, then the first criterion that a suitable
exchange functional for vdW-DF has to satisfy is that, in the slow-varying density limit
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(∇n(~r)→ 0), its enhancement factor has to have the same dependence as the one in (2.23).
This property plays an important role in predicting equilibrium geometries for solids and
surfaces [45].

• At large gradient limit (∇n(~r)→∞), it is proposed [45] that the enhancement factor should
have a s(~r)2/5 dependence, so that it can avoid the spurious binding from exchange only.

In this spirit, a recent promising development presented in the next subsection was introduced by
Hamada.

vdW-DFq Method

Hamada proposed another exchange functional [46] (vdW-DFq), improving the description of at-
tractive vdW interactions near the equilibrium with respect the original vdW-DF.
The vdW-DFq enhancement factor reads:

FX(s(~r)) = 1 + fqµ0s(~r)
2

fq(s(~r)) =
1

(1 + µ0s(~r)/q)4/5

When s→ 0, then fq → 1 and the first condition mentioned above is fulfilled.
The angular coefficient of the asymptote of the enhancement factor represents an important quan-
tity for binding separations[47] and reads:

dFX(s(~r))

d s(~r)
= 2µ0fq(s(~r))s(~r)−

1.8µ2
0fq(s(~r))

9/4

q s3

The value of the parameter q is established in such a way that the asymptote of FX(s(~r)) for
s → ∞ is such that the second condition mentioned above is fulfilled. We can notice that such
a method based on this parametric optimization can really tune the quantitative nature of the
exchange functional, permitting to explore a wide range of values for the enhancement factor and
its derivative; even if it is clear that an universal and accurate function for the enhancement factor
might be very hard to find. However, it can be useful to tune the enhancement factor for particular
kinds of materials that have similar electronic charge density reduced gradients s(~r). We will return
on this point in the conclusions of this work.
In a very recent study [45], different kinds of materials belonging to the class of semi-hard materials
have been tested to provide an opportune tuning of the q parameter in order to optimize the mass
density.
In this work a further modification of the q parameter was proposed, suggesting that the mass
density is optimized for q2 = 1.05. In particular, several DFT calculation on energetic materials are
performed, for which the mass density is a fundamental parameter, since it is strongly related to
the energy density and consequently to the detonation performance [45]. Interestingly, part of the
study was focused instead on MoS2 that belongs to the class of transition metal dichalcogenides,
exactly as TiS2.

18



2.3. COMPUTATIONAL DETAILS CHAPTER 2. METHODS

2.3 Computational Details

Our calculations have been performed using the Quantum ESPRESSO (QE) package [21]. Quan-
tum ESPRESSO is a suite for ab initio condensed matter and quantum chemistry methods of
electronic-structure calculation and materials modeling, distributed for free under the GNU Gen-
eral Public License. It is based on Density Functional Theory, plane wave basis sets, and pseu-
dopotentials (both norm-conserving and ultrasoft). ESPRESSO is an acronym for opEn-Source
Package for Research in Electronic Structure, Simulation, and Optimization.
The purpose of this brief section is to discuss the main principles this DFT package in based on.

2.3.1 Plane wave basis

First of all, it is useful to introduce the Bloch theorem, that is a well-known result in condensed
matter physics. Let us consider a crystal lattice in which there is a periodic potential of the form:

U(~r) = U(~r + ~R)

~R =
3∑
i=1

ci~ai

where ~R is a crystal vector in the real space and ~ai define the three directions along which the
crystal is built.
The motion of an electron in such a periodic potential, is governed by the quantum Hamiltionian

H = −∇
2

2
+ U(~r)

The Bloch theorem states that the eigenstates of this electron are of the form

ψn~k (~r) = ei
~k·~r un~k(~r) (2.24)

where un~k(~r) is a function with the same periodicity of the lattice (i.e. un~k(~r) = un~k(~r + ~R)

for all ~R in the Bravais lattice), and n is the so called ”band index” accounting that for a given

wavevector ~k, there are many independent eigenstates.
According to this result, the KS orbitals φ appearing in (2.2) can be computed summing on all
the wavevector the Bloch waves of the form (2.24)

φn (~r) =
∑
~k

ψn~k (~r) =
∑
~k

ei
~k·~r un~k(~r) (2.25)

However, since this sum is practically infinte, QE introduces a kinetic energy cutoff (KEC) that
in practice determines the number of Bloch Waves used to determine the KS orbitals.
From a computational point of view the introduction of a suitable KEC is obviously convenient,
although it represents an approximation. More specifically, if the KEC is not very high, the Bloch
wave basis set is not enable to reproduce the oscillations of the wavefunctions associated to the
core-electrons but only to describe well the ones of the valence electrons. This problem can be
addressed by adopting the pseudopotential theory described in the following section.
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One should also point out that, using plane waves as a basis set for the electronic structure
calculations has several important advantages. For instance, by adopting this scheme, a uniform
space sampling is guaranteed, leading to the same accuracy in all the spatial points. Further, the
convergence of the physical quantities can be governed by a single parameter, that is the KEC.

2.3.2 Pseudopotentials

It is very difficult to deal with highly localized states such as core electrons due to strong ionic
potential in this region. In the majority of software of modern electronic structure calculations,
including QE, the Coulombian interaction between electrons and nuclei is pseudized and replaced
by smooth potentials, as showed in figure 2.2, causing slowly varying densities in the core of the
atoms. The pseudopotential approximation was first introduced by Hans Hellmann in 1934 and,
in this approach, valence states should be orthogonal to the core states and therefore they can be
described using a limited number of plane waves, making the above mentioned approximation of
using a KEC suitable. In principle, core electrons are treated as frozen electrons since they give
no contribution to the formation of chemical bonds. Therefore, the only contribution comes from
valence states. More specifically, in the context of practical DFT calculations, one can introduce
a core-cutoff radius rc as a threshold to separate the core and valence contributions.
Several important schemes are devised for pseudopotential approximation, among which we can
cite the Norm-Conserving-PseudoPotential (NCPP) [48] together with Ultra Soft PseudoPotential
(USPP) [49], that represent two of the most popular approaches within DFT calculations.
NCPP is constructed on the basis of the following two constrains:

• Within the cut-off core radius rc, the norm of each pseudo-wavefunction has to be identical
to the one of the corresponding all-electron wavefunction.

• Above rc, is required that each pseudo-wavefunction has to be identical to the real all-electron
wavefunction.

The presence of these two constrains, practically means to adopt an high KEC, leading to con-
siderable high computational costs. For this reason, one usually refers to NCPP as an ”hard”
pseudopotentials, indicating its reliability to describe the wide oscillations of strongly bounded
electrons.

USPP relaxes the constrain on the norm conservation to reduce the necessary plane wave ba-
sis set size. This is done choosing a larger value of rc, making the pseudopotential more ”soft”
with respect to NCPP. Thus, within this approach, the computational cost is reduced, but at the
prize to introduce (see ref. [50]) a more complicated computation scheme for the charge density.
A more recent approach is the Projector Augmented Wave (PAW) [51]. This scheme, derived
from linear-augmented-plane-wave methods, allows for DFT calculations to be performed with
great computational efficiency, because transforms the rapidly oscillating valence wavefunctions
into more computationally convenient smooth wavefunctions.
In this thesis, PAW and USPP schemes are adopted.
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Figure 2.2: Schematic approximation adopted in the Pseudopotential framework.

2.3.3 The Self-Consistent Scheme

The resolution of KS equations is carried out within a self-consisted scheme (SCS) (figure 2.3),
and, in the spirit of the Pseudopotential approximation, this will be applied only to the valence
electrons, taking the core electron contribution frozen into the external potential (term V (~r) in
(2.4)).
Such an approach is required since in the KS equations (2.2) both VXC and the Hartree contribu-
tion, are functionals of the electronic density n(~r). The same density depends on KS eigenfunctions
φi through (2.3) but, in turn, φi can be determined with the knowledge of the total effective po-
tential Veff in (2.4).
Once the nuclear potential is determined thorugh the pseudopotential approximation, QE creates a
suitable configuration of the electronic density n0(~r), so that it is possible to completely determine
the effective potential in (2.4).
The solution of the KS equation is obtained computing the matrix elements of KS Hamiltonian:

〈φn|
(
−∇

2

2m
+ Veff

)
|φn′〉 = ε 〈φn|φn′〉

A diagonalization procedure yields the new eigenfunctions φ
(D)
n from which it is possible to compute

a revised profile for the electron density n1(~r).
More specifically, this calculation is performed with a suitable k-points grid (GR) within the first
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Figure 2.3: Self-Consistent Scheme.

Brillouin zone, whose thickness is decided by the user:

n1(~r) =
∑
n

∣∣φ(D)
n (~r)

∣∣2 =
∑
n

∑
~k

∣∣∣ψ(D)

n~k
(~r)
∣∣∣2 → 1

ΩBZ

∑
n

∫
GR

d~k
∣∣∣ψ(D)

n~k
(~r)
∣∣∣2

Where first we have made use of (2.25), considering the Bloch waves ψ and then we have trans-

formed the summation over ~k into an integral in momentum space normalized with respect to ΩBZ ,
the volume of the first Brillouin zone.
Obviously, a thicker mesh of k-points will give more precise results, but it will be more computa-
tionally expensive.
In general, the new density profile is computed as a weighted average of the old density n and the
new density n1 and the weight can be decided by the user.
Once the profile of n1(~r) is evaluated, the total energy of the system E1[n1(~r)] can be recomputed.
If the error ∆E1 associated to E1 is smaller than a convergence thresold C, then the SCS ends.
Otherwise, the scheme is repeated, until the convergence is reached.
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Chapter 3

Results

In this section, the results obtained in this thesis work, applying the DFT ab-initio methods
described in the previous section, are presented.
Initially, we made a structural and energetic analysis on bulk Ti and S crystals separately, thus
testing PAW and USPP pseudopotentials. The purpose of such a work scheme, is to determine the
pseudopotential type that allow to get the better theoretical prediction, in order to subsequently
apply to the study of TiS2.
Then, taking advantage of the above described procedure, structural, energetic and electronic
properties of TiS2 will be computed and discussed, paying particular attention to the behavior of
the electronic charge density predicted in interlayer and intralayer fragments.
All the graphics presented in this section are made with the software Gnuplot [52] and XCRYSden
[53].

23



3.1. TITANIUM CHAPTER 3. RESULTS

3.1 Titanium

Titanium is a transition metal with atomic number 22, whose electronic configuration is [Ar]3d24s2.

Figure 3.1: HCP α-phase of Titanium.

The crystal structure of titanium at ambient temperature and pressure is α hexagonal close-packed
(HCP) (slip with higher energy it is possible on the pyramidal, prismatic and basal planes in the
close-packed directions).
This structure can be characterized by two reticular parameters: a, that is the hexagonal side on
the plane and c, that is referred to the development of the structure along the vertical axis.
This crystal has a two-atom basis that is repeated, according to an hexagonal symmetry, consid-
ering the basis vectors:

~a = a (1 , 0 , 0)T

~b = a(−1/2 ,
√

3/2 , 0)T

~c = a(0 , 0 , c/a)T
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This leads to an hexagonal Brillouin zone, whose primitive vectors are

~a∗ = 2π/a (1 ,−1/
√

3 , 0)T

~b∗ = 2π/a (0 , 2/
√

3 , 0)T

~c∗ = 2π/c (0 , 0 , 1)T

At about 1163 K, Ti undergoes an allotropic transformation to a body-centered cubic β-phase
which remains stable up to the melting temperature.
ω is a metastable phase, which can be reached both from α- and β- phases and its formation
generally leads to a deterioration in the mechanical properties of the material. Exactly as the
α-phase, also the ω-phase is characterized by HCP structure, but with a smaller c/a ratio.
For our purposes it is sufficient to evaluate the reticular constants a and the c/a ratio of a pure
α-phase, and the cohesion energy of the minimum-energy configuration.

3.1.1 Convergence parameters optimization

The first operation that has to be carried on, is the optimization of the following parameters:

• Ecut.

• nk.

• Esmear.

The first two parameters are respectively the KEC and the number of points of the k-grid in the
reciprocal space, discussed in the last section of the previous chapter. In particular, since we will
always employ cubic grids, we refer to nk as the number of point considered in the cubic side of
the mesh, which contains nk × nk × nk points. When this is not the case it will be specified.
The last cited parameter is particularly important for metallic systems. In order to understand
its meaning, just think that, according to the Fermi-Dirac distribution at absolute zero, the elec-
trons of a generic system will always occupy the lowest eigenstates up to a given energy. If there
are several degenerate (or close to degenerate) eigenstates at the Fermi level, it is possible to get
convergence problems, since very small perturbations may change the electron occupation.
One method of reducing these effects is to ”smear the electrons”, that means to allow fractional
occupancies. There are a few different approaches to do so, for instance, assigning a finite tem-
perature to the electron Fermi–Dirac distribution will smoothly modify the step-like nature, fixing
the convergence problem. Another way is to assign a cumulative Gaussian distribution to the
electrons, that is the method that we have used in this work.
To optimize the three parameters, first of all we have build up the unit cell of Ti α-phase as it is
shown in figure (3.1) and then, fixing the values for the lattice constants a and for the c/a ratio to
a=2.951 �A and c/a=1.587, according to the experimental values cited in literature (see ref. [54]),
we have performed several self-consistent calculations, looking for the convergence of the total
energy of the system Etot. This is done by employing both PAW and USPP pseudopotentials.
It is important to underline that the convergence of the total energy with respect to nk, depends
also on the electron smearing, and so an analysis of the trend of Etot(Esmear) with respect to
different values of nk is required. Furthermore, in order to not excessively perturb the computed
values of the total energy, is convenient to take the smearing factor as little as possible.
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The optimized values of these three parameters are chosen making a compromise between preci-
sion and computational cost at the same time, searching a configuration of these three parameters
allowing to reasonable results at an acceptable computational cost. The result of this analysis are
presented in figure (3.2) and figure (3.3) and summarized in table (3.1).

Figure 3.2: Analysis of the three convergence parameters using PAW pseudopotential for titanium. In
the bottom figure there is an analysis of the smearing factor, as a function of the total energy, for different
values of k.
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Figure 3.3: Analysis of the three convergence parameters using USPP pseudopotential for titanium. In
the bottom figure there is an analysis of the smearing factor, as a function of the total energy, for different
values of k.

PAW USPP

Ecut (Ry) 50 50

nk 12 12

Esmear (Ry) 5×10−5 5×10−5

Table 3.1: Summary of the values of the three convergence parameters optimized, for both PAW and
USPP pseudopotentials.

27



3.1. TITANIUM CHAPTER 3. RESULTS

3.1.2 Structural and energetic analysis

Once Ecut, nk and Esmear are optimized both for PAW and USPP pseudopotential scheme, a
structural analysis for the Ti α-phase can be carried out, again applying the two kinds of pseu-
dopotentials.
Now, the purpose is to predict the lowest-energy configuration for this crystal and then to estimate
its cohesion energy. The pseudopotential giving the best agreement with literature data will be
used in the treatment of TiS2. In order to determine the lowest-energy configuration we have per-
formed several self-consistent calculations with different values of the reticular constants, looking
for the ones that minimizes the total energy of the crystal.
In particular, this analysis is carried on within a GGA framework, employing a pure PBE func-
tional. The procedure consists in the following steps:

• Relaxation of the atomic positions, until the total force acting on the atoms of the crystal is
smaller than a threshold fixed to 10−5 Ry/a.u..

• Optimization of a, fixing c/a=1.587 (see ref [54]): a→ amin.

• Optimization of c/a, fixing a = amin: c/a → (c/a)min.

• Computation of the cohesion energy of the system employing amin and (c/a)min.

Figure 3.4: Etot−Eamin as a function of different values of the hexagonal reticular constant a, for both the
pseudopotential schemes employed. In red the curve computed within PAW, in blue the one associated
to USPP.
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Figure 3.5: Etot − Ecmin as a function of different values of the c/a ratio, for both the pseudopotential
schemes employed. In red the curve computed within PAW, in blue the one associated to USPP.

The trends of the energy as a function of the lattice constants obtained after the relaxation process,
are presented in figure (3.4) and (3.5) and all the results, including the computation of the cohesion
energy, are summarized and compared with literature data in table (3.2).

PAW USPP References

amin (�A) 2.942 2.942 2.951 [54]

cmin/amin 1.584 1.584 1.587 [54]

E(Ti-α)-2E(Tiatom) (eV) -10.251 -10.180 -9.700 [55]

(E(Ti-α)-2E(Tiatom))ref (eV) -10.250 -10.179

Table 3.2: Structural parameters and cohesive energy computed for the Ti-α phase, both for PAW and
USPP pseudopotentials. Here, the cohesive energy is computed as the difference between the Energy
of the 2-atom basis, and 2 times the energy of a single Ti atom. In the third row, the former term of
such a difference is assumed to be the energy of the atom basis within the most energetically convenient
configuration predicted and the latter is the energy of a Ti atom inside a cubic supercell with a side of 10
�A. In the last row, we have used the experimental parameters of ref. [54] for the computation of E(Ti-α).
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The agreement obtained in the prediction of the reticular constants is extremely good for both
PAW and USPP pseudopotentials. In the case of a, we have an agreement within 0.3%, instead,
for the c/a ratio, the error is smaller than 0.2 %.
It is important to point out that, in order to get a reliable estimate of the Ti cohesion energy, a
proper description of spin effects is mandatory. In fact, although the ground-state configuration
of the bulk α-Ti structure has zero spin, the lowest energy configuration (d2s2) of the isolated Ti
atom has a non vanishing spin.
To be more precise, DFT calculations at the GGA level predict (see ref. [56]), that the actual Ti
ground state is d3s1, since the 3d and 4s energy levels are almost degenerate.
Proceeding in this way, satisfactory results are achieved. Both PAW and USPP predict a slightly
more bounded state with respect to the one of ref. [55]. In particular the USPP result shows an
error less than ≈ 5% and the PAW result is found to be ≈ 5.7 % below the experimental value of
[55].
Since the USPP result for the cohesion energy result slightly more in agreement with the reference
data, we decide to employ USPP pseudopotential for Titanium in the further treatment of TiS2.
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3.2 Sulfur

Sulfur is a versatile, and non-metallic chemical element with atomic number 16 and electronic con-
figuration [Ne] 3s2 3p4. Under normal conditions, Sulfur atoms form cyclic octatomic molecules
with a chemical formula S8. Sulfur is a bright yellow crystalline solid at room temperature.
It can crystallize in around thirty different phases depending on pressure and temperature, a num-
ber that makes it the chemical element with the highest number of allotropic states in the periodic
table. At ambient pressure it forms structures with a very small packing factor. Twenty of those
are composed of molecular rings with six to twenty sulfur atoms each. There also exist poly-
meric structures formed by molecular chains. As pressure increases the structures get more closely
packed, and in the megabar regime Sulfur becomes a metal with a superconducting temperature
of 17 K. At ambient conditions the most stable phase of sulfur is α-S, in which S8 ring molecules
crystallize in the orthorhombic space group, as it is shown in figure (3.6).

Figure 3.6: S8 molecule, and bulk structure of the α orthorhombic Sulfur with associated Brillouin zone.
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Given the complexity of the S phases, we have tested the performances of PAW and USPP pseu-
dopotentials by studying the geometrical twisting of a S8 molecule both as an isolated fragment
and as a bulk α-S structure.
The data of the unit cell and of the atomic positions of α-S have been taken from ref. [57].
Here, we have not repeated the parameters optimization and we have adopted the same values
chosen for Ti. In fact the E

(T i)
cut value turns out to be appropriated to describe accurately TiS2,

which is the system we are mostly interested in.
Moreover, since Ti is a pure metal, differently from S, we expect that both nk(T i) and E

(T i)
smear are

also appropriated for TiS2, since these parameters are more delicate to be optimized for metals.

3.2.1 Investigation of the twisting of a S8 molecule

Since it is well-known that the vdW interactions strongly contribute to the deformation of the S8

molecule [58], we have employed the rVV10 non-local exchange-correlation functional investigate
the S8 geometry.
In the case of an isolated S8 ring, the procedure consists in two steps:

• Relaxation of the atomic positions until the total force acting on each S atom is smaller than
a threshold fixed to 10−5 Ry/a.u..

• Evaluation of the S-S bond lengths and of the bond angles in the relaxed configuration
determined above.

To study the geometrical properties of a S8 ring within an α-S bulk structure, the procedure is
similar, but, because of the very complicated nature of the the α-S bulk, the relaxation procedure
is more complex.
In fact, extended simulations showed that the system is characterized by several local minima,
almost isoenergetic and exhibiting not too different structural basic parameters. Therefore, we have
investigate the twisting of the S8 molecule by choosing one of these local-minimum configuration,
without claiming to find the absolute minimum structure.
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BULK MOLECULE

USPP

Bond Lenght(�A) Angle (°) Bond Lenght (�A) Angle (°)

2.058 109.191 2.069 109.327

2.053 109.467 2.070 109.302

2.059 108.410 2.070 109.322

2.063 109.271 2.070 109.357

2.058 108.085 2.069 109.317

2.054 107.483 2.070 109.319

2.053 109.001 2.070 109.317

2.054 108.724 2.070 109.330

Means & [Experimental reference][59] & (Theoretical reference)[58]

2.056 [2.055] 109.304 [108.200] 2.070 (2.070) 109.323 (109.3)

PAW

Bond Lenght (�A) Angle (°) Bond Lenght (�A) Angle (°)

2.059 109.359 2.069 109.301

2.069 109.071 2.069 109.216

2.063 109.324 2.071 109.303

2.068 109.283 2.071 109.278

2.063 109.351 2.069 109.304

2.068 109.173 2.069 109.210

2.064 109.201 2.071 109.310

2.065 109.193 2.071 109.279

Means & [Experimental references][59] & (Theoretical references)[58]

2.065 [2.055] 109.344 [108.200] 2.069 (2.070) 109.275 (109.3)

Table 3.3: Summary of the bond lengths (nearest neighbours S-S distances) and relative bond angles for
the S8 molecule, both as isolated and within a bulk α-S, employing PAW and USPP pseudopotentials.
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The detailed analysis shows an extremely good agreement of the bond lengths and angles for both
PAW and USPP with the reference values. Although the results achieved with PAW are already
very good, the ones of USPP are even slightly better.
In particular, in the case of an isolated S8 ring, using USPP, we obtain a perfect agreement of the
mean bond lenght with respect to ref.[58]. For the bond angles, we find an error of only 0.02%
with respect to another theoretical calculation performed within a vdW-corrected DFT scheme
(ref. [58]).
In the case of S8 within the α-S structure, we obtain again good results: for the mean bond lenght
we have an error of 0.5 % with respect to [59] that is an experimental reference, instead, in the case
of the mean bond angle, the result is slightly worse but again in appreciable agreement, showing
an error of 1%.
Since the results for the geometrical twisting of the S8 molecule applying USPP are in a slightly
better agreement with literature data, with respect to the one obtained with PAW, we have decided
to apply USPP also for Sulfur in the treatment of TiS2 presented in the next section.
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3.3 Titanium Disulfide

In the following section the results of the ab initio calculations relative to TiS2 are presented.
First of all, we have focused on the structural properties, making an analysis similar to the one
carried out in the previous case of α-Ti. In particular, since TiS2 has an hexagonal symmetry, we
have computed the two lattice parameters a and c, and then, in the most energetically convenient
configuration predicted, we have made an estimation of the cohesion energy (CE) and of the
interlayer binding energy (ILBE).
The next point we have analyzed is the computation of the charge density, both in intralayer and
interlayer regions. This is done to characterize the chemical bonds, focusing on the specific effect
of the vdW interactions. In order to validate the results obtained in our approaches, all the data
presented will be compared with other literature data, both experimental and theoretical.
TiS2 is a transition metal dichalcogenide (TMD), whose basis is composed by two atom of S and
one of Ti periodically repeated, according to an hexagonal symmetry, along the directions

~a = a (1 , 0 , 0)T

~b = a(−1/2 ,
√

3/2 , 0)T

~c = a(0 , 0 , c/a)T

This leads to an hexagonal Brillouin zone, with the same shape of the one shown in figure (3.1),
whose primitive vectors are

~a∗ = 2π/a (1 ,−1/
√

3 , 0)T

~b∗ = 2π/a (0 , 2/
√

3 , 0)T

~c∗ = 2π/c (0 , 0 , 1)T

Figure 3.7: 3-atom basis of TiS2 and structural development of the solid on the x-y plane and along the
longitudinal direction.

35



3.3. TITANIUM DISULFIDE CHAPTER 3. RESULTS

Figure 3.8: Bulk of 4×4×4 translation-symmetric units by adopting different perspectives.
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3.3.1 Structural and energetic analysis of TiS2

We have applied six different functionals, including vdW interactions at different levels, in order
to evaluate the lowest energy configuration of TiS2 at T=0.
The relaxation process of the atoms belonging to the 3-atom basis is performed first considering
the parameters a =3.398 �A and c/a=1.667, according to the literature data [20]. Once the atomic
positions have been relaxed, we have looked for the most energetically convenient configuration
varying step by step the values of the two lattice parameters a and c/a, in the same way discussed
for α-Ti in section 3.1.
The trends of the crystal energy with respect to different values of the lattice parameters, for all the
different functionals adopted in this work, are shown in figures (3.10) and (3.11) and summarized
in table (3.4).

Figure 3.9: Optimization of the hexagonal reticular constant a with different functionals, fixing c/a=1.667.
The configuration in which the total energy has a minimum is chosen to be E = 0.
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Figure 3.10: Optimization of the longitudinal dimension of the crystal structure through the c/a ratio.
Here, the value of a for each functional employed, is fixed to the one that minimizes the energy (i.e. the
ones shown in the previous figure).

TiS2 Structural Analysis

Functional a (�A) c/a Cell Volume(�A)3 References

PBE 3.419 2.000 69.254 a=3.3976(3) �A [20]

PBE+G-D2 3.403 1.715 58.510 c/a=1.6674 [20]

PBE+G-D3 3.405 1.707 58.370 V=56.6368 �A3 [20]

rVV10 3.419 1.684 58.313 a=3.4073(2) �A [60]

vdW-DFq1 3.397 1.670 56.709 c/a=1.6397 [60]

vdW-DFq2 3.403 1.690 57.657 V=56.174 �A3 [60]

Table 3.4: Summary of the two reticular constants and of the cell volume predicted with the six different
functional employed. The literature values of [20] and [60] refer to X-ray diffraction experiments at low
temperatures.
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• For the hexagonal reticular constant a, all the functionals employed lead to similar results in
very good agreement with literature data. The best agreement with the experimental value
of ref. [60] is obtained employing PBE+G-D3, with an error of only 0.07 %. If comparison
is made with the most recent experimental reference [20], the best result is instead obtained
using vdW-DFq1, with an error of 0.01 %.
It is interesting to point out that the results obtained employing all the vdW-corrected func-
tionals are really close to the one computed with pure PBE, that is a non-vdW-corrected
GGA functional. In particular the PBE discrepancy is not larger than 0.6 %: this suggests
that, as expected, vdW effects are not fundamental in the prediction of the structural prop-
erties of TiS2 on the x-y plane.

• For the c/a ratio, instead, the agreement with literature data is not satisfactory for PBE,
PBE+G-D2 and PBE+G-D3.
More specifically, in the case of PBE, in which vdW interactions are neglected, the error is
of ≈ 19.5 % and ≈ 22 % compared with ref. [60] and ref. [20] respectively. This is a clear
signal of the crucial role of vdW interaction in the longitudinal structural features of TiS2.
The situation is significantly better, although not optimal yet, employing PBE+G-D2 and
PBE+G-D3: in these cases the error is of the order of≈ 2.5 % and≈ 4.3 %, again comparing
with ref. [60] and ref. [20].
The reason why the application of these three methods fails is that vdW interactions are
the dominating contributions for the longitudinal dimension of the structure and these three
functionals are not able to reproduce such effects in a properly correct way. In fact, in the
case of a pure GGA (i.e. PBE), vdW effects are basically neglected while, in the cases of this
latter coupled with the Grimme’s corrections, vdW effects are accounted approximately in
a post-processed way and not directly computed adopting a non-local exchange correlation
functional, missing, among the other things, genuine many-body correlations and so, leading
to unsatisfactory results.

• The unit cell has a volume given by the expression

V = a2c sin(120 °) ,

the best agreement is obtained with the method vdW-DFq1, both with respect to ref. [60]
and to ref. [20], the error being respectively ≈ 0.13 % and ≈ 0.95 % if compared with ref.
[60] and ref. [20].
Another reasonable performance is the one obtained with vdW-DFq2: in this case the error
is ≈ 1.80 % and ≈ 2.64 % with respect to ref. [20] and ref. [60].
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Once the most energetically convenient configuration for all the functionals adopted is determined,
it is possible to compute the CE and the ILBE.
The first quantity is defined in the following way:

CE = E(TiS2)− E(Ti)− 2E(S) (3.1)

where E(Ti) and E(S) are respectively the energies of the isolated Ti and S atoms. Also in this case,
as in the one of bulk Titanium treated before, it is important to account for the spin-polarization
of the isolated atoms in the ground state. For an isolated S atom a spin-polarized configuration
for the ground state is predicted, while for the atomic basis of TiS2, the computed ground state is
spin-less. This is accounted in our calculations of the cohesion energy, in which we have employed
the two spin-polarized configurations predicted for the isolated Ti and S atoms.
To ILBE, instead, we are referring to a physical quantity that gives a quantitative estimation of
how strong the interalyer interactions are. More specifically, since the main contribution to ILBE
is given by vdW interactions, by computing this quantity, we are also able to understand to what
extent they are important in the determination of the structural features of this layered material. In
practice, computing the ILBE is the same as evaluating the well depth of the potential energy curve,
shown in figure (3.11). In principle, to do so, we have to consider the difference E(c/a)min

− Ec/a=∞
but it is clear that the second factor cannot exactly be computed. For this reason, we approximate
Ec/a=∞ ≈ Ec/a=3.5, assuming that above this value of the c/a ratio the interlayer interactions are
negligible.
The results of the energetic analysis are presented in table (3.5).

TiS2 Energetic Analysis

Functional CE (eV) ILBE(eV) References (eV)

PBE -15.055 -0.010 ILBE:

PBE+G-D2 -15.621 -0.135 [-0.056 ; -0.165] [61]

PBE+G-D3 -15.600 -0.189 CE

rVV10 -15.682 -0.263 [-12.230 ; -20.557] [61]

vdW-DFq1 -16.212 -0.238 CEexp:

vdW-DFq2 -15.526 -0.190 -14.746 [61]

Table 3.5: Summary of the values of ILBE and CE for TiS2, computed with the six different functional
adopted. The theoretical calculation of the literature data [61] are obtained with Hartree-Fock (HF) and
corrected-HF theories.
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• The results for the CE are compatible with both the theoretical and experimental data of
[61], even if all of them are overestimating the experimental CE reference. The best agree-
ment is obtained employing a pure PBE, with an estimate of 2.1 % above the experimental
value but, it is crucial to underline that the configuration in which we have computed the
CE is predicted by a GGA scheme that does not properly include vdW interactions and it
exhibits a value of the optimized c/a ratio substantially different from the experimental data
mentioned. So, the good agreement achieved is most probably due to a compensation of
errors in the prediction of the longitudinal structural properties of the material and in the
evaluation of the energetic values.
Therefore, we can safely conclude that the best genuine result, is the one given by vdW-
DFq1, with an error of 5.3 % above the reference value. In any case the good estimate
obtained for CE with PBE is consistent with the predominant covalent nature which char-
acterizes the intralayer bonds in TiS2 (this will be discuss in detail in section (3.3.3)).

• The results for the ILBE are also in line with the theoretical data available, although it must
be pointed out that these have been obtained using approximate HF schemes.
More specifically, the only one that is inside the reference interval is the value obtained with
PBE+G-D2. The other vdW-corrected functionals give results slightly above the upper
limit of the interval; instead the one achieved with pure PBE is slightly below. Looking at
the ILBE values plotted in figure (3.11) it is clear that in all the cases (with the exception
of PBE) there is an appreciable well depth, which means the formation of a weakly bound
state induced by the presence of TiS2 interlayer vdW interactions. Interestingly, in the case
of pure PBE the observed potential energy well depth is almost vanishing and turns out to
be too small to permit the formation of a sufficiently stable bulk structure of TiS2.
Moreover, if ILBE is computed at the PBE level assuming the experimental reticular con-
stants, instead of using the PBE parameters, one obtains ILBE=0.033 eV and ILBE=0.047
eV, considering the parameters reported in ref. [20] and [60], respectively. The fact that
positive ILBE values are obtained, indicating that the interlayer potential is even repul-
sive, shows again the basic inadequacy of PBE to correctly describe interlayer interactions,
determined by vdW forces.
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3.3.2 Electronic band structure of TiS2

In the literature, at it was pointed out above, there are many conflicting results on the electronic
structure of TiS2 since it is still debated whether the material is metallic, semimetallic or semicon-
ductor. Several experimental works have reported that TiS2 has a semiconductor behavior with
a band gap ranging from 0.05 to 2.5 eV [62]. At the same time, other experiments classify TiS2

among metals [63] or semimetals [64] with an indirect band gap overlap ranging from 0.2 to 1.5
eV The aim of this section is to report the results obtained in theoretical studies of the electronic
properties of TiS2 by using both the vdW-corrected functional vdW-DFq1 and a pure PBE one,
in order to appreciate the differences in the electronic band structure induced by vdW interactions.
The band structure calculations have been performed following an high-symmetry k-path shown
in figure (3.12), to which the following k points belong:

• (kx , ky , kz)
T = (0 , 0 , 0)T ≡ G

• (kx , ky , kz)
T = (0 ,−0.5 , 0)T ≡ M

• (kx , ky , kz)
T = (−0.66 , 0.33 , 0)T ≡ K

• (kx , ky , kz)
T = (0 , 0 , 0)T ≡ G

• (kx , ky , kz)
T = (0 , 0 , 0.5)T ≡ A

• (kx , ky , kz)
T = (0 ,−0.5 , 0.5)T ≡ L

• (kx , ky , kz)
T = (−0.66 , 0.33 , 0.5)T ≡ H

• (kx , ky , kz)
T = (0 , 0 , 0)T ≡ A

Figure 3.11: k-path for band structure calculations, the electronics eigenvalues are computed for 50
different k values between every high symmetry point of the k path chosen.

To make the analysis more complete and clearly show the positions of the band gaps, total electronic
density of states (DOS) calculations are also performed.
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Figure 3.12: Band structure and total electronic DOS computed with pure PBE. The Fermi energy
EF=5.451 eV is set to 0.

Figure 3.13: Band structure and total electronic DOS computed with vdW-DFq1. The Fermi energy
EF=7.874eV is set to 0.
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Direct Band Gaps Analysis: PBE ; vdW-DFq1

k-Point VB-EF (eV) CB-EF (eV) Gap (eV)

G 0.031 ; 0.147 0.442 , 0.538 0.411 ; 0.391

M -1.371 ; -1.524 0.107 ; 0.247 1.478 ; 1.771

K -2.436 ; -2.285 1.122 ; 1.229 3.558 ; 3.514

A 0.016 ; -0.041 0.440 ; 0.519 0.456 ; 0.560

L -1.337 ; -1.167 0.010 ; -0.031 1.347 ; 1.198

H -2.360 ; -2.179 1.125 ; 1.246 3.485 ; 3.425

Table 3.6: Summary of the energies associated to the energy of the valence band (VB), of the conduction
band (CB) and relative direct band gaps at the high-symmetry k-points with respect to the Fermi energy
EF .

We have chosen to plot the twelve bands closest to the Fermi level, both for PBE and vdW-DFq1.
The shape observed is similar both for the DOS and for the electronic bands.
We have evaluated the valence band and the conduction band energy at each high symmetry point
analyzed, to calculate the associated direct band gaps. Bands gaps computed with PBE range
from 0.411 to 3.558 eV, the ones predicted with vdW-DFq1 are instead from 0.391 to 3.514 eV.
The gap amplitudes computed using the two functionals are comparable for the G,K,H points,
while instead significant differences are found for the M,A,L points: 0.293, 0.104 and 0.149 eV
respectively.
Interestingly, while the electronic band structure obtained with PBE predicts essentially that TiS2

does not exhibit indirect band gaps (the A→ L and the G→ L gaps are only 0.006 and 0.021 eV
respectively), there is a significant difference by using the vdW-DFq1 functional, which properly
takes the vdW interactions into account. In fact, a G → L indirect band gap of 0.116 eV is
observed, supporting the semimetal nature of TiS2, in line with experimental findings [65].
Experimental estimates of the TiS2 indirect band gaps are spread over a wide range, from 0.2 to
1.15 eV (see for example [64]).
Since our vdW-DFq1 is much closer to the experimental data than PBE, and also considering
the well-known tendency of DFT calculations to underestimate band gaps [66], we conclude that
vdW-DFq1 allows a much better description of TIS2 than PBE and that, also for the electronic
band properties, the vdW effects are important, in line with what has been also observed in ionic
solids (see ref. [66]).
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3.3.3 Analysis of the interlayer and intralayer electronic charge den-
sity

Here we present and compare with literature data the results obtained for the analysis of the
electronic charge density distribution both in intralayer and interlayer regions.
While in the intralayer region the S-Ti bond is strong and covalent in nature, in the intralayer one,
the S-S bonds are more difficult to characterize due to the presence of weaker vdW interactions.
For each functional, the goal is to evaluate the charge density at the bond critical point (BCP),
which is defined as the point along the line connecting two atoms in which the linear charge density
reaches a (non-vanishing) minimum value.

intralayer region

For the analysis of the covalent bond of the intralayer region we have focused on the portion of
space highlighted in figure (3.15)

Figure 3.14: Intralayer region considered for the analysis of the covalent BCP.
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Figure 3.15: Profile of the electronic differential charge density in the intralayer fragment of TiS2,
computed both with PBE (top) and with vdW-DFq1 (bottom) functional.
Such a quantity is defined as ndiff = n(TiS2)−n(Ti)−n(S1)−n(S2) (i.e. is the charge density variation
due to the presence of the interactions between the atoms), referring to the atoms in their optimized
position predicted by the functional employed. Here, the plotting range for ndiff is chosen to be [-
7.4×10−4 ;7.4×10−4] e/ �A3 similarly to ref. [20]. The blue color indicates the regions where there is
an electron depletion, the red regions indicate an electron excess, and the white regions are the areas
associated to the zero value. With the use of this two different functionals no appreciable differences are
apparent.
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Figure 3.16: Profile of the charge density on the line connecting an S atom (named S1, on the left side)
to a Ti atom (on the right side).

S1-Ti Bond Critical Point Analysis

Functional ρ(rb) e/�A3 ρ(rb)REF [20] e/�A3 d(S1;Ti) �A d(S1;rb) �A

PBE 0.447 0.459 2.438 1.304

PBE+G-D2 0.454 - 2.426 1.298

PBE+G-D3 0.452 - 2.429 1.299

rVV10 0.435 0.459 2.449 1.310

vdW-DFq1 0.454 - 2.425 1.293

vdW-DFq2 0.452 - 2.429 1.295

ρ(rb)EXP = 0.429 [20]

Table 3.7: Summary of the results for the charge density at the BCP and of the BCP position (rb) along
a line connecting atom S1 and Ti. The structural configurations used for these calculations are the ones
considered in table (3.4).
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As can be seen, the electronic charge tends to build up around the Ti atom. Moreover, the BCP
is located slightly on the right of the S-Ti middle point.
For the case of PBE and rVV10 literature data are available and our values for the electronic
density at BCP is in a reasonabe agreement with the theoretical prediction of ref. [20]. In
particular, our PBE result differs from that of ref. [20] by 2.6 %, while for rVV10, the discrepancy
is slightly higher: 5.2%. Our results are also close to the experimental data of [20], that reports
a value for the charge density at the intralayer BCP of 0.429 e/�A3: in this case, the functional
leading to the best agreement is rVV10, with an overestimation of only 1.4 %.
In any case, we observe that the shape of the computed profiles of the electronic charge density,
does not depend too much on the functional adopted. Our analysis leads, for all the functionals,
to results really close to each others, showing that, even if the TiS2 structural predictions of PBE
are slightly worse (table (3.4)), this does not strongly affect the charge density at BCP for the
intralayer covalent bonds of TiS2.
This leads to the conclusion that vdW effects do not strongly influence the covalent character of
the intralayer bonds of TiS2. Note that, if the charge density at the BCP is evaluated at the PBE
level using the experimental lattice parameters of ref. [20], one obtains ρ(rb)=0.457 e/�A3, that is
a value almost coincident with that reported in ref. [20] (see table (3.7)), thus showing that the
small discrepancy between our PBE estimate and that of ref. [20] is essentially due to the slightly
different PBE relaxed parameters.

interlayer fragments

The considered interlayer region is highlighted in figure (3.18). By performing the same analysis
as in the intralayer case, one can observe different interesting features.

Figure 3.17: interlayer region considered for the analysis of the weaker bond characterized by the presence
of vdW interactions.
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Figure 3.18: Profile of the differential electronic charge density in the interlayer region of TiS2, computed
both with PBE (top) and with vdW-DFq1 (bottom) functional. For consistency with the intralayer
case, the plotting range is chosen to be again [-7.4×10−4 ; 7.4×10−4] e/�A3. The color scheme is the same
as that adopted in figure (3.16). The incomplete depletion of the electronic charge in the region between
the two S atoms, obtained by vdW-DFq1, differently from PBE, can support the formation of a weak
S-S bond due to the vdW interactions which are taken into account by vdW-DFq1.
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Figure 3.19: Profile of the charge density on the line connecting a S atom (named S1, on the left side) to
another S atom (named S2, on the right side).

Figure 3.20: Profile of the differential charge density on the line connecting a S atom (named S1, on the
left side) to another S atom (named S2, on the right side).
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S1-S2 Bond Critical Point Analysis

Functional ρ(rb) e/�A3 ρ(rb)REF [20] e/�A3 d(S1;S2) �A d(S1;rb) �A

PBE 0.010 0.0670 4.442 2.220

PBE+G-D2 0.052 - 3.575 1.791

PBE+G-D3 0.054 - 3.554 1.780

rVV10 0.054 0.0680 3.476 1.793

vdW-DFq1 0.069 - 3.436 1.722

vdW-DFq2 0.062 - 3.497 1.745

ρ(rb)EXP = 0.086 [20]

Table 3.8: Summary of the results for the charge density at the BCP and of the BCP position (rb) along
a line connecting atom S1 and S2. The structural configurations used for these calculations are the ones
considered in table (3.4).

As can be seen in figure (3.20) the interlayer charge density between the two S atoms is almost
perfectly symmetric.
Remarkable, using PBE, the charge density at the BCP position is much smaller than the cor-
responding values obtained by the other functionals. This can be easily understood recalling (see
table (3.4)) that the c/a ratio predicted by PBE was significantly larger than both the experi-
mental estimates and the values obtained by the other functionals. It is therefore reasonable that
if the interlayer distance is overestimated, this leads to a pronunced reduction of the electronic
charge density in the interlayer region. Moreover, as we have also pointed out, vdW interactions
(not properly described by PBE) affect not only the basic structural interlayer parameter of TiS2,
but also the electronic band structure.
Note that our PBE charge density at BCP is much smaller than the PBE value reported in ref.
[20]. This discrepancy can be explained by the fact that in ref. [20] the experimental c/a ratio was
considered, while in our case we have used the c/a ratio optimized by PBE, which is certainly a
more consistent approach. In fact, if ρ(rb) at the interlayer BCP is recomputed, within a PBE
scheme, using the lattice constants of ref. [20], we obtain ρ(rb)= 0.0673 e/�A3, that is a value very
close to the PBE estimate reported in ref. [20].
Note that the estimate is also similar to the values found with the other vdW-corrected functionals:
this agreement is entirely due to the inconsistent choice of forcing the interlayer distance to be
much shorter than PBE predicts, again indicating the inadequacy of PBE to take vdW effects
into account.
Using instead the vdW-corrected rVV10 functional, we find a BCP charge density not far from
the rVV10 value reported in ref. [20]. Probably we get a lower-value estimate because of a slightly
larger c/a ratio obtained at the rVV10 level (see table (3.4)).
Interestingly, the BCP charge densities obtained using the vdW-DFq1 and vdW-DFq2 func-
tionals are closer to both the rVV10 value of ref. [20] and to the experimental finding [20]. In
particular vdW-DFq1 turns out to give the best result, although even the vdW-DFq1 BCP den-
sity is about 20% smaller than the experimental estimate reported in table (3.8). This indicates
that vdW-DFq1 improves the rVV10 performance but it does not seem to be able to fix the basic
discrepancy existing between theoretical and experimental electron-charge densities mentioned in
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the Introduction section.

3.3.4 Tuning of the q parameters in the vdW-DFq functional

In ref. [45], a tuning of the q parameter of the original Hamada functional (vdW-DFq1) for
the optimization of the mass density in semi-hard material was proposed. Following the same
strategy, an interesting development could be to optimize the same parameter in order to make
the electronic charge density at the BCP position as close to the experimental estimate as possible.
In ref. [20], Kasai et co-workers pointed out that the underestimate of the charge deformation in the
interlayer fragments of TiS2 is due to the unsuitability of the vdW-corrected functionals nowadays
available. Therefore, if one could generate a new vdW-corrected functional able to better describe
the interlayer charge density, this will probably represent a significant progress towards a more
accurate theoretical description of TiS2.
After a set of preliminary test calculations in which we have tried to correct the tendency of the
interlayer charge density at BCP to underestimate the experimental value, we have chosen to
set the value of the new parameter to q3=0.55. Employing this new functional, which we term
vdW.DFq3, we have performed an analysis where we evaluate lattice constants, CE, ILBE and
the electronic charge density of TiS2, finding a substantial improvement of the electronic density
at BCP with respect to the results obtained with the other functionals employed up to now.

Figure 3.21: Optimization of the hexagonal reticular constant a employing vdW-DFq3, at c/a=1.667,
according to ref. [20]. The configuration in which the total energy has a minimum is chosen to be E = 0.
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Figure 3.22: Optimization of the longitudinal dimension of the crystal structure through the c/a ratio.
Here, the value of a is 3.392 �A, that is the one associated to the minimum energy configuration computed
in the previous step.

TiS2 Structural Analysis

Functional a (�A) c/a Cell Volume(�A)3

vdW-DFq3 3.392 1.660 56.106

Table 3.9: Summary of the structural properties of TiS2 computed with our vdW-DFq3 functional.

TiS2 Energetic Analysis

Functional CE (eV) ILBE(eV)

vdW-DFq3 -16.533 -0.273

Table 3.10: Summary of the energetic properties of TiS2 computed at the lowest energy configuration
predicted by our vdW-DFq3 functional.

The structural result obtained with vdW-DFq3 are in an extremely good agreement with exper-
imental data of [20] and [60] (see table (3.4)).
In particular, the hexagonal lattice parameter a is only 0.2 % below the one of ref. [20] and 0.5 %
below the one reported by ref. [60].
The c/a ratio is 0.4 % below that of ref. [20] and slightly above that of [60], with a discrepancy of
just 1.4 %.
vdW-DFq3 also improves the estimate of the unit cell volume, since this is just 0.94 % below the
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experimental value of ref. [20] and just 1.21 % below the estimate of ref. [60].
However, the same it is not true for the CE and ILBE. More specifically, the prediction of the
cohesion energy is slightly worsened if compared with the experimental data of ref. [61], with
an error of 12.12 %. The result obtained with the original Hamada functional vdW-DFq1 has
instead an error of only 5.29 % (see table (3.5)).
Moreover, the ILBE value predicted by vdW-DFq3 is in a worse agreement with the experimental
estimates than the values obtained by the other functionals (see table (3.5)).

Figure 3.23: Profile of the charge density on the line connecting an S atom (named S1, on the left side)
to a Ti atom (on the right side), computed with vdW-DFq3.

S1-Ti Bond Critical Point Analysis

Functional ρ(rb) e/�A3 d(S1;Ti) �A d(S1;rb) �A

vdW-DFq3 0.458 2.421 1.290

Table 3.11: Analysis of the intralayer BCP charge density obtained with vdW-DFq3 functional.

S1-S2 Bond Critical Point Analysis

Functional ρ(rb) e/�A3 d(S1;S2) �A d(S1;rb) �A

vdW-DFq3 0.073 3.406 1.706

Table 3.12: Analysis of the interlayer BCP performed with vdW-DFq3 functional.

The linear density profile computed with the vdW-DFq3 functional is similar to the ones obtained
by the other functional employed. Comparing with data of table (3.7), the theoretical predictions
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Figure 3.24: Profile of the electronic charge density in the S1-S2 interlayer region and associated differ-
ential charge density, computed with vdW-DFq3.

of vdW-DFq3 for the charge density at the intralayer BCP are worse. In fact, for instance, the
result obtained with rVV10 is overestimated by 1.4 %, while the one computed with vdW-DFq3
is 6.8 % above the experimental result.
The situation is definitely better for the characterization of the S1-S2 interlayer chemical bonding.
In fact vdW-DFq3 predicts a value of the charge density at BCP of 0.073 e/�A3, thus reducing the
discrepancy with respect to the experimental estimate (0.086 e/�A3) from about 20 % (as obtained
by the vdW-DFq1 approach, see table (3.8)) to about 15 %. Therefore, the choice of the new
q3 parameter leads to an increase of the electronic charge density at the BCP in the interlayer
region, in better agreement with the experiment.
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3.4 Conclusions and Perspectives

In conclusion, we can summarize the basic results obtained from our detailed structural, energetic
and electronic analysis of TiS2 at T=0, as follows:

• Concerning structural properties, the PBE functional (where a genuine description of vdW
interactions is missing) fails to predict a reasonable c/a parameter, that is the basic feature
of the interlayer bonding.
Instead, vdW-corrected functionals give much better results, with the best performances
obtained using newly proposed vdW-DFq3 functionals. Very good results are also obtained
employing vdW-DFq1, vdW-DFq2 and rVV10. In particular, by looking at the unit
cell volume, vdW-DFq3, namely our revised version of the original functional of Hamada
(see sections (2.2.4) and (3.3.4)), performs slightly better than the vdW-DFq2 functional,
introduced in [45]. This does not come to a surprise. In fact, the q2 parameter of ref. [45]
was optimized by considering a given set of systems (included some layered vdW materials
different from TiS2) so that one cannot expect that q2 necessarily improves the description
of a specific system, such as TiS2 which does not belong to the reference set.

• As far as the cohesion energy is concerned, we have found reasonably good results both in
the case of the α-Ti (see table (3.2)) and in the case of TiS2 (see table (3.5)). In particular,
considering the result for α-Ti, achieved within a PBE approach and the vdW-DFq1 result
for TiS2, we have an error with experimental data that remains around 5 %.

• Concerning the electronic band structure we have found an interesting effect due to the
inclusion of vdW interaction. Employing PBE, TiS2 does not exhibit appreciable indirect
band gap, resulting essentially gap-less. Instead, when the vdW-DFq1 approach is adopted
the electronic nature of the material exhibit a substantial variation, showing an appreciable
indirect band gap of 0.116 eV (see section (3.3.2)). Within this last scheme, we can conclude
that the presence of vdW interactions allow us to characterize TiS2 as a semimetal, in line
with a wide set of experimental references (see for instance [64] and [65]).
To improve the description of the electronic band structure, it could be useful to compute
a partial electronic DOS of Ti and S, in order to split the contributions of the different
valence electronic orbitals (4s and 3d for Ti, 3s and 3p for S). This could be useful to observe
where the atomic orbitals of Ti and S overlaps, thus giving a more complete description of
the orbital ibridization responsible for the strong covalent bond typical of the intralayers
interactions.
Moreover, in perspective, it could be interesting to perform band structure calculations
employing experimental lattice parameters of TiS2 subjected to high external pressure. This
can be done in the spirit to characterize the semiconductor-semimetal phase transition of
TiS2, that is an issue already mentioned in other studies (see for example in ref. [61]).
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• The results for the intralayer and interlayer electronic charge density distributions are
promising, with a wide margin of improving in accuracy.
In the intralayer case (see table (3.7)), rVV10 exhibits a very good performance, overesti-
mating only by ≈ 1.5 % the experimental charge density at BCP. vdW-DFq1 and vdW-
DFq2 functionals instead perform slightly worse, showing a discrepance of ≈ 5.8 %.
Regarding the interlayer S-S bonding, that is the physical quantity we have decided to take
more emphasis on, the vdW-DFq approach is the one that has reached the best agreement
with the experimental data of ref. [20]. In particular, for the prediction of the charge density
at BCP for the weak interlayer bonding, the original vdW-DFq1 of Hamada has performed
slightly better thanrVV10 (see table (3.8)) but, anyway leading to a result of insufficient
accuracy, in line with the conclusions of ref. [20].
Our findings indicate that, differently from the intralayer case, the charge density at the
interlayer BCP is strongly influenced by the structural features, since our PBE estimation
is 5-7 times smaller than the ones predicted with the other vdW-corrected functionals.
The tuning procedure of the q parameter presented in section (3.3.4) seems to be a promising
way to improve these results. This is supported by the analysis performed employing our
vdW-DFq3 scheme, in which we have reached a significantly better result for the interlayer
charge density at BCP, overcoming the performance of the original vdW-DFq1 functional.
However, this improvement is achieved at the price of a deterioration in the description of
the intralayer charge density and of the CE. This seems to indicate that more extended test
calculations are required to find an optimal q-parameter, able to allow for a better overall
description of the structural, energetic and electronic properties of TiS2, possibly combined
with the research of alternative functional forms.
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