
University of Padova

Department of Information Engineering

Master Degree in
ICT for Internet & Multimedia

Point cloud object detection and
classification for railway applications

Supervisor: Candidate:
Prof. Federica Battisti Michael Neri

1232224

A.Y. 2020/2021

Abstract

Accurate detection and classification of objects in 3D point clouds is

a central problem in autonomous navigation and augmented/virtual

reality scenarios.

It consists in a combination of regression (center, dimensions and ro-

tation of a 3D bounding box) and classification (positive and negative

labels) tasks, fine-tuning predictions and overall accuracy of the de-

tection system.

In railway applications, one of the most critical difficulty is the scarcity

of annotated datasets in order to detect specific landmarks. VOLIERA

and RAILGAP are the first projects that implement detection tech-

nologies based on artificial intelligence in the railway environment,

combined with GNSS data.

We are going to accurately describe a Deep Learning strategy using

VoxelNet model for 3D object detection. Such network is adaptable

to different environments by modifying initial hyper parameters of the

model and by learning different data features.

Experiments on automotive datasets, which can be used as training

data in autonomous driving tasks, yield in poor performances for rail-

way applications. A synthetic dataset is generated in order to train

VoxelNet to ad-hoc environments.

Furthermore, analysis of metrics and results of the network show that

our network learns an effective representation of railway landmarks,

using only raw LiDAR point clouds, leading to encouraging results

and possible future implementations in this research field.

ii

Abstract

Il rilevamento e la classificazione accurata di oggetti in nuvole di punti

3D è un problema centrale nell’ ambito della guida autonoma e in

scenari di realtà aumentata/virtuale.

Consiste nella combinazione di algoritmi di regressione (centro, di-

mensione e rotazione di un parallelepipedo che racchiude l’oggetto) e

classificazione (discriminando se genuino o falso positivo), ottimizando

le previsioni e l’accuratezza del sistema di rilevamento.

In applicazioni ferroviarie, una delle difficoltà più critiche è la scarsità

di dataset dettagliati per riconoscere specifici punti di riferimento.

VOLIERA e RAILGAP sono i primi progetti che implementano

tecnologie di rilevamento basate su intelligenza artificiale nell’ambiente

ferroviario, combinate con l’informazione prodotta dal GNSS.

Descriveremo accuratamente una strategia basata sul Deep Learning,

utilizzando la rete neurale VoxelNet per il rilevamento di oggetti in

ambienti tri-dimensionali. Tale rete è adattabile a differenti scenari,

modificandone i parametri iniziali e, perciò, estraendo diverse carat-

teristiche dai dati.

Sono stati effettuati diversi esperimenti su possibili dataset, i quali

possono essere usati come dataset di allenamento per la guida au-

tonoma in ambito automobilistico, portando scarsi risultati per l’ambiente

ferroviario. Per questo motivo, è stato generato un dataset sintetico in

modo da allenare correttamente la rete VoxelNet per scenari ad-hoc.

Inoltre, analisi sulle metriche e risultati della rete mostrano che Voxel-

Net riesce ad imparare una propria rappresentazione dei punti di rifer-

imento ferroviari, usando solo nuvole di punti 3D, portando a risultati

incoraggianti e possibili future migliorie in questo campo di ricerca.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Related Works . 1

1.1.2 List of Sensors . 4

1.1.3 LiDAR Further Insights 5

1.1.4 RAILGAP Project . 7

1.1.5 VOLIERA Project . 9

1.1.6 Contributions . 12

2 Dataset 15

2.1 KITTI360 . 15

2.2 RailSem19 . 17

2.3 KITTI . 20

2.4 Syntethic Dataset . 23

2.4.1 Matlab™ - LiDAR data simulation 24

2.4.2 Unreal Engine 4™ - Simulating railway environment 25

2.4.3 Dataset Generation . 28

3 VoxelNet - Deep Learning Architecture 31

3.1 Deep Learning Strategy Selection 31

3.2 VoxelNet architecture . 32

3.2.1 Feature Learning Network 33

3.2.2 Convolutional Middle Layers 36

3.2.3 Region Proposal Network 37

3.3 Loss Function . 37

4 Training Details 43

4.1 Network Details . 43

4.1.1 KITTI . 43

iii

iv CONTENTS

4.1.2 Syntethic Dataset . 49

4.2 Data Augmentation . 50

4.3 Code Insights . 51

5 Evaluation of VoxelNet Performances 53

5.1 Metrics . 53

5.2 Evaluation on KITTI Dataset . 54

5.3 Evaluation on Synthetic Dataset 58

6 Final Considerations 61

6.1 Future Work . 61

6.2 Conclusion . 64

References 71

Chapter 1

Introduction

1.1 Problem Statement

An autonomous vehicle requires a precise perception of the surrounding environ-

ment in order to operate and select correct decision.

Perception is developed thanks to Machine Learning and Deep Learning al-

gorithms by transforming sensor data into semantic information.

Object detection is one of the most critical tasks in an autonomous vehicle.

It consist of a combination of regression and classification tasks with the aim

to recognize and classify relevant objects from images, videos and point clouds.

The problem is relevant for other various applications such as video surveillance

monitoring for security purposes, automatic analysis of medical data, etc..

The main objective of this thesis is to identify major landmarks of the railway

environment from raw point clouds in order to define their relative location.

1.1.1 Related Works

Working with images and videos, inspecting consecutive frames permits to extract

2D features in order to localize other agents and landmarks on the field of view

of the autonomous vehicle.

Techniques of this approach predict and extrapolate 2D bounding box on the

image plane to 3D through re-projection constraint or bounding box regression

using neural networks [3] [4] [5].

In [3], SVM (Support Vector Machine) and CNN (Convolutional Neural

Networks) are combined in order to place 3D bounding boxes on the ground-

plane and scoring them via simple and efficiently computable image features.

1

2 Chapter 1. Introduction

Figure 1.1: 3D Object detection task in the automotive environment from CIA-SSD [15] paper

.

They exploited pre-trained VGG16 model - trained on ImageNet [6] dataset -

and fed images of the KITTI [20] dataset for generating predictions in the 3D

space. VGG16 [2] is a Convolutional Network for detection and classification for

2D images, displayed in Fig.1.2. A specific branch of the network is responsible

for proposing most relevant regions for objects, placing pre-defined anchors.

Figure 1.2: VGG16 deep architecture.

Finally, they used a multi-task loss to jointly predict category labels, bound-

ing box offsets, and object orientation - obtaining high value of accuracy.

Instead, [4] uses images constraints for placing 3D bounding box on KITTI

dataset images. The constraint that the 3D bounding box fits tightly into 2D

detection window requires that each side of the 2D bounding box to be touched

by the projection of at least one of the 3D box corners.

Without depth estimation, accuracy and localization performances are lim-

ited. A possible research topic can be the development of CNN which simulates

1.1 Problem Statement 3

depth channel in order to use mono RGB (Red-Green-Blue) images.

With the third dimension, we can deploy different strategies that take into

account point clouds for extracting semantic information for autonomous driving.

There are three possible methodologies for point cloud processing:

• Projection: Projection of point clouds on image plane in order to fit 3D

bounding box to objects. It results in loss of information during the pro-

jection process - re-projection error - but it can be improved by involving

accurate and fine-tuned parameters of cameras and sensors [7] [8];

• Voxelization: Generation of a voxel structure from point clouds and then a

FCN (Fully Convolutional Network) is developed for processing. Volumet-

ric representation is still sparse but spatial information is preserved during

encoding phase. At the end, 4-D feature tensors are fed to RPN (Region

Proposal Network) which improves both processing time and accuracy of

the network [18];

• PointNet: Raw point clouds are elaborated by the network using a feed-

forward network without any sort of pre-encoding. Feeding entire point

cloud as input requests high computational preconditions and difficulties to

define region proposals [9] [10] [11].

Figure 1.3: Frustum PointNet architecture.

State-of-the-art detectors combine the aforementioned solutions. Even if elab-

orating data from sensor fusion can be challenging because of calibration require-

ments, hybrid methods reach high level of accuracy and precision for 3D object

detection. Frustum Pointnet [12] is an example of fusing RGB-D images with

point clouds by generating region proposal w.r.t. mono RGB frames, obtaining

remarkable results.

Moreover, existing 3D object detectors often treat object localization and

category classification as separate tasks, so the localization accuracy and classifi-

4 Chapter 1. Introduction

cation confidence may not be coherent. For this reason, we can characterize two

different types of detectors:

• Single-Stage Detectors: features are learned mostly from pre-defined

anchors. Thus. a priori knowledge is required in order to obtain successful

bounding box and classification predictions. Given their high efficiency,

single-stage detectors have great potential for real-time applications;

• Two-Stage Detectors: features are extracted from the region proposal

generated by the first-stage backbone and predict the IoUs (Intersection

Over Union) between the regressed bounding boxes and ground truth boxes

in the second stage to refine the confidence predictions.

An example of state-of-the-art single-stage detector is CIA-SSD [15] (Con-

fident IoU-Aware Single-Stage Object Detector). First, the authors encode the

point cloud using a sparse convolutional network called SPConvNet, followed by a

spatial-semantic feature aggregation module for robust feature extraction. Then,

thanks to an attentional fusion model, they are able to realize object classification

and localization by applying a multi-task head.

Figure 1.4: CIA-SSD architecture.

We can inspect the structure of the network in Fig.1.4.

1.1.2 List of Sensors

The main objective of the thesis is to detect relevant objects from the train

surrounding by inspecting raw point clouds. Thanks to the landmarks detection,

we are able to evaluate relative and absolute position of the train with high

availability and reliability.

In order to record the railway environment, some sensors are mounted on

the train in different locations and/or orientations. Thus, a registration process

1.1 Problem Statement 5

is needed to process samples of each sensor in the same system reference. The

algorithm is discussed with point clouds and depth maps in the next section (Sec.

1.1.3).

The available sensors are:

• LiDAR (Light Detection and Ranging) sensor which permits to obtain a

point cloud representation of the surrounding environment of the train.

Points are characterized as 4-D vectors [x, y, z, w] which contain the 3D

location and reflectivity of each point of the cloud. In our case, our sensor

is the LIVOX™ Horizon which is shown in Fig.1.5;

• Stereo camera permits to obtain an Intensity map and a Depth Map

(information relating to the distance of the surfaces of scene objects) of a

specific FOV (Field Of View);

• GNSS combined with a IMU (Inertial Measurement Unit), which permits

to have a priori knowledge of system evolution.

Figure 1.5: LIVOX™ Horizon sensor with its functional characteristics.

1.1.3 LiDAR Further Insights

One of the sensor that has captured the attention of the industry for several years

now (automotive, agriculture etc..) is the LiDAR. It can be used in various field

and application like photogrammetry or mapping.

The range measurement is equivalent to measuring the round-trip delay of

light waves to the target. This can be achieved by modulating the intensity,

phase, and/or frequency of the waveform of the transmitted light and measuring

the time required for that modulation pattern to come back at the receiver.

In general, lasers are the preferred source of light because of their narrow

spectral and beam properties; furthermore, phase and frequency-modulation (PM

6 Chapter 1. Introduction

Pros Cons

Can be used day and night

It is cheaper w.r.t. other sensors

Surface data can have higher sample
density

Data can be collected quickly and
with high accuracy

Very large dataset that can be diffi-
cult to register or to post-process

Can be ineffective during heavy rain
or low hanging clouds

No international protocol for data
collection and analysis

Can offer degraded performance on
high sun angles and reflections

Eye safety due to usage of laser
source

Table 1.1: Pros and cons of LiDAR sensor.

and FM) LiDARs require the coherence of the laser light. Lasers with wavelengths

of 905, 1300, or 1550 nm, which are near the three established telecommunications

windows, are commonly used in LiDAR applications.

In our case, LiDAR point clouds are fused with RGB-D images using depth

maps which are image channels that contain information related to the distance

of the surfaces of scene objects from a fixed viewpoint.

In order to mix point clouds and depth maps, we need to transform the latter

into a point cloud thanks to a trivial linear transformation:⎡⎢⎢⎢⎢⎣
x′

y′

z′

w

⎤⎥⎥⎥⎥⎦ = Q ·

⎡⎢⎢⎢⎢⎣
u

v

d

1

⎤⎥⎥⎥⎥⎦ (1.1)

where

• Q is the mapping matrix provided by the camera itself which is a 4 × 4

matrix;

• (x′, y′, z′, w′) are the final points in a point cloud structure;

• (u, v, d, 1) are tuples obtained from the depth map where (u, v) are the

pixels of the image, d is the disparity value and 1 is used for simplifying

computational complexity (homogeneous coordinates).

1.1 Problem Statement 7

Finally, 3D position of the point (x, y, z) with image coordinates (u, v) can

be computed thanks to the following relation:⎡⎢⎣xy
z

⎤⎥⎦ =
1

w

⎡⎢⎣x
′

y′

z′

⎤⎥⎦ (1.2)

In words, we divide the aforementioned vector with the reflectivity of each point.

Since LiDAR and Stereo Camera are in different position (but horizontally

aligned), we need to adjust the orientation of a sensor using the other one as a

reference.

After exploiting some analytical relations, we obtain:

tan(γ1) =
d2cos(α2)sin(γ2) + ∆y

d2cos(α2)cos(γ2) + ∆x
(1.3)

tan(α1) =
(∆z + d2sin(α2))cos(γ1)

d2cos(α2)cos(γ2) + ∆x
(1.4)

where

• (∆x,∆y,∆z) are the distances (or displacements) between the two sensors

in all the directions;

• (d1, α1, γ1) are, respectively, the measured distance, latitude and longitude

w.r.t. sensor 1 to a specific object (landmark);

• (d2, α2, γ2) are, respectively, the measured distance, latitude and longitude

w.r.t. sensor 2 to a specific object (landmark);

Thanks to previous equations, we are able to merge the two point clouds in

order to obtain an augmented point cloud which will be fed to different neural

networks for next tasks.

We can inspect in Fig.1.6 and Fig.1.7 the lateral and top view of the sensors

for the previous equations.

1.1.4 RAILGAP Project

The main objective of RAILGAP European funded project (EU H2020 – GSA)

is to propose a high accuracy and integrity ground truth and track-side digital

map methodologies and related tool-set development to provide an accurate and

8 Chapter 1. Introduction

Figure 1.6: Sensor Geometry from lateral view.

Figure 1.7: Sensor Geometry from top view.

reliable metric for evaluating the train satellite-based positioning accuracy and

its confidence intervals.

The outcomes will address two show stoppers: lack of high-quality data with

ground truth (needed for developing new navigation systems) and a modernized

process for mapping existing train tracks cost-effectively, by deriving mapping

information directly from trains in commercial operation.

Ground truth can be described as a set of georeferenced data with sufficient

accuracy, availability and reliability to be considered a stable and true reference,

suitable for the purpose of comparison and validation of other data sources in the

railway domain according to established requirements.

More specifically, one of the key objectives of RAILGAP project is the

development of GTP (Ground Truth for the Train Position) and aGTO (Ground

Truth for the Odometry).

Each ground truth has to meet the following key requirements:

• It does not require installation of equipment on the signalling track side or

any modification to the exiting signal track side;

1.1 Problem Statement 9

• The track where the train runs is autonomously identified without consid-

ering any exchange of information from the track side subsystem to identify

it;

• It relies on measured data collected by using trains in commercial service.

The missing piece is a methodology to collect and aggregate the data without

operational overheads or labour, at minimal cost in hardware while removing any

need for track side infrastructure.

RAILGAP addresses these challenges with a method based on commercial

trains collecting massive amounts of data. This enables characterizing even the

most challenging railway environments.

1.1.5 VOLIERA Project

Figure 1.8: VOLIERA logo.

VOLIERA is an ESA (European Space Agency) funded project (ESA –

NAVISP-EL2-009) which aims to introduce detection technologies based on videos

and 3D data in railway applications, combined with GNSS (Global Navigation

Satellite System) data for the very first time in the state-of-the-art.

It consists in three main tasks:

• Track Classification: it aims to count the number of railtracks and then

determine the one the train is following. First of all, the depth map is

converted to the corresponding point cloud, then a registration step is per-

formed to represent the depth map-based point cloud and the original point

cloud in the same reference system.

After registration, the two point clouds are merged to obtain an augmented

point cloud which is used as input to the track discrimination algorithm.

10 Chapter 1. Introduction

This last exploits the information provided by GNSS and IMU (i.e. position

and position estimate confidence interval) to speed up and simplify the track

identification task.

Figure 1.9: Detecting railways using only raw point clouds.

More in details, given the area in which the train is located, the information

about how many tracks are present can be obtained, thus reducing the

complexity of the track discrimination algorithm;

• Relative and Absolute Positioning: in order to compute the absolute

position of the train, the available georeferenced landmarks are exploited.

More in details, well established techniques for object detection and recog-

nition are based on deep learning algorithms which take as input images of

the surrounding scene. For this reason, when the intensity image is avail-

able, we use it to detect the visible landmarks.

Figure 1.10: Computation of relative position with more than two detected landmarks.

The object detection algorithms output a bounding box which contains the

desired objects, whose depth in relative coordinates can thus be extracted by

1.1 Problem Statement 11

the corresponding depth map. Thanks to the registration process, moreover,

the parameters needed for converting the 2D boxes identified in the intensity

images to the corresponding 3D boxes in the point cloud reference system

are available. Once the 3D box is obtained, the points which fall in it are

extracted from the point cloud. The 2D and 3D bounding boxes, together

with the corresponding depth map and point cloud portions are processed

by the absolute positioning algorithm.

In order to exploit the landmark position, the absolute positioning algo-

rithm has to match the landmarks detected in the acquired visual informa-

tion (i.e. using their relative position) with the ones of the database. To

do so, the information provided by IMU and GNSS (i.e. position and con-

fidence interval) can be exploited to speed up the task. More specifically,

the database search procedure is restricted to the landmarks falling in the

area corresponding to the confidence interval provided by IMU and GNSS.

Differently, when the information provided by the stereo camera, i.e. the

intensity image and the depth map, are lacking, the point cloud is used as

input for a deep learning algorithm in order to detect the visible landmarks

and their relative location. Once the 3D bounding box is obtained, the

points which fall in it are extracted from the point cloud. The 3D bounding

boxes, together with the corresponding point cloud portions are processed

by the absolute positioning algorithm.

• Pose Update: to estimate the train pose update a late fusion is performed

between the pose update provided by the visual odometry algorithm which

exploits the depth map and the intensity image, and one obtained through

the odometry algorithm based on the point cloud.

The reason why a late fusion approach has been chosen is that the computa-

tional complexity of the point cloud-based odometry dramatically increases

when a dense point cloud is provided as input. In addition, due to the

different range of the sensors, the density of points in the augmented point

cloud would not be uniform thus impairing the algorithm performances [14].

We can inspect project flow chart in Fig.1.12.

As we can clearly see from descriptions of aforementioned projects, they have

similar structure and objectives, leading to a common solution for detecting and

registering railway landmarks.

12 Chapter 1. Introduction

Figure 1.11: Rosten & Drummond [13] algorithm for fast feature detection on images.

Figure 1.12: Flow chart of the VOLIERA project.

1.1.6 Contributions

In this thesis, we are going to illustrate how 3D object detection in Relative

and Absolute Positioning task is performed using only LiDAR data thanks to

Deep Learning strategies such as the single stage detector VoxelNet (Chapter 3).

Having a solution which works on LiDAR permits to take into account situ-

1.1 Problem Statement 13

Figure 1.13: Proposed framework.

ations where images from RGB cameras are missing, increasing robustness and

accuracy of the next workflows. Moreover, VoxelNet is able to:

• Handle point clouds with different number of points. Even if a more dense

point cloud is fed to the network which was trained with different sized

point clouds, functionalities and proprieties are not affected hereby;

• Preserve spatial information of data. Voxelization creates a grid structure

of the point cloud and then encodes each voxel into a 4-D tensor called

feature tensor ;

• Reach high accuracy of detection with an inference time in the order of

hundred of milliseconds;

• Classify different type of objects by adding pre-defined anchors.

The training of the chosen neural network requires a huge amount of data and

time in order to generalize and reach successful percentage of detection accuracy

and precision.

Therefore, a synthetic dataset is created by developing a virtual railway scene

using 3D graphics engine Unreal Engine 4™ and simulating a LiDAR sensor using

Matlab™ with the Automated Driving Toolbox (Chapter 2).

Since simulation models also railtracks and their structure in the Italian rail-

ways, it is possible to use the custom dataset also for track identification tasks.

14 Chapter 1. Introduction

An initial configuration is required by VoxelNet to start learning.

We deeply discuss all the possible arrangements in Chapter 4, describing also

hyper parameters of training loop.

Network performances are evaluated on KITTI dataset in order to understand

if the network is suitable for 3D object detection in wide open area.

Since automotive scenarios are different w.r.t. railway ones, a fine-tuning

phase is mandatory in order to fit correctly the network.

We analyze evaluation results from manufactured dataset, reviewing output

of the network and conducting some ablation studies in Chapter 5.

The proposed framework is in Fig.1.13.

In conclusion, we discuss some possible implementation for increasing accu-

racy and refining predictions in Chapter 6.

Chapter 2

Dataset

In this section, we are going to analyze some datasets for the autonomous driving

task. KITTI360 [21] and RailSem19 [22] are the newest datasets for, respec-

tively, automotive and railway applications. Unfortunately, they provide only

RGB frames of the environment which permits only 2D object detection without

an accurate depth estimation.

Nevertheless, KITTI [20] provides annotated automotive point clouds for

deep learning strategies in the autonomous driving field. It is possible then to

choose and validate a possible deep network to train for object detection in the

rail context.

2.1 KITTI360

KITTI360 [21] is a large-scale dataset that contains rich sensory information

with full annotations. Jun Xie et al. recorded several suburbs of Karlsruhe, in

Germany, obtaining over 320k images and 100k laser scans in a driving distance

of 73.7km.

Figure 2.1: KITTI360 setup and example of obtained point cloud.

As we can see from Fig.2.1, a station wagon was equipped with:

15

16 Chapter 2. Dataset

• One 180° fish-eye camera to each side;

• A 90° perspective stereo camera;

• a Velodyne HDL-64E and a SICK LMS 200 laser scanning unit;

• an IMU/GPS localization system.

Figure 2.2: KITTI360 example of point cloud with semantic information.

For point cloud deep learning, they provide both raw 3D data and fused

point clouds in order to perform either semantic segmentation and/or 3D object

detection.

Figure 2.3: KITTI360 example of object ground truth.

They provide also stereo camera acquisitions (RGB, confidence maps), cal-

ibration matrices and system poses as well as raw (GPS/IMU) measurements.

2.2 RailSem19 17

KITTI360 can be a powerful dataset for computer vision tasks related to au-

tonomous driving.

On the other hand, KITTI360 has not been involved in the training process

of the network because:

• Raw data is not labeled. An .xml file contains all the 3D bounding box

of the objects but only for fused point clouds (which are composed by

approximately 3 milions points). Complex pre-processing algorithms are

requested for selecting and sampling most valuable point clouds. We can

inspect this behaviour in Fig.2.3;

• Low number of signals with poor quality. Since our main purpose is to

detect props of the railway environment, we wanted to validate the model

in an automotive surrounding, performing signal detections. An example

can be seen in Fig.2.4;

• No benchmark is available at the moment which will be implemented in the

future. Because of this, we are not able to compare results with state-of-

the-art detectors.

Figure 2.4: KITTI360 example of noisy signal.

2.2 RailSem19

RailSem19 [22] dataset is a collection of mono RGB images which describes

railway and inner-city tram scenes in order to be fed to an Artificial Neural

18 Chapter 2. Dataset

Network for semantic segmentation.

Together with KITTI360, RailSem19 does not provide a public benchmark

so it is not clear which type of network suits better with railway environment.

Figure 2.5: List of files inside the RailSem19 directory.

RailSem19 contains 8501 mono RGB images of railway environment with

ground truth and its structure is defined as follow:

• authors.txt which contains all the links to YouTube videos where scenes are

extracted in order to compose the dataset;

• license.txt which determines which license agreement is present for the

dataset;

• readme.txt which decribes briefly the structure of the folder;

• jpgs is a folder which contains all the dataset images in jpg format (1920x1080

pixels mono RGB);

• json is a folder which contains a json for each jpg image and describes 2D

bounding box with labels of detected objects in a scene. An example is in

Fig.2.8;

• uint8 is a folder which contains all dense semantic segmentation id maps

of each scene using uint8 notation. An example is Fig.2.9;

• rs19-config.json is a configuration file where colors can be modified for each

class described in the dataset;

• example-vis.py is a Python3 script which permits to visualize image in the

collection. In Fig.2.6 we can inspect how sample code is working.

2.2 RailSem19 19

Figure 2.6: Example of image with semantic segmentation and object detection labels.

Inside the Python3 sample code and json files, we are able to identify dataset

classes which are listed at the beginning of the script (Fig.2.7).

In order to be used for training in a deep learning strategy, we need to parse

the json file for collecting the detected objects in the scene and then perform the

loss between the prediction of the neural network and the ground truth of the

specific scene. Since the number of detected objects is not fixed, a network which

employs a RPN (Region Proposal Network) is mandatory in order to generalize

as much as possible these types of scenarios.

Figure 2.7: Map between bgr colors of uint8 images and labels.

20 Chapter 2. Dataset

RailSem19 contains specific annotations collected from various scenario but

images are extracted from Youtube videos and then no information about dis-

tances from train to landmarks is available. Furthemore, no point clouds are

available.

Even if RailSem19 can be used for semantic segmentation and 2D object

detection using, respectively, FCN (Fully Convolutional Networks) and Mask

RCNN, VOLIERA and RAILGAP projects request to localize, respectively,

landmarks and absolute position of the train during the run and, without dis-

tances and yaw angles, we cannot train properly the Neural Network for detecting

railway signals and specific props of the environment and then place them cor-

rectly on the digital map.

Figure 2.8: Structure of ground truth inside json files.

2.3 KITTI

Andreas Geiger et al. [20] developed novel challenging benchmarks for the tasks

of stereo, optical flow, visual odometry / SLAM (Simultaneous Localisation and

Mapping) and 3D object detection in 2012 called KITTI.

The 3D object detection KITTI benchmark consists of 7481 training images

and 7518 test images as well as the corresponding point clouds, comprising a

total of 80.256 labeled objects. For evaluation, KITTI adopts precision-recall

curves and average precision for ranking models. Datasets are captured by driving

around the mid-size city of Karlsruhe, in rural areas and on highways.

2.3 KITTI 21

Figure 2.9: Example of semantic segmentation map of a sample image.

Figure 2.10: Example of left RGB image from KITTI Dataset.

KITTI has been used for network pre-validation in order to evaluate if the

chosen neural network is suitable for the 3D Object detection task.

KITTI 3D Object Detection benchmark is structured in training and testing

data. As we can see from Fig.2.11, each folder consists in:

• calib folder which contains camera matrix and transform matrix for each im-

age and point cloud. Given a 3D point in camera coordinates with homoge-

neous coordinates pc = [x, y, z, 1]T , we can convert into LiDAR coordinates

by performing a matrix multiplication:

pl
4×1 = T 4×4

c2l pc
4×1 (2.1)

• image 2 contains all mono RGB photos from the second camera. In our

environment, we use them in order to plot predicted bounding box for

visualization purposes;

22 Chapter 2. Dataset

• label 2 contains the ground truth for each sample;

• velodyne contains all point cloud from the LiDAR sensor in .bin format.

Figure 2.11: KITTI folder structure for 3D Object Detection suite.

Ground Truth is structured in 16 fields used as follow:

• 1 Type Describes the type of object: ’Car’, ’Van’, ’Truck’, ’Pedestrian’,

’Person sitting’, ’Cyclist’, ’Tram’, ’Misc’ or ’DontCare’;

• 1 Truncated Float from 0 (non-truncated) to 1 (truncated), where trun-

cated refers to the object leaving image boundaries;

• 1 Occluded Integer (0, 1, 2, 3) indicating occlusion state: 0 = fully visible,

1 = partly occluded 2 = largely occluded, 3 = unknown. These values are

used for classify decision difficulty;

• 1 Theta Observation angle of object (yaw), θ ∈ [−π
2
, π
2
];

• 4 Bbox 2D bounding box of object in the image (0-based index) contains

left, top, right, bottom pixel coordinates [umin, vmax, umax, vmin];

• 3 Dimensions 3D object dimensions: [h,w, l] height, width, length in cam-

era coordinates (in meters);

• 3 Location 3D object location [x, y, z] in camera coordinates of the box

center (in meters);

• 1 Rotationy Rotation ry around Y-axis in camera coordinates [−π
2
, π
2
];

2.4 Syntethic Dataset 23

• 1 Score Only for results: Float, indicating confidence in detection, needed

for precision/recall curves;

Figure 2.12: Example of KITTI point cloud with 3D bounding boxes.

As we can clearly see, labels are strictly correlated with provided images.

Ground truth of an object is available if and only if it is on the field of view

of the RGB camera. This issue could cause problems during training loop since

correct detections of cars are labeled as false positive which are back-propagated

through the network.

Figure 2.13: Example of left RGB with 3D bounding boxes.

2.4 Syntethic Dataset

Inspecting public datasets results in poor quality of labeled data to be used as

training set. Even if KITTI has a great potential for automotive purposes, it is not

suited for railways application. Deep learning strategies are based on observing a

24 Chapter 2. Dataset

huge amount of data of the same domain in order to learn relevant features and

discover correlations.

Automotive environment is too different for using it as a training dataset for

the railway context.

This strong data limitation forces us to choose between two possibilities:

• Resize KITTI360 point clouds and mixing them with KITTI dataset,

adjusting ground truth in order to perform object detection of traffic signs

using only raw LiDAR data. Some scenes of the dataset are noisy and

difficult to be handled. Moreover, there could be a problem of generalization

and it could not be enough dense for a proper training of the model, risking

overfitting;

• Thanks to the integration between Unreal Engine 4™ and Matlab™, we can

code a train simulator which permits to simulate LiDAR scans in railway en-

vironment with a procedural generation of the railway with random spawn-

ing of signs for creating a synthetic point cloud dataset with known ground

truth.

State-of-the-art shows multiple study cases where neural networks are trained

using simulated data [26] with comparable results w.r.t. real ones, conducting us

to start developing a train simulator.

Figure 2.14: Main window of Unreal Engine™ software.

2.4.1 Matlab™ - LiDAR data simulation

The Automated Driving Toolbox simulation blocks provide the tools for testing

and visualizing path planning, vehicle control, and perception algorithms. It sup-

plies also an interface to the LiDAR sensor in a 3D simulation environment. This

2.4 Syntethic Dataset 25

environment is rendered using the Unreal Engine™ from Epic Games™. The block

returns a point cloud with the specified field of view and angular resolution. We

set up the LiDAR to be on top of the train (approximately 3.7 meters from ground

level) with the same physical configurations of the LIVOX™ Horizon sensor.

The Simulation 3D Scene Configuration block requires an Unreal Engine™

executable or project in order to run simulations.

Simulation 3D Scene Configuration and LiDAR Simulation blocks from Au-

tomated Driving Toolbox compose a Simulink™ model which is capable of being

executed iteratively, creating multiple point clouds consecutively.

The toolbox includes 9 built-in scenes where researchers can test their algo-

rithms, such as lane keeping assist and adaptive cruise control.

2.4.2 Unreal Engine 4™ - Simulating railway environment

Unreal Engine™ is made up of several components that work together to drive

the game. Its massive system of tools and editors allows to organize assets and

manipulate them to create the game play for the game.

In Fig.2.14 we can inspect the main windows of the editor where assets and

textures can be viewed during development.

Before starting creating the railway, we modeled some specific signals which

are going to be spawned near railtracks. An example of a model of a railway sign

support is illustrated in Fig.2.15.

In our setup, we respect distances and dimensions during the modeling of

rails, signals and props of the railway environment. We used Blender™ which is

a free and open-source 3D computer graphics software tool set used for creating

animated films, visual effects, art and 3D printed models.

Models in the Unreal Engine™ environment are called Game Object which

can be a static mesh, point light, cameras and others possible props of the game

level.

Logic structure of Unreal Engine™ is provided by programming Blueprints.

The Blueprint Visual Scripting system in Unreal Engine is a complete game

play scripting system based on the concept of using a node-based interface to

create game play elements from within Unreal’s Editor. As with many common

scripting languages, it is used to define object-oriented (OO) classes or objects in

the engine.

Each level of a game has a Blueprint Level where initial configuration are

set up.

26 Chapter 2. Dataset

Figure 2.15: Example of 3D model of a Railway support sign with a traffic light.

Figure 2.16: Blueprint scripting for generating track rails.

Fig.2.16 shows simulator blueprint which permits to:

• Generate a .txt file where ground truth is going to be written in next steps;

• Spawn a random number of railtracks, from 1 to 3. Since field of view of

LiDAR is not wide, we restricted the number of railtracks for the purpose

of reducing complexity of the simulation. At least one railtrack is spawned

- the one where the train is following;

2.4 Syntethic Dataset 27

• Destroy all railtracks at the end of simulation for memory re-allocation

intentions.

The initial idea was to generate multiple point clouds in a single simulation

by changing the environment rapidly. The main issue was the difficulty to syn-

chronize both Unreal Engine and Matlab™ time since the two programs interpret

simulated time in different way.

Figure 2.17: Blueprint scripting for generating landmark near track rails.

Spawning a railtrack calls its Blueprint which creates landmarks nearby. Pro-

cess is displayed in Fig.2.17 which can be summarized as follows:

• We create an array of possible signals to be spawned. Adding multiple

instances of the same landmark permits to model signal distribution;

• For each railway, we sample an integer from a uniform distribution which

describes the number of signals near railtracks;

• For each signal, we sample x and y coordinates of the landmark from a

uniform distribution over the left-side of the railtracks. In Italy, signals are

installed on the left side of the road;

• We write ground truth using KITTI format in order to store [xc, yc, zc] of

the 3D box with its dimensions [l, w, h] and yaw angle θ.

• In conclusion, we destroy all the Game Objects spawned for memory re-

allocation purposes.

28 Chapter 2. Dataset

Final output of simulation is then a .txt file which contains all the character-

istics of spawned landmarks.

We have to emphasize that every parameter of the Blueprint can be modified,

according to the railway environment. Adding different signals is a straightfor-

ward procedure which takes into account applying object-oriented paradigm.

We develop a Blueprint interface which permits to customize parameters of

3D bounding box w.r.t. the type of signal. In this way, we inherit proprieties

from the interface to the extended signal class and then fetch data, by accessing

its public variables, and write to ground truth file of the simulation.

2.4.3 Dataset Generation

LiDAR simulator adds a displacement with respect to the Y axis. As we can see

from Fig.2.18, distortion is strictly correlated with X value e.g. the more distant

the object is from the sensor, the more distorted the Y axis is.

Figure 2.18: Estimation of LiDAR distortion on Matlab™ simulation.

In order to fix this, we regress the problem into a linear function which de-

pends on X axis and add the predicted displacement to Y axis during ground

truth generation.

For collecting multiple point cloud instances, we code a script which permits

to:

2.4 Syntethic Dataset 29

• Create automatically a dataset which is splitted in training and validation

set. Percentage of each subset is defined at the preamble of the code;

• Define the number of point clouds to generate;

• Plot one random (or fixed) point cloud and display bounding box ground

truth for visualization and testing purposes (class and dimensions of the

box).

For our aim, we decide to simulate KITTI settings so:

• Generation of 7500 point clouds which takes approximately one day and an

half;

• Split syntethic dataset in 50% training and 50% validation sets.

With these settings, syntethic dataset has a size of approximately 50 GB to

be fed to our VoxelNet.

Figure 2.19: Snapshot of the Unreal Engine’s viewport during a simulation run.

An example of running simulation is in Fig.2.19 where 3 tracks are spawned

with support signs and traffic lights.

30 Chapter 2. Dataset

Figure 2.20: Example of synthetic point cloud.

Figure 2.21: Syntethic point cloud with annotations.

Chapter 3

VoxelNet - Deep Learning

Architecture

3.1 Deep Learning Strategy Selection

Unlike images and videos, LiDAR point clouds are sparse and have highly variable

point density due to non-uniform sampling of 3D environment, occlusions and

relative poses. To handle this challenge, many approaches with different types of

representations are defined.

PointNet architecture, developed by Charles R.Li et al [9], permits to extract a

feature vector z ∈ Rn, where z is called latent vector with its length n and belongs

to the latent space, from raw LiDAR data in order to perform classification and

semantic segmentation tasks.

Figure 3.1: Structure of the point cloud encoder PointNet.

It can be also used for 3D object detection in small point clouds.

The main problem of this approach is that it requires to feed the whole point

cloud, which is around one hundred thousands points, to the encoder causing

31

32 Chapter 3. VoxelNet - Deep Learning Architecture

massive hardware and computation requirements.

From Fig.3.1, we can see that the whole point cloud is encoded in a fixed-

length float vector, specifically a 1024-length vector.

In terms of compression, it is a powerful method for reducing the size of

data. Unfortunately, features extracted are not representative for a 3D space.

Moreover, spatial information is lost during the process so no generalization is

possible.

Pointnet can be used as encoder-backbone for more advanced deep archi-

tecture, such as 3D-BoNet [16], but is not suitable for large scale point clouds

because of encoder representation limits.

Global features, displayed in Fig.3.2 with the architecture of 3D-BoNeT, are

obtained by feeding the whole point cloud to PointNet.

Experiments on 3D-BoNeT with KITTI data stood out difficulties on pre-

dicting bounding box in large scale environments.

Figure 3.2: 3D-BoNet architecture.

Many other approaches, involving image processing and machine learning,

implement sensor fusion between point clouds and images [17] and then provide

improved performances compared to LiDAR-only 3D detection, particularly for

small objects (pedestrians, cyclists) or when landmarks are far from sensor.

For our aim, we deploy the VoxelNet deep network [18].

It belongs to the class of networks which deploy voxelization pre-processing,

creating a grid representation of the point cloud.

3.2 VoxelNet architecture

VoxelNet was proposed by Yin Zhou and Once Tuzel [18] in 2019 in order to

perform 3D Object Detection on point clouds. The authors proposed a novel

end-to-end (without jumps and/or context vectors) trainable deep architecture

that operates on sparse 3D points, presenting an efficient method to implement

it without information bottlenecks and developing efficient parallel processing of

voxels.

3.2 VoxelNet architecture 33

Figure 3.3: VoxelNet architecture.

They conducted experiments on KITTI dataset and showed that VoxelNet

had produced state-of-the-art results by exploiting only raw data.

Neural network is structured in three main parts as we can see from Fig.3.3:

• Feature Learning Network;

• Convolutional Middle Layers;

• Region Proposal Network

The following sections will deeply focus on each of the aforementioned pro-

cesses in order to demonstrate efficiency and accuracy of the deep network.

3.2.1 Feature Learning Network

Let P = {pi}, ∀i = 1 . . . N be the input point cloud with N points and pi =

[xi, yi, zi, ri]
T a 3D point which is characterized using 3D coordinate (xi, yi, zi)

and reflectivity value ri.

We subdivide the point cloud P into equally spaced voxels in order to be fed

to Convolutional Middle Layers. Let’s first assume that our point cloud is 3D

bounded with range D,H,W in meters along the Z, Y,X coordinates, respec-

tively.

We define voxel sizes as vD, vH , vW in order to obtain a voxel partition which

has size [D′, H ′,W ′]. They are computed as follows:

• D′ = D
vD

34 Chapter 3. VoxelNet - Deep Learning Architecture

• H ′ = H
vH

• W ′ = W
vW

Without loss of generality, we assume that [D′, H ′,W ′] are integers. After

the splitting phase, we assign to each point pi to the corresponding voxel Vi =

{pi}, ∀i = 1 . . . Ni.

Figure 3.4: Voxelization of the point cloud.

We have to notice that each voxel Vi can group different amount of 3D points

or also be empty. This is one of the most critical drawbacks of the network since

it does not re-allocate memory from empty voxels.

We can affirm that space complexity of the network depends on voxels sizes

and not on point cloud density.

For the purpose of extracting regular features from voxels, we perform random

sampling in order to fix the number of contained 3D points for each voxel. At

the end, we have a certain number of non-empty voxels which contain T points

each. Thanks to this process, we accomplish three important goals:

• Computational savings;

• Decreasing imbalance between voxels with different number of points;

• Reducing bias and adding some variance in order to increase training accu-

racy.

3.2 VoxelNet architecture 35

Figure 3.5: Single VFE encoding process.

Last but not least, we define a stacked VFE (Voxel Feature Encoder) which

is the key algorithm for excerpting relevant features from voxels. Given a non-

empty voxel Vi = {pi ∈ R4, ∀i = 1 . . . T}, we first compute the local mean

µi = [µx, µy, µz] as the centroid of all the points inside the voxel Vi, i.e:

µi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µx =

∑︁
pi∈Vi

xi

T

µy =
∑︁

pi∈Vi
yi

T

µz =
∑︁

pi∈Vi
zi

T

(3.1)

Thanks to this piece of information, we are able to augment each point by remov-

ing its characteristic local mean and obtaining an augmented point pî. Therefore,

we are able to define an input feature set Vin which is described as

Vin = {pî = [xi, yi, zi, ri, xi − µx, yi − µy, zi − µz]
T ∈ R7, ∀i = 1 . . . T} (3.2)

Next step is to transform each augmented point through a FCN (Fully Con-

nected Network) into a point features fi.

We connect information from point features fi ∈ Rm, where m is the length

of the feature vector, to represent voxel shape.

FCN is composed of a linear layer, a Batch Normalization layer and a REc-

tified Linear Unit (ReLU).

We apply element-wise MaxPooling across all fi associated to Vi to get the

local aggregated feature vector fî ∈ Rm.

36 Chapter 3. VoxelNet - Deep Learning Architecture

A final augmentation of data is performed by concatenating point features fi

and local feature vector fî into

fouti = [fifî] ∈ R2m (3.3)

This process is iterated for extracting more peculiar features from spatial

information of the voxel.

We use the notation VFE-i(cin, cout) to represent the i-th layer that transforms

input feature vectors of dimension cin to output feature vectors of dimension cout.

The result of the whole feature learning process is a 4-D tensor of size

[C,D′, H ′,W ′] where C is the length of the feature vector cout obtained from

the last VFE layer.

Since point clouds are sparse by definition, resulting tensor is typically sparse

reducing memory usage and computation cost during back-propagation algo-

rithm.

3.2.2 Convolutional Middle Layers

This intermediate section of the network consists in extracting relevant features

from the 4-D tensor. Let ConvMD(cin, cout,k, s,p) be the M-dimensional convo-

lution operator where:

• cin and cout are the numbers for input and output channels, respectively;

• k is the kernel size;

• s is the stride size;

• p is the padding operator;

If the size is the same for each dimension, we define it as a scalar e.g. s for

s = (s, s, s).

For each convolutional network, we attach a Batch Normalization layer and

a ReLU layer sequentially.

Thanks to this configuration, we are able to extend receptive fields of the

network.

Since some parameters are different w.r.t. the dataset used, further insights

can be inspected in Chapter 4.

3.3 Loss Function 37

Figure 3.6: Region Proposal Network structure.

3.2.3 Region Proposal Network

Both for 2D and 3D object detection, it is crucial to implement a RPN (Region

Proposal Network) in order to obtain accurate detection.

In Fig.3.6 we can see that output of Convolutional Middle Layers is fed to

a complex structure of convolutional and de-convolutional network in order to

create a final feature map, made by up sampling and concatenating each inter-

mediate result.

In this manner, we are able to apply aMLP (Multi-Layer Perceptron) branch

for mapping the final feature vector into:

• a probability score map which can be displayed as an heat map with shape

κ×H ′/2×W ′/2, where κ is the number of pre-defined anchors. They are

discussed in Chapter 4;

• a regression map with shape 7κ×H ′/2×W ′/2;

The number of anchors κ affects only the last layers of the overall network,

changing the shape of the probability score map and the regression map. The vast

majority of rail signals have different sizes which permits to classify the detected

object w.r.t. the dimensions of the correct anchor.

The following section will explain how regression task and classification of

true predictions is done by implementing the loss function.

3.3 Loss Function

Thanks to the loss function gradient w.r.t. network weights ∇Θ, we are able to

apply the back-propagation algorithm in order to change weights of the neural

network.

38 Chapter 3. VoxelNet - Deep Learning Architecture

For this main reason, loss function is a fundamental component of the net-

work.

Let {aposi }i=1...Npos be the set of Npos positive anchors and {anegi }i=1...Nneg be

the set of Nneg negative anchors.

We define a generic ground truth as a vector [xg, yg, zg, lg, wg, hg, θg] where:

• [xg, yg, zg] are the coordinates of the 3D box center;

• [lg, wg, hg] are the dimensions of the bounding box;

• θg is the rotation w.r.t. Z axis of the bounding box.

Using the same notation, we define the predicted anchor from the network as

the vector [xp, yp, zp, lp, wp, hp, θp], obtained from the regression map of the RPN.

Thanks to the previous values, we introduce the residual vector u∗
i which

contains all the 7 regression targets e.g. u∗
i = [∆x,∆y,∆z,∆l,∆w,∆h,∆θ].

All the values are evaluated as:

u∗
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆x = xg−xp

dp

∆y = yg−yp

dp

∆z = zg−zp

hp

∆l = log lg

lp

∆w = log wg

wp

∆h = log hg

hp

∆θ = θg − θp

(3.4)

where dp =
√︁
(lp)2 + (wp)2 is the diagonal of the predicted anchor box base

which is used in order to normalize ∆x and ∆y for better performances.

Computing the ground truth residual vector ui for the i-th box at the loading

dataset script, we are able to define the loss function:

Loss = α

Npos

∑︂
i

Lcls(p
pos
i , 1)⏞ ⏟⏟ ⏞

Classification Negative Loss

+
β

Nneg

∑︂
j

Lcls(p
neg
j , 0)⏞ ⏟⏟ ⏞

Classification Positive Loss

+
1

Npos

∑︂
i

Lreg(ui,u
∗
i)⏞ ⏟⏟ ⏞

Regression Loss

(3.5)

where:

3.3 Loss Function 39

• pposi and pnegj are the softmax probability of positive and negative anchors,

respectively. It permits to assign high probabilities to boxes which are more

likely to describe a true positive object;

• α and β are regularization terms in order to balance network decisions;

• ui ∈ R7 and u∗
i ∈ R7 are ground truth and predicted residual vectors for

positive anchor ai.

First two classification terms take into account Binary Cross-Entropy loss

whereas Huber Loss or SmoothL1 (combining Mean Squared Error and Mean

Absolute Error loss) is applied for regression task.

Regression loss is defined as:

Lreg(p, q) =

⎧⎨⎩0.5(p− q)2 if |(p− q)| ≤ δ

δ(|(p− q)| − 0.5δ) otherwise
(3.6)

where p, q are prediction and target values, respectively. The hyper parameter δ

trades off between linear and quadratic loss. In our environment, we empirically

set δ = 1.5 since it is a good starting value for clipping the gradient of the loss,

acting as a regularizer.

Figure 3.7: Huber Loss w.r.t.δ parameter.

40 Chapter 3. VoxelNet - Deep Learning Architecture

Classification loss is defined as:

Lcls(p,q) = − 1

N

N∑︂
i=1

pi log qi + (1− pi) log (1− qi) (3.7)

where p and q are the prediction and target vector probabilities with N samples,

respectively. During training, we avoid the logarithm of zero by adding a small

add-on (approximately 1e−6).

Classification losses are fundamental since they are responsible for raising

softmax probabilities for correct detections and, on the other hand, decreasing

them for wrong predictions.

We can inspect examples of binary masks for ground truth in Fig.3.9 and

Fig.3.8.

Figure 3.8: Example of binary mask displaying set of voxels where black voxels represent one object.

Figure 3.9: Example of binary mask displaying set of voxels where white voxels represent one object.

Moreover, during prediction step, detections are filtered as follow:

• Removing predictions with score lower than a fixed threshold δ. After

collecting all the predictions of a specific point cloud, each bounding box

with score si < δ is discarded and not taken into account for evaluation of

metrics;

• Performing a 2D - NMS (Non-Maximum Suppression).

NMS permits to prune away detections that have high IoU overlap with each

others.

Let box1 and box2 two predictions of the network targeting the same ground

truth which are displayed on bird-view, e.g. box1 = [umin, umax, vmin, vmax], then

IoU is evaluated as the ratio between intersection and union areas:

IoU(box1, box2) =
box1

⋂︁
box2

box1

⋃︁
box2

(3.8)

3.3 Loss Function 41

In our surrounding, we evaluate NMS on bird-view, e.g. collecting box from

the XY-plane for each target and then evaluating IoU.

This algorithm is agnostic to orthogonal transformation and translation and

it yields a set of integers indexing into the input collection in descending order of

score.

Implementation and configuration of the NMS is fundamental for every 2D/3D

object detection project, selecting best bounding boxes for each prediction run.

42

Chapter 4

Training Details

4.1 Network Details

Anchors are reference boxes that are placed at different positions in the voxel

grid. They can be seen as a powerful hyper parameter of the network which

permits to classify different objects w.r.t. their dimensions and shapes.

Let κ be the number of different anchors for each voxel.

In our setup, κ = 2 anchors are generated for each voxel with fixed sizes and

two different rotations, 0 and 90 degrees around Z axis.

Thus, we can affirm that number of total predictions is exactly κ×D′×H ′×W ′

since H ′ ×W ′ represents point cloud voxel grid with depth D′.

At the beginning of the training phase, we generate these anchors and assign

them positive and negative labels w.r.t. their IoU with ground truth.

Thanks to this procedure, we are able to define a binary feature map which

contains 1 if an object is present inside the voxel, 0 otherwise.

In this way, the network learns from previous wrong predictions and corrects

its error by back-propagating the derivative of the loss on its weights.

4.1.1 KITTI

Car Detection. For this specific task, we filter out not useful points into the

input range [0, 70.4]× [−40, 40]× [−3, 1] meters along X, Y, Z axis respectively.

These values refer to the maximum sizes of KITTI point clouds.

We use as voxel size vD = 0.4, vH = 0.2, vW = 0.2 meters, which leads to a

feature map of dimensions D′ = 10, H ′ = 400,W ′ = 352. Each voxel can contain

at the most T = 35 3D randomly sampled points from the encoding phase of the

43

44 Chapter 4. Training Details

network.

In the Feature Learning Network, we deploy two VFE layers, VFE-1(7, 32)

and VFE-2(32, 128) in order to obtain a sparse tensor of shape 128×10×400×352.

Three convolution middle layers are employed sequentially in order to aggre-

gate voxel-wise features which are

• Conv3D(128, 64, 3, (2, 1, 1), (1, 1, 1)),

• Conv3D(64, 64, 3, (1, 1, 1), (0, 1, 1)),

• Conv3D(64, 64, 3, (2, 1, 1), (1, 1, 1)).

The final output tensor is resized in order to have a shape of 128 × 400 ×
352 which will be fed to the Region Proposal Network. Finally, regression and

classification maps are obtained as in Fig.3.6.

We define one anchor with size lp = 3.9, wp = 1.6, hp = 1.56 meters centered

at zpc = −1.0 meters with two rotations, 0 and 90 degrees.

Classification of anchors is performed w.r.t. the highest IoU between all the

ground truth using the following formula:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if max IoU > 0.6

0 if max IoU < 0.45

Don′tCare if 0.45 ≤ max IoU ≤ 0.6

(4.1)

Don’t Care label means that prediction does not affect classification loss.

Considering Loss function in Eq.3.5, we set α = 1.5 and β = 1.

Pedestrian and Cyclist Detection. In this situation, we set the input

range as [0, 48]× [−20, 20]× [−3, 1] meters along X,Y,Z axis respectively. Using

the same voxel sizes for car detection, it yields D′ = 10, H ′ = 200,W ′ = 240.

Nevertheless, we set T = 45 for collecting more points in a voxel and then

preserving shape information.

Intermediate layers are identical w.r.t. car detection except for the first con-

volutional middle layer. In this case, we change the stride from 2 to 1 so the layer

becomes Conv3D(128, 64, 3, (1, 1, 1), (1, 1, 1)). This change permits to refine de-

tections for smaller objects such as pedestrian and cyclist.

Anchor sized are lp = 0.8, wp = 0.8, hp = 1.73 meters centered as zpc = −0.6

with 0 and 90 degrees rotation w.r.t. Z axis.

4.1 Network Details 45

In order to recognize signal with different shapes, other runs use another

anchor size which is lp = 0.2, wp = 0.8, hp = 1.73 meters centered as zpc = −0.6

with 0 degrees rotation w.r.t. Z axis.

Anchor matching criteria is different from the car detection:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if max IoU > 0.5

0 if max IoU < 0.35

Don′tCare if 0.35 ≤ max IoU ≤ 0.5

(4.2)

Learning rate is one of the most relevant hyper parameter of the back-

propagation algorithm, together with batch size. It permits to reach an optimal

minima of the loss function by varying network’s weights using the delta rule. It

can be summarized using the following formula:

Θt = Θt−1 − η
1

m′∇Θ

m′∑︂
i=1

L(x(i),y(i),Θt−1) (4.3)

where:

• Θ is the set of all weights of the network;

• η is the learning rate;

• ∇Θ is the gradient w.r.t. network’s weights;

• m′ is the size of mini batch of training set and x(i),y(i) are input and output

of the network, respectively.

Fig.4.1 shows how back-propagation algorithm works during time, changing

distribution of the weights accordingly with the gradient of the loss.

Instead of setting a fixed or logarithmic decrease learning rate for the Stochas-

tic Gradient Descent algorithm, we can applyADAM (AdaptiveAverageMoments)

which permits to modify the learning rate w.r.t. the estimation of first and second

moments of the gradient.

Adam uses exponentially moving averages as we can see from the following

equations:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

46 Chapter 4. Training Details

Figure 4.1: Display of weights’ histograms from the Convolutional Middle Layers.

wheremt and vt are moving averages of mean and uncentered variance at iteration

t, gt is the value of the gradient at time t and {β1, β2} are hyperparameters of

the Adam algorithm (β1 = 0.9 and β2 = 0.999 are the most common values,

according to state-of-the-art).

At the beginning of the algorithm, we set the two moving averages to 0, i.e.

v−1 = 0 and m−1 = 0. Our main scope is to have the following propriety:

E[mt] = E[gt]

E[vt] = E[g2t]

so expectations of our moving averages can be used as estimators of expectations

of gradient and squared gradient gt.

This is not true since our initialization centers our expectations to 0.

For this reason, we are going to use the unbiased estimators version. In

order to have them, we have to define the following unbiased estimators:

mtˆ =
mt

1− βt
1

vt̂ =
vt

1− βt
2

we can then finally update weights of the network by using the unbiased

4.1 Network Details 47

estimators using the following formula:

wt = wt−1 − η
mtˆ√
vt̂ + ϵ

where η is the learning rate and ϵ is another hyper parameter of the optimizer.

Hence, we can summarize the hyper parameters of the ADAM algorithm with

a tuple (η, β1, β2, ϵ).

Moreover, we introduce the weight decay parameter which acts as a regularizer

of the optimizer.

Model capacity is limited by imposing a norm penalty in the parameters in

order to decrease them exponentially during time.

We define the weight decay as follows:

L(x(i),y(i),Θt−1) = L(x(i),y(i),Θt−1) +
λ

2
||Θt−1||22 (4.4)

where λ is the regularization constant, restricting the size of the weights and

avoiding overfitting. The ADAM optimizer with weight decay is defined as

ADAMW.

We have to notice that training deep neural network becomes challenging by

the fact that distribution of each layer is changing during back-propagation steps,

slowing down training process and selecting more precise hyper parameters.

For this main reason, Batch Normalization [24] are concatenate with network

layers in order to normalize each training mini-batch input for the next layer,

acting as a regularizer of the model.

We introduce, for each neuron activation x(k), a pair of parameters γ(k) and

β(k) which scale and shift the normalized value x̂(k), i.e.:

ŷ(k) = γ(k)x̂(k) + β(k) (4.5)

where ŷ(k) is the normalized output. These parameters are learned during training

process in order to fit input distribution so

γ(k) =
√︂

V ar[x(k)] , β(k) = E[x(k)] (4.6)

An example of their values can be seen in Fig.4.2.

Therefore, we can adopt a more flexible selection of hyper parameters and

initialization of the network.

In details, we can:

48 Chapter 4. Training Details

Figure 4.2: Values of β(k) and γ(k) in one Batch Normalization Layer in the Convolutional Middle
Layers .

• Increase the learning rate without having ill side effects;

• Avoid adding Dropout [25] layers. They discard a percentage of neurons’

activations, randomly, increasing network generalization proprieties.

Figure 4.3: Dropout approach for avoiding overfitting of deep neural networks.

In our case, Dropout layers add noise to training process without any rele-

vant improvements;

• Speed-up training process since neural networks work well with Gaussian

and Uniform weights.

During training, we use ADAMW [23] (β1 = 0.9, β2 = 0.999, ϵ = 1e − 07)

optimizer.

Learning rate η is 0.001 the first 80 epochs and we decrease the learning rate

to 0.0001 for the following 40 epochs. At the end, we apply a learning rate of

0.00001 for the last 30 epochs. For each epoch interval, we use a weight decay of

λ = 0.1η.

4.1 Network Details 49

These value are chosen empirically after some training runs because of the

high time complexity of the process. Therefore, they are not optimal and a more

detailed hyper parameters research is required.

4.1.2 Syntethic Dataset

Since we train the network using a different dataset, we need to apply some

changes in order to overcome the following differences:

• KITTI provides ground truth w.r.t. camera FOV. In this specific case, no

RGB images are available then no rigid transformations are requested;

• Signals are tiny landmarks in a wide railway environment.

Signal Detection. Input range of the point cloud is [0, 208]× [0, 28]× [−3, 1]

meters along X,Y,Z axis, respectively. We change voxel sizes using vD = 0.8, vH =

0.5, vW = 0.5 =, yielding D′ = 5, H ′ = 56,W ′ = 416. Each voxel can contain at

the most T=45 3D randomly sampled points.

Convolutional Middle Layers and Region Proposal Network have the same

structure as Pedestrian and Cyclist class detection from KITTI dataset.

We decide to perform multiple simulations with different anchor sizes and

training hyper parameters. First simulation uses anchor sizes which are lp =

0.2, wp = 0.8, hp = 0.8 meters with center zpc = −0.6 with rotation 0 and 90

degrees w.r.t. Z axis.

Differently, second and third run use two different anchor sizes without rota-

tion which are:

• lp = 0.2, wp = 0.8, hp = 0.8 meters with center zpc = −0.6;

• lp = 0.2, wp = 0.5, hp = 0.8 meters with center zpc = −0.6.

Anchor sizes are selected in order to match the sizes of target signals. In this

way, we are able also to classify the detected object by inspecting the values of

the 3D bounding box. Anchor matching criteria is described as follow:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if max IoU > 0.7

0 if max IoU < 0.5

Don′tCare if 0.5 ≤ max IoU ≤ 0.7

(4.7)

Classification of anchors for each voxel is the same as the Pedestrian and

Cyclist setup from the KITTI dataset. We modify hyper parameters of the loss

50 Chapter 4. Training Details

function by setting α = 1.5, β = 1 and δ = 4 in order to reduce rapidly the

softmax probabilities of false positive predictions, increasing regression accuracy.

During training, we use ADAMW (β1 = 0.9, β2 = 0.999, ϵ = 1e−07) optimizer

using a constant decay learning rate during epochs which is similar to the one

used in the KITTI setup.

For the first and second simulation, initial learning rate is 0.001 for the first

80 epochs and we decrease the learning rate to 0.0001 for the next 40 epochs.

Finally, we apply a learning rate of 0.00001 for the last 40 epochs.

For each epoch interval, we use a weight decay of λ = 0.1η. Hyper parameters

are chosen empirically after some training runs.

The last training process lasts less since overfitting occurs during the first 60

epochs. For this main reason, initial learning rate is 0.001 for the first 5 epochs,

we decrease it to 0.0001 for next 15 epochs.

Last 40 epochs are executed using a learning rate of 0.00001. Hence, we train

the model for a total of 60 epochs.

4.2 Data Augmentation

Data augmentation is a technique which is used to increase the total amount of

data for avoiding unsuccessful overfitting of the training set. It allows to introduce

some variance to the dataset, acting as a regularizer.

In our setup, we perform three types of augmentation that improve general-

ization proprieties of the network.

During dataset generation on Matlab, the first augmentation strategy con-

sists in adding uniform noise to dimensions of each 3D box of the ground truth.

In a mathematical sense, we sample from a uniform distribution three values

(l̂, ŵ, ĥ) ∼ U [−0.1, 0.1] meters and add them to each fixed dimensions of the

landmark.

This can be seen as an off-line augmentation method since it is performed

outside of the training loop, reducing the complexity of the algorithm.

Since point clouds can be of different sizes (if stereo camera is available in

order to increase points’ density), we apply a random sampling of LiDAR data

on-the-fly during training phase.

Specifically, we remove a percentage of points which is sampled from an uni-

form distribution U [0.6, 1]. In this way, we are able to handle different point

cloud sizes without affecting accuracy performances.

4.3 Code Insights 51

Last but not least, we perform a global scaling augmentation. We sample a

factor from a uniform distribution U [0.95, 1.05] and then multiply this value with

each point coordinates XYZ of the LiDAR data. The same procedure is applied

to all ground truth boxes.

All the aforementioned augmentation algorithms improve robustness of the

network for detecting landmarks which are different in shapes and locations.

4.3 Code Insights

We train the whole network using a single NVIDIA Quadro RTX 5000 which

constrains us to use a batch size of 2. Implementation is based on Tensorflow

2.5.0, Python 3.9.5, CUDA 11.3 and TensorBoard 2.5.0. We also used OpenCv

4.5.2. for reading images and writing results and predictions.

CheckPointManager class provided by Tensorflow permits to handle multiple

checkpoints by keeping some and deleting unneeded ones.

We are able to:

• Store multiple checkpoints and restore them in order not to restart the

training loop;

• Preserve all the changes on network weights for performing inference.

Moreover, thanks to tf.distribute Tensorflow class, we are able to perform a

distributed training on multiple GPUs which permits to speed up computation

and increase mini-batch sizes.

Since the whole dataset cannot be fit in the RAM, we deploy a Python gen-

erator which allows us to:

• Iterate through all the training and validation samples once. Generator

state is saved inside the checkpoint, avoiding same samples to be used in

the same epoch;

• Allocate memory efficiently. A normal function to return a sequence will

create the entire sequence in memory before returning the result. This is

an overkill if the number of items in the sequence is very large. Generator

implementation of such sequences is memory friendly and is preferred since

it only produces one item at a time. In our case, generator yields only one

batch when requested.

52

Chapter 5

Evaluation of VoxelNet

Performances

5.1 Metrics

In this section, we are going to analyze results using the Average Precision [27]

metric which is used for the KITTI benchmarks. Thus, we introduce some metrics

used in object detection tasks.

Let yi be the score of a predicted box from input xi belonging to the positive

class.

We define the Recall as the ratio between all positive samples ranked above

a given threshold δ:

Recall(δ) = P[yi ≥ δ|xi ∈ C] (5.1)

where C is the set of all positive samples.

Likewise, we define the Precision as the ratio between all samples above a

given threshold δ which are from the positive class so:

Precision(δ) = P[xi ∈ C|yi ≥ δ] (5.2)

We have to notice that either Recall and Precision are parametrized by the

threshold value δ. We can introduce a single metric called mAP (mean Average

Precision) which combines the two aforementioned metrics:

AP =
1

11

∑︂
r∈{0,0.1,...,1}

Precisionint(r) (5.3)

53

54 Chapter 5. Evaluation of VoxelNet Performances

where Precisionint(r) is the interpolated version of the precision function for a

recall level r, e.g.:

Precisionint(r) = max
r̃:r̃≥r

Precision(r̃) (5.4)

As we can inspect, metric averages 11 different recall values, ranging from

0 to 1 with step size 0.1, for reducing the impact of small variations and then

obtaining a more robust metric for object detection purposes.

The intention in interpolating the precision/recall curve in this way is to

reduce the impact of the “wiggles” in the precision/recall curve, caused by small

variations in the ranking of examples.

This metric was first introduced in the PASCAL VOC dataset challenge. Its

workflow is describes as follow:

• We classify each prediction of the network as True Positive, False Positive

and False Negative thanks to IoU metric;

• We collect all ranked predictions in descending order of confidence score;

• From top to last ranked prediction, we evaluate recall and precision entries

using Eq.5.1 and Eq.5.2. In this way, a value of recall yields a specific level

of precision e.g. Precision(r);

• Interpolating as in Eq.5.4, we compute the 11-points average in order to

evaluate AP.

Since we are interested in evaluating quality of 3D predicted bounding box,

we are going to apply the Average Precision metric - with threshold δ = 0.25 -

to IoU of volumes (mAP3D@0.25) and to Bird’s View (mAPBV@0.25). Since one

class is available, mAP and AP have the same meaning in our scope.

5.2 Evaluation on KITTI Dataset

Before we test the network using the artificial dataset, we trained the network

using the KITTI dataset for validating the model in the object detection task in

wide area point clouds.

As we can see from Tab.5.1, our implementation obtained comparable values

to the ones cited from the original paper.

5.2 Evaluation on KITTI Dataset 55

Since test set is not publicly available, we conduct an evaluation by splitting

the dataset in training and validation sets which results in 3712 data samples for

training and 3769 data samples for validation.

Figure 5.1: Example of successful car detection on KITTI dataset using VoxelNet on camera FOV.
Purple is the ground truth whereas yellow is the network prediction.

Thanks to this assertion, we use validation data as test set, avoiding mislead-

ing results.

We can notice that performances of our implementation are lower with the

car class whereas similar or greater with Cyclist and Pedestrian classes.

Figure 5.2: Example of successful car detection on KITTI dataset using VoxelNet on bird view .
Purple is the ground truth whereas yellow is the network prediction.

56 Chapter 5. Evaluation of VoxelNet Performances

We can explain this behaviour by analyzing the number of point cloud elab-

orated for each batch. From the original work, they introduced a batch size of 16

for each class study.

In our case, we increase the detection performances of smaller objects using

a batch size of 2.

Figure 5.3: Example of resulting heat map representing probabilities of the Region Proposal Net-
work using VoxelNet.

This yield that VoxelNet is able to detect smaller object in a more accurate

way by using restricted batch sizes. As a counterpart, car detection becomes less

precise and reliable.

Reduced batch sizes also extend overall training loop. Each class is trained

singularly, as done in the original paper, which needs approximately 6 days of

continuous training on the available hardware (one NVIDIA Quadro RTX 5000).

Output of the network can be viewed as follow:

• Camera view of predictions and ground truth (Fig.5.1);

• Bird’s Eye View of the point cloud with predictions and ground truth

(Fig.5.2);

5.2 Evaluation on KITTI Dataset 57

Benchmark Easy Moderate Hard
Our implementation

Car mAP3D 74.49 66.89 61.57
Car mAPBV 80.03 79.12 73.86

Pedestrian mAP3D 50.49 44.36 43.70
Pedestrian mAPBV 55.16 45.48 44.78
Cyclist mAP3D 69.05 55.76 54.89
Cyclist mAPBV 77.56 69.23 59.34

From Paper
Car mAP3D 81.97 65.46 62.85
Car mAPBV 89.60 84.81 78.57

Pedestrian mAP3D 57.86 53.42 48.87
Pedestrian mAPBV 65.95 61.05 56.98
Cyclist mAP3D 67.17 47.65 45.11
Cyclist mAPBV 74.41 52.18 50.49

Table 5.1: Our replica and results (mAP in %) from paper to validation results on KITTI.

(a) Training Losses of Car class.

(b) Validation Losses of Car class.

Figure 5.4: Plot of all losses during training.

• Heat Map which shows softmax probabilities of each voxel in bird’s eye view

(Fig.5.3);

As we can see from Fig.5.4, decreasing learning rate is a successful strategy

for capturing more peculiar features from point cloud.

False positive are frequent during predictions, which is clearly evident if we

inspect positive classification loss.

It means that, in general, too much predictions are done with high accuracy,

reducing precision of the system.

It happens because correct detections of cars on point cloud are labeled as

wrong since they are not present in the field of view of the RGB camera.

Improvements on this behaviour can be obtained by fine-tuning the prediction

58 Chapter 5. Evaluation of VoxelNet Performances

phase. Changing parameters of NMS and with a longer training run, we can adapt

NMS threshold δ with softmax probabilities of the network.

In conclusion, we can affirm that VoxelNet is able to generalize in wide open

space point clouds, moving onward to train the model with the synthetic dataset.

5.3 Evaluation on Synthetic Dataset

The main difficulty of the synthetic dataset is to predict 3D bounding box of very

small objects w.r.t. the environment.

We can define three training intervals where VoxelNet learns different features

of training data, fine-tuning its weights.

As we can see from Fig.5.5, first training epochs consist in discriminating

where rail tracks are located, predicting non-zero probabilities on tracks’ voxels.

(a) Correct Predictions of Signal from Bird’s View. Epoch 1.

(b) Heat map

Figure 5.5: Heat map of correct predictions from Bird’s View. Epoch 1.

In Fig.5.6 we can inspect that network starts decreasing probabilities of re-

gions where signals are not present. This behaviour occurs during the 20th epoch.

(a) Correct Predictions of Signal from Bird’s View Epoch 20.

(b) Heat map

Figure 5.6: Heat map of correct predictions from Bird’s View. Epoch 20.

At the end, we can analyze from Fig.5.7 that network is predicting well-

defined voxels where objects are located.

Different runs are been performed in order to understand which hyper pa-

rameters. We can inspect different AP results in Tab.5.2 where:

5.3 Evaluation on Synthetic Dataset 59

(a) Correct Predictions of Signal from Bird’s View. Epoch 60.

(b) Heat map

Figure 5.7: Heat map of correct predictions from Bird’s View. Epoch 60.

Benchmark Run # 1 Run # 2 Run # 3
Signal mAP3D@0.25 34.67 31.98 37.68
Signal mAPBV@0.25 38.49 32.27 41.51

Table 5.2: AP on Syntethic Dataset’s validation set with different simulations.

• Run # 1 uses two identical anchor sizes with different Z-rotation (in this

case 90 degrees);

• Run # 2 uses two different anchor sizes without Z-orientation in order to

fit different type of signals;

• Run # 3 uses the same anchors size but reducing the number of points for

each voxel i.e. reducing the parameter T .

As we can see from the results table, performances can be improved by fine-

tuning hyper parameters of the model w.r.t. the target environment.

Prevalent number of not detected objects are far from the sensor because of

the reduced number of points. In general, this behaviour occurs when signal or

relevant object is at least 150 meters from the LiDAR.

Thanks to the previous results, we can assert that the structure of VoxelNet

is able to detect tiny objects, such as signals and rail items, when they are close

to the sensor. This happens because of the high points density in the proximity

of LiDAR sensor.

60

Chapter 6

Final Considerations

6.1 Future Work

In the Machine Learning and Deep Learning field, hyper parameter opti-

mization is to objectively search different values for model hyper parameters

and choose a subset that results in a model that achieves the best performance

on a given dataset. Hyper parameter optimization is required then to get the

most out of our machine learning model.

Let the Search Space be the set of all possible combinations of hyper pa-

rameters of the model. Most common search algorithms of this topic are:

• Grid Search: Define a search space as a grid of hyper parameter values

and evaluate every position in the grid;

• Random Search: We set the Search Space as a bounded domain of hyper

parameter values and randomly sample points in that domain;

A possible study is to apply one of the aforementioned method in order to find

most suitable hyper parameters for the object detection and classification tasks

on point clouds w.r.t. validation loss. Procedure can be challenging because of

the time demanding training loop.

VoxelNet can perform detection on point clouds by using a single anchor

which is rotated by 0 or 90 degrees around Z axis. Therefore, detection of signals

which have very different shape can be challenging.

In order to solve this issue, we can introduce, as in [19], multiple anchors with

different sizes. With this implementation, we increase complexity and ability of

network, simultaneously. Accordingly, a more focused study is requested for

evaluation of the overall system.

61

62 Chapter 6. Final Considerations

Figure 6.1: Example of Grid and Random Search on 2D Search Space.

Adding more augmentation strategies can be a possibility to improve perfor-

mances of the network. For example, we can perform global rotation of the point

cloud, together with ground truth rotation.

Data augmentation permits also to prevent adversarial attacks to the network.

An example of attack can be fooling neural networks of self-driving cars by placing

stickers on traffic signs. We can inspect an example of this behaviour in Fig.6.2.

Figure 6.2: Example of adversarial attack on a image classification network.

This vulnerability has been discovered recently, so researchers are still explor-

ing possible ways to make the models more robust.

Two possible approaches are:

• Adversarial Training: Neural network is optimized in order to achieve

high level of accuracy on adversarially-perturbed training examples

• Randomized smoothing: Neural network is smoothed by convolution

with Gaussian Noise [30], i.e:

f̂(x) = Eϵ∼N (0,σ2I)[f(x+ ϵ)] (6.1)

6.1 Future Work 63

where f(·)ˆ is the smoothed network, ϵ is a sample from a isotropic Gaussian

noise, x is the input sample and f(·) is the original network.

Another future work can be network size’s compression. Neural network

pruning techniques can reduce the parameter counts of trained net- works by over

90%, decreasing storage requirements and improving computational performance

of inference without compromising accuracy. There is not a definite state-of-the-

art method but we have to cite the most famous ones:

• Pruning and Quantization [31]: Removing weights close to zero and

retrain the network. We iterate the process until we reach a good trade-off

between compression ratio and loss of performances. After this, we quantize

network weights for additional compression;

• Knowledge Distillation [32]: It is possible to compress the knowledge in

an ensemble into a single model which is much easier to deploy, reducing

weights’ sizes and inference time.

Figure 6.3: Teacher-Student paradigm for Knowledge Distillation.

It can be implemented by using the teacher-student paradigm as we can see

from Fig.6.3

Unfortunately, no test data is furnished by donors for obtaining final evalu-

ation statistics. However, thanks to previously described procedure, we are able

to modify the train simulator in relation to real data, increasing performances

and generalizations proprieties of the model.

Last but not least, we are going to train the model with an additional GPU.

Thanks to TensorFlow, code is already structured for parallel GPU computing.

64 Chapter 6. Final Considerations

It allows us to increase batch sizes - upgrading Batch Normalization layers’ func-

tionalities - and reduce training time for better hyper parameters fine-tuning.

6.2 Conclusion

We presented the problem statement of object detection in point clouds. We

described a possible solution called VoxelNet which transforms sparse point cloud

data in a regular shape i.e. voxels.

We inspected some dataset that can be used in automotive scenarios with

their pros and cons and the decision to create an artificial dataset using the

integration between Unreal Engine™ and Matlab™.

We deeply introduced the train simulator and its functionalities. We illus-

trated also how point clouds had been collected in order to organize the manu-

factured dataset.

We provided training details of the network, with hyper parameters selections

and motivations.

We explained results from KITTI evaluation and synthetic dataset, showing

impressive network skills by only observing artificial data.

Finally, we showed that our Proof of Concept can be successful for detecting

railway props using only sparse LiDAR data.

List of Tables

1.1 Pros and cons of LiDAR sensor. 6

5.1 Our replica and results (mAP in %) from paper to validation results

on KITTI. 57

5.2 AP on Syntethic Dataset’s validation set with different simulations. 59

65

66 LIST OF TABLES

List of Figures

1.1 3D Object detection task in the automotive environment from

CIA-SSD [15] paper . 2

1.2 VGG16 deep architecture. 2

1.3 Frustum PointNet architecture. 3

1.4 CIA-SSD architecture. 4

1.5 LIVOX™ Horizon sensor with its functional characteristics. 5

1.6 Sensor Geometry from lateral view. 8

1.7 Sensor Geometry from top view. 8

1.8 VOLIERA logo. 9

1.9 Detecting railways using only raw point clouds. 10

1.10 Computation of relative position with more than two detected

landmarks. 10

1.11 Rosten & Drummond [13] algorithm for fast feature detection on

images. 12

1.12 Flow chart of the VOLIERA project. 12

1.13 Proposed framework. 13

2.1 KITTI360 setup and example of obtained point cloud. 15

2.2 KITTI360 example of point cloud with semantic information. . . . 16

2.3 KITTI360 example of object ground truth. 16

2.4 KITTI360 example of noisy signal. 17

2.5 List of files inside the RailSem19 directory. 18

2.6 Example of image with semantic segmentation and object detec-

tion labels. 19

2.7 Map between bgr colors of uint8 images and labels. 19

2.8 Structure of ground truth inside json files. 20

2.9 Example of semantic segmentation map of a sample image. 21

2.10 Example of left RGB image from KITTI Dataset. 21

67

68 LIST OF FIGURES

2.11 KITTI folder structure for 3D Object Detection suite. 22

2.12 Example of KITTI point cloud with 3D bounding boxes. 23

2.13 Example of left RGB with 3D bounding boxes. 23

2.14 Main window of Unreal Engine™ software. 24

2.15 Example of 3D model of a Railway support sign with a traffic light. 26

2.16 Blueprint scripting for generating track rails. 26

2.17 Blueprint scripting for generating landmark near track rails. . . . 27

2.18 Estimation of LiDAR distortion on Matlab™ simulation. 28

2.19 Snapshot of the Unreal Engine’s viewport during a simulation run. 29

2.20 Example of synthetic point cloud. 30

2.21 Syntethic point cloud with annotations. 30

3.1 Structure of the point cloud encoder PointNet. 31

3.2 3D-BoNet architecture. 32

3.3 VoxelNet architecture. 33

3.4 Voxelization of the point cloud. 34

3.5 Single VFE encoding process. 35

3.6 Region Proposal Network structure. 37

3.7 Huber Loss w.r.t.δ parameter. 39

3.8 Example of binary mask displaying set of voxels where black voxels

represent one object. 40

3.9 Example of binary mask displaying set of voxels where white voxels

represent one object. 40

4.1 Display of weights’ histograms from the Convolutional Middle Layers. 46

4.2 Values of β(k) and γ(k) in one Batch Normalization Layer in the

Convolutional Middle Layers . 48

4.3 Dropout approach for avoiding overfitting of deep neural networks. 48

5.1 Example of successful car detection on KITTI dataset using Vox-

elNet on camera FOV. Purple is the ground truth whereas yellow

is the network prediction. 55

5.2 Example of successful car detection on KITTI dataset using Vox-

elNet on bird view . Purple is the ground truth whereas yellow is

the network prediction. 55

5.3 Example of resulting heat map representing probabilities of the

Region Proposal Network using VoxelNet. 56

5.4 Plot of all losses during training. 57

LIST OF FIGURES 69

5.5 Heat map of correct predictions from Bird’s View. Epoch 1. . . . 58

5.6 Heat map of correct predictions from Bird’s View. Epoch 20. . . . 58

5.7 Heat map of correct predictions from Bird’s View. Epoch 60. . . . 59

6.1 Example of Grid and Random Search on 2D Search Space. 62

6.2 Example of adversarial attack on a image classification network. . 62

6.3 Teacher-Student paradigm for Knowledge Distillation. 63

70 LIST OF FIGURES

Acknowledgements

References

[1] E. Arnold, O.Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby and A. Mouza-

kitis, A Survey on 3D Object Detection Methods for Autonomous Driving

Applications, IEEE Transactions on Intelligent Transportation Systems, Vol-

ume: 20, Issue: 10, Oct. 2019

[2] K. Simonyan and A. Zisserman , Very Deep Convolutional Networks for

Large-Scale Image Recognition in San Diego, CA, USA, May 7-9, 2015, Con-

ference Track Proceedings. 2015

[3] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, Monocular

3D object detection for autonomous driving, in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2147–2156.

[4] A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká, 3D bounding box

estimation using deep learning and geometry, in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5632–5640.

[5] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, Data-driven 3D voxel patterns

for object category recognition, in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2015, pp. 1903–1911.

[6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fe, ImageNet: A large-scale

hierarchical image database, in 2009 IEEE Conference on Computer Vision

and Pattern Recognition, 20-25 June 2009

[7] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, Multi-view convolu-

tional neural networks for 3D shape recognition, in Proc. IEEE Int. Conf.

Comput. Vis. (ICCV), Dec. 2015, pp. 945–953.

[8] B. Li, T. Zhang, and T. Xia, Vehicle detection from 3D Lidar using fully

convolutional network, in Proc. Robot., Sci. Syst. XII, AnnArbor, MI, USA,

Jun. 2016. [Online]. Available: http://www.roboticsproceedings.org/rss12/

71

72 REFERENCES

[9] C. R. Qi, H. Su, K. Mo and L. J. Guibas, PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation, http://arxiv.org/abs/1612.

00593, CoRR, 2016.

[10] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, Multi-view convolu-

tional neural networks for 3D shape recognition, in Proc. IEEE Int. Conf.

Comput. Vis. (ICCV), Dec. 2015, pp. 945–953.

[11] B. Li, T. Zhang, and T. Xia, Vehicle detection from 3D Lidar using fully

convolutional network ,in Proc. Robot., Sci. Syst. XII, AnnArbor, MI, USA,

Jun. 2016. [Online]. Available: http://www.roboticsproceedings.org/rss12/

[12] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, Frustum PointNets for

3D object detection from RGB-D data ,in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2018, pp. 918–927.

[13] E. Rosten , T. Drummond, Machine Learning for High-Speed Corner Detec-

tion. in Leonardis A., Bischof H., Pinz A. (eds) Computer Vision – ECCV

2006. ECCV 2006. Lecture Notes in Computer Science, vol 3951. Springer,

Berlin, Heidelberg.

[14] S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm in Pro-

ceedings Third International Conference on 3-D Digital Imaging and Mod-

eling, 28 May - 01June 2001.

[15] W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu, CIA-SSD: Confident

IoU-Aware Single-Stage Object Detector From Point Cloud, https://arxiv.

org/abs/2012.03015, CoRR, 2020.

[16] B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham and N. Trigoni,

Learning Object Bounding Boxes for 3D Instance Segmentation on Point

Clouds, http://arxiv.org/abs/1906.01140 , CoRR, 2019.

[17] M. Enzweiler and D. M. Gavrila, A Multilevel Mixture-of-Experts Framework

for Pedestrian Classification in IEEE Transactions on Image Processing, vol.

20, no. 10, pp. 2967-2979, Oct. 2011, doi: 10.1109/TIP.2011.2142006.

[18] Y. Zhou and O. Tuzel, VoxelNet: End-to-End Learning for Point Cloud

Based 3D Object Detection, http://arxiv.org/abs/1711.06396 , CoRR,

2017

http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://arxiv.org/abs/2012.03015
https://arxiv.org/abs/2012.03015
http://arxiv.org/abs/1906.01140
http://arxiv.org/abs/1711.06396

REFERENCES 73

[19] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Network in NIPS’15: Proceedings of

the 28th International Conference on Neural Information Processing Systems

- Volume 1December 2015 Pages 91–99

[20] A. Geiger, P. Lenz, C. Stiller and Raquel Urtasun, Vision meets Robotics:

The KITTI Dataset in International Journal of Robotics Research (IJRR) ,

2013

[21] J Xie, M. Kiefel, M. Sun and A. Geiger, Semantic Instance Annotation of

Street Scenes by 3D to 2D Label Transfer in Conference on Computer Vision

and Pattern Recognition (CVPR), 2016

[22] O. Zendel, M. Murschitz, M. Zeilinger D.Steininger, S. Abbasi and C. Belez-

nai, RailSem19: A Dataset for Semantic Rail Scene Understanding in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2019

[23] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization in 3rd In-

ternational Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015

[24] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, http://arxiv.org/abs/

1502.03167 in CoRR 2015

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,

Dropout: A Simple Way to Prevent Neural Networks from Overfitting in

Journal of Machine Learning Research, pg 1929-1958, n. 56, v.15, 2014.

[26] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan,

B. Yang, W. Ma, R. Urtasun, LiDARsim: Realistic LiDAR Simulation by

Leveraging the Real World in CoRR, 2020

[27] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The

PASCAL Visual Object Classes (VOC) Challenge in International Journal

of Computer Vision, Volume 88, Issue 2 June 2010, pp 303–338

[28] I. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization in ICLR

https://arxiv.org/pdf/1711.05101.pdf, 2019

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/pdf/1711.05101.pdf

74 REFERENCES

[29] Tensorflow 2.50 documentation https://www.tensorflow.org Last access:

23/07/2021

[30] J. M. Cohen, E. Rosenfeld, J. Z. Kolter, Certified Adversarial Robustness

via Randomized Smoothing, https://arxiv.org/abs/1902.02918, CoRR,

February 2019

[31] Y. LeCun, J. S. Denker, and S. A. Solla, Optimal Brain Damage in Advances

in Neural Information Processing Systems, 2.,598-605, 1990

[32] G. Hinton, O. Vinyals, J. Dean, Distilling the Knowledge in a Neural Network

in NIPS Deep Learning and Representation Learning Workshop, http://

arxiv.org/abs/1503.02531, 2015

https://www.tensorflow.org
https://arxiv.org/abs/1902.02918
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

	Introduction
	Problem Statement
	Related Works
	List of Sensors
	LiDAR Further Insights
	RAILGAP Project
	VOLIERA Project
	Contributions

	Dataset
	KITTI360
	RailSem19
	KITTI
	Syntethic Dataset
	Matlab™ - LiDAR data simulation
	Unreal Engine 4™ - Simulating railway environment
	Dataset Generation

	VoxelNet - Deep Learning Architecture
	Deep Learning Strategy Selection
	VoxelNet architecture
	Feature Learning Network
	Convolutional Middle Layers
	Region Proposal Network

	Loss Function

	Training Details
	Network Details
	KITTI
	Syntethic Dataset

	Data Augmentation
	Code Insights

	Evaluation of VoxelNet Performances
	Metrics
	Evaluation on KITTI Dataset
	Evaluation on Synthetic Dataset

	Final Considerations
	Future Work
	Conclusion

	References

