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Abstract

This thesis develops a complete workflow to get optimal solutions to the JSS problem. In this
work, many of the steps required in the usage of quantum annealers are deeply analyzed. In
detail, two different approaches to the minor-embedding procedure are considered and com-
pared to the current default heuristic implemented by D’Wave. Moreover, in order to expand
the scope of QA, a hybrid algorithm that extracts the Graver basis of the problem to augment
an initial set of feasible solutions to obtain optimal ones. The obtained results show that the
quantum annealers can get to optimal solutions in a competitive time but, due to the limited
number of working qubits and the sparse connectivity among them, only small instances can
be efficiently solved with the current hardware.

v



vi



Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

2 QUBO problem 3
2.1 Definition and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Natural QUBO formulation . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 QUBO reformulation of constrained binary problems . . . . . . . . 5

2.2 Classical SolutionMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Heuristics andMetaheuristics . . . . . . . . . . . . . . . . . . . . 7

3 IsingModel 9
3.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Numerical Solution and Phase Transition . . . . . . . . . . . . . . . . . . . 10
3.3 Ising formulation of a QUBO problem . . . . . . . . . . . . . . . . . . . . 12

4 QuantumAnnealing algorithm 13
4.1 Definition and Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Adiabatic theorem and Convergence requirements . . . . . . . . . . 14
4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Better Annealing Schedules . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Example: Grover algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Workflow and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 Chimera graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2 Pegasus graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 Minor-embedding and chain strength . . . . . . . . . . . . . . . . 23

5 Minor-embedding algorithms 25
5.1 Minorminer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



5.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 IP-embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Variables and Constraints . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Template embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 Template graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.1 Embedding size and Chain length . . . . . . . . . . . . . . . . . . 33
5.4.2 Energy landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 GAMA algorithm 35
6.1 Graver basis definition & properties . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Graver basis extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 QUBO for kernel extraction . . . . . . . . . . . . . . . . . . . . . 37
6.2.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Obtaining feasible solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Job Shop Scheduling 41
7.1 Time Indexing Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.2 Formulation Refinement . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Disjunctive Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.1 Constraints and Objective function . . . . . . . . . . . . . . . . . 45

8 Experiments 47
8.1 a3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 a4 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Conclusion 51
9.1 Minor-Embedding techniques . . . . . . . . . . . . . . . . . . . . . . . . 51
9.2 QA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3 GAMA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References 53

viii



Listing of figures

2.1 Bound usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Example of a 2d lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Net magnetization in absence of external magnetic field. . . . . . . . . . . . 11
3.3 Heat capacity in absence of external magnetic field. . . . . . . . . . . . . . . 12

4.1 Quantum jumps compared thermal jumps performed by SA. . . . . . . . . . 13
4.2 Chimera qubits orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Chimera couplers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Chimera node visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Pegasus node visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Pegasus odd couplers visualization. . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Minor-embedding example. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Minorminer heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 K64,64 embedded inC16,16,4. . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Embedding size results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Embedding longest chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Energy spectrum of SA solutions. . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Adaptive Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 Pruning example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 a3 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 a4 logical graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3 a4 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



x



Listing of tables

2.1 Table of conversion from constraint to QUBO penalty term . . . . . . . . . 5

5.1 Instance parameters for embedding testing . . . . . . . . . . . . . . . . . . 32
5.2 Instance description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.1 a3 instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2 a4 instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 a3 solution timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.4 a4 solution timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



xii



Listing of acronyms

JSS . . . . . . . . . . . . Job Shop Scheduling Problem

QUBO . . . . . . . . . Quadratic Unconstrained Binary Optimization problem

IP . . . . . . . . . . . . . Integer Program

ILP . . . . . . . . . . . . Integer Linear Program

QA . . . . . . . . . . . . Quantum Annealing algorithm

SA . . . . . . . . . . . . Simulated Annealing algorithm

xiii



xiv



1
Introduction

The thesis focuses on the implementation of quantum annealing algorithms for solving op-
timization problems. The first step will be the introduction of the theoretical basis regard-
ing QUBO problems and the Ising model being the fundamental concepts upon which the
whole framework stems. It explores the use of different graph structures, such as the Chimera
graph and the Pegasus graph, as well as techniques like minor-embedding and chain strength
to improve the efficiency of the algorithms. The thesis also discusses the energy spectrum of
the solutions obtained through simulated annealing and highlights the benefits of using the
higher-density Pegasus graph. Additionally, it mentions the use of template-based minor em-
bedding and a graph-theoretic framework for optimizing adiabatic quantum program compi-
lation. During this work, several algorithms and research papers in the field of adiabatic quan-
tum optimization will be used and referenced. Overall, the thesis provides insights into the
implementation and optimization of quantum annealing algorithms for solving optimization
problems.
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2
QUBO problem

This chapter will set part of the theoretical landscape of the work done, it will be organized in 3
sections. Section 2.1 defines what a QUBO problem is, how to reformulate a constrained pro-
gram to fit the definition and some of the applications. Second Section 2.2 is going to analyze
some of the exact or heuristic/metaheuristic approach to solution currently used to tackle this
kind of problems. In the third and last Section 2.3 are presented some numerical instances of
QUBO problems.

2.1 Definition and Applications

Given a set of binary variables x ∈ {0, 1}n and a matrixQ ∈ Mn×n, a QUBO problem takes
the following form:

min/max
x∈{0,1}n

x⊺Qx (2.1)

By selecting an appropriate matrixQ it is possible to formulate a wide variety of problems
in this form, some of them are:

• Quadratic Assignment Problems

• Multiple Knapsack

• SAT problems
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• Max-Cut problem

• Number Partitioning problem

2.1.1 Natural QUBO formulation

Some optimization problems have a natural QUBO formulation, in the following subsections
some examples are going to be presented. More formulations like these can be found in [1].

Number Partitioning problem

Let S = {a1, a2, ..., am} be a set of numbers, then define

sum1 =
m
∑

j

sjxj

sum2 =
m
∑

j

sj − sum1

Where for each sj the variable xj takes value 1 if the number is in the first group. TheNumber
Partitioning problem aims to minimize the difference:

diff 2 = (c− 2
m
∑

j

sjxj)
2 = c2 + 4x⊺Qx (2.2)

and by dropping the multiplicative and additive constant the QUBO form arises.

Max-Cut problem

Given an undirected graph (V,E), the Max-Cut problem aim to partition V into 2 sets such
that the edges between them is as large as possible, this can be formalized as:

max
∑

(i,j)∈E

(xi + xj − 2xixj) (2.3)

where for each j ∈ V xj = 1 if the node belongs to the first set, 0 otherwise.
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2.1.2 QUBO reformulation of constrained binary problems

The usefulness and the applicability of the QUBO problem can be further extended by refor-
mulating several constrained optimization problems. This can be done by translating each
constraint in a corresponding penalty term on the objective function, here are listed some of
the most common constraints and the relative penalty function.

Constraint Penalty term

∑

i xi ≤ 1
∑

i ̸=j xixj

∑

i xi ≥ 1 1−∑i xi +
∑

i ̸=j xixj

∑

i xi ≤ 1 1−∑i xi + 2
∑

i ̸=j xixj

Table 2.1: Table of conversion from constraint to QUBO penalty term

Similar transformations are going tobeused in the conversionof the JSSproblemto aQUBO
form while a more general way of conversion, able to tackle any ILP will be presented later.

2.2 Classical SolutionMethods

During the last 30 years, severalmethods got developed toobtain solutions ofQUBOproblems.
Those algorithms can be essentially classified in 2 groups, exact and heuristic/metaheuristic
methods.

2.2.1 ExactMethods

Most of the current exact methods are based on branch-and-bound or branch-and-cut algo-
rithms.
The following algorithms assure, given enough time and memory, the global optimal solu-

tion, they have been tested successfully for a few hundreds of variables as reported in [1]
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Branch-and-Bound

Proposed in [2] in 1960, as suggested by the name, this method is divided in 2 different op-
erations. First there is the branch, the operation of generating the feasible solutions, it can be
formalized as:

Given an optimization problem z = min/max
x∈X

f(x) and a partition of the feasible

region X in X1, X2, ..., Xn :
⋃

iXi = X , let z(k) = min/max
x∈Xk

f(x). Then the

solution of the problem ismin/max z(k)

Since, in general, generating the full tree has an exponential cost, the algorithm greatly ben-
efits from and efficient way of exploring the tree. This is done by bounding the value of the
objective function for each solution represented by a node.

Figure 2.1: Bound usage.

In the above example, the node E0, corresponding to the whole feasible region, is split in 2
by assigning a value to the variable xi, supposing that a bound can be computed on both E1

andE2 it is possible to completely discard the exploration of theE2 branch of the tree.

Branch-and-Cut

An evolution of the Branch-and-Bound algorithm, it iteratively refines the search region by
solving a continuous LP relaxation of the problem at hand before branching. During the ex-
ecution it is needed to store every cut obtained from the separation phase. One of the earliest
application of this algorithm can be found in [3], where it was used to solve the traveling sales-
man problem.
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2.2.2 Heuristics andMetaheuristics

Since the QUBO problem is NP-hard (with the exception of few special cases), as proved in
[4], a large amount of heuristic/metaheuristic approaches has been developed to obtain near-
optimal solutions. In the following are depicted some of them. There are also stochastic ap-
proaches for solving QUBO problems.

Tabu search

Formalized by Glover in [5] is one of the most famous methods of obtaining sub-optimal so-
lution of integer and binary programs. This algorithm has drawn a lot of attention from the
scientific community and several improvements has been proposed, starting by Glover himself
in [6]. The main strategy of this approach is to start from a set of sub-optimal solution and
then improve them by iteratively explore their neighbors.

Simulated annealing

Introduced in 1983 by Kirkpatrick et al. in [7], revolves around random sampling solutions of
the current problem by reducing at each iteration the probability of accepting a worse solution
by gradually reducing the ”temperature” of the system.
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3
Ising Model

This chapter will define and analyze the Ising Model, a simple physical model that describes
a set of 1

2
-spins in a d-dimensional lattice in the presence of an external magnetic field. This

model has been largely studied by physicists since 1920, the year of its invention, due to its
simplicity and theoretical content. The chapter is organized into 3 sections: in the first one
3.1 the definition and some basic properties will be discussed, then in 3.2 some numerical
analysis will be performed, showing some interesting behavior of the system, and in the end at
3.3 the connection between QUBO problems and Ising models will be made clear.

3.1 Definition and Properties

Given a set of 1
2
-spins distributed in a lattice like in figure the figure below, the Hamiltonian of

the Ising model is:

E = −J
∑

<ij>

sisj − µH
∑

i

si (3.1)

where si = +1 if the i-th spin is ’up’ and -1 otherwise, µ is the magnetic moment (which
depends on the nature of the spins, may them be electrons, currents in a superconductor ecc.),
H is the external magnetic fields, J is the interaction energy and< ij > indicate a summation
among nearest neighbor.
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Figure 3.1: Example of a 2d lattice.

The assumption that the only interactions between spins is among nearest neighbor is quite
realistic since on average the exchange effect has a very short range.
Studying the Ising model is Useful for several reasons:

• It presents a phase transition at some critical temperature.

• Has a symmetry breaking behavior at low temperatures

• Is exactly solvable for low dimensional lattices

3.2 Numerical Solution and Phase Transition

While Ernst Ising found an exact solution for the 1-dimensional case in his doctoral dissertation
in 1925, such low dimensionality fails to show some of the most interesting features of the
model. In fact, the 1-dimensional case does not present any phase transition.
To study higher dimensional Ising models it is useful to approach the system using an ap-

proximation calledmean field approximation. The energy of a single atom is

ei = −µHeffsi (3.2)
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WhereHeff = H + J
2µ

∑

k sk is the effective magnetic field. Consider a single atom in a
magnetic fieldHeff at temperatureT , according to the Boltzmann distribution, themean spin
is

s = tanh(βµHeff ) (3.3)

where β = 1
kT
.

Now, applying the mean field approximation, suppose that every component of the system
has identical spin si = s so it is possible to write

Heff = H +
zJs

2µ
(3.4)

The critical temperature is defined as

Tc =
zJ

2k
(3.5)

From the following plots it is easy to understand that when the temperature gets to the crit-
ical value the system goes through a phase transition

Figure 3.2: Net magnetization in absence of external magnetic field.
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Figure 3.3: Heat capacity in absence of external magnetic field.

3.3 Ising formulation of a QUBO problem

The interest in the Ising model in the context of this thesis is the similarity it has with a QUBO
problem. In fact, with a simple transformation it is possible to switch between the two.
Consider a QUBO problem

min x⊺Qx (3.6)

then, using the relation xi = 1+si
2

it is possible to obtain an Ising Hamiltonian where the
ground state represents the optimal solution of theQUBOproblem by replacing the spin state
−1with the variable value 0. The full procedure, with examples andmore details, can be found
in [8].

12



4
Quantum Annealing algorithm

The nameQuantumAnnealing algorithm (QA) refers to a class of algorithms that differs from
one another in some implementation choices that are left to the programmer. The main idea
behind QA is to encode the objective function of an optimization problem in an Ising Hamil-
tonian, then, exploiting the quantum adiabatic theorem, let the system evolve to the ground
state of such system obtaining the optimal solution of the original problem.

This is done in the hope that the capability of quantum system to perform quantum jumps
(tunneling) will benefit the exploration of the search space by bypassing barriers of potential.

Figure 4.1: Quantum jumps compared thermal jumps performed by SA, figure from [9].
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4.1 Definition and Theoretical Analysis

Given a cost function E, define the associated HamiltonianHf as explained in 3.3, with the
corresponding operator ĤF that when applied to a state σ ∈ {−1,+1}n behaves as follows:

Ĥf |σ〉 = E(σ) |σ〉 (4.1)

Consider then an arbitrary HamiltonianHi with a known ground state gi ∈ {−1,+1}n,
this will be the initial state of the system during the execution of QA.
Let f(t) be a decreasing function such that it goes from a large value f(0) to f(t) = 0 for

t −→ T . This function will control the rate of interpolation between the initial Hamiltonian
Hi and the targetHf . The final time-dependent Hamiltonian is defined as:

H(t) = HIsing − Λ(t)Hkin (4.2)

The state |ψ(t)〉 of the system will then evolve according to the Schrodinger equation

i
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (4.3)

While this definition leaves room for different implementations, like the initialHamiltonian
Hkin, the time computation time T and the interpolation function, there are some require-
ments that have to be met in order to have a guaranteed convergence.

4.1.1 Adiabatic theorem and Convergence requirements

Consider a generalHamiltonianH(s)which depends on time only by a dimensionless variable
s = t/T . Let |k(s)〉, ϵK(s)be, respectively, the k-th eigenstate and the k-th eigenvalue ofH(s)

at time s
H(s) |k(s)〉 = ϵk(s) |k(s)〉 (4.4)

then, from differentiation of 4.4

〈j(s)| d
ds
|k(s)〉 = −1

ϵj(s)− ϵk(s)
〈j(s)| dH(s)

ds
|k(s)〉 (4.5)

It is possible now to prove the most important theoretical component of the QA formula-
tion.

14



Theorem 1 If the instantaneous ground state of the Hamiltonian H(s) is not degenerate for
s ≥ 0 and the initial state is the ground state at s = 0, the state vector |ψ(s)〉 has the asymptotic
form in the limit of large T as

|ψ(s)〉 =
∑

j

cj(s)e
−iT ϕ0(s) |j(s)〉 (4.6)

c0(s) ≈ 1 +O(T −2) (4.7)

cj ̸=0 ≈
i

T
(

Aj(0)− eiT (ϕj(s)−ϕ0(s)Aj(s)
)

+O(T −2) (4.8)

where ϕj(s) =
∫ s

0
ds′ϵj(s

′),∆j(s) = ϵj(s)− ϵ0(s) and

Aj(s) =
1

∆j(s)2
〈j(s)| dH(s)

ds
|k(s)〉 (4.9)

The proof of this theorem is given in [10]

To perform an adiabatic evolution it is needed that the excitation probability in 4.8 to be as
small as possible, this is achieved for

T ≫ |Aj(s)| (4.10)

Using the original time variable t the adiabatic condition can be written as:

1

∆j(t)2

∣

∣

∣

∣

〈j(t)| dH(t)

dt
|0(t)〉

∣

∣

∣

∣

= δ ≪ 1 (4.11)

If the HamiltonianHkin represents an Ising model with only transverse field interaction

Hkin =
∑

j

σx
j (4.12)

It is possible to express the function f(t) in the following form

Λ(t) = a(δt+ c)−1/(2N−1) (4.13)

While if the initial Hamiltonian is composed of ferromagnetic interactions between spins as

15



well
Hkin =

∑

j

σx
j +

∑

ij

σx
i σ

x
i (4.14)

the dependence of time takes the form of

Λ(t) ∝ t−1/(N−1) (4.15)

4.2 Computational Complexity

The computational time needed to QA in order to reach a sufficiently low error rate ϵ are esti-
mated in [10] from 4.13 and 4.15:

• T = 1
δ

(

1
ϵ

)2N−1 for the transverse field Hamiltonian 4.12

• T = 2N−2

δϵ
for the ferromagnetic Hamiltonian 4.14

From the above results is clear that the presence of non-zero non-diagonal elements in the
initial Hamiltonian leads to faster, but still exponential computational complexity. However,
aswill be exemplified in the next section, the choice of an optimal annealing schedulemay allow
for an even faster rate of convergence.

4.2.1 Better Annealing Schedules

As proved in [11], the general bound to excitation probability is in the order of T −2. How-
ever in [10], is demonstrated that this bound can be improved toT−2m at the cost of a small
numerical factor on computational complexity.
Given the asymptotic form of the excitation amplitudes 4.8, the upper bound of excitation

probabilities is:
| 〈j(1| |ψ(1)〉 |2 = |cj ̸=0(1)|2 (4.16)

If the T −2 vanishes, i.e. whenH ′(0) = 0 andH ′(1) = 0, then the excitation amplitudes are
at most of order T −2

cj ̸=0 ≈
1

T
(

A
(2)
j (0)− eiT |ϕj(s)−ϕ0(s)|A

(2)
j (1)

)

+O(T −3 (4.17)

where
A

(m)
J (s) =

1

∆j(s)m+1
〈j(s)| d

mH(s)

dsm
|0(s)〉 (4.18)
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The generalization of this argument leads to the result expressed with the next theorem

Theorem 2 if the k-th derivative ofH(s) i zero at s = 0 and s = 1 for all k = 1, ...,m − 1,
the excitation probability has the upper bound

| 〈j(1)| |ψ(1)〉 |2 ≲ 1

T 2m
(|A(m)

j (0) + |A(m)
j (1)|)2 +O(T −2m−1) (4.19)

Although the general time-dependentHamiltonianwas investigated until now, the standard
form of the Hamiltonian of QA is

H(s) = f(s)Hpot + (1− f(s))Hkin (4.20)

whereHpot is the IsingHamiltonian of the problem andHkin is theHamiltonian with a trivial
ground state from which the annealing process starts. From theorem 2 and equation 4.20,
it is easy to understand that the requirements on the derivative ofH(s) translate in the same
fashion to the derivatives of f(s).
Some examples of annealing schedule fm(s)with T −2m error rate are reported in [10]:

• f1(s) = s

• f2(s) = s2(3− 2s)

• f3(s) = s3(10− 15s+ 6s2)

• f4(s) = s4(35− 84s+ 70s2 − 20s3)

4.3 Example: Grover algorithm

The process of optimizing QA is well demonstrated for the problem of searching in an un-
ordered dataset, where the same quantum speedup reached by gate-based algorithms can be
achieved also by QA by selecting the right annealing schedule. Consider a database of N un-
ordered items, one among them ismarked. The problem consists of finding themarked item in
the shortest amount of time possible. Any classical algorithm can perform this task with an av-
erage ofN/2 query to the database, in contrast, the gate-based quantum algorithm developed
by Grover in [12] can find the solution withO(

√
N) complexity. Sometime later, in [13], an

equivalent QA was found.
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The Hilbert space of this problem is described by the basis states |i〉 with i ∈ 1, ..., N and
the state |m〉 represents the marked item. The Hamiltonian is then constructed as:

Hpot = 1− |m〉 〈m| (4.21)

Hkin = 1− 1

N

∑

i

∑

j

|i〉 〈j| (4.22)

The initial state (ground state ofHkin) is

|ψ(0)〉 = 1√
N

∑

i

|i〉 (4.23)

and the energy gap is

∆(s) =

√

1− 4
N − 1

N
f(s)(1− f(s)) (4.24)

that has a minimum at f(s) = 1/2 thus, following the adiabaticity condition 4.10 the value
of δ is √

N − 1

T N∆1(s)3
df

ds
= δ (4.25)

And integrating 4.25 the result is the optimal annealing schedule fopt(s):

fopt(s) =
1

2
+

2s− 1

2
√

N − (N − 1)(2s− 1)2
(4.26)

giving an annealing time of

T =

√
N − 1

δ
(4.27)

The optimal annealing schedule shows the T −2 error rate because it is derivative is non-
vanishing at 0 and 1, as demonstrated in [10], this can be circumvented, bringing the error
rate at T −2m by re-scaling the time s, this lead to better results on longer computational time.

This is a prime example to show that, while an exponential speedup using quantum hard-
ware may not be always possible, the right selection of the initial Hamiltonian Hkin and the
annealing schedule f(s) can lead to faster annealing time.
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4.4 Workflow and Implementation

Even though the theory of QA may seem enough for the implementation of the algorithm
that’s not the case. Several steps are required to efficiently runQA,most of them are hardware-
related, this is why this section will open with a survey on currently available quantum anneal-
ers.

The first thing to point out in regards to current quantum annealers is that the qubits (spins)
are not densely coupled, this means that in both Hamiltonian’sHkin andHpot the quadratic
terms that are possible to construct are the one relative to physically connected qubits. The
pattern that describes the qubits coupling is called the hardware graph. In the future the hope
is to develop hardwarewith bigger and denser graphs in order to accommodate bigger instances
of optimization problems.

4.4.1 Chimera graph

Usedon theD’Wave2000Qthe so-calledChimera graph is of theprevious generationofD’Wave’s
QPUs. It is simplicity is helpful in understanding the basic concepts and to study newer topolo-
gies, since they will be derived from this one.

A schematic description of the structure of the graph is presented in [14] and it goes as
follows: consider aM ×M grid ofK4,4 bipartite graphs called cells, each node of those cells
is going to be referred to as n(x,y),i,p where (x, y) are the coordinate of the cell, i ∈ {0, 1}
represent the ’side’ where the node lies, and p ∈ {0, 1, 2, 3} is the position of the node (0
being the top node, 3 being the bottom one). Each cell is connected to the neighboring ones
by edges of the form:

(n(x,y),i,p, n(x+k1,y+k2),i,p)s.t.k1, k2 ∈ {0, 1}andk1 + k2 = 1 (4.28)

To better understand how the couplers are distributed, it is introduced the qubits orientation
and relative positioning
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Figure 4.2: Chimera qubits orientation, each qubit is visualized as a vertical or horizontal loop, figure from [14].

To connect those qubits, 2 sets of couplers are put in place:

• Internal couplers
Internal couplers connect pairs of orthogonal qubits

• External couplers
External coupler connect collinear pairs of qubits

Figure 4.3: Chimera couplers, internal couplers in green, external in blue, figure from [14].

To revealmore about the structure of theChimera graph there is another useful visualization
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Figure 4.4: Chimera couplers, internal couplers in green, external in blue, each node of the graph is represent a qubit, figure
from [14].

From the above figure is clear that a Chimera graph is composed of a 2-d square lattice of
K4,4 bipartite graphs where each edge represent an internal coupler, connected from external
couplers.

4.4.2 Pegasus graph

The current generation hardware graph is called Pegasus and it is realized on the Advantage
QPUs. As seen before, a Chimera graph is essentially composed of an X × Y grid of K4,4

graphs. A Pegasus graph is composed ofZ = 3 layers of Chimera, so it is possible to point out
a singleK4,4 cell using 3 indices. Moreover, each ’side’ of theK4,4 cells is identified by a binary
index i and the nodes on each side correspond to 2 more binary indices j, k. In this notation,
each node is identified by the unique tuple (x, y, z, i, j, k).
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Figure 4.5: Pegasus node visualization, the couplers not part of Chimera are highlighted, figure from [15].

With this topology 2 new sets of couplers are added to the one present in Chimera:

1. New edges inK4,4 cells
to each cell are added the edges described as:

(x, y, z, , i, j, 0)←→ (x, y, z, i, j, 1) (4.29)

2. Edges connecting Chimera layers
the connections between different Chimera layers follow the rule:

(x, y, z, i, j, k)←− (x− ji+ δz2, y − ji+ δz2, (z + 1)mod3, i, j ′, k′) (4.30)

The new couplers can be grouped in a set called Odd couplers better described in the orien-
tation based visualization.
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Figure 4.6: Pegasus odd couplers visualization, the green vertical qubit is coupled with the red one by an odd coupler,
figure from [15].

4.4.3 Minor-embedding and chain strength

To overcome the limitations in the structure of the problem graph, an intermediate step has
to be taken before the annealing phase. The main idea behind minor-embedding is, instead
of using one qubit for every logical variable, to map each problem variable to a sub-tree of the
hardware graph by forcing each qubit of the sub-tree in the same state; this permits a higher
number of connections.

In a more formal way, a minor-embedding of a graph Y inX is defined as a map

ϕ : V (Y ) 7→ V (X) (4.31)

such that

∀(y1, y2) ∈ E(Y ), ∃(x1, x2) ∈ E(X) s.t. x1 ∈ ϕ(y1), x2 ∈ ϕ(y2) (4.32)

The subsetϕ(y) ofV (X)will be referred as vertexmodel of y. A trivial example of this process
is the following:
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Figure 4.7: Minor‐embedding example, on the left the hardware graph is fully connected while on the left is a sparse, figure
from [16].

The last thing that has to be specified in this procedure is the mechanism that forces the
chained qubits to stay in the same state. This is done by setting the strength of the mutual
interaction among those qubits to a big negative value. The optimal value to assign at those
interactions is an open research area, the chain strength has to be high enough to put any state
in which a chain is broken high enough in the energy spectrum to make the rupture unlikely
but can’t be arbitrarily high due to the limited resolution of current hardware.
In the D’Wave framework, the default option to perform this task is performed through the

uniform torque compensation, which establishes the chain strength in the following way:
Given a BQM(QUBOs andBQMs can be converted into one another), letJik be the quadratic
terms the chain strength is computed as

γ

√

∑

ik J
2
ik

|J |
√

d (4.33)

where d is the average degree of the variables.
In recent years multiple methods of finding ϕ got developed, three different algorithms will

be described in the next chapter.

24



5
Minor-embedding algorithms

Asmentioned above, minor-embedding takes a crucial part in the implementation of QA, this
chapter will delve in three different approaches:

• Minorminer the default heuristic used in theD’Wave framework, fast but doesn’t prove
minor exclusion.

• IP-embedding an optimization based algorithm that can optimize several aspects of the
resulting minor.

• Template embedding use a template graph, easily and efficiently embeddable in the
hardware graph, to find a minor in a deterministic way

In [17] is shown a polynomial time algorithm that establishes if a fixed graphH is contained
as a minor in a given graph. However, the interest in developing various algorithms to perform
this task comes from the work [18], where it is given the proof of the NP-completeness of the
minor-embedding problem when both graphs are part of the input. After that, 2 main results
were obtained the first in [19] with an execution time of

O(3k
2

(h+ k − 1)!m)

improved by the the algorithm presented in [20] with a time of the order

O(2(2k+1)logkh2k22h
2

m)
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where k = bw(G), n = |V (G)|, m = |E(G)| (bw(G) is the branchwidth of G).

5.1 Minorminer

A complete description and some numerical results regarding this algorithm can be found in
[21], where it was firstly introduced, here will be presented the main concepts and ideas.

5.1.1 Algorithm

LetX, Y be the hardware and logical graphs respectively, suppose that y, y1, ..., yk ∈ V (Y )

and y is adjacent with every y1...yk. The search of a vertexmodelϕ(y) is done by ensuring that
the vertex model shares an edge with each ϕ(y1), ...ϕ(xk).

To do so, for each yj , it is computed the shortest path between ϕ(yj) and every vertex g of
the subgraph ofX of the unused nodes. This is then recorded as a cost function c(g, j) and
the vertex g∗ with minimal cost

∑

j c(g, j) is chosen as the root of ϕ(y). The remaining part
of ϕ(y) is constructed by taking the shortest paths between g∗ and each ϕ(yj).

If no such g∗ exists, it is possible to temporarily allow for vertex models to overlap, in this
case, the vertex model is chosen to be one that uses a minimal amount of vertex already used in
other models. The computation of this cost is done by weighing each g ∈ V (X) by

wt(g) = D|{i:g∈ϕ(yi)}| (5.1)

and then define the weight of a path the sum of the weight of the vertices in the path. This
ensures that the root of ϕ(y) is chosen with the lowest overlap possible.

The pseudo-code of this algorithm looks like:
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Figure 5.1: Minorminer heuristic, figure from [21].

5.2 IP-embedding

This approach, presented in [22], is a IP formulation of the equational model developed in
[23]. The major advantage of this formulation is that is solvable using commercial solvers,
avoiding the expensive computation of the Graver basis.
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Moreover, the equational approach has some nice features when compared to other heuris-
tics likeminorminer:

• Prove infeasibility

• Provide quality guarantees

5.2.1 Variables and Constraints

In the equational approach, embedding a logical graph Y in the hardware graph X is repre-
sented by a surjective map π : X 7→ Y such that ϕ(y) = π−1(y).
The expression for π(xi) is:

π(xi) =
∑

j:yj∈V (Y )

αijyj ∀xi ∈ V (X) (5.2)

where αij are binary coefficients.
To obtain feasible solutions several constraints are needed:

1. well definition constraint
∑

j:yj∈V (Y )

αij ≤ 1 ∀xi ∈ V (X) (5.3)

This ensures that the qubit xi embeds at most one logical variable yj

2. minumum and maximum size

m ≤
∑

i

∑

j

αij ≤ n (5.4)

where n = |V (X)| andm = |V (Y )|

3. fiber size constraint
1 ≤

∑

i

αij ≤ k ∀yj ∈ V (Y ) (5.5)

Bound to the size of the vertex model |ϕ(yj)|.
An additional refinement is added to exclude qubits when their distance is> k

1 ≥ αi1j + αi2j∀xi1 , xi2 ∈ V (X),min d(xi1 , xi2) > k, ∀yj ∈ V (Y ) (5.6)
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4. fiber condition
The request of having connected subtrees as vertex models is formalized as:

∀xi1 , xi2 ∈ π−1(yj) : αi1j + αi2j +





∑

ck(xi1,xi2)∈Ck(xi1,xi2)

(γckj)− 1



 ≤ 2 (5.7)

where the binary variable γckj takes value 1 if the fiber ck(xi1 , xi2) is in the vertex model
of yj , Ck(xi1 , xi2) is the set of fibers connecting xi1 and xi2 of size≤ k. The variables
γckj are defined as follows

γckj =
∏

l:xl∈int(ck(xi1
,xi2

))

αlj (5.8)

the constraint above is not enough to ensure goodfiber condition, to solve this it is added
the next constraint

αiij + αi2j −
∑

ck(xi1
,xi2

)∈Ck(xi1
,xi2

)

γckj ≤ 1 (5.9)

∀yj ∈ V (Y ) ∀(xi1 , xi2) ∈ V (X), (xi1 , xi2) /∈ E(X),min d(xi1 , xi2) ≤ k

5. pullback condition
The requirement 4.32 is equivalent to the constraint

1 ≤
∑

i1,i2:(xi1
,xi2

)∈E(X)

(δ
∥
i1i2j1j2

+ δ⊥i1i2j1j2) ∀(yj1 , yj2) ∈ E(Y ) (5.10)

where the variable δ∥i1i2j1j2 have value one if xi1 , xi2 are edges of the vertex models
ϕ(yj1),ϕ(yj2) and δ⊥i1i2j1j2 is one if xi2 , xi1 are edges of the vertex models ϕ(yj1),ϕ(yj2).
This condition is equivalent to the quadratic constraint

δ
∥
i1i2j1j2

= αi1j1αi2j2

δ⊥i1i2j1j2 = αi1j2αi2j1

that can be formulated with the following set of linear inequalities










δ
∥
i1i2j1j2

≤ αi1j1

δ
∥
i1i2j1j2

≤ αi2j2

δ
∥
i1i2j1j2

≥ αi1j1 + αi2j2 − 1

(5.11)
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with the following and last constraint it is excluded the option of having δ∥i1i2j1j2 and
δ⊥i1i2j1j2 from having both value one

δ
∥
i1i2j1j2

+ δ⊥i1i2j1j2 ≤ 1 ∀(xi1 , xi2) ∈ E(X), ∀(yj1 , yj2) ∈ E(Y ) (5.12)

5.2.2 Objective function

Within this framework several objective functions can be adopted depending on the context
at hand, given the current limitations of commercial available quantum hardware, the metric
considered in this work is the total embedding size

∑

i:xi∈V (X)

∑

j:yj∈V (Y )

αij s.t. (α,γ, δ∥, δ⊥) ∈ F (5.13)

where F is the feasible region, intersection of the constraints listed in 5.2.1.

5.3 Template embedding

The key idea of this approach is to identify a graph T called template that has the following
properties:

• It is easily and efficiently embeddable in the hardware graph

• Has some nice topological structure that can be exploited to achieve simpler constraints
and combinatorial complexity

The application of this concept considered in this work can be found in [24], where two
templates are defined for the Chimera graph 4.4.1.

5.3.1 Template graph

Following the work of Goodrich et al. [25], where the problem was solved by finding a min-
imum size OCT, the template graph is chosen to be a KML,ML bipartite graph, a minor of
CM,M,L Chimera graph (in current hardwareL = 4) that can be embedded by assigning every
left(right)-hand side vertices of each cell (shown in 4.3) in a column(row) to a left(right) vertex
of the template graph:
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Figure 5.2: K64,64 embedded inC16,16,4, figure from [24].

5.3.2 Formulation

The following formulation defines the combinatorial problem that finds a minor of the logi-
cal graph Y in the template graph. The problem can then be solved using any commerciallly
available solver.

Variables For each vertex y ∈ V (Y ) and k ∈ {1, 2} the variable vyk has value one if the
vertex y is assigned to the partition k and the variable v′y denotes if the vertex y is assigned to
any partition.

Objective Function The goal is to assign asmany vertices as possible, this is done bymax-
imizing the number of v′y variables with value one, this can be translated as objective function
as follows:

max
∑

i:yi∈V (Y )

v′yi (5.14)

Constraints

• the association between variables is

v′y ≤ vy1 + vy2 ∀y ∈ V (Y )
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• no more thanML vertices per partition
∑

y

vyk ≤ML ∀k ∈ {1, 2}

• for each edge (yi, yj) ∈ E(Y ), vertices yi, yj should not be assigned to a single and same
partition

vyI1 + vyj1 − vyi2 − vyj2 ≤ 1

vyI2 + vyj2 − vyi1 − vyj1 ≤ 1

This formulation has some nice features: by solving the problem described above a certifi-
cate of embeddability via a bipartite template is obtained. This also implies that if the algo-
rithm used to get the solution finds an upper bound on the objective function that is lower
than |V (Y )|, then the search can be terminated. Moreover, it can be generalized to N-partite
templates, as demonstrated for theN = 4 case in [24].

5.4 Experiments

Here are presented the results of the experiments where each of the embedding algorithms
presented in this chapter was tested.

The experiments were conducted by embedding two sets of 100 randomly generated in-
stances with the following parameters

Njobs Nmachines Durationmax Timespanmax

Set 1 2 3 1 5
Set 2 3 3 2 8

Table 5.1: Instance parameters for embedding testing

The following results will be relative to template embedding on Chimera and minorminer
on both Pegasus and Chimera. The IP approach proved to be too complex for the resources
available for this work even on the smaller set of instances, Some experimental results about it
will be presented later.
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5.4.1 Embedding size and Chain length

(a) Set 1 (b) Set 2

Figure 5.3: Embedding size results

(a) Set 1 (b) Set 2

Figure 5.4: Embedding longest chain

As expected, embedding on a denser graph lead to lower usage of qubits and to shorter chains.

5.4.2 Energy landscape

Here the energy spectrum of the solutions obtained through simulated annealing (5000 reads
and 1000 sweeps). The considered instance is the following:
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T1 T2 T3
Job 1 M2,1 M1,1 M3,1
Job 2 M1,1 M2,1 M3,1

Table 5.2: Instance description, each task is represented by a couple (machine, duration).

Figure 5.5: Energy spectrum of SA solutions.

It is possible to notice that, while in every case at least one optimal solution was found, the
distribution of the energies greatly benefits from the higher density of the Pegasus graph.
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6
GAMA algorithm

In this chapter, the hybrid algorithm developed in [26] will be presented. This algorithm ob-
tains an optimal solution of any ILP (even with a non-linear objective), expanding the scope of
the current quantum hardware.
Given a problem with the following form:







min f(x) s.t. x ≥ 0, x ∈ Z

Ax = b
(6.1)

where x is the vector of n variables, A is am × n matrix and b is a vector of lengthm. The
main idea of this procedure is to extract the Graver basis of the linear constraint by QA and
then augment a sub-optimal feasible solution by adding the elements of the Graver basis to it.

6.1 Graver basis definition & properties

TheGraver basis is part of a family of sets that are called optimality certificate or, more formally:

Definition 1 A set S ∈ Zn is called a optimality certificate if for any feasible sub-optimal solu-
tion x0 of 6.1 exists t in S and λ ∈ Z

+ such that f(x0 + λt) < f(x0).

Given the partial ordering, called conformal, denoted with⊑ defined as:
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Definition 2 Givenx, y ∈ Z, x is said to be conformal to y, y ⊑ x if: xiyi ≥ 0 and |xi| ≤ |yi|.

The definition of Graver basis is:

Definition 3 The Graver basis of an integer matrix A is the set of ⊑ minimal elements in the
lattice L∗(A), denoted asG(A).

Where L∗(A) is the kernel ofA

L∗(A) = {x|Ax = 0,x ∈ Z
n, A ∈ Z

m×n} \ {0} (6.2)

With the above definitions, the following propositions hold:

Proposition 1 the following statements regarding the Graver basis are true:

1. Every vector in the latticeL∗(A) is a conformal sum of the Graver basis elements.

2. The upper bound on the number of Graver basis elements required to express a kernel vector
is (2n− 2).

3. The Graver basis is an optimality certificate for the problem 6.1.

4. For any g ∈ G(A), the upper bound on the norm is:

‖g‖∞ ≤ (n− r)∆(A) and‖g‖1 ≤ (n− r)(r + 1)∆(A) (6.3)

where r = rank(A) and∆(A) is the maximum absolute value of the determinant of a
square submatrix ofA.

6.2 Graver basis extraction

The extraction of the Graver basis can be summarized by the iteration of few steps:

• Build the QUBO for the extraction of the kernel elements.

• Solve the above mentioned QUBO via QA.

• Classical post-processing.
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6.2.1 QUBO for kernel extraction

Since quantum annealers can only deal with binary variables, a mapping of the problemAx =

0 to a binary counterpart. The solution to this task proposed in [26] is to encode the integer
variables to binary ones using a linear mapping xi = eiXi where ei = (ei,1, ei,2, ..., ei,ki)

is the linear encoding vector and Xi = (Xi,1, Xi,2, ..., Xi,ki) is the vector that encodes the
xi variable. With a binary encoding vector ei = (20, 21, ..., 2ki), k = ⌈log2 ∆i⌉ where ∆i

is the difference between the upper bound and the lower bound of the xi variable the whole
transformation can be summarized as

x = L+ EX (6.4)

whereE is a n×
∑

i ki matrix that encodes x into a binary vectorX ∈ {0, 1}
∑

ki .
The problem of finding the kernel of the matrix A can be formulated via the following

QUIO:
minx⊺Qx, Q = A⊺A, x ∈ Z

n (6.5)

Substituting 6.5 in 6.4 the result is:

x⊺Qx = X⊺E⊺QEX+ (X⊺E⊺QL+ L⊺QEX) + L⊺QL (6.6)

The last term of this equation is a constant and can be ignored while the linear term can be
rewritten asX⊺diag(2L⊺QE)X. In this setup the QUBO simplifies to:

minX⊺QbX (6.7)

whereQb = E⊺QE+ diag(2L⊺QE)

6.2.2 Sampling

The samplingof lowenergy solutionsof 6.7 is done viaQA in the sameway explained in chapter
4.

6.2.3 Post-processing

In this phase of the algorithma series of three classical post-processingoperations areperformed:

1. Combination of near-optimal solutions into optimal ones.
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2. Encoding adaptation.

Combination of near-optimal solutions is the process that given the matrix of solu-
tions xu ∈ Z

n×N returns more optimal solutions.
Consider thematrixAxu = Er that contains the errors for each of theN solutions. Gather-

ing the solutions with sum of absolute errors it is possible to sum them pairwise to obtain new
optimal solutions, the procedure for sum of errors equal 1, 2 is explained below.

• Solutions with total sum error = 1: the columns with total sum error one can be di-
vided into two subsets, the first containing the ones with +1 and the other with −1
error. It is possible then to perform three sets of operations: subtracting all+1 columns
pairwise, subtracting all −1 columns pairwise and adding any +1 columns to any −1
column. The computational cost of those operations isO(3N

2
u1

4m
)

• Solutions with total sum of error = 2: the process for solutions with +2 and −2 is
similar to what have been done to the ±1. The remaining solutions can be divided in
four blocks (+1,+1), (−1,−1), (−1,+1), (+1,−1), for each one of these, a pairwise
subtraction lead to an optimal solution. Additionally it is possible tomake subtractions
among the groups (+1,+1), (−1,−1) and (+1,−1), (−1,+1). The processing of
the solution with error 2 requires an additionalO(3N

2
u2

4m
+ 3

8
N2

u2
) operations in total.

It is indeed possible to extend this reasoning for solutions with higher energy.

Encoding adaptation: since the choice of encoding let the user independently choose
the number ki of qubits to allocate to each variable, it is possible to efficiently adapt the range
covered [Li, Li + 1kiei]. The methode proposed in [26] is to check if some variables of a sub-
optimal solution lays on the border of the range of values represented by the current choice of
ki. If this happen, a better solution may be beyond that bound so the center of the encoding
is shifted towards that point and/or the encoding size is incremented by one. A scheme of the
algorithm is the following:
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Figure 6.1: Adaptive Encoding, figure from [26].

6.3 Obtaining feasible solutions

The last piece needed for this algorithm is the extraction of one or more feasible solutions to
augment them via Graver basis. This is done by solving the constraints equations Ax = b,
which is equivalent to solve the QUIO:

minx⊺Qx− 2b⊺Ax (6.8)

whereQ = A⊺A. Using the same encoding present in Section 6.2.1, the resulting QUBO is:

minXQbX (6.9)

whereX ∈ {0, 1}
∑

ki andQb = E⊺QE + 2diag[(L⊺Q − b⊺A)E]. Solutions can then be
obtained via QA as done before.

6.4 Algorithm

The algorithm itself goes through three phases:

1. Graver basis extraction, as discussed in 6.2.
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2. Find initial feasible points.

3. Augment to better solutions applying the third statement of 1.

Since in the second step QA is used and it will return several unique feasible solutions, it is
possible to collect, among those points, the ones with lower cost value and then augment them
in parallel. This is a good practice since there are no guarantees that the full Graver basis is
extracted during the first phase, in fact most probably only a fraction of the elements will be
available, thus it may be the case that not every initial point can be augmented in an optimal
one.
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7
Job Shop Scheduling

In this chapter two different formulations of JSSwill be presented. The first, in 7.1, is aQUBO
formulation that can be directly compiled and solved using QAwhile the second one takes the
form of a ILP and will be solved by the hybrid algorithm GAMA depicted in 6, where the
Graver basis extraction is performed via QA [27].
The JSS can be briefly described as follows; given a setM of nm machines and given a set J

of nJ jobs, suppose that each job is composed of at most nm tasks each that has to be executed
on a different machine and with a certain order. In particular, the rules that a schedule has to
comply with to be valid are:

• the tasks of a given job have to be executed in the given order

• each task can start only one time

• each job can be performed only on one machine at a time

• each machine can process one task at a time

The goal is to find, among every feasible schedule, the optimal one, the definition of this
optimality is context dependent, in this case the best schedule will be the one with shortest
total makespan. During the rest of this workN will be the number of jobs,M the number of
machines.

41



7.1 Time Indexing Formulation

This formulation of the JSS, present in [28], is expressed as a QUBO by translating the con-
straints in penalty terms. The operations are indexed in lexicographical order as follows:

j1 = {O1 → ...→ Ok1}
j2 = {Ok1+1 → ...→ Ok2}

...

jN = {OkN−1
→ ...→ OkN}

(7.1)

Given a deadline T , to each operation is assigned a set of binary variables

xi,t =







1 : operationOi starts at time t

0 : otherwise
∀t ∈ {1, ..., T} (7.2)

7.1.1 Constraints

The order condition and the third rule of the list above are enforced by the following quadratic
penalty term

∑

kn−1<i<kn
t+pi>t′

xi,txi+1,t′ ∀n ∈ {1, .., N} (7.3)

The constraint and the associated quadratic penalty term relative to the second rule are

(

∑

t

xi,t = 1 ∀i ∈ {1, ..., kN}
)

→
∑

i

(

∑

t

xi,t − 1

)2

(7.4)

The remaining condition can be represented by the quadratic constraint

∑

(i,t,k,t′)∈Rm

xi,txk,t′ = 0 ∀m ∈ {1, ...,M} (7.5)

where the setRm = Am ∩ Bm and

Am ={(i, t, k, t′) : (i, k) ∈ Im × Im,
i 6= k, 0 ≤ t, t′ ≤ T, 0 < t′ − t < pi}

(7.6)
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Bm ={(i, t, k, t′) : (i, k) ∈ Im × Im,
i < k, t′ = t, pi > 0, pj > 0}

(7.7)

The set Am is forbids the start of the operationOj from starting if the operationOi is still
being processed. The setBm exclude the possibility of two operation from starting at the same
time unless one of them has zero duration.
Summing up every penalty term listed above results in the Hamiltonian

HT (x) = αh1(x) + βh2(x) + γh3(x) (7.8)

during the rest of this work the values α = β = γ = 1will be considered.

7.1.2 Formulation Refinement

The above described formulation can be improved in two aspects by some simple refinements
with a polynomial overhead.

• The valid timewindowof each operation can be shaved, effectively reducing the amount
of variables needed.

• More information can be extracted by eachQA runs by discriminating the longest times-
pans.

Pruning

The first step toward the elimination of superfluous variables is the computation of head and
tail of each operation, respectively referred as ri and hi.
To complete this task several algorithms have been developed, one of them was presented

in [29] commonly called iterated Carlier and Pinson (ICT) with a computational cost of
O(N2M2T log(N)). Here is discussed a simpler approach to this task, the heads ri are com-
puted as the sumof the execution times of each preceding operations and the tailshi are treated
in a similar way. After this, it is possible to refine those values in the following way: suppose
the existence of 2 operationsOa,Ob with a, b ∈ IJ such that

ra + pa + pb + qb > T (7.9)
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thenOa has to be executed afterOb, thismeans updating ra = max{ra, rb+pb}. The updates
of the tails are done in a similar fashion.
After this initial update phase, it is possible prune the problem by fixing to zero the value of

the variables that correspond to invalid starting time

xi,t = 0 ∀t /∈ [ri, T − pi − qi]

It is important to consider the fact that if a time window shuts completely it means that there
aren’t valid schedules within the deadline T . Here and example of the effect of pruning on a
random instance with three jobs and three machines.

(a) Pre‐pruning problem graph (b) Pruned problem graph

Figure 7.1: Pruning example, the orange edges are relative to the start only once constraint, the pink ones are the one task
per machine constraints and the green ones represent the operation order constraint.

Timespan discrimination

To discriminate among the valid solutions, it is possible to add ate the Hamiltonian 7.8 a term
that breaks the degeneracy of the ground level. To avoid overlappingwith the invalid solutions,
the maximum energy gap added with this refinement has to be∆E < min{α, β, γ}. Doing
so will be helpful during the solution, improving the search speed of the right deadline T . The
method used in this work to discriminate among theK longest schedules is the following:
First define the sequence of energy penalties

∆Ek =

(

1

M + 1

)k+1

(7.10)

This choice of energy gap guarantees that a longer schedule will always have a higher energy
w.r.t. a shorter one and will keep the total energy of a valid solution below the threshold
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min{α, β, γ} that separates unfeasible schedules from valid ones.

7.2 Disjunctive Formulation

The disjunctivemodel, firstly introduced in [30] and then carefully reviewed and compared to
other MIP formulations in [31], where it was found to be the most efficient one.
The decision variables xij are the integer start time of job j on the machine i.

7.2.1 Constraints andObjective function

A formal definition of this model starts with the definition of the decision variables xij are
the integer start time of job j on the machine i. Moreover it is convenient to refer to the h-th
operation of job j as σj

h.
The objective function is represented by an integer support variable Cmax, constrained to

being at least larger than the global makespan. The constraints and their meaning are listed
below.

• The starting time of each operation has to be non-negative

xij ≥ 0 ∀i ∈ {1, ...,M}, ∀j ∈ {1, ..., N}

• The precedence constraint is expressed as

xσj

h
j ≥ xσj

h−1
j + pσj

h−1
j∀j ∈ {1, ..., N}, ∀h ∈ {2, ...,M}

• To ensure that two jobs can’t be assigned to the same machine at the same time the fol-
lowing constraints are needed

xij ≥ xik + pik − V · zijk ∀j, k ∈ {1, ..., N}, j < k, ∀i ∈ {1, ...,M}

xik = xij + pij − V · (1− zijk) ∀j, k ∈ {1, ..., N}, j < k, ∀i ∈ {1, ...,M}
where zijk has value one if job j precedes job k on machine i, zero otherwise and V =
∑

j

∑

i pij

• The before mentioned constraint on the objective functionCmax is

Cmax ≥ xσj
M

j + pσj
M

j ∀j ∈ {1, ..., N}
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8
Experiments

Due to the very limited resources available, the focus of the experiments were set on two partic-
ular instances:

T1 T2 T3
Job 1 M1,2 M3,2 M2,2
Job 2 M1,1 M2,2 M3,1
Job 3 M2.2 M3,2 M1,2

Table 8.1: a3 instance

T1 T2 T3 T4
Job 1 M4,2 M2,2 M3,1 M1,1
Job 2 M4,1 M2,2 M3,3 M1,3
Job 3 M1.1 M3,3 M4,1 M2,2
Job 4 M2,1 M1,2 M4,1 M3,1

Table 8.2: a4 instance

for each of those instances, three different methods were used to obtain a solution: Gurobi,
SA and QA. For a3 8 every approach was able to obtain equivalent solutions (QA returned a
solution with equal timespan as the other algorithms but with higher energy), while a4 8 QA
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was not able to find a feasible solutionbefore running out of computational time (1min/month
for the free plan available for this project).
Follows the timing, energy and representation of the best solutions found. The settings for

the experiments are:

• Gurobi: default settings

• SA: num_reads = 5000, num_sweeps = 2000.

• QA: num_reads = 2600, annealing_time = 200µs.

8.1 a3 results

Asmentioned above, for this smaller instance everymethod adoptedwas able to find anoptimal
solution, in particular the solutions foundwere the following (the SA solution is omitted since
it is equivalent to the Gurobi one):

(a) Gurobi solution (b)QA solution

Figure 8.1: solutions for the a3 instance

The energies relative to those solutions are 0.328 for the Gurobi one and 0.5625 for the one
obtained throughQA, it is important to notice that for the scope of these experiments the two
solutions should be considered both optimal since both have the same total makespan 8. The
difference in energy comes form the timespan discrimination method presented in 7.
The time needed to obtain such solutions is the following (the time for the embedding is

excluded since the embedding can be stored and there is no need to compute it every time):
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time(s)
QA 0.03
SA 8
Gurobi 0.676

Table 8.3: a3 solution timing

8.2 a4 results

The logical graph relative to this instance is the following:

Figure 8.2: a4 logical graph

.

To tackle this instance with QA multiple runs (until resource depletion) were made main-
taining the same parameters listed above. As for the a3 instance the SA solution is omitted for
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the same reason.

(a) Gurobi solution (b)QA solution

Figure 8.3: solutions for the a4 instance

It is easy to see that theQA solutionpresent several irregularities, confirmedby the associated
energy of 5.0880, while the Gurobi obtain the optimal solution with energy 0.24192.
The time needed by each algorithm is:

time(s)
QA 123
SA 27
Gurobi 123

Table 8.4: a4 solution timing, the time relative to QA takes under consideration every run made with the available re‐
sources.
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9
Conclusion

To conclude this dissertation there will be some comments on the various techniques analyzed.

9.1 Minor-Embedding techniques

Among the algorithms used for the minor embedding the one that demonstrated superior per-
formances is the minor-miner, the default heuristic of the D’Wave API. The other approaches
can still be applied in different scenarios, i.e. the IP-embedding may find a good application in
finding optimal embedding of small portions of the Hamiltonian in the form of gadgets in a
similar fashion aswhat has been done in [32]. For the template approach, futureworkmay find
a good template for the newest generation of quantum hardware such as Pegasus and Zephyr,
but even in that case, it seems that to achieve good performances with this method the logical
graph has to be very dense.

9.2 QA

Thequantumannealing algorithmproved to be feasible and to outperform the simulated coun-
terpart on small instances like a3 but failed systematically to obtain feasible solutions increasing
the instance size to a4. This suggests that with the current hardware, the scope of QA may be
to solve some smaller sub-problems in the context of a more complex heuristic/metaheuristic.
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9.3 GAMA algorithm

This algorithm represents a good opportunity towiden the scope ofQAbut it was not possible
to test it due to the scarcity of resources available, it worked on small toy examples replacing
the QA Graver basis extraction with a simulated counterpart but it was impossible to execute
further tests.
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