

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

“CONVOLUTIONAL NEURAL NETWORK ENSEMBLE LEARNING FOR

FORAMINIFERA CLASSIFICATION”

Relatore: Prof. / Dott. NANNI LORIS

Laureando: Vallazza Miro

ANNO ACCADEMICO 2021 – 2022

Data di laurea 14/03/2022

DIPARTIMENTO

DI INGEGNERIA

DELL’INFORMAZIONE

1

2

Table of contents

1. INTRODUCTION .. 3

2. CONVOLUTIONAL NEURAL NETWORKS ... 5

3. CNN ENSEMBLE LEARNING .. 7

3.1 IMAGE PRE-PROCESSING ... 7

3.1.1 Percentile .. 8

3.1.2 Discrete Cosine Transform ... 9

3.1.3 Principal Component Analysis ... 11

3.1.4. Multidimensional scaling ... 13

3.2 TRAINING .. 14

3.2.1. Transfer Learning .. 15

3.2.4. Scores Collection and Metrics ... 16

4. RESULTS .. 18

5. CONCLUSIONS ... 21

3

1. Introduction

Image classification is a non-creative and repetitive process, as such, it is well-suited for

automation. Neural Networks (NNs) and more specifically Convolutional Neural Networks

(CNN) are Deep Learning models used in such task. The stochastic nature of NNs, however,

leads to results that are influenced by a fair share of randomness. While studying a specific

subject we could need a more consistent method of classification, Ensemble Learning (EL) is a

widely used implementation that combines results from different networks in order to achieve

better performance.

The goal of this thesis is to study a practical application of EL, to do that we will work on the

classification problem presented in the research paper [1]. The subject of the article is

foraminifera classification, an invaluable task for industrial and academic purposes. Species of

foraminifera are used as paleo-environmental indicators, while their radiocarbon measurement

are used to infer parameters like global ice volume, salinity, PH, and more. Classification is

performed by humans, usually on a range of 500-1000 individuals per sample, a very repetitive

and time-consuming task. Automated solutions that help to alleviate such an unrewarding

assignment have been implemented since the early 90, but they usually required strong human

supervision. In 2004 the neural network SYRACO2 automatically identified single-celled

organisms quite reliably, and in 2017 CNNs have been applied to diatom identification with

great success [1].

The authors (of [1]) describe their attempt of automating foraminifera classification. They built

a dataset of six species of foraminifera and a collection of other taxa and used two pre-trained

CNNs (ResNet50 and Vgg16) to build their model. They also compared their results with those

of human experts and novices. Working with the same dataset, our goal is to observe the

4

difference in terms of performance while using multiple CNNs and pre-processing approaches

in an EL environment.

5

2. Convolutional Neural Networks

CNNs were first introduced in the 1980s by the French researcher Yann LeCun and already

achieved good performances by the late 1990s. In the last decade, however, due to the advent

of big data and GPU computing, they reached the status of state-of-the-art technology in the

field of computer vision and image recognition.

As every other type of neural network, CNNs’ structure is divided in three components: the

input layer, which is usually a volume of NxNx3 neurons, and is directly connected to the

image’s pixels, hidden layers that utilize shared weights and local connections, and a fully

connected output layer.

Local connections and shared weights are the main deviations from a normal multilayer

perceptron (MLP) network. Neurons of the hidden layers are only connected locally to the

adjacent neurons, which means that they will only process information from a subset of the

input. Furthermore, weights and biases are shared in groups, in order to interpret information

gained in different portions of the input in a consistent manner.

Convolution utilizes a digital filter (or mask) to extract data from a subset of the input. The

result of filtering the whole input volume, by making the mask slide in every possible position

is a feature map [10].

6

Figure 1. Visual representation of convolution filtering generating a feature map

Pooling is another filtering method that aggregates portions of an input feature map and is used

to reduce variance between small transformations of the input [10]. Two of the most utilized

methods are max and average pooling, in which, given a portion of the input only the maximum

or average value is extracted.

CNNs implement pooling and convolution directly through its architecture. Local connections,

non-linear activation functions and shared weights are used to build feature maps that

autonomously create the filters needed.

The output layer of a CNN is a fully connected one, it utilizes a neuron for each class, and in

modern models they utilize a SoftMax activation function:

 () = ∑ (2.1)

With n, the number of classes and z the input vector. The output of the function is a normalized

value 0 ≤ ≤ 1 and can be interpreted as confidence.

7

3. CNN Ensemble Learning

The theory behind Ensemble Learning is simple, by combining different models it is possible

to produce better and more reliable results. Ensemble can be performed on four different levels:

• Data: by splitting the dataset in different subsets

• Feature: by pre-processing the dataset with unique methods

• Classifier: by training different classifiers on the same dataset

• Decision: by combining the decisions of multiple models

Ensemble works best when applied to significantly diverse models [8]. We will be operating

on the last three levels, by creating multiple datasets (applying different method for representing

the input images as RGB images) to train multiple networks and ultimately combining the

scores using the sum rule.

3.1 Image Pre-Processing

Each image in the dataset comes in the form of 16 grayscale pictures of the same foraminifera

subject, each taken under different lighting conditions, using a AmScope SE305R-PZ binocular

microscope at 30× magnification [1]. The dataset is divided in seven classes: one for each of

the six species of foraminifera we are going to study: Bulloides, Ruber, Sacculifer, Dutertrei,

Incompta, Pachyderma, each having ~150 entries, and a “rest of the world” (other taxa) class

that counts 450 entries. Since we use pre-trained networks1 and their input is expected to be an

RGB image, the first step in our pipeline will be generating CNN-compatible inputs starting

from the dataset.

1 See section 4.

8

Multiple ways for completing this task were tested, and, in the end, we settled on a combination

of four:

1. The “Percentile” method presented in the research paper

2. Discrete Cosine Transform (DCT)

3. Principal Component Analysis (PCA)

4. Multidimensional Scaling (MDS)

3.1.1 Percentile

This is the most straight forward method of generating the RGB image, it was directly taken

from the research paper [1]: “A Python code takes the 16 individual grayscale values for each

pixel, calculates the 10th percentile, median, and 90th percentile, and maps those three values

into the red, green, and blue channels, to generate a single colour composite image”.

To speed up the process we used the nearest rank method: the list of 16 grayscale values is

sorted in ascending order then the P-th percentile element is selected by extracting the value of

cell n, where

 = 100 ∙ 16 (3.1.1.1)

Since our input vectors are always the same size, after the 16 values are sorted the three values

of n we will use are: 2, 8 and 15.

The percentile pre-processing pipeline goes as follows:

• Read the 16 images

• Populate a NxMx16 matrix with the grayscale values

• For each pixel extract its 16 grayscale values in a list

9

• Sort the list

• Use elements 2, 8 and 15 as RGB values in the new image

Figure 2, percentile pre-processing pipeline

A few variations were tested, (20th/80th/median for example), but they were all discarded due

to their performance being slightly worse than the original, losing out on 1-2% of accuracy per

single-run training cycle on average.

3.1.2 Discrete Cosine Transform

DCT-II is the most popular function for spatial compression. It decomposes a signal into a

sum of cosine functions through the formula:

= ∑ cos (1)(2 1) (3.1.2.1)

Where the . . datapoints are transformed into the . . real values and the Kronecker

delta is defined as:

10

 = 0 11 = 1 (3.1.2.2)

We can apply DCT to the sixteen values of each pixel, then map [X1, X2, X3] into the RGB

channels to build the new image. Similarly to the percentile pre-processing pipeline, DCT

was applied this way:

• Read the 16 images

• Populate a NxMx16 matrix with the grayscale values

• For each pixel extract its 16 grayscale values in a list

• Compute DCT on the list

• Use elements 1, 2 and 3 as RGB valeus in the new image

Figure 3, DCT pre-processing pipeline

11

3.1.3 Principal Component Analysis

PCA is a data analysis tool, often used for dimensionality reduction. Starting from a real

multidimensional data collection, whose domain is , we can use PCA to build a new one,

directly mapped through projection on a smaller space: , with < . The basis of the new

space is obtained by calculating the principal components.

The principal components of a n-dimensional data collection are a set of n orthogonal unit

vectors, each representing the direction of the line that minimizes the average squared distance

from the data points. They can be extracted using different methods, the most common is the

covariance eigen decomposition [7].

The n-dimensional data is organized in a n×k matrix, × , each of the n rows represents a

variable, and the values stored in the columns are the k readings for each variable.

The first step of the decomposition is data standardization, achieved by simply subtracting the

mean vector to each row, as in 3.1.3.1.

 = (3.1.3.1)

With the ith row and the mean vector of the same row. The new row vectors populate the

standardized matrix × .

The second step consists in computing the covariance matrix, × , of the standardized data:

 = 1 (3.1.3.2)

12

At this point we can extract the eigenvectors from C, and, after sorting them in order of

descending eigenvalue we can choose the first m vectors as our new basis, building the

projection matrix × . Lastly, we can project the initial data in the new space:

 = × × (3.1.3.3)

Each of the 16 grayscale images is turned into a 1-dimensional vector of length NM, by simply

concatenating its rows, then, these arrays are organized into a 16×NM matrix, applying PCA to

it will return a 3×NM matrix, restructuring it into the N×M×3 format will give us the RGB

image.

The PCA pre-processing pipeline goes as follows:

• Read the 16 images

• Rearrange each image in a vector

• Populate a 16xNM matrix with the vectors obtained

• Compute PCA

• Restructure the resulting matrix in the NxMx3 format

13

Figure 4. PCA pre-processing pipeline

3.1.4. Multidimensional scaling

Multidimensional scaling is a dimensionality reduction method, its classical utilization is also

referred as Principal coordinates analysis. Starting from an n-dimensional dataset of m

datapoints the first step of the MDS algorithm is to compute the dissimilarity matrix ,

where each of its values is given by computing the Euclidean distance between the

datapoints and . The end goal is to find m vectors of length k < n, that best fit the condition:

 ≅ ∀ , (3.1.4.1)

This can be achieved through eigen decomposition, for example, but there are multiple

implementations that utilize operational research or stress functions [6].

The approach used for arranging the data and calculating the final image is the same used for

PCA in 3.1.3:

14

• Read the 16 images

• Rearrange each image in a vector

• Populate a 16xNM matrix with the vectors obtained

• Compute MDS

• Restructure the resulting matrix in the NxMx3 format

Figure 5. MDS pre-processing pipeline

3.2 Training

Once the dataset is built, we can start training our networks. We will be using the pre-trained

CNNs:

• GoogLeNet, a 22 layers deep CNN, the first to implement inception layers, a

combination of parallel, small sized convolutional layers. The input layer is a

224x224x3 zero-pad layer and the output presents 1000 fully connected neurons [3].

• ResNet50, a 50 layers deep CNN, the input layer is a 224×224×3 zero-pad layer, it has

48 hidden layers, two of which are a max and an average pool respectively. Networks

15

of the ResNet family utilize residual blocks to maximize depth while diminishing the

number of parameters [5]. The output layer is a 1000 neurons SoftMax layer.

• ResNet101, a deeper version of ResNet50, it has 101 layers in total, but still maintains

the two max and average pooling layers [5].

• MobileNet v2, a very efficient 53 layers deep network, originally built to run on mobile

devices. As the ResNet models it utilizes residual blocks [2].

• EfficientNetb0, a residual block based network, it scales its width and depth uniformly

through a compound coefficient that is linked to the computational resources available

[4].

All networks were pre-trained with an open-source image dataset called ImageNet, which

contains millions of labelled images. Hyperparameters for all networks where set as:

• Mini Batch Size: 30

• Max Epochs: 20

• Learning Rate: 10-3

These networks were chosen after a long testing period and were selected after considering their

performance and duration of training cycle. Running on an AMD R5 3600 processor, an RTX

2060 super GPU and 16 GB of RAM.

3.2.1. Transfer Learning

The main benefit of using pre-trained networks is transfer learning. Modern neural networks

can carry over some of the knowledge gained in previous training cycles to perform the same

task on different data [9]. This occurs in deep learning models especially since they operate on

wide array of weights and features. Transfer learning has the effect of greatly reducing the

number of images we will need to train the networks.

16

We of course need to adapt the output layer to specialise the networks. All the output layers of

the networks we are using will be replaced with fully connected SoftMax layers of 7 neurons,

one for each class of foraminifera available in the dataset.

Images of the dataset will be resized in order to match the dimensions of the input layers.

By replacing the last layer with a 7-neurons SoftMax layer the outputs will come in the form of

a vector , whose values (scores) are:

0 ≤ ≤ 1 ∀
= 1 (3.2.1.1)

Scores reflect the level of confidence with which the networks classify an input.

By diversifying the models, the information processed differs by each of them. Scores fusion is

a method that combines confidence values to build a more robust prediction. The fusion

technique we used is the sum rule [8]:

 = = , = 1 … (3.2.1.2)

Where N is the number of models and the size of each confidence vector . The sum rule is

one of the best fusion methods in practice since it does not suffer from potentially destructive

operations like, for example, multiplications by zero.

3.2.4. Scores Collection and Metrics

Data used to produce the final results was collected during the training cycles of each network

utilizing the scores of the test-set of each run. Our training pipeline goes as follows:

17

• Networks are trained independently on multiple datasets, for multiple iterations, using

4-fold cross validation.

• The scores are extracted from the tests

• The scores are fused using the sum rule

• F-Score is computed

We will use F-score (F1) as the metric to evaluate our model

 = + 12 (+) (3.2.4.1)

Where , , are the total number of True positive, and False positive/negative predictions

made by the model.

The code was written and ran in a Matlab environment, utilizing the DeepLearning Toolbox.

18

4. Results

F1 measures in Table 1 come from single run 4-Fold cross validation training cycles of each

network. PCA and MDS did not perform well enough in general and were therefore discarded

in order to save time during the tests.

Table 1. F1 scores of single run training cycles.

 ResNet50 GoogleNet MobileNet EffNet ResNet101

Percentile 0.833 0.764 0.860 0.795 0.832

PCA 0.742 0.667 --- --- ---

DCT 0.818 0.691 0.748 0.673 0.794

MDS 0.722 0.635 --- --- ---

Table 2 contains the F-score values given by the decision fusion of the same classifier trained

independently for multiple iterations, using 4-Fold cross validation.

Table 2, Percentile(6) means that each model was trained 6 times independently with the percentile dataset, the

final F-Score values are calculated after the scores are fused using sum rule. Percentile(3)+DCT(3) works the

same way, but in this case 3 classifiers are trained with the DCT and 3 with the percentile datasets.

 ResNet50 GoogleNet MobileNet EffNet ResNet101

Percentile (6) 0.8786 0.836 0.885 0.828 0.8786

Percentile(3)+DCT(3) 0.8817 0.830 0.882 0.838 0.8734

Scores are then combined to calculate the final F-Score results, Table 3.

19

Table 3, Fusion of F1 scores gained as in Table 2, and sum rule with different CNNs.

ResNet50

+GoogLeNet

ResNet50

+GoogLeNet

+MobileNet

ResNet50

+GoogLeNet

+MobileNet

+Efficientnet

ResNet50

+GoogLeNet

+MobileNet

+Efficientnet

+ResNet101

Percentile (6) 0.8785 0.8956 0.9000 0.8986

Percentile(3)+DCT(3) 0.8866 0.9037 0.9015 0.8982

F-Score results get strictly better as Ensemble is applied to more levels.

Figure 6, the effect of EL being applied to more levels

Both minimum and average performance after Ensemble show better results than human

experts, Figure 7.

20

Figure 7, human expert (HE) and automated models comparison, ens refers to out solution, paper to [1].

It is important to know that the paper’s networks were trained using 62% of the images as

training set, while ours utilized 75%, however, results presented in the paper for the same

partition of the dataset show that our solution still performs better on average (~ + 5%).

21

5. Conclusions

Although the sample size of the experiment is small, the impact of Ensemble Learning on the

problem is definitely noticeable. We managed to bring a ~75% average F-Score on baseline

single-trained networks, to a ~89% average F1 result in our final models.

There are, however, a few points of concern. The dataset only contained ~1500 images and 7

classes of foraminifera, the scope of the experience was therefore limited to a very small portion

of the real-world problem. We can safely assume that with more samples per class, performance

could be enhanced even further. What we don’t know, without experimental data, is how the

model would respond to more classes being implemented. Image pre-processing and

classification on multiple CNNs are very time-consuming tasks, since the model was running

on a sub-optimal machine, our focus was directed towards maximizing accuracy, while

neglecting the process’ duration.

The fact that the model outperformed human experts is still an impressive feat, especially if we

consider the fact that both PCA and MDS did not work as well as we hoped they would, leaving

us with effectively only two pre-processing techniques to work with.

22

23

Abbreviations

NN Neural Network

CNN Convolutional Neural Network

EL Ensemble Learning

GPU Graphics Processing Unit

MLP Multilayer Perceptron

PCA Principal Component Analysis

MDS Multidimensional Scaling

DCT Discrete Cosine Transform

24

References

[1] R. Mitra, T.M. Marchitto, Q. Ge, B. Zhong, B. Kanakiya, M.S. Cook, J.S. Fehrenbacher,

J.D. Ortiz, A. Tripati, E. Lobaton, Automated species-level identification of planktic

foraminifera using convolutional neural networks, with comparison to human

performance.

[2] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh

Chen, Google Inc, MobileNetV2: Inverted Residuals and Linear Bottlenecks

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, Going Deeper

with Convolutions

[4] Mingxing Tan, Quoc V. Le, EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for

Image Recognition

[6] Laurens van der Maaten, Eric Postma, H. Jaap Van Den Herik, Dimensionality

Reduction: A Comparative Review

[7] Lindsay I Smith, A tutorial on Principal Components Analysis

[8] Kuncheva L.I. Combining Pattern Classifiers. Methods and Algorithms, Wiley, 2nd

edition, 2014.

25

[9] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,

Hui Xiong, Qing He, A Comprehensive Survey on Transfer Learning.

[10] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning

