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Introduction

The theory of dessins d’enfants was launched by Alexander Grothendieck in
the 1980s, in his writing Esquisse d’un Programme. This was meant to be a
proposal for a long-term research submitted to the French Centre National
de la Recherche Scientifique. The proposal was only partially successful, as
it was accompanied by a list of obligations that Grothendieck would have
refused to fulfill. He managed to obtain a special position where, while
keeping his affiliation at the University of Montpellier, he was paid by the
CNRS and released of his teaching obligations. However, the manuscript
remained unpublished until 1997, as the author "could not be found, much
less his permission requested".

One of the primary aspects that caught Grothendieck’s attention, inspir-
ing some of the ideas contained in Esquisse d’un Programme, was the result
proved by Belyi in 1979. It was indeed a consequence of some deep works by
Weil, that if a complex algebraic curve can be expressed as a covering of the
Riemann sphere with ramification occurring at most over three points, then
the curve is defined over the algebraic closure of the rational numbers. Belyi,
with a simple and clever argument, came up with a proof of the opposite
implication, thereby lending his name to the entire theorem.

Grothendieck noticed a correspondence between this type of coverings
and objects he called dessins d’enfants, which means children’s drawings.
These objects are just some graphs embedded in complex curves, that hence
resemble drawings scrawled on a bit of paper. In this way, via Belyi’s The-
orem, one can see the absolute Galois group as a transforming agent acting
on dessins, whose nature is merely topological and combinatorial. Grothen-
dieck’s hope was to use such action to extract insights about the absolute
Galois group, whose structure was, and remains to this day, rather obscure.

Beyond these considerations, Esquisse d’un Programme is a work filled
with many other interesting mathematical ideas, which nowadays continue
to inspire research in the fields of algebraic geometry and Galois theory. In
this thesis, we will delve into the topics just mentioned.

The first chapter is intended to serve as a quick introduction to the the-
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4 INTRODUCTION

oretical tools that will be employed in the following chapters. Essentially, we
will cover classic topics in algebraic topology and Riemann surfaces, provid-
ing the necessary definitions and stating the most important results, such as
the Galois correspondence for regular coverings, Riemann-Hurwitz formula
and Riemann-Roch Theorem.

The second chapter presents a complete proof of Belyi’s Theorem. To
prove one half of the result, we will essentially rely on the ingenious algorithm
proposed by Belyi in 1979. For the other half, the one traditionally based
on Weil’s results, we will introduce the notion of moduli field of a finite
morphism. This will elegantly allow us to divide the result into two distinct
and manageable parts, simplifying the exposition.

The third chapter constitutes the core of the thesis: here we will intro-
duce the dessins d’enfants. Drawing directly from Grothendieck’s ideas, we
will describe the correspondence that associates them to the ramified cover-
ings of the Riemann sphere addressed in Belyi’s Theorem. We will focus on
describing these objects in mutually equivalent ways. In particular, we will
utilise both the language of function field extensions and that of permuta-
tions. Additionally, we will define a property of regularity for dessins, which
finds its counterpart in the notion of regularity for coverings, that will allow
us to state a Galois correspondence for dessins.

Finally, in the fourth chapter, we will define the absolute Galois group
and its action on the set of dessins. We will study the faithfulness of this
action, even when restricted to smaller sets. The richness of the languages
with which we can describe dessins, presented in the previous chapter, will
allow us to define a morphism from the absolute Galois group to the group of
outer automorphisms of the profinite completion of the free group generated
by two elements. The injectivity of this morphism, which follows from the
faithfulness of the Galois action on dessins, will provide us with an embedding
into a group whose description seems to be completely disconnected from the
absolute Galois group.



Chapter 1

Riemann Surfaces

The purpose of this first chapter is to provide a brief and informal introduc-
tion to the tools necessary for the discussion in the next chapters. Essentially,
it is a collection of classic topics of topology and Riemann surfaces, primarily
drawn from [Mir95], [Ful95] and [Mas77].

We will start with the basics of algebraic topology, defining the funda-
mental group and the coverings of a topological space. After explaining
the notion of regularity for coverings, we will state a Galois correspondence
between the intermediate coverings of a regular one, and the subgroups of its
automorphism group.

Then, we will introduce Riemann surfaces and, in particular, holomorphic
maps between them. We will notice how every holomorphic map between
compact Riemann surfaces is a ramified covering, and we will reverse this
process, constructing a holomorphic map from certain coverings of Riemann
surfaces. This correlation between coverings and holomorphic maps suggests
also a connection with the topological nature of the surfaces considered. For
this reason, after defining the Euler-Poincaré characteristic, which is a topo-
logical invariant for surfaces obtained through the use of triangulations, we
will introduce Riemann-Hurwitz formula. This expression encodes precisely
this relationship, linking the Euler-Poincaré characteristics of the involved
surfaces to the branching properties of the considered map.

The discussion continues defining meromorphic functions, differential 1-
forms, and divisors on compact Riemann surfaces, which are the necessary
elements to present the important Riemann-Roch Theorem, which provides
information about the dimension of spaces of certain meromorphic functions
on a compact Riemann surface.
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6 CHAPTER 1. RIEMANN SURFACES

1.1 Fundamental Group and Coverings

Let X be a topological space, a loop with base point x0 ∈ X is a continuous
function f : [0; 1] → X such that f(0) = f(1) = x0. We say that two loops
f0, f1 with base points x0 ∈ X are homotopic if there exists a continuous
function H : [0; 1] × [0; 1] → X such that H(s, 0) = H(s, 1) = x0 for any
s ∈ [0; 1] and H(0, t) = f0(t), H(1, t) = f1(t) for any t ∈ [0; 1]. Homotopy
defines an equivalence relation on the set of loops with fixed base point,
thus, we can define the fundamental group of X with base point x0 ∈ X,
denoted by π1(X, x0), to be the group of equivalence classes of loops on X
with base point xo.

From now on, we will assume X̃ and X to be arcwise and locally arcwise
connected topological spaces. An unramified covering of X (sometimes
called unbranched covering, or, very often, just covering) is a continuous
surjective map p : X̃ → X such that for any x ∈ X there exists an open
neighborhood U of p satisfying that:

• p−1(U) =
⋃
i Ui is a disjoint union of open subsets Ui of X̃;

• p|Ui
: Ui → U is a homeomorphism for every i.

For any covering p : X̃ → X, the cardinality of the preimage of a point is
constant. We call it the degree of the covering.

Let p : X̃ → X and p′ : X̃ ′ → X be two coverings of X. A homomorph-
ism of coverings is a continuous map φ : X̃ → X̃ ′ such that p′ ◦ φ = p.
Moreover, if there exists a homomorphism of coverings ψ : X̃ ′ → X̃ such that
ψ ◦φ and φ◦ψ are identity maps, then the two coverings p and p′ are said to
be isomorphic. An automorphism of coverings is an isomorphism of a
covering onto itself. We denote with AutX(X̃) the group of automorphisms
of the cover p : X̃ → X.

Notice that if p : X̃ → X is a covering, and x̃0 ∈ X̃ is such that p(x̃0) =
x0, then we have an embedding π1(X̃, x̃0) ↪→ π1(X, x0). We say that p : X̃ →
X is a universal covering for X if the fundamental group of X̃ is trivial.
The universal covering is unique up to isomorphism.

A covering is said to be regular when its automorphism group acts trans-
itively on the fibres. We have a Galois correspondence concerning the inter-
mediate coverings of a regular covering and the subgroups of its automorph-
ism group. Recall that a covering q : Z → X is an intermediate covering
of p : X̃ → X if there is a continuous map r : X̃ → Z such that q ◦ r = p.
Notice that, in this situation, the map r : X̃ → Z is a covering, and if
p : X̃ → X is regular, then also r : X̃ → Z is a regular.
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Theorem 1.1. Let p : X̃ → X be a regular covering. Then we have a
bijection between the intermediate coverings of p : X̃ → X and the subgroups
of its automorphism group

{Intermediate coverings of X̃ p−→ X} {Subgroups of AutX(X̃)}

X̃
r−→ Z

q−→ X AutZ(X̃)

X̃/H → X H

.

The degree of the covering corresponds to the index of the subgroup, and
isomorphic coverings correspond to conjugated subgroups. Furthermore, an
intermediate covering is regular if and only if the corresponding subgroup of
AutX X̃ is normal.

Since if p : X̃ → X is the universal covering of X, then AutX(X̃) ∼=
π1(X, x), this result provides us a bijection between the conjugation classes
of subgroups of π1(X, x) and the isomorphism classes of coverings of X.

We say that a continuous surjective function p : X̃ → X is a ramified
covering if there is a discrete subset S ⊆ X̃, whose image is discrete in X,
such that p|X̃∖S : X̃ ∖ S → X ∖ p(S) is an unramified covering. The points
of X̃ where p is not an unramified covering are called ramification points,
and their set is called ramification locus. The image of the ramification
locus is called branched locus, and its points are called branched points.

1.2 Riemann Surfaces and Holomorphic Maps

Let X be a topological space. A complex chart on X is a homeomorphism
ϕ : U → V , where U is an open subset of X and V is an open subset
of the complex plane C. We say that the chart is centered at p ∈ U if
ϕ(p) = 0. Two complex charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are said to be
compatible if either U1 and U2 are disjoint, or the transition map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

is a biholomorphism.
A complex atlas A on a topological space X is a collection A = {ϕα :

Uα → Vα} of pairwise compatible complex charts such that X =
⋃
α Uα. Two

complex atlas are said to be equivalent if their union is also a complex atlas.
A complex structure on X is an equivalence class of complex atlases on
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X. Then, a Riemann surface is a second countable, connected, Hausdorff
topological space with a complex structure.

We can use the canonical morphism C ∼= R2 to see Riemann surfaces as
2-dimensional real manifolds. Thus, applying Cauchy-Riemann equation to
the transition maps, we get that every Riemann surface is orientable.

Given X and Y two Riemann surfaces and a map F : X → Y , we say that
F is holomorphic at p ∈ X if there exist complex charts ϕ : U → V of X
with p ∈ U , and ψ : W → Z of Y with F (p) ∈ W such that the composition

ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(F (U) ∩W )

is holomorphic. We say that F is holomorphic on X ′ ⊆ X if it is holomorphic
at every point of X ′.

An isomorphism, or biholomorphism, between two Riemann surfaces
X and Y is a bijective holomorphic map F : X → Y whose inverse F−1 :
Y → X is holomorphic.

Proposition 1.2. Let X and Y be two Riemann surfaces, and f : X → Y
a non-constant holomorphic mapping. Then, for any x ∈ X there exist a
complex chart ϕ : U → V centered at x, a complex chart ψ : U ′ → V ′

centered at f(x) and an integer k ≥ 1 such that ϕ(U) ⊆ U ′ and the map
F := ψ ◦ f ◦ ϕ−1 is given by

F (z) = zk for all z ∈ V.

Proof. Clearly, we can find charts ϕ : U → V centered at x and ψ : U ′ → V ′

centered at f(x) such that ϕ(U) ⊆ U ′. Now, f1 = ψ◦f ◦ϕ−1 is a non-constant
holomorphism, such that f1(0) = 0. Hence f1(z) = zkg(z) for some integer
k > 1 and a holomorphic function g such that g(0) ̸= 0. So, there exists a
holomorphic function h defined on a neighborhood of 0 such that hk = g.
Consider α(z) := zh(z), it is a holomorphic mapping defined on an open
neighborhood V1 of 0. Replacing V with V1 and ϕ with α ◦ ϕ, we get the
result.

Notice that the map F (z) = (ψ ◦ f ◦ ϕ−1)(z) = zk maps 0 to 0, and
outside the origin is a covering of degree k. This suggests us to give the
following definitions. Given a holomorphic mapping f : X → Y between
Riemann surfaces, the ramification index of f at p ∈ X, denoted ef (p),
is the unique integer k such that there exist complex charts as described
in the previous proposition realizing f as z 7→ zk. A point p ∈ X such
that ef (p) > 1 is called a ramification point for f . The choice of this
terminology appears judicious in light of the following proposition.
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Proposition 1.3. Let f : X → Y be a non-constant holomorphic map
between compact Riemann surfaces. Let R ⊆ X be the set of ramification
points of f , and S = f(R) ⊆ Y . Then:

(1) There is a finite number of ramification points for f .

(2) The map f : X ∖ f−1(S) → Y ∖ S is a covering of degree n, for some
integer n.

(3) For any point Q ∈ Y , we have that∑
P∈f−1(Q)

ef (P ) = n.

Proof. (1) follows from the fact that any point admits a neighborhood that
contains no other ramification point. So, using the compactness of X, we find
a finite number of such neighborhoods. Similarly, for any Q ∈ Y , f−1(Q) is
finite, otherwise it would admit an accumulation point, and this would imply
f to be constant.

To prove (2), let Q /∈ S, and let f−1(Q) = {P1, · · · , Pn}. There are
neighborhoods Ui of Pi and Vi of Q such that Ui and Uj are disjoint for i ̸= j,
and f maps homeomorphically Ui onto Vi. We may assume that each Vi
contains no point of S. For any connected neighborhood V of Q contained
in V1 ∩ · · · ∩ Vn, let U ′

i = Ui ∩ f−1(V ). We are going to prove that for
V small enough, f−1(V ) is the disjoint union of the sets U ′

i , from which it
follows that f is a covering in a neighborhood of Q. By contradiction, assume
that there is a sequence (Ni)i of neighborhoods of Q whose intersection is
{Q}, such that there is a point P ′

i in f−1(Ni) with P ′
i not in U1 ∪ · · · ∪ Un.

By compactness of X, a subsequence of these P ′
i must converge to a point

P ′ ∈ X. By continuity, f(P ′) = Q, so P ′ = Pj for some j, contradicting that
the points P ′

i are not in Uj for any i and j.
For (3), let Q ∈ Y and f−1(Q) = {P1, · · · , Pm}, and find neighborhoods

Ui of Pi and Vi of Q such that f maps Ui onto Vi. Thus, locally, it is the
map z 7→ zef (Pi), which is a map ef (Pi) : 1 except at the point Pi. Again,
if V is a neighborhood of Q contained in the intersection of the Vi, but not
containing any other point of S, then there are

∑
ef (Pi) points over a point

Q′ in V , except for the point Q. By (2), this must be the number n of sheets
of the covering.

So, a holomorphic map f : X → Y between compact Riemann surfaces
is a ramified covering, and the branched points are the critical values for f .

We would like to reverse this process, or, in other words, given a Riemann
surface Y , a finite subset S of Y , and a covering p : X◦ → Y ∖ S, we want
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to embed X◦ into a Riemann surface X and to construct a map f : X → Y ,
extending p, that is a holomorphism of Riemann surfaces.

Theorem 1.4. Let Y be a Riemann surface, S a finite subset of Y and
p : X◦ → Y ∖ S a covering of finite degree, with X◦ connected. Then there
is an embedding of X◦ as an open subset of a Riemann surface X that is the
union of X◦ and a finite set, so that p extends to a proper holomorphic map
X → Y . Moreover, such X is unique up to biholomorphic fibre-preserving
maps.

Proof. Firstly, notice that if Y is a Riemann surface, also Y ∖S is a Riemann
surface, and if p : X◦ → Y ∖S is a covering, then there is a unique structure
of a Riemann surface on X◦ so that p is a holomorphic mapping. In fact,
one can choose for any complex chart ϕ : U → Z of Y ∖S, where U is evenly
covered by p, meaning that p−1(U) =

⋃
i Vi with Vi

∼−→ U , the composition

Vi
p−→ U

ϕ−→ Z.

This gives an atlas of complex charts for X◦.
Now consider Q ∈ S, and a complex chart of Y , centered at Q, φ :

U → D, where D is the unit open disk in the complex plane and U does
not contain any other point of S. Let U◦ = U ∖ {Q}, then p restricts to
a covering of U◦, where p−1(U◦) is a disjoint union of connected open sets
V ◦
1 , · · · , V ◦

m, where each V ◦
i → U◦ is a connected covering of degree ei. So,

V ◦
i → U◦ → D◦ is a covering of D◦ of degree ei. It is, thus, isomorphic to

the covering qei : D◦ → D◦ sending z 7→ zei . In other words, there exists an
homeomorphism ψi : V

◦
i → D◦ such that the following diagram

D◦ V ◦
i

D◦ U◦

qei

ψi

p

φ

commutes. We can therefore add one point to V ◦
i , getting Vi, so that ψi

extends to a homeomorphism from Vi to D. Doing this for any i and any
other point of S, and taking these extension as charts, we find a Riemann
surface X that is the union of X◦ with a finite number of points. Moreover,
the map V ◦

i → U◦ extends to a holomorphic map Vi → U with ramification
index ei at the added point, so p extends to a mapping f : X → Y , which is
clearly proper and holomorphic.

To show uniqueness up to fibre-preserving biholomorphisms, assume that
g : X ′ → Y is another proper holomorphic map with branched locus S such
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that there is a fibre-preserving biholomorphism s from X◦ to X ′ ∖ g−1(S).
We will show that s can be extended to a fibre-preserving biholomorphism
s′ from X to X ′. Let Q ∈ S, and consider an open neighborhood U of Q
such that both f and g are unbranched over U◦ = U ∖ {Q} and there is
a complex chart U → D centered in Q. Let V1, · · · , Vn and W1, · · · ,Wm

the connected components of f−1(U) and, respectively, g−1(U). Since the
restriction of s to f−1(U◦) is a biholomorphism between f−1(U◦) and g−1(U◦),
we get that n = m, and hence we can relabel so that s(V ◦

i ) = W ◦
i . Since

V ◦
i → U → D◦ is a covering of D◦ of finite degree, it is isomorphic to

D◦ → D◦ sending z 7→ zk for some integer k, and this yields that Vi∩ f−1(Q)
consists of just a point Pi. Similarly, Wi ∩ g−1(Q) consists of just a point
P ′
i . So, s|f−1(U◦) : f−1(U◦) → g−1(U◦) can be extended sending Pi to P ′

i

for any i. Since f |Vi and g|Wi
are both proper maps, the continuation is

a homeomorphism, and by Riemann’s removable singularity theorem it is
biholomorphic as well. Applying the construction to every point of S, we get
the desired extension s′ : X → X ′.

1.3 Riemann-Hurwitz Formula
As we saw, non-constant holomorphic maps between compact Riemann sur-
faces are ramified coverings. This suggests that whenever there is such a map
between two compact Riemann surfaces, there should be a deep relation con-
cerning their topology. This is indeed the case, and the desired relation is
encoded in the Riemann-Hurwitz formula. In order to state it, we need to
give some definitions.

Let ∆ ⊆ R2 be the triangle of vertices (0, 0), (0, 1) and (1, 0). A triangle
in a compact Riemann surface X is a continuous injective map τ : ∆ → X.
We call edges and vertices the images under τ of the edges and the vertices
of ∆. A triangulation of a compact Riemann surface X is a collection of
triangles on X such that every point of X belong either to the interior of
exactly one triangle, or on the edge of exactly two triangles or on a vertex of
finitely many triangles. It can be shown that every compact Riemann surface
admits a finite triangulation.

Let X be a compact Riemann surface, and consider a triangulation on
X. Let T denote the number of triangles, E the number of edges and V the
number of vertices. Then we can define the Euler-Poincaré characteristic
of X to be

χ(X) = V − E + T.

It can be proved that this number is independent on the chosen triangulation,
and it is a topological invariant of the surface.
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We can define the genus of a compact Riemann surface X to be the
integer gX such that

χ(X) = 2− 2gX .

Compact Riemann surfaces can be topologically classified by their genus.
In particular, a compact Riemann surface of genus 0 is homeomorphic to a
sphere, one of genus 1 is homeomorphic to a torus, and one of genus g ≥ 2
is homeomorphic to a connected sum of g tori.

Finally, we can give Riemann-Hurwitz formula involving holomorphic
maps between compact Riemann surfaces.

Theorem 1.5 (Riemann-Hurwitz). Let f : X → Y be a holomorphic map
of degree n between compact Riemann surfaces. Then the genus gX of X and
the genus gY of Y are related by the formula

2gX − 2 = (2gY − 2)n+
∑
P∈X

(ef (P )− 1).

The proof of this theorem and a comprehensive discussion of the Euler-
Poincaré characteristic can be found in [Ful95].

1.4 Riemann-Roch Theorem

In this section, we are going to present Riemann-Roch Theorem, which allows
us to compute the dimensions of certain vector spaces of meromorphic func-
tions on a compact Riemann surface. Before stating it, we need to introduce
some objects.

Let X be a Riemann surface. Given f : X → C∪{∞}, we say that f is
meromorphic at p ∈ X if there is a complex chart ϕ : U → V , with p ∈ U ,
for which f ◦ϕ−1 is meromorphic. We say that f is meromorphic on an open
subset W of X if it is meromorphic on every point of W . We will denote
with M (X) the set of all meromorphic function on X, which is a field.

Notice that there is a correspondence between the field of meromorphic
functions on X and the set of holomorphic maps from X to the Riemann
sphere Ĉ which are not identically ∞. Moreover, since the Riemann sphere
Ĉ and the complex projective line P1

C are biholomorphic as Riemann sur-
faces, the same correspondence holds between meromorphic maps on X and
holomorphic maps X → P1

C. In the next chapters we will refer both to Ĉ
and P1

C with the name of Riemann sphere.
Let f be a meromorphic function on a Riemann surface X. Then, if z is

a complex chart centered at p ∈ X, f(z) can be expressed with a Laurent
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series as
∑

n anz
n. The order of f at p, denoted by ordp f is defined to be

ordp f = min{n | an ̸= 0}.

A differential 1-form ω on a Riemann surface X is a family {(Ui, ωi)i},
where (Ui)i forms an open cover of X with complex charts ϕi : Ui → Vi, and
ωi = fi(z)dz are differential 1-forms on the charts such that, for any i and j,

fj = (fi ◦ ψij)ψ′
ij

for any transition function ψij = ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj). The

differential 1-form ω is said to be holomorphic, or meromorphic, if every
fi is holomorphic, or meromorphic.

We can define a notion of order also for meromorphic 1-forms ω on a
point P ∈ X in the following way:

ordP ω = ordP f,

if ω = fdz is the local form of ω in an open U ∋ P .
For a compact Riemann surface X, we define its group of divisors

Div(X) to be the free abelian group generated by the points of X. So, a
divisor D ∈ Div(X) can be written as

D =
∑
P∈X

DPP,

where DP ∈ Z and DP = 0 for every P ∈ X but a finite number. We say
that the order of a divisor D =

∑
P∈X DPP in P is ordP D = DP . We can

assign an order relation in the group of divisors: for D,D′ ∈ Div(X), we
write that D ≤ D′ if ordP D ≤ ordP D′ for every P ∈ X. There is a degree
function deg : Div(X) → Z defined by

degD =
∑
P∈X

ordP D .

Furthermore, to every meromorphic function f ∈ M (X)∗ we can assign
a divisor by setting div f =

∑
P∈X ordP (f)P . Similarly, we can assign a

divisor to any non-zero meromorphic differential 1-form ω on X by setting
divω =

∑
P∈X ordP (ω)P . A divisor D ∈ Div(X) is called a principal

divisor if D = div f for some f ∈ M (X), and its called canonical divisor
if D = divω for some meromorphic differential 1-form ω on X.

For a compact Riemann surface X and a divisor D ∈ Div(X), we can
define the C-vector space of the meromorphic functions controlled by D as

L (D) := {f ∈ M (X) | div f +D ≥ 0}.
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This is the space of meromorphic functions that can have poles of order
≥ − ordP D if ordP D > 0, and that must be holomorphic elsewhere, with
zeros of order ≥ − ordP D if ordP D < 0.

We are finally able to state Riemann-Roch Theorem.

Theorem 1.6 (Riemann-Roch). Let X be a compact Riemann surface,
and D ∈ Div(X), then we have that

dimC L (D) = degD+1− gX + dimC L (K −D),

where K is a canonical divisor and gX is the genus of X.

For a comprehensive discussion of Riemann-Roch theorem and its proof,
we suggest consulting [Mir95].



Chapter 2

Belyi’s Theorem

In this chapter, we are going to give a complete proof of Belyi’s Theorem,
stating that a complex algebraic curve X is defined over Q if and only if X
can be realized as a ramified covering of P1

C, with branched locus consisting
of at most three points.

The if direction of this statement is known in the literature as the obvious
part of the theorem, since its proof, invoking a general result of Weil on the
field of definition of a variety, was already known before Belyi, in 1979, came
up with a proof for the only if part, for whose simplicity, the entire theorem
was given his name.

Nevertheless, reconstructing the proof of the obvious part is much more
complicated than proving the only if direction using Belyi’s idea. In order to
do this, we will follow the approach used by Köck in [Kö04], that introduces
the notion of the moduli field of both a complex curve and a morphism
t : X → P1

C to split the proof in two parts: the first one consists in showing
that X is defined over a finite extension of the moduli field of t, and the other
one in proving that this moduli field is a finite extension of Q.

This theorem is the starting point of the theory of dessins d’enfants, star-
ted by Grothendieck, who, deeply inspired by this result, writes in [Gro97]:

[· · · ] jamais sans doute un résultat profond et déroutant ne fut
démontré en si peu de lignes! Sous la forme où l’énonce Bie-
lyi, son résultat dit essentiellement que toute courbe algébrique
définie sur un corps de nombres peut s’obtenir comme revêtement
de la droite projective ramifié seulement en les points 0, 1, ∞.
Ce résultat semble être passé plus ou moins inaperçu. Pourtant,
il m’apparâıt d’une portée considérable. Pour moi, son message
essentiel a été qu’il y a une identité profonde entre la combin-
atoire des cartes finies d’une part, et la géométrie des courbes
algébriques définies sur des corps de nombres, de l’autre.

15
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2.1 Some Scheme Theory

Let K be a field. We define a curve over K to be a smooth, projective,
geometrically connected variety of dimension 1 over K, where a variety
over K is an integral, separated scheme X, with a structure morphism X →
SpecK of finite type. We say that a variety over K is defined over a subfield
k of K if there exists a k-scheme X̃, meaning a scheme X̃ together with a
morphism X̃ → Spec k, such that

X ∼= X̃ ×Spec k SpecK,

or, in other words, ifX can be covered by affine varieties given by polynomials
with coefficients in k. If X and Y are varieties over K and φ : X → Y is
a morphism between them, we say that φ is defined over k if both X and
Y are defined over k and there exist a morphism φ̃ : X̃ → Ỹ such that the
morphism

φ̃× idSpecK : X̃ ×Spec k SpecK −→ Ỹ ×Spec k SpecK,

coming from the universal property of the fibre product, as represented in
the following diagram, is φ

X̃ ×Spec k SpecK SpecK

X̃ Ỹ ×Spec k SpecK SpecK

Ỹ Spec k

idSpecK

φ̃

.

Given a variety X over K with structure morphism s : X → SpecK, and
an automorphism σ ∈ Aut(K), we denote by σX the K-scheme consisting
again in X as scheme, but in

X
s−−→ SpecK

Specσ−1

−−−−−→ SpecK

as structure morphism.
Notice that this action corresponds to conjugating by σ the coefficients

of the polynomials defining the variety X. For instance, if f1, · · · , fk ∈
C[x1, · · · , xn], and X = Spec(C[x1, · · · , xn]/(f1, · · · , fk)) (with structure
morphism s induced by C → C[x1, · · · , xn]), then σX is isomorphic to
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X = Spec(C[x1, · · · , xn]/(σ(f1), · · · , σ(fk))) (with structure morphism s′ in-
duced by C → C[x1, · · ·xn]). Indeed, denoting with τ the isomorphism

C[x1, · · · , xn]/(σ(f1), · · · , σ(fk))
τ−→ C[x1, · · · , xn]/(f1, · · · , fk)

given extending σ−1 to the quotients of C[x1, · · · , xn], we get that Spec τ is
an isomorphism making to commute the diagram

Spec(C[x1, · · · , xn]/(f1, · · · , fk)) SpecC

Spec(C[x1, · · · , xn]/(σ(f1), · · · , σ(fk))) SpecC

Spec τ

s

Specσ−1

s′

.

Thus, σX and Spec(C[x1, · · · , xn]/(σ(f1), · · · , σ(fk))) are isomorphic as vari-
eties over C.

In other words, the C-variety σX is isomorphic to the C-variety

X ×σ SpecC,

where the fibre product is taken between the morphisms s : X → SpecC and
Specσ : SpecC → SpecC. Indeed, the morphisms Specσ−1 ◦s and idX give
rise to a morphism φ : σX → X ×σ SpecC, by the universal property of the
fibre product, as represented in the following diagram:

σX

X ×σ SpecC SpecC

X SpecC

φ

idX

Specσ−1 ◦s

πX Specσ

s

.

From this commutative diagram, it is clear that φ is a morphism of C-
varieties between σX and X×σ SpecC such that πX ◦φ = idX . The fact that
φ ◦ πX = idX×σSpecC comes applying the universal property of fibre product.
Thus, φ is an isomorphism of C-varieties.

Example. In the affine case, consider X = Spec(C[x, y]/(y−ix)) with struc-
ture morphism induced by C → C[x, y]/(y − ix), and the conjugation σ as
automorphism of C. Then, σX is again Spec(C[x, y]/(y− ix)), but the struc-
ture morphism is induced by the ring morphism C → C[x, y] such that z 7→ z̄.
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σX is thus isomorphic, as variety over C, to Spec(C[x, y]/(y + ix)), with
structure morphism induced by the map C → C[x, y]/(y + ix). The explicit
isomorphism of C-varieties is indeed given by the morphism of spectra in-
duced by the extension of conjugation to C[x, y]/(y + ix) → C[x, y]/(y − ix),
i.e. the morphism such that z 7→ z for z ∈ C, x 7→ x and y 7→ y.

2.2 The Moduli Field

The moduli field M(X) of a variety X over C is CU(X), namely, the field
fixed by the subgroup of Aut(C)

U(X) = {σ ∈ Aut(C) such that σX ∼= X as varieties over C}.

For instance, if a varietyX over C is defined overK, then clearly the subgroup
Aut(C /K) of Aut(C) is contained in U(X), and hence, by the lemma we are
about to state, M(X) is contained in K.

Lemma 2.1. Let K be a subfield of C. Then, any automorphism of K can
be extended to an automorphism of C. Furthermore, CAut(C /K) = K.

Proof. To show the first assertion, consider φ ∈ Aut(K), and apply Zorn’s
Lemma to the set of all automorphisms of some subfield of C extending φ.
We get a maximal element Φ ∈ Aut(L), with K ≤ L ≤ C. To prove that L
is indeed C, take a ∈ C∖L: if a is algebraic, then we can extend Φ to the
normal closure of K(a) by well-known results of Galois Theory, otherwise a
is transcendental over K, so we can extend Φ to K(a) just setting Φ(a) = a.
In any case, this contradicts the maximality of Φ.

We proceed with the second part. Clearly, K ⊆ CAut(C /K). To show
the reverse inclusion, for any x ∈ C∖K we construct a K-automorphism
of C that does not fix x. If x is algebraic, take a K-conjugate y ∈ C dis-
tinct from x. Again by Galois theory, there exists an K-automorphism of
the normal closure of K(x), mapping x to y, that can be extended to an
automorphism of C by the previous part. If x is transcendent over K, we
can consider the automorphism of K(x) sending x to −x, and again extend
it to an automorphism of C.

We will say that a subgroup U of Aut(C) is closed if there is a subfield
K of C such that U = Aut(C /K). The previous lemma yields a Galois cor-
respondence between the set of subfields of C and the set of closed subgroups
of Aut(C). In particular, U = Aut(C /CU) for any closed subgroup U of
Aut(C).
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Lemma 2.2. Let U be a subgroup of Aut(C) such that there exists a finite
field extension K/CU with Aut(C /K) ⊆ U , then U is closed.

Proof. We may assume that K/CU is a Galois extension. Then, CU is the
field fixed by the image B of U/Aut(C /K) under the canonical isomorphism

Aut(C /CU)/Aut(C /K) −→ Aut(K/CU).

Thus, B = Aut(K/CU), and so U = Aut(C /CU) is closed.

Lemma 2.3. Let U be a subgroup of Aut(C) and let V be a subgroup of U
of finite index. Then the field extension CV /CU is finite. Moreover, if V is
a normal subgroup of U or if U is closed, then

∣∣CV : CU
∣∣ ≤ |U : V |. If V is

closed, then equality holds.

Proof. A normal subgroup W of U contained in V and of finite index always
exists, and it is the normal core of U in V , which is defined as

W :=
⋂
g∈U

gV g−1.

It is clearly contained in V normal in U . To show it has finite index, consider
the action of U given by right multiplication on the set of right cosets of V .
We get then a morphism from U to the symmetric group on |U : V | elements,
whose kernel is exactly W .

Then, CU is the fixed field by the image B of the canonical morphism
U/W → Aut(CW /CU). Thus, CW /CU is a finite Galois extension, and
B = Aut(CW /CU). Hence, we have:∣∣CW : CU

∣∣ = ∣∣Aut(CW /CU)
∣∣ ≤ |U/W | = |U : W | < +∞.

This implies that
∣∣CV : CU

∣∣ ≤
∣∣CW : CU

∣∣ is finite. Furthermore, if V is
already normal in U , then replacing W by V in the above relation we get∣∣CV : CU

∣∣ ≤ |U : V |. Moreover, we have

∣∣CV : CU
∣∣ = ∣∣CW : CU

∣∣∣∣CW : CV
∣∣ =

∣∣Aut(CW /CU)
∣∣∣∣Aut(CW /CV )
∣∣ =

∣∣∣∣Aut(CW /CU)

Aut(CW /CV )

∣∣∣∣ =
=

∣∣∣∣∣∣
Aut(C /CU )

Aut(C /CW )

Aut(C /CV )

Aut(C /CW )

∣∣∣∣∣∣ =
∣∣∣∣Aut(C /CU)

Aut(C /CV )

∣∣∣∣ ,
which implies the inequality

∣∣CV : CU
∣∣ ≤ |U : V | whenever U = Aut(C /CU)

is closed. Finally, if V is closed, then also U is closed by the previous lemma,
and then

∣∣∣Aut(C /CU )

Aut(C /CV )

∣∣∣ = |U/V |, getting the desired equality.
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Recall that if X and Y are schemes, a morphism f : X → Y is said to
be finite if for any affine open V = SpecR of Y , its inverse image f−1(V ) =
SpecA is affine in X, and the associated morphism of ring R → A is finite.
If f : X → Y is a finite morphism of curves over C, then all points P of Y ,
but a finite number, are such that |f−1(P )| = deg f for a natural number
deg f . We say that the critical values of f are the points of Y having less
than deg f preimages, and the ramification locus of f is the preimage under
f of the set of critical values.

Consider now a curve X over C and a finite morphism t : X → P1
C.

The moduli field M(X, t) of t is CU(X,t), namely, the field fixed by the
subgroup U(X, t) of U(t), consisting of all σ ∈ Aut(C) such that there exists
an isomorphism σf : σX → X of varieties over C making the following
diagram to commute:

σX X

σ P1
C P1

C

σf

σt t

σ

.

In this setting, both X and P1
C are thought as C-schemes, with their

structure morphisms s : X → SpecC and s′ : P1
C → SpecC, and σt is the

morphism of C-schemes t, but where the structure morphisms are taken with
the composition with Specσ−1:

σX σ P1
C

SpecC

SpecC

σt

s
s′

Specσ−1

.

The morphism σ is the morphism

idP1
Z
× Specσ−1 : P1

Z ×SpecZ SpecC −→ P1
Z ×SpecZ SpecC

induced by the universal property of the fibre product, where the first P1
C =

P1
Z×SpecZSpecC has structure morphism the composition of s′ with Specσ−1,

and the second one has structure morphism just s′.
Given a point P in X, as a morphism P : SpecC → X, we can consider
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the corresponding point σP in σX looking at the following diagram:

SpecC X

SpecC

SpecC

P

id
s

Specσ− 1Specσ

.

Then, the point σP corresponds to the morphism P ◦ Specσ, and asking for
the condition σf(

σP ) = P means to require that σf ◦ P ◦ Specσ = P , or, in
other words, that the following diagram commutes

σX X

SpecC SpecC

σf

P

Specσ−1

P .

Example. Consider X = A1
C = SpecC[x], with structure morphism induced

by the canonical injection C ↪→ C[x], and take as σ ∈ Aut(C) the conjugation.
Define the point P to be the morphism P : SpecC → SpecC[x] corresponding
to the ring morphism C[x] → C such that x 7→ i. Then σP is the morphism
P ◦Specσ, that correspond to the ring morphism C[x] → C such that x 7→ −i
and acting on C ⊆ C[x] as the conjugation.

In both cases, the point on the topological space of the spectrum that the
morphism is representing is (x−i), which is the kernel of both the ring morph-
isms associated to P and σP . Nevertheless, P and σP are different if seen
through the scheme-theoretic language, that interprets points as morphisms,
since they have different ring morphisms associated.

Proposition 2.4. Let X be a curve over C and let t : X → P1
C be a finite

morphism. Then both X and t are defined over a finite extension of M(X, t).

Proof. Choose a Q-rational point Q ∈ P1
C that is not a critical value of t,

and consider P ∈ t−1(Q). Applying Riemann-Roch Theorem to the divisor
D := (g + 1)P , where g is the genus of X, we get

dimC L (D)− dimC L (K −D) = degD−g + 1 = 2,

for any canonical divisor K. From this, it follows that dimC L (D) ≥ 2. In
other words, there exists a meromorphic function z ∈ M (X) ∖ C with just
one pole at P .
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Now we use the anti-equivalence of categories holding between projective,
smooth algebraic curves over an algebraically closed field K and finitely gen-
erated field extension ofK of transcendence degree 1. So, consider the morph-
isms of curves induced by the field extensions M (X)/C(t, z), M (X)/C(t)
and M (X)/C(z). Then, denoting with XC(t,z) the curve corresponding to
the function field C(t, z), and recalling that the curve associated to both C(t)
and C(z) is P1

C, we get the diagram

X

XC(t,z)

P1
C P1

C

γ
zt

α β

,

where, by our assumptions, t = α ◦ γ is unramified at P and z = β ◦ γ
is totally ramified at P . It follows that γ is both unramified and totally
ramified, and so M (X) = C(t, z).

Assume now we chose z such that the order of its pole m := −ordP (z) ∈ N
is minimal. Define

V := L (mP ) = {x ∈ M (X) : ordP (x) ≥ −m, ordQ(x) ≥ 0 ∀Q ̸= P}.

Clearly, C⊕C z ⊆ V . We show that equality holds. Let r ∈ V with
ordP (r) = −m, then there exists a constant α ∈ C such that −ordP (r−αz) <
m. By minimality on m, this implies that ordP (r − αz) ≥ 0, but then, since
the order is non-negative for any other Q ̸= P , we get that r − αz is a
holomorphic function. Thus, r − αz ∈ C, and hence r ∈ C⊕C z.

Since Q is not a critical value of t, the meromorphic function t−Q yields
a local chart of X centred in P , it is a local parameter on X in P . Let z′
be the unique function in V such that in its Laurent expansion with respect
to t−Q the coefficient of (t−Q)m is 1, and the coefficient of (t−Q)0 is 0.
Without loss of generality, we may assume that z is already this z′.

Now, the extension C(t, z)/C(t) is finite, because the transcendence de-
gree of C(t, z) is 1, so we can consider the minimal polynomial of z over C(t).
The claim we are going to prove is that such polynomial has coefficients in
k(t), where k is a finite extension of M(X, t). Meaning that the inclusion
M (X)/C(t) is defined over k, this would imply the statement.

To prove this claim, denote by U(X, t, P ) the subgroup of U(X, t) con-
sisting of all σ ∈ Aut(C) such that there exists an isomorphism σf : σX → X
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of curves over C, making the diagram

σX X

σ P1
C P1

C

σt

σf

t

σ

commute, and such that σf(
σP ) = P , with all the notations as explained

above. Since Q is not a critical value of t, Aut(t) acts freely on t−1(Q).
This means that σf is unique: if ˜

σf had it same properties, we would have
σf ◦ ˜

σf
−1(P ) = P , meaning σf ◦ ˜

σf
−1 = id, by freeness. So, mapping σ to

σf
# ∈ Aut(M (X)) yields an action of U(X, t, P ) on M (X) which fixes t.

The meromorphic function z ∈ M (X), and hence its minimal polynomial
over C(t), is invariant under the action of σ ∈ U(X, t, P ), since its image
has the same properties of z defined above. Moreover, U(X, t, P ) has finite
index in U(X, t), since it is the stabilizer of P under the action of U(X, t) on
t−1(Q) defined by (σ, P ) 7→ σf(P ). So, we can conclude the proof applying
the Lemma 2.3, with M(X, t) = CU(X,t) and the extension where z and its
minimal polynomial are defined as CU(X,t,P ).

2.3 Belyi’s Theorem

To proceed with our investigation and get closer to Belyi’s result, we need
to focus on the pairs (X, t), where X is a curve over C, and t : X → P1

C is a
finite morphism of variety over C. We will say that two such pairs (X1, t1)
and (X2, t2) are isomorphic if there exists an isomorphism f : X1 → X2 of
varieties over C such that t2 ◦ f = t1.

Proposition 2.5. Let S be a finite set of point of P1
C(C), and let d ≥ 1 be a

natural number. Then there are at most finitely many isomorphism classes of
pairs (X, t), where X is a curve over C and t : X → P1

C is a finite morphism
of varieties over C of degree d and whose critical values lie in S.

Proof. We can consider a map from the set of isomorphism classes of Belyi
pairs to the set M of homeomorphism classes of unramified topological cov-
erings of P1

C ∖S of degree d. This is defined as follows: considering a finite
morphism t : X → P1

C we pass to the continuous map t(C) : X(C) → P1
C(C),

and we restrict it to the preimage of P1
C(C) ∖ S. This map is injective. In-

deed, if (X1, t1) and (X2, t2) are two Belyi pairs, and g : X1(C)∖ t1
−1(S) →

X2(C)∖ t2
−1(S) is a homeomorphism such that t2(C) ◦ g = t1(C), then g is
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also biholomorphic. Moreover, as we saw in the proof of Theorem 1.4, g can
be extended to a biholomorphism h : X1(C) → X2(C), with t2(C)◦h = t1(C).
Since any biholomorphic map between compact complex curves is algebraic,
we get that (X1, t1) and (X2, t2) are isomorphic as Belyi pairs.

Thus, it suffices to prove that the set M is finite. This comes from the
fact that any unramified topological covering of degree d of P1

C(C)∖ S is an
intermediate covering of degree d of the universal one, and these coverings
are in bijection with the subgroups of π1(P1

C(C) ∖ S) of index d. Since
π1(P1

C(C) ∖ S) is the free group generated by |S| − 1 elements, it is finitely
generated, and hence it has only finitely many subgroups of a given finite
index.

Corollary 2.6. Let X be a curve over C, let t : X → P1
C be a finite morph-

ism, and let K be a subfield of C such that the critical value of t are K-
rational. Then the moduli field of t is contained in a finite extension of K.

Proof. For any σ ∈ Aut(C /K) the critical values of the map t(σ) defined by
σX

σt−→ σ P1
C

σ−→ P1
C are the same as the ones of t, and the degree of the map

is also the same. Thus, by Proposition 2.5, the orbits of the isomorphism
classes of pairs (X, t), under the action of Aut(C, K) defined by (X, t)

σ7−→
(σX, t(σ)), is finite. So, the stabilizer of (X, t) has finite index in Aut(C /K),
and it is obviously contained in U(X, t). Thus, by Lemma 2.1 and Lemma
2.3, the moduli field M(X, t) = CU(X,t) is contained in a finite extension of
CAut(C /K) = K.

We are finally ready to prove Belyi’s Theorem. The if direction descends
as a consequence of the theory we developed, while the only if one is just
Belyi’s smart algorithm to produce a finite morphism with critical values in
{0, 1,∞}.

Theorem 2.7 (Belyi). A complex curve X is defined over Q if and only if
there exists a finite morphism β : X → P1

C of varieties over C with critical
values lying in the set {0, 1,∞}.

Proof. ( ⇐= ) : Assume we have a morphism β : X → P1
C as above. By

Theorem 2.4 X is defined over a finite extension of M(X, β), which is, by
Corollary 2.6, a finite extension of Q. Thus, X is defined over Q.

( =⇒ ) : LetX be a complex curve defined over Q, and let X̃ be the corres-
ponding curve over Q. Since X̃ is projective, there exists a finite morphism
β̃ : X̃ → P1

Q, and hence there exists morphism β : X → P1
C making the
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diagram

X X̃

P1
C P1

Q

β

φ

β̃

ψ

commute. But then, denoting the ramification locus of a morphism f as
R(f) and its critical values as Crit(f), we get that

Crit(β) = β(R(β)) ⊆ β(φ−1(R(β̃))) ⊆ ψ−1(β̃(R(β̃))) ⊆ P1
Q(Q),

where the first inclusion comes from the fact that since ψ maps every point
of P1

C that is not Q-rational into the generic point, because Q is algebraically
closed, and the generic point cannot be a critical value, then the critical
points of β have to be Q-rational. Hence, we got the existence of a finite
morphism β : X → P1

C with critical values in Q∪{∞}.
Let S ⊆ P1

Q(Q) be a finite set containing the critical values of β. We claim
that there exists a non-constant polynomial p ∈ Q[x], such that p(S) and the
critical values of p : P1

C → P1
C are in P1

Q(Q). Enlarge S so that it becomes
Gal(Q /Q)-invariant. We proceed by induction on n = |S|. If n = 1, then
the only element of S is stable under the action of Gal(Q /Q), and hence it
belongs to P1

Q(Q), thus we can just take p(x) = x. If n > 1, define p1 to be the
product of the minimal polynomials of all the elements in S. By construction,
p1 ∈ Q[x], and p1(S) = 0. Then, setting S1 = p1({z ∈ Q : p′1(z) = 0}), the
set of the critical values of p1 is S1∪{∞}. Since S1 has at most n−1 elements,
by the inductive hypothesis there exists a polynomial p2 ∈ Q[x] such that
p2(S1) and the critical values of p2 lie in Q∪{∞}. The composition p2 ◦ p1
is such that

Crit(p2 ◦ p1) = Crit(p2)∪ p2(Crit(p1)) = Crit(p2)∪ p2(S1 ∪ {∞}) ⊆ Q∪{∞},

and (p2 ◦ p1)(S) = p2({0}) ⊆ Q, as wished.
So, the composition β′ = p2 ◦ p1 ◦ β is a finite morphism with critical

values in Q∪{∞}. Now our goal is to show that it is possible, composing
by a morphism of P1

C, to make β′ to have its critical values lying in a subset
of {0, 1,∞}. Let S ′ ⊆ Q∪{∞} be the finite set of critical values of β′. If
|S ′| ≤ 3, this is clear by taking an opportune Möbius transformation. If
|S ′| > 3, choose three ordered points of S ′: again by applying a Möbius
transformation, we can send them to 0, 1 and m

m+n
for some positive integers

n and m. Then, the transformation

z 7→ (m+ n)m+n

mmnn
zm(1− z)n
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maps both 0 and 1 to 0, and m
m+n

to 1, and has critical values contained
in {0, 1,∞}. Thus, composing β′ with such a morphism, we get a finite
morphism with set of critical values of cardinality less or equal than |S ′| −
1. Repeating this procedure a finite number of times, we produce a finite
morphism X → P1

C having set of critical values contained in {0, 1,∞}.

Notice that we could have stated the theorem replacing the set {0, 1,∞}
with any other set of three points, or have just put the condition that β
have at most three critical values, since we can move those points with any
Möbius transformation. Moreover, recall that by GAGA principle, since we
are dealing with algebraic projective curves, finite morphisms correspond to
holomorphic maps. Thus, the statement can be read as the equivalence, for
an algebraic projective curve X over C, of being defined over Q and of the
existence of an holomorphic map X → P1

C with critical values lying in the
set {0, 1,∞}. Furthermore, we remark that, by Theorem 1.3, a non-constant
holomorphic map between compact connected Riemann surfaces is a ramified
covering. Thus, Belyi’s Theorem provides a strong relation between a purely
algebraic property, that is, being defined over Q, and a purely topological
property, concerning ramified coverings. In the next chapter we are going to
explore in detail this last aspect.

We conclude giving some examples of such maps, whose critical values lie
in the set {0, 1,∞}, that go under the name of Belyi morphism.

Example. Take X = P1
C, and consider the map β : X → P1

C defined by
z 7→ zn for an integer n ≥ 2.

Then, β is ramified only over 0 and ∞, thus it is a Belyi morphism.

Example. Let X = {[x : y : z] ∈ P2
C | xn + yn = zn} be the Fermat curve of

degree n, and consider β : X → P1
C the morphism given by

[x : y : z] 7→ [xn : yn].

On the affine part z = 1 of X we have β : (x, y) 7→ xn, so deg β = n2.
Let ζn = e2πi/n, we have that |β−1(P )| < n2 if:

• P is an affine point such that β(P ) = 0, so P = (0, ζkn) for some k;

• P is an affine point such that β(P ) = 1, so P = (ζkn, 0) for some k;

• P is an infinity point, so that P = [1 : y : 0], with yn = −1. In this
case, β(P ) = ∞.

In each of the three cases, there are n critical points, and the ramification
index is n at each of them. Since the values of β at the critical points are
just 0, 1 and ∞, β is a Belyi morphism.



Chapter 3

Dessins d’Enfants

In this chapter, we are going to introduce our main objects of study: dessins
d’enfants. This name was introduced by Grothendieck, since he noticed that
their pictures resembled some children’s drawings scrawled on a bit of paper.
Indeed, they are just some type of graphs, whose vertices satisfy a particular
condition, embedded into Riemann surfaces.

We will follow the approach suggested by Grothendieck in [Gro97] to
prove a particular bijection between some subsets of dessins d’enfants and
Belyi morphisms. In particular, the introduction of a marking on a dessin,
that is, a particular choice of points in the graph, will allow us to define a set
of triangles, called flags, attached to a dessin. Then, defining a group acting
on the set of flags, we will be able to state such bijection.

Next, we will focus on other possible descriptions for dessins, seeing that
any dessin with N edges determines, and can be reconstructed from, a pair
of permutations in SN generating a transitive subgroup. This pair will allow
us to define an action of the free group on two elements F2 on the set of
edges of a dessin. Interpreting a finite index subgroup of F2 as the stabilizer
of an edge of a dessin for such action, we will establish another bijection
involving dessins that will generalize Grothendieck’s one to all dessins and
all Belyi morphisms. These observations will enable us to see dessins as
various different objects.

Finally, we will study the automorphism group of a dessin, defining regular
dessins to be the ones for which their automorphism group acts transitively
on the set of the edges. We will see that this notion, which closely resembles
the notion of regularity for coverings, can indeed be easily transferred to the
other elements for which we have a bijection with dessins.

27
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3.1 Definition of a Dessin
A dessin d’enfants D is a triple (X0, X1, X2), with X0 ⊆ X1 ⊆ X2, where
X2 is the topological space underlying a compact connected Riemann sur-
face, X0 is a finite set of points, called vertices, and X1, whose elements are
called edges, is a set such that X1 ∖X0 is a finite disjoint union of segments
homeomorphic to the open interval ]0; 1[ and X2∖X1 is a finite disjoint union
of open cells, each of which is homeomorphic to the topological open disk,
called faces. Moreover, a dessin d’enfants must admit a bipartite structure on
the set of vertices X0, namely, the vertices can be marked with two different
marks so that each edge connects two vertices with different mark. We will
represent such marks using black and white colors.

Two dessins d’enfants D = (X0, X1, X2) and D′ = (X ′
0, X

′
1, X

′
2) are said to

be isomorphic if there exists an orientation-preserving homeomorphism from
X2 onto X ′

2 mapping X1 to X ′
1 and X0 to X ′

0, and respecting the bipartite
structure, namely, sending vertices with same mark to vertices with same
mark. We will frequently refer to a dessin d’enfants just using the shorter
version dessin.

We can think of dessins as special types of bipartite graphs, that is, graph
admitting a bipartite structure, on connected and compact surfaces. Notice
that the condition imposed on the faces and the fact that X2 is assumed to be
connected imply that every path connecting two points on X1 is homotopic
to a path entirely contained in X1. This means that the graph has to be
connected.

Example. Consider the following bipartite graph in the torus:

This is not a dessin, since one of the two open cells is not isomorphic to an
open disk. Instead, the following graph is an example of a dessin in the torus:

>

>

∧∧
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Given a connected, projective, smooth complex curve X over C that is
defined over Q, by Belyi’s Theorem, there exists a morphism β : X → P1

C
whose critical values lie in the set {0, 1,∞}. We will call such β a Belyi
morphism, and we will call the couple (X, β) a Belyi pair. Two Belyi pairs
(X, β) and (Y, α) are said to be isomorphic if there exists an isomorphism of
curves ϕ : X → Y such that β = α ◦ ϕ.

In order to study the correspondence between Belyi pairs and dessins as
Grothendieck did in [Gro97], we need to simplify the definition we just gave.
Dropping the request of a bipartite structure, we say that a pre-clean dessin
is a triple (X0, X1, X2), with X0 ⊆ X1 ⊆ X2, where X2 is the topological
space underlying a compact connected Riemann surface, X0 is a finite set of
points, called vertices, and X1, whose elements are called edges, is such that
X1 ∖ X0 is a finite disjoint union of segments homeomorphic either to the
interval ]0; 1[ or to ]0; 1], and X2 ∖X1 is a finite disjoint union of open cells,
called faces, each of which is homeomorphic to the topological open disk.
Notice that in this definition we also allow the edges to be homeomorphic to
]0; 1], which means that we allow the presence of tails, meaning edges with an
end without vertex. A clean dessin d’enfants is a pre-clean dessin having
no tails, namely, such that each edge has a vertex at both its ends.

A marking on a pre-clean dessin is the fixed choice of one point in each
component of X1 ∖X0, that will be denoted by ⋆, and a point in each open
cell of X2∖X1, that will be denoted by ◦. The vertices in X0 will be denoted
by •. Clearly, it is always possible to associate a marking to a pre-clean
dessin d’enfants, and the choice of a marking on a pre-clean dessin induces
a choice of a marking on every dessin in its isomorphism class.

Example. The followings are both pre-clean dessins d’enfants on a sphere:

A marking on each of them can be done as follows

⋆⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

As we can notice, the left pre-clean dessin is also clean, while the other
one is not, since it has a tail, which is the right vertical edge.
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3.2 The Cartographical Group
In this section and in section 3.3 we are dealing only with pre-clean dessins.

Given a pre-clean dessin D with marking, the flag set of D is the set
F (D) of the triangles whose three vertices are marked with •, ◦ and ⋆ in
such a way that • is in the closure of the edge containing ⋆, and this edge is
in the closure of the open cell containing ◦. The oriented set flag F+(D) is
the subset of F (D) containing the flags whose order of the vertices is ◦−•−⋆

when read counterclockwise. For instance, the following is the picture of an
oriented flag F :

⋆

The cartographical group C2 is defined to be the group

C2 :=
〈
σ0, σ1, σ2 | σ2

0 = σ2
1 = σ2

2 = 1, (σ0 σ2)
2 = 1

〉
,

where σ0, σ1 and σ2 act on F (D) in the following way: if F ∈ F (D) is the
flag represented above, then σ0(F ), σ1(F ) and σ2(F ) are respectively

⋆
⋆

⋆

which is to say that σ0 sends F into the flag with same ◦ and ⋆ vertices as
F , but with the • vertex taken to be the other vertex of the edge containing
⋆. Similar definitions hold for σ1 and σ2.

We can also define the oriented cartographical group C+
2 as the sub-

group of index 2 of C2 given by all its even words, whose presentation is

C+
2 =

〈
ρ0, ρ1, ρ2 | ρ21 = 1, ρ0ρ1ρ2 = 1

〉
,

where ρ0 = σ1 σ0, ρ1 = σ0 σ2 and ρ2 = σ2 σ1.
The oriented cartographical group acts on the set F+(D) as follows: if

F is again the oriented flag represented above, then ρ0(F ), ρ1(F ) and ρ2(F )
are respectively

⋆
⋆

⋆
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We remark we are considering the element of C2 as acting on the left, meaning
that in ρ0 = σ1 σ0 the first to be applied on F is σ0.

Notice that both the actions of C2 on F (D) and of C+
2 on F+(D) do not

depend on the choice of a marking on the dessin.

Lemma 3.1. Let D be a pre-clean dessin with a marking and let F ∈ F+(D)
be a fixed flag. Then the stabilizer of F in C+

2 , StabC+
2
(F ), has finite index

in C+
2 , and for any other flag F ′ ∈ F+(D), its stabilizer StabC+

2
(F ′) is con-

jugated to StabC+
2
(F ) in C+

2 .

Proof. Since F+(D) is finite, the orbit of F under C+
2 is finite, and hence

StabC+
2
(F ) has finite index in C+

2 . Moreover, notice that the action of C+
2 on

F+(D) is transitive. Indeed, as shown in the above pictures, ρ1 sends an
oriented flag F ∈ F+(D) to the oriented flag constructed on the same edge of
the dessin, but with ◦ vertex in the other face, while the orbit of F under the
action of ρ0 is the set of all the oriented flags with ◦ vertex in the same face
as F . Since the dessin is connected, with the actions of these two elements
we are able to send F to any other arbitrary oriented flag. Thus, the action
of C+

2 on F+(D) is transitive, and so there exists an element σ ∈ C+
2 such

that σ(F ′) = F , so that StabC+
2
(F ′) = σ−1 StabC+

2
(F )σ.

3.3 The Grothendieck Correspondence
The action of the cartographical group allows us to establish a relation
between the isomorphism classes of pre-clean dessins d’enfants and the con-
jugacy classes of subgroups of C+

2 of finite index.

Theorem 3.2. There is a bijection between the set of isomorphism classes
of pre-clean dessins d’enfants and the set of conjugacy classes of subgroups
of C+

2 of finite index. Furthermore, the dessin corresponding to the conjugacy
class of a subgroup B of C+

2 is clean if and only if ρ1 /∈ B′ for any B′ in the
conjugacy class of B.

Proof. Consider an isomorphism class of a pre-clean dessin with a marking,
then by Lemma 3.1 we can associate to it a conjugacy class of a subgroup of
finite index of C+

2 , just considering the conjugacy class of StabC+
2
(F ) for any

choice of F ∈ F+(D).
Conversely, let B be a subgroup of C+

2 of finite index, and consider the
coset space H = C2 /B. We will construct a pre-clean dessin D such that
F (D) will be bijective to H, so that F+(D) will be bijective to C+

2 /B, and
such that the action of C2 on F (D) is given by the action of C2 in H by left
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multiplication. The flag corresponding to the coset B will be fixed by the
action of B.

To construct such a D, notice that σ0, σ1 and σ2 act on H, dividing its
elements into orbits. In particular, two cosets, so two flags, will be in the
same σ0-orbit if their ◦ − ⋆ segment is the same, they will be in the same
σ1-orbit if their ◦ − • segment is the same, and in the same σ2-orbit if their
•−⋆ segment is the same. In particular, every σi-orbit contains at most two
elements. So, we can begin to reconstruct D by noting the numbers of each
three types of edge as the orders of the quotient spaces ⟨σi⟩ \H.

Consider then the action of σ1 and σ2 on the quotient space ⟨σ0⟩ \H.
Identifying each element of ⟨σ0⟩ \H with a ◦−⋆ edge, the σ0-orbits that are
in the same orbit under the action of σ1 are those having the same ◦ point,
and those identified under σ2 have the same ⋆ point. Analogously, when
σ0 and σ2 act on ⟨σ1⟩ \H, considered as the set of ◦ − • edges, they should
identify edges having the same ◦ and • points respectively, and in the very
same way, when σ0 and σ1 act on ⟨σ2⟩ \H considered as the set of ⋆ − •
edges, they identify edges having the same ⋆ and • points respectively.

We can use this information to give the orders of the sets of vertices, edges
and open cells of D respectively as the orders of ⟨σ1, σ2⟩ \H, ⟨σ0, σ2⟩ \H
and ⟨σ0, σ1⟩ \H. Moreover, along the same ideas, we can define how these
components glue together in the following way. Take a vertex x in ⟨σ1, σ2⟩ \H
and an edge y in ⟨σ0, σ2⟩ \H: they can be glued together, meaning that there
is a flag in F (D) with vertices x and y, if they both occur in the same σ2-
orbit. Similarly, a vertex and an open cell, as elements of the quotient spaces,
can be glued if the occur in the same σ1-orbit, and an edge and an open cell
can be glued if they occur in the same σ0-orbit. So, the decomposition of H
into orbits under the action of σ0, σ1 and σ2 allows us to construct a pre-clean
dessin D. The situation is visualized in the following two diagrams, where
we are denoting as F◦⋆, F◦• and F•⋆ the sets of ◦ − ⋆, ◦ − • and • − ⋆

edges respectively, while F•, F⋆ and F◦ denote the sets of vertices, edges
and open cells respectively:

F (D)

F◦⋆ F◦• F•⋆

F◦ F⋆ F•

·

H

⟨σ0⟩ \H ⟨σ1⟩ \H ⟨σ2⟩ \H

⟨σ0, σ1⟩ \H ⟨σ0, σ2⟩ \H ⟨σ1, σ2⟩ \H

1
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Moreover, we notice that changing B to σ−1B σ for any σ ∈ C+
2 does not

change any of the above objects considered as sets together with the action of
the elements of C2, because the action of C2 on C2 / σ−1B σ is the same as on
C2 /B. So, the pre-clean dessin D obtained is independent on the conjugacy
class of B. Moreover, if we construct D as above from a subgroup B of C+

2 ,
and then consider the subgroup fixing some given flag of the dessin, we find
exactly a subgroup conjugated to B, since the set H = C2 /B is the flag set
of the dessin, and B clearly fixes one flag, that is the one corresponding to
the coset B, and by Lemma 3.1 all subgroups fixing the different flags of a
dessin are conjugate.

Finally, notice that ρ1 ∈ σ−1B σ for some σ ∈ C+
2 if and only the flag

corresponding to the coset σ−1B is fixed by all the elements of σ−1B σ, and
so, in particular, it is fixed by ρ1 = σ0 σ2. This is possible if and only if the
flag corresponding to σ−1B is a tail, and hence the arising pre-clean dessin
is not clean.

Example. Consider the subgroup B of C+
2 generated by ρ20, ρ22, ρ2ρ0ρ

−1
2 ρ−1

0

and ρ1. Recall that, since ρ1 = (ρ2ρ0)
−1, we can see C+

2 as ⟨ρ0, ρ2⟩, and notice
that the subgroups of the abelian group C+

2 /
〈
ρ2ρ0ρ

−1
2 ρ−1

0

〉
are in bijection with

the normal subgroups of C+
2 containing

〈
ρ2ρ0ρ

−1
2 ρ−1

0

〉
. So, since B contains

the commutator of ρ0 and ρ2, we get that B is normal in C+
2 .

Then the quotient group

H = C2/B =
〈
σ0, σ1, σ2 | σ2

0 = σ2
1 = σ2

2 = σ0 σ2 = (σ0 σ1)
2 = 1

〉
is the group formed just by the elements 1, σ0, σ1 and σ0 σ1. This set is in
correspondence with the flag set F (D), so the dessin has four flags.

We study the orbits of those elements under the action of the elements
σ0, σ1 and σ2. In particular, we have:

• Two σ0-orbits: {1, σ0} and {σ1, σ0 σ1};

• Two σ1-orbits: {1, σ1} and {σ0, σ0 σ1};

• Two σ2-orbits: {1, σ0} and {σ1, σ0 σ1};

• One ⟨σ0, σ1⟩-orbit: {1, σ0, σ1, σ0 σ1};

• One ⟨σ1, σ2⟩-orbit: {1, σ0, σ1, σ0 σ1};

• Two ⟨σ0, σ2⟩-orbits: {1, σ0} and {σ1, σ0 σ1}.

We deduce, by the correspondence illustrated in the proof the theorem, the
presence of one vertex, two edges, one open cell, two ◦ − • edges, two • − ⋆
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edges and two ⋆−◦ edges. A picture of the flag set is the following, that has
to be thought as a triangulation of a sphere:

⋆⋆

As we can see, the pre-clean dessin arising, which is

is not clean, as ρ1 was an element of the subgroup B of C+
2 we considered.

Example. Consider the subgroup B of C+
2 generated by ρ2ρ0ρ−1

2 ρ−1
0 , ρ20 and

ρ2. Since we can see C+
2 as ⟨ρ0, ρ2⟩, and B contains the commutator of ρ0

and ρ2, we get that B is normal in C+
2 .

Then the quotient group

H = C2/B =
〈
σ0, σ1, σ2 | σ2

0 = σ2
1 = σ2

2 = σ1 σ2 = (σ0 σ1)
2 = 1

〉
is the group formed just by the elements 1, σ0, σ1 and σ0 σ1. Notice that this
group is essentially the same as the one in the previous example, where the
roles of σ0 and σ1 are exchanged. Then, it is not hard to see that, following
the same procedure, one gets a dessin with two vertices, one edge, one open
cell, two ◦ − • edges, two • − ⋆ edges and two ⋆− ◦ edges. So, in this case,
the flag set, again thought as a triangulation of a sphere, is the following:

⋆

and the pre-clean dessin arising is simply

which is a clean dessin. Indeed, notice that ρ1 does not belong to B, and
hence it does not belong to any of the subgroups in its conjugacy class since
B is normal.
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In order to formulate properly the statement about the Grothendieck cor-
respondence between dessins d’enfants and Belyi pairs, we need to restrict
our attention to a special type of Belyi morphisms. We say that a finite cov-
ering β : X → P1

C ramified only over {0, 1,∞} is a clean Belyi morphism
if all the ramification indices over 1 are exactly equal to 2, and, in this case,
we say that (X, β) is a clean Belyi pair. In fact, this definition is not so
restrictive, as the following corollary to Belyi’s Theorem suggests.

Corollary 3.3. An algebraic curve defined over C is defined over Q if and
only if there exists a clean Belyi morphism β : X → P1

C.

Proof. If α : X → P1
C is a Belyi morphism, then β = 4α(1 − α) is a clean

one. Indeed, if degα = d, then |β−1(k)| = 2d for any k ∈ P1
C ∖{0, 1,∞}.

Moreover, |β−1(1)| = |α−1(1
2
)| = d, and the ramification degrees of the preim-

ages of 1 under β are given by the ramification degrees of the preimages of
1
2

under t 7→ 4t(1− t), which all are 2.

We can finally state the main result of this section.

Theorem 3.4. There is a bijection between the set of the isomorphism classes
of pre-clean dessins d’enfants and the set of pre-clean Belyi pairs. Moreover,
this bijection restricts to a correspondence between the set of the isomorphism
classes of clean dessins d’enfants and the set of clean Belyi pairs.

Proof. The proof relies on the claim that there is a bijection between the
conjugacy classes of subgroups of finite index of the fundamental group of
P1
C ∖{0, 1,∞}, that is

π1 = ⟨l0, l1, l∞ | l0l1l∞ = 1⟩ ,

and the isomorphism classes of finite coverings ofX of P1
C ramified only over 0,

1 and ∞. This implies a bijection between the conjugacy classes of subgroups
of finite index of π′

1 = π1/l
2
1 and the isomorphism classes of pre-clean Belyi

pairs. Since π′
1 and C+

2 are canonically isomorphic via ρ0 7→ l0, ρ1 7→ l1 and
ρ2 7→ l∞, the thesis follows by Theorem 3.2. Notice that restricting to the
conjugacy classes of a subgroups B of π′

1 such that l1 /∈ B′ for any B′ in the
conjugacy class of B, we are considering exactly isomorphism classes of clean
Belyi pairs, so the thesis in the clean case follows again by Theorem 3.2.

The proof of the claim relies on arguments of algebraic topology. Indeed,
by Theorem 1.1, if X̃ is the universal covering of P1

C∖{0, 1,∞}, then there is
a Galois bijection between the isomorphism classes of finite unbranched cov-
eringsX ′ → P1

C ∖{0, 1,∞} of degree d and the conjugacy classes of subgroups
of π1(P1

C ∖{0, 1,∞}) of degree d. Furthermore, given an unbranched cover-
ing X ′ → P1

C ∖{0, 1,∞}, it can be extended, by Theorem 1.4, to a ramified
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covering of P1
C in a unique way, up to biholomorphic fibre-preserving maps

from X ′ into itself. This justifies the claim.

We can describe Grothendieck correspondence in a more concrete way,
as follows. Given a pre-clean Belyi pair (X, β), it gives rise to the pre-clean
dessin having X2 as the topological space underlying X, X1 as β−1([0; 1]),
where [0; 1] is the segment of the real line on P1

C, and the set of vertices X0,
marked with •, as β−1(0). Requiring the Belyi function to be pre-clean is
equivalent to asking that there be one edge to every preimage of 1, while if
the Belyi function is, in particular, clean, then there is a vertex at the end of
every edge. In any case, this suggests that the points β−1(1) can be chosen
as the points marked with ⋆. To complete the marking, we wish to say that
the ◦ points can be given by β−1(∞), and this is indeed guaranteed by the
following technical lemma.

Lemma 3.5. Let (X, β) be a pre-clean Belyi pair, and let D be the pre-
clean dessin given by the procedure above. Then every open cell of D is
homeomorphic to an open disk, and it contains exactly one preimage of ∞
under β.

Proof. Let β−1(∞) = {x1, · · ·xk}. Then, since β is a ramified covering, there
exists a neighbourhood V of ∞, homeomorphic to the unit open disk D, such
that

β−1(V ) =
k⊔
i=1

Ui,

where the union is disjoint and each Ui contains xi. Consider, now, V ◦ =
V ∖ {∞} and U◦

i = Ui∖ {xi}. Then f |U◦
i
: U◦

i → V ◦ is a covering map, and,
it is thus isomorphic to p : D◦ → D◦ such that z 7→ zmi , where D◦ is the open
unit disk with the origin removed. In other words, we have the following
diagram

U◦
i V ◦

D◦ D◦

f |U◦
i

p

,

where the vertical arrows are analytic isomorphisms. By Riemann’s remov-
able singularity theorem, we can extend them to isomorphisms sending xi to
0 and ∞ to 0 respectively. In particular, all Ui are isomorphic to an open disk
and β−1(P1

C ∖[0; 1]), where [0; 1] is the segment of real numbers, is a disjoint
union of open disks, each one containing exactly one preimage of ∞.
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Conversely, given a pre-clean dessin D, to reconstruct the pre-clean Be-
lyi morphism associated, we can consider the set of flags F (D), where the
flags are considered as triangles. This set paves the topological surface X2

with quadrilaterals formed by two flags: one positively and one negatively
oriented, with the ◦ − • side in common. Identifying the two ⋆ and their
edges, we get something isomorphic to the sphere, that we can identify with
P1
C, making to correspond • with 0, ⋆ with 1 and ◦ with ∞. Applying this

procedure for any of the described quadrilaterals of F (D), we get a morph-
ism β : X2 → P1

C, ramified only over the points 0, 1 and ∞. We can put on
X2 a Riemann surface structure requiring β to be a rational function.

3.4 Other Descriptions of Dessins

We refocus our attention on the general definition of dessins d’enfants, there-
fore considering, from now on, those equipped with a bipartite structure.
Since we are representing the mark on the vertices using the colors black and
white, we will speak about white vertices and black vertices.

We can give a description of dessins d’enfants using permutations. Con-
sider a dessin D with N edges, and label them with numbers from 1 to N .
Let X = {e1, · · · , eN} be the set of labeled edges of D. Then we can define
two permutations σ0, σ1 ∈ SN as follows. Draw a small circle around each
of the white vertices, and set σ0(i) = j if the edges ei and ej have a white
vertex in common and the edge ej follows ei under a counterclockwise rota-
tion. The permutation σ1 is obtained similarly, considering black vertices.
Then, (σ0, σ1) is the permutation pair representing the dessin D, and the
subgroup G = ⟨σ0, σ1⟩ of SN is called monodromy group. Remark that
the permutation pair representing a dessin is defined up to (simultaneous)
conjugation in SN , since a conjugation of both the elements corresponds to
a relabelling of the edges. Notice, moreover, that the connectedness of D is
equivalent to G being a transitive subgroup of SN

We define a right action of the monodromy group G on the set X of the
labeled edges of D, setting (ei)

α = eα(i) for α ∈ SN . In order to do so, we are
adopting the convention for which, if α, γ ∈ G, the product αγ is defined to
be the permutation i 7→ γ(α(i)), so that the action on the right makes sense,
meaning that (eαi )

γ = eαγi = eγ(α(i)).
Now, the cycles of σ0 are in bijection with the white vertices of D, and

the length of each cycle is the degree of the corresponding vertex, where the
degree of a vertex is the number of edges having an end on it. The same holds
for σ1 and the black vertices. Moreover, the cycles of σ1 σ0 (or, equivalently,
those of σ0 σ1) are in bijection with the faces of D, since the orbit of ei under
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σ1 σ0 enumerates in clockwise direction half of the edges of a face containing
ei, while its orbit under σ0 σ1 enumerates in counterclockwise direction half
of the edges of the other face of D containing ei. Notice, indeed, that since
D has a bipartite structure, its faces are bounded by an even number of
edges. Remark that in these type of considerations we are including also
1-cycles. For instance, if σ0 = (12)(456) ∈ S6, we will have three white
vertices, respectively of degree 1, 2 and 3.

Notice that we can recover the genus of the surface X2 where D lies using
Euler-Poincaré characteristic:

2− 2g = |{cycles of σ0}|+ |{cycles of σ1}| −N + |{cycles of σ1 σ0}|.

As the following result explains, we can do also the converse construction,
getting a correspondence.

Theorem 3.6. There is a bijection between the isomorphism classes of dess-
ins d’enfants with N edges and the conjugacy classes of permutation pairs
(σ0, σ1) in SN such that ⟨σ0, σ1⟩ is a transitive subgroup.

Proof. We have already explained how to associate a conjugacy class of a
permutation pair (σ0, σ1) to the isomorphism class of a dessin.

Now, given a permutation pair (σ0, σ1) in SN such that ⟨σ0, σ1⟩ is a
transitive subgroup, write σ1 σ0 = τ1 · · · τk for the decomposition in disjoint
cycles of σ1 σ0, where τj has order nj, and clearly n1+· · ·+nj = N . Construct
k disjoint polygons with 2n1, · · · , 2nk edges, and assign black and white
colours to their vertices. Use the cycles of σ1 σ0 to label half of the edges of
each polygon, and use σ0 to label the remaining edges. Now glue together
the edges with same label. The transitivity of ⟨σ0, σ1⟩ implies that we get a
connected object. We got a compact topological surface with no boundary,
and the natural dessin drawn on it is given by the edges of the polygons
(which areN , since we had 2N edges identified two by two) and their vertices,
with the bipartite structure as assigned at the beginning. Notice that the
permutation pair corresponding to this dessin is exactly (σ0, σ1).

Since the procedure described produces two isomorphic dessins if and
only if we start from a pair conjugated to (σ0, σ1), this defines a bijection
between the set of isomorphism classes of dessins d’enfants with N edges
and the conjugacy classes of pairs (σ0, σ1) of permutations of SN generating
a transitive subgroup.

Example. Consider the permutation pair given by σ0 = (12)(34) and σ1 =
(1234) in S4. Then σ1 σ0 = (13), so we can compute the resulting genus to
be g = 0, namely, we will get a dessin in a sphere. Following the procedure
described in the theorem, we construct a polygon with four edges and two
polygons with two edges, and we label all the edges using σ1 σ0 and σ0.
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Identifying edges with same labels, we find the following dessin, thought
as embedded in the sphere:

3

4

2

1

Notice that the obtained dessin has permutation pair exactly (σ0, σ1).

Consider now the free group on two elements F2. Given a dessin D with
N edges, with permutation pair (σ0, σ1), by the universal property of free
groups, mapping one generator of F2 to σ0 and the other one to σ1 gives rise
to a unique surjective morphism F2 → ⟨σ0, σ1⟩, which allows us to define an
action of F2, again on the right, with same convention as before, on the set of
edges of a dessin D. Fixing an edge of D, its stabilizer K has index N in F2,
and a different choice of the edge leads us to a subgroup of F2 conjugated to
K. Notice, furthermore, that starting from a permutation pair conjugated to
(σ0, σ1) leads also to a conjugated subgroup of K. This allows us to associate
the conjugacy class of a finite index subgroup of F2 to a dessin, and the index
in F2 of such a subgroup corresponds to the number of edges of the dessin.

We can do also the converse operation. Given finite index subgroup K
of F2 = ⟨a, b⟩, consider the set of cosets K\F2 = {Ke1, · · · , KeN}. We want
to interpret it as the set of edges of some dessin. So, making a and b act
by right multiplication, we can construct σ0, σ1 ∈ SN in the following way:
for i = 1, · · ·N , σ0 is the permutation sending i to j, where j is such that
Keia = Kej, and σ1 is the one sending i to j, where j is such that Keib =
Kej. We constructed a permutation pair (σ0, σ1), which clearly generates a
transitive subgroup of SN . Since starting with a subgroup conjugated to K
leads us to a permutation pair conjugated to (σ0, σ1), we explained how to
associate a dessin to a conjugacy class of a finite index subgroup of F2. All
this proves the following result.

Theorem 3.7. There is a bijection between the conjugacy classes of finite in-
dex subgroups of the free group on two elements and the isomorphism classes
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of dessins d’enfants.
This result generalizes Grothendieck correspondence stated in the previ-

ous section. Indeed, the free group on two generators can be seen as the
fundamental group of a sphere minus three points. As we did in the proof
of Theorem 3.4, we can apply Galois correspondence for coverings, and the
extension result provided by Theorem 1.4 to get a bijection between the
isomorphism classes of dessins d’enfants and the isomorphism classes of Be-
lyi pairs. The previous section suggests, moreover, how to make clear the
correspondence.

Let D be a dessin d’enfants, we can consider a triangle decomposition
of it, which is an analogous of the flag set for pre-clean dessins, choosing a
point in every open cell, that will be denoted with ×, and joining it with
non-intersecting segments to all the vertices of the corresponding cell. With
a technique similar to the one explained in the previous section, we can
construct a Belyi morphism β : X2 → P1

C. Indeed, for any triangle •−◦−×,
we can identify the point × and the two edges • − × and ◦ − × with the
ones of the triangle with • − ◦ common edge. We get a topological sphere,
so that, as before, we can send • to 0, ◦ to 1 and × to ∞. Applying this
procedure for all pairs of triangles with the • − ◦ edge in common, we get
the desired morphism β : X2 → P1

C.
Conversely, consider a Belyi pair (X, β), and take X2 as the topological

space underlying X, X1 as β−1([0; 1]), and X0 as β−1(0)∪ β−1(1), where the
vertices that are sent to 0 are marked as •, and the ones sent to 1 are marked
as ◦. This gives rise to a dessin. If we mark the preimages of ∞ as ×, and
consider the procedure above concerning the triangle decomposition, we get
a Belyi pair isomorphic to (X, β).

The following example should clarify the relationship between dessins
d’enfants (the ones with the bipartite structure, that we can call here bipart-
ite dessins, to avoid confusion) and clean dessins discussed in the previous
sections.
Example. Consider the morphism α : P1

C → P1
C such that x 7→ 1− x3. This

is a Belyi morphism since its critical values are 1 and ∞. Using the general
bijection, holding between bipartite dessins d’enfants and Belyi pairs, we can
draw the corresponding dessin, where we are marking with • the preimages
of 0 and with ◦ the preimages of 1. Then, we obtain the following graph,
thought as embedded in the Riemann sphere:
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However, α is not a clean Belyi morphism, so, following the procedure of
Lemma 3.3, we can obtain out of it a clean one, that is β : P1

C → P1
C defined

by x 7→ 4(1 − x3)x3. Then we have that β−1(0) = {0, 1, ε, ε2}, where ε is
a primitive third root of the unity, β−1(1) =

{
1
3√2
, 1

3√2
ε, 1

3√2
ε2
}

and, finally,
β−1(∞) = {∞}.

We are going to draw below three pictures. If we apply the general corres-
pondence for bipartite dessins d’enfants to β, we must take as vertices marked
with • the preimages of 0 and as vertices marked with ◦ the preimages of 1:
this is the picture on the left. If we apply the Grothendieck correspondence
for clean dessins, we have to consider as set of vertices just the preimages of
0: this is the central picture. We can assign a marking on this clean dessin,
marking the preimages of 1 with ⋆ and the preimages of ∞ with ◦: this is
the picture in the right. Recall that points marked with ⋆ are not considered
as vertices, but just as points in the edges. Notice that the following graphs
should be thought as embedded in the Riemann sphere, and the ◦ point should
be thought to be at the infinity point.

⋆

⋆
⋆

It is now clear what is the effect of considering β = 4α(1− α) instead of
the Belyi morphism α: since t 7→ 4t(1− t) maps 0 to 0, 1 to 0, ∞ to ∞ and
1
2

to 1, the bipartite dessin corresponding to β in the general correspondence
is obtained starting from the one corresponding to α, marking with • all its
vertices, including the ◦ ones, and adding vertices marked ◦ in the middle of
every edge. Furthermore, this explains also how Grothendieck correspondence
is related to the general one: a clean dessin corresponds to a bipartite dessin,
where we consider as set of vertices only the ones marked with •, and we de-
lete the ones marked with ◦, coming from the preimages of 1. This operation
is indeed allowed by the condition of being clean.

Finally, we can look at Belyi morphisms also with the language of function
fields extensions. In particular, if X is defined over Q, and β : X → P1

C is
a Belyi morphism, we can look at the corresponding morphism over Q, that
is, β̃ : X̃ → P1

Q. Consider, then, the associated extension of function fields
M (X̃)/Q(x), where M (X̃) is the function field of X̃. We need to understand
how to translate the condition about ramification.

Let k be a field, we say that a Galois extension L/k(x) is not ramified
at 0 if it embeds into the extension k((x))/k(x). For a general s ∈ k, we
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define Ls = L ⊗k(x) k(x), where k(x) is seen as a k(x)-algebra via the map
k(x) → k(x) sending x to x+s. Then we say that L/k(x) is not ramified at s
if Ls is not ramified at 0. We can give the same definition for ∞, constructing
L∞ with the morphism sending x to x−1. For any extension L/k(x), we say
that it does not ramify at s if its Galois closure L̃/k(x) does not.

The point is that if p : X → P1
Q is a ramified covering, with X connected,

then s ∈ P1
Q is a ramification point if and only if the extension M (X)/Q(x)

ramifies at s, as explained above.
Putting all these consideration together, we gained that there exist bijec-

tions between the isomorphism classes of dessins d’enfants, the isomorphism
classes of Belyi pairs, the conjugacy classes of finite index subgroups of F2 and
the finite extensions L/Q(x), up to Q(x)-isomorphism, that do not ramify
outside of the set {0, 1,∞}.

3.5 Regular Dessins
In this section, we are going to present a special type of dessins. Before doing
so, we need to define what is an automorphism of a dessin. Firstly, a bi-
partite graph automorphism is a permutation σ of the vertices preserving
the bipartite structure, namely, sending black vertices to black vertices, such
that two vertices are connected by an edge if and only if their images under
σ are connected by an edge. Then, the automorphism group AutD of a
dessin d’enfants D is the group of bipartite graph automorphisms that are
induced by an orientation-preserving homeomorphism of X2.

Let D be a dessin with N edges, and let X = {e1, · · · , eN} be the set
of the labeled edges of D. Notice that an element ψ of AutD induces a
permutation of the edges of the graph h ∈ SN . So, we can define a left
action of AutD on X as ψei = eh−1(i). The inverse is taken accordingly to
the composition law we defined in the previous section, that sees αγ to be
the permutation i 7→ γ(α(i)). In this way, the action makes sense, since if
φ, ψ ∈ AutD induce respectively g, h ∈ SN , then

φ(ψei) =
φeh−1(i) = eg−1(h−1(i)) = e(h−1g−1)(i) = e(gh)−1(i) =

φψei.

Lemma 3.8. The automorphism group of a dessin D with N edges, with
permutation pair (σ0, σ1), is isomorphic to the centralizer of ⟨σ0, σ1⟩ in SN .

Proof. Let D be a dessin with labeled edges {e1, · · · , eN}, with permutation
pair (σ0, σ1), and let ψ ∈ AutD inducing a permutation h ∈ SN of the labeled
edges of D. As eσ0

i is the edge next to ei within a given open cell of D, and
ψ comes from an orientation-preserving homeomorphism of X2, ψ(eσ0

i ) must
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be the edge next to ψei, that is to say that the right action of G and the left
action of AutD commute. This implies that eh−1(σ0(i)) =

ψ(eσ0
i ) = (ψei)

σ0 =
eσ0(h−1(i)). The same, clearly, holds for σ1. So, h ∈ CSN

(⟨σ0, σ1⟩).
Conversely, given a permutation h ∈ SN commuting with σ0 and σ1,

consider a triangular decomposition of D, namely, choose a point in every
open cell, mark it with ×, and connect it with non-intersecting segments
to the vertices of the corresponding open cell. In this way, we get a set of
triangles paving the surface X2. We will call T+

i the triangle with •−◦ edge
labelled with i in which we read • − ◦ − × clockwise, and T−

i the triangle
with • − ◦ edge labelled with i in which we read ◦ − • − × clockwise. We
claim that we can choose homeomorphisms

H±
i : T±

i → T±
h(i)

such that they can be glued to form a well-defined orientation-preserving
homeomorphism of X2 whose restriction to T±

i coincide with H±
i .

For instance, gluing H−
i , H

−
σ0(i)

and H−
σ−1
1 (i)

requires that

H+
i = H−

i on T+
i ∩ T−

i

H+
i = H−

σ0(i)
on T+

i ∩ T−
σ0(i)

H+
i = H−

σ−1
1 (i)

on T+
i ∩ T−

σ−1
1 (i)

The first one can be achieved with no special assumption on h, and the
remaining ones are obtained since h commutes with σ0 and σ1.

Thus from such a h ∈ SN we constructed an automorphism of D inducing
h as permutation of the labeled edges of D.

Lemma 3.9. Let D be a dessin with permutation pair (σ0, σ1), let X be the
set of labeled edges of D. Let e ∈ X, and let G = ⟨σ0, σ1⟩, and H = StabG(e).
Then Aut(D) ∼= N(H)/H, where N(H) is the normalizer of H in G.

Proof. We can identify X with H\G, and define, for each g ∈ N(H), a map
X → X sending Hx 7→ Hgx. This map is well-defined because if x′ = hx
for some h ∈ H, then

Hgx′ = Hghx = Hghg−1gx = Hgx

since g ∈ N(H). This map is bijective since its inverse can be constructed
using g−1. Moreover, these maps clearly commute with the action of G, so,
by Lemma 3.8, Hx 7→ Hgx gives rise to an automorphism of D.

Conversely, any automorphism ψ is determined by ψH := Hg, since
ψ(Hx) = ψ(Hx) = (ψH)x = (Hg)x = Hgx. The fact that h is well-defined
implies that g ∈ N(H). So, we got a surjective map N(H) → Aut(D), whose
kernel is clearly H.
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A dessin d’enfants is said to be regular if its automorphism group acts
transitively on the set of the edges. We can translate this condition into
equivalent conditions for the other settings described in the previous section.
So, regular dessins D come from Belyi morphisms that, restricted to the
preimage of P1

C ∖{0, 1,∞} are regular topological coverings, or from finite
index normal subgroups of F2, or from Galois extensions L of Q(x). In the
last case, we have that Gal(L/Q(x)) is indeed AutD.

There are several ways to think of regular dessins, as the following pro-
position suggests.

Proposition 3.10. Let D be a dessin with N edges and permutation pair
(σ0, σ1), and denote with set of the edges X. Let x ∈ X, and let G = ⟨σ0, σ1⟩,
and H = StabG(x). The following are equivalent.

(1) D is regular;

(2) G acts freely on X;

(3) H is normal in G;

(4) H is trivial

(5) G ∼= AutD

(6) G and AutD have both order N

Proof. (1) =⇒ (2): Let x ∈ X and assume x = xg for some g ∈ G. Then
(hx)g = h(xg) = hx for any h ∈ AutD. Since D is regular, AutD acts
transitively on X, hence this implies that g = 1.
(2) =⇒ (4) =⇒ (3) are immediate.
(3) =⇒ (1): The normality of H in G implies that N(H)/H = G/H, and
the description of the action of N(H)/H on X of the previous lemma makes
clear the transitivity of AutD on X.
(4) =⇒ (5) =⇒ (6): H = {1} implies that AutD ∼= N(H)/H ∼= G.
(6) =⇒ (4): |AutD | = |G| = |X| = N implies |H| = 1, since X = H\G.

In order to state a Galois correspondence for regular dessins, we need to
give the following definition. Given two dessins D and D′, whose correspond-
ing Belyi morphisms are β : X → P1

C and β′ : X ′ → P1
C respectively, we say

that D′ is an intermediate dessin of D if there is a factorization of β as

X X ′ P1
C

f

β

β′
,
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for a continuous mapping f : X → X ′.
As finite extensions of Q(x), an intermediate dessin is provided by a

tower Q(x) ⊆ L′ ⊆ L of finite field extensions. So, the fundamental theorem
of Galois theory applied for the finite extensions of Q(x) provides us the
following result.

Proposition 3.11. Let D be a regular dessin. There is a bijection between
the set of isomorphism classes of intermediate dessins of D and the conjugacy
classes of subgroups of of Aut(D). Normal subgroups correspond to regular
intermediate dessins.

Example. Consider the permutation pair σ0 = id and σ1 = (123456) in S6.
Then G = ⟨σ0, σ1⟩ = ⟨(123456)⟩ has order six and it is a transitive subgroup
of S6. It can be easily seen that it corresponds to the following dessin D on
the sphere

This is a regular dessin, and this can be checked in any of the ways suggested
by Proposition 3.10. For instance, fixing an edge, its stabilizer under the
action of G is clearly trivial, or we can notice that the automorphism group
of D is of order six, so the same as G, since it is generated by the rotation
of angle π

3
around the • vertex.

We can describe the Galois correspondence on this dessin. It is easy to see
that it corresponds to the Belyi morphism β : P1

C → P1
C defined by z 7→ z6. Its

automorphism group, as we saw, is cyclic of order 6, so it has two non-trivial
subgroups of order 2 and 3, both cyclic. They correspond respectively to the
intermediate coverings z 7→ z2 and z 7→ z3. The dessins they give rise are
respectively the followings

Since G is abelian, every its subgroup is normal, so we expect those dessins
to be regular. This is indeed the case, since the very same arguments we used
to prove the regularity of D hold also in those cases.



46 CHAPTER 3. DESSINS D’ENFANTS



Chapter 4

The Galois Action

In the previous chapters, we saw that we can associate a dessin d’enfants to
any Belyi morphism, and that the existence of a Belyi morphism characterizes
the complex algebraic curves that are defined over Q. It is a natural idea,
then, to let the absolute Galois group Gal(Q /Q) act on the set of dessins
d’enfants.

This would allow us to see the group Gal(Q /Q), which nowadays is still
quite mysterious, as a group acting on really simple objects, whose nature is
merely topological-combinatorial. This was, indeed, the intuition expressed
by Grothendieck in [Gro97].

Therefore, in this chapter, we are going to describe the action of the
absolute Galois group on the set of dessins d’enfants. We will prove that
this action is faithful, and, more generally, it remains faithful even when
restricted to the subfamilies of dessins in Riemann surfaces of genus g, for
any fixed g ≥ 0.

The relevance of the faithfulness of the Galois action on the set of dessins
is given by the fact that it will be the key that will allow us to prove an em-
bedding of the Galois group into Out(F̂2), the group of outer automorphisms
of the profinite completion of the free group on two generators.

The final part is devoted to the description of this embedding. We will
construct a family of finite index normal subgroups of F2. They will allow us
to describe Out(F̂2) as the inverse limit of the outer automorphism groups of
the quotient of F2 by them. Then, using the different description of dessins we
presented in the previous chapter, we will define a morphism from Gal(Q /Q)
to this group, whose injectivity will be a mere consequence of the faithfulness
of the Galois action on the set of dessins d’enfants.

47
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4.1 The Galois Group and Dessins
The absolute Galois group, defined as

Gal(Q /Q) := {σ ∈ Aut(Q) such that σ|Q = idQ},

acts on the set of the isomorphism classes complex curves defined over Q, just
conjugating the coefficients of the polynomials defining the curves. In the
same way, given a complex projective curve X defined over Q, if we consider
a Belyi morphism β : X → P1

C, the absolute Galois group acts also on the
morphism β, again conjugating the coefficients of the polynomials defining
β.

We can give a more explicit and satisfying description of this action using
the scheme theoretic language. Let X̃ be a curve over C defined over Q,
and let X be the corresponding curve over Q with structure morphism s :
X → Spec(Q). Then, let β : X → P1

Q be a morphism of varieties over Q,
and consider σ ∈ Gal(Q /Q). Then σ acts on X by changing its structure
morphism, as we saw in the Chapter 2, so that σX will be X with structure
morphism Specσ−1 ◦s. Denoting with s′ the structure morphism of P1

Q, and
with σ : P1

Q → P1
Q the morphism idP1

Z
× Specσ−1 coming from the universal

property of fibre morphism, we have that σβ : σX → P1
C is given by σ ◦ β, as

shown in the following diagram:

X

SpecQ SpecQ

P1
Q P1

Q

β

s
Specσ−1 ◦s

σβ

Specσ−1

σ

s′

s′

,

where the structure morphisms are taken as follows:

X P1
Q

SpecQ

σβ

Specσ−1 ◦s s′
.
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The absolute Galois group acts also on the set of dessins d’enfants: if
Dβ is the dessin corresponding to the Belyi morphism β : X → P1

C then
σ ∈ Gal(Q /Q) acts on Dβ as σ Dβ = Dσβ.

Example. Consider the following dessin D in the sphere:

We want to reconstruct the associated Belyi morphism F : P1
C → P1

C. Being a
graph with just one open cell and six edges, F must be a polynomial of degree
6. Let us assume that the left black vertex, with degree 3, is placed in 0, the
right black one, with degree 2, is placed in 1 and the other black one is placed
in some value a ∈ Q to be determined. Then, F : P1

C → P1
C is defined as

F (z) = Cz3(z − 1)2(z − a)

for some constant C ∈ Q.
We study the critical points of F by computing its first derivative:

F ′(z) = z2(z − 1)(6z2 + (−5a− 4)z + 3a).

Since D has a white vertex of degree 3, F must have a ramification point α,
distinct from 0 and 1, of ramification index 3, that has to occur as a double
root of F ′. So, imposing the discriminant of P (z) = 6z2+(−5a−4)z+3a to
be zero, we find two values for a: a+ = 4

25
(4+ 3i) and a− = 4

25
(4− 3i). Each

of these two values for a gives rise to a root of P : they are α+ = 5a++4
12

= 3+i
5

and α− = 5a−+4
12

= 3−i
5

. Notice that a+ and a− are defining two different
functions F+, F− : P1

C → P1
C.

We can determinate the constants C+ and C− for F+ and F− imposing
the conditions F+(α+) = F−(α−) = 1. Hence we get constants C+ = −29+278i

4

and C− = −29−278i
4

.
So, we constructed two functions P1

C → P1
C

F+(z) =
−29 + 278i

4

(
z − 16 + 12i

25

)
z3(z − 1)2,

F−(z) =
−29− 278i

4

(
z − 16− 12i

25

)
z3(z − 1)2.

Notice that, by the conditions we imposed, they have ramification locus re-
spectively {0, 1, α+,∞} and {0, 1, α−,∞}, with critical values both {0, 1,∞}.
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So, they are both Belyi morphisms. Moreover, notice that considering the
element σ ∈ Gal(Q /Q) as the complex conjugation, we get that σF+ = F−.

The morphism F+ is associated to the dessin presented at the beginning
of this example, while F− is associated to the dessin

These two dessins are not equivalent, since there is no orientation-preserving
homeomorphism of the sphere sending one to the other. This, in particular,
provides us an example of a non-trivial action of Gal(Q /Q) on a dessin.

4.2 Faithfulness of the Galois Action
Grothendieck’s idea was to study the absolute Galois group, whose nature
is still quite mysterious, through its action on the set of dessins d’enfants.
To do so, it is useful to make sure that this action is faithful. The easiest
proof of this fact concerns dessins in genus 1, which means dessins whose
topological surface X2 has genus 1. Using the j-invariant, it is possible to
prove that the Galois action is faithful even in this subfamily of dessins.

Theorem 4.1. The action of the absolute Galois group Gal(Q/Q) is faithful
on the set of dessins in genus 1.

Proof. Recall that genus 1 Riemann surfaces are classified by the j-invariant,
which is a Q-rational expression in the coefficients of the polynomial defining
the curve. This means that, given such a curve E and σ ∈ Gal(Q /Q), we
have that j(σE) = σ(j(E)).

So, given σ ∈ Gal(Q /Q), with σ ̸= id, and j ∈ Q such that σ(j) ̸= j, to
construct a dessin that is not fixed by the action of σ, we consider a genus
1 curve E having j-invariant equal to j. Clearly, E is defined over Q since j
is so, and hence it admits a Belyi morphism β : E → P1

C. This corresponds,
up to isomorphism, to a dessin Dβ.

The curve σE has j-invariant σ(j) ̸= j, so σ cannot act trivially on β nor
on its corresponding dessin, since σE ≇ E.

More can be said: a proof by Lenestra and reported by Schneps in [Sch94]
shows that the Galois action is faithful also in the set of trees, that is, dessins
being connected and acyclic graphs. To achieve this result, we fist need two
technical lemmas.
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Lemma 4.2. Let F be a polynomial of degree n, and let d | n. If there exist
a monic polynomial H of degree d such that H(0) = 0, and a polynomial G
such that F = G ◦H, then such a polynomial H is unique.

Proof. Let deg(G) = m, so that n = md, and write G = λmz
m+ · · ·+λ0 and

H = T d + hd−1T
d−1 · · ·+ h1T . Thus, we have

F = λmH
m + λm−1H

m−1 + · · ·+ λ0.

Looking at the right-hand side of this relation, we notice that the terms of
degree n, · · · , n−d+1 are contributed entirely from the leading term λmH

m.
So, from these terms, one can uniquely get the d highest coefficients of H: the
leading term is 1 by assumption, and for n−d+1 ≤ i ≤ n−1 the coefficient of
the degree i term in Hm is a polynomial in hi−n+d, hi−n+d+1, · · · , hd−1 which
is linear in hi−n+d. Thus, the coefficients hd−1, · · · , h1 of H are determined,
and since by assumption the constant term h0 = 0, H is completely and
uniquely determined.

Lemma 4.3. Let G, H, G̃ and H̃ be polynomials such that G ◦H = G̃ ◦ H̃
and such that deg(H) = deg(H̃). Then there exist two constants c and d
such that H̃ = cH + d.

Proof. Let µ and µ̃ be the leading coefficients of H and H̃ respectively, and
let ν and ν̃ be the constant terms of H/µ and H̃/µ̃ respectively. Then

G1 ◦ (H/(µ− ν)) = G ◦H = G̃ ◦ H̃ = G2 ◦ (H̃/(µ̃− ν̃)),

where G1 is just G ◦ P , with P (x) = (x+ ν)µ, and G2 is analogous.
H/(µ− ν) and H̃/(µ̃− ν̃) are both monic with constant coefficient 0, and

they have the same degree. Therefore, by the previous lemma, they are equal.
To conclude, setting c = µ̃/µ and d = µ̃(ν̃ − ν), we have H̃ = cH + d.

We can finally state the theorem concerning the faithfulness of the Galois
action on the set of trees. Notice that this result is strongly linked to dessins
in genus 0. Indeed, if the dessin is a tree, then X2 ∖X1 consists of just one
open cell, which is homeomorphic, by our definition of a dessin, to an open
disk. This is the same as requiring X2 minus a point to be simply connected,
which is possible only if X2 has genus 0, that is, if X2 is isomorphic to the
Riemann sphere. So, if a dessin is a tree, it must be a dessin in genus 0, and
hence the following theorem implies the faithfulness of the Galois action on
the set of dessin in genus 0.

Theorem 4.4. The action of Gal(Q /Q) on the set of trees is faithful.
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Proof. Let σ ∈ Gal(Q /Q), such that σ ̸= id, and let α ∈ Q be such that
γ := σ(α) ̸= α. We are going to construct a tree on which σ acts non-trivially.
Notice that if a dessin is a tree, then it is a dessin on the Riemann sphere
having only one open cell, that is, having only one preimage of ∞. Thus, we
can consider a tree Dβ and its corresponding Belyi function β : P1

C → P1
C. As

β has just one pole, we may assume, up to isomorphism, that β(∞) = ∞.
In other words, β is a polynomial.

Notice thatDβ and σDβ are isomorphic if and only if there exists a Möbius
transformation σf such that σβ = β ◦ σf . Since both β and σβ have only one
pole, at ∞, we deduce that σf(∞) = ∞, that is, σf(z) = az+ b, with a ̸= 0,
is an affine transformation. Thus, our goal is to show that there really exists
a polynomial β such that σβ(z) ̸= β(az + b) for any a, b ∈ C.

Consider a polynomial pα ∈ Q(α)[z] such that p′α(z) = z3(z − 1)2(z − α).
As shown in the proof of Belyi’s Theorem, there exists a polynomial p ∈ Q[z]
such that β := p◦pα is a Belyi morphism. Moreover, we have that σβ = p◦pγ.
If σβ(z) = β(az+ b), then p◦ pα(az+ b) = p◦ pγ(z), and by Lemma 4.3 there
exist some constants c, d such that

pα(az + b) = cpγ(z) + d.

Differentiating both sides, we get

a(az + b)3(az + b− 1)2(az + b− α) = cz3(z − 1)2(z − γ).

Since the roots of these polynomial are the same, with same multiplicity, we
get the following conditions on a, b, α and γ:

b = 0

a+ b = 1

aγ + b = α

=⇒


b = 0

a = 1

α = γ

The equality α = γ contradicts our assumptions, so it follows that the
action of σ is not trivial on the dessin Dβ.

Corollary 4.5. Gal(Q /Q) acts faithfully on the set of dessins in genus 0.

The faithfulness of the Galois action has been generalised to dessins in
genus g, for a fixed g ≥ 2, by E. Girondo and G. Gonzáles-Diez in [GGD07],
where they proved that this result holds even in the subfamily of hyperelliptic
curves, as the following theorem states.

Theorem 4.6. For any fixed g ≥ 2, the action of the Galois group Gal(Q/Q)
is faithful on the set of dessins on hyperelliptic curves of genus g.
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Proof. Let σ ∈ Gal(Q /Q), with σ ̸= id, and a ∈ Q such that σ(a) ̸= a.
Consider then the hyperelliptic curve

Cn := {y2 = (x− 1)(x− 2) · · · (x− (2g + 1))(x− (a+ n))}.

Suppose by contradiction that σCn ∼= Cn for all n ∈ N, then there exists
a Möbius transformation Mn ∈ PSL2(C), for every n, such that

Mn({1, 2, · · · , 2g + 1, a+ n}) = {1, 2, · · · , 2g + 1, σ(a+ n)}.

Recalling that given three distinct points z1, z2, z3 ∈ P1
C and other three

distinct points w1, w2, w3 ∈ P1
C, there exists a unique Möbius transformation

sending zi 7→ wi, we have the following facts:

(i) Since it maps three rational points to three rational points, Mn ∈
PSL2(Q).

(ii) Since a+ n /∈ Q, Mn({1, 2, · · · , 2g + 1}) = {1, 2, · · · , 2g + 1} by (i).

(iii) Mn(a+ n) = σ(a+ n) = σ(a) + n, by (ii).

(iv) The set {Mn | n ∈ N} is finite, since by (ii) its cardinality is upper
bounded by the number of permutations of 2g + 1 elements.

In particular, there exist three different numbers p, q, r ∈ N such that
Mp =Mq =Mr. Therefore, we have that

Mp(a+ p) = σ(a) + p

Mp(a+ q) =Mq(a+ q) = σ(a) + q

Mp(a+ r) =Mr(a+ r) = σ(a) + r

=⇒


Mp(a+ p)− σ(a) = p

Mp(a+ q)− σ(a) = q

Mp(a+ r)− σ(a) = r

Consider, now, the Möbius transformation M̃(z) := Mp(a + z) − σ(a).
Since M̃(p) = Mp(a + p) − σ(a) = σ(a) + p − σ(a) = p, and, similarly,
M̃(q) = q and M̃(r) = r, it follows that M̃ = id, since it fixes three points,
and so Mp(a + z) = z + σ(a). Computing it in z − a, we deduce that
Mp(z) = z + σ(a)− a.

Using this relation, we get that Mp(N) = N + σ(a)− a, for any N in the
set {1, 2, · · · , 2g + 1}. This yields

σ(a)− a =Mp(1)− 1 =Mp(2)− 2 = · · · =Mp(2g + 1)− (2g + 1).

But, since Mp(N) ∈ {1, 2, · · · , 2g + 1}, we deduce both Mp(1) − 1 ≥ 0 and
Mp(2g+1)−(2g+1) ≤ 0, meaningMp(N)−N = 0 for anyN ∈ {1, 2, · · · , 2g+
1}, and hence σ(a) = a, which contradicts our assumptions.
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4.3 An Embedding of the Galois Group
In this section, we are going to define an injective group morphism from
Gal(Q /Q) to the group of outer automorphisms of the profinite completion
of the free group on two generators. In order to do so, we need to express
such a profinite group as an inverse limit of suitable finite groups, so that
we will be able to handle it better. The construction that follows suits our
needs.

Let F2 := ⟨σ, α⟩ be the free group on two generators. For any group G,
denote as G(n) the intersection of all normal subgroups of G whose index is
less or equal to n. Define, finally, the group

Hn := F2/F
(n)
2 .

Lemma 4.7. The group Hn is finite, and H(n)
n = {1}.

Proof. Firstly, notice that there exist only a finite number of normal sub-
groups of F2 with index ≤ n, since each of them is the kernel of a morphism
F2 → G, with G a group of cardinality |G| ≤ n, and there are only finitely
many groups of cardinality n and finitely many morphisms from F2 to G.
So, it suffices to show that if N and M are normal subgroup of F2 of index
≤ n, then |F2 : N ∩M | <∞. This is because

|F2 : N ∩M | =|F2 : N ||N : N ∩M | ≤ |F2 : N ||NM :M | ≤
≤|F2 : N ||F2 :M | <∞.

So, F (n)
2 has finite index in F2 and hence Hn is finite.

The fact that H(n)
n = {1} follows by the correspondence theorem for

groups. Indeed, N is a normal subgroup of F2 such that |F2 : N | ≤ n if
and only if N/F (n)

2 is normal in Hn, and |Hn : N/F
(n)
2 | ≤ n. Hence, the

intersection of all normal subgroups of Hn whose index id ≤ n is trivial.

Proposition 4.8. With the above notation, we have the following facts:

(i) For any group G of order |G| ≤ n and for any g1, g2 ∈ G, there exists
a homomorphism Hn → G sending σ to g1 and α to g2.

(ii) If g1 and g2 are generators of a group G such that G(n) = {1}, then
there exists a surjective map Hn → G sending σ to g1 and α to g2.

(iii) If h1 and h2 are generators of Hn, then there exists an automorphism
of Hn sending σ to h1 and α to h2, where σ and α are the images of σ
and α, generators of F2, in Hn.
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Proof. (i) The mapping σ 7→ g1 and α 7→ g2 gives rise, by the universal
property of free groups, to a group morphism φ : F2 → G.
Moreover, we have that

|F2 : kerφ| = | imφ| ≤ |G| ≤ n,

implying, since kerφ is normal in F2, that

F
(n)
2 =

⋂
|F2:N |≤n
N⊴F2

N ⊆ kerφ.

Thus, φ descends to a homomorphism Hn → G.

(ii) The mapping σ 7→ g1 and α 7→ g2 gives rise, by the universal property
of free groups, to a homomorphism φ : F2 → G, which is surjective
since G is generated by g1 and g2.
Consider now a normal subgroup N of G such that |G : N | ≤ n, then
we have that φ−1(N) is normal in F2, and also |F2 : φ−1(N)| ≤ n.
Thus, we have

kerφ = φ−1(1) = φ1(G(n)) =
⋂

|G:N |≤n
N⊴G

φ−1(N) ⊇
⋂

|F2:M |≤n
M⊴F2

M = F
(n)
2 .

Hence, we get the desired surjective morphism Hn → G by the universal
property of the quotient.

(iii) Since H(n)
n = {1}, we can apply (ii) to get the existence of a surjective

morphism Hn → Hn sending σ to h1 and α to h2, which is bijective
since Hn is finite.

Notice that, since F (n+1)
2 ≤ F

(n)
2 for any n ≥ 1, we have surjective maps

φn+1 : Hn+1 → Hn obtained from the canonical projection F2 → Hn using the
universal property of the quotient. These maps maps allow us to see (Hn)n≥1

as an inverse system, whose inverse limit will be some profinite group.
Recall that a profinite group is a compact and totally disconnected

topological group, or, equivalently, it is a topological group isomorphic to
the inverse limit of an inverse system of discrete finite groups. Given a group
G, its profinite completion Ĝ is the inverse limit limG/N , where N runs
over all the normal subgroups of finite index of G. The natural morphism
j : G→ Ĝ is continuous and it has dense image in Ĝ. Moreover, it is injective
if and only if G is residually finite, meaning that the intersection of all normal
subgroup of finite index of G is trivial. Notice that this is the case for F2,
since free groups are always residually finite.
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Lemma 4.9. The inverse limit limnHn is isomorphic to F̂2, the profinite
completion of F2.

Proof. By definition, the profinite completion of F2 is

F̂2 = limF2/N,

where the inverse limit runs over all normal subgroups N of F2 of finite index.
Since each N contains some F (n)

2 for n large enough, the family (F
(n)
2 )n is

final in the inverse limit, implying the result.

Notice that the kernel of the map φn+1 : Hn+1 → Hn is H(n)
n+1, which is a

characteristic subgroup of Hn+1, meaning that α(H(n)
n+1) = H

(n)
n+1 for any auto-

morphism α ∈ Aut(Hn+1). This implies that the map Λn+1 : Aut(Hn+1) →
Aut(Hn), defined by ψ 7→ φn+1 ◦ ψ ◦ φ−1

n+1, is well-defined, since, for any
h ∈ Hn and for a y ∈ φ−1

n+1(h) we have

h
φ−1
n+17−−−→ y kerφn+1

ψ7−→ ψ(y) kerφn+1
φn+17−−−→ φn+1(ψ(y)).

Notice, indeed, that the choice of a different y′ ∈ φ−1
n+1(h) does not change

the image under φn+1 ◦ ψ ◦ φ−1
n+1. Furthermore, if ψ is the conjugation by

g ∈ Hn+1, then Λn+1(ψ) = φn+1 ◦ ψ ◦ φ−1
n+1 is the conjugation by φn+1(g), so

the map Aut(Hn+1) → Aut(Hn) gives rise to a map Out(Hn+1) → Out(Hn).
We are now going to study the group

Out(F̂2) := Autc(F̂2)/Inn(F̂2),

where Autc(F̂2) is the group of continuous automorphisms of F̂2.

Proposition 4.10. There is an isomorphism

Out(F̂2) ∼= lim
n

Out(Hn).

Proof. We use the identification of Lemma 4.9 to construct the map

lim
n

Aut(Hn) → Autc(lim
n
Hn) = Autc(F̂2),

which associates the automorphism (hn)n 7→ (ψn(hn))n to any element (ψn)n
of limnAut(Hn). This morphism is well-defined since

φn(ψn(hn)) = ψn−1(φn(hn)) = ψn−1(hn−1).

Conversely, we construct the map going the other way,

Autc(F̂2) → lim
n

Aut(Hn).
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The image of ϕ ∈ Autc(F̂2) under this map is defined to be (ψn)n, where
ψn ∈ Aut(Hn) is defined as ψn(h + F

(n)
2 ) = j−1(ϕ(j(h))) + F

(n)
2 for any

h + F
(n)
2 ∈ Hn, with j : F2 → F̂2 the natural morphism of the profinite

completion. This map is well-defined, since the closure of F (n)
2 in F̂2, which

is the kernel of F̂2 → Hn coming from the canonical projection F2 → Hn

by the universal property of the profinite completion, is preserved by all
continuous automorphisms of F̂2.
These maps are inverses to one another.

Next, we study the corresponding map

π : lim
n

Aut(Hn) → lim
n

Out(Hn).

We show it is surjective. Consider an element (γn)n of limnOut(Hn), and
choose a representative γ̃n ∈ Aut(Hn) of γn ∈ Out(Hn) for any n. It may
not be the case that γ̃n+1 maps to γ̃n under Λn+1 : Aut(Hn+1) → Aut(Hn),
but the two differ by an inner automorphism of Hn, that is, Λn+1(γ̃n+1) =
γ̃n ◦ ιg, with ιg conjugation by g ∈ Hn. But since φn+1 : Hn+1 → Hn is
surjective, there exists an element h ∈ Hn+1 such that φn+1(h) = g, so that
Λn+1(γ̃n+1 ◦ ιh) = γ̃n, where ιh is the conjugation by h ∈ Hn+1. So we
can replace γ̃n+1 with γ̃n+1 ◦ ιh. Doing so for every n, we get an element
(γ̃n)n ∈ limnAut(Hn) that is mapped in (γn)n, proving surjectivity.

We show that kerπ = Inn(F̂2). We rely on a result by Jarden (see [Jar80]),
stating that any automorphism of F̂2 fixing all open normal subgroups is
inner. We will also use the fact that normal subgroups of finite index in F2

are in bijection with open, normal subgroups of F̂2, which are automatically
closed and of finite index, under the closure operation N 7→ N̄ : in fact, the
quotient map F2 → F2/N extends to a map F̂2 → F2/N whose kernel is N̄ .

Let us therefore consider an element β ∈ kerπ: it must satisfy Jarden’s
assumptions, since each open, normal subgroup of F̂2 is the closure N̄ of a
normal subgroup N of finite index in F2, and each such subgroup contains
some F (n)

2 for n large enough. Hence, if β induces an inner automorphism
of Hn, it must fix N̄ . We get that β ∈ Inn(F̂2), and since clearly Inn(F̂2) is
contained in kerπ, we get that kerπ = Inn(F̂2), and the thesis follows.

We are going to use the described isomorphism to construct a morphism
from Gal(Q /Q) to Out(F̂2). Make use of the axiom of choice to select an
algebraic closure Ω of Q(x).

The finite group Hn, being a quotient of F2 by a finite index, normal
subgroup, gives rise to a regular dessin, which can be interpreted, as we saw
in the previous chapter, as a finite Galois extension Ln/Q(x), which can be
chosen with Ln ⊆ Ω, whose Galois group is Gal(Ln/Q(x)) = Hn. Notice that
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Ln is the unique subfield of Ω with such proprieties. Indeed, if L′
n ⊆ Ω were

another one, we would have an isomorphism of field extension Ln → L′
n, but

by basic Galois theory any map Ln → Ω has its values in Ln, hence Ln = L′
n.

Similarly, notice that if L/Q(x) is any extension isomorphic to Ln/Q(x),
then any two isomorphisms Ln → L differ by an element of Gal(Ln/Q(x)).

Now, let λ ∈ Gal(Q /Q), and extend it to a map Q(x) → Q(x) fixing x.
We will denote also this map with λ. Then consider

λL = L⊗λ Q(x),

which is the tensor product L⊗Q(x)Q(x), where Q(x) is seen as a Q(x)-module
via the morphism λ. We turn λL into a Q(x)-algebra via the morphism t 7→
1⊗t. This describes the action of λ ∈ Gal(Q /Q) on the finite field extension
L of Q(x). Remark that there is the following commutative diagram

Q(x) Q(x)

L λL

λ

Λ

,

where Λ : L = L⊗id Q(x) → L⊗λQ(x) = λL is defined by y⊗ s 7→ y⊗ λ(s).
It follows that there is an isomorphism

λ∗ : Gal(L/Q(x))
∼−→ Gal(λL/Q(x)),

given by σ 7→ Λ ◦ σ ◦ Λ−1.
Applying this to our case, we get that λLn is a regular dessin, since Ln is

so, and it corresponds to the choice of two new generators for the group Hn.
Nevertheless, by Proposition 4.8, there is an automorphism of Hn sending
these new generators to the previous ones, meaning that Ln and λLn are
isomorphic. Thus, there exists an isomorphism ι : Ln → λLn of extensions of
Q(x), defined up to precomposition by an element of Gal(Ln/Q(x)) = Hn.

Let now h ∈ Hn = Gal(Ln/Q(x)), and consider the following diagram,
which does not commute

Ln
λLn

Ln
λLn

ι

h λ∗(h)

ι

.
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The map ι−1 ◦ λ∗(h) ◦ ι depends on the choice of ι, which was defined up to
precomposition by an element of Hn. Thus the mapping h 7→ ι−1◦λ∗(h)◦ι in-
duces a well-defined element in Out(Hn), depending only on λ ∈ Gal(Q /Q).

Using this association we can define a morphism Gal(Q /Q) → Out(F̂2),
whose injectivity is essentially a consequence of the faithfulness of the Galois
action on the set of dessins d’enfants.

Theorem 4.11. There exists an injective homomorphism of groups

Γ : Gal(Q /Q) → lim
n

Out(Hn) ∼= Out(F̂2).

Proof. We have just explained how to associate to λ ∈ Gal(Q /Q) an element
in Out(Hn). We need to check that it gives indeed a homomorphism

Γn : Gal(Q /Q) → Out(Hn),

for each fixed n. Assume that Γn(λi) is represented by h 7→ ι−1
i ◦ λ∗i (h) ◦ ιi

for i = 1, 2. Then Γn(λ1) ◦Γn(λ2) is represented by their composition, which
is

h 7→ ι−1
1 ◦ Λ1 ◦ ι−1

2 ◦ Λ2 ◦ h ◦ Λ−1
2 ◦ ι2 ◦ Λ−1

1 ◦ ι1
= ι−1

1 ◦ Λ1 ◦ ι−1
2 ◦ Λ̃−1 ◦ Λ̃ ◦ Λ2 ◦ h ◦ Λ−1

2 ◦ Λ̃−1 ◦ Λ̃ ◦ ι2 ◦ Λ−1
1 ◦ ι1

= ι−1
1 ◦ λ1ι2

−1 ◦ (λ1λ2)∗(h) ◦ λ1ι2 ◦ ι1,

where Λ̃ is the morphism

λ2L = L⊗λ2 Q(x) → L⊗λ1λ2 Q(x) = λ1λ2L

given by y ⊗ s 7→ y ⊗ λ1(s), and λ1ι2 = Λ̃ ◦ ι2 ◦ Λ−1
1 . Now, since λ1ι2 ◦ ι1

is an isomorphism Ln
∼−→ λ1λ2Ln, we see that this automorphism represents

Γn(λ1λ2). Hence Γn(λ1λ2) = Γn(λ1) ◦ Γn(λ2), as wished.
We need to check the compatibility of the morphisms Γn with the maps

Out(Hn+1) → Out(Hn). We have that Ln ⊆ Ln+1, and, in the Galois cor-
respondence, Ln corresponds to H

(n)
n+1, which is a characteristic subgroup

of Hn+1. Thus, any isomorphism Ln+1 → λLn+1 must send Ln onto λLn.
Moreover, λ∗ : Gal(Ln+1/Q(x)) → Gal(λLn+1/Q(x)) sends Gal(Ln/Q(x))
to Gal(λLn+1/Q(x)) , so we get the desired compatibility.

Finally, we prove that Γ is injective. Since, as we saw, the action of
Gal(Q /Q) on the set of dessins is faithful, it suffices to show that whenever
Γ(λ) = 1, the action of λ on dessins is trivial. So, pick a dessin as a finite
extension L/Q(x). It is contained in Ln for some n, and it corresponds, via
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Galois correspondence, to the subgroup K = Gal(Ln/L) of Hn. Further-
more, since λ∗(K) = Gal(λLn/

λL), the subfield λL of λLn corresponds to the
subgroup λ∗(K). The condition Γ(λ) = 1 means that h = ι−1 ◦λ∗(h)◦ ι, so if
we identify λLn with Ln via the isomorphism ι, the map λ∗ becomes the con-
jugation by a certain element of Hn. Hence, the subfield λL corresponds to
λ∗(K), which is a conjugate of K, and thus, again by Galois correspondence,
it is isomorphic to L.

One may ask whether this morphism is also surjective, giving, so, an
isomorphism concerning the Galois group. This is not true. In fact, it is
known that the image of Gal(Q /Q) in Out(F̂2) lies in a proper subgroup
ĜT , called the Grothendieck-Teichmüller group (see, for instance, [Iha94]).
It is still an open question whether Gal(Q /Q) is isomorphic to ĜT or not.
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