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Abstract

The aim of this thesis is to study Fano manifolds as Mori Dream Spaces and, in
partiular, to find bounds on the Picard number. We will mainly focus on Fano
manifolds admitting a divisorial contraction sending a divisor into a curve.





Introduction

One of the main goals of algebraic geometry is to classify projective varieties
over the complex numbers up to birational equivalence.

One approach in this direction is given by the Mori Theory, also called the
Minimal Model Program (or shortly MMP). The MMP started developing in
the ’80s as an attempt to generalise the work of the Italian school.

The first advance in this direction was given by Mori in [Mor82], who intro-
duced a new approach to the study of projective 3-folds. He studied projective
manifolds of dimension 3 with non-nef canonical divisor, i.e. X a 3-fold with
canonical divisor KX such that there exists a curve with negative intersection
with KX .

We recall the Cone Theorem (Theorem (1.3.1)) and the Contraction Theorem
(Theorem (1.3.8)) from the results raised from Mori’s work. The Cone Theorem
describes the Mori cone, i.e. the closure of the cone spanned by numerical
classes of effective one-cycles. In particular, it states that the negative part of
the cone with respect to the canonical divisor is locally polyhedral, generated
by at most countably many rays and that every ray is given by the class of
a rational curve. The Contraction Theorem allows us to associate with each
(−KX)-negative ray, or (−KX)-negative face of the Mori cone, a morphism onto
a normal projective variety with connected fibers, called extremal contraction.

The variety obtained after an extremal contraction of a variety of dimen-
sion ≥ 3 may present some singularities. Mori’s work was then generalized to
varieties of higher dimensions, allowing some mild of singularities. This was
a joint work of several authors, among them, we recall Kawamata [Kaw84],
Shokurov [Sho86], and Reid [Rei83].

This allowed us to find a good representative inside the birational class of
a variety called the Minimal Model, i.e. a variety with a numerically effective
canonical divisor.

Some problems arise; the exceptional locus of the ray contracted may be of
codimension at least 2, i.e. a small ray. In this case, the variety obtained by
contracting this ray is not even Q-factorial. To solve this problem one can use
the notion of “flip” (Definition (1.3.17)). This gives a new variety on which it
is possible to continue the MMP. The existence and the termination of flips (i.e.
there are no infinite sequences of flips) are the key points for carrying on the
MMP.

The problem of the existence of flips has been settled in any dimension in
[BCHM10], but termination is still an open problem.

In [HK00], to overcome the problem of termination of flips, a new category
of varieties has been introduced: the Mori Dreams Spaces, or shortly MDS
(Definition (2.1)). MDS are varieties with nice properties with respect to the
Mori Theory. In particular, a Mori program exists for every divisor [HK00].

In [BCHM10] it has been proven that a Fano manifold of any dimension is
a MDS. This allowed us to apply results that hold for MDS to Fano manifolds;
in particular, given a Fano manifold and a divisor on it, there is always a MMP
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for that divisor.
This result enables us to study Fano varieties from a new perspective. An

example of this new approach can be found in the work of Casagrande [Cas09]
and [Cas12b], where the author focuses on Mori programs for prime divisors.
This allows us to obtain information on the geometry of the starting Fano n-
folds and bounds on the Picard number. Some of these results can be found in
[Cas09] and in [Cas12b].

Here we go into more details about this essay. In the first section we will
briefly review some background results that will be used frequently through-
out the thesis. We will therefore start with some preliminaries related to in-
tersection theory, singularities, and some first results in Mori Theory, such as
the Cone and the Contraction Theorem. We will then recall some results on
the theory of extremal rays and associated contractions. Moreover, we will go
through some results by Wiśniewski [Wiś91] for projective manifolds such as
Ionescu-Wiśniewski inequality (Theorem (1.3.20)). Finally, we will conclude
this introductory section by exposing some results on Fano manifolds.

In the second section, we will introduce the notion of Mori Dream Space,
and we will state some main features with respect to the Mori Theory. We will
start by defining a Mori program for a divisor and by recalling that for a MDS
X it always exists a MMP for every divisor in X.

We will later look at a Mori program for −D ⊂ X, where D is a prime
divisor and X is a MDS. This type of Mori program was first introduced in
[Cas09] and studied also in [Cas12b]. This approach is somewhat opposite
to the classical one, since at every step we will consider a ray with positive
intersection with the divisor. We will observe some properties, such as the fact
that every Mori program for −D in which D ⊂ X is a prime divisor in X ends
with a contraction of fiber type.

In the remaining part of the section, we will focus on Fano manifolds by
viewing them as MDS. As a result, for each divisor D ⊂ X, we will consider
a Mori program. Moreover, we will prove that for a Fano manifold, there is a
suitable choice of extremal rays involved in the MMP whose contractions have
positive anticanonical degree. We will call this Mori program Special Mori
program. By studying the contractions involved in a Special Mori program,
we will see that if the ray contracted is not contained in the linear subspace of
N1(X) spanned by classes of curves of the divisor D, then the contraction is
the blow-up of a smooth subvariety of codimension 2; we will call it of type
(n− 1, n− 2)sm.

We will conclude by proving that, for a Fano manifold not birationally
equivalent to a projective variety with a contraction of type (n− 1, n− 2)sm, the
Lefschetz defect δX , i.e. δX = max{codim N1(D, X)|D ⊂ X prime divisor of X},
is at most one.

In the third section we will focus on Fano n-folds X of dimension n ≥ 3
with a prime divisor D ⊂ X such that dim N1(D, X) ≤ 2. We will prove
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a bound on the Picard number in some cases. To be more specific, Tsukioka
proved in [Tsu06] that a Fano n-fold of dimension at least 3 admitting a divisor
D with ρD = 1 has Picard number ρX ≤ 3. Casagrande generalized this result
in [Cas08] to Fano n-folds with a prime divisor D and dim N1(D, X) = 1.

In the remaining part of this section, we will focus on Fano manifolds con-
taining a prime divisor D with dim N1(D, X) = 2. This will allow us to bound
the Picard number in some cases. We will look at two different situations: first,
what happens when a ray R is positive on D, and then what happens when
a ray R has some fibers contained in D and some that are disjoint from D.
For the first case, we will see that either the Picard number is smaller than 5,
or R is either small or a blow-up of a codimension 2 smooth subvariety and
R 6⊂ N1(D, X). In the latter case, either the Picard number ρX ≤ 4 , or there
exists an extremal ray R of type (n− 1, n− 2)sm.

In the fourth section, we will focus on Fano n-folds with a divisorial ex-
tremal ray sending a divisor into a curve. The purpose of this section is to
show that ρX ≤ 5. This will be established in Theorem (4.9) except for one
remaining case that will be treated separately in Proposition (4.10).

Furthermore, we will give an application to the Fano 4-folds case. In Corol-
lary (4.11) we will show that for a Fano 4-fold X either ρX is at most 6, or X is a
product and ρX ≤ 11, or every elementary contraction of X is either divisorial
sending a divisor onto a surface, or is small.

In the fifth section, we will give some application to Fano 5-folds with two
divisorial contractions with the same exceptional locus sending a divisor into
a surface. We will denote with E0 the exceptional divisor of this contraction.
First, we will consider a Fano 5-fold as before with pseudoindex iX > 1 (Defi-
nition 1.4.3). Then ρX = 3, and E0 = P2×P2. We will conclude by considering
a Fano 5-fold X with two divisorial extremal rays R0, R1 ⊂ NE(X) sending a
divisor onto a surface such that R0 · E1 < 0, where E1 is the exceptional divisor
associated to R1. By considering an extremal ray R2 positive on E0 we will
obtain a bound on the Picard number of X in some cases.
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1 Preliminars

1.1 Divisors/ one cycles / intersection/ cone of curves

Let X be a normal projective variety over C of dimension dim X = n. We
denote:
Z1(X)

.
= abelian group of one-cycles.

Z1(X)
.
= abelian group of Weil divisors.

Pic(X)
.
= abelian group of invertible sheaves.

Div(X)
.
= abelian group of Cartier divisors.

For a more detalied introduction, see [Har13, Chapter II, Section 6] or [Deb01,
Chapter 1].

Remark 1.1.1. [Har13, Proposition II.6.13] Since X is a projective variety then
Pic(X) is isomorphic to Div(X)

(∼) where with (∼) we denote the linear equiva-
lence.

A Weil divisor D is said to be a Q-Cartier Divisor if mD is an element of
Div(X) for some m ∈ N.

Let ρ : C → X be a curve in X. Let D ∈ Div(X) be a Cartier divisor. We
define an intersection number of C and D as follow:

D · C .
= deg(ρ∗(OX(D))),

where with OX(D) we denote the line bundle associated to D. This can be
extended to a bilinear form

(·) : Z1(X)×Div(X) −→ Z.

(C, D)→ D · C

This bilinear pairing allow us to define a notion of equivalence, both on Z1(X)
and on Div(X). We say that D, D′ ∈ Div(X) are numerically equivalent if

D · C = D′ · C

for every C curve in X. Analogously, we say that C, C′ ∈ Z1(X) are numerically
equivalent if

D · C = D · C′

for every D ∈ Div(X). We denote the numerical equivalent relation by ≡. We
define the following R-vector spaces

N1(X)
.
=

Z1(X)

≡ ⊗R

N1(X)
.
=

Div(X)

≡ ⊗R.
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Hence the first denotes the R-vector space of one-cycles up to numerical equiv-
alence and the second one the R-vector space of Cartier divisors up to numer-
ical equivalence. The map (·) induces the following non-degenerate pairing

(·) : N1(X)×N1(X) −→ R.

and N1(X) and N1(X) are dual via (·). By the Néron-Severi theorem [Laz17,
Prop. 1.1.16], they are finite dimensional. We define the Picard number of X as
ρX = dim N1(X) < +∞.

The inclusion map i : D ↪→ X defines a push-foward of one-cycles

i∗ : N1(D)→ N1(X).

We will denote by N1(D, X) the image of N1(D) under this linear map. It is the
vector subspace generated by the numerical classes of curves of X contained in
D.

Remark 1.1.2. By definition of N1(D, X) we get that dim N1(D, X) ≤ ρD and
dim N1(D, X) ≤ ρX .

Note that this holds also if we consider a closed subset Z of X, instead of a
divisor D ⊂ X of X.

Inside N1(X) we denote by NE(X) ⊂ N1(X) the convex cone of effective
one-cycles

NE(X)
.
= {C ∈ N1(X)|C = ∑ riCi , ri ∈ R and ri ≥ 0}

where Ci are irreducible curves.
Let NE(X) be the closure of NE(X) inside N1(X); it is called Mori cone of X.
Let D ∈ Div(X), set

D≥0
.
= {x ∈ N1(X)|D · x ≥ 0},

D⊥ .
= {x ∈ N1(X)|D · x = 0}

and analogously for≤, > and <. We will use the following notation NE(X)D≥0
.
=

NE(X) ∩ D≥0, and similarly for ≤, <, >, and = [KM98, Def. 1.17].

Definition 1.1.3. Let D be a divisor of X. We say that it is semiample if a multiple
of D it is base point free (b.p.f.), i.e. there exists m ∈ N such that mD induces a
morphism

ϕ : X → Pn

for some n ∈ N. Equivalently D is b.p.f. if |D| has no base point, i.e. Bs(D) =⋂
D′∈|D| D′ = ∅ where with |D| we denote the linear system associated with D.

Definition 1.1.4. Let D be a divisor of X. We say that it is ample if a multiple
of D is very ample, i.e. there exists m ∈ N such that mD induces a closed
embedding

ϕ : X ↪→ Pn

for some n ∈ N.
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For a description of the construction of the morphism induced by a divisor
see for example [Har13, Chapter II, Section 7].

Ampleness is a numerical property. Indeed, there exists the following nu-
merical characterization of ampleness due to Kleimann [Kle66].

Theorem 1.1.5 (Kleimann’s Ampleness Criterion). [KM98, Theorem 1.18] Let X
be a projective variety and let D be a Cartier divisor of X. Then D is ample if and only
if

NE(X) ⊂ D>0

Being ample is not a stable property under pull-back.

Example 1.1.6. Let X .
= P1 × P1 and consider the contraction given by the first

projection on Y .
= P1, i.e. ϕ : X → P1. Consider a hyperplane H in Y. Then H is

ample but, by the projection formula [Deb01, Section 1.9],ϕ∗H is not ample.

Therefore, we may want to relax the notion of ampleness.

Definition 1.1.7. A divisor D of X is said to be numerically effective (nef) if and
only if

D · C ≥ 0

for every curve C ⊂ X.

Equivalently, nefness can be described with respect to the Mori cone. A
divisor D is nef if and only if D is non-negative on NE(X).

Note that, by the projection formula, the pull-back of a nef divisor is nef.
Hence, being nef is stable under pull-back.

Definition 1.1.8. A Cartier divisor D on X is said to be big if Dn > 0 where
n .
= dim X.

Definition 1.1.9. A Cartier divisor D of X is said to be effective if D = ∑ aiDi
where Di are prime divisors and ai ∈ Z are all non-negative.

Lemma 1.1.10. [KM98, Lemma 3.39] Let f : X → Y be a proper birational mor-
phisms between normal varieties. Let −B be an f -nef Q-Cartier, Q-divisor on X.
Then

B is effective if and only if f∗B is effective.

Definition 1.1.11. An effective Cartier divisor D of X is said to be movable if its
stable base locus

B(D)
.
=

⋂
m∈Z>0

Bs(mD)

has codimension at least 2.

The previous definitions allow us to define some convex cones inside N1(X).
The Effective cone Eff(X) is the convex cone in N1(X) spanned by effective
divisors. In general, it is not closed [Deb01, 1.35] but we will see that for
Mori Dream Spaces (Definition (2.1)) it is rational polyhedral, in particular it is
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closed.
The Ample cone Amp(X) is the open convex cone in N1(X) of ample divisors.
The Nef cone Nef(X) is the closed cone of classes of nef divisors.
The Movable cone Mov(X) is the cone generated by classes of movable divisors.

The following inclusions hold:

Nef(X) ⊆ Mov(X) ⊆ Eff(X)

Amp(X) = ˚Nef(X)

Amp(X) = Nef(X)

1.2 Singularities

In this part, we will collect some definitions and results regarding singularities.
For a more detailed description, see [KM98, 2.3.].

We denote by KX the canonical divisor of X.

Definition 1.2.1. Let X be a normal variety. X is Q-factorial if every Q-divisor
is Q-Cartier. X is Q-Gorenstein if exists an integer m ∈ N such that mKX is a
Cartier divisor, i.e. mKX ∈ Div(X).

Let X be a normal Q-Gorenstein variety. We say that X has terminal singu-
larities if there exists a resolution of singularities f : Y → X such that

mKY = f ∗(mKX) + ∑
E f−exceptional

m · a(E; X)E

with a(E; X) ∈ Q and a(E; X) > 0 for m big enough.
We call a(E; X) the discrepancy of E with respect to X. We say that X is

terminal if a(E; X) > 0 for every f -exceptional divisor with f a resolution.
Remark 1.2.2. Discrepancies do not depend on f . Moreover, if KX ∈ Div(X),
then a(E; X) ∈ Z.

1.3 Cone Theorem and contractions

The Cone theorem is the first main step of the Mori program. It allows to
describe the negative part of the Mori cone with respect to the canonical divisor
of X. Mori in [Mor82] provides a proof in the non-singular case. The extension
to the singular case is due to several authors; we recall Kawamata [Kaw84],
Reid [Rei83] and Shokurov [Sho86].

In the following section, we will mainly follow [KM98, Chapter 3], where a
comprehensive proof of the Cone Theorem and related results can be found.

Theorem 1.3.1 (Cone theorem). [KM98, Theorem 3.7] Let X be a normal projective
Q-factorial variety with at most terminal singularities. Then there are countably many
Rl such that

NE(X) = NE(X)KX≥0 +∑ Rl
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where Rl = R>0Γl with Γl rational curve on X such that 0 < −KX · Γl ≤ dim(X) +
1.

Moreover for any ample divisor H and ε > 0,

NE(X) = NE(X)(KX+εH)≥0 + ∑
finite

Rl .

Definition 1.3.2. A KX-negative face of the cone NE(X) is called extremal face
of the Mori Cone. The half-lines Rl of the previous theorem are called Mori
extremal rays of the Mori cone and the rational curves Γl extremal curves.

In the next part of this section, we collect some fundamental results that
allow us to associate to an extremal face of the Mori cone a contraction and to
obtain the Contraction Theorem. The Contraction theorem is one main tool of
the MMP.

Theorem 1.3.3 (Rationality theorem). [KM98, Theorem 3.5] Let X be a projective
Q-factorial variety with at most terminal singularities, and L an ample Cartier divisor
of X. If KX is not nef, then

r .
= max{t ∈ R|L + tKX is nef}

is a rational number.

The next Theorem allows us to associate to each extremal face F of the
Mori cone a supporting divisor, i.e. a nef Cartier divisor L of X such that
F = NE(X) ∩ L⊥. A proof of this result can be found in [KM98, Proof of Th.
3.15 Step 6.].

Theorem 1.3.4. [KM98] Let X be a normal projective Q-factorial variety with at
most terminal singularities and let F be an extremal face of NE(X). Then it exists a
nef divisor L ∈ Div(X) such that

F = NE(X) ∩ L⊥

and aL− KX is nef and big for a big enough. L is called a supporting divisor of F.

Remark 1.3.5. Let R be an extremal ray of the Mori cone NE(X), and let L be
a supporting divisor. Let S be an extremal ray of NE(X) such that R 6= S. By
construction of a supporting divisor L, S · L > 0.

Theorem 1.3.6. [KM98, Theorem 3.3] Let X be a normal projective Q-factorial vari-
ety with at most terminal singularities. Let D ∈ Div(X) be a nef Cartier divisor such
that aD− KX is nef and big for a ∈ N big enough. Then |aD| is base point free.

Remark 1.3.7. Let F be an extremal face of the Mori cone NE(X) and let L be
a supporting divisor for F. By using Theorem (1.3.6), we see that the linear
system associated to the divisor mL for m big enough, is base point free. Hence
it defines a morphism

ϕ|mL| : X → P(H0(X,OX(mL))).
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Consider the Stein factorization ofϕ|mL| [Mat13, Proposition 2.16]:

X
ϕ|mL| //

φ
&&

P(H0(X,OX(mL)))

Y
ψ

77
.

Then φ is a morphism with connected fibers onto a normal projective variety
Y and ψ is finite.

The previous results allow us to obtain the Contraction Theorem:

Theorem 1.3.8 (Contraction Theorem). [KM98, Theorem 3.7.(3)] Let X be a pro-
jective variety with at most terminal singularities, let F be an extremal face of the Mori
cone NE(X) and let L be a supporting divisor of F. Then there is a unique morphism
ϕ : X → Y such that:

1. Y is a normal projective variety;

2. ϕ has connected fibers;

3. an irreducible curve C ⊂ X is mapped into a point if and only if [C] ∈ F, or
equivalently an irreducible curve C ⊂ X is mapped into a point if and only if
L · C = 0.

Definition 1.3.9. Let X be a normal projective variety. A contraction of X is a
surjective morphismϕ : X → Y with connected fibers onto a normal variety Y.
A contraction is said to be elementary if ρX − ρY = 1.

Definition 1.3.10. Letϕ be a contraction. The mapϕ : X → Y is:

1. of fiber type if dim X > dim Y;

2. birational if dim X = dim Y.

The exceptional locus of ϕ, Exc(ϕ), is the smallest subset such that ϕ is an iso-
morphism on X \ Exc(ϕ).

Definition 1.3.11. Letϕ be a birational elementary contraction. The contraction
ϕ is said to be divisorial (small) if its exceptional locus has codimension 1 (≥ 2).

Definition 1.3.12. Letϕ be a contraction of X. We say thatϕ is of type (a, b), if
dim Exc(ϕ) = a and dimϕ(Exc(ϕ)) = b.

It is possible to ask furthermore conditions on the anticanonical degree of
curves in the fibers. Consider a contractionϕ : X → Y, we say thatϕ is a Mori
contraction if −KX isϕ-ample, i.e. if F is a non-trivial fiber ofϕ and C ⊂ F is a
curve then −KX · C > 0.

Letϕ : X → Y be a contraction. Then we define the relative cone ofϕ as the
convex subcone NE(ϕ) of NE(X) generated by all the one-cycles contracted
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by ϕ. If we consider ϕ∗ : N1(X) → N1(Y) the push forward of one-cycles
induced byϕ. Then we can get an equivalence description of NE(ϕ): NE(ϕ) =
NE(X) ∩ ker(ϕ∗) [Deb01, Section 1.12].

We recall some properties of small and divisorial contractions.

Proposition 1.3.13. [KM98, Prop. 2.5] Let X be a normal projective Q-factorial
variety with at most terminal singularities and letϕ : X → Y be the contraction of a
divisorial extremal ray R ⊂ NE(X). Then E .

= Exc(ϕ) is a prime divisor and it is
the unique divisor with negative intersection with R.

Theorem 1.3.14. [Kaw89, Theorem 1.1] Let X be a 4-fold, and let ϕ : X → Y be a
small elementary contraction. Then the exceptional locus E of ϕ is a disjoint union
of its irreducible components Ei for i = 1, . . . , s. Furthermore, Ei

∼= P2 for every
i = 1, . . . , s.

Proposition 1.3.15. [Mat13, Proposition 8.2.1] Let X be a normal projective Q-
factorial variety with at most terminal singularities and let ϕ : X → Y be a Mori
contraction of divisorial type. Then Y has just terminal singularities.

Proof. Consider KX = ϕ∗(Ky) + aE with a ∈ Q. By intersecting with a curve
C ⊂ X with [C] ∈ NE(ϕ), and using projection formula, we get

a(E · C) = (ϕ∗(Ky) + aE) · C = KX · C < 0.

Hence a > 0. Consider a resolution f : Z → X such that ϕ ◦ f : Z → Y is a
resolution of Y. Then

KZ = f ∗(KX) +∑ a(Ei ; X)Ei = f ∗ϕ∗KY + a f ∗E +∑ a(Ei ; Y)Ei ,

so by using that X has terminal singularities also Y has terminal singularities.

Definition 1.3.16. [KM98, Notation 0.4.11.] Letϕ : X 99K Y be a rational map
between varieties. Let Z be a subvariety of X such thatϕ is defined on a open
dense subset Z0 ⊂ Z. The closure ofϕ(Z0) in Y is called the strict transform of
Z underϕ.

Definition 1.3.17. [HK00, Definition 1.9.] Let f : X → Y be a small elementary
contraction, and let D ⊂ X be a Q-Cartier divisor such that NE( f ) is negative
on D, i.e. D ·NE( f ) < 0. A D-flip of f is a small birational morphism f ′ : X′ →
Y such that the strict transform of D in X′ is Q-Cartier and f ′-ample. Flips are
usually described by the following diagram

X
φ //

f ��

X′.

f ′~~
Y

We will also callφ D-flip of f .
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The next Lemma shows that discrepancies do not decrease after flips of
a small ray R with positive anticanonical degree. Hence if a variety X has
terminal singularities, then after a flip of a ray with (−KX)-positive degree, the
variety obtained has still terminal singularities.

Lemma 1.3.18. [KM98, Lemma 3.38] Consider a commutative diagram

X
φ //

f ��

X′

f ′��
Y

where X, X′ and Y are normal varieties and f and f ′ proper birational morphism.
Assume that:

1. −KX is Q-Cartier and f -nef;

2. KX′ is Q-Cartier and f ′-nef.

Then for an f -exceptional divisor E over Y, we have

a(E; X) ≤ a(E; X′)

where a(E; X) and a(E; X′) are the discrepancies of E with respect to X and X′ respec-
tively.

Proof. Consider a common resolution of X and X′

Z
g

��

g′

  
X

φ //

f ��

X′

f ′~~
Y

Set h .
= f ◦ g = f ′ ◦ g′ and let m be an integer large enough such that mKX and

mKX′ are Cartier divisors. Then

−m (KZ) = −mg∗(KX)−∑ a(Ei ; X)E,

m (KZ) = mg′∗(K′X) +∑ a(Ei ; X′)Ei .

Consider H .
= ∑(a(Ei ; X)− a(Ei ; X′))Ei, note that H = mg′∗(K′X)− mg∗(KX)

hence it is h-nef. All the coefficients are non-positive. Note that h∗(−H) = 0
hence −H is effective (Lemma (1.1.10)). Thus a(E; X) ≤ a(E, X′).

Definition 1.3.19. [HK00, Definition 1.8.] A small Q-factorial modification (SQM)
of X a normal projective Q-factorial variety is a birational map g : X 99K Y,
where Y is normal, projective and Q-factorial and g is an isomorphism in codi-
mension 1.
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One important class of examples of SQMs are flips.

Let R be a ray (we do not require to have negative anticanonical degree) of
NE(X). We define the Locus(R) to be the locus of curves whose classes lie in R
[Wiś91, 1]. Note that it coincides with the exceptional locus of the contraction
associated with R, and if R is of fiber type, then Locus(R) = X.

The length of R is defined as

l(R) .
= min{−KX · C|C rational curve and [C] ∈ R}

Theorem 1.3.20 (Ionescu-Wiśniewski). [Wiś91, Theorem 1.1][Ion86, Theorem 0.4]
Let X be a projective manifold and let R ⊂ NE(X) be an extremal ray. Let F be an
irreducible component of a non-trivial fiber of the contraction of R. Then

dim(F) + dim(Locus(R)) ≥ dim(X) + l(R)− 1.

Corollary 1.3.21. [Wiś91] Let X be a projective manifold and let R ⊂ NE(X) be a
ray. Letϕ : X → Y be the associated contraction to R. Suppose that:

1. −KX · R > 0;

2. R is small.

Thenϕ cannot have one-dimensional fibers.

Proof. Set n .
= dim X and let F be an irreducible component of a non-trivial

fiber ofϕ. First note that l(R) ≥ 1, so

dim(F) + dim(Locus(R)) ≥ n.

R is small, so dim(Locus R) ≤ n− 2. Hence

dim(F) ≥ n− dim(Locus(R))
≥ n− n + 2 = 2.

Therefore F cannot be one-dimensional.

Corollary 1.3.22. Let X be a projective manifold of dimension n and let R ⊂ NE(X)
be a small extremal ray with fibers of dimension at most 2. Then the associated con-
tractionϕ : X → Y is of type (n− 2, n− 4).

Proof. Foremost note that ϕ is equidimensional on E .
= Exc(ϕ), and every

non-trivial fiber of ϕ is two-dimensional. Indeed, by Corollary (1.3.21) it has
no non-trivial fiber of dimension 1. Let F be a non-trivial fiber orϕ. Consider
the Ionescu-Wiśniewski inequality (1.3.20),

dim(F) + dim(Locus(R)) ≥ n + l(R)− 1.

R has positive anticanonical degree, so l(R) ≥ 1. Hence

dim(F) + dim(Locus(R)) ≥ n + l(R)− 1 ≥ n.

dim F = 2, so dim Locus(R) ≥ n− 2. Sinceϕ is small dim Locus(R) = n− 2.
Henceϕ is small of type (n− 2, n− 4).
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The next Lemma characterises the contractions of extremal divisorial rays
of length l(R) with fibers of dimension l(R).

Lemma 1.3.23. [AO02, Theorem 5.2] Let X be a projective manifold. The following
are equivalent:

1. there exists an extremal ray R such that the contraction associated to R is divi-
sorial and the fibers have dimension = l(R);

2. There exists a morphismϕ : X → Y into a smooth projective variety Y which is
the blow-up of Y along a smooth subvariety of codimension l(R) + 1.

Moreover the contraction of R andϕ coincid.

The next Theorem is due to Wiśniewski and will be of frequent use through-
out this thesis, and it describes the Mori contractions with at most one-dimensional
fibers.

Theorem 1.3.24. [Wiś91, Theorem 1.2.] Let X be a projective manifold,ϕ : X → Y
a Mori contraction such that every fiber ofϕ has dimension at most one. Then one of
the following holds:

1. ϕ is of fiber type;

2. ifϕ is birational then is of type (n− 1, n− 2)sm, i.e. it is a blow-up of a smooth
codimension 2 subvariety of Y.

Ifϕ is of fiber type, then we will call it a conic bundle.

Lemma 1.3.25. [AW97, Lemma 2.12 and Theorem 4.1] Let X be a projective manifold,
ϕ : X → Y be a Mori contraction, and F be a fiber with an irreducible component F0
of dimension 1. Then Y is smooth in ϕ(F0). Either ϕ is of fiber type and F has two
irreducible components (both isomorphic to P1) orϕ is birational and F = F0 ∼= P1.

Remark 1.3.26. Let X be a projective manifold, and let ϕ : X → Y be an ele-
mentary extremal contraction. If every non-trivial fiber of a Mori contraction
ϕ : X → Y is one-dimensional, then Y is smooth.

For the singular case, we recall the following lemma:

Lemma 1.3.27. [Ish91, Lemma 1.1.] Let X be a projective variety with at most ter-
minal singularities, and let ϕ : X → Y be a birational Mori contraction with fibers
of dimension at most 1. Let F be an irreducible component of a non-trivial fiber, and
suppose that F contains a Gorenstein point of X. Then F ∼= P1 and −KX · F ≤ 1.

Remark 1.3.28. Let X be a projective variety with at most terminal singularities
and let D ⊂ X be a prime divisor in X. Suppose that exists a ray R ⊂ NE(X)
such that R 6⊂ N1(D, X). Then R ∩N1(D, X) = {0}.

The following lemma will be of frequent use in our proofs:

Lemma 1.3.29. Let X be a projective variety and let D ⊂ X be a prime divisor of X.
Suppose there exists a ray R ⊆ NE(X) associated to a contraction ϕ : X → Y such
that:

10



1. R · D > 0;

2. R 6⊂ N1(D, X).

Then every non-trivial fiber of the associated contractionϕ is a curve.

Proof. Let F be an irreducible component of a non-trivial fiber of ϕ. Since D ·
R > 0, then F ∩ D 6= ∅. Note that since R 6⊂ N1(D, X), then ϕ is finite on D
and F 6⊂ D. Then

dim F− 1 ≤ dim(D ∩ F) = dimϕ(D ∩ F) = 0.

Corollary 1.3.30. Let X be a projective variety with at most terminal singularities of
dimension n. Let D ⊂ X be a prime divisor. Suppose there exists a ray R such that:

1. D · R > 0;

2. the contraction associated to R has fibers of dimension > 1.

Then R ⊂ N1(D, X).

Proof. Suppose that R 6⊂ N1(D, X). Then every non-trivial fiber is one-dimensional
by Lemma (1.3.29). Hence R ⊂ N1(D, X).

Remark 1.3.31. Let X be a manifold of dimension n, and let D be a prime divisor.
Suppose there exists an elementary contractionϕ : X → Y of an extremal ray
R ⊂ NE(X) such that R is birational, D · R > 0 and R 6⊂ N1(D, X). Then every
non-trivial fiber is one-dimensional by Lemma (1.3.29), so it is of type (n −
1, n− 2)sm by Theorem (1.3.24) . Then E .

= Exc(ϕ) has a P1-bundle structure
given by the restriction of the contractionϕ to E, i.e. ϕ|E : E→W.

Moreover for every fiber f ofϕ|E, the following hold:

1. D · f > 0, because D · R > 0;

2. E · f = −1,ϕ is of type (n− 1, n− 2)sm;

3. f 6⊂ D, because R 6⊂ N1(D, X).

We end this section by recalling a technical lemma that we will use in the
proof of the Proposition (4.10), and a theorem due to Lazarsfeld.

Lemma 1.3.32. [Cas09, Lemma 4.9] Let E be a projective manifold and π : E→W be
a smooth morphism with fibers Pr. Suppose that E has a Mori contractionφ : E→ Pr

which is finite on fibers of π . Then E ∼= W × Pr.

Theorem 1.3.33. [Laz84, Theorem 4.1] Let X be a projective manifold of dimension
n ≥ 1, and let

f : Pn → X

be a surjective morphism. Then X ∼= Pn.

11



1.4 Fano manifolds

Definition 1.4.1. A projective manifold is said to be Fano if the Cartier divisor
−KX is ample.

Fano manifolds in dimension two are called Del Pezzo surfaces. Examples of
del Pezzo surfaces are P2, P1×P1 and Bl{P,Q} P2 where P and Q are two points
in P2.
Remark 1.4.2. By the Cone Theorem (1.3.1), if X is Fano then NE(X) = NE(X)
and the Mori cone is polyhedral.

Definition 1.4.3. Let X be a Fano manifold. We define the pseudoindex of a Fano
manifold X as

iX
.
= min{−KX · C|C is a rational curve in X}.

Remark 1.4.4. Let X ba a Fano manifold of dimension n. Suppose that X has a
structure of blow-up of a smooth subvariety of codimension 2, i.e. X has one
extremal ray R ⊂ NE(X) of type (n− 1, n− 2)sm. By the Ionescu-Wiśniewski
inequality (1.3.20), l(R) = 1. Hence iX = 1.

Example 1.4.5. Consider the Fano manifold X obtained as the blow-up of P5 along a
P3, i.e. X = BlP3 P5. Then ρX = 2 and iX = 1.

Example 1.4.6. Consider X .
= P1 × P1 × BlP P3 where P is a point in P3. X is a

Fano manifold of dimension 5 with ρX = 4 and pseudoindex iX = 2. Note that it has
a ray giving to X a structure of blow-up of a smooth subvariety, and three rays of fiber
type.

Example 1.4.7. Consider X .
= P1 × BlP P4 where P is a point in P4. X is a Fano

manifold of dimension 5 with ρX = 3 and pseudoindex iX = 2. Note that it has one
divisorial ray which correspond to the blow-up of a point, and two rays of fiber type.

Definition 1.4.8. Let X be a Fano manifold. We define the Lefschetz defect as

δX = max{codim N1(D, X)|D ⊂ X prime divisor of X}.

In general, dim N1(D, X) can be smaller than ρX . For example, take X to
be the blow-up of P2 in one point and let E be the exceptional divisor of the
blow-up. Note that, ρX = 2 and dim N1(E, X) = 1.

It can happen that dim N1(D, X) = ρX . For example, consider X Fano man-
ifold of dimension n and D a principal ample divisor of X. Then, by Lefschetz
Theorem on the Picard group [Laz17, Example 3.1.25], N1(D, X) = N1(X). So
the dimensions also coincide.

Lemma 1.4.9. Let X be a Fano manifold of dimension n. Let R ⊂ NE(X) be an
extremal ray whose contraction ϕ : X → Y is the blow-up of a smooth subvariety
Z ⊂ Y of codimension at least 2. Let E .

= Exc(ϕ) be the exceptional divisor of ϕ.
Suppose that for every extremal ray S ⊂ N1(E, X) such that S 6= R, S is non-negative
on E.

Then Y is Fano.
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Proof. By contradiction suppose that Y is not Fano. Then there exists a ray
R ⊂ NE(Y) such that −KY · R ≤ 0. Let RX ⊂ NE(X) be a ray, not contracted
by ϕ such that R = ϕ∗(RX). Then −ϕ∗(KY) · RX ≤ 0. ϕ correspond to the
blow-up of a smooth subvariety of Y of codimension ≥ 2, therefore

−KX = −ϕ∗(KY)− (codim Z− 1)E

with codim Z− 1 ≥ 1. Intersecting with RX , E · RX < 0 thus RX ⊂ N1(E, X).
Since RX 6= R and every ray S 6= R contained in N1(E, X) is non-negative on
E, we get a contradiction.

In the next Remark we will see that, if we consider an elementary contrac-
tion f : X → Y of a Fano manifold X and an elementary contractionϕ of Y, it
always exists a lift forϕ, i.e. the elementary contraction ψ : X → W of X such
that NE(ϕ ◦ f ) = NE( f ) + NE(ψ).

X

f
��

ψ // W

��
Y

ϕ
// Z

Remark 1.4.10. [Cas08, Section 2.5] Let X be a Fano variety and let f : X → Y
be a contraction. Let α ⊆ NE(Y) be a face of the Mori cone of Y, and let α̂ ⊆
NE(X) be the unique face of NE(X) containing NE( f ) and such that f∗(α̂) = α.
Then

dim(α̂)− dimα = dim NE( f ).

Since NE( f ) is a face of NE(X) contained in α̂, then NE( f ) is a face of α̂. Then
we can find another face of α̂, α̃ such that the followings hold:

1. dim(α) = dim(α̃);

2. α̃ ∩NE( f ) = {0}.

Suppose that dimα = 1, i.e. the contraction ϕ associated to α is an elemen-
tary contraction. Then α̃ is an extremal ray of NE(X), because α̃ is a face of
NE(X) of dimension dim(α̃) = dim(α) = 1, f∗(α̃) = α and the choice of α̃ is
unique. Since X is Fano, by the Contraction Theorem (1.3.8), there exists two
contractions h : X → Z and ψ : X →W such that NE(h) = α̂ and NE(ψ) = α̃.

X

f
��

ψ //

h

  

W

Y Z
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Then there exists two contractions ϕ̃ : Y → Z and g : W → Z such that they
make the following diagramm commutes:

X

f
��

ψ //

h

  

W

g
��

Y
ϕ̃
// Z.

Since f∗(α̃) = α, then NE(ϕ̃) = α. Thus ϕ = ϕ̃ and NE(ϕ ◦ f ) = NE( f ) +
NE(ψ). We call ψ a lift ofϕ.

Lemma 1.4.11. Let X a Fano manifold . Let D ⊂ X be an effective divisor in X. Then
it is always possible to find an extremal ray of the Mori cone R ⊂ NE(X) such that
D · R > 0.

Proof. By contradiction, let D ⊂ X be an effective divisor such that D · R ≤
0 for every extremal ray R ⊂ NE(X). Since D is effective, then it exists an
irreducible curve C ⊂ X positive on D, i.e. D · C > 0. Since [C] ∈ NE(X)
then [C] = a1[C1] + · · · + as[Cs] with ai ∈ R≥0, not all 0, and [Ci] class of a
curve in an extremal ray Ri for every i ∈ {1, · · · , s}. Therefore 0 < D · C =
D · (a1[C1] + · · ·+ as[Cs]) ≤ 0, a contradiction.

Lemma 1.4.12. [Cas09, Remark 4.6.] Let X be a Fano manifold. Suppose there exists
a divisorial contraction associated to a ray S1 with exceptional divisor G1 such that
G1 · S ≥ 0 for every extremal ray S 6= S1. Let S2 be a birational extremal ray of
NE(X) with G1 · S2 = 0. Then S1 + S2 is a face of NE(X).

Proof. By contradiction. Suppose that S1 + S2 is not a face and let Ci be a curve
of X such that [Ci] ∈ Si for i = 1, 2. Let λi ∈ Q>0 for i = 1, 2. Then

λ1C1 + λ2C2 ≡
m

∑
k=3

λkCk

with λk ∈ Q>0 for every k ∈ {1, · · · , m}; moreover Ck ∈ Sk where Sk is an
extremal ray with non-negative intersection with G1 for every k ∈ {3, · · · , m}.
Then, intersecting with G1, we obtain

0 > (λ1C1 + λ2C2) · G1 =

(
m

∑
k=3

λkCk

)
· G1 > 0,

which is a contradiction.

We conclude this subsection with two results proved by C. Casagrande in
[Cas12b], that allow us to obtain a bound on the Picard number of Fano 4-folds
admitting some contractions of fiber type.

Corollary 1.4.13. (Elementary contraction onto a surface) Let X be a Fano 4-fold. If
X has an elementary contraction onto a surface S and ρX ≥ 4, then X ∼= P2 × S with
S del Pezzo. Hence ρX ≤ 10.
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Corollary 1.4.14. (Elementary contraction onto a threefold) Let X be a Fano 4-fold.
If X has an elementary contraction onto a threefold Y and ρX ≥ 7, then either X ∼=
P1 × P1 × S or X ∼= F1 × S with S del Pezzo. Hence ρX ≤ 11
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2 Mori program for a MDS

The notion of Mori dream space (or shortly MDS) was introduced by Hu and
Keel in [HK00] where it is shown that they have many important features with
respect to the Mori theory. For example, we will recall that for a MDS X it
always exists a MMP for every divisor in X.

In this section, we will collect some of these features.

Definition 2.1. [HK00, Def. 1.10] Let X be a normal Q-factorial projective va-
riety. X is said to be a Mori dream space (MDS) if it satisfies the following prop-
erties:

1. Pic(X) is finitely generated;

2. Nef(X) is generated by classes of finitely many semiample divisors;

3. there is a finite collection of SQM gi : X 99K Xi for i = 1, · · · , r such that
every Xi satisfies (1) and (2), and

Mov(X) =
r⋃

i=1

g∗i (Nef(Xi))

One of the main characteristics of a MDS is that the Effective cone is rational
polyhedral, hence closed [Cas12a, Corollary 4.8.]. This allows us to prove the
following Lemma:

Lemma 2.2. Let X be a MDS and let D ⊂ X be an effective divisor in X such that
[D] 6≡ 0. Then −D is not nef.

Proof. Since D is a non-zero effective divisor, −D is not effective. By [Cas12a,
Corollary 4.8.], the Effective cone is rational polyhedral. Hence it is closed, so
Eff(X) = Eff(X). Thus

Nef(X) ⊆ Eff(X)

and −D cannot be nef.

Definition 2.3. Let X be a normal Q-factorial projective variety and let D ⊂ X
be a divisor in X. A Mori program for D .

= D0 is a finite sequence

X .
= X0

σ0 // X1
σ1 // · · ·

σk−2 // Xk−1
σk−1 // Xk

such that:

1. for all i ∈ {0, . . . , k} Xi is a normal and Q-factorial projective variety;

2. for all i ∈ {0, . . . , k − 1} there is a ray Ri of Xi such that Di · Ri <
0, where Di is the transform of Di−1 (Def. (1.3.16)) if σi−1 is a flip or
Di = (σi−1)∗(Di−1) if σi−1 is a contraction of divisorial type. Moreover
Locus(Ri) ⊂ Xi, and σi is either the contraction of the ray Ri, in case Ri
is of divisorial type, or the Di-flip of Ri, in case Ri is small;
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3. if i = k, then Dk is either nef or there exists a Dk negative contraction of a
ray Rk ⊂ NE(Xk) of fiber typeϕ : Xk → Y.

It has been proved that if the starting variety X is a MDS and D ⊂ X is a
divisor in X, it always exists a Mori program for D. For a proof of the existence,
see [HK00, Prop 1.11 (1)] or [Cas12a, Section 4].

Proposition 2.4. [HK00, Prop 1.11 (1)] Let X be a MDS and D ⊂ X a divisor in X.
Then X admits a Mori program for D. Moreover, with the notation of Definition (2.3),
the choice of the ray Ri is arbitrary among the Di-negative ones.

Remark 2.5. Consider X a MDS, D ⊂ X a divisor in X and a Mori program for
D. With the notation of Definition (2.3), every Xi is a MDS. [Cas12a, Proof of
Theorem 4.2.]

In the remaining part of this section, we will consider a Mori program for
−D ⊂ X where D is a prime divisor and X is a MDS. This type of Mori program
was first introduced [Cas09] and studied in detail in [Cas12b]. It is somewhat
opposite to the classical approach since at every step we will consider a ray
with positive intersection with the divisor.

As a corollary of the existence of a Mori Program on a MDS for every divi-
sor, we obtain the following result (which is a generalization of Lemma (1.4.11))

Corollary 2.6. Let X be a MDS and D ⊂ X a prime divisor in X. Then D is positive
on at least one ray of the Mori cone NE(X).

Next Lemma will be of frequent use in our proof. Indeed, let X be a MDS.
By Remark (2.5), given a Mori program for −D where D is a prime divisor
D ⊂ X, at every step of the Mori program we can apply Corollary (2.6).

Lemma 2.7. [Cas09, Remark 2.5] Let X be a MDS and let D ⊂ X be a prime divisor
in X, then it exists an elementary contractionϕ : X → Y such that D ·NE(ϕ) > 0
and D intersects every non-trivial fiber ofϕ.
Moreover one of the following occours:

1. ifϕ is of fiber type, then ρX ≤ dim N1(D, X) + 1;

2. if ϕ is birational, then Exc(ϕ) 6= D, ϕ(D) is a divisor in Y and one of the
following occours:

(a) NE(ϕ) ⊂ N1(D, X) and dim N1(D, X) = dim(ϕ(D), Y) + 1;

(b) NE(ϕ) 6⊂ (D, X) and dim N1(D, X) = dim(ϕ(D), Y).

Proof. By Corollary (2.6) D is positive on at least one ray of NE(X). Consider
a ray R positive on D and letϕ : X → Y be the associated elementary contrac-
tion. By the positivity of D in NE(ϕ), D intersects every not trivial fiber ofϕ.
A contraction can be either of fiber type or birational.
Suppose that ϕ is of fiber type. Since D intersects every non-trivial fiber of ϕ
then

ϕ(X) =ϕ(D) = Y.
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Consequently (ϕ)∗(N1(D, X)) = N1(Y), hence ρY ≤ dim N1(D, X) and ρX ≤
dim N1(D, X) + 1 .

Suppose now thatϕ is birational. Since D · R > 0 then Exc(ϕ) intersects D.
We will now prove that Exc(ϕ) 6= D. Ifϕ is small, then it is clear. Suppose that
ϕ is of divisorial type and D = Exc(ϕ). By Proposition (1.3.13) D ·NE(ϕ) =
Exc(ϕ) ·NE(ϕ) < 0. Hence D 6= Exc(ϕ), thusϕ(D) is a divisor of Y. The ray
contracted can either be contained in N1(D, X) or not. Suppose that NE(ϕ) ⊂
N1(D, X); then dim N1(D, X) = dim(ϕ(D), Y) + 1. Otherwise if NE(ϕ) 6⊂
N1(D, X), then dim N1(D, X) = dim(ϕ(D), Y). Note that in this last caseϕ|D
is finite, hence by Lemma (1.3.29) every fiber of ϕ|D has dimension at most
1.

In the next Lemma we will observe that every Mori program for −D where
D ⊂ X is a prime divisor in X ends with a contraction of fiber type.

Lemma 2.8. [Cas12b, Lemma. 2.6] Let X be a MDS and D ⊂ X be a prime divisor
in X. Consider a Mori program for −D as in (2.3):

X .
= X0

σ0 // X1
σ1 // · · ·

σk−2 // Xk−1
σk−1 // Xk

Then the following hold:

1. at every step Di is a prime divisor of Xi;

2. the ray Rk is of fiber type, hence the program ends with an elementary contrac-
tion of fiber typeϕ : Xk → Y such that NE(ϕ) = Rk andϕ(Dk) = Y;

Proof. Let i ∈ {1, · · · , k} be such that σi is a flip. Then by the flip construc-
tion (Def. (1.3.17)), Di+1 is a prime divisor. To prove that at each step Di is
a prime divisor of Xi, it is enough to see it when σi is of divisorial type. Let
i ∈ {1, · · · , k} be such that σi is a divisorial contraction. Since Di · Ri > 0, then
Di ∩ Exc(σi) 6= ∅ but Di 6= Exc(σi) otherwise Ri it would have been negative
on Di by Proposition (1.3.13). So Di+1 = σi(Di) is a prime divisor in Xi+1. Thus
at every step Di is a prime divisor of Xi.

For i = k we have that Dk is a prime divisor of Xk, then −Dk cannot be
nef by Lemma (2.2) and by Remark (2.5). Hence the Mori program ends with
a contraction of fiber type. Let ϕ : Xk → Y be the contraction of fiber type
associated to Rk. Since Dk · Rk > 0, Dk intersects every non-trivial fiber of ϕ.
Thenϕ(Dk) = Y.

Lemma 2.9. [Cas12b, Lemma. 2.6] Let X be a MDS and D ⊂ X be a prime divisor.
Consider a Mori program for −D as in (2.8):

X .
= X0

σ0 // X1
σ1 // · · ·

σk−2 // Xk−1
σk−1 // Xk

Set ci
.
= codim N1(Di , Xi) for every i ∈ {0, · · · , k}. For every i ∈ {0, · · · , k− 1}

we have

ci+1 =

{
ci if Ri ⊂ N1(Di , Xi)

ci − 1 if Ri 6⊂ N1(Di , Xi)
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and

ck =

{
0 if Rk ⊂ N1(Dk, Xk)

1 if Rk 6⊂ N1(Dk, Xk).

Furthermore #{i ∈ {0, · · · , k− 1}|Ri 6⊂ N1(Di , Xi)} = codim N1(D, X).

Proof. By definition of Mori program for −D, we have Di · Ri > 0 for every
i ∈ {1, · · · , k}.

Let i ∈ {1, · · · , k} be such that σi is a contraction of divisorial type and
consider the push-foward of 1-cycles (σi)∗ : N1(Xi) → N1(Xi+1). Since Di
is positive on Ri and σi is the elementary contraction associated to the ray Ri,
ker((σi)∗) = RRi and N1(Di+1, Xi+1) = (σi)∗(N1(Di , Xi)). Since we have
ρXi+1 = ρXi − 1, then ci+1 = ci if Ri ⊂ N1(Di , Xi), otherwise ci+1 = ci − 1 if
Ri 6⊂ N1(Di , Xi).

Let i ∈ {0, · · · , k − 1} be such that σi is a −Di-flip and consider the flip
diagram:

Xi
σi //

ϕi ��

Xi+1

ϕ′i}}
Yi

where ϕi is the contraction of Ri and ϕ′i is its flip. Since ϕi(Di) = ϕ′i(Di+1),
then

(ϕi)∗(N1(Di , Xi)) = N1(ϕi(Di), Yi) = N1(ϕ
′
i(Di+1), Yi) = (ϕ′i)∗(N1(Di+1, Xi+1)).

Note that NE(ϕ′i) ⊂ N1(Di+1, Xi+1), since Di+1 ·NE(ϕ′i) < 0 by Definition of
flip (1.3.17). Then ker(ϕ′i)∗ ⊆ N1(Di+1, Xi+1), so we have

ci+1 = codim N1(ϕi(Di), Yi).

Therefore, ci+1 = ci if Ri ⊂ N1(Di , Xi), otherwise ci+1 = ci − 1 if Ri 6⊂
N1(Di , Xi). By Lemma (2.8),ϕk(Dk) = Y, so

(ϕk)∗(N1(Dk, Xk)) = N1(Y).

Hence either ck = 0 if Rk ⊂ N1(Dk, Xk) or ck = 1 if Rk 6⊂ N1(Dk, Xk).
The last part of the statement follows immediately.

Lemma 2.10. [Cas12b, Lemma 2.6] Let X be a smooth MDS and D ⊂ X be a prime
divisor. Consider a Mori program for −D. Define Al ⊂ Xl for l ∈ {1, · · · , k} as
follows: let A1 ⊂ X1 be the indeterminacy locus of σ−1

0 , and for i ∈ {2, . . . , k} let
Ai ⊂ Xi be the union of σi−1(Ai−1) and the indeterminacy locus of σ−1

i−1, if σi−1
is of divisorial type, or let Ai ⊂ Xi be the union of the transform of Ai−1 and the
indeterminacy locus of σ−1

i−1, if σi−1 is a flip.
Then for every i ∈ {1, · · · , k}, Sing(Xi) ⊆ Ai ⊂ Di and Xi \ Ai is isomorphic

to an open subset of X, so it is smooth.
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Proof. Let i ∈ {0, · · · , k− 1} be such that σi is a contraction of divisorial type.
Since Di is positive on Ri, it intersects every non-trivial fiber of σi. So Di ∩
Exc(σi) 6= ∅ and σi(Exc(σi)) ⊆ Di+1. So Di+1 contains the indeterminacy
locus of σ−1

i .
Let i ∈ {1, · · · , k} be such thatσi is a−Di-flip and consider the flip diagram:

Xi
σi //

ϕi ��

Xi+1

ϕ′i}}
Yi

whereϕi is the contraction of Ri andϕ′i is its −Di-flip. By construction Di+1 is
negative on NE(ϕ′i), then Exc(ϕ′i) ⊂ Di+1. Hence Di+1 contains the indetermi-
nacy locus of σ−1

i ,
For every i Di contains the indeterminacy locus of σ−1

i−1, so we see that
Ai ⊂ Di. To conclude, note that Ai contains the indeterminacy locus of (σi−1 ◦
· · ·σ0)

−1 and that Xi \ Ai is smooth because X is smooth.

Remark 2.11. Note that if σi−1 is small, then dim Ai > 0. Hence, dim Ai = 0
occurs only if Ri−1 is divisorial.

2.1 Fano as MDS

In [HK00, Corollary 2.16] it has been proved that Fano 3-folds are MDS and it
has been conjectured that the same holds for arbitrary dimensions. In [BCHM10]
it has been proved that any Fano manifold of any dimension is a MDS. This
enables us to consider a Mori program for every divisor D ⊂ X. In the follow-
ing section, we will also show that there is a suitable choice of extremal rays
involved in the MMP whose contractions have positive anticanonical degree.
We will call this Mori program special Mori program.

From now, X is fixed to be a Fano manifold of dimension at least 3.

Theorem 2.1.1. [BCHM10, Corollary 2.16] Let X be a Fano manifold. Then X is a
Mori Dream Space.

Corollary 2.1.2. Let X be a Fano manifold and let D ⊂ X be a divisor in X. Then it
exists a Mori program as in (2.3) for X and D.

Lemma 2.1.3. [Cas09, Lemma 3.8.] Let X be a Fano manifold and let D ⊂ X be
a prime divisor in X. Consider a Mori program for −D as in Lemma (2.8), let i ∈
{0, · · · k} and suppose that for every j ∈ {0, · · · , i − 1} the R j is −KX j -positive.
Then for every s ∈ {0, . . . , i} Xs has terminal singularities.

Let Ai ⊂ Xi as in Lemma (2.10). If C ⊂ Xi is an irreducible curve not contained
in Ai and C0 ⊂ X is the proper transform of C in X, the following holds:

−KX · C0 ≤ −KXi · C.
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Moreover if C ∩ Ai 6= ∅ then

−KX · C0 < −KXi · C.

Proof. Fix i ∈ {1, · · · , k}. Suppose that the statement holds for i− 1 and take
σi−1 : Xi−1 99K Xi. We will distinguish two cases, when σi−1 is a −Di−1-flip
and when σi−1 is divisorial. Suppose that σi−1 is a −Di−1-flip. Now consider
a common resolution of Xi and Xi−1 and the standard flip diagram:

Z
f

}}

g

  
Xi−1

ϕi−1 !!

σi−1 // Xi .

ϕ′i−1~~
Y

Foremost we want to see that, if Xi−1 has terminal singularities, so does Xi. Let
E1, · · · , Er ⊂ Z be the exceptional divisors of the resolutions, then

KZ = f ∗(KXi−1) +
r

∑
k=1

bkEk = g∗(KXi ) +
r

∑
k=1

akEk

where ak’s and bk’s are the discrepancies of Ek in Xi and Xi−1 respectively, and
ak, bk ∈ Q. Xi−1 has terminal singularities, hence bk > 0. Since the contrac-
tion is a Mori contraction, discrepancies do not decrease after flips, also Xi has
terminal singularities and ak ≥ bk > 0 for every k = 1, · · · , r (Lemma 1.3.18).

Consider a curve C ⊂ Xi as in the statement and let CZ ⊂ Z and Ci−1 ⊂
Xi−1 be its strict transform in Z and Xi−1 respectively. First, note that CZ cannot
be contained in the exceptional divisor Ek for every k, hence Ek · CZ ≥ 0 for
every k. Notice that the following holds:

g∗(KXi ) = f ∗(KXi−1) +
r

∑
k=1

(bk − ak)Ek,

hence by the projection formula we get

−KXi · C = −KXi−1 · Ci−1 −
r

∑
k=1

(bk − ak)(Ek · CZ).

Since ai ≥ bi > 0 , Ei · CZ ≥ 0 and −KXi−1 · Ci−1 ≥ −KX · C0, then

−KXi · C ≥ −KXi−1 · Ci−1 ≥ −KX · C0.

It is left to prove the last part of the statement, i.e. if C ∩ Ai 6= ∅ then
−KX · C0 < −KXi · C.

Suppose that C ∩ Ai 6= ∅, we can consider two different cases:
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1. Ci−1 ∩ Ai−1 6= ∅. By hypothesis −KXi−1 · Ci−1 > −KX · C0, hence −KXi ·
C > −KX · C0.

2. Ci−1 ∩ Ai−1 = ∅ but C ∩ Ai 6= ∅. By the construction of the Ai’s, Ci−1 has
to intersect Locus(Ri−1), hence CZ must have positive intersection with
E j and f (E j) ⊂ Locus(Ri−1) for some j.

Now, since −KXi−1 is f -ample and f is not an isomorphism over the cen-
ter of E j in Y, then a j > b j. Hence, −KX · C0 ≤ −KXi−1 < −KXi · C.

Suppose now thatσi−1 : Xi−1 → Xi is divisorial. Then Xi is terminal by Lemma
(1.3.15), so it is left to prove the second part of the statement.

Consider an irreducible curve C ⊂ Xi not contained in Ai and let C0 ⊂ X be
the proper transform of C in X. We have that −KXi−1 = σ∗i−1(−Ki)− aE where
E is the exceptional divisor ofσi−1 and a > 0. Let Ci−1 be the proper transform
of C in Xi−1. Observe that Ci−1 6⊂ E because C 6⊂ Ai, so E · Ci−1 ≥ 0. Recall
that −KXi−1 · Ci−1 ≥ −KX · C0, so

−KXi · C = (−KXi−1 + aE) · Ci−1 ≥ −KXi−1 · Ci−1 ≥ −KX · C0.

By a similar argument as above, we can conclude. Indeed, suppose that
C ∩ Ai 6= ∅; we can distinguish two different cases:

1. Ci−1 ∩ Ai−1 6= ∅. Since −KXi−1 · Ci−1 > −KX · C0, then −KXi · C > −KX ·
C0.

2. Ci−1 ∩ Ai−1 = ∅ but C ∩ Ai 6= ∅. Then E ∩ Ci−1 6= ∅ but the curve is
not contained in the exceptional divisor, hence E · Ci−1 > 0 and we can
conclude.

Remark 2.1.4. Consider X, Y be Q-factorial projective varieties such that f :
X → Y is the blow-up of A ⊂ Yreg and let X be Fano. Then let C be an irre-
ducible curve of Y not contained in A such that A ∩ C 6= ∅. Then −KY · C ≥ 2.

Corollary 2.1.5. Let X be a Fano manifold and let D ⊂ X be a prime divisor in X.
Let ϕ : X → Y be a divisorial contraction with associated ray R such that Y is not
Fano and D · R > 0. Then it exists a ray R′ ⊂ NE(Y) such that the following hold:

1. R′ has non-positive anticanonical degree;

2. the contraction associated to R′ is small.

Proof. We will prove that every ray R′ ⊂ NE(Y) with non-positive anticanon-
ical degree is a small ray. Set A .

= ϕ(Exc(ϕ)) and let D′ .
= ϕ(D) a prime

divisor in Y. Since Y is not Fano, it exists a ray R′ ⊂ NE(Y) with non-positive
anticanonical degree. Consider the contraction associated with this ray, say
ψ : Y → Z. Let C ⊂ Locus(R′) be a curve. Then C · (−KY) ≤ 0. By
Lemma (2.1.3), C is contained in A =ϕ(Exc(ϕ)), otherwise it would have pos-
itive anticanonical degree. Hence Locus(ψ) ⊆ A ⊂ D′. Since ϕ is divisorial,
dim A ≤ dim X− 2. Hence ψ is small.
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Remark 2.1.6. In the previous Corollary (2.1.5), Locus(ψ) ⊆ A ⊂ D. Thus, if F
is a fiber of ψ, dimϕ−1(F) > dim F.

Lemma 2.1.7. [Cas09, Lemma 3.9.] Let X be a Fano manifold of dimension n and let
D ⊂ X be a prime divisor in X. Consider a Mori program for −D as in Proposition
(2.8):

X .
= X0

σ0 // X1
σ1 // · · ·

σk−2 // Xk−1
σk−1 // Xk

Suppose there exists i ∈ {0, · · · , k} such that−KX j ·R j > 0 for every j ∈ {0, · · · , i−
1}. Let ϕ : Xi → Y be an elementary birational contraction such that NE(ϕ) 6⊂
N1(Di , Xi), and NE(ϕ) · Di > 0. Let Ai ⊂ Xi be as in Lemma (2.10).

Then ϕ is a Mori contraction, Exc(ϕ) is disjoint from Ai and ϕ|Xi\Ai
is a Mori

contraction of type (n− 1, n− 2)sm.

Proof. Set Ri
.
= NE(ϕ). By hypothesis Di · Ri > 0, so Di intersects every not

trivial fiber of σi. Ri 6⊂ N1(Di , Xi), hence σi is finite on Di. Let F′ be an irre-
ducible component of a non-trivial fiber F of σi; then F′ is a curve by Lemma
(1.3.29). F intersects Di in finitely many points, so F cannot be contained in
Ai and dim(Sing(Xi ∩ F)) = 0. By Lemma (2.1.3), since X is Fano we have
that −KXi · F ≥ 1. Then σi is a Mori contraction. Hence, by Lemma (1.3.27),
−KXi · F′ ≤ 1. By applying again Lemma (2.1.3), we obtain that Ai ∩ F = ∅, so
Exc(σi) ⊆ Xi \ Sing(Xi). By Theorem (1.3.25), we can conclude that σi|Xi\Ai

is
of type (n− 1, n− 2)sm.

Lemma 2.1.8. [Cas09, Lemma 3.10] Let X be a Fano manifold and let D ⊂ X be a
prime divisor in X. Consider a Mori program for −D, let i ∈ {0, · · · k} and suppose
that for every j ∈ {0, · · · , i− 1} the ray R j is −KX j -positive. Let Ai ⊂ Xi be as in
Lemma (2.10).

If dim N1(Di , Xi) = 1 and dim Ai > 0, then i = k ρXk ≤ 2, and every Dk-
positive elementary contraction ψ : Xk → Y is of fiber type.

Proof. Let ψ be an elementary contraction such that Di ·NE(ψ) > 0. By con-
tradiction, suppose ψ : Xi → Y to be birational. NE(ψ) can be contained in
N1(Di , Xi) or not. Assume NE(ψ) ⊂ N1(Di , Xi). dim N1(Di , Xi) = 1, so the
image of Di underψ will be a point and Di ·NE(ψ) < 0, which is not possibile
because NE(ψ) is positive on Di. Hence NE(ψ) 6⊂ N1(Di , Xi).

Thus ψ is a birational contraction with NE(ψ) 6⊂ N1(Di , Xi). Therefore, Ai
is disjoint from Exc(ψ) and ψ|Xi\Ai

is a Mori contraction of type (n − 1, n −
2)sm (by Lemma (2.1.7)). Since Di · Exc(ψ) > 0 and Di ∩ Exc(ψ) 6= ∅, we can
find an irreducible curve C ⊂ Exc(ψ) ∩ Di such that Exc(ψ) · C > 0. Since
dim N1(Di , Xi) = 1, then every curve in Di will be numerically proportional
to C. Recall that Ai ⊂ Di is a positive dimensional subset, hence also every
curve inside Ai will have positive intersection with Exc(ψ). This leads us to a
contradiction because Ai and Exc(ψ) are disjoint. Hence ψ has to be of fiber
type, so i = k. By Lemma (2.7) ρXk ≤ dim(Di , Xi) + 1 = 2.
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Lemma 2.1.9. Let X be a Fano manifold. Let D ⊂ X be a prime divisor in X and
consider a Mori program for −D as in Definition (2.8). Suppose that there exists
i = 0, · · · , k such that dim N1(Di , Xi) = 1.

Letϕ : Xi → Y be an elementary birational contraction such that Di ·NE(ϕ) > 0.
Then the following hold:

1. ϕ is finite on Di;

2. every non-trivial fiber ofϕ is a curve.

Proof. Suppose by contradiction that NE(ϕ) ⊂ N1(Di , Xi). Then ϕ maps Di
into a point and Exc(ϕ) = Di. Therefore Di ·NE(ϕ) = Exc(ϕ) ·NE(ϕ) < 0,
which contradicts Di ·NE(ϕ) > 0. Hence NE(ϕ) 6⊂ N1(Di , Xi). By Lemma
(1.3.29) every non-trivial fiber ofϕ is one-dimensional.

Definition 2.1.10. A Special Mori program for a divisor D in X is a Mori Program
as in Definition (2.3) where every contraction involved is a Mori contraction.

The next proposition allows us to obtain that for a Fano manifold there
always exists a suitable choice of rays such that the considered Mori program
is a Special Mori program.

Proposition 2.1.11. [Cas12b, Proposition 2.4] Let X be a Fano manifold and let D ⊂
X be a divisor in X. There exists a Mori program for D as in (2.3) where the rays Ri
are chosen among the KXi -negative ones for every i ∈ {0, · · · , k}.

Proof. By (2.1.2) a Mori program for D always exists, and the choice of Ri is
arbitrary among the Di’s negative ones. Therefore, we have to prove that we
can choose at each step of the program a ray Ri such that Ki · Ri < 0 and
Di · Ri < 0 for every i ∈ {0, · · · , k}.

If D is nef, then there is nothing to prove because we have that k = 0 and X
is assumed to be Fano. Hence, we can assume D not to be nef.

Define
λ0

.
= sup{λ ∈ R| λD + (1− λ)(−KX) is nef}.

Since D is not nef and X is Fano and ampleness is an open property, then 0 <
λ0 < 1. Furthermore by Q-factoriality of X, λ0 ∈ Q. Set H0

.
= λ0D + (1 −

λ0)(−KX); since ampleness is an open property and by the definition of λ0, H0
is nef but not ample. So, by construction of λ0, it exists an extremal ray of the
Mori cone of X, R0 ⊂ NE(X) say R0, such that H0 · R0 = 0 and D · R0 < 0.
Furthermore, KX · R0 < 0 since H0 · R0 = 0.

If R0 is of fiber type, then we are done. Otherwise, σ0 : X0 99K X1 is the
contraction of R0 if R0 is divisorial, or σ0 is the flip of R0 if R0 is small. Note
that the divisor λ0D1 + (1− λ0)(−KX1) ⊂ X1 is nef. As before, if D1 is nef we
are done, otherwise set

λ1
.
= sup{λ ∈ R| λD1 + (1− λ)(−KX1) is nef}.

Using similar arguments as before we have that λ0 ≤ λ1 < 1, λ1 ∈ Q and
H1

.
= λ1D1 + (1− λ1)(−KX1) ⊂ X1 is nef but not ample. There is a ray R1 of
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NE(X1) st H1 · R1 = 0, D1 · R1 < 0, thus KX1 · R1 < 0. Now we can iterate the
procedure.

As a corollary of Lemma (2.1.7), applied to a special Mori program, we
obtain the following result:

Corollary 2.1.12. [Cas12b, Lemma 2.7] Let X be a Fano manifold of dimension n and
D ⊂ X a prime divisor in X. Consider a special Mori program for −D:

X .
= X0

σ0 // X1
σ1 // · · ·

σk−1 // Xk−1
σk // Xk

Let i ∈ {0, · · · , k− 1} be such that Ri 6⊂ N1(Di , Xi) and Ri is birational. Then Ri is
of type (n− 1, n− 2)sm, i.e. σi is the blow-up of a smooth subvariety of codimension 2.
Furthermore, Exc(σi) does not intersect the exceptional loci of the maps σ j for j < i.

Proof. Fix i ∈ {0, · · · , k − 1} such that Ri 6⊂ N1(Di , Xi); by Lemma (2.1.7),
σi|Xi\Ai

is divisorial of type (n − 1, n − 2)sm and Exc(σi) ∩ Ai = ∅. We can
therefore conclude because σi is an isomorphism on Ai.

Lemma 2.1.13. [Cas12b, Lemma 2.7] Let X be a Fano manifold and let D ⊂ X be a
prime divisor in X. Consider a special Mori program for−D. Then the following hold:

1. Set s .
= #{i ∈ {0, · · · , k − 1}|Ri 6⊂ N1(Di , Xi)}. We have that either s =

codim N1(D, X) and N1(Dk, Xk) = N1(Xk) or s = codim N1(D, X)− 1,
Rk 6⊂ N1(Dk, Xk) and codim N1(Dk , Xk) = 1.

2. Set {i1, · · · , is} = {i ∈ {0, · · · , k− 1}|Ri 6⊂ N1(Di , Xi)}, and let E j ⊂ X be
the transform of Exc(σi j) ⊂ Xi j for every j = 1, · · · , s.
Then E j is a smooth P1-bundle with fiber f j. Furthermore E j · f j = −1, D j ·
f j > 0, and

[
f j
]
/∈ N1(D, X). Moreover E j ∩ D 6= ∅ and E j 6= D;

3. E1, · · · Es are pairwise disjoint.

Proof. By Lemma (2.9) we have

s =

{
codim N1(D, X) if Rk ⊂ N1(Dk, Xk)

codim N1(D, X)− 1 if Rk 6⊂ N1(Dk, Xk).

Because

ci+1 =

{
ci if Ri ⊂ N1(Di , Xi)

ci − 1 if Ri 6⊂ N1(Di , Xi)

for i ∈ {0, · · · , k− 1} and

ck =

{
0 if Rk ⊂ N1(Dk, Xk)

1 if Rk 6⊂ N1(Dk, Xk).

So the first part of the statement holds.
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Let j ∈ {i1, · · · , is}. By Corollary (2.1.12) R j is of type (n− 1, n− 2)sm. Then
by Remark (1.3.31), Exc(σ j) is a P1-bundle with the P1-bundle structure given
by the contraction of R j. Since E j

∼= Exc(σ j), also E j has a P1-bundle structure.
Let π : E j → Y be the morphism giving the P1-bundle structure on E j and let
f j ⊂ E j be the fiber of π . By Theorem (1.3.20), we have that −KX · f j = −1.
Furthermore E j · f j > 0, since Ei j · Ri j > 0. So E j ∩ D 6= ∅ and E j 6= D. Since
Ri j 6⊂ N1(Di j , Xi j),

[
f j
]
/∈ N1(D, X).

The E j are pairwise disjoint because Exc(σi j) does not intersect the trans-
form of the exceptional loci of the maps σl for l < i.

Definition 2.1.14. The E1, · · · , Es determined in the Lemma (2.1.13) are called
the P1-bundles determined by the special Mori program for −D.

As a straightforward consequence, the following lemma holds:

Proposition 2.1.15. Let X be a Fano manifold, D ⊂ X be a prime divisor in X such
that codim(D, X) > 0. Then there exist pairwise disjoint prime divisors E1, · · · , Es
with s = codim(D, X) or s = codim(D, X)− 1 such that E j · f j = −1, D j · f j > 0,
and

[
f j
]
/∈ N1(D, X). So E j ∩ D 6= ∅, E j 6= D and E j are pairwise disjoint.

2.2 Further results on a Mori program for −D

Let X be a Fano manifold. In this section we will consider a Mori program
on X for −D as in Lemma (2.3), but we will not always consider all the steps
untill the contraction of fiber type: we will stop the program when either the
contracted ray Rm is of fiber type or when it is birational and such that Rm 6⊂
N1(Dm, Xm). Note that for every i ∈ {0, · · · , m− 1} Ri is a birational ray such
that Ri ⊆ N1(Di , Xi).

If we ask furthermore that every contraction is a Mori contraction, then in
the second case the program ends with a contraction of type (n− 1, n− 2)sm.

We will consider the following Set up:

Set Up 2.2.1. Let X be a Fano manifold and let D ⊂ X be a prime divisor in X.
Consider a Mori program for −D as in Lemma 2.3. Let m ∈ {0, · · · , k} be the first
index such that for every i ∈ {0, · · · , m− 1} Ri is birational, Ri ⊂ N1(Di , Xi), and
either Rm is birational with Rm 6⊂ N1(Dm, Xm), or Rm is of fiber type.

Remark 2.2.2. The sequence

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm

in Set Up (2.2.1) satisfies the following:

1. for every i ∈ {0, · · · , m− 1} Ri is birational and Ri ⊂ N1(Di , Xi);

2. Rm is either of fiber type, or Rm is birational and Rm 6⊂ N1(Dm, Xm).
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Considering a Mori program as in Set up (2.2.1). With the following lemma
we can follow what happen to dim N1(Di , Xi) at every step.

Lemma 2.2.3. Let X be a Fano manifold and let D ⊂ X be a divisor inX. Consider a
sequence as in Set Up (2.2.1)

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm.

Then for every i ∈ {0, · · · , m− 1} we have the following:

dim N1(Di+1, Xi+1) =

{
dim N1(Di , Xi)− 1 if Ri is divisorial
dim N1(Di , Xi) if Ri is small.

Proof. By construction of Set Up (2.2.1), m is the smallest integer such that Rm 6⊂
N1(Dm, Xm), so Ri ⊂ N1(Di , Xi). Therefore, if Ri is divisorial

dim N1(Di+1, Xi+1) = dim N1(Di , Xi)− 1.

If Ri is associated with a small contraction, then we have to consider its −Di-
flip:

Xi
σi //

ϕi

��

Xi+1
ϕ′i

}}
Yi

where ϕ′i : Xi+1 → Yi is the flip of the contraction associated to Ri. Let R′i be
the ray corresponding to ϕ′i, then Di+1 · R′i < 0 by the definition of −Di-flip
(Definition 1.3.17). Therefore R′i ⊂ N1(Di+1, Xi+1). Since ϕi(Di) = ϕ′i(Di+1),
the following equalities hold:

dim N1(Di , Xi) = dim N1(ϕi(Di), Yi) + 1

= dim N1(ϕ
′
i(Di+1), Yi) + 1 = dim N1(Di+1, Xi+1).

Hence dim N1(Di , Xi) = dim N1(Di+1, Xi+1).

Remark 2.2.4. Let X be a Fano manifold, and let D ⊂ X be a prime divisor in X.
Consider a sequence as in Set Up (2.2.1):

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm.

As a consequence of Lemma (2.2.3), we obtain that

ρXi − dim(N1(Di , Xi))

is constant for every i. Hence, with the notation of Lemma (2.9), ci is constant
at every step. Indeed recall that if the ray Ri is :
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1. small, then ρXi+1 = ρXi ;

2. divisorial, then ρXi+1 = ρXi − 1.

Hence ρXi − dim(N1(Di , Xi)) is constant by Lemma (2.2.3).

Proposition 2.2.5. [Cas09, Corollary 3.7] Let X be a Fano manifold and let D ⊂ X
be a divisor in X. Consider a sequence as in Set Up (2.2.1)

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm.

Suppose that the ray Rm is of fiber type. Then the following bound holds:

ρX ≤ 1 + dim N1(D, X).

Proof. If Rm is of fiber type, then by Lemma (2.7) the hollowing holds:

ρXm ≤ 1 + dim N1(Dm, Xm).

Note that, by Remark (2.2.4), ρXi − dim N1(Di , Xi) is constant at every step of
the Mori program. Hence

ρX − dim N1(D, X) = ρXm − dim N1(Dm, Xm) ≤ 1.

Remark 2.2.6. In the next section we will consider a Fano manifold X of dimen-
sion n with an extremal ray of type (n− 1, 1). Let E be the exceptional divisor
of the contraction. Observe that dim N1(E, X) = 2, since it is the contraction
of the divisor onto a curve.

We can consider a Mori program for −E. If it ends with a contraction of
fiber type, then ρX ≤ 2 + 1 = 3.

Proposition 2.2.7. Let X be a Fano manifold and let D ⊂ X be a divisor in X.
Consider a sequence as in Set Up (2.2.1)

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm.

Suppose that the ray Rm is of fiber type. Then codim N1(D, X) ≤ 1.

Proof. Letϕ : Xm → Y be the contraction of fiber type associated with Rm. By
Lemma (2.9), when the Mori program ends with a contraction of fiber type, the
following holds:

codim N1(Dm, Xm) =

{
0 if Rm ⊂ N1(Dm, Xm)

1 if Rm 6⊂ N1(Dm, Xm).

Then by Remark (2.2.4), codim N1(Di , Xi) ≤ 1 for every i ∈ {0, . . . , m}. Hence
codim(D, X) ≤ 1 .
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In the next Proposition we would like to find a bound for the Lefschetz
defect of a Fano manifold X not birationally equivalent to a variety with an
extremal ray of type (n− 1, n− 2)sm. Recall that the Lefschetz defect δX of a
Fano manifold X is defined as following:

δX = max{codim N1(D, X)|D ⊂ X prime divisor of X}.

Since X is a Fano manifold, then by Lemma (2.1.11) we can furthermore ask
that every ray contracted is KX-negative. Then we obtain the following bound
on the Lefschetz defect.

Proposition 2.2.8. Let X be a Fano manifold of dimension n such that it is not bira-
tionally equivalent to a variety with an extremal ray of type (n− 1, n− 2)sm. Then
δX ≤ 1.

Proof. Let D be a prime divisor in X. Then consider a special Mori program
for −D, and consider m as in Set Up (2.2.1). The program has to end with a
contraction of fiber type. By contradiction, suppose that Rm is birational and
such that Rm 6⊂ N1(Xm, Dm). By Corollary (2.1.12) Rm is of type (n − 1, n −
2)sm, a contradiction.

Hence codim N1(D, X) ≤ 1 for every prime divisor D ⊂ X. Consequently
δX ≤ 1.
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3 Divisors D ⊂ X with dim N1(D, X) ≤ 2

Let X be a Fano manifold of dimension n ≥ 3. Tsukioka in [Tsu06] proved the
following result:

Theorem 3.1. [Tsu06, Proposition 5] Let X be a Fano manifold of dimension n ≥ 3
and let D ⊂ X be a prime divisor in X with ρD = 1. Then ρX ≤ 3.

Casagrande in [Cas08] generalized this result in order to obtain a bound on the
Picard number when X contains a prime divisor D with dim N1(D, X) = 1.

Proposition 3.2. [Cas08, Proposition 3.16] Let X be a Fano manifold of dimension
n ≥ 3 and let D ⊂ X be a prime divisor in X with dim N1(D, X) = 1. Then ρX ≤ 3.

Remark 3.3. Let X be a Fano manifold of dimension n ≥ 3 and suppose it exists
an elementary contraction ϕ of type (n − 1, 0). Since ϕ is elementary, then
dim N1(Exc(ϕ), X) = 1. Indeed, if dim(N1(Exc(ϕ), X)) ≥ 2, then we would
have dim(ϕ(D)) > 0. Hence, by Proposition (3.2), ρX ≤ 3.

In this section, we will focus on Fano manifolds containing a prime divisor
D with dim N1(D, X) = 2. This will allow us to bound the Picard number in
some cases by considering an extremal ray positive on the prime divisor D.
First of all, we will start by considering some intermediate results. Foremost
observe that if a Fano manifold X contains a divisor as before, then ρX ≥ 2.

In the next Lemma we will consider a Mori program for−D ⊂ X with m as
in Set up (2.2.1):

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm

where Rm is of fiber type, m ≥ 1, and σ0 is divisorial not of type (n− 1, 0). We
will prove that either the Picard number of X is 3, or σ0 is of type (n− 1, n−
2)sm.

Lemma 3.4. Let X be a Fano manifold of dimension n with ρX ≥ 3. Let D ⊂ X be a
prime divisor such that dim N1(D, X) = 2. Consider a Mori program for −D with
m as in Set up (2.2.1). Assumeσ0 divisorial contraction not of type (n− 1, 0), m ≥ 1
and Rm of fiber type.

Then the following hold:

1. ρX = 3;

2. σ0 is of type (n− 1, n− 2)sm.

Proof. Since m ≥ 1, then NE(σ0) ⊂ N1(D, X) by construction of Set Up (2.2.1).
By Proposition (2.2.5) , we obtain that ρX = 3. We will prove that σ0 is of type
(n− 1, n− 2)sm. Since R0 ⊂ N1(D, X),

dim N1(D1, X1) = dim N1(D, X)− 1 = 2− 1 = 1.

Hence, we are considering only two steps by Lemma (2.1.8):
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X
σ0 // Xi

ψ // Y

where the first step is the divisorial contraction σ0 and the second step is an
elementary contraction of fiber typeψ such that NE(ψ) ·D1 > 0. Then dim Y ≥
1 since ρX1 = 2, and ρY = 1. Note that dim(N1(D1, X1)) = 1, i.e. all the curve
in D1 are numerically proportional. Henceψ is finite on D1. By Lemma (1.3.29),
every non-trivial fiber is 1-dimensional and dim Y = dim X− 1 = n− 1.

We will prove that ψ is injective on A1.
Note that A1 = σ0(Exc(σ0)) ⊂ D1, hence ψ is finite on A1 because NE(ψ) ·

D1 > 0.
Let x1 ∈ A1 and consider the fiber on ψ(x1), ψ−1(ψ(x1)). Note that it is a

fiber of dimension 1. But, since ψ is finite on A1, ψ−1(ψ(x1)) intersects A1 but
it cannot be contained in it, σ−1

0 (ψ−1(ψ(x1))) is a one-dimensional fiber and
ψ ◦σ0 is of fiber type. By applying Lemma (1.3.25), σ−1

0 (ψ−1(ψ(x1))) has two
irreducible components both isomorphic to P1. Note that ψ−1(ψ(x1)) ∩ A1 =

{x1} because if the fiber intersects A1 in more than 1 point, thenσ−1
0 (ψ−1(x1))

should have at least three irreducible components. Thus ψ is injective on A1.
The two irreducibile components, both isomorphic to P1, are the strict trans-
form of ψ−1(ψ(x1)) and the fiber of σ0 on x1, σ−1

0 (x1). Then every non-trivial
fiber of σ0 has dimension 1. By applying again Lemma (1.3.25), X1 is smooth
and σ0 is of type (n− 1, n− 2)sm.

In the next Lemma we will consider again a Mori program for −D ⊂ X
with m as in Set up (2.2.1):

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm

where Rm is birational such that Rm 6⊂ N1(Dm, Xm), m ≥ 1, and σ0 is not of
type (n− 1, 0). We will prove that R0 is small and every contraction involved
in the Mori program is a Mori contraction.

Lemma 3.5. Let X be a Fano manifold of dimension n with ρX ≥ 3. Let D ⊂ X be a
prime divisor such that dim N1(D, X) = 2. Consider a Mori program for −D ⊂ X
with m as in Set up (2.2.1). Assume σ0 birational contraction not of type (n− 1, 0),
m ≥ 1 and Rm birational with Rm 6⊂ N1(D, X). Then, for every i, Ri is a ray with
positive anticanonical degree.

Furthermore R0 is a small extremal ray and R0 ⊂ N1(D, X); moreover it exists
a smooth prime divisor D′ ⊂ X with a P1-bundle structure which is disjoint from
Exc(σ0). Furthermore if π : D′ → Y is the map giving the bundle structure on D′,
then for every fiber f of π the following hold:

1. D · f > 0;

2. D′ · f = −1;

3. f 6⊂ D.
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Proof. Foremost we will prove that every contraction of the Mori program is a
Mori contraction, i.e. −KXi · Ri > 0 for every i ∈ {1, · · · , m}. Note that it is true
for i = 0. Fix i ∈ {1, . . . , m}. Suppose that −KX j · R j > 0 for j = 1, · · · i − 1.
To prove that also Ri has positive anticanonical degree, we need to show the
following:

dim Ai > 0

where the Ai’s are subsets of Yi’s for every i ∈ {1, · · · , m}, as defined in Lemma
(2.10). By construction of the Ai’s, this holds if i = 1 or if i > 1 and Ri−1 is
small. Suppose that i > 1 and Ri−1 is divisorial. There cannot be another divi-
sorial ray among R j for j ∈ {1, · · · , m− 1}, by Lemma (2.2.3). Consequently,
Ri−2 is small. Hence the indeterminacy locus L of σ−1

i−2 is positive dimensional
and, σi−1(L) ⊆ Ai ⊂ Di.

Since σi−1(L) is the locus of the contraction of a small ray of NE(Xi), then
σi is finite on L. Hence σi−1(L) and Ai are positive dimensional. Since Rm is
birational, then by Lemma (2.1.8), dim N1(Di , Xi) = 2. So Ri−1 is small.

Let R′i−1 ⊂ NE(Xi) be the ray whose associated contraction is the flip of
Ri−1. By the flip construction (1.3.17), −KXi · R′i−1 < 0 and Di · R′i−1 < 0. By
the negativity of R′i−1 on Di, R′i−1 ⊂ N1(Di , Xi). Since dim N1(Di , Xi) = 2,
then

N1(Di , Xi) ∩NE(Xi) = Ri + R′i−1.

Since Ai ⊂ Di by Lemma (2.10), consider a curve C ⊂ Di not contained in Ai.
By Lemma (2.1.3), since X is Fano, then C has positive anticanonical degree.
Hence some curves of Di have to have positive anticanonical degree. Since
−KXi · R′i−1 < 0, then −KXi · Ri > 0.

We showed that dim N1(Di , Xi) = 2 for every i ∈ {1, · · · , m}. By Lemma
(2.2.3), every i ∈ {0, · · · , m− 1} Ri is small, so also σ0 is small.

Every contraction is a Mori contraction, hence by Lemma (2.1.7), Rm is of
type (n− 1, n− 2)sm and Locus(Rm)∩Am = ∅. By Remark (1.3.31), Locus(Rm)
is a divisor with a P1-bundle structure given by σm.

Now we define the divisor D′ as the strict transform in X of Locus(Rm), we
obtain a divisor with a P1-bundle structure which is disjoint from Exc(σ0). By
Remark (1.3.31) if π : D′ → Y is the map giving the bundle structure, then for
every fiber f of π the following hold:

1. D · f > 0: since Rm is positive on Dm;

2. D′ · f = −1: Rm is divisorial of type (n− 1, n− 2)sm. Then by Theorem
(1.3.20) and the ramification formula we obtain that f · Locus(Rm) = −1;

3. f 6⊂ D: since Rm 6⊂ N1(Dm, Xm).

Theorem 3.6. [Cas09, Theorem 3.2.] Let X be a Fano manifold of dimension n and
D ⊂ X be a prime divisor such that dim N1(D, X) = 2. Let ϕ : X → Y be an
elementary contraction of X such that D · NE(ϕ) > 0. Then one of the following
occurs:

32



1. ρX = 2;

2. ρX = 3 andϕ is either:

(a) a conic bundle, or

(b) of type (n− 1, 0), or

(c) of type (n− 1, n− 2)sm and NE(ϕ) ⊂ N1(D, X), or

(d) small and NE(ϕ) ⊂ N1(D, X).

3. ρX ≥ 3 and either:

(a) ϕ is of type (n− 1, n− 2)sm and NE(ϕ) 6⊂ N1(D, X), or

(b) ϕ is small and NE(ϕ) ⊂ N1(D, X); moreover it exists a smooth prime
divisor D′ ⊂ X with a P1-bundle structure which is disjoint from Exc(ϕ).
Furthermore if π : D′ → Y is the map giving the bundle structure on D′,
then for every fiber f of π the following hold:

i. D · f > 0;
ii. D′ · f = −1;

iii. f 6⊂ D.

Proof. Suppose that ρX ≥ 3. We have to distinguish between two cases: ϕ of
fiber type andϕ birational.

Suppose thatϕ is of fiber type. Then by Lemma (2.7) and Lemma (2.9) we
see thatϕ(D) = Y,ϕ is finite on D and ρX = 3. Every non-trivial fiber ofϕ is
one dimensional by Lemma (1.3.29). Hence,ϕ is a conic bundle, and we have
2.(a) of the statement.

Suppose that ϕ is birational. If ϕ is of type (n− 1, 0), then by Proposition
(3.2) we have that ρX ≤ 3 so we have 2.(b). If NE(ϕ) 6⊂ N1(D, X), then by
Lemma (2.1.7) we obtain 3.(a).

We can therefore assume that ϕ is birational, not of type (n − 1, 0), and
NE(ϕ) ⊂ N1(D, X). Since NE(ϕ) ·D > 0 and the choice of the ray is arbitrary,
we can consider a Mori program for −D withϕ as first step, so R0

.
= NE(ϕ).

Therefore in Set up (2.2.1) we have

X .
= X0

σ0 // X1
σ1 // · · ·

σm−2 // Xm−1
σm−1 // Xm,

where m ≥ 1 because the ray R0 is birational and NE(ϕ) ⊂ N1(D, X). Con-
sider Ai as in Lemma (2.10). Since the contraction of R0 is birational map and
not of type (n− 1, 0), then A1 =ϕ(Exc(ϕ)) and dim A1 > 0.

Recall that in Set up (2.2.1), we have two possibilities:

• Rm is of fiber type, or

• Rm is birational with Rm 6⊂ N1(Dm, Xm).
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First case: Rm of fiber type. By Proposition (2.2.5), ρX = 3. Ifϕ is divisorial,
then we obtain 2.(c) by Lemma (3.4); otherwiseϕ is small and we obtain 2.(d).

Second case: Rm birational. By Lemma (3.5), thenϕ is small and NE(ϕ) ⊂
N1(D, X); moreover it exists a smooth prime divisor D′ ⊂ X with a P1-bundle
structure which is disjoint from Exc(ϕ). Furthermore if π : D′ → Y is the map
giving the bundle structure on D′, then for every fiber f of π the following
hold:

1. D · f > 0;

2. D′ · f = −1;

3. f 6⊂ D.

Hence we obtain 3.(b).

In the last part of this section we will study the case when an extremal ray
R of X, with associated mapϕ, is 0 on D but D ∩ Exc(ϕ) 6= ∅.

Before starting the study of this case, let’s fix some notation. If we denote
withϕi : X → Yi the contraction of an extremal ray Ri of NE(X), then we set
Ei

.
= Exc(ϕi). Unless otherwise stated.

Lemma 3.7. [Cas09, Lemma 3.11] Let X be a Fano manifold of dimension n. Let
ϕ1 : X → Y1 be an elementary divisorial contraction and ψ : Y1 → Z be a bira-
tional contraction with one-dimensional non-trivial fibers. Let ϕ2 : X → Y2 be the
elementary contraction such that NE(ψ ◦ϕ1) = NE(ϕ1) + NE(ϕ2):

X

ϕ1

��

ϕ2 // Y2

��
Y1

ψ
// Z

Thenϕ2 is a contraction of type (n− 1, n− 2)sm, Y2 is smooth, Exc(ψ) = ϕ1(E2).
Furthermore, one of the following holds:

1. ψ is a divisorial Mori contraction, E1 · NE(ϕ2) = 0, Exc(ψ) ∩ϕ1(E1) is a
union of fibers of ψ and E2 6= E1.

2. ψ is small, Exc(ψ) =ϕ1(E1), E1 ·NE(ϕ2) < 0 and E1 = E2.

Proof. In the first part of the proof, we will show thatϕ2 is birational with fibers
of dimension at most one, hence it is a contraction of type (n− 1, n− 2)sm and
Y2 is smooth, by Lemma (1.3.25).

Let F2 be a non-trivial fiber of ϕ2. Recall that NE(ψ ◦ϕ1) = NE(ϕ1) +
NE(ϕ2) and ψ is a birational contraction. Hence NE(ϕ1) 6= NE(ϕ2) andϕ1 is
finite on every non-trivial fiber ofϕ2. Thereforeϕ1 is finite on F2 andϕ1(F2) ⊂
Exc(ψ). Hence dimϕ1(F2) > 0 and it is contained in a non-trivial fiber of ψ.
Since every non-trivial fiber of ψ is one-dimensional, then dimϕ1(F2) = 1.
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Therefore F2 is one-dimensional, so ϕ2 has fibers with dimension at most 1.
Now, ϕ2 cannot be of fiber type, since ϕ1 and ψ are birational. Since X is
Fano and ϕ2 has one-dimensional fibers, then by Corollary (1.3.21) ϕ2 cannot
be small. Henceϕ2 is divisorial with at most one-dimensional fibers. Henceϕ2
is a contraction of type (n− 1, n− 2)sm and Y2 is smooth, by Lemma (1.3.25).

Consider F a non-trivial fiber for ψ, then F is one-dimensional andϕ−1
1 (F)

is a non-trivial fiber for ψ ◦ϕ1. We are going to prove that, if ϕ−1
1 (F) has

an irreducible component of dimension 1, then Exc(ψ) ∩ϕ1(E1) is a union of
fibers of ψ.

Suppose that ϕ−1
1 (F) has an irreducible component of dimension 1. Ob-

serve that ψ ◦ϕ1 is a Mori contraction. By Lemma (1.3.25), since ψ ◦ϕ1 is
birational, ϕ−1

1 (F) ∼= P1. Then either F ∩ϕ1(E1) = ∅ or F ⊂ ϕ1(E1). In
fact, suppose that F ∩ϕ1(E1) 6= ∅ but F 6⊂ ϕ1(E1); then ϕ−1

1 (F) would be
reducibile. Therefore Exc(ψ) ∩ϕ1(E1) is a union of fibers of ψ.

We will proceed as follow:

1. if E1 6= E2, we will show that ψ is a divisorial Mori contraction and
E1 ·NE(ϕ2) = 0 ;

2. if E1 = E2, we will obtain that ψ is small, Exc(ψ) = ϕ1(E1) and E1 ·
NE(ϕ2) < 0.

Suppose that E1 = E2. Then E1 ·NE(ϕ2) = E2 ·NE(ϕ2) < 0. Every curve
in NE(ψ ◦ϕ1) = NE(ϕ1) + NE(ϕ2) has negative intersection with E1. Then
Exc(ψ ◦ϕ1) ⊂ E1. On the other hand E1 ⊂ Exc(ψ ◦ϕ1), so they coincide.
Since dimϕ1(E1) ≤ n− 2,ϕ1(E1) = Exc(ψ) and ψ is small.

Assume that E1 6= E2. Since NE(ψ ◦ϕ1) = NE(ϕ1) + NE(ϕ2) thenϕ1(E2)
is a prime divisor contained in Exc(ψ) . Hence ψ is divisorial and ϕ1(E2) =
Exc(ψ). Sinceϕ1 is divisorial, then Y1 is Q-factorial and

KX =ϕ∗1(KY1) + aE1

with a ∈ Q \ {0} discrepancy of E1. Since E1 and E2 are exceptional divisors
such that E1 6= E2, then there are non-trivial fibers of ψ disjoint formϕ1(E1).

Consider C an irreducible curve of Y1 contained in a non-trivial fiber of ψ
disjoint from ϕ1(E1). Let C̃ ⊂ X be its strict transform in X under ϕ1. Then
E1 · C̃ = 0. Therefore ψ is a Mori contraction:

0 < −KX · C̃ = −ϕ∗1(KY1) · C̃ = −KY1 · C.

There are non-trivial fibers ofψ disjoint fromϕ1(E1) and Exc(ψ) =ϕ1(E2), so
there are fibers ofϕ2 disjoint from E1. Thus E1 ·NE(ϕ2) = 0.

Remark 3.8. Letϕ : X → Y be a divisorial contraction and let D ⊂ X be a prime
divisor with dim N1(D, X) = 2. Suppose that one of the following situations
occurs:

1. D ·NE(ϕ) = 0 and D ∩ Exc(ϕ) 6= ∅;
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2. D ·NE(ϕ) > 0.

Set A .
= ϕ(Exc(ϕ)). Consider the first case, i.e. D · NE(ϕ) = 0 and D ∩

Exc(ϕ) 6= ∅. Then some non-trivial fibers of ϕ are contained in D and some
are not. Therefore A 6⊂ ϕ(D). Now suppose that D ·NE(ϕ) > 0, then every
non-trivial fiber ofϕ intersects D. Hence A ⊂ϕ(D).

In Theorem (3.6), we analized the second situation. In the next Lemma, we
will analize the first case instead. The differences highlighted in Remark (3.8),
are the main differences between Theorem (3.6) and the following lemma.

Lemma 3.9. [Cas09, Lemma 3.3.] Let X be a Fano manifold with dimension n ≥ 3
and consider a prime divisor D ⊂ X such that dim N1(D, X) = 2.

Suppose X has an elementary divisorial contraction ϕ : X → Y such that D ·
NE(ϕ) = 0 and D ∩ Exc(ϕ) 6= ∅. Then ρX ≥ 2 and at least one of the following
occurs:

1. ρX ≤ 4;

2. it exists an extremal ray R such that:

(a) R 6= NE(ϕ) ;

(b) R is of type (n− 1, n− 2)sm;

(c) R · Exc(ϕ) < 0;

(d) R + NE(ϕ) is a face of NE(X).

Proof. Set DY
.
= ϕ(D) and A .

= ϕ(Exc(ϕ)). Observe that we are in the first
case of Remark (3.8), hence A 6⊂ ϕ(D). There are some fibers disjoint from D
and others contained in D, so dim N1(DY , Y) = 1.

DY is a prime divisor in Y, hence it exists a ray, whose associated elementary
contraction ψ : Y → Z, is positive on DY, i.e. D ·NE(ψ) > 0. The contraction
ψ can be either birational or of fiber type.

X ϕ // Y
ψ // Z

First case: NE(ψ) of fiber type. By Lemma (2.7), the following bounds on
the Picard numbers hold: ρZ ≤ 1, ρY ≤ 2 and ρX ≤ 3. Hence ρX = 2 or ρX = 3.

Second case: NE(ψ) birational. Ifψ is birational, than it can be either small
or divisorial. Observe that by Lemma (2.1.9) the following holds:

1. ψ is finite on DY because NE(ψ) 6⊂ N1(DY , Y);

2. the dimension of every non-trivial fiber of ψ is 1.

Consider the elementary contraction ϕ2 : X → Y2 such that NE(ψ ◦ϕ) =
NE(ϕ) + NE(ϕ2). We are in the following situation:
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X

ϕ

��

ϕ2 // Y2

��
Y

ψ
// Z

By Lemma (3.7),ϕ2 is of type (n− 1, n− 2)sm and one of the following holds:

1. ψ is a divisorial Mori contraction, Exc(ϕ) ·NE(ϕ2) = 0, Exc(ψ) ∩ A is a
union of fibers of ψ and Exc(ϕ) 6= Exc(ϕ2);

2. ψ is small, Exc(ψ) = ϕ(Exc(ϕ)), Exc(ϕ) ·NE(ϕ2) < 0 and Exc(ϕ) =
Exc(ϕ2).

Suppose ψ is small. Then the ray R .
= NE(ϕ2) is an extremal ray as in the

second part of the statement.
Suppose ψ is a divisorial Mori contraction. Since ψ is finite on DY, then

NE(ψ) 6⊂ N1(DY , Y). Hence DZ
.
= ψ(DY) is a prime divisor in Z and

dim N1(DZ , Z) = 1.

DY intersects every non-trivial fiber of ψ, so ψ(Exc(ψ)) ⊂ DZ.
We can consider an elementary contraction ξ : Z → W such that DZ ·

NE(ξ) > 0. Therefore we are in the following situation:

X

ϕ

��

ϕ2 // Y2

��
Y

ψ
// Z

ξ
// W,

where ξ can either birational or of fiber type.
Suppose ξ is of fiber type. Since dim N1(DZ , Z) = 1, then ρW ≤ 1 by

Lemma (2.7). Since every contraction in the previous diagram is elementary,
ρX ≤ 4. Then ρX = 3 or ρX = 4.

If ξ is birational then, by Lemma (2.1.9), it is finite on DZ and every fiber of
ξ had dimension at most 1.

Let ψ2 : Y → Z2 be the elementary contraction such that NE(ξ ◦ ψ) =
NE(ψ) +NE(ψ2). Since NE(ξ ◦ψ) = NE(ψ) +NE(ψ2), then DY ·NE(ψ2) > 0
because DY ·NE(ψ) > 0 and DZ ·NE(ξ) > 0.

Note that ψ2 cannot be of fiber type because ξ and ψ are birational. Thus
ψ2 is birational, finite on DY and with fibers at most of dimension 1 by Lemma
(2.1.9)
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X

ϕ

��

ϕ2 // Y2

��
Y

ψ
//

ψ2
��

Z

ξ

��
Z2 W

As before, we can consider the elementary contraction ϕ3 : X → Y3 such
that NE(ψ2 ◦ϕ) = NE(ϕ) + NE(ϕ3) :

X3

��

X

ϕ

��

ϕ2 //ϕ3oo Y2

��
Z2 Y

ψ
//ψ2oo Z

ξ
// W.

By applying Lemma (3.7),ϕ3 is divisorial of type (n− 1, n− 2)sm. Furthermore
one of the following holds:

1. ψ2 is a divisorial Mori contraction, Exc(ϕ) ·NE(ϕ3) = 0, Exc(ψ2) ∩ A is
an union of fibers of ψ2 and Exc(ϕ) 6= Exc(ϕ3);

2. ψ2 is small, Exc(ψ2) = ϕ(Exc(ϕ)), E · NE(ϕ3) < 0 and Exc(ϕ) =
Exc(ϕ3).

If ψ2 is small, then R .
= NE(ϕ3) gives an extremal ray R as in the statement.

In the last part of the proof, we will show that ψ2 cannot be divisorial.
Suppose by contradiction that ψ2 is divisorial. Recall that by construction
NE(ξ ◦ ψ) = NE(ψ) + NE(ψ2). Since ψ and ψ2 are Mori contraction, then
η

.
= ξ ◦ψ is a Mori contraction.

The following holds: Exc(ψ) 6= Exc(ψ2). Indeed if Exc(ψ) = Exc(ψ2),
then Exc(ψ) ·NE(η) < 0 hence Exc(η) = Exc(ψ) and Exc(ξ) = ψ(Exc(ψ)).
Foremost note Exc(ψ) ⊆ Exc(η) by construction. Since Exc(ψ) ·NE(ψ2) < 0,
then all curves with class in NE(η) are contained in Exc(ψ). Thus Exc(ψ) =
Exc(η). Then NE(η) ·Exc(ψ) < 0 andψ(Exc(ψ)) = Exc(ξ). This is impossible
because ξ is finite on DZ and ψ(Exc(ψ)) ⊂ DZ.

Then Exc(ψ) 6= Exc(ψ2) and ψ(Exc(ψ2)) is a divisor of Z contained in
Exc(ξ). Thus Exc(ξ) = ψ(Exc(ψ2)) and ξ is divisorial.

Recall that DZ ·NE(ξ) > 0, hence Exc(ξ) ∩ DZ 6= ∅. By Lemma (2.1.9), ξ is
finite on DZ and we can find a curves C ⊂ DZ such that C · Exc(ξ) > 0. Since
all the curve in DZ are numerically equivalent, then Exc(ξ) has to intersect
every curve in DZ. Recall that every non-trivial fiber of ψ is one-dimensional.
Hence dimψ(Exc(ψ)) = n− 2 ≥ 1. Then Exc(ξ) ∩ψ(Exc(ψ)) 6= ∅. Therefore
dim(ψ(Exc(ψ)) ∩ Exc(ξ)) ≥ n− 3.

38



Recall that ξ is finite on DZ, hence

dimξ(Exc(ξ) ∩ψ(Exc(ψ))) ≥ n− 3.

We claim that
dimξ(Exc(ξ) ∩ψ(Sing(Y)) ≤ n− 4.

Consider A and note that dim A ≤ n− 2 becauseϕ is divisorial.
Suppose that dim A = n− 2; A is normal and sin(Y) ⊆ A then dim Sing(Y) ≤

n− 4. Hence the claim holds.
Suppose that dim A < n − 2. By Lemma (2.10), then Sing(Y) ⊆ A, thus

if dimξ(Exc(ξ) ∩ψ(A) ≤ n− 4, the assertion follows. If ψ(A) 6⊂ Exc(ξ) the
claim holds. If ψ(A) ⊂ Exc(ξ), then

A = ψ−1(ψ(A)) ⊆ ψ−1(Exc(ξ)) ⊂ Exc(ψ) ∪ Exc(ψ2)

(note that this last inclusion holds because Exc(ξ) = ψ(Exc(ψ2))). Since A is
irreducibile, then A is contained either in Exc(ψ) or in Exc(ψ2). Since NE(η) =
NE(ψ) + NE(ψ2), then dim(η(A)) ≤ n− 4.

Recall that η and ξ are Mori contractions with at most one-dimensional
fibers. Hence Sing(W) ⊆ η(Sing(Y)).

X ϕ // Y

η   
ψ

��

ψ2 // Z2

Z
ξ
// W

Since dimξ(Exc(ξ) ∩ψ(Sing(Y)) ≤ n − 4, then it exists w0 ∈ W \ Sing(W)
such that ξ−1(w0) has dimension 1 and intersects ψ(Exc(ψ)). Consider the
contraction η, and its restriction η̃ to Y \ η−1(Sing(W)). Hence we have the
following contraction

η̃ : Y \ η−1(Sing(W))→W \ Sing(W).

Set F .
= η−1(w0), then ψ−1(F) is a fiber of (ξ ◦ψ). Since ψ is a contraction

with one dimensional fiber , then ψ−1(F) has an irreducibile component of
dimension 1. Hence ψ−1(F) ∼= P1 by Lemma (1.3.25). Therefore either F ⊂
ψ(Exc(ψ)), or F ∩ψ(Exc(ψ)) = ∅. By the choice of w0, F ∩ψ(Exc(ψ)) 6= ∅, so
F ⊂ ψ(Exc(ψ)). This is not possibile since η−1(w0) ∼= P1.
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4 Elementary contractions of type (n-1,1)

Let X be a Fano manifold of dimension n with a divisorial extremal ray R1
whose associated contraction ϕ1 : X → Y1 sends a divisor to a curve. We
would like to use the results of the previous sections to find a bound for ρX .
We will show that ρX ≤ 5.

Since X admits an extremal contraction of type (n− 1, 1), then ρX ≥ 2. Set
E1

.
= Exc(ϕ1). Then dim N1(ϕ1(E1), Y1) = 1, sinceϕ1(E1) is a curve. Hence

dim N1(E1, X) = 2. We can therefore apply Theorem (3.6) and Lemma(3.9) to
E1.

By Lemma (1.4.11), we may choose an extremal ray R2 positive on E1 with
associated contractionϕ2. By Theorem (3.6) we have that one of the following
holds:

1. ρX ≤ 3;

2. R2 is of type (n− 1, n− 2)sm and NE(ϕ2) 6⊂ N1(E1, X).

3. ϕ2 is small and it exists a smooth prime divisor D′ ⊂ X with a P1-bundle
structure which is disjoint from E2. Furthermore if π : D′ → Y is the
map giving the bundle structure, then for every fiber f of π the following
hold:

(a) E1 · f > 0;

(b) D′ · f = −1;

(c) f 6⊂ E1.

Since we want to prove that ρX ≤ 5, we are left only to consider the case (2)
and the case (3). Before starting with the proof of the main theorem, let us fix
some notations and prove some preliminary results.

Notation: if we denote a ray with Ri, than its exceptional locus will be de-
noted with Ei, the associated contraction withϕi : X → Yi, and a general fiber
with Fi, unless otherwise stated.

Lemma 4.1. Let X be a Fano manifold of dimension n ≥ 4. Suppose there exist a
divisorial extremal ray R1 ⊂ NE(X) of type (n − 1, 1). Let R2 be an extremal ray
such that:

1. R2 is positive on E1, i.e. E1 · R2 > 0;

2. R2 is divisorial;

3. R1 · E2 > 0;

4. R2 6⊂ N1(E1, X);

5. Y2 is Fano.

Then ρX ≤ 4.
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Proof. Set D .
= ϕ2(E1) and A .

= ϕ1(E2); note that dim N1(D, X) = 2. We re-
mark that by Corollary (2.6) we may consider a ray R with positive intersection
with D. Letϕ be the associated contraction. Apply Theorem (3.6) to D and R.
If ρY2 ≤ 3, then ρX = ρY2 + 1 ≤ 4. Otherwise one of the following holds:

1. ϕ is of type (n− 1, n− 2)sm and NE(ϕ) 6⊂ N1(D, X);

2. ϕ is small and it exists a smooth prime divisor D′ ⊂ X with a P1-bundle
structure which is disjoint from Exc(ϕ). Furthermore if π : D′ → Y is
the map giving the P1-bundle structure, then for every fiber f of π the
following hold:

(a) D · f > 0;

(b) D′ · f = −1;

(c) f 6⊂ D.

Note that in both cases it exists a smooth prime divisor D′ ⊂ Y2 with a P1-
bundle structure, such that for every fiber f of the P1-bundle, D · f > 0, D′ · f =
−1 and f 6⊂ D. Ifϕ is small then this is clear. Ifϕ is divisorial, then set D′ to
be the exceptional divisor of ϕ by Remark (1.3.31). Since D′ · f = −1, then
f ∩ A = ∅ by Lemma (2.1.3). Thus A ∩ D′ = ∅. Hence D′′ .

= ϕ−1
2 (D′) is a

prime divisor of X, with a P1-bundle structure, that intersects E1 but is disjoint
from E2. Let us show that it is impossible. We have two possibilities:

1. if D′′ · R1 = 0 then D′′ contains some non trivial fibers of R1 because
D′′ ∩ E1 6= ∅. This would imply that D′′ ∩ E2 6= ∅, a contradiction.

2. if D′′ · R1 > 0, then D′′ intersects every non trivial fiber of R1. More-
over, by Lemma (1.3.25), R1 ⊂ N1(E2, X) since ϕ1 has at least one fiber
of dimension more than 1 and it is positive on E2. Hence we can find
some irreducible curve C of E2 with numerical equivalence class in R1
intersecting D′′. This is not possibile because D′′ ∩ E2 = ∅.

Remark 4.2. From the proof of Lemma (4.1) we see that this Lemma still holds
also with weaker assumptions. Indeed, one could just ask that R1 is a divisorial
contraction with at least one fiber of dimension ≥ 2, dim N1(E1, X) = 2, and
1., · · · , 5. still holds.

The next lemma is a technical lemma that we will use in the proof of Lemma
(4.8). We will just give a sketch of the proof since it involves results from the
analysis of families of rational curves on varieties. One can find this results, for
example, in [Kol13] or in [Deb01].

Lemma 4.3. Let X be a Fano manifold of dimension n. Suppose that

1. ∃ R1 ⊂ NE(X) a ray of type (n− 1, 1);

2. ∃ R2 ⊂ NE(X) a ray of type (n− 1, n− 2)sm such that E1 · R2 > 0, E2 · R1 >
0, and R2 6⊂ N1(E1, X);
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3. ∃ R3 ⊂ NE(X) a ray of type (n − 1, n − 2)sm such that E2 · R3 < 0 and
R2 + R3 is a face of NE(X).

Then the following hold:

E1 · R3 = 0, and for every curve C ⊂ E2 we have [C] ∈ R1 + R2 + R3.

Proof. Foremost we prove that N1(E2, X) = R(R1 + R2 + R3). By Lemma
(1.3.29) ϕ2 has one-dimesional non-trivial fibers, so by Theorem (1.3.24) R2 is
birational of type (n − 1, n − 2)sm. Observe that E2 is smooth, since it is the
exceptional locus of a birational contraction of type (n− 1, n− 2)sm. Both R2
and R3 are divisorial and negative on E2, soϕ2|E2 andϕ3|E2 gives a P1-bundle
on E2 by Remark (1.3.31).

We claim that N1(E2, X) = R(R1 + R2 + R3).
Since R2 · E2 < 0 and R3 · E2 < 0, then R2, R3 ⊂ N1(E2, X). By assumption

E2 · R1 > 0 and R1 is birational of type (n − 1, 1). Thus R1 ⊂ N1(E2, X) by
Corollary (1.3.30). Hence Ri ⊂ N1(E2, X) for i ∈ {1, 2, 3}. Observe that E1
meets every non-trivial fiber ofϕ2|E2 , soϕ2(E1 ∩ E2) =ϕ2(E2) and

R(R1 + R2 + R3) ⊆ N1(E2, X) ⊆ RR2 + N1(E1, X).

Since all three subspaces are three dimensional, then N1(E2, X) = R(R1 +R2 +
R3).

No we consider the normalization ν : T → Y1 of ϕ1(E2) in Y1 nad the
contraction ξ : E2 → T induced by the inclusion i : E2 ↪→ X and by the
restictionϕ1 |E2

:

E2

ξ

��

� � i // X

ϕ1

��
T

ν
// Y1.

Then the following holds:

1. i∗(ker(ξ∗)) = ker(ϕ1|E1) = ker(ϕ1∗) = RR1

2. ξ is birational;

3. Exc(ξ) = E1 ∩ E2;

4. ξ(Exc(ξ)) ⊂ T is a curve.

By construction ρT is the codimension of ker(ξ∗) in N1(E2), hence ρT ≥ 2
and ρT = 2 if and only if ker(i∗) ⊂ ker(ξ∗). Then we construct a proper,
covering family of irreducible rational curves in T (see [Deb01, Chapter 5]).
Let A .

=ϕ2(E2) and consider the following diagram

E2
ξ //

ϕ2 |E2
��

T

A

.
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This family induces an E2-equivalence relation as [Deb01, Section 5.4]. This
allows us to construct a contraction α : T → C onto a smooth curve C where
every fiber ofα : T → C is an equivalence class for the E2-equivalence relation.

As a consequence one can see that ρT = 2, ker(i∗) ⊂ ker(ξ∗), and NE(ϕ3|E2) 6⊂
ker(α ◦ξ)∗.

Recall that R3 · E2 < 0, so E1 · R3 ≥ 0 but one can see that R3 · E1 = 0.
Hence R3 ⊂ N1(E1, X), N1(E1, X) = R(R1 + R3), and

N1(E1, X) ∩NE(X) = R1 + R3.

To conlcude the proof of this lemma one can use what we proved so far to
obtain that id C is a curve in E2 then

[C] ∈ R1 + R2 + R3.

Lemma 4.4. Let X be a Fano manifold of dimension n. Suppose that there are three
divisorial rays R1, R2 and R4 such that:

1. R2 + R4 is a face of NE(X);

2. R1 is of type (n− 1, 1);

3. E1 · R4 > 0;

4. E2 · R1 > 0;

5. R2 6⊂ N1(E1, X);

6. R4 6⊂ N1(E1, X).

Then (ϕ2)∗(R4) is of fiber type and ρX ≤ 4.

Proof. Set D .
= ϕ2(E1). Since R2 + R4 is a face, then (ϕ2)∗(R4) is a ray of

NE(Y2). Since E1 · R4 > 0 andϕ2 is finite on E1, then D · (ϕ2)∗(R4) > 0. Since
the locus of (ϕ2)∗(R4) containϕ2(E4), then the contraction is either divisorial
or of fiber type. By Lemma( 1.3.29), and by Theorem (1.3.24), R4 is of type
(n− 1, n− 2)sm. Consider a non-trivial fiber ofϕ4, F ⊂ X. Since E2 · R1 > 0,
thenϕ2(F) ·ϕ2(E4) ≥ 0. Thereforeϕ2 cannot be divisorial. Thus (ϕ2)∗(R4) is
of fiber type. By using Lemma (2.7), ρY2 ≤ 3 hence ρX = ρY2 + 1 ≤ 4.

Remark 4.5. Observe that the Lemma (4.4), holds also with weaker hypotesis.
Indeed one could ask that R1 is divisorial and dim N1(E1, X) = 2.

Lemma 4.6. Let X ba a Fano manifold of dimension n. Suppose there are Ri divisorial
rays for i = 1, 2, 3, 4 such that :

1. R2 + R4 is not a face of NE(X);

2. N1(E1, X) = R(R1 + R3);

3. E1 ∩ E4 = ∅;
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4. E1 · R3 = 0.

Let S be a ray of NE(Y4) positive on ϕ4(E1). Let R5 be the extremal ray of NE(X)
such that R4 + R5 is a face andϕ4∗R5 = S.

Then one of the following occours:

1. ρX ≤ 4;

2. R is of type (n− 1, n, 2)sm and R 6⊂ N1(E1, X).

Proof. By contruction R2 6= R5. Since E4 ∩ E1 = ∅, then ϕ−1
4 (ϕ4(E1)) = E1.

Hence E1 · R5 > 0. Thus R3 6= R5 and R1 6= R5.
Since N1(E1, X) ∩NE(X) = R1 + R3, then R5 6⊂ N1(E1, X). Therefore the

contraction of R5 has every non-trivial fiber of dimension 1. Since X is Fano,
R5 is not small by Corollary (1.3.21). By Theorem (3.6), either ρX ≤ 4 or R5 is
of type (n− 1, n− 2)sm with R5 6⊂ N1(E1, X).

Lemma 4.7. [Cas09, Remark 4.7] Let X be a Fano manifold of dimension n ≥ 4 with
a divisorial ray R1 of type (n− 1, 1). Suppose that exists a birational extremal ray R2
such that E1 · R2 > 0, E2 · R1 = 0 and R2 6⊂ N1(E1, X). Then the following hold:

1. N1(E2, X) = RR2 +RR1;

2. R2 is of type (n− 1, n− 2)sm.

Furthermore Y2 is Fano, it has an elementary contraction σ of type (n− 1, 1) andϕ2
is the blow-up of a smooth fiber of σ .

Proof. Every fiber of ϕ2 is at most one-dimensional by Lemma (1.3.29). Then
by Theorem (1.3.24) ϕ2 is of type (n− 1, n− 2)sm. Observe that E1 ∩ E2 6= ∅.
Since E2 · R1 = 0, then E2 has to contain some fibers F of ϕ1 of dimension
n− 2 = dimϕ2(E2). Note that R2 6⊂ N1(F, X) since R1 6= R2. Thusϕ2 is finite
on F, soϕ2(F) =ϕ2(E2). Hence

N1(E2, X) = RR2 + N1(F, X) = R(R1 + R2).

This allow us to conclude that every extremal ray S ⊂ NE(X) different from
R2 must have non-negative intersection with E2, i.e. E2 · S ≥ 0. Indeed,
N1(E2, X) = RR2 + N1(F, X) = RR2 + RR1 and R1 · E1 = 0. Hence Y2 is
Fano by Lemma (1.4.9).

By Lemma (1.4.12), R1 + R2 is a face whose contraction is birational be-
cause both contractions are birational. Note that E1 cannot be sent to a point
by the contraction associated with the face R1 + R2, otherwise we would have
N1(E1, X) = R(R1 +R2). However, this is not possible because R2 6⊂ N1(E1, X).
Then (ϕ2)∗(R1) is a ray of type (n− 1, 1) of NE(Y2) that sendϕ2(E1) to a curve.
The associated contraction σ : Y2 → Z has exceptional divisorϕ2(E1) andϕ2
is the blow-up of a fiber of such contraction.

Lemma 4.8. Let X be a Fano manifold of dimension n ≥ 4. Suppose there exists
a divisorial extremal ray R1 ⊂ NE(X) of type (n − 1, 1). Moreover suppose that
dim N1(E1, X) = 2. Let R2 be an extremal ray such that:
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1. R2 is positive on E1, i.e. E1 · R2 > 0;

2. R2 is divisorial;

3. R1 · E2 > 0;

4. R2 6⊂ N1(E1, X);

5. Y2 is not Fano.

Then ρX ≤ 4.

Proof. Since Y2 is not Fano, by Corollary (2.1.5), there is a ray R̃ with non-
positive anticanonical degree such that the associated contraction ψ̃ : Y2 → Z̃
is small.

Let us show that every non-trivial fiber is at most one dimensional. By
contradiction, suppose that ψ̃ admits a fiber F with dimension at least 2. By
Remark (2.1.6) dimϕ2(F) ≥ 3, hence dim(ϕ−1

2 (F) ∩ E1) ≥ 2. Consider a
non-trivial fiber of ϕ1, F1. F1 has dimension n − 2. Hence ϕ−1

2 (F) ∩ E1 and
F1 have to intersect in a subset of dimension at least 1, so ϕ−1

2 (F) ∩ E1 con-
tains a curve with numerical class in R1. Thus R1 ⊂ N1(ϕ

−1
2 (F), X) and

NE(ψ̃) = (ϕ2)∗(R1), so D ⊆ Exc(ψ̃). This is not possible because Exc(ψ̃)
is strictly smaller than D.

Then ψ̃ is a small contraction with fibers of dimension at most one. Con-
sider the elementary contractionϕ3 such that

NE(ψ̃ ◦ϕ2) = NE(ϕ2) + NE(ϕ3) = R2 + R3.

Note thatϕ3 exists because if X is a Fano variety, then it always exists a lift of
ψ̃ by Remark (1.4.10).

We can apply Lemma (3.7). Then R3 is of type (n− 1, n− 2)sm, R3 · E2 < 0
and R2 + R3 is a face of NE(X). X has at least 3 different rays, so ρX ≥ 3.

By Lemma (4.3) we know that

E1 · R3 = 0, and for every curve C ⊂ E2 we have [C] ∈ R1 + R2 + R3.

Furthermore note that N1(E1, X) = R(R1 + R3). Consider ϕ1 : X → Y1.
Recall that it is divisorial of type (n − 1, 1) and consider the prime divisor
ϕ1(E2) ⊂ Y1. By Corollary (2.6), we may take a ray NE(η) ⊂ NE(Y1) posi-
tive on it, i.e. ϕ1(E2) ·NE(η) > 0. Denote η : Y1 → W. Let R4 be the extremal
ray of NE(X) such that R1 + R4 is a face and (ϕ1)∗(R4) = NE(η).

Y2 X
ϕ2oo

ϕ1

��

ϕ4 //

η◦ϕ1

  

Y4

Y1
η // W

45



By Lemma (4.3), N1(E2, X) = R(R1 +R2 +R3). Hence dim(N1(ϕ1(E2), Y1)) =
2, because N1(ϕ1(E2), Y1) = R(ϕ1∗R2 +ϕ1∗R3). By Lemma (2.7), if η is of
fiber type, then ρW ≤ 2 and ρX ≤ 4. Suppose now that η is birational. Let
us prove that every non-trivial fiber is one-dimensional. First we will show
that η is finite onϕ1(E2). Indeed, since NE(η ◦ϕ1) = NE(ϕ4) + NE(ϕ1), then
if η is not finite on ϕ1(E2), it exists a curve [C] ∈ R4 such that C ⊂ E1 ∪ E2.
Then [C] ∈ R4 and [C] ∈ R1 + R2 + R3. Moreover, since N1(E1, X) ∩N1(X) =
R1 + R3, then R4 = R2 or R4 = R3. Both cases cannot happen, otherwise we
would get Exc(η) =ϕ1(E2) andϕ1(E2) ·NE(η) < 0, a contradiction.

By Lemma (1.3.29), then every non-trivial fiber of η has dimension 1. Then
by Lemma (3.7) the following hold:

1. R4 is of type (n− 1, n− 2)sm;

2. Exc(η) =ϕ1(E4).

Note that R1 6⊂ (E4, X). Otherwise R4 = R3, which we already know that it is
not possible. Henceϕ1(E4) is a divisor. Again by Lemma (3.7), the following
hold:

1. E1 6= E4;

2. η is a divisorial Mori contraction and Exc(η) ∩ϕ(E1) is a union of fibers
of η;

3. R4 · E1 = 0.

We know that Exc(η)∩ϕ1(E1) is a union of fibers of η but η is finite onϕ1(E1)
becauseϕ1(E1) ⊂ ϕ1(E2). Hence Exc(η) ∩ϕ1(E1) = ∅ and E1 ∩ E4 = ∅. Note
that Exc(η) must intersect ϕ1(E2), so E4 ∩ E2 6= ∅. E2 cannot contain curves
with numerical classi in R4 because N1(E2, X) = R1 + R2 + R3 and R4 6= Ri
for i = 1, 2, 3. Then E2 · R4 > 0.

Now consider the subspace R2 + R4 which can be a face or not.
Suppose that R2 + R4 is a face. By Lemma (4.4), then ρX ≤ 4.
Suppose that R2 + R4 is not a face of NE(X). By Corollary (2.6), there exists

a ray S of NE(Y4) positive on the divisorϕ4(E1), i.e. ϕ4(E1) · S > 0. Consider
the extremal ray R5 ⊂ NE(X) such that R4 + R5 is a face and (ϕ4)∗(R5) = S.
By Lemma (4.6), either ρX ≤ 4 or R5 is of type (n − 1, n − 2)sm with R5 6⊂
N1(E1, X). We are going to see that the latter cannot happen.

We apply similar arguments to R5 to the one applied for the case R2 divi-
sorial. First note that R5 · E1 > 0 and R5 6⊂ N1(E1, X). By Lemma (1.3.29),
every non-trivial fiber is one-dimensional. Since X is Fano, R5 is either of fiber
type or divisorial by Corollary (1.3.21). If R5 is of fiber type, ρX ≤ 3 by Lemma
(2.7). If R5 is of divisorial type, then it is of type (n− 1, n− 2)sm by Theorem
(1.3.24). Note that R1 · E5 ≥ 0 and E1 ∩ E5 6= ∅. We will distinguish the two
cases E5 · R1 > 0, and E5 · R1 = 0.

Suppose E5 · R1 = 0. By Lemma (3.9) applied to E5 andϕ1 either ρX ≤ 4,
or there exists an extremal ray R0 6= R1 of NE(X) of type (n − 1, n − 2)sm
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such that E1 · R0 < 0. We will see that the last one cannot occour. Indeed
R0 ⊂ N1(E1, X), so R0 = R1 but they are of different rays (for instance they
have different intersection with E1).

Suppose E5 · R1 > 0 and let ϕ5 : X → Y5 be associated contraction to R5.
If Y5 is Fano, then ρX ≤ 4 by Lemma (4.1). Suppose Y5 not Fano. By a similar
argument to the one applied for R2, it exists an extremal ray R6 6= R5 of type
(n− 1, n− 2)sm such that E5 · R6 < 0, R6 + R5 is a face, and E1 · R6 = 0.

Summarizing one of the following holds:

• ρX ≤ 4;

• it exists a ray R6 6= R5 of type (n − 1, n − 2)sm such that E5 · R6 < 0,
R6 + R5 is a face, and E1 · R6 = 0.

If ρX ≤ 4 we are done. Suppose we are in the last case, so R6 ⊂ N1(E1, X) =
RR1 +RR3. Note that R6 6= R1 because they are of different types. Hence R3 =
R6. Then E6 = E3 = E2. By E5 · R6 < 0, E5 = E6. Hence E5 = E2. Consider
a curve C ⊂ E5 with numerical class in [C] ∈ R5, then C ⊂ E2. Therefore
[C] = R1 + R2 + R3. This is impossible because R5 6= Ri for i = 1, 2, 3.

The next Theorem allows us to obtain a bound on the Picard number of a
Fano manifold admitting a contraction sending a divisor onto a curve. We will
obtain that the Picard number is at most 5. A bound for the case 6. of the next
Theorem will be shown separately in Proposition (4.10).

Theorem 4.9. [Cas09, Theorem 4.2.] Let X be a Fano manifold of dimension n ≥ 4
and let R1 be an extremal ray of type (n− 1, 1). Let R2 be an E1-positive ray. Then
one of the following holds:

1. ϕ2 is either of type (n, n− 2), or (n, n− 1), or (n− 1, n− 3), and ρX = 2;

2. ϕ2 is a conic bundle and ρX = 3;

3. ϕ2 is of type (n− 2, n− 4) and ρX ≤ 3;

4. n = 4,ϕ2 is of type (2, 0) and ρX = 4;

5. ρX ≤ 4 and eitherϕ2 is of type (n− 1, n− 2)sm, orϕ2 is of type (n− 1, n− 2);

6. ϕ2 is of type (n− 1, n− 2)sm, E2 · R1 = 0, and there exists an extremal ray
R0 6= R1 such that E1 · R0 < 0.

Proof. Since R2 · E1 > 0, we infer that E1 intersects every non-trivial fiber ofϕ2.
Let F be an irreducible component of a non-trivial fiber ofϕ2; thenϕ1 is finite
on E1 ∩ F because ϕ1 and ϕ2 correspond to contractions of different extremal
rays and F is a fiber ofϕ2. Thus

dim F− 1 ≤ dim(F ∩ E1) = dimϕ1(E1 ∩ F) ≤ 1,

so every non-trivial fiber ofϕ2 is at most two-dimensional:
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Since dim N1(E1, X) = 2 and R2 · E1 > 0, we can apply Theorem (3.6).
Recall that, for the Corollary (1.3.22), if R2 is small is of type (n− 2, n− 4) so
the cases (i) and (ii) of Theorem (3.6) gives the cases 1., 2., 3., and 5. with ρX ≤ 3
of the statement.

We are left to consider the following cases:

1. ϕ2 is of type (n− 1, n− 2)sm and R2 6⊂ N1(E1, X);

2. ϕ2 is small and it exists a smooth prime divisor D′ ⊂ X with a P1-bundle
structure which is disjoint from E2. Furthermore if π : D′ → Y is the
map giving the bundle structure, then for every fiber f of π the following
hold:

(a) E1 · f > 0;

(b) D′ · f = −1;

(c) f 6⊂ E1.

The two cases will be treated separately.
Case 1: ϕ2 is of type (n − 1, n − 2)sm. Since R1 and R2 are two different

divisorial rays and R2 6⊂ N1(E1, X), then E2 · R1 ≥ 0. Hence, either E2 · R1 = 0
or E2 · R1 > 0.

Suppose E2 · R1 = 0. Then by Lemma (4.7)

N1(E2, X) = RR2 +RR1 = R(R1 + R2).

By applying Lemma (3.9) to E2 and ϕ1, we obtain either ρX ≤ 4 ond we gat
case 5. of the statement, orϕ2 is divisorial of type (n− 1, n− 2)sm, E2 · R1 = 0,
and there exists an extremal ray R0 6= R1 of NE(X) such that E1 · R0 < 0.
Hence we heve case 6. of the statement.

Suppose E2 · R1 > 0. In this case D .
= ϕ2(E1) ⊂ Y2 is a prime divisor, E2

intersect every non-trivial fiber ofϕ1 and A .
= ϕ2(E2) is a smooth subvariety

of dimension n − 2 (recall that R2 is of type (n − 1, n − 2)sm). Let C be an
irreducible curve of Y2 not contained in A. Lemma (2.1.3) yields to−KY2 ·C ≥ 1
and the inequality is strict whenever C intersects A. If Y2 is Fano, by Lemma
(4.1), ρX ≤ 4. If Y2 is not Fano, by Lemma (4.8), ρX ≤ 4. In both cases we obtain
case 5. of the statement.

Case 2: ϕ2 small. Recall that every fiber ofϕ2 is at most two-dimensional
and that exists a divisor D′ ⊂ X with a P1-bundle structure which is disjoint
from E2. Furthermore, if π : D′ → Y is the map giving the bundle structure,
then for every fiber f of π the following hold:

1. E1 · f > 0;

2. D′ · f = −1;

3. f 6⊂ E1.
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X is Fano and every fiber is at most two-dimensional. We can apply Corollary
(1.3.22) toϕ2, soϕ2 is of type (n− 2, n− 4). Note that E1 ∩ E2 6= ∅, so dim(E1 ∩
E2) ≥ n − 3. Hence dim(E1 ∩ E2) = n − 3. Let F2 be a non-trivial fiber of
ϕ2. Since E1 ∩ F2 6= ∅, then dim(E1 ∩ F2) = 1 so ϕ2(E1 ∩ F2) = ϕ1(E1).
Hence F2 intersects horizzontalyϕ1. Thus E2 intersects every non-trivial fiber
of ϕ1. Then every non-trivial fiber of ϕ1 cannot be contained in D′ because
D′ ∩ E2 = ∅. Therefore D′ · R1 > 0 and D′ intersects every non-trivial fiber of
ϕ1. Since D′ and E2 are disjoint, thenϕ1 is finite on E2. Hence

n− 3 = dim(E1 ∩ E2) = dimϕ1(E1 ∩ E2) ≤ 1,

hence n = 4 and ϕ2 is of type (2, 0). Since R2 is small and E1 · R2 > 0, then
R2 ⊂ N1(E1, X) by Corollary (1.3.30). Thus N1(E1, X) ∩NE(X) = R1 + R2.
Note that [ f ] 6∈ N1(E1, X). Otherwise [ f ] = aR1 + bR2 with a, b ≥ 0. This
would imply:

0 > [ f ] · D′ = aR1 · D′ + b · D′ = a(R1 · D′),

and a < 0, a contradiction. Moreover π(D′ ∩ E1) = Y, since D′ · f > 0. Thus

N1(D′, X) = R[ f ]⊕RR1 ⊕RR2

and dim N1(D′, X) = 3.
Since D′ · f < 0, there is an extremal ray R̃2 ⊂ NE(X) with negative inter-

section with f , i.e. R̃2 · D′ < 0. Foremost, note that R̃2 is not of fiber type, so
R̃2 is birational. Let F be and irreducibile component of the exceptional locus
Ẽ2 of R̃2. If R̃2 were small, by Theorem (1.3.14) F ∼= P2. Hence π(F) = Y, and
dim N1(D′, X) = 2, which would give a contradiction. Therefore R̃2 is diviso-
rial. Since R̃2 ·D′ < 0 and D′ is a prime divisor, D′ is the exceptional divisor of
R̃2 by Proposition (1.3.13). Since N1(E1, X) ∩NE(X) = R1 + R2, D′ · R1 > 0,
and D′ · R2 = 0, R̃2 6⊂ N1(E1, X). Hence R̃2 is of type (3, 2)sm, and E1 · R̃2 > 0.

We apply similar arguments to R̃2 to the one applied when R2 is of diviso-
rial type. Let ϕ̃2 : X → W be the contraction associated with R̃2 and Ẽ2 be the
exceptional divisor. Note that Ẽ2 · R1 ≥ 0. We will distinguish the two cases
Ẽ2 · R1 > 0 and Ẽ2 · R1 = 0.

Suppose Ẽ2 · R1 = 0. By Lemma (3.9) applied to E5 andϕ1 either ρX ≤ 4,
or there exists an extremal ray R̃0 6= R1 of NE(X) of type (n− 1, n− 2)sm such
that E1 · R̃0 < 0. Suppose that ρX ≥ 5. Then R̃0 si contained in N1(E1, X) but
R̃0 is different both from R1 and form R3. Hence we obtain a contradiction. If
Ẽ2 · R1 > 0. Then we will distinguish the two cases: W Fano or W, not Fano.

Suppose W Fano, then ρX ≤ 4 by Lemma (4.1).
Suppose W not Fano. It exists an extremal ray R7 of divisorial type such that

R7 6= R̃2, Ẽ2 · R7 < 0 and E1 · R7 = 0. This last case leads to a contradiction
because R7 is different form R1 and R2.
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The next Proposition allows us to conclude that a Fano manifold with a
divisorial contraction of type (n− 1, 1) has Picard number at most 5.

Proposition 4.10. [Cas09, Proposition 4.8.] Let X a Fano manifold of dimension
n ≥ 4 with a divisorial contraction of type (n − 1, 1). Suppose that there exists a
ray R0 6= R1 with E1 · R0 < 0. Then ρX ≤ 5 and R0 + R1 is a face of NE(X).
Furthermore, E1 ∼= W × P1 where W is a Fano manifold, andϕ0 is the blow-up of a
smooth subvariety isomorphic to W.

If ρX = 5, then there exists a Fano manifold Z with ρZ = 3 and dim Z = n,
having an elementary contraction of type (n− 1, 1), such that X is the blow-up of Z
along two fibers of such contraction.

Proof. Let F0 be a non-trivial fiber of ϕ0. Every non-trivial fibers of ϕ1 have
dimension n − 2 and R0 6= R1, so F0 is one-dimensional. Since ϕ0 is a Mori
contraction,ϕ0 is not small by Corollary (1.3.21). Furthermore,ϕ0 is not of fiber
type because every non-trivial fiber is contained in E1. Henceϕ0 is birational
with fibers of dimension at most one. Henceϕ0 is of type (n− 1, n− 2)sm, Y0
is smooth, and E1 is smooth by Theorem (1.3.24). Let W ⊂ Y0 be the smooth
codimension 2 subvariety blowed-up byϕ0, then E1 has a P1-bundle structure
over W given byϕ0 as in Remark (1.3.31).

Note that N1(E1, X) = R(R0 + R1) and N1(E1, X) ∩NE(X) = R0 + R1.
Hence there are no other extremal ray with negative intersection with E1.

In the next step we will prove that R0 + R1 is a face of the Mori cone NE(X).
For i = 0, 1 let Ci be a curve with class in Ri and consider a supporting nef
divisor Hi for Ri (1.3.4). i.e. Hi is a nef divisor such that it intersect the Mori
exactly on Ri. Hence if S ⊂ NE(X) an extremal ray, then Hi · S ≥ 0, and
Hi · S = 0 if and only if S = Ri. Consider the divisor

H .
= (H0 · C1)H1 + (H1 · C0)(−E1 · C1)H0 + (H0 · C1)(H1 · C0)E1.

Let R be a ray of NE(X) such that R 6= Ri for i = 0, 1. By the construction
of supporting nef divisor for a ray (Theorem 1.3.4), R · Hi > 0 for i = 0.1.
Furthermore H0 · C1 > 0, H1 · C0 > 0, and −E1 · C1 > 0. Hence H · R > 0.
Note that H · R0 = 0 and H · R1 = 0. Hence H is nef. To summarize, R0 + R1
is a face of the Mori cone with supporting nef divisor H.

Now we will prove that E1 is Fano. Consider γ ∈ NE(E1) \ {0}, then by
projection and adjunction formula

−KE1 ·γ = −(KX + E1)|E1 ·γ = −(KX + E1) · i∗(γ)

where i : E1 ↪→ X is the inclusion. Consider A an ample divisor on X, then by
projection formula

A · i∗(γ) = A|E1 ·γ > 0

because A|E1 is still ample. Hence i∗(γ) is not zero. Since γ ∈ NE(E1) \ {0},
we get i∗(γ) ∈ R0 + R1. Then E1 · i∗(γ) < 0. Thus E1 is Fano.

The map ϕ1|E1 : E1 → ϕ1(E1) is a surjective morphism with connected
fibers sending E1 to a curve. Recall that E1 is also the exceptional divisor ofϕ0,
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whose fibers are isomorphic to P1. Hence E1 is covered by fibers ofϕ0|E1 and
ϕ1(E1) is rational. By Theorem (1.3.33)ϕ0|E1 induces a Mori contraction

φ : E1 → P1

that does not contract the fibers ofϕ0|E1 . Then by Lemma (1.3.32), E1 = W ×
P1.

The next part of the proof will be focused on finding that ρX ≤ 5.
By Lemma (1.4.11), we may consider R2 a positive ray on E1. Then R2 6= R0

and R2 6= R1, so R2 6⊂ N1(E1, X). Thus ρ(X) ≥ 3 and ϕ2 is finite on E1. By
Theorem (1.3.25), eitherϕ2 is a conic bundle orϕ2 is a divisorial contraction of
type (n− 1, n− 2)sm. Suppose first thatϕ2 is a conic bundle. By Lemma (2.7)
ρY2 ≤ 2 and ρX ≤ 3. Hence ρY2 = 2 and ρX = 3.

Suppose that ϕ2 is a divisorial contraction of type (n − 1, n − 2)sm. Then
Y2 is smooth, A .

= ϕ2(E2) is a smooth subvariety and it is contained in the
prime divisor D .

= ϕ2(E1) since E1 intersects every non-trivial fiber ofϕ2, i.e.
A ⊂ D ⊂ Y2.

Since E1 intersects every non-trivial fiber ofϕ2, thenϕ2(E1 ∩ E2) =ϕ2(E2).
Since E1 6= E2 and NE(X) ∩N1(E1, X) = R0 + R1 then for every curve C ⊂ E1
E2 · C ≥ 0. Sinceϕ2 is of type (n− 1, n− 2)sm, then

−KX =ϕ∗2(−KY2)− E2.

Consider a curve C2 ⊂ Y2. Let C ⊂ X be the strict transform of C2. If C2 is
not contained inϕ2(E2) then C · E2 ≥ 0, hence

−KY2 · C2 = (ϕ∗2(−KY2)) · C = (−KX + E2) · C > 0

If C2 is contained inϕ2(E2), sinceϕ2(E1 ∩ E2) =ϕ2(E2) then C can be consid-
ered inside E1. For every curve C ⊂ E1, E2 · C ≥ 0, so by using the projection
formula as before, −KY2 · C2 > 0. Hence Y2 is Fano.

Consider an elementary contraction ψ : Y2 → Z such that D ·NE(ψ) > 0.
If ψ is of fiber type, then by Lemma (2.7), ρZ ≤ 2 and ρX ≤ 4. Suppose that ψ
is birational. Then ψ is finite on D, because

N1(D, Y2) ∩NE(Y2) = (ϕ2)∗(N1(E2, X) ∩NE(X)) = (ϕ2)∗(R0) + (ϕ2)∗(R1).

Suppose was not finite on D, then NE(ψ) = (ϕ2)∗(R0) or NE(ψ) = (ϕ2)∗(R1).
In both cases Exc(ψ) = D and this is not possible because NE(ψ) is positive on
D. Sinceψ is finite on D and NE(ψ) ·D > 0, then by Lemma (1.3.29) every non-
trivial fiber is one-dimensional. Thusψ cannot be small by Corollary (2.1.5), so
ψ is divisorial. Therefore, ψ is of type (n − 1, n − 2)sm and Z is smooth by
Lemma (1.3.25). Since the hypothesis of Lemma (3.7) are satisfied and ψ is
birational, than Exc(ψ) ∩ A is a union of fibers of ψ. Since ψ is finite on A,
then Exc(ψ) ∩ A = ∅. The composition ψ ◦ϕ2 is the blow-up of two disjoint,
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smooth subvarieties of codimension 2.

X

ϕ2
��

ψ◦ϕ2

��
Y2

ψ
// Z

Set Ẽ2
.
=ϕ−1

2 (Exc(ψ)); Exc(ψ ◦ϕ2) = E2 ∪ Ẽ2.
Note that E2 ∩ E1 has pure dimension at least 2. Since ϕ1(E1) is a curve,

then the map ϕ1|E1∩E2 : E1 ∩ E2 → ϕ1(E1) has fibers of positive dimension.
Let F be a such fiber, and let C ⊂ F be a curve. C is in a fiber, so C ∈ R1 and
C ⊂ E1 ∩ E2 ⊂ E2. Hence C is disjoint from Ẽ2 and Ẽ2 · R1 = 0. In the same
way E2 · R1 = 0. Then E1 ∩ E2 and E1 ∩ Ẽ2 are union of finitely many fibers
ofϕ1. By Lemma (1.4.12), R1 + R2 is a face on NE(X) and S1

.
= (ϕ2)∗(R1) is a

ray of type (n− 1, 1) of NE(Y2) with exceptional divisor D. Note that the other
possible ray contained in N1(D, X) is (ϕ2)∗(R0).

Observe that E2 · R0 > 0. If E2 · R0 < 0 then E0 = E2 but E0 = E1, hence
E2 = E1. This is not possible since R2 6⊂ N1(E1, X). If E2 · R0 = 0, then
some curve contracted by ϕ0 are contained in E2 and some are not. Hence
R0, R1, R2 ⊂ N1(E2, X). Hence E2 contains a fiber Fi of Ri for i = 1, 2, 0. This is
not possible because F1 is of dimension n− 2, and Fi of dimension 1 for i = 0, 2.

The ray S1 is the only ray with negative intersection with D. Indeed, the
other ray contained in N1(D, X2) is S0

.
= (ϕ2)∗(R0), but D ·ϕ2∗(R0) ≥ 0.

Theorem (4.9) applied to Y2, D and S1 yelds to ρY2 ≤ 4 and ρX ≤ 5.
Recall that NE(ψ) ⊂ NE(Y2) is a ray of type (n − 1, n − 2)sm. Moreover

Ẽ2 · R1 = 0 and Ẽ2
.
= ϕ−1

2 (Exc(ψ)) yields Exc(ψ) · S1 = 0. Hence by Lemma
(1.4.12), Z is Fano, ψ∗(S1) is of type (n− 1, 1) with exceptional divisor ψ(D)
and X is the consecutive blow-up of Z along two fibers of the associated con-
tractions. Sinceϕ2 is finite on E1 and ψ is finite on D, then ψ ◦ϕ2 is finite on
E1. Hence the normalization of ψ(D) is W × P1.

We will now give an application to the case of a Fano manifold of dimen-
sion 4.

Corollary 4.11. [Cas09, Corollary 1.3] Let X be a Fano 4-fold. Then one of the fol-
lowing holds:

1. ρX ≤ 6;

2. X is a product and ρX ≤ 11;

3. every contraction of X is of type (3, 2) or (2, 0).

Proof. Let X be a Fano 4-fold with ρX ≥ 7. Then X cannot have elementary
contractions of type:

1. (3, 0), since otherwise ρX ≤ 3;
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2. (3, 1), since otherwise ρX ≤ 5;

3. (2, 1) and (1, 0) because small KX-negative contraction cannot have fibers
of dimension 1 by Corollary (1.3.21);

4. (4, 0), since otherwise ρX = 1;

5. (4, 1), since otherwise ρX = 2.

Therefore the only possible elementary contractions are of type (4, 3), (4, 2),
(3, 2) or (2, 0). If X has a contraction of type (4, 2) then by Corollary (1.4.13)
X ∼= P2 × S with S del Pezzo surface thus ρX ≤ 10. By using again Corollary
(1.4.14), if X has a contraction of type (4, 3), either X ∼= P1 × P1 × S or X ∼=
F1 × S hence ρX ≤ 11. If X is not a product, then it can only have contractions
of type (3, 2) and (2, 0).
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5 Some applications to Fano 5-folds

We will now give some applications for the 5-fold case.

Notation: if we denote a ray with Ri, then its exceptional locus will be de-
noted with Ei, the associated contraction withϕi : X → Yi, and a general fiber
with Fi, unless otherwise stated.

Lemma 5.1. Let X be a Fano 5-fold with iX > 1. Suppose there exists an extremal ray
R0 of type (4, 2). Suppose moreover that there exists an extremal ray R1 ⊂ NE(X)
such that R1 6= R0, and E0 · R1 < 0.

Then ρX = 3, R1 is of type (4, 2)sm, and E0 = P2 × P2.

Proof. First of all, observe thatϕ1 is not of fiber type, soϕ1 is birational. Let F1
be a non-trivial fiber ofϕ1. Since every non-trivail fiber ofϕ0 has dimension at
least 2, then dim F1 ≤ 2.

Suppose that dim F1 = 1, thenϕ1 is of divisorial type by Corollary (1.3.21).
Hence E0 = E1 and l(R1) = 1 by Ionescu-Wiśniewski inequality (1.3.20). Thus
this case cannot occurs, since iX > 1.

Suppose dim F1 = 2. Then ϕ1 can be either divisorial or small. Suppose
that ϕ2 is small. By Ionescu-Wiśniewski inequality (1.3.20) l(R1) = 1, which
contradicts iX > 1. Hence ϕ1 is a divisorial contraction. Thus E0 = E1 and
every non-trivial fiber ofϕ0 and ofϕ1 is two-dimensional.

Note that R0 and R1 are rays of length l(R1) = l(R2) = 2 with fibers of
dimension 2 in X, then by Lemma (1.3.23) R0 and R1 are of type (4, 2)sm.

Furthermore R0 and R1 are the only rays of NE(X) in E0, so N1(E0, X) =
R(R1 + R0).

By Lemma (1.4.11), we can consider an extremal ray R ⊂ NE(X) positive
on E0 and letϕ : X → Y be the associated contraction. Note that ρX ≥ 3, and
R 6⊂ N1(E0, X). Then by Theorem (1.3.24), eihterϕ is a conic bundle orϕ is of
type (4, 3)sm. Ifϕ is of type (4, 3)sm, then l(R) = 1 a contradiction. Thusϕ is a
conic bundle and ρX = 3 by Lemma (2.7).

Consider the restrictions of ϕ0 and ϕ1 on E0, ϕ0 |E0
and ϕ1 |E0

. Then, by

[Sat85, Theorem A (1)], E2 ∼= P2 × P2.

The next example is an example of a Fano 5-fold that satisfies the hypothesis
of the previous Lemma.

Example 5.2. [CO06, Example j.1] Let F = OP2×P2 ⊕OP2×P2(1, 1). Consider
X = PP2×P2(F ). Let π : X → P2 × P2 be the projection map, ξ be the tautolog-
ical line bundle on X, and E be the section that corresponds to the surjection

F → OP2×P2 → 0.

Hence
−KX = 2ξ − π∗(KP2×P2 + detF ) = 2(ξ + π∗(OP2×P2)).
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Note that π∗(OP2×P2) is nef, and by projection formula it vanishes only on the
fibers f of π . Furthermore ξ · f = 1. ThereforeX is a Fano variety and iX = 2.

Observe that X has three extremal rays. One is of fiber type and corre-
sponds to the projection π . The other two rays are of type (4, 2), have ex-
ceptional divisor E, and each one corresponds to the contraction of one of the
”rulings” of E.

Lemma 5.3. Let X be a Fano 5-fold. Suppose there are two extremal rays R0, R1 ⊂
NE(X) of type (4, 2) such that R0 · E1 < 0. Let R2 ⊂ NE(X) be an extremal ray
positive on E1. Then one of the following occour:

1. ρX = 3 andϕ2 is a conic bundle;

2. ρX ∈ {3, 4} andϕ2 is of type (4, 3)sm;

3. ϕ2 is of type (4, 3)sm and R0 · E2 = R1 · E2 = 0.

Proof. First note that E1 = E0 and N1(E1, X) = R(R0 + R1). Moreover the
non-trivial fibers ofϕ0 andϕ1 are equidimensional, thus every non-trivial fiber
has dimension 2. By Lemma (1.4.11), we may consider an extremal ray R2 ⊂
NE(X) positive on E1. Since R2 is different from R1 and from R0, then ρX ≥ 3.
Note that R2 6⊂ N1(E1, X), so by Lemma (1.3.29) every non-trivial fiber is one-
dimensional. Hence by Theorem (1.3.24), one of the following occours:

1. ϕ2 is a conic bundle;

2. ϕ2 is of type (4, 3)sm.

Ifϕ2 is a conic bundle then by Lemma (2.7), ρX ≤ 3. Hence we obtain 1. of the
statement. Now suppose thatϕ2 is divisorial of type (4, 3)sm, so Y2 is smooth
and ϕ2 is the blow-up of a smooth subvariety A .

= ϕ2(E2). Set D .
= ϕ2(E1),

then A ⊂ D. Note thatϕ2(E1 ∩ E2) =ϕ2(E2), and C · E2 ≥ 0 for every C ⊂ E1.
Since

ϕ∗2(−KY2) = −KX + E2,

by projection formula Y2 is Fano. Consider an elementary contractionψ : Y2 →
Z such that D ·NE(ψ) > 0. Ifψ is of fiber type, then ρZ ≤ 2, and ρX ≤ 4. Hence
ρX ∈ {3, 4} and we obtain 2. of the statement.

Supposeψ birational;ψ is finite on D. Suppose by contradictionψ not finite
on D. Recall that NE(E1, X) = R(R0 + R1), then either NE(ψ) = (ψ)∗(R0), or
N1(ψ) = (ψ)∗(R1). In both cases Exc(ψ) = ϕ2(E1), but this is not possibile
because NE(ψ) · D > 0. Thus ψ is finite on D, so by Theorem (1.3.24) ψ is of
type (4, 3)sm and Z is smooth.

X

ϕ2
��

ψ◦ϕ2

��
Y2

ψ
// Z
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By Lemma (3.7), Exc(ψ) ∩ A is a union of fibers of ψ, but ψ is finite on A so
Exc(ψ)∩ A = ∅. Henceψ ◦ϕ2 is the blow-up of two disjoint subverieties of Z.
Set Ẽ2

.
=ϕ−1

2 (Exc(ψ)), so Exc(ψ ◦ϕ2) = E2 ∪ Ẽ2 and Ẽ2 ∩ E2 = ∅.
Consider E1 ∩ Ẽ2; since NE(ψ) ·D > 0, then E1 ∩ Ẽ2 6= ∅. Therefore E1 ∩ Ẽ2

is of pure dimension, dim(E1 ∩ Ẽ2) ≥ n− 2 = 3. So E1 ∩ Ẽ2 has dimension 3,
furthermore recall that dimϕ1(E1) = 1. Therefore

ϕ1 |E1∩Ẽ2
: E1 ∩ Ẽ2 →ϕ1(E1)

has fibers of dimension 1. Consider a curve C̃ in one of this fiber, then C̃ ⊂ Ẽ2
and [C̃] ∈ R1. Since E2 ∩ Ẽ2 = ∅, then E2 ∩ C = ∅. Therefore E2 · R1 = 0.

In the same way, by considering ϕ0 |E1∩Ẽ2
: E1 ∩ Ẽ2 → ϕ1(E1), we obtain

E2 · R0 = 0.
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