

ALGANT MASTER THESIS

Fano Manifolds as Mori Dream Spaces

UNIVERSITEIT LEIDEN
UNIVERSITÀ DEGLI STUDI DI PADOVA

Supervisors:
Dr. D. Martinelli
S. Vassiliadis

Dr. C. Novelli
Dr. A. Zanardini

Academic year 2021/2022

Contents

Introduction i
1 Preliminars 1
1.1 Divisors/ one cycles / intersection/ cone of curves 1
1.2 Singularities 4
1.3 Cone Theorem and contractions 4
1.4 Fano manifolds 12
2 Mori program for a MDS 16
2.1 Fano as MDS 20
2.2 Further results on a Mori program for $-D$ 26
3 Divisors $D \subset X$ with $\operatorname{dim} \mathrm{N}_{1}(D, X) \leq 2$ 30
4 Elementary contractions of type (n-1,1) 40
5 Some applications to Fano 5-folds 54
Bibliography 57

Abstract

The aim of this thesis is to study Fano manifolds as Mori Dream Spaces and, in partiular, to find bounds on the Picard number. We will mainly focus on Fano manifolds admitting a divisorial contraction sending a divisor into a curve.

Introduction

One of the main goals of algebraic geometry is to classify projective varieties over the complex numbers up to birational equivalence.

One approach in this direction is given by the Mori Theory, also called the Minimal Model Program (or shortly MMP). The MMP started developing in the '80s as an attempt to generalise the work of the Italian school.

The first advance in this direction was given by Mori in [Mor82], who introduced a new approach to the study of projective 3 -folds. He studied projective manifolds of dimension 3 with non-nef canonical divisor, i.e. X a 3 -fold with canonical divisor K_{X} such that there exists a curve with negative intersection with K_{X}.

We recall the Cone Theorem (Theorem (1.3.1)) and the Contraction Theorem (Theorem (1.3.8)) from the results raised from Mori's work. The Cone Theorem describes the Mori cone, i.e. the closure of the cone spanned by numerical classes of effective one-cycles. In particular, it states that the negative part of the cone with respect to the canonical divisor is locally polyhedral, generated by at most countably many rays and that every ray is given by the class of a rational curve. The Contraction Theorem allows us to associate with each $\left(-K_{X}\right)$-negative ray, or $\left(-K_{X}\right)$-negative face of the Mori cone, a morphism onto a normal projective variety with connected fibers, called extremal contraction.

The variety obtained after an extremal contraction of a variety of dimension ≥ 3 may present some singularities. Mori's work was then generalized to varieties of higher dimensions, allowing some mild of singularities. This was a joint work of several authors, among them, we recall Kawamata [Kaw84], Shokurov [Sho86], and Reid [Rei83].

This allowed us to find a good representative inside the birational class of a variety called the Minimal Model, i.e. a variety with a numerically effective canonical divisor.

Some problems arise; the exceptional locus of the ray contracted may be of codimension at least 2 , i.e. a small ray. In this case, the variety obtained by contracting this ray is not even \mathbb{Q}-factorial. To solve this problem one can use the notion of "flip" (Definition (1.3.17)). This gives a new variety on which it is possible to continue the MMP. The existence and the termination of flips (i.e. there are no infinite sequences of flips) are the key points for carrying on the MMP.

The problem of the existence of flips has been settled in any dimension in [BCHM10], but termination is still an open problem.

In [HK00], to overcome the problem of termination of flips, a new category of varieties has been introduced: the Mori Dreams Spaces, or shortly MDS (Definition (2.1)). MDS are varieties with nice properties with respect to the Mori Theory. In particular, a Mori program exists for every divisor [HK00].

In [BCHM10] it has been proven that a Fano manifold of any dimension is a MDS. This allowed us to apply results that hold for MDS to Fano manifolds; in particular, given a Fano manifold and a divisor on it, there is always a MMP
for that divisor.
This result enables us to study Fano varieties from a new perspective. An example of this new approach can be found in the work of Casagrande [Cas09] and [Cas12b], where the author focuses on Mori programs for prime divisors. This allows us to obtain information on the geometry of the starting Fano nfolds and bounds on the Picard number. Some of these results can be found in [Cas09] and in [Cas12b].

Here we go into more details about this essay. In the first section we will briefly review some background results that will be used frequently throughout the thesis. We will therefore start with some preliminaries related to intersection theory, singularities, and some first results in Mori Theory, such as the Cone and the Contraction Theorem. We will then recall some results on the theory of extremal rays and associated contractions. Moreover, we will go through some results by Wiśniewski [Wiś91] for projective manifolds such as Ionescu-Wiśniewski inequality (Theorem (1.3.20)). Finally, we will conclude this introductory section by exposing some results on Fano manifolds.

In the second section, we will introduce the notion of Mori Dream Space, and we will state some main features with respect to the Mori Theory. We will start by defining a Mori program for a divisor and by recalling that for a MDS X it always exists a MMP for every divisor in X.

We will later look at a Mori program for $-D \subset X$, where D is a prime divisor and X is a MDS. This type of Mori program was first introduced in [Cas09] and studied also in [Cas12b]. This approach is somewhat opposite to the classical one, since at every step we will consider a ray with positive intersection with the divisor. We will observe some properties, such as the fact that every Mori program for $-D$ in which $D \subset X$ is a prime divisor in X ends with a contraction of fiber type.

In the remaining part of the section, we will focus on Fano manifolds by viewing them as MDS. As a result, for each divisor $D \subset X$, we will consider a Mori program. Moreover, we will prove that for a Fano manifold, there is a suitable choice of extremal rays involved in the MMP whose contractions have positive anticanonical degree. We will call this Mori program Special Mori program. By studying the contractions involved in a Special Mori program, we will see that if the ray contracted is not contained in the linear subspace of $\mathrm{N}_{1}(X)$ spanned by classes of curves of the divisor D, then the contraction is the blow-up of a smooth subvariety of codimension 2; we will call it of type $(n-1, n-2)^{s m}$.

We will conclude by proving that, for a Fano manifold not birationally equivalent to a projective variety with a contraction of type $(n-1, n-2)^{s m}$, the Lefschetz defect δ_{X}, i.e. $\delta_{X}=\max \left\{\operatorname{codim} \mathrm{N}_{1}(D, X) \mid D \subset X\right.$ prime divisor of $\left.X\right\}$, is at most one.

In the third section we will focus on Fano n-folds X of dimension $n \geq 3$ with a prime divisor $D \subset X$ such that $\operatorname{dim} \mathrm{N}_{1}(D, X) \leq 2$. We will prove
a bound on the Picard number in some cases. To be more specific, Tsukioka proved in [Tsu06] that a Fano n-fold of dimension at least 3 admitting a divisor D with $\rho_{D}=1$ has Picard number $\rho_{X} \leq 3$. Casagrande generalized this result in [Cas08] to Fano n-folds with a prime divisor D and $\operatorname{dim} \mathrm{N}_{1}(D, X)=1$.

In the remaining part of this section, we will focus on Fano manifolds containing a prime divisor D with $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. This will allow us to bound the Picard number in some cases. We will look at two different situations: first, what happens when a ray R is positive on D, and then what happens when a ray R has some fibers contained in D and some that are disjoint from D. For the first case, we will see that either the Picard number is smaller than 5 , or R is either small or a blow-up of a codimension 2 smooth subvariety and $R \not \subset \mathrm{~N}_{1}(D, X)$. In the latter case, either the Picard number $\rho_{X} \leq 4$, or there exists an extremal ray R of type $(n-1, n-2)^{s m}$.

In the fourth section, we will focus on Fano n-folds with a divisorial extremal ray sending a divisor into a curve. The purpose of this section is to show that $\rho_{X} \leq 5$. This will be established in Theorem (4.9) except for one remaining case that will be treated separately in Proposition (4.10).

Furthermore, we will give an application to the Fano 4 -folds case. In Corollary (4.11) we will show that for a Fano 4 -fold X either ρ_{X} is at most 6 , or X is a product and $\rho_{X} \leq 11$, or every elementary contraction of X is either divisorial sending a divisor onto a surface, or is small.

In the fifth section, we will give some application to Fano 5-folds with two divisorial contractions with the same exceptional locus sending a divisor into a surface. We will denote with E_{0} the exceptional divisor of this contraction. First, we will consider a Fano 5 -fold as before with pseudoindex $i_{X}>1$ (Definition 1.4.3). Then $\rho_{X}=3$, and $E_{0}=\mathbb{P}^{2} \times \mathbb{P}^{2}$. We will conclude by considering a Fano 5 -fold X with two divisorial extremal rays $R_{0}, R_{1} \subset \mathrm{NE}(X)$ sending a divisor onto a surface such that $R_{0} \cdot E_{1}<0$, where E_{1} is the exceptional divisor associated to R_{1}. By considering an extremal ray R_{2} positive on E_{0} we will obtain a bound on the Picard number of X in some cases.

1 Preliminars

1.1 Divisors/ one cycles / intersection/ cone of curves

Let X be a normal projective variety over \mathbb{C} of dimension $\operatorname{dim} X=n$. We denote:
$\mathrm{Z}_{1}(X) \doteq$ abelian group of one-cycles.
$Z^{1}(X) \doteq$ abelian group of Weil divisors.
$\operatorname{Pic}(X) \doteq$ abelian group of invertible sheaves.
$\operatorname{Div}(X) \doteq$ abelian group of Cartier divisors.
For a more detalied introduction, see [Har13, Chapter II, Section 6] or [Deb01, Chapter 1].
Remark 1.1.1. [Har13, Proposition II.6.13] Since X is a projective variety then $\operatorname{Pic}(X)$ is isomorphic to $\frac{\operatorname{Div}(X)}{(\sim)}$ where with (\sim) we denote the linear equivalence.

A Weil divisor D is said to be a \mathbb{Q}-Cartier Divisor if $m D$ is an element of $\operatorname{Div}(X)$ for some $m \in \mathbb{N}$.

Let $\rho: C \rightarrow X$ be a curve in X. Let $D \in \operatorname{Div}(X)$ be a Cartier divisor. We define an intersection number of C and D as follow:

$$
D \cdot C \doteq \operatorname{deg}\left(\rho^{*}\left(\mathcal{O}_{X}(D)\right)\right)
$$

where with $\mathcal{O}_{X}(D)$ we denote the line bundle associated to D. This can be extended to a bilinear form

$$
\begin{gathered}
(\cdot): Z_{1}(X) \times \operatorname{Div}(X) \longrightarrow \mathbb{Z} \\
(C, D) \rightarrow D \cdot C
\end{gathered}
$$

This bilinear pairing allow us to define a notion of equivalence, both on $Z_{1}(X)$ and on $\operatorname{Div}(X)$. We say that $D, D^{\prime} \in \operatorname{Div}(X)$ are numerically equivalent if

$$
D \cdot C=D^{\prime} \cdot C
$$

for every C curve in X. Analogously, we say that $C, C^{\prime} \in Z_{1}(X)$ are numerically equivalent if

$$
D \cdot C=D \cdot C^{\prime}
$$

for every $D \in \operatorname{Div}(X)$. We denote the numerical equivalent relation by \equiv. We define the following \mathbb{R}-vector spaces

$$
\begin{aligned}
& \mathrm{N}_{1}(X) \doteq \frac{\mathrm{Z}_{1}(X)}{\equiv} \otimes \mathbb{R} \\
& \mathrm{N}^{1}(X) \doteq \frac{\operatorname{Div}(X)}{\equiv} \otimes \mathbb{R}
\end{aligned}
$$

Hence the first denotes the \mathbb{R}-vector space of one-cycles up to numerical equivalence and the second one the \mathbb{R}-vector space of Cartier divisors up to numerical equivalence. The map (\cdot) induces the following non-degenerate pairing

$$
(\cdot): \mathrm{N}^{1}(X) \times \mathrm{N}_{1}(X) \longrightarrow \mathbb{R}
$$

and $\mathrm{N}_{1}(X)$ and $\mathrm{N}^{1}(X)$ are dual via (\cdot). By the Néron-Severi theorem [Laz17, Prop. 1.1.16], they are finite dimensional. We define the Picard number of X as $\rho_{X}=\operatorname{dim} \mathrm{N}_{1}(X)<+\infty$.

The inclusion map $i: D \hookrightarrow X$ defines a push-foward of one-cycles

$$
i_{*}: \mathrm{N}_{1}(D) \rightarrow \mathrm{N}_{1}(X)
$$

We will denote by $\mathrm{N}_{1}(D, X)$ the image of $\mathrm{N}_{1}(D)$ under this linear map. It is the vector subspace generated by the numerical classes of curves of X contained in D.

Remark 1.1.2. By definition of $\mathrm{N}_{1}(D, X)$ we get that $\operatorname{dim} \mathrm{N}_{1}(D, X) \leq \rho_{D}$ and $\operatorname{dim} \mathrm{N}_{1}(D, X) \leq \rho_{X}$.

Note that this holds also if we consider a closed subset Z of X, instead of a divisor $D \subset X$ of X.

Inside $\mathrm{N}_{1}(X)$ we denote by $\mathrm{NE}(X) \subset \mathrm{N}_{1}(X)$ the convex cone of effective one-cycles

$$
\mathrm{NE}(X) \doteq\left\{C \in \mathrm{~N}_{1}(X) \mid C=\sum r_{i} C_{i}, r_{i} \in \mathbb{R} \text { and } r_{i} \geq 0\right\}
$$

where C_{i} are irreducible curves.
Let $\overline{\mathrm{NE}}(X)$ be the closure of $\mathrm{NE}(X)$ inside $\mathrm{N}_{1}(X)$; it is called Mori cone of X.
Let $D \in \operatorname{Div}(X)$, set

$$
\begin{aligned}
D_{\geq 0} & \doteq\left\{x \in \mathrm{~N}_{1}(X) \mid D \cdot x \geq 0\right\} \\
D^{\perp} & \doteq\left\{x \in \mathrm{~N}_{1}(X) \mid D \cdot x=0\right\}
\end{aligned}
$$

and analogously for $\leq,>$ and $<$. We will use the following notation $\overline{\mathrm{NE}}(X)_{D \geq 0} \doteq$ $\overline{\mathrm{NE}}(X) \cap D_{\geq 0}$, and similarly for $\leq,<,>$, and $=[K M 98$, Def. 1.17].

Definition 1.1.3. Let D be a divisor of X. We say that it is semiample if a multiple of D it is base point free (b.p.f.), i.e. there exists $m \in \mathbb{N}$ such that $m D$ induces a morphism

$$
\varphi: X \rightarrow \mathbb{P}^{n}
$$

for some $n \in \mathbb{N}$. Equivalently D is b.p.f. if $|D|$ has no base point, i.e. $B s(D)=$ $\bigcap_{D^{\prime} \in|D|} D^{\prime}=\emptyset$ where with $|D|$ we denote the linear system associated with D.

Definition 1.1.4. Let D be a divisor of X. We say that it is ample if a multiple of D is very ample, i.e. there exists $m \in \mathbb{N}$ such that $m D$ induces a closed embedding

$$
\varphi: X \hookrightarrow \mathbb{P}^{n}
$$

for some $n \in \mathbb{N}$.

For a description of the construction of the morphism induced by a divisor see for example [Har13, Chapter II, Section 7].

Ampleness is a numerical property. Indeed, there exists the following numerical characterization of ampleness due to Kleimann [Kle66].

Theorem 1.1.5 (Kleimann's Ampleness Criterion). [KM98, Theorem 1.18] Let X be a projective variety and let D be a Cartier divisor of X. Then D is ample if and only if

$$
\overline{N E}(X) \subset D_{>0}
$$

Being ample is not a stable property under pull-back.
Example 1.1.6. Let $X \doteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ and consider the contraction given by the first projection on $Y \doteq \mathbb{P}^{1}$, i.e. $\varphi: X \rightarrow \mathbb{P}^{1}$. Consider a hyperplane H in Y. Then H is ample but, by the projection formula [Deb01, Section 1.9], $\varphi^{*} H$ is not ample.

Therefore, we may want to relax the notion of ampleness.
Definition 1.1.7. A divisor D of X is said to be numerically effective (nef) if and only if

$$
D \cdot C \geq 0
$$

for every curve $C \subset X$.
Equivalently, nefness can be described with respect to the Mori cone. A divisor D is nef if and only if D is non-negative on $\overline{\mathrm{NE}}(X)$.

Note that, by the projection formula, the pull-back of a nef divisor is nef. Hence, being nef is stable under pull-back.

Definition 1.1.8. A Cartier divisor D on X is said to be big if $D^{n}>0$ where $n \doteq \operatorname{dim} X$.

Definition 1.1.9. A Cartier divisor D of X is said to be effective if $D=\sum a_{i} D_{i}$ where D_{i} are prime divisors and $a_{i} \in \mathbb{Z}$ are all non-negative.

Lemma 1.1.10. [KM98, Lemma 3.39] Let $f: X \rightarrow Y$ be a proper birational morphisms between normal varieties. Let $-B$ be an f-nef \mathbb{Q}-Cartier, \mathbb{Q}-divisor on X. Then

$$
B \text { is effective if and only if } f_{*} B \text { is effective. }
$$

Definition 1.1.11. An effective Cartier divisor D of X is said to be movable if its stable base locus

$$
B(D) \doteq \bigcap_{m \in \mathbb{Z}_{>0}} B s(m D)
$$

has codimension at least 2.
The previous definitions allow us to define some convex cones inside $\mathrm{N}^{1}(X)$. The Effective cone $\operatorname{Eff}(X)$ is the convex cone in $\mathrm{N}^{1}(X)$ spanned by effective divisors. In general, it is not closed [Deb01, 1.35] but we will see that for Mori Dream Spaces (Definition (2.1)) it is rational polyhedral, in particular it is
closed.
The Ample cone $\operatorname{Amp}(X)$ is the open convex cone in $\mathrm{N}^{1}(X)$ of ample divisors. The Nef cone $\operatorname{Nef}(X)$ is the closed cone of classes of nef divisors.
The Movable cone $\operatorname{Mov}(X)$ is the cone generated by classes of movable divisors.
The following inclusions hold:

$$
\begin{gathered}
\operatorname{Nef}(X) \subseteq \overline{\operatorname{Mov}(X)} \subseteq \overline{\operatorname{Eff}(X)} \\
\operatorname{Amp}(X)=\operatorname{Nef}(X) \\
\overline{\operatorname{Amp}(X)}=\operatorname{Nef}(X)
\end{gathered}
$$

1.2 Singularities

In this part, we will collect some definitions and results regarding singularities. For a more detailed description, see [KM98, 2.3.].

We denote by K_{X} the canonical divisor of X.
Definition 1.2.1. Let X be a normal variety. X is \mathbb{Q}-factorial if every \mathbb{Q}-divisor is \mathbb{Q}-Cartier. X is \mathbb{Q}-Gorenstein if exists an integer $m \in \mathbb{N}$ such that $m K_{X}$ is a Cartier divisor, i.e. $m K_{X} \in \operatorname{Div}(X)$.

Let X be a normal \mathbb{Q}-Gorenstein variety. We say that X has terminal singularities if there exists a resolution of singularities $f: Y \rightarrow X$ such that

$$
m K_{Y}=f^{*}\left(m K_{X}\right)+\sum_{E f-\text { exceptional }} m \cdot a(E ; X) E
$$

with $a(E ; X) \in \mathbb{Q}$ and $a(E ; X)>0$ for m big enough.
We call $a(E ; X)$ the discrepancy of E with respect to X. We say that X is terminal if $a(E ; X)>0$ for every f-exceptional divisor with f a resolution.
Remark 1.2.2. Discrepancies do not depend on f. Moreover, if $K_{X} \in \operatorname{Div}(X)$, then $a(E ; X) \in \mathbb{Z}$.

1.3 Cone Theorem and contractions

The Cone theorem is the first main step of the Mori program. It allows to describe the negative part of the Mori cone with respect to the canonical divisor of X. Mori in [Mor82] provides a proof in the non-singular case. The extension to the singular case is due to several authors; we recall Kawamata [Kaw84], Reid [Rei83] and Shokurov [Sho86].

In the following section, we will mainly follow [KM98, Chapter 3], where a comprehensive proof of the Cone Theorem and related results can be found.
Theorem 1.3.1 (Cone theorem). [KM98, Theorem 3.7] Let X be a normal projective \mathbb{Q}-factorial variety with at most terminal singularities. Then there are countably many R_{l} such that

$$
\overline{N E}(X)=\overline{N E}(X)_{K_{X} \geq 0}+\sum R_{l}
$$

where $R_{l}=\mathbb{R}_{>0} \Gamma_{l}$ with Γ_{l} rational curve on X such that $0<-K_{X} \cdot \Gamma_{l} \leq \operatorname{dim}(X)+$ 1.

Moreover for any ample divisor H and $\varepsilon>0$,

$$
\overline{N E}(X)=\overline{N E}(X)_{\left(K_{X}+\varepsilon H\right) \geq 0}+\sum_{\text {finite }} R_{l}
$$

Definition 1.3.2. A K_{X}-negative face of the cone $\overline{\mathrm{NE}}(X)$ is called extremal face of the Mori Cone. The half-lines R_{l} of the previous theorem are called Mori extremal rays of the Mori cone and the rational curves Γ_{l} extremal curves.

In the next part of this section, we collect some fundamental results that allow us to associate to an extremal face of the Mori cone a contraction and to obtain the Contraction Theorem. The Contraction theorem is one main tool of the MMP.

Theorem 1.3.3 (Rationality theorem). [KM98, Theorem 3.5] Let X be a projective \mathbb{Q}-factorial variety with at most terminal singularities, and L an ample Cartier divisor of X. If K_{X} is not nef, then

$$
r \doteq \max \left\{t \in \mathbb{R} \mid L+t K_{X} \text { is nef }\right\}
$$

is a rational number.
The next Theorem allows us to associate to each extremal face F of the Mori cone a supporting divisor, i.e. a nef Cartier divisor L of X such that $F=\overline{\mathrm{NE}}(X) \cap L^{\perp}$. A proof of this result can be found in [KM98, Proof of Th. 3.15 Step 6.].

Theorem 1.3.4. [KM98] Let X be a normal projective \mathbb{Q}-factorial variety with at most terminal singularities and let F be an extremal face of $\overline{N E}(X)$. Then it exists a nef divisor $L \in \operatorname{Div}(X)$ such that

$$
F=\overline{N E}(X) \cap L^{\perp}
$$

and $a L-K_{X}$ is nef and big for a big enough. L is called a supporting divisor of F.
Remark 1.3.5. Let R be an extremal ray of the Mori cone $\overline{\mathrm{NE}}(X)$, and let L be a supporting divisor. Let S be an extremal ray of $\overline{\mathrm{NE}}(X)$ such that $R \neq S$. By construction of a supporting divisor $L, S \cdot L>0$.

Theorem 1.3.6. [KM98, Theorem 3.3] Let X be a normal projective \mathbb{Q}-factorial variety with at most terminal singularities. Let $D \in \operatorname{Div}(X)$ be a nef Cartier divisor such that $a D-K_{X}$ is nef and big for $a \in \mathbb{N}$ big enough. Then $|a D|$ is base point free.

Remark 1.3.7. Let F be an extremal face of the Mori cone $\overline{\mathrm{NE}}(X)$ and let L be a supporting divisor for F. By using Theorem (1.3.6), we see that the linear system associated to the divisor $m L$ for m big enough, is base point free. Hence it defines a morphism

$$
\varphi_{|m L|}: X \rightarrow \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(m L)\right)\right)
$$

Consider the Stein factorization of $\varphi_{|m L|}$ [Mat13, Proposition 2.16]:

Then ϕ is a morphism with connected fibers onto a normal projective variety Y and ψ is finite.

The previous results allow us to obtain the Contraction Theorem:
Theorem 1.3.8 (Contraction Theorem). [KM98, Theorem 3.7.(3)] Let X be a projective variety with at most terminal singularities, let F be an extremal face of the Mori cone $\overline{N E}(X)$ and let L be a supporting divisor of F. Then there is a unique morphism $\varphi: X \rightarrow Y$ such that:

1. Y is a normal projective variety;
2. φ has connected fibers;
3. an irreducible curve $C \subset X$ is mapped into a point if and only if $[C] \in F$, or equivalently an irreducible curve $C \subset X$ is mapped into a point if and only if $L \cdot C=0$.

Definition 1.3.9. Let X be a normal projective variety. A contraction of X is a surjective morphism $\varphi: X \rightarrow Y$ with connected fibers onto a normal variety Y. A contraction is said to be elementary if $\rho_{X}-\rho_{Y}=1$.

Definition 1.3.10. Let φ be a contraction. The $\operatorname{map} \varphi: X \rightarrow Y$ is:

1. of fiber type if $\operatorname{dim} X>\operatorname{dim} Y$;
2. birational if $\operatorname{dim} X=\operatorname{dim} Y$.

The exceptional locus of $\varphi, \operatorname{Exc}(\varphi)$, is the smallest subset such that φ is an isomorphism on $X \backslash \operatorname{Exc}(\varphi)$.

Definition 1.3.11. Let φ be a birational elementary contraction. The contraction φ is said to be divisorial (small) if its exceptional locus has codimension $1(\geq 2)$.

Definition 1.3.12. Let φ be a contraction of X. We say that φ is of type (a, b), if $\operatorname{dim} \operatorname{Exc}(\varphi)=a$ and $\operatorname{dim} \varphi(\operatorname{Exc}(\varphi))=b$.

It is possible to ask furthermore conditions on the anticanonical degree of curves in the fibers. Consider a contraction $\varphi: X \rightarrow Y$, we say that φ is a Mori contraction if $-K_{X}$ is φ-ample, i.e. if F is a non-trivial fiber of φ and $C \subset F$ is a curve then $-K_{X} \cdot C>0$.

Let $\varphi: X \rightarrow Y$ be a contraction. Then we define the relative cone of φ as the convex subcone $\mathrm{NE}(\varphi)$ of $\mathrm{NE}(X)$ generated by all the one-cycles contracted
by φ. If we consider $\varphi_{*}: \mathrm{N}_{1}(X) \rightarrow \mathrm{N}_{1}(Y)$ the push forward of one-cycles induced by φ. Then we can get an equivalence description of $\operatorname{NE}(\varphi): \mathrm{NE}(\varphi)=$ $\mathrm{NE}(X) \cap \operatorname{ker}\left(\varphi_{*}\right)$ [Deb01, Section 1.12].

We recall some properties of small and divisorial contractions.
Proposition 1.3.13. [KM98, Prop. 2.5] Let X be a normal projective \mathbb{Q}-factorial variety with at most terminal singularities and let $\varphi: X \rightarrow Y$ be the contraction of a divisorial extremal ray $R \subset \overline{N E}(X)$. Then $E \doteq \operatorname{Exc}(\varphi)$ is a prime divisor and it is the unique divisor with negative intersection with R.

Theorem 1.3.14. [Kaw89, Theorem 1.1] Let X be a 4-fold, and let $\varphi: X \rightarrow Y$ be a small elementary contraction. Then the exceptional locus E of φ is a disjoint union of its irreducible components E_{i} for $i=1, \ldots$, s. Furthermore, $E_{i} \cong \mathbb{P}^{2}$ for every $i=1, \ldots, s$.

Proposition 1.3.15. [Mat13, Proposition 8.2.1] Let X be a normal projective \mathbb{Q} factorial variety with at most terminal singularities and let $\varphi: X \rightarrow Y$ be a Mori contraction of divisorial type. Then Y has just terminal singularities.

Proof. Consider $K_{X}=\varphi^{*}\left(K_{y}\right)+a E$ with $a \in \mathbb{Q}$. By intersecting with a curve $C \subset X$ with $[C] \in \operatorname{NE}(\varphi)$, and using projection formula, we get

$$
a(E \cdot C)=\left(\varphi^{*}\left(K_{y}\right)+a E\right) \cdot C=K_{X} \cdot C<0 .
$$

Hence $a>0$. Consider a resolution $f: Z \rightarrow X$ such that $\varphi \circ f: Z \rightarrow Y$ is a resolution of Y. Then

$$
K_{Z}=f^{*}\left(K_{X}\right)+\sum a\left(E_{i} ; X\right) E_{i}=f^{*} \varphi^{*} K_{Y}+a f^{*} E+\sum a\left(E_{i} ; Y\right) E_{i}
$$

so by using that X has terminal singularities also Y has terminal singularities.

Definition 1.3.16. [KM98, Notation 0.4.11.] Let $\varphi: X \rightarrow Y$ be a rational map between varieties. Let Z be a subvariety of X such that φ is defined on a open dense subset $Z^{0} \subset Z$. The closure of $\varphi\left(Z^{0}\right)$ in Y is called the strict transform of Z under φ.

Definition 1.3.17. [HK00, Definition 1.9.] Let $f: X \rightarrow Y$ be a small elementary contraction, and let $D \subset X$ be a \mathbb{Q}-Cartier divisor such that $\mathrm{NE}(f)$ is negative on D, i.e. $D \cdot \mathrm{NE}(f)<0$. A D-flip of f is a small birational morphism $f^{\prime}: X^{\prime} \rightarrow$ Y such that the strict transform of D in X^{\prime} is \mathbb{Q}-Cartier and f^{\prime}-ample. Flips are usually described by the following diagram

We will also call ϕD-flip of f.

The next Lemma shows that discrepancies do not decrease after flips of a small ray R with positive anticanonical degree. Hence if a variety X has terminal singularities, then after a flip of a ray with $\left(-K_{X}\right)$-positive degree, the variety obtained has still terminal singularities.

Lemma 1.3.18. [KM98, Lemma 3.38] Consider a commutative diagram

where X, X^{\prime} and Y are normal varieties and f and f^{\prime} proper birational morphism. Assume that:

1. $-K_{X}$ is \mathbb{Q}-Cartier and f-nef;
2. $K_{X^{\prime}}$ is \mathbb{Q}-Cartier and f^{\prime}-nef.

Then for an f-exceptional divisor E over Y, we have

$$
a(E ; X) \leq a\left(E ; X^{\prime}\right)
$$

where $a(E ; X)$ and $a\left(E ; X^{\prime}\right)$ are the discrepancies of E with respect to X and X^{\prime} respectively.

Proof. Consider a common resolution of X and X^{\prime}

Set $h \doteq f \circ g=f^{\prime} \circ g^{\prime}$ and let m be an integer large enough such that $m K_{X}$ and $m K_{X^{\prime}}$ are Cartier divisors. Then

$$
\begin{gathered}
-m\left(K_{Z}\right)=-m g^{*}\left(K_{X}\right)-\sum a\left(E_{i} ; X\right) E \\
m\left(K_{Z}\right)=m g^{\prime *}\left(K_{X}^{\prime}\right)+\sum a\left(E_{i} ; X^{\prime}\right) E_{i}
\end{gathered}
$$

Consider $H \doteq \sum\left(a\left(E_{i} ; X\right)-a\left(E_{i} ; X^{\prime}\right)\right) E_{i}$, note that $H=m g^{*}\left(K_{X}^{\prime}\right)-m g^{*}\left(K_{X}\right)$ hence it is h-nef. All the coefficients are non-positive. Note that $h_{*}(-H)=0$ hence $-H$ is effective (Lemma (1.1.10)). Thus $a(E ; X) \leq a\left(E, X^{\prime}\right)$.
Definition 1.3.19. [HK00, Definition 1.8.] A small \mathbb{Q}-factorial modification (SQM) of X a normal projective \mathbb{Q}-factorial variety is a birational map $g: X \rightarrow Y$, where Y is normal, projective and \mathbb{Q}-factorial and g is an isomorphism in codimension 1.

One important class of examples of SQMs are flips.
Let R be a ray (we do not require to have negative anticanonical degree) of $\overline{\mathrm{NE}}(X)$. We define the $\operatorname{Locus}(R)$ to be the locus of curves whose classes lie in R [Wiś91, 1]. Note that it coincides with the exceptional locus of the contraction associated with R, and if R is of fiber type, then $\operatorname{Locus}(R)=X$.

The length of R is defined as

$$
l(R) \doteq \min \left\{-K_{X} \cdot C \mid C \text { rational curve and }[C] \in R\right\}
$$

Theorem 1.3.20 (Ionescu-Wiśniewski). [Wiś91, Theorem 1.1][Ion86, Theorem 0.4] Let X be a projective manifold and let $R \subset \overline{N E}(X)$ be an extremal ray. Let F be an irreducible component of a non-trivial fiber of the contraction of R. Then

$$
\operatorname{dim}(F)+\operatorname{dim}(\operatorname{Locus}(R)) \geq \operatorname{dim}(X)+l(R)-1
$$

Corollary 1.3.21. [Wiś91] Let X be a projective manifold and let $R \subset \overline{N E}(X)$ be a ray. Let $\varphi: X \rightarrow Y$ be the associated contraction to R. Suppose that:

1. $-K_{X} \cdot R>0$;
2. R is small.

Then φ cannot have one-dimensional fibers.
Proof. Set $n \doteq \operatorname{dim} X$ and let F be an irreducible component of a non-trivial fiber of φ. First note that $l(R) \geq 1$, so

$$
\operatorname{dim}(F)+\operatorname{dim}(\operatorname{Locus}(R)) \geq n
$$

R is small, so $\operatorname{dim}(\operatorname{Locus} R) \leq n-2$. Hence

$$
\begin{aligned}
\operatorname{dim}(F) & \geq n-\operatorname{dim}(\operatorname{Locus}(R)) \\
& \geq n-n+2=2
\end{aligned}
$$

Therefore F cannot be one-dimensional.
Corollary 1.3.22. Let X be a projective manifold of dimension n and let $R \subset \overline{N E}(X)$ be a small extremal ray with fibers of dimension at most 2 . Then the associated contraction $\varphi: X \rightarrow Y$ is of type $(n-2, n-4)$.

Proof. Foremost note that φ is equidimensional on $E \doteq \operatorname{Exc}(\varphi)$, and every non-trivial fiber of φ is two-dimensional. Indeed, by Corollary (1.3.21) it has no non-trivial fiber of dimension 1 . Let F be a non-trivial fiber or φ. Consider the Ionescu-Wiśniewski inequality (1.3.20),

$$
\operatorname{dim}(F)+\operatorname{dim}(\operatorname{Locus}(R)) \geq n+l(R)-1
$$

R has positive anticanonical degree, so $l(R) \geq 1$. Hence

$$
\operatorname{dim}(F)+\operatorname{dim}(\operatorname{Locus}(R)) \geq n+l(R)-1 \geq n
$$

$\operatorname{dim} F=2$, so $\operatorname{dim} \operatorname{Locus}(R) \geq n-2$. Since φ is small $\operatorname{dim} \operatorname{Locus}(R)=n-2$. Hence φ is small of type $(n-2, n-4)$.

The next Lemma characterises the contractions of extremal divisorial rays of length $l(R)$ with fibers of dimension $l(R)$.

Lemma 1.3.23. [AO02, Theorem 5.2] Let X be a projective manifold. The following are equivalent:

1. there exists an extremal ray R such that the contraction associated to R is divisorial and the fibers have dimension $=l(R)$;
2. There exists a morphism $\varphi: X \rightarrow Y$ into a smooth projective variety Y which is the blow-up of Y along a smooth subvariety of codimension $l(R)+1$.

Moreover the contraction of R and φ coincid.
The next Theorem is due to Wiśniewski and will be of frequent use throughout this thesis, and it describes the Mori contractions with at most one-dimensional fibers.

Theorem 1.3.24. [Wiś91, Theorem 1.2.] Let X be a projective manifold, $\varphi: X \rightarrow Y$ a Mori contraction such that every fiber of φ has dimension at most one. Then one of the following holds:

1. φ is of fiber type;
2. if φ is birational then is of type $(n-1, n-2)^{s m}$, i.e. it is a blow-up of a smooth codimension 2 subvariety of Y.

If φ is of fiber type, then we will call it a conic bundle.
Lemma 1.3.25. [AW97, Lemma 2.12 and Theorem 4.1] Let X be a projective manifold, $\varphi: X \rightarrow Y$ be a Mori contraction, and F be a fiber with an irreducible component F_{0} of dimension 1. Then Y is smooth in $\varphi\left(F_{0}\right)$. Either φ is of fiber type and F has two irreducible components (both isomorphic to \mathbb{P}^{1}) or φ is birational and $F=F_{0} \cong \mathbb{P}^{1}$.

Remark 1.3.26. Let X be a projective manifold, and let $\varphi: X \rightarrow Y$ be an elementary extremal contraction. If every non-trivial fiber of a Mori contraction $\varphi: X \rightarrow Y$ is one-dimensional, then Y is smooth.

For the singular case, we recall the following lemma:
Lemma 1.3.27. [Ish91, Lemma 1.1.] Let X be a projective variety with at most terminal singularities, and let $\varphi: X \rightarrow Y$ be a birational Mori contraction with fibers of dimension at most 1. Let F be an irreducible component of a non-trivial fiber, and suppose that F contains a Gorenstein point of X. Then $F \cong \mathbb{P}^{1}$ and $-K_{X} \cdot F \leq 1$.
Remark 1.3.28. Let X be a projective variety with at most terminal singularities and let $D \subset X$ be a prime divisor in X. Suppose that exists a ray $R \subset \overline{\mathrm{NE}}(X)$ such that $R \not \subset \mathrm{~N}_{1}(D, X)$. Then $R \cap \mathrm{~N}_{1}(D, X)=\{0\}$.

The following lemma will be of frequent use in our proofs:
Lemma 1.3.29. Let X be a projective variety and let $D \subset X$ be a prime divisor of X. Suppose there exists a ray $R \subseteq \overline{N E}(X)$ associated to a contraction $\varphi: X \rightarrow Y$ such that:

1. $R \cdot D>0$;
2. $R \not \subset \mathrm{~N}_{1}(D, X)$.

Then every non-trivial fiber of the associated contraction φ is a curve.
Proof. Let F be an irreducible component of a non-trivial fiber of φ. Since D. $R>0$, then $F \cap D \neq \emptyset$. Note that since $R \not \subset \mathrm{~N}_{1}(D, X)$, then φ is finite on D and $F \not \subset D$. Then

$$
\operatorname{dim} F-1 \leq \operatorname{dim}(D \cap F)=\operatorname{dim} \varphi(D \cap F)=0
$$

Corollary 1.3.30. Let X be a projective variety with at most terminal singularities of dimension n. Let $D \subset X$ be a prime divisor. Suppose there exists a ray R such that:

1. $D \cdot R>0$;
2. the contraction associated to R has fibers of dimension >1.

Then $R \subset \mathrm{~N}_{1}(D, X)$.
Proof. Suppose that $R \not \subset \mathrm{~N}_{1}(D, X)$. Then every non-trivial fiber is one-dimensional by Lemma (1.3.29). Hence $R \subset \mathrm{~N}_{1}(D, X)$.

Remark 1.3.31. Let X be a manifold of dimension n, and let D be a prime divisor. Suppose there exists an elementary contraction $\varphi: X \rightarrow Y$ of an extremal ray $R \subset \mathrm{NE}(X)$ such that R is birational, $D \cdot R>0$ and $R \not \subset \mathrm{~N}_{1}(D, X)$. Then every non-trivial fiber is one-dimensional by Lemma (1.3.29), so it is of type $(n-$ $1, n-2)^{s m}$ by Theorem (1.3.24). Then $E \doteq \operatorname{Exc}(\varphi)$ has a \mathbb{P}^{1}-bundle structure given by the restriction of the contraction φ to E, i.e. $\varphi_{\left.\right|_{E}}: E \rightarrow W$.

Moreover for every fiber f of $\varphi_{\left.\right|^{\prime}}$, the following hold:

1. $D \cdot f>0$, because $D \cdot R>0$;
2. $E \cdot f=-1, \varphi$ is of type $(n-1, n-2)^{s m}$;
3. $f \not \subset D$, because $R \not \subset \mathrm{~N}_{1}(D, X)$.

We end this section by recalling a technical lemma that we will use in the proof of the Proposition (4.10), and a theorem due to Lazarsfeld.

Lemma 1.3.32. [Cas09, Lemma 4.9] Let E be a projective manifold and $\pi: E \rightarrow W$ be a smooth morphism with fibers \mathbb{P}^{r}. Suppose that E has a Mori contraction $\phi: E \rightarrow \mathbb{P}^{r}$ which is finite on fibers of π. Then $E \cong W \times \mathbb{P}^{r}$.

Theorem 1.3.33. [Laz84, Theorem 4.1] Let X be a projective manifold of dimension $n \geq 1$, and let

$$
f: \mathbb{P}^{n} \rightarrow X
$$

be a surjective morphism. Then $X \cong \mathbb{P}^{n}$.

1.4 Fano manifolds

Definition 1.4.1. A projective manifold is said to be Fano if the Cartier divisor $-K_{X}$ is ample.

Fano manifolds in dimension two are called Del Pezzo surfaces. Examples of del Pezzo surfaces are $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\mathrm{Bl}_{\{P, Q\}} \mathbb{P}^{2}$ where P and Q are two points in \mathbb{P}^{2}.
Remark 1.4.2. By the Cone Theorem (1.3.1), if X is Fano then $\mathrm{NE}(X)=\overline{\mathrm{NE}}(X)$ and the Mori cone is polyhedral.
Definition 1.4.3. Let X be a Fano manifold. We define the p seudoindex of a Fano manifold X as

$$
i_{X} \doteq \min \left\{-K_{X} \cdot C \mid C \text { is a rational curve in } X\right\} .
$$

Remark 1.4.4. Let X ba a Fano manifold of dimension n. Suppose that X has a structure of blow-up of a smooth subvariety of codimension 2, i.e. X has one extremal ray $R \subset \mathrm{NE}(X)$ of type $(n-1, n-2)^{s m}$. By the Ionescu-Wiśniewski inequality (1.3.20), $l(R)=1$. Hence $i_{X}=1$.

Example 1.4.5. Consider the Fano manifold X obtained as the blow-up of \mathbb{P}^{5} along a \mathbb{P}^{3}, i.e. $X=\mathrm{Bl}_{\mathbb{P}^{3}} \mathbb{P}^{5}$. Then $\rho_{X}=2$ and $i_{X}=1$.
Example 1.4.6. Consider $X \doteq \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathrm{Bl}_{P} \mathbb{P}^{3}$ where P is a point in \mathbb{P}^{3}. X is a Fano manifold of dimension 5 with $\rho_{X}=4$ and pseudoindex $i_{X}=2$. Note that it has a ray giving to X a structure of blow-up of a smooth subvariety, and three rays of fiber type.
Example 1.4.7. Consider $X \doteq \mathbb{P}^{1} \times \mathrm{Bl}_{P} \mathbb{P}^{4}$ where P is a point in \mathbb{P}^{4}. X is a Fano manifold of dimension 5 with $\rho_{X}=3$ and pseudoindex $i_{X}=2$. Note that it has one divisorial ray which correspond to the blow-up of a point, and two rays of fiber type.
Definition 1.4.8. Let X be a Fano manifold. We define the Lefschetz defect as

$$
\delta_{X}=\max \left\{\operatorname{codim} \mathrm{N}_{1}(D, X) \mid D \subset X \text { prime divisor of } X\right\} .
$$

In general, $\operatorname{dim} \mathrm{N}_{1}(D, X)$ can be smaller than ρ_{X}. For example, take X to be the blow-up of \mathbb{P}^{2} in one point and let E be the exceptional divisor of the blow-up. Note that, $\rho_{X}=2$ and $\operatorname{dim} \mathrm{N}_{1}(E, X)=1$.

It can happen that $\operatorname{dim} \mathrm{N}_{1}(D, X)=\rho_{X}$. For example, consider X Fano manifold of dimension n and D a principal ample divisor of X. Then, by Lefschetz Theorem on the Picard group [Laz17, Example 3.1.25], $\mathrm{N}_{1}(D, X)=\mathrm{N}_{1}(X)$. So the dimensions also coincide.

Lemma 1.4.9. Let X be a Fano manifold of dimension n. Let $R \subset N E(X)$ be an extremal ray whose contraction $\varphi: X \rightarrow Y$ is the blow-up of a smooth subvariety $Z \subset Y$ of codimension at least 2 . Let $E \doteq \operatorname{Exc}(\varphi)$ be the exceptional divisor of φ. Suppose that for every extremal ray $S \subset \mathrm{~N}_{1}(E, X)$ such that $S \neq R, S$ is non-negative on E.

Then Y is Fano.

Proof. By contradiction suppose that Y is not Fano. Then there exists a ray $R \subset \mathrm{NE}(Y)$ such that $-K_{Y} \cdot R \leq 0$. Let $R_{X} \subset \mathrm{NE}(X)$ be a ray, not contracted by φ such that $R=\varphi_{*}\left(R_{X}\right)$. Then $-\varphi^{*}\left(K_{Y}\right) \cdot R_{X} \leq 0 . \varphi$ correspond to the blow-up of a smooth subvariety of Y of codimension ≥ 2, therefore

$$
-K_{X}=-\varphi^{*}\left(K_{Y}\right)-(\operatorname{codim} Z-1) E
$$

with codim $Z-1 \geq 1$. Intersecting with $R_{X}, E \cdot R_{X}<0$ thus $R_{X} \subset \mathrm{~N}_{1}(E, X)$. Since $R_{X} \neq R$ and every ray $S \neq R$ contained in $\mathrm{N}_{1}(E, X)$ is non-negative on E, we get a contradiction.

In the next Remark we will see that, if we consider an elementary contraction $f: X \rightarrow Y$ of a Fano manifold X and an elementary contraction φ of Y, it always exists a lift for φ, i.e. the elementary contraction $\psi: X \rightarrow W$ of X such that $\mathrm{NE}(\varphi \circ f)=\mathrm{NE}(f)+\mathrm{NE}(\psi)$.

Remark 1.4.10. [Cas08, Section 2.5] Let X be a Fano variety and let $f: X \rightarrow Y$ be a contraction. Let $\alpha \subseteq \operatorname{NE}(Y)$ be a face of the Mori cone of Y, and let $\widehat{\alpha} \subseteq$ $\mathrm{NE}(X)$ be the unique face of $\mathrm{NE}(X)$ containing $\mathrm{NE}(f)$ and such that $f_{*}(\widehat{\alpha})=\alpha$. Then

$$
\operatorname{dim}(\widehat{\alpha})-\operatorname{dim} \alpha=\operatorname{dim} \mathrm{NE}(f)
$$

Since $\operatorname{NE}(f)$ is a face of $\operatorname{NE}(X)$ contained in $\widehat{\alpha}$, then $\operatorname{NE}(f)$ is a face of $\widehat{\alpha}$. Then we can find another face of $\widehat{\alpha}, \widetilde{\alpha}$ such that the followings hold:

1. $\operatorname{dim}(\alpha)=\operatorname{dim}(\widetilde{\alpha})$;
2. $\widetilde{\alpha} \cap \mathrm{NE}(f)=\{0\}$.

Suppose that $\operatorname{dim} \alpha=1$, i.e. the contraction φ associated to α is an elementary contraction. Then $\widetilde{\alpha}$ is an extremal ray of $\operatorname{NE}(X)$, because $\widetilde{\alpha}$ is a face of $\operatorname{NE}(X)$ of dimension $\operatorname{dim}(\widetilde{\alpha})=\operatorname{dim}(\alpha)=1, f_{*}(\widetilde{\alpha})=\alpha$ and the choice of $\widetilde{\alpha}$ is unique. Since X is Fano, by the Contraction Theorem (1.3.8), there exists two contractions $h: X \rightarrow Z$ and $\psi: X \rightarrow W$ such that $\operatorname{NE}(h)=\widehat{\alpha}$ and $\operatorname{NE}(\psi)=\widetilde{\alpha}$.

Then there exists two contractions $\widetilde{\varphi}: Y \rightarrow Z$ and $g: W \rightarrow Z$ such that they make the following diagramm commutes:

Since $f_{*}(\widetilde{\alpha})=\alpha$, then $\operatorname{NE}(\widetilde{\varphi})=\alpha$. Thus $\varphi=\widetilde{\varphi}$ and $\operatorname{NE}(\varphi \circ f)=\operatorname{NE}(f)+$ $\mathrm{NE}(\psi)$. We call ψ a lift of φ.

Lemma 1.4.11. Let X a Fano manifold . Let $D \subset X$ be an effective divisor in X. Then it is always possible to find an extremal ray of the Mori cone $R \subset N E(X)$ such that $D \cdot R>0$.

Proof. By contradiction, let $D \subset X$ be an effective divisor such that $D \cdot R \leq$ 0 for every extremal ray $R \subset \mathrm{NE}(X)$. Since D is effective, then it exists an irreducible curve $C \subset X$ positive on D, i.e. $D \cdot C>0$. Since $[C] \in \operatorname{NE}(X)$ then $[C]=a_{1}\left[C_{1}\right]+\cdots+a_{s}\left[C_{s}\right]$ with $a_{i} \in \mathbb{R}_{\geq 0}$, not all 0 , and $\left[C_{i}\right]$ class of a curve in an extremal ray R_{i} for every $i \in\{1, \cdots, s\}$. Therefore $0<D \cdot C=$ $D \cdot\left(a_{1}\left[C_{1}\right]+\cdots+a_{s}\left[C_{s}\right]\right) \leq 0$, a contradiction.

Lemma 1.4.12. [Cas09, Remark 4.6.] Let X be a Fano manifold. Suppose there exists a divisorial contraction associated to a ray S_{1} with exceptional divisor G_{1} such that $G_{1} \cdot S \geq 0$ for every extremal ray $S \neq S_{1}$. Let S_{2} be a birational extremal ray of $N E(X)$ with $G_{1} \cdot S_{2}=0$. Then $S_{1}+S_{2}$ is a face of $N E(X)$.

Proof. By contradiction. Suppose that $S_{1}+S_{2}$ is not a face and let C_{i} be a curve of X such that $\left[C_{i}\right] \in S_{i}$ for $i=1,2$. Let $\lambda_{i} \in \mathbb{Q}_{>0}$ for $i=1,2$. Then

$$
\lambda_{1} C_{1}+\lambda_{2} C_{2} \equiv \sum_{k=3}^{m} \lambda_{k} C_{k}
$$

with $\lambda_{k} \in \mathbb{Q}_{>0}$ for every $k \in\{1, \cdots, m\}$; moreover $C_{k} \in S_{k}$ where S_{k} is an extremal ray with non-negative intersection with G_{1} for every $k \in\{3, \cdots, m\}$. Then, intersecting with G_{1}, we obtain

$$
0>\left(\lambda_{1} C_{1}+\lambda_{2} C_{2}\right) \cdot G_{1}=\left(\sum_{k=3}^{m} \lambda_{k} C_{k}\right) \cdot G_{1}>0
$$

which is a contradiction.
We conclude this subsection with two results proved by C. Casagrande in [Cas12b], that allow us to obtain a bound on the Picard number of Fano 4-folds admitting some contractions of fiber type.
Corollary 1.4.13. (Elementary contraction onto a surface) Let X be a Fano 4 -fold. If X has an elementary contraction onto a surface S and $\rho_{X} \geq 4$, then $X \cong \mathbb{P}^{2} \times S$ with S del Pezzo. Hence $\rho_{X} \leq 10$.

Corollary 1.4.14. (Elementary contraction onto a threefold) Let X be a Fano 4-fold. If X has an elementary contraction onto a threefold Y and $\rho_{X} \geq 7$, then either $X \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{1} \times S$ or $X \cong \mathbb{F}_{1} \times S$ with S del Pezzo. Hence $\rho_{X} \leq 11$

2 Mori program for a MDS

The notion of Mori dream space (or shortly MDS) was introduced by Hu and Keel in [HK00] where it is shown that they have many important features with respect to the Mori theory. For example, we will recall that for a MDS X it always exists a MMP for every divisor in X.

In this section, we will collect some of these features.
Definition 2.1. [HK00, Def. 1.10] Let X be a normal \mathbb{Q}-factorial projective variety. X is said to be a Mori dream space (MDS) if it satisfies the following properties:

1. $\operatorname{Pic}(X)$ is finitely generated;
2. $\operatorname{Nef}(X)$ is generated by classes of finitely many semiample divisors;
3. there is a finite collection of SQM $g_{i}: X \rightarrow X_{i}$ for $i=1, \cdots, r$ such that every X_{i} satisfies (1) and (2), and

$$
\operatorname{Mov}(X)=\bigcup_{i=1}^{r} g_{i}^{*}\left(\operatorname{Nef}\left(X_{i}\right)\right)
$$

One of the main characteristics of a MDS is that the Effective cone is rational polyhedral, hence closed [Cas12a, Corollary 4.8.]. This allows us to prove the following Lemma:

Lemma 2.2. Let X be a MDS and let $D \subset X$ be an effective divisor in X such that $[D] \not \equiv 0$. Then $-D$ is not nef.

Proof. Since D is a non-zero effective divisor, $-D$ is not effective. By [Cas12a, Corollary 4.8.], the Effective cone is rational polyhedral. Hence it is closed, so $\overline{\mathrm{Eff}(X)}=\operatorname{Eff}(X)$. Thus

$$
\operatorname{Nef}(X) \subseteq \operatorname{Eff}(X)
$$

and $-D$ cannot be nef.
Definition 2.3. Let X be a normal \mathbb{Q}-factorial projective variety and let $D \subset X$ be a divisor in X. A Mori program for $D \doteq D_{0}$ is a finite sequence

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots \stackrel{\sigma_{k-2}}{-} X_{k-1} \stackrel{\sigma_{k}-1}{-}>X_{k}
$$

such that:

1. for all $i \in\{0, \ldots, k\} X_{i}$ is a normal and \mathbb{Q}-factorial projective variety;
2. for all $i \in\{0, \ldots, k-1\}$ there is a ray R_{i} of X_{i} such that $D_{i} \cdot R i<$ 0 , where D_{i} is the transform of D_{i-1} (Def. (1.3.16)) if σ_{i-1} is a flip or $D_{i}=\left(\sigma_{i-1}\right)_{*}\left(D_{i-1}\right)$ if σ_{i-1} is a contraction of divisorial type. Moreover Locus $\left(R_{i}\right) \subset X_{i}$, and σ_{i} is either the contraction of the ray R_{i}, in case R_{i} is of divisorial type, or the D_{i}-flip of R_{i}, in case R_{i} is small;
3. if $i=k$, then D_{k} is either nef or there exists a D_{k} negative contraction of a ray $R_{k} \subset N E\left(X_{k}\right)$ of fiber type $\varphi: X_{k} \rightarrow Y$.

It has been proved that if the starting variety X is a MDS and $D \subset X$ is a divisor in X, it always exists a Mori program for D. For a proof of the existence, see [HK00, Prop 1.11 (1)] or [Cas12a, Section 4].

Proposition 2.4. [HK00, Prop 1.11 (1)] Let X be a $M D S$ and $D \subset X$ a divisor in X. Then X admits a Mori program for D. Moreover, with the notation of Definition (2.3), the choice of the ray R_{i} is arbitrary among the D_{i}-negative ones.

Remark 2.5. Consider X a MDS, $D \subset X$ a divisor in X and a Mori program for D. With the notation of Definition (2.3), every X_{i} is a MDS. [Cas12a, Proof of Theorem 4.2.]

In the remaining part of this section, we will consider a Mori program for $-D \subset X$ where D is a prime divisor and X is a MDS. This type of Mori program was first introduced [Cas09] and studied in detail in [Cas12b]. It is somewhat opposite to the classical approach since at every step we will consider a ray with positive intersection with the divisor.

As a corollary of the existence of a Mori Program on a MDS for every divisor, we obtain the following result (which is a generalization of Lemma (1.4.11))

Corollary 2.6. Let X be a $M D S$ and $D \subset X$ a prime divisor in X. Then D is positive on at least one ray of the Mori cone $N E(X)$.

Next Lemma will be of frequent use in our proof. Indeed, let X be a MDS. By Remark (2.5), given a Mori program for $-D$ where D is a prime divisor $D \subset X$, at every step of the Mori program we can apply Corollary (2.6).

Lemma 2.7. [Cas09, Remark 2.5] Let X be a MDS and let $D \subset X$ be a prime divisor in X, then it exists an elementary contraction $\varphi: X \rightarrow Y$ such that $D \cdot N E(\varphi)>0$ and D intersects every non-trivial fiber of φ.
Moreover one of the following occours:

1. if φ is of fiber type, then $\rho_{X} \leq \operatorname{dim} \mathrm{N}_{1}(D, X)+1$;
2. if φ is birational, then $\operatorname{Exc}(\varphi) \neq D, \varphi(D)$ is a divisor in Y and one of the following occours:
(a) $N E(\varphi) \subset \mathrm{N}_{1}(D, X)$ and $\operatorname{dim} \mathrm{N}_{1}(D, X)=\operatorname{dim}(\varphi(D), Y)+1$;
(b) $N E(\varphi) \not \subset(D, X)$ and $\operatorname{dim} \mathrm{N}_{1}(D, X)=\operatorname{dim}(\varphi(D), Y)$.

Proof. By Corollary (2.6) D is positive on at least one ray of $\mathrm{NE}(X)$. Consider a ray R positive on D and let $\varphi: X \rightarrow Y$ be the associated elementary contraction. By the positivity of D in $\operatorname{NE}(\varphi), D$ intersects every not trivial fiber of φ. A contraction can be either of fiber type or birational.
Suppose that φ is of fiber type. Since D intersects every non-trivial fiber of φ then

$$
\varphi(X)=\varphi(D)=Y
$$

Consequently $(\varphi)_{*}\left(\mathrm{~N}_{1}(D, X)\right)=\mathrm{N}_{1}(Y)$, hence $\rho_{Y} \leq \operatorname{dim} \mathrm{N}_{1}(D, X)$ and $\rho_{X} \leq$ $\operatorname{dim} \mathrm{N}_{1}(D, X)+1$.

Suppose now that φ is birational. Since $D \cdot R>0$ then $\operatorname{Exc}(\varphi)$ intersects D. We will now prove that $\operatorname{Exc}(\varphi) \neq D$. If φ is small, then it is clear. Suppose that φ is of divisorial type and $D=\operatorname{Exc}(\varphi)$. By Proposition (1.3.13) $D \cdot \operatorname{NE}(\varphi)=$ $\operatorname{Exc}(\varphi) \cdot \operatorname{NE}(\varphi)<0$. Hence $D \neq \operatorname{Exc}(\varphi)$, thus $\varphi(D)$ is a divisor of Y. The ray contracted can either be contained in $\mathrm{N}_{1}(D, X)$ or not. Suppose that $\mathrm{NE}(\varphi) \subset$ $\mathrm{N}_{1}(D, X)$; then $\operatorname{dim} \mathrm{N}_{1}(D, X)=\operatorname{dim}(\varphi(D), Y)+1$. Otherwise if $\mathrm{NE}(\varphi) \not \subset$ $\mathrm{N}_{1}(D, X)$, then $\operatorname{dim} \mathrm{N}_{1}(D, X)=\operatorname{dim}(\varphi(D), Y)$. Note that in this last case $\left.\varphi\right|_{D}$ is finite, hence by Lemma (1.3.29) every fiber of $\left.\varphi\right|_{D}$ has dimension at most 1.

In the next Lemma we will observe that every Mori program for $-D$ where $D \subset X$ is a prime divisor in X ends with a contraction of fiber type.
Lemma 2.8. [Cas12b, Lemma. 2.6] Let X be a MDS and $D \subset X$ be a prime divisor in X. Consider a Mori program for $-D$ as in (2.3):

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{k-2}}{>} X_{k-1} \stackrel{\sigma_{k-1}}{-}>X_{k}
$$

Then the following hold:

1. at every step D_{i} is a prime divisor of X_{i};
2. the ray R_{k} is of fiber type, hence the program ends with an elementary contraction of fiber type $\varphi: X_{k} \rightarrow Y$ such that $N E(\varphi)=R_{k}$ and $\varphi\left(D_{k}\right)=Y ;$
Proof. Let $i \in\{1, \cdots, k\}$ be such that σ_{i} is a flip. Then by the flip construction (Def. (1.3.17)), D_{i+1} is a prime divisor. To prove that at each step D_{i} is a prime divisor of X_{i}, it is enough to see it when σ_{i} is of divisorial type. Let $i \in\{1, \cdots, k\}$ be such that σ_{i} is a divisorial contraction. Since $D_{i} \cdot R_{i}>0$, then $D_{i} \cap \operatorname{Exc}\left(\sigma_{i}\right) \neq \emptyset$ but $D_{i} \neq \operatorname{Exc}\left(\sigma_{i}\right)$ otherwise R_{i} it would have been negative on D_{i} by Proposition (1.3.13). So $D_{i+1}=\sigma_{i}\left(D_{i}\right)$ is a prime divisor in X_{i+1}. Thus at every step D_{i} is a prime divisor of X_{i}.

For $i=k$ we have that D_{k} is a prime divisor of X_{k}, then $-D_{k}$ cannot be nef by Lemma (2.2) and by Remark (2.5). Hence the Mori program ends with a contraction of fiber type. Let $\varphi: X_{k} \rightarrow Y$ be the contraction of fiber type associated to R_{k}. Since $D_{k} \cdot R_{k}>0, D_{k}$ intersects every non-trivial fiber of φ. Then $\varphi\left(D_{k}\right)=Y$.

Lemma 2.9. [Cas12b, Lemma. 2.6] Let X be a $M D S$ and $D \subset X$ be a prime divisor. Consider a Mori program for $-D$ as in (2.8):

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{k-2}}{>} X_{k-1} \stackrel{\sigma_{k-1}}{-}>X_{k}
$$

Set $c_{i} \doteq \operatorname{codim} \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$ for every $i \in\{0, \cdots, k\}$. For every $i \in\{0, \cdots, k-1\}$ we have

$$
c_{i+1}= \begin{cases}c_{i} & \text { if } R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right) \\ c_{i}-1 & \text { if } R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\end{cases}
$$

and

$$
c_{k}= \begin{cases}0 & \text { if } R_{k} \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right) \\ 1 & \text { if } R_{k} \not \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right)\end{cases}
$$

Furthermore $\#\left\{i \in\{0, \cdots, k-1\} \mid R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\right\}=\operatorname{codim} \mathrm{N}_{1}(D, X)$.
Proof. By definition of Mori program for $-D$, we have $D_{i} \cdot R_{i}>0$ for every $i \in\{1, \cdots, k\}$.

Let $i \in\{1, \cdots, k\}$ be such that σ_{i} is a contraction of divisorial type and consider the push-foward of 1-cycles $\left(\sigma_{i}\right)_{*}: \mathrm{N}_{1}\left(X_{i}\right) \rightarrow \mathrm{N}_{1}\left(X_{i+1}\right)$. Since D_{i} is positive on R_{i} and σ_{i} is the elementary contraction associated to the ray R_{i}, $\operatorname{ker}\left(\left(\sigma_{i}\right)_{*}\right)=\mathbb{R} R_{i}$ and $\mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)=\left(\sigma_{i}\right)_{*}\left(\mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\right)$. Since we have $\rho_{X_{i+1}}=\rho_{X_{i}}-1$, then $c_{i+1}=c_{i}$ if $R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$, otherwise $c_{i+1}=c_{i}-1$ if $R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$.

Let $i \in\{0, \cdots, k-1\}$ be such that σ_{i} is a $-D_{i}$-flip and consider the flip diagram:

where φ_{i} is the contraction of R_{i} and φ_{i}^{\prime} is its flip. Since $\varphi_{i}\left(D_{i}\right)=\varphi_{i}^{\prime}\left(D_{i+1}\right)$, then
$\left(\varphi_{i}\right)_{*}\left(\mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\right)=\mathrm{N}_{1}\left(\varphi_{i}\left(D_{i}\right), Y_{i}\right)=\mathrm{N}_{1}\left(\varphi_{i}^{\prime}\left(D_{i+1}\right), Y_{i}\right)=\left(\varphi_{i}^{\prime}\right)_{*}\left(\mathrm{~N}_{1}\left(D_{i+1}, X_{i+1}\right)\right)$.
Note that $\operatorname{NE}\left(\varphi_{i}^{\prime}\right) \subset \mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)$, since $D_{i+1} \cdot \mathrm{NE}\left(\varphi_{i}^{\prime}\right)<0$ by Definition of flip (1.3.17). Then $\operatorname{ker}\left(\varphi_{i}^{\prime}\right)_{*} \subseteq \mathrm{~N}_{1}\left(D_{i+1}, X_{i+1}\right)$, so we have

$$
c_{i+1}=\operatorname{codim} \mathrm{N}_{1}\left(\varphi_{i}\left(D_{i}\right), Y_{i}\right)
$$

Therefore, $c_{i+1}=c_{i}$ if $R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$, otherwise $c_{i+1}=c_{i}-1$ if $R_{i} \not \subset$ $\mathrm{N}_{1}\left(D_{i}, X_{i}\right)$. By Lemma (2.8), $\varphi_{k}\left(D_{k}\right)=Y$, so

$$
\left(\varphi_{k}\right)_{*}\left(\mathrm{~N}_{1}\left(D_{k}, X_{k}\right)\right)=\mathrm{N}_{1}(Y)
$$

Hence either $c_{k}=0$ if $R_{k} \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right)$ or $c_{k}=1$ if $R_{k} \not \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right)$.
The last part of the statement follows immediately.
Lemma 2.10. [Cas12b, Lemma 2.6] Let X be a smooth $M D S$ and $D \subset X$ be a prime divisor. Consider a Mori program for $-D$. Define $A_{l} \subset X_{l}$ for $l \in\{1, \cdots, k\}$ as follows: let $A_{1} \subset X_{1}$ be the indeterminacy locus of σ_{0}^{-1}, and for $i \in\{2, \ldots, k\}$ let $A_{i} \subset X_{i}$ be the union of $\sigma_{i-1}\left(A_{i-1}\right)$ and the indeterminacy locus of σ_{i-1}^{-1}, if σ_{i-1} is of divisorial type, or let $A_{i} \subset X_{i}$ be the union of the transform of A_{i-1} and the indeterminacy locus of σ_{i-1}^{-1}, if σ_{i-1} is a flip.

Then for every $i \in\{1, \cdots, k\}, \operatorname{Sing}\left(X_{i}\right) \subseteq A_{i} \subset D_{i}$ and $X_{i} \backslash A_{i}$ is isomorphic to an open subset of X, so it is smooth.

Proof. Let $i \in\{0, \cdots, k-1\}$ be such that σ_{i} is a contraction of divisorial type. Since D_{i} is positive on R_{i}, it intersects every non-trivial fiber of σ_{i}. So $D_{i} \cap$ $\operatorname{Exc}\left(\sigma_{i}\right) \neq \emptyset$ and $\sigma_{i}\left(\operatorname{Exc}\left(\sigma_{i}\right)\right) \subseteq D_{i+1}$. So D_{i+1} contains the indeterminacy locus of σ_{i}^{-1}.

Let $i \in\{1, \cdots, k\}$ be such that σ_{i} is a $-D_{i}$-flip and consider the flip diagram:

where φ_{i} is the contraction of R_{i} and φ_{i}^{\prime} is its $-D_{i}$-flip. By construction D_{i+1} is negative on $\operatorname{NE}\left(\varphi_{i}^{\prime}\right)$, then $\operatorname{Exc}\left(\varphi_{i}^{\prime}\right) \subset D_{i+1}$. Hence D_{i+1} contains the indeterminacy locus of σ_{i}^{-1},

For every $i D_{i}$ contains the indeterminacy locus of σ_{i-1}^{-1}, so we see that $A_{i} \subset D_{i}$. To conclude, note that A_{i} contains the indeterminacy locus of ($\sigma_{i-1} \circ$ $\left.\cdots \sigma_{0}\right)^{-1}$ and that $X_{i} \backslash A_{i}$ is smooth because X is smooth.

Remark 2.11. Note that if σ_{i-1} is small, then $\operatorname{dim} A_{i}>0$. Hence, $\operatorname{dim} A_{i}=0$ occurs only if R_{i-1} is divisorial.

2.1 Fano as MDS

In [HK00, Corollary 2.16] it has been proved that Fano 3-folds are MDS and it has been conjectured that the same holds for arbitrary dimensions. In [BCHM10] it has been proved that any Fano manifold of any dimension is a MDS. This enables us to consider a Mori program for every divisor $D \subset X$. In the following section, we will also show that there is a suitable choice of extremal rays involved in the MMP whose contractions have positive anticanonical degree. We will call this Mori program special Mori program.

From now, X is fixed to be a Fano manifold of dimension at least 3 .
Theorem 2.1.1. [BCHM10, Corollary 2.16] Let X be a Fano manifold. Then X is a Mori Dream Space.

Corollary 2.1.2. Let X be a Fano manifold and let $D \subset X$ be a divisor in X. Then it exists a Mori program as in (2.3) for X and D.

Lemma 2.1.3. [Cas09, Lemma 3.8.] Let X be a Fano manifold and let $D \subset X$ be a prime divisor in X. Consider a Mori program for $-D$ as in Lemma (2.8), let $i \in$ $\{0, \cdots k\}$ and suppose that for every $j \in\{0, \cdots, i-1\}$ the R_{j} is $-K_{X_{j}}$-positive. Then for every $s \in\{0, \ldots, i\} X_{s}$ has terminal singularities.

Let $A_{i} \subset X_{i}$ as in Lemma (2.10). If $C \subset X_{i}$ is an irreducible curve not contained in A_{i} and $C_{0} \subset X$ is the proper transform of C in X, the following holds:

$$
-K_{X} \cdot C_{0} \leq-K_{X_{i}} \cdot C
$$

Moreover if $C \cap A_{i} \neq \emptyset$ then

$$
-K_{X} \cdot C_{0}<-K_{X_{i}} \cdot C
$$

Proof. Fix $i \in\{1, \cdots, k\}$. Suppose that the statement holds for $i-1$ and take $\sigma_{i-1}: X_{i-1} \rightarrow X_{i}$. We will distinguish two cases, when σ_{i-1} is a $-D_{i-1}$ flip and when σ_{i-1} is divisorial. Suppose that σ_{i-1} is a $-D_{i-1}$-flip. Now consider a common resolution of X_{i} and X_{i-1} and the standard flip diagram:

Foremost we want to see that, if X_{i-1} has terminal singularities, so does X_{i}. Let $E_{1}, \cdots, E_{r} \subset Z$ be the exceptional divisors of the resolutions, then

$$
K_{Z}=f^{*}\left(K_{X_{i-1}}\right)+\sum_{k=1}^{r} b_{k} E_{k}=g^{*}\left(K_{X_{i}}\right)+\sum_{k=1}^{r} a_{k} E_{k}
$$

where a_{k} 's and b_{k} 's are the discrepancies of E_{k} in X_{i} and X_{i-1} respectively, and $a_{k}, b_{k} \in \mathbb{Q} . X_{i-1}$ has terminal singularities, hence $b_{k}>0$. Since the contraction is a Mori contraction, discrepancies do not decrease after flips, also X_{i} has terminal singularities and $a_{k} \geq b_{k}>0$ for every $k=1, \cdots, r$ (Lemma 1.3.18).

Consider a curve $C \subset X_{i}$ as in the statement and let $C_{Z} \subset Z$ and $C_{i-1} \subset$ X_{i-1} be its strict transform in Z and X_{i-1} respectively. First, note that C_{Z} cannot be contained in the exceptional divisor E_{k} for every k, hence $E_{k} \cdot C_{Z} \geq 0$ for every k. Notice that the following holds:

$$
g^{*}\left(K_{X_{i}}\right)=f^{*}\left(K_{X_{i-1}}\right)+\sum_{k=1}^{r}\left(b_{k}-a_{k}\right) E_{k}
$$

hence by the projection formula we get

$$
-K_{X_{i}} \cdot C=-K_{X_{i-1}} \cdot C_{i-1}-\sum_{k=1}^{r}\left(b_{k}-a_{k}\right)\left(E_{k} \cdot C_{Z}\right)
$$

Since $a_{i} \geq b_{i}>0, E_{i} \cdot C_{Z} \geq 0$ and $-K_{X_{i-1}} \cdot C_{i-1} \geq-K_{X} \cdot C_{0}$, then

$$
-K_{X_{i}} \cdot C \geq-K_{X_{i-1}} \cdot C_{i-1} \geq-K_{X} \cdot C_{0}
$$

It is left to prove the last part of the statement, i.e. if $C \cap A_{i} \neq \emptyset$ then $-K_{X} \cdot C_{0}<-K_{X_{i}} \cdot C$.

Suppose that $C \cap A_{i} \neq \emptyset$, we can consider two different cases:

1. $C_{i-1} \cap A_{i-1} \neq \emptyset$. By hypothesis $-K_{X_{i-1}} \cdot C_{i-1}>-K_{X} \cdot C_{0}$, hence $-K_{X_{i}}$. $C>-K_{X} \cdot C_{0}$.
2. $C_{i-1} \cap A_{i-1}=\emptyset$ but $C \cap A_{i} \neq \emptyset$. By the construction of the $A_{i}{ }^{\prime} \mathrm{s}, C_{i-1}$ has to intersect $\operatorname{Locus}\left(R_{i-1}\right)$, hence C_{Z} must have positive intersection with E_{j} and $f\left(E_{j}\right) \subset \operatorname{Locus}\left(R_{i-1}\right)$ for some j.
Now, since $-K_{X_{i-1}}$ is f-ample and f is not an isomorphism over the center of E_{j} in Y, then $a_{j}>b_{j}$. Hence, $-K_{X} \cdot C_{0} \leq-K_{X_{i-1}}<-K_{X_{i}} \cdot C$.
Suppose now that $\sigma_{i-1}: X_{i-1} \rightarrow X_{i}$ is divisorial. Then X_{i} is terminal by Lemma (1.3.15), so it is left to prove the second part of the statement.

Consider an irreducible curve $C \subset X_{i}$ not contained in A_{i} and let $C_{0} \subset X$ be the proper transform of C in X. We have that $-K_{X_{i-1}}=\sigma_{i-1}^{*}\left(-K_{i}\right)-a E$ where E is the exceptional divisor of σ_{i-1} and $a>0$. Let C_{i-1} be the proper transform of C in X_{i-1}. Observe that $C_{i-1} \not \subset E$ because $C \not \subset A_{i}$, so $E \cdot C_{i-1} \geq 0$. Recall that $-K_{X_{i-1}} \cdot C_{i-1} \geq-K_{X} \cdot C_{0}$, so

$$
-K_{X_{i}} \cdot C=\left(-K_{X_{i-1}}+a E\right) \cdot C_{i-1} \geq-K_{X_{i-1}} \cdot C_{i-1} \geq-K_{X} \cdot C_{0} .
$$

By a similar argument as above, we can conclude. Indeed, suppose that $C \cap A_{i} \neq \emptyset$; we can distinguish two different cases:

1. $C_{i-1} \cap A_{i-1} \neq \emptyset$. Since $-K_{X_{i-1}} \cdot C_{i-1}>-K_{X} \cdot C_{0}$, then $-K_{X_{i}} \cdot C>-K_{X}$. C_{0}.
2. $C_{i-1} \cap A_{i-1}=\emptyset$ but $C \cap A_{i} \neq \emptyset$. Then $E \cap C_{i-1} \neq \emptyset$ but the curve is not contained in the exceptional divisor, hence $E \cdot C_{i-1}>0$ and we can conclude.

Remark 2.1.4. Consider X, Y be \mathbb{Q}-factorial projective varieties such that f : $X \rightarrow Y$ is the blow-up of $A \subset Y_{\text {reg }}$ and let X be Fano. Then let C be an irreducible curve of Y not contained in A such that $A \cap C \neq \emptyset$. Then $-K_{Y} \cdot C \geq 2$.

Corollary 2.1.5. Let X be a Fano manifold and let $D \subset X$ be a prime divisor in X. Let $\varphi: X \rightarrow Y$ be a divisorial contraction with associated ray R such that Y is not Fano and $D \cdot R>0$. Then it exists a ray $R^{\prime} \subset N E(Y)$ such that the following hold:

1. R^{\prime} has non-positive anticanonical degree;
2. the contraction associated to R^{\prime} is small.

Proof. We will prove that every ray $R^{\prime} \subset \mathrm{NE}(Y)$ with non-positive anticanonical degree is a small ray. Set $A \doteq \varphi(\operatorname{Exc}(\varphi))$ and let $D^{\prime} \doteq \varphi(D)$ a prime divisor in Y. Since Y is not Fano, it exists a ray $R^{\prime} \subset \mathrm{NE}(Y)$ with non-positive anticanonical degree. Consider the contraction associated with this ray, say $\psi: Y \rightarrow Z$. Let $C \subset \operatorname{Locus}\left(R^{\prime}\right)$ be a curve. Then $C \cdot\left(-K_{Y}\right) \leq 0$. By Lemma (2.1.3), C is contained in $A=\varphi(\operatorname{Exc}(\varphi))$, otherwise it would have positive anticanonical degree. Hence $\operatorname{Locus}(\psi) \subseteq A \subset D^{\prime}$. Since φ is divisorial, $\operatorname{dim} A \leq \operatorname{dim} X-2$. Hence ψ is small.

Remark 2.1.6. In the previous Corollary (2.1.5), $\operatorname{Locus}(\psi) \subseteq A \subset D$. Thus, if F is a fiber of $\psi, \operatorname{dim} \varphi^{-1}(F)>\operatorname{dim} F$.

Lemma 2.1.7. [Cas09, Lemma 3.9.] Let X be a Fano manifold of dimension n and let $D \subset X$ be a prime divisor in X. Consider a Mori program for $-D$ as in Proposition (2.8):

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{k-2}}{>} X_{k-1} \stackrel{\sigma_{k-1}}{-}>X_{k}
$$

Suppose there exists $i \in\{0, \cdots, k\}$ such that $-K_{X_{j}} \cdot R_{j}>0$ for every $j \in\{0, \cdots, i-$ $1\}$. Let $\varphi: X_{i} \rightarrow Y$ be an elementary birational contraction such that $N E(\varphi) \not \subset$ $\mathrm{N}_{1}\left(D_{i}, X_{i}\right)$, and $N E(\varphi) \cdot D_{i}>0$. Let $A_{i} \subset X_{i}$ be as in Lemma (2.10).

Then φ is a Mori contraction, $\operatorname{Exc}(\varphi)$ is disjoint from A_{i} and $\left.\varphi\right|_{X_{i} \backslash A_{i}}$ is a Mori contraction of type $(n-1, n-2)^{s m}$.

Proof. Set $R_{i} \doteq \mathrm{NE}(\varphi)$. By hypothesis $D_{i} \cdot R_{i}>0$, so D_{i} intersects every not trivial fiber of $\sigma_{i} . R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$, hence σ_{i} is finite on D_{i}. Let F^{\prime} be an irreducible component of a non-trivial fiber F of σ_{i}; then F^{\prime} is a curve by Lemma (1.3.29). F intersects D_{i} in finitely many points, so F cannot be contained in A_{i} and $\operatorname{dim}\left(\operatorname{Sing}\left(X_{i} \cap F\right)\right)=0$. By Lemma (2.1.3), since X is Fano we have that $-K_{X_{i}} \cdot F \geq 1$. Then σ_{i} is a Mori contraction. Hence, by Lemma (1.3.27), $-K_{X_{i}} \cdot F^{\prime} \leq 1$. By applying again Lemma (2.1.3), we obtain that $A_{i} \cap F=\emptyset$, so $\operatorname{Exc}\left(\sigma_{i}\right) \subseteq X_{i} \backslash \operatorname{Sing}\left(X_{i}\right)$. By Theorem (1.3.25), we can conclude that $\left.\sigma_{i}\right|_{X_{i} \backslash A_{i}}$ is of type $(n-1, n-2)^{s m}$.

Lemma 2.1.8. [Cas09, Lemma 3.10] Let X be a Fano manifold and let $D \subset X$ be a prime divisor in X. Consider a Mori program for $-D$, let $i \in\{0, \cdots k\}$ and suppose that for every $j \in\{0, \cdots, i-1\}$ the ray R_{j} is $-K_{X_{j}}$-positive. Let $A_{i} \subset X_{i}$ be as in Lemma (2.10).

If $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=1$ and $\operatorname{dim} A_{i}>0$, then $i=k \rho_{X_{k}} \leq 2$, and every $D_{k^{-}}$ positive elementary contraction $\psi: X_{k} \rightarrow Y$ is of fiber type.

Proof. Let ψ be an elementary contraction such that $D_{i} \cdot \mathrm{NE}(\psi)>0$. By contradiction, suppose $\psi: X_{i} \rightarrow Y$ to be birational. $\mathrm{NE}(\psi)$ can be contained in $\mathrm{N}_{1}\left(D_{i}, X_{i}\right)$ or not. Assume $\mathrm{NE}(\psi) \subset \mathrm{N}_{1}\left(D_{i}, X_{i}\right) . \operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=1$, so the image of D_{i} under ψ will be a point and $D_{i} \cdot \mathrm{NE}(\psi)<0$, which is not possibile because $\mathrm{NE}(\psi)$ is positive on D_{i}. Hence $\mathrm{NE}(\psi) \not \subset \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$.

Thus ψ is a birational contraction with $\mathrm{NE}(\psi) \not \subset \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$. Therefore, A_{i} is disjoint from $\operatorname{Exc}(\psi)$ and $\left.\psi\right|_{X_{i} \backslash A_{i}}$ is a Mori contraction of type $(n-1, n-$ 2) $)^{s m}$ (by Lemma (2.1.7)). Since $D_{i} \cdot \operatorname{Exc}(\psi)>0$ and $D_{i} \cap \operatorname{Exc}(\psi) \neq \emptyset$, we can find an irreducible curve $C \subset \operatorname{Exc}(\psi) \cap D_{i}$ such that $\operatorname{Exc}(\psi) \cdot C>0$. Since $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=1$, then every curve in D_{i} will be numerically proportional to C. Recall that $A_{i} \subset D_{i}$ is a positive dimensional subset, hence also every curve inside A_{i} will have positive intersection with $\operatorname{Exc}(\psi)$. This leads us to a contradiction because A_{i} and $\operatorname{Exc}(\psi)$ are disjoint. Hence ψ has to be of fiber type, so $i=k$. By Lemma (2.7) $\rho_{X_{k}} \leq \operatorname{dim}\left(D_{i}, X_{i}\right)+1=2$.

Lemma 2.1.9. Let X be a Fano manifold. Let $D \subset X$ be a prime divisor in X and consider a Mori program for $-D$ as in Definition (2.8). Suppose that there exists $i=0, \cdots, k$ such that $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=1$.

Let $\varphi: X_{i} \rightarrow Y$ be an elementary birational contraction such that $D_{i} \cdot N E(\varphi)>0$. Then the following hold:

1. φ is finite on D_{i};
2. every non-trivial fiber of φ is a curve.

Proof. Suppose by contradiction that $\operatorname{NE}(\varphi) \subset \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$. Then φ maps D_{i} into a point and $\operatorname{Exc}(\varphi)=D_{i}$. Therefore $D_{i} \cdot \operatorname{NE}(\varphi)=\operatorname{Exc}(\varphi) \cdot \mathrm{NE}(\varphi)<0$, which contradicts $D_{i} \cdot \mathrm{NE}(\varphi)>0$. Hence $\mathrm{NE}(\varphi) \not \subset \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$. By Lemma (1.3.29) every non-trivial fiber of φ is one-dimensional.

Definition 2.1.10. A Special Mori program for a divisor D in X is a Mori Program as in Definition (2.3) where every contraction involved is a Mori contraction.

The next proposition allows us to obtain that for a Fano manifold there always exists a suitable choice of rays such that the considered Mori program is a Special Mori program.

Proposition 2.1.11. [Cas12b, Proposition 2.4] Let X be a Fano manifold and let $D \subset$ X be a divisor in X. There exists a Mori program for D as in (2.3) where the rays R_{i} are chosen among the $K_{X_{i}}$-negative ones for every $i \in\{0, \cdots, k\}$.

Proof. By (2.1.2) a Mori program for D always exists, and the choice of R_{i} is arbitrary among the D_{i} 's negative ones. Therefore, we have to prove that we can choose at each step of the program a ray R_{i} such that $K_{i} \cdot R_{i}<0$ and $D_{i} \cdot R_{i}<0$ for every $i \in\{0, \cdots, k\}$.

If D is nef, then there is nothing to prove because we have that $k=0$ and X is assumed to be Fano. Hence, we can assume D not to be nef.

Define

$$
\lambda_{0} \doteq \sup \left\{\lambda \in \mathbb{R} \mid \lambda D+(1-\lambda)\left(-K_{X}\right) \text { is nef }\right\}
$$

Since D is not nef and X is Fano and ampleness is an open property, then $0<$ $\lambda_{0}<1$. Furthermore by \mathbb{Q}-factoriality of $X, \lambda_{0} \in \mathbb{Q}$. Set $H_{0} \doteq \lambda_{0} D+(1-$ $\left.\lambda_{0}\right)\left(-K_{X}\right)$; since ampleness is an open property and by the definition of λ_{0}, H_{0} is nef but not ample. So, by construction of λ_{0}, it exists an extremal ray of the Mori cone of $X, R_{0} \subset \mathrm{NE}(X)$ say R_{0}, such that $H_{0} \cdot R_{0}=0$ and $D \cdot R_{0}<0$. Furthermore, $K_{X} \cdot R_{0}<0$ since $H_{0} \cdot R_{0}=0$.

If R_{0} is of fiber type, then we are done. Otherwise, $\sigma_{0}: X_{0} \rightarrow X_{1}$ is the contraction of R_{0} if R_{0} is divisorial, or σ_{0} is the flip of R_{0} if R_{0} is small. Note that the divisor $\lambda_{0} D_{1}+\left(1-\lambda_{0}\right)\left(-K_{X_{1}}\right) \subset X_{1}$ is nef. As before, if D_{1} is nef we are done, otherwise set

$$
\lambda_{1} \doteq \sup \left\{\lambda \in \mathbb{R} \mid \lambda D_{1}+(1-\lambda)\left(-K_{X_{1}}\right) \text { is nef }\right\}
$$

Using similar arguments as before we have that $\lambda_{0} \leq \lambda_{1}<1, \lambda_{1} \in \mathbb{Q}$ and $H_{1} \doteq \lambda_{1} D_{1}+\left(1-\lambda_{1}\right)\left(-K_{X_{1}}\right) \subset X_{1}$ is nef but not ample. There is a ray R_{1} of
$\mathrm{NE}\left(X_{1}\right)$ st $H_{1} \cdot R_{1}=0, D_{1} \cdot R_{1}<0$, thus $K_{X_{1}} \cdot R_{1}<0$. Now we can iterate the procedure.

As a corollary of Lemma (2.1.7), applied to a special Mori program, we obtain the following result:

Corollary 2.1.12. [Cas12b, Lemma 2.7] Let X be a Fano manifold of dimension n and $D \subset X$ a prime divisor in X. Consider a special Mori program for $-D$:

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{k-1}}{>} X_{k-1}-\stackrel{\sigma_{k}}{-}>X_{k}
$$

Let $i \in\{0, \cdots, k-1\}$ be such that $R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$ and R_{i} is birational. Then R_{i} is of type $(n-1, n-2)^{\text {sm }}$, i.e. σ_{i} is the blow-up of a smooth subvariety of codimension 2 . Furthermore, $\operatorname{Exc}\left(\sigma_{i}\right)$ does not intersect the exceptional loci of the maps σ_{j} for $j<i$.

Proof. Fix $i \in\{0, \cdots, k-1\}$ such that $R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$; by Lemma (2.1.7), $\left.\sigma_{i}\right|_{X_{i} \backslash A_{i}}$ is divisorial of type $(n-1, n-2)^{s m}$ and $\operatorname{Exc}\left(\sigma_{i}\right) \cap A_{i}=\emptyset$. We can therefore conclude because σ_{i} is an isomorphism on A_{i}.

Lemma 2.1.13. [Cas12b, Lemma 2.7] Let X be a Fano manifold and let $D \subset X$ be a prime divisor in X. Consider a special Mori program for $-D$. Then the following hold:

1. Set $s \doteq \#\left\{i \in\{0, \cdots, k-1\} \mid R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\right\}$. We have that either $s=$ $\operatorname{codim} \mathrm{N}_{1}(D, X)$ and $\mathrm{N}_{1}\left(D_{k}, X_{k}\right)=\mathrm{N}_{1}\left(X_{k}\right)$ or $s=\operatorname{codim} \mathrm{N}_{1}(D, X)-1$, $R_{k} \not \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right)$ and $\operatorname{codim} \mathrm{N}_{1}\left(D_{k}, X_{k}\right)=1$.
2. Set $\left\{i_{1}, \cdots, i_{s}\right\}=\left\{i \in\{0, \cdots, k-1\} \mid R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\right\}$, and let $E_{j} \subset X$ be the transform of $\operatorname{Exc}\left(\sigma_{i_{j}}\right) \subset X_{i_{j}}$ for every $j=1, \cdots$,s.
Then E_{j} is a smooth \mathbb{P}^{1}-bundle with fiber f_{j}. Furthermore $E_{j} \cdot f_{j}=-1, D_{j}$. $f_{j}>0$, and $\left[f_{j}\right] \notin \mathrm{N}_{1}(D, X)$. Moreover $E_{j} \cap D \neq \emptyset$ and $E_{j} \neq D ;$
3. $E_{1}, \cdots E_{s}$ are pairwise disjoint.

Proof. By Lemma (2.9) we have

$$
s= \begin{cases}\operatorname{codim} \mathrm{N}_{1}(D, X) & \text { if } R_{k} \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right) \\ \operatorname{codim} \mathrm{N}_{1}(D, X)-1 & \text { if } R_{k} \not \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right)\end{cases}
$$

Because

$$
c_{i+1}= \begin{cases}c_{i} & \text { if } R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right) \\ c_{i}-1 & \text { if } R_{i} \not \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)\end{cases}
$$

for $i \in\{0, \cdots, k-1\}$ and

$$
c_{k}= \begin{cases}0 & \text { if } R_{k} \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right) \\ 1 & \text { if } R_{k} \not \subset \mathrm{~N}_{1}\left(D_{k}, X_{k}\right)\end{cases}
$$

So the first part of the statement holds.

Let $j \in\left\{i_{1}, \cdots, i_{s}\right\}$. By Corollary (2.1.12) R_{j} is of type $(n-1, n-2)^{s m}$. Then by Remark (1.3.31), $\operatorname{Exc}\left(\sigma_{j}\right)$ is a \mathbb{P}^{1}-bundle with the \mathbb{P}^{1}-bundle structure given by the contraction of R_{j}. Since $E_{j} \cong \operatorname{Exc}\left(\sigma_{j}\right)$, also E_{j} has a \mathbb{P}^{1}-bundle structure. Let $\pi: E_{j} \rightarrow Y$ be the morphism giving the \mathbb{P}^{1}-bundle structure on E_{j} and let $f_{j} \subset E_{j}$ be the fiber of π. By Theorem (1.3.20), we have that $-K_{X} \cdot f_{j}=-1$. Furthermore $E_{j} \cdot f_{j}>0$, since $E_{i_{j}} \cdot R_{i_{j}}>0$. So $E_{j} \cap D \neq \emptyset$ and $E_{j} \neq D$. Since $R_{i_{j}} \not \subset \mathrm{~N}_{1}\left(D_{i_{j}}, X_{i_{j}}\right),\left[f_{j}\right] \notin \mathrm{N}_{1}(D, X)$.

The E_{j} are pairwise disjoint because $\operatorname{Exc}\left(\sigma_{i_{j}}\right)$ does not intersect the transform of the exceptional loci of the maps σ_{l} for $l<i$.
Definition 2.1.14. The E_{1}, \cdots, E_{s} determined in the Lemma (2.1.13) are called the \mathbb{P}^{1}-bundles determined by the special Mori program for $-D$.

As a straightforward consequence, the following lemma holds:
Proposition 2.1.15. Let X be a Fano manifold, $D \subset X$ be a prime divisor in X such that $\operatorname{codim}(D, X)>0$. Then there exist pairwise disjoint prime divisors E_{1}, \cdots, E_{s} with $s=\operatorname{codim}(D, X)$ or $s=\operatorname{codim}(D, X)-1$ such that $E_{j} \cdot f_{j}=-1, D_{j} \cdot f_{j}>0$, and $\left[f_{j}\right] \notin \mathrm{N}_{1}(D, X)$. So $E_{j} \cap D \neq \emptyset, E_{j} \neq D$ and E_{j} are pairwise disjoint.

2.2 Further results on a Mori program for $-D$

Let X be a Fano manifold. In this section we will consider a Mori program on X for $-D$ as in Lemma (2.3), but we will not always consider all the steps untill the contraction of fiber type: we will stop the program when either the contracted ray R_{m} is of fiber type or when it is birational and such that $R_{m} \not \subset$ $\mathrm{N}_{1}\left(D_{m}, X_{m}\right)$. Note that for every $i \in\{0, \cdots, m-1\} R_{i}$ is a birational ray such that $R_{i} \subseteq \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$.

If we ask furthermore that every contraction is a Mori contraction, then in the second case the program ends with a contraction of type $(n-1, n-2)^{s m}$.

We will consider the following Set up:
Set Up 2.2.1. Let X be a Fano manifold and let $D \subset X$ be a prime divisor in X. Consider a Mori program for $-D$ as in Lemma 2.3. Let $m \in\{0, \cdots, k\}$ be the first index such that for every $i \in\{0, \cdots, m-1\} R_{i}$ is birational, $R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$, and either R_{m} is birational with $R_{m} \not \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right)$, or R_{m} is of fiber type.

Remark 2.2.2. The sequence

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{m-2}}{>} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

in Set Up (2.2.1) satisfies the following:

1. for every $i \in\{0, \cdots, m-1\} R_{i}$ is birational and $R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$;
2. R_{m} is either of fiber type, or R_{m} is birational and $R_{m} \not \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right)$.

Considering a Mori program as in Set up (2.2.1). With the following lemma we can follow what happen to $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$ at every step.

Lemma 2.2.3. Let X be a Fano manifold and let $D \subset X$ be a divisor in X. Consider a sequence as in Set Up (2.2.1)

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots \stackrel{\sigma_{m-2}}{>} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

Then for every $i \in\{0, \cdots, m-1\}$ we have the following:

$$
\operatorname{dim} \mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)= \begin{cases}\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)-1 & \text { if } R_{i} \text { is divisorial } \\ \operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right) & \text { if } R_{i} \text { is small }\end{cases}
$$

Proof. By construction of Set $\operatorname{Up}(2.2 .1), m$ is the smallest integer such that $R_{m} \not \subset$ $\mathrm{N}_{1}\left(D_{m}, X_{m}\right)$, so $R_{i} \subset \mathrm{~N}_{1}\left(D_{i}, X_{i}\right)$. Therefore, if R_{i} is divisorial

$$
\operatorname{dim} \mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)=\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)-1
$$

If R_{i} is associated with a small contraction, then we have to consider its $-D_{i}$ flip:

where $\varphi_{i}^{\prime}: X_{i+1} \rightarrow Y_{i}$ is the flip of the contraction associated to R_{i}. Let R_{i}^{\prime} be the ray corresponding to φ_{i}^{\prime}, then $D_{i+1} \cdot R_{i}^{\prime}<0$ by the definition of $-D_{i}$-flip (Definition 1.3.17). Therefore $R_{i}^{\prime} \subset \mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)$. Since $\varphi_{i}\left(D_{i}\right)=\varphi_{i}^{\prime}\left(D_{i+1}\right)$, the following equalities hold:

$$
\begin{aligned}
\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right) & =\operatorname{dim} \mathrm{N}_{1}\left(\varphi_{i}\left(D_{i}\right), Y_{i}\right)+1 \\
& =\operatorname{dim} \mathrm{N}_{1}\left(\varphi_{i}^{\prime}\left(D_{i+1}\right), Y_{i}\right)+1=\operatorname{dim} \mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)
\end{aligned}
$$

Hence $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=\operatorname{dim} \mathrm{N}_{1}\left(D_{i+1}, X_{i+1}\right)$.
Remark 2.2.4. Let X be a Fano manifold, and let $D \subset X$ be a prime divisor in X. Consider a sequence as in Set Up (2.2.1):

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{m-2}}{>} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

As a consequence of Lemma (2.2.3), we obtain that

$$
\rho_{X_{i}}-\operatorname{dim}\left(\mathrm{N}_{1}\left(D_{i}, X_{i}\right)\right)
$$

is constant for every i. Hence, with the notation of Lemma (2.9), c_{i} is constant at every step. Indeed recall that if the ray R_{i} is :

1. small, then $\rho_{X_{i+1}}=\rho_{X_{i}}$;
2. divisorial, then $\rho_{X_{i+1}}=\rho_{X_{i}}-1$.

Hence $\rho_{X_{i}}-\operatorname{dim}\left(\mathrm{N}_{1}\left(D_{i}, X_{i}\right)\right)$ is constant by Lemma (2.2.3).
Proposition 2.2.5. [Cas09, Corollary 3.7] Let X be a Fano manifold and let $D \subset X$ be a divisor in X. Consider a sequence as in Set Up (2.2.1)

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots \stackrel{\sigma_{m-2}}{>} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

Suppose that the ray R_{m} is of fiber type. Then the following bound holds:

$$
\rho_{X} \leq 1+\operatorname{dim} \mathrm{N}_{1}(D, X)
$$

Proof. If R_{m} is of fiber type, then by Lemma (2.7) the hollowing holds:

$$
\rho_{X_{m}} \leq 1+\operatorname{dim} \mathrm{N}_{1}\left(D_{m}, X_{m}\right)
$$

Note that, by Remark (2.2.4), $\rho_{X_{i}}-\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$ is constant at every step of the Mori program. Hence

$$
\rho_{X}-\operatorname{dim} \mathrm{N}_{1}(D, X)=\rho_{X_{m}}-\operatorname{dim} \mathrm{N}_{1}\left(D_{m}, X_{m}\right) \leq 1
$$

Remark 2.2.6. In the next section we will consider a Fano manifold X of dimension n with an extremal ray of type $(n-1,1)$. Let E be the exceptional divisor of the contraction. Observe that $\operatorname{dim} \mathrm{N}_{1}(E, X)=2$, since it is the contraction of the divisor onto a curve.

We can consider a Mori program for $-E$. If it ends with a contraction of fiber type, then $\rho_{X} \leq 2+1=3$.

Proposition 2.2.7. Let X be a Fano manifold and let $D \subset X$ be a divisor in X. Consider a sequence as in Set Up (2.2.1)

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots \stackrel{\sigma_{m-2}}{-} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

Suppose that the ray R_{m} is of fiber type. Then $\operatorname{codim} \mathrm{N}_{1}(D, X) \leq 1$.
Proof. Let $\varphi: X_{m} \rightarrow Y$ be the contraction of fiber type associated with R_{m}. By Lemma (2.9), when the Mori program ends with a contraction of fiber type, the following holds:

$$
\operatorname{codim} \mathrm{N}_{1}\left(D_{m}, X_{m}\right)= \begin{cases}0 & \text { if } R_{m} \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right) \\ 1 & \text { if } R_{m} \not \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right)\end{cases}
$$

Then by Remark (2.2.4), codim $\mathrm{N}_{1}\left(D_{i}, X_{i}\right) \leq 1$ for every $i \in\{0, \ldots, m\}$. Hence $\operatorname{codim}(D, X) \leq 1$.

In the next Proposition we would like to find a bound for the Lefschetz defect of a Fano manifold X not birationally equivalent to a variety with an extremal ray of type $(n-1, n-2)^{s m}$. Recall that the Lefschetz defect δ_{X} of a Fano manifold X is defined as following:

$$
\delta_{X}=\max \left\{\operatorname{codim} \mathrm{N}_{1}(D, X) \mid D \subset X \text { prime divisor of } X\right\} .
$$

Since X is a Fano manifold, then by Lemma (2.1.11) we can furthermore ask that every ray contracted is K_{X}-negative. Then we obtain the following bound on the Lefschetz defect.

Proposition 2.2.8. Let X be a Fano manifold of dimension n such that it is not birationally equivalent to a variety with an extremal ray of type $(n-1, n-2)^{s m}$. Then $\delta_{X} \leq 1$.

Proof. Let D be a prime divisor in X. Then consider a special Mori program for $-D$, and consider m as in Set Up (2.2.1). The program has to end with a contraction of fiber type. By contradiction, suppose that R_{m} is birational and such that $R_{m} \not \subset \mathrm{~N}_{1}\left(X_{m}, D_{m}\right)$. By Corollary (2.1.12) R_{m} is of type ($n-1, n-$ 2) ${ }^{s m}$, a contradiction.

Hence codim $\mathrm{N}_{1}(D, X) \leq 1$ for every prime divisor $D \subset X$. Consequently $\delta_{X} \leq 1$.

3 Divisors $D \subset X$ with $\operatorname{dim} \mathrm{N}_{1}(D, X) \leq 2$

Let X be a Fano manifold of dimension $n \geq 3$. Tsukioka in [Tsu06] proved the following result:

Theorem 3.1. [Tsu06, Proposition 5] Let X be a Fano manifold of dimension $n \geq 3$ and let $D \subset X$ be a prime divisor in X with $\rho_{D}=1$. Then $\rho_{X} \leq 3$.

Casagrande in [Cas08] generalized this result in order to obtain a bound on the Picard number when X contains a prime divisor D with $\operatorname{dim} \mathrm{N}_{1}(D, X)=1$.

Proposition 3.2. [Cas08, Proposition 3.16] Let X be a Fano manifold of dimension $n \geq 3$ and let $D \subset X$ be a prime divisor in X with $\operatorname{dim} \mathrm{N}_{1}(D, X)=1$. Then $\rho_{X} \leq 3$.

Remark 3.3. Let X be a Fano manifold of dimension $n \geq 3$ and suppose it exists an elementary contraction φ of type $(n-1,0)$. Since φ is elementary, then $\operatorname{dim} \mathrm{N}_{1}(\operatorname{Exc}(\varphi), X)=1$. Indeed, if $\operatorname{dim}\left(\mathrm{N}_{1}(\operatorname{Exc}(\varphi), X)\right) \geq 2$, then we would have $\operatorname{dim}(\varphi(D))>0$. Hence, by Proposition (3.2), $\rho_{X} \leq 3$.

In this section, we will focus on Fano manifolds containing a prime divisor D with $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. This will allow us to bound the Picard number in some cases by considering an extremal ray positive on the prime divisor D. First of all, we will start by considering some intermediate results. Foremost observe that if a Fano manifold X contains a divisor as before, then $\rho_{X} \geq 2$.

In the next Lemma we will consider a Mori program for $-D \subset X$ with m as in Set up (2.2.1):

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{m-2}}{>} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

where R_{m} is of fiber type, $m \geq 1$, and σ_{0} is divisorial not of type $(n-1,0)$. We will prove that either the Picard number of X is 3 , or σ_{0} is of type $(n-1, n-$ 2) ${ }^{s m}$.

Lemma 3.4. Let X be a Fano manifold of dimension n with $\rho_{X} \geq 3$. Let $D \subset X$ be a prime divisor such that $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. Consider a Mori program for $-D$ with m as in Set up (2.2.1). Assume σ_{0} divisorial contraction not of type $(n-1,0), m \geq 1$ and R_{m} of fiber type.

Then the following hold:

1. $\rho_{X}=3$;
2. σ_{0} is of type $(n-1, n-2)^{s m}$.

Proof. Since $m \geq 1$, then $\mathrm{NE}\left(\sigma_{0}\right) \subset \mathrm{N}_{1}(D, X)$ by construction of Set Up (2.2.1). By Proposition (2.2.5), we obtain that $\rho_{X}=3$. We will prove that σ_{0} is of type $(n-1, n-2)^{s m}$. Since $R_{0} \subset \mathrm{~N}_{1}(D, X)$,

$$
\operatorname{dim} \mathrm{N}_{1}\left(D_{1}, X_{1}\right)=\operatorname{dim} \mathrm{N}_{1}(D, X)-1=2-1=1
$$

Hence, we are considering only two steps by Lemma (2.1.8):

$$
X \xrightarrow{\sigma_{0}} X_{i} \xrightarrow{\psi} Y
$$

where the first step is the divisorial contraction σ_{0} and the second step is an elementary contraction of fiber type ψ such that NE $(\psi) \cdot D_{1}>0$. Then $\operatorname{dim} Y \geq$ 1 since $\rho_{X_{1}}=2$, and $\rho_{Y}=1$. Note that $\operatorname{dim}\left(\mathrm{N}_{1}\left(D_{1}, X_{1}\right)\right)=1$, i.e. all the curve in D_{1} are numerically proportional. Hence ψ is finite on D_{1}. By Lemma (1.3.29), every non-trivial fiber is 1 -dimensional and $\operatorname{dim} Y=\operatorname{dim} X-1=n-1$.

We will prove that ψ is injective on A_{1}.
Note that $A_{1}=\sigma_{0}\left(\operatorname{Exc}\left(\sigma_{0}\right)\right) \subset D_{1}$, hence ψ is finite on A_{1} because $\operatorname{NE}(\psi)$. $D_{1}>0$.

Let $x_{1} \in A_{1}$ and consider the fiber on $\psi\left(x_{1}\right), \psi^{-1}\left(\psi\left(x_{1}\right)\right)$. Note that it is a fiber of dimension 1. But, since ψ is finite on $A_{1}, \psi^{-1}\left(\psi\left(x_{1}\right)\right)$ intersects A_{1} but it cannot be contained in it, $\sigma_{0}^{-1}\left(\psi^{-1}\left(\psi\left(x_{1}\right)\right)\right)$ is a one-dimensional fiber and $\psi \circ \sigma_{0}$ is of fiber type. By applying Lemma (1.3.25), $\sigma_{0}^{-1}\left(\psi^{-1}\left(\psi\left(x_{1}\right)\right)\right)$ has two irreducible components both isomorphic to \mathbb{P}^{1}. Note that $\psi^{-1}\left(\psi\left(x_{1}\right)\right) \cap A_{1}=$ $\left\{x_{1}\right\}$ because if the fiber intersects A_{1} in more than 1 point, then $\sigma_{0}^{-1}\left(\psi^{-1}\left(x_{1}\right)\right)$ should have at least three irreducible components. Thus ψ is injective on A_{1}. The two irreducibile components, both isomorphic to \mathbb{P}^{1}, are the strict transform of $\psi^{-1}\left(\psi\left(x_{1}\right)\right)$ and the fiber of σ_{0} on $x_{1}, \sigma_{0}^{-1}\left(x_{1}\right)$. Then every non-trivial fiber of σ_{0} has dimension 1. By applying again Lemma (1.3.25), X_{1} is smooth and σ_{0} is of type $(n-1, n-2)^{s m}$.

In the next Lemma we will consider again a Mori program for $-D \subset X$ with m as in Set up (2.2.1):

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{m-2}}{-} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

where R_{m} is birational such that $R_{m} \not \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right), m \geq 1$, and σ_{0} is not of type ($n-1,0$). We will prove that R_{0} is small and every contraction involved in the Mori program is a Mori contraction.

Lemma 3.5. Let X be a Fano manifold of dimension n with $\rho_{X} \geq 3$. Let $D \subset X$ be a prime divisor such that $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. Consider a Mori program for $-D \subset X$ with m as in Set up (2.2.1). Assume σ_{0} birational contraction not of type $(n-1,0)$, $m \geq 1$ and R_{m} birational with $R_{m} \not \subset \mathrm{~N}_{1}(D, X)$. Then, for every i, R_{i} is a ray with positive anticanonical degree.

Furthermore R_{0} is a small extremal ray and $R_{0} \subset \mathrm{~N}_{1}(D, X)$; moreover it exists a smooth prime divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from $\operatorname{Exc}\left(\sigma_{0}\right)$. Furthermore if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure on D^{\prime}, then for every fiber f of π the following hold:

1. $D \cdot f>0$;
2. $D^{\prime} \cdot f=-1$;
3. $f \not \subset D$.

Proof. Foremost we will prove that every contraction of the Mori program is a Mori contraction, i.e. $-K_{X_{i}} \cdot R_{i}>0$ for every $i \in\{1, \cdots, m\}$. Note that it is true for $i=0$. Fix $i \in\{1, \ldots, m\}$. Suppose that $-K_{X_{j}} \cdot R_{j}>0$ for $j=1, \cdots i-1$. To prove that also R_{i} has positive anticanonical degree, we need to show the following:

$$
\operatorname{dim} A_{i}>0
$$

where the A_{i} 's are subsets of Y_{i} 's for every $i \in\{1, \cdots, m\}$, as defined in Lemma (2.10). By construction of the A_{i} 's, this holds if $i=1$ or if $i>1$ and R_{i-1} is small. Suppose that $i>1$ and R_{i-1} is divisorial. There cannot be another divisorial ray among R_{j} for $j \in\{1, \cdots, m-1\}$, by Lemma (2.2.3). Consequently, R_{i-2} is small. Hence the indeterminacy locus L of σ_{i-2}^{-1} is positive dimensional and, $\sigma_{i-1}(L) \subseteq A_{i} \subset D_{i}$.

Since $\sigma_{i-1}(L)$ is the locus of the contraction of a small ray of $\mathrm{NE}\left(X_{i}\right)$, then σ_{i} is finite on L. Hence $\sigma_{i-1}(L)$ and A_{i} are positive dimensional. Since R_{m} is birational, then by Lemma (2.1.8), $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=2$. So R_{i-1} is small.

Let $R_{i-1}^{\prime} \subset \mathrm{NE}\left(X_{i}\right)$ be the ray whose associated contraction is the flip of R_{i-1}. By the flip construction (1.3.17), $-K_{X_{i}} \cdot R_{i-1}^{\prime}<0$ and $D_{i} \cdot R_{i-1}^{\prime}<0$. By the negativity of R_{i-1}^{\prime} on $D_{i}, R_{i-1}^{\prime} \subset \mathrm{N}_{1}\left(D_{i}, X_{i}\right)$. Since $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=2$, then

$$
\mathrm{N}_{1}\left(D_{i}, X_{i}\right) \cap \mathrm{NE}\left(X_{i}\right)=R_{i}+R_{i-1}^{\prime} .
$$

Since $A_{i} \subset D_{i}$ by Lemma (2.10), consider a curve $C \subset D_{i}$ not contained in A_{i}. By Lemma (2.1.3), since X is Fano, then C has positive anticanonical degree. Hence some curves of D_{i} have to have positive anticanonical degree. Since $-K_{X_{i}} \cdot R_{i-1}^{\prime}<0$, then $-K_{X_{i}} \cdot R_{i}>0$.

We showed that $\operatorname{dim} \mathrm{N}_{1}\left(D_{i}, X_{i}\right)=2$ for every $i \in\{1, \cdots, m\}$. By Lemma (2.2.3), every $i \in\{0, \cdots, m-1\} R_{i}$ is small, so also σ_{0} is small.

Every contraction is a Mori contraction, hence by Lemma (2.1.7), R_{m} is of type $(n-1, n-2)^{s m}$ and $\operatorname{Locus}\left(R_{m}\right) \cap A_{m}=\emptyset$. By Remark (1.3.31), Locus $\left(R_{m}\right)$ is a divisor with a \mathbb{P}^{1}-bundle structure given by σ_{m}.

Now we define the divisor D^{\prime} as the strict transform in X of $\operatorname{Locus}\left(R_{m}\right)$, we obtain a divisor with a \mathbb{P}^{1}-bundle structure which is disjoint from $\operatorname{Exc}\left(\sigma_{0}\right)$. By Remark (1.3.31) if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure, then for every fiber f of π the following hold:

1. $D \cdot f>0$: since R_{m} is positive on D_{m};
2. $D^{\prime} \cdot f=-1: R_{m}$ is divisorial of type $(n-1, n-2)^{s m}$. Then by Theorem (1.3.20) and the ramification formula we obtain that $f \cdot \operatorname{Locus}\left(R_{m}\right)=-1$;
3. $f \not \subset D$: since $R_{m} \not \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right)$.

Theorem 3.6. [Cas09, Theorem 3.2.] Let X be a Fano manifold of dimension n and $D \subset X$ be a prime divisor such that $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. Let $\varphi: X \rightarrow Y$ be an elementary contraction of X such that $D \cdot N E(\varphi)>0$. Then one of the following occurs:

1. $\rho_{X}=2$;
2. $\rho_{X}=3$ and φ is either:
(a) a conic bundle, or
(b) of type $(n-1,0)$, or
(c) of type $(n-1, n-2)^{s m}$ and $N E(\varphi) \subset \mathrm{N}_{1}(D, X)$, or
(d) small and $N E(\varphi) \subset \mathrm{N}_{1}(D, X)$.
3. $\rho_{X} \geq 3$ and either:
(a) φ is of type $(n-1, n-2)^{s m}$ and $N E(\varphi) \not \subset \mathrm{N}_{1}(D, X)$, or
(b) φ is small and $N E(\varphi) \subset \mathrm{N}_{1}(D, X)$; moreover it exists a smooth prime divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from $\operatorname{Exc}(\varphi)$. Furthermore if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure on D^{\prime}, then for every fiber f of π the following hold:
i. $D \cdot f>0$;
ii. $D^{\prime} \cdot f=-1$;
iii. $f \not \subset D$.

Proof. Suppose that $\rho_{X} \geq 3$. We have to distinguish between two cases: φ of fiber type and φ birational.

Suppose that φ is of fiber type. Then by Lemma (2.7) and Lemma (2.9) we see that $\varphi(D)=Y, \varphi$ is finite on D and $\rho_{X}=3$. Every non-trivial fiber of φ is one dimensional by Lemma (1.3.29). Hence, φ is a conic bundle, and we have 2.(a) of the statement.

Suppose that φ is birational. If φ is of type $(n-1,0)$, then by Proposition (3.2) we have that $\rho_{X} \leq 3$ so we have 2.(b). If $\operatorname{NE}(\varphi) \not \subset \mathrm{N}_{1}(D, X)$, then by Lemma (2.1.7) we obtain 3.(a).

We can therefore assume that φ is birational, not of type $(n-1,0)$, and $\mathrm{NE}(\varphi) \subset \mathrm{N}_{1}(D, X)$. Since $\mathrm{NE}(\varphi) \cdot D>0$ and the choice of the ray is arbitrary, we can consider a Mori program for $-D$ with φ as first step, so $R_{0} \doteq \mathrm{NE}(\varphi)$. Therefore in Set up (2.2.1) we have

$$
X \doteq X_{0} \stackrel{\sigma_{0}}{-}>X_{1}-\stackrel{\sigma_{1}}{-}>\cdots-\stackrel{\sigma_{m-2}}{>} X_{m-1} \stackrel{\sigma_{m-1}}{-}>X_{m}
$$

where $m \geq 1$ because the ray R_{0} is birational and $\mathrm{NE}(\varphi) \subset \mathrm{N}_{1}(D, X)$. Consider A_{i} as in Lemma (2.10). Since the contraction of R_{0} is birational map and not of type $(n-1,0)$, then $A_{1}=\varphi(\operatorname{Exc}(\varphi))$ and $\operatorname{dim} A_{1}>0$.

Recall that in Set up (2.2.1), we have two possibilities:

- R_{m} is of fiber type, or
- R_{m} is birational with $R_{m} \not \subset \mathrm{~N}_{1}\left(D_{m}, X_{m}\right)$.

First case: R_{m} of fiber type. By Proposition (2.2.5), $\rho_{X}=3$. If φ is divisorial, then we obtain 2.(c) by Lemma (3.4); otherwise φ is small and we obtain 2.(d).

Second case: R_{m} birational. By Lemma (3.5), then φ is small and $\operatorname{NE}(\varphi) \subset$ $\mathrm{N}_{1}(D, X)$; moreover it exists a smooth prime divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from $\operatorname{Exc}(\varphi)$. Furthermore if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure on D^{\prime}, then for every fiber f of π the following hold:

1. $D \cdot f>0$;
2. $D^{\prime} \cdot f=-1$;
3. $f \not \subset D$.

Hence we obtain 3.(b).
In the last part of this section we will study the case when an extremal ray R of X, with associated map φ, is 0 on D but $D \cap \operatorname{Exc}(\varphi) \neq \emptyset$.

Before starting the study of this case, let's fix some notation. If we denote with $\varphi_{i}: X \rightarrow Y_{i}$ the contraction of an extremal ray R_{i} of $\operatorname{NE}(X)$, then we set $E_{i} \doteq \operatorname{Exc}\left(\varphi_{i}\right)$. Unless otherwise stated.

Lemma 3.7. [Cas09, Lemma 3.11] Let X be a Fano manifold of dimension n. Let $\varphi_{1}: X \rightarrow Y_{1}$ be an elementary divisorial contraction and $\psi: Y_{1} \rightarrow Z$ be a birational contraction with one-dimensional non-trivial fibers. Let $\varphi_{2}: X \rightarrow Y_{2}$ be the elementary contraction such that $N E\left(\psi \circ \varphi_{1}\right)=N E\left(\varphi_{1}\right)+N E\left(\varphi_{2}\right)$:

Then φ_{2} is a contraction of type $(n-1, n-2)^{s m}, \Upsilon_{2}$ is smooth, $\operatorname{Exc}(\psi)=\varphi_{1}\left(E_{2}\right)$. Furthermore, one of the following holds:

1. ψ is a divisorial Mori contraction, $E_{1} \cdot N E\left(\varphi_{2}\right)=0, \operatorname{Exc}(\psi) \cap \varphi_{1}\left(E_{1}\right)$ is a union of fibers of ψ and $E_{2} \neq E_{1}$.
2. ψ is small, $\operatorname{Exc}(\psi)=\varphi_{1}\left(E_{1}\right), E_{1} \cdot N E\left(\varphi_{2}\right)<0$ and $E_{1}=E_{2}$.

Proof. In the first part of the proof, we will show that φ_{2} is birational with fibers of dimension at most one, hence it is a contraction of type $(n-1, n-2)^{s m}$ and Y_{2} is smooth, by Lemma (1.3.25).

Let F_{2} be a non-trivial fiber of φ_{2}. Recall that $\operatorname{NE}\left(\psi \circ \varphi_{1}\right)=\operatorname{NE}\left(\varphi_{1}\right)+$ $\mathrm{NE}\left(\varphi_{2}\right)$ and ψ is a birational contraction. Hence $\operatorname{NE}\left(\varphi_{1}\right) \neq \mathrm{NE}\left(\varphi_{2}\right)$ and φ_{1} is finite on every non-trivial fiber of φ_{2}. Therefore φ_{1} is finite on F_{2} and $\varphi_{1}\left(F_{2}\right) \subset$ $\operatorname{Exc}(\psi)$. Hence $\operatorname{dim} \varphi_{1}\left(F_{2}\right)>0$ and it is contained in a non-trivial fiber of ψ. Since every non-trivial fiber of ψ is one-dimensional, then $\operatorname{dim} \varphi_{1}\left(F_{2}\right)=1$.

Therefore F_{2} is one-dimensional, so φ_{2} has fibers with dimension at most 1 . Now, φ_{2} cannot be of fiber type, since φ_{1} and ψ are birational. Since X is Fano and φ_{2} has one-dimensional fibers, then by Corollary (1.3.21) φ_{2} cannot be small. Hence φ_{2} is divisorial with at most one-dimensional fibers. Hence φ_{2} is a contraction of type $(n-1, n-2)^{s m}$ and Y_{2} is smooth, by Lemma (1.3.25).

Consider F a non-trivial fiber for ψ, then F is one-dimensional and $\varphi_{1}^{-1}(F)$ is a non-trivial fiber for $\psi \circ \varphi_{1}$. We are going to prove that, if $\varphi_{1}^{-1}(F)$ has an irreducible component of dimension 1, then $\operatorname{Exc}(\psi) \cap \varphi_{1}\left(E_{1}\right)$ is a union of fibers of ψ.

Suppose that $\varphi_{1}^{-1}(F)$ has an irreducible component of dimension 1. Observe that $\psi \circ \varphi_{1}$ is a Mori contraction. By Lemma (1.3.25), since $\psi \circ \varphi_{1}$ is birational, $\varphi_{1}^{-1}(F) \cong \mathbb{P}^{1}$. Then either $F \cap \varphi_{1}\left(E_{1}\right)=\emptyset$ or $F \subset \varphi_{1}\left(E_{1}\right)$. In fact, suppose that $F \cap \varphi_{1}\left(E_{1}\right) \neq \emptyset$ but $F \not \subset \varphi_{1}\left(E_{1}\right)$; then $\varphi_{1}^{-1}(F)$ would be reducibile. Therefore $\operatorname{Exc}(\psi) \cap \varphi_{1}\left(E_{1}\right)$ is a union of fibers of ψ.

We will proceed as follow:

1. if $E_{1} \neq E_{2}$, we will show that ψ is a divisorial Mori contraction and $E_{1} \cdot \mathrm{NE}\left(\varphi_{2}\right)=0$;
2. if $E_{1}=E_{2}$, we will obtain that ψ is small, $\operatorname{Exc}(\psi)=\varphi_{1}\left(E_{1}\right)$ and E_{1}. $\mathrm{NE}\left(\varphi_{2}\right)<0$.

Suppose that $E_{1}=E_{2}$. Then $E_{1} \cdot \operatorname{NE}\left(\varphi_{2}\right)=E_{2} \cdot \operatorname{NE}\left(\varphi_{2}\right)<0$. Every curve in $\operatorname{NE}\left(\psi \circ \varphi_{1}\right)=\operatorname{NE}\left(\varphi_{1}\right)+\operatorname{NE}\left(\varphi_{2}\right)$ has negative intersection with E_{1}. Then $\operatorname{Exc}\left(\psi \circ \varphi_{1}\right) \subset E_{1}$. On the other hand $E_{1} \subset \operatorname{Exc}\left(\psi \circ \varphi_{1}\right)$, so they coincide. Since $\operatorname{dim} \varphi_{1}\left(E_{1}\right) \leq n-2, \varphi_{1}\left(E_{1}\right)=\operatorname{Exc}(\psi)$ and ψ is small.

Assume that $E_{1} \neq E_{2}$. Since $\operatorname{NE}\left(\psi \circ \varphi_{1}\right)=\operatorname{NE}\left(\varphi_{1}\right)+\operatorname{NE}\left(\varphi_{2}\right)$ then $\varphi_{1}\left(E_{2}\right)$ is a prime divisor contained in $\operatorname{Exc}(\psi)$. Hence ψ is divisorial and $\varphi_{1}\left(E_{2}\right)=$ $\operatorname{Exc}(\psi)$. Since φ_{1} is divisorial, then Y_{1} is \mathbb{Q}-factorial and

$$
K_{X}=\varphi_{1}^{*}\left(K_{Y_{1}}\right)+a E_{1}
$$

with $a \in \mathbb{Q} \backslash\{0\}$ discrepancy of E_{1}. Since E_{1} and E_{2} are exceptional divisors such that $E_{1} \neq E_{2}$, then there are non-trivial fibers of ψ disjoint form $\varphi_{1}\left(E_{1}\right)$.

Consider C an irreducible curve of Y_{1} contained in a non-trivial fiber of ψ disjoint from $\varphi_{1}\left(E_{1}\right)$. Let $\widetilde{C} \subset X$ be its strict transform in X under φ_{1}. Then $E_{1} \cdot \widetilde{C}=0$. Therefore ψ is a Mori contraction:

$$
0<-K_{X} \cdot \widetilde{C}=-\varphi_{1}^{*}\left(K_{Y_{1}}\right) \cdot \widetilde{C}=-K_{Y_{1}} \cdot C
$$

There are non-trivial fibers of ψ disjoint from $\varphi_{1}\left(E_{1}\right)$ and $\operatorname{Exc}(\psi)=\varphi_{1}\left(E_{2}\right)$, so there are fibers of φ_{2} disjoint from E_{1}. Thus $E_{1} \cdot \operatorname{NE}\left(\varphi_{2}\right)=0$.

Remark 3.8. Let $\varphi: X \rightarrow Y$ be a divisorial contraction and let $D \subset X$ be a prime divisor with $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. Suppose that one of the following situations occurs:

1. $D \cdot \operatorname{NE}(\varphi)=0$ and $D \cap \operatorname{Exc}(\varphi) \neq \emptyset$;
2. $D \cdot \mathrm{NE}(\varphi)>0$.

Set $A \doteq \varphi(\operatorname{Exc}(\varphi))$. Consider the first case, i.e. $D \cdot \operatorname{NE}(\varphi)=0$ and $D \cap$ $\operatorname{Exc}(\varphi) \neq \emptyset$. Then some non-trivial fibers of φ are contained in D and some are not. Therefore $A \not \subset \varphi(D)$. Now suppose that $D \cdot \operatorname{NE}(\varphi)>0$, then every non-trivial fiber of φ intersects D. Hence $A \subset \varphi(D)$.

In Theorem (3.6), we analized the second situation. In the next Lemma, we will analize the first case instead. The differences highlighted in Remark (3.8), are the main differences between Theorem (3.6) and the following lemma.

Lemma 3.9. [Cas09, Lemma 3.3.] Let X be a Fano manifold with dimension $n \geq 3$ and consider a prime divisor $D \subset X$ such that $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$.

Suppose X has an elementary divisorial contraction $\varphi: X \rightarrow Y$ such that D. $N E(\varphi)=0$ and $D \cap \operatorname{Exc}(\varphi) \neq \emptyset$. Then $\rho_{X} \geq 2$ and at least one of the following occurs:

1. $\rho_{X} \leq 4$;
2. it exists an extremal ray R such that:
(a) $R \neq N E(\varphi)$;
(b) R is of type $(n-1, n-2)^{s m}$;
(c) $R \cdot \operatorname{Exc}(\varphi)<0$;
(d) $R+N E(\varphi)$ is a face of $N E(X)$.

Proof. Set $D_{Y} \doteq \varphi(D)$ and $A \doteq \varphi(\operatorname{Exc}(\varphi))$. Observe that we are in the first case of Remark (3.8), hence $A \not \subset \varphi(D)$. There are some fibers disjoint from D and others contained in D, so $\operatorname{dim} \mathrm{N}_{1}\left(D_{Y}, Y\right)=1$.
D_{Y} is a prime divisor in Y, hence it exists a ray, whose associated elementary contraction $\psi: Y \rightarrow Z$, is positive on D_{Y}, i.e. $D \cdot \operatorname{NE}(\psi)>0$. The contraction ψ can be either birational or of fiber type.

$$
X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z
$$

First case: NE (ψ) of fiber type. By Lemma (2.7), the following bounds on the Picard numbers hold: $\rho_{Z} \leq 1, \rho_{Y} \leq 2$ and $\rho_{X} \leq 3$. Hence $\rho_{X}=2$ or $\rho_{X}=3$.

Second case: NE (ψ) birational. If ψ is birational, than it can be either small or divisorial. Observe that by Lemma (2.1.9) the following holds:

1. ψ is finite on D_{Y} because $\mathrm{NE}(\psi) \not \subset \mathrm{N}_{1}\left(D_{Y}, Y\right)$;
2. the dimension of every non-trivial fiber of ψ is 1 .

Consider the elementary contraction $\varphi_{2}: X \rightarrow \Upsilon_{2}$ such that $\mathrm{NE}(\psi \circ \varphi)=$ $\mathrm{NE}(\varphi)+\mathrm{NE}\left(\varphi_{2}\right)$. We are in the following situation:

By Lemma (3.7), φ_{2} is of type $(n-1, n-2)^{s m}$ and one of the following holds:

1. ψ is a divisorial Mori contraction, $\operatorname{Exc}(\varphi) \cdot \operatorname{NE}\left(\varphi_{2}\right)=0, \operatorname{Exc}(\psi) \cap A$ is a union of fibers of ψ and $\operatorname{Exc}(\varphi) \neq \operatorname{Exc}\left(\varphi_{2}\right)$;
2. ψ is small, $\operatorname{Exc}(\psi)=\varphi(\operatorname{Exc}(\varphi)), \operatorname{Exc}(\varphi) \cdot \operatorname{NE}\left(\varphi_{2}\right)<0$ and $\operatorname{Exc}(\varphi)=$ $\operatorname{Exc}\left(\varphi_{2}\right)$.

Suppose ψ is small. Then the ray $R \doteq \operatorname{NE}\left(\varphi_{2}\right)$ is an extremal ray as in the second part of the statement.

Suppose ψ is a divisorial Mori contraction. Since ψ is finite on D_{Y}, then $\mathrm{NE}(\psi) \not \subset \mathrm{N}_{1}\left(D_{Y}, Y\right)$. Hence $D_{Z} \doteq \psi\left(D_{Y}\right)$ is a prime divisor in Z and

$$
\operatorname{dim} \mathrm{N}_{1}\left(D_{\mathrm{Z}}, \mathrm{Z}\right)=1
$$

D_{Y} intersects every non-trivial fiber of ψ, so $\psi(\operatorname{Exc}(\psi)) \subset D_{Z}$.
We can consider an elementary contraction $\xi: Z \rightarrow W$ such that D_{Z}. $\mathrm{NE}(\xi)>0$. Therefore we are in the following situation:

where ξ can either birational or of fiber type.
Suppose ξ is of fiber type. Since $\operatorname{dim} \mathrm{N}_{1}\left(D_{Z}, Z\right)=1$, then $\rho_{W} \leq 1$ by Lemma (2.7). Since every contraction in the previous diagram is elementary, $\rho_{X} \leq 4$. Then $\rho_{X}=3$ or $\rho_{X}=4$.

If ξ is birational then, by Lemma (2.1.9), it is finite on D_{Z} and every fiber of ξ had dimension at most 1 .

Let $\psi_{2}: Y \rightarrow Z_{2}$ be the elementary contraction such that $\operatorname{NE}(\xi \circ \psi)=$ $\operatorname{NE}(\psi)+\operatorname{NE}\left(\psi_{2}\right)$. Since $\operatorname{NE}(\xi \circ \psi)=\operatorname{NE}(\psi)+\operatorname{NE}\left(\psi_{2}\right)$, then $D_{Y} \cdot \operatorname{NE}\left(\psi_{2}\right)>0$ because $D_{Y} \cdot \mathrm{NE}(\psi)>0$ and $D_{Z} \cdot \mathrm{NE}(\xi)>0$.

Note that ψ_{2} cannot be of fiber type because ξ and ψ are birational. Thus ψ_{2} is birational, finite on D_{Y} and with fibers at most of dimension 1 by Lemma (2.1.9)

As before, we can consider the elementary contraction $\varphi_{3}: X \rightarrow Y_{3}$ such that $\operatorname{NE}\left(\psi_{2} \circ \varphi\right)=\operatorname{NE}(\varphi)+\operatorname{NE}\left(\varphi_{3}\right):$

By applying Lemma (3.7), φ_{3} is divisorial of type ($\left.n-1, n-2\right)^{\text {sm }}$. Furthermore one of the following holds:

1. ψ_{2} is a divisorial Mori contraction, $\operatorname{Exc}(\varphi) \cdot \operatorname{NE}\left(\varphi_{3}\right)=0, \operatorname{Exc}\left(\psi_{2}\right) \cap A$ is an union of fibers of ψ_{2} and $\operatorname{Exc}(\varphi) \neq \operatorname{Exc}\left(\varphi_{3}\right)$;
2. ψ_{2} is $\operatorname{small}, \operatorname{Exc}\left(\psi_{2}\right)=\varphi(\operatorname{Exc}(\varphi)), E \cdot \operatorname{NE}\left(\varphi_{3}\right)<0$ and $\operatorname{Exc}(\varphi)=$ $\operatorname{Exc}\left(\varphi_{3}\right)$.

If ψ_{2} is small, then $R \doteq \operatorname{NE}\left(\varphi_{3}\right)$ gives an extremal ray R as in the statement.
In the last part of the proof, we will show that ψ_{2} cannot be divisorial. Suppose by contradiction that ψ_{2} is divisorial. Recall that by construction $\mathrm{NE}(\xi \circ \psi)=\mathrm{NE}(\psi)+\mathrm{NE}\left(\psi_{2}\right)$. Since ψ and ψ_{2} are Mori contraction, then $\eta \doteq \xi \circ \psi$ is a Mori contraction.

The following holds: $\operatorname{Exc}(\psi) \neq \operatorname{Exc}\left(\psi_{2}\right)$. Indeed if $\operatorname{Exc}(\psi)=\operatorname{Exc}\left(\psi_{2}\right)$, then $\operatorname{Exc}(\psi) \cdot \mathrm{NE}(\eta)<0$ hence $\operatorname{Exc}(\eta)=\operatorname{Exc}(\psi)$ and $\operatorname{Exc}(\xi)=\psi(\operatorname{Exc}(\psi))$. Foremost note $\operatorname{Exc}(\psi) \subseteq \operatorname{Exc}(\eta)$ by construction. Since $\operatorname{Exc}(\psi) \cdot \operatorname{NE}\left(\psi_{2}\right)<0$, then all curves with class in $\operatorname{NE}(\eta)$ are contained in $\operatorname{Exc}(\psi)$. Thus $\operatorname{Exc}(\psi)=$ $\operatorname{Exc}(\eta)$. Then $\mathrm{NE}(\eta) \cdot \operatorname{Exc}(\psi)<0$ and $\psi(\operatorname{Exc}(\psi))=\operatorname{Exc}(\xi)$. This is impossible because ξ is finite on D_{Z} and $\psi(\operatorname{Exc}(\psi)) \subset D_{\mathrm{Z}}$.

Then $\operatorname{Exc}(\psi) \neq \operatorname{Exc}\left(\psi_{2}\right)$ and $\psi\left(\operatorname{Exc}\left(\psi_{2}\right)\right)$ is a divisor of Z contained in $\operatorname{Exc}(\xi)$. Thus $\operatorname{Exc}(\xi)=\psi\left(\operatorname{Exc}\left(\psi_{2}\right)\right)$ and ξ is divisorial.

Recall that $D_{Z} \cdot \mathrm{NE}(\xi)>0$, hence $\operatorname{Exc}(\xi) \cap D_{Z} \neq \emptyset$. By Lemma (2.1.9), ξ is finite on D_{Z} and we can find a curves $C \subset D_{Z}$ such that $C \cdot \operatorname{Exc}(\xi)>0$. Since all the curve in D_{Z} are numerically equivalent, then $\operatorname{Exc}(\xi)$ has to intersect every curve in D_{Z}. Recall that every non-trivial fiber of ψ is one-dimensional. Hence $\operatorname{dim} \psi(\operatorname{Exc}(\psi))=n-2 \geq 1$. Then $\operatorname{Exc}(\xi) \cap \psi(\operatorname{Exc}(\psi)) \neq \emptyset$. Therefore $\operatorname{dim}(\psi(\operatorname{Exc}(\psi)) \cap \operatorname{Exc}(\xi)) \geq n-3$.

Recall that ξ is finite on D_{Z}, hence

$$
\operatorname{dim} \xi(\operatorname{Exc}(\xi) \cap \psi(\operatorname{Exc}(\psi))) \geq n-3
$$

We claim that

$$
\operatorname{dim} \xi(\operatorname{Exc}(\xi) \cap \psi(\operatorname{Sing}(Y)) \leq n-4
$$

Consider A and note that $\operatorname{dim} A \leq n-2$ because φ is divisorial.
Suppose that $\operatorname{dim} A=n-2 ; A$ is normal and $\sin (Y) \subseteq A$ then $\operatorname{dim} \operatorname{Sing}(Y) \leq$ $n-4$. Hence the claim holds.

Suppose that $\operatorname{dim} A<n-2$. By Lemma (2.10), then $\operatorname{Sing}(Y) \subseteq A$, thus if $\operatorname{dim} \xi(\operatorname{Exc}(\xi) \cap \psi(A) \leq n-4$, the assertion follows. If $\psi(A) \not \subset \operatorname{Exc}(\xi)$ the claim holds. If $\psi(A) \subset \operatorname{Exc}(\xi)$, then

$$
A=\psi^{-1}(\psi(A)) \subseteq \psi^{-1}(\operatorname{Exc}(\xi)) \subset \operatorname{Exc}(\psi) \cup \operatorname{Exc}\left(\psi_{2}\right)
$$

(note that this last inclusion holds because $\operatorname{Exc}(\xi)=\psi\left(\operatorname{Exc}\left(\psi_{2}\right)\right)$). Since A is irreducibile, then A is contained either in $\operatorname{Exc}(\psi)$ or in $\operatorname{Exc}\left(\psi_{2}\right)$. Since $\operatorname{NE}(\eta)=$ $\mathrm{NE}(\psi)+\mathrm{NE}\left(\psi_{2}\right)$, then $\operatorname{dim}(\eta(A)) \leq n-4$.

Recall that η and ξ are Mori contractions with at most one-dimensional fibers. Hence $\operatorname{Sing}(W) \subseteq \eta(\operatorname{Sing}(Y))$.

Since $\operatorname{dim} \xi\left(\operatorname{Exc}(\xi) \cap \psi(\operatorname{Sing}(Y)) \leq n-4\right.$, then it exists $w_{0} \in W \backslash \operatorname{Sing}(W)$ such that $\xi^{-1}\left(w_{0}\right)$ has dimension 1 and intersects $\psi(\operatorname{Exc}(\psi))$. Consider the contraction η, and its restriction $\widetilde{\eta}$ to $Y \backslash \eta^{-1}(\operatorname{Sing}(W))$. Hence we have the following contraction

$$
\tilde{\eta}: Y \backslash \eta^{-1}(\operatorname{Sing}(W)) \rightarrow W \backslash \operatorname{Sing}(W)
$$

Set $F \doteq \eta^{-1}\left(w_{0}\right)$, then $\psi^{-1}(F)$ is a fiber of $(\xi \circ \psi)$. Since ψ is a contraction with one dimensional fiber, then $\psi^{-1}(F)$ has an irreducibile component of dimension 1. Hence $\psi^{-1}(F) \cong \mathbb{P}^{1}$ by Lemma (1.3.25). Therefore either $F \subset$ $\psi(\operatorname{Exc}(\psi))$, or $F \cap \psi(\operatorname{Exc}(\psi))=\emptyset$. By the choice of $w_{0}, F \cap \psi(\operatorname{Exc}(\psi)) \neq \emptyset$, so $F \subset \psi(\operatorname{Exc}(\psi))$. This is not possibile since $\eta^{-1}\left(w_{0}\right) \cong \mathbb{P}^{1}$.

4 Elementary contractions of type ($\mathbf{n}-\mathbf{1 , 1}$)

Let X be a Fano manifold of dimension n with a divisorial extremal ray R_{1} whose associated contraction $\varphi_{1}: X \rightarrow Y_{1}$ sends a divisor to a curve. We would like to use the results of the previous sections to find a bound for ρ_{X}. We will show that $\rho_{X} \leq 5$.

Since X admits an extremal contraction of type $(n-1,1)$, then $\rho_{X} \geq 2$. Set $E_{1} \doteq \operatorname{Exc}\left(\varphi_{1}\right)$. Then $\operatorname{dim} \mathrm{N}_{1}\left(\varphi_{1}\left(E_{1}\right), Y_{1}\right)=1$, since $\varphi_{1}\left(E_{1}\right)$ is a curve. Hence $\operatorname{dim} \mathrm{N}_{1}\left(E_{1}, X\right)=2$. We can therefore apply Theorem (3.6) and Lemma(3.9) to E_{1}.

By Lemma (1.4.11), we may choose an extremal ray R_{2} positive on E_{1} with associated contraction φ_{2}. By Theorem (3.6) we have that one of the following holds:

1. $\rho_{X} \leq 3$;
2. R_{2} is of type $(n-1, n-2)^{s m}$ and $\operatorname{NE}\left(\varphi_{2}\right) \not \subset \mathrm{N}_{1}\left(E_{1}, X\right)$.
3. φ_{2} is small and it exists a smooth prime divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from E_{2}. Furthermore if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure, then for every fiber f of π the following hold:
(a) $E_{1} \cdot f>0$;
(b) $D^{\prime} \cdot f=-1$;
(c) $f \not \subset E_{1}$.

Since we want to prove that $\rho_{X} \leq 5$, we are left only to consider the case (2) and the case (3). Before starting with the proof of the main theorem, let us fix some notations and prove some preliminary results.

Notation: if we denote a ray with R_{i}, than its exceptional locus will be denoted with E_{i}, the associated contraction with $\varphi_{i}: X \rightarrow Y_{i}$, and a general fiber with F_{i}, unless otherwise stated.

Lemma 4.1. Let X be a Fano manifold of dimension $n \geq 4$. Suppose there exist a divisorial extremal ray $R_{1} \subset N E(X)$ of type $(n-1,1)$. Let R_{2} be an extremal ray such that:

1. R_{2} is positive on E_{1}, i.e. $E_{1} \cdot R_{2}>0$;
2. R_{2} is divisorial;
3. $R_{1} \cdot E_{2}>0$;
4. $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$;
5. Y_{2} is Fano.

Then $\rho_{X} \leq 4$.

Proof. Set $D \doteq \varphi_{2}\left(E_{1}\right)$ and $A \doteq \varphi_{1}\left(E_{2}\right)$; note that $\operatorname{dim} \mathrm{N}_{1}(D, X)=2$. We remark that by Corollary (2.6) we may consider a ray R with positive intersection with D. Let φ be the associated contraction. Apply Theorem (3.6) to D and R. If $\rho_{Y_{2}} \leq 3$, then $\rho_{X}=\rho_{Y_{2}}+1 \leq 4$. Otherwise one of the following holds:

1. φ is of type $(n-1, n-2)^{s m}$ and $\operatorname{NE}(\varphi) \not \subset \mathrm{N}_{1}(D, X)$;
2. φ is small and it exists a smooth prime divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from $\operatorname{Exc}(\varphi)$. Furthermore if $\pi: D^{\prime} \rightarrow Y$ is the map giving the \mathbb{P}^{1}-bundle structure, then for every fiber f of π the following hold:
(a) $D \cdot f>0$;
(b) $D^{\prime} \cdot f=-1$;
(c) $f \not \subset D$.

Note that in both cases it exists a smooth prime divisor $D^{\prime} \subset Y_{2}$ with a \mathbb{P}^{1} bundle structure, such that for every fiber f of the \mathbb{P}^{1}-bundle, $D \cdot f>0, D^{\prime} \cdot f=$ -1 and $f \not \subset D$. If φ is small then this is clear. If φ is divisorial, then set D^{\prime} to be the exceptional divisor of φ by Remark (1.3.31). Since $D^{\prime} \cdot f=-1$, then $f \cap A=\emptyset$ by Lemma (2.1.3). Thus $A \cap D^{\prime}=\emptyset$. Hence $D^{\prime \prime} \doteq \varphi_{2}^{-1}\left(D^{\prime}\right)$ is a prime divisor of X, with a \mathbb{P}^{1}-bundle structure, that intersects E_{1} but is disjoint from E_{2}. Let us show that it is impossible. We have two possibilities:

1. if $D^{\prime \prime} \cdot R_{1}=0$ then $D^{\prime \prime}$ contains some non trivial fibers of R_{1} because $D^{\prime \prime} \cap E_{1} \neq \emptyset$. This would imply that $D^{\prime \prime} \cap E_{2} \neq \emptyset$, a contradiction.
2. if $D^{\prime \prime} \cdot R_{1}>0$, then $D^{\prime \prime}$ intersects every non trivial fiber of R_{1}. Moreover, by Lemma (1.3.25), $R_{1} \subset \mathrm{~N}_{1}\left(E_{2}, X\right)$ since φ_{1} has at least one fiber of dimension more than 1 and it is positive on E_{2}. Hence we can find some irreducible curve C of E_{2} with numerical equivalence class in R_{1} intersecting $D^{\prime \prime}$. This is not possibile because $D^{\prime \prime} \cap E_{2}=\emptyset$.

Remark 4.2. From the proof of Lemma (4.1) we see that this Lemma still holds also with weaker assumptions. Indeed, one could just ask that R_{1} is a divisorial contraction with at least one fiber of dimension $\geq 2, \operatorname{dim} \mathrm{~N}_{1}\left(E_{1}, X\right)=2$, and $1 ., \cdots, 5$. still holds.

The next lemma is a technical lemma that we will use in the proof of Lemma (4.8). We will just give a sketch of the proof since it involves results from the analysis of families of rational curves on varieties. One can find this results, for example, in [Kol13] or in [Deb01].

Lemma 4.3. Let X be a Fano manifold of dimension n. Suppose that

1. $\exists R_{1} \subset N E(X)$ a ray of type $(n-1,1)$;
2. $\exists R_{2} \subset N E(X)$ a ray of type $(n-1, n-2)^{s m}$ such that $E_{1} \cdot R_{2}>0, E_{2} \cdot R_{1}>$ 0 , and $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$;
3. $\exists R_{3} \subset N E(X)$ a ray of type $(n-1, n-2)^{s m}$ such that $E_{2} \cdot R_{3}<0$ and $R_{2}+R_{3}$ is a face of $N E(X)$.

Then the following hold:

$$
E_{1} \cdot R_{3}=0, \text { and for every curve } C \subset E_{2} \text { we have }[C] \in R_{1}+R_{2}+R_{3}
$$

Proof. Foremost we prove that $\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R}\left(R_{1}+R_{2}+R_{3}\right)$. By Lemma (1.3.29) φ_{2} has one-dimesional non-trivial fibers, so by Theorem (1.3.24) R_{2} is birational of type $(n-1, n-2)^{s m}$. Observe that E_{2} is smooth, since it is the exceptional locus of a birational contraction of type $(n-1, n-2)^{s m}$. Both R_{2} and R_{3} are divisorial and negative on E_{2}, so $\left.\varphi_{2}\right|_{E_{2}}$ and $\left.\varphi_{3}\right|_{E_{2}}$ gives a \mathbb{P}^{1}-bundle on E_{2} by Remark (1.3.31).

We claim that $\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R}\left(R_{1}+R_{2}+R_{3}\right)$.
Since $R_{2} \cdot E_{2}<0$ and $R_{3} \cdot E_{2}<0$, then $R_{2}, R_{3} \subset \mathrm{~N}_{1}\left(E_{2}, X\right)$. By assumption $E_{2} \cdot R_{1}>0$ and R_{1} is birational of type $(n-1,1)$. Thus $R_{1} \subset \mathrm{~N}_{1}\left(E_{2}, X\right)$ by Corollary (1.3.30). Hence $R_{i} \subset \mathrm{~N}_{1}\left(E_{2}, X\right)$ for $i \in\{1,2,3\}$. Observe that E_{1} meets every non-trivial fiber of $\left.\varphi_{2}\right|_{E_{2}}$, so $\varphi_{2}\left(E_{1} \cap E_{2}\right)=\varphi_{2}\left(E_{2}\right)$ and

$$
\mathbb{R}\left(R_{1}+R_{2}+R_{3}\right) \subseteq \mathrm{N}_{1}\left(E_{2}, X\right) \subseteq \mathbb{R} R_{2}+\mathrm{N}_{1}\left(E_{1}, X\right)
$$

Since all three subspaces are three dimensional, then $\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R}\left(R_{1}+R_{2}+\right.$ R_{3}).

No we consider the normalization $v: T \rightarrow Y_{1}$ of $\varphi_{1}\left(E_{2}\right)$ in Y_{1} nad the contraction $\xi: E_{2} \rightarrow T$ induced by the inclusion $i: E_{2} \hookrightarrow X$ and by the restiction $\varphi_{\left.1\right|_{E_{2}}}$:

Then the following holds:

1. $i_{*}\left(\operatorname{ker}\left(\xi_{*}\right)\right)=\operatorname{ker}\left(\left.\varphi_{1}\right|_{E_{1}}\right)=\operatorname{ker}\left(\varphi_{1 *}\right)=\mathbb{R} R_{1}$
2. ξ is birational;
3. $\operatorname{Exc}(\xi)=E_{1} \cap E_{2} ;$
4. $\xi(\operatorname{Exc}(\xi)) \subset T$ is a curve.

By construction ρ_{T} is the codimension of $\operatorname{ker}\left(\xi_{*}\right)$ in $\mathrm{N}_{1}\left(E_{2}\right)$, hence $\rho_{T} \geq 2$ and $\rho_{T}=2$ if and only if $\operatorname{ker}\left(i_{*}\right) \subset \operatorname{ker}\left(\xi_{*}\right)$. Then we construct a proper, covering family of irreducible rational curves in T (see [Deb01, Chapter 5]). Let $A \doteq \varphi_{2}\left(E_{2}\right)$ and consider the following diagram

This family induces an E_{2}-equivalence relation as [Deb01, Section 5.4]. This allows us to construct a contraction $\alpha: T \rightarrow C$ onto a smooth curve C where every fiber of $\alpha: T \rightarrow C$ is an equivalence class for the E_{2}-equivalence relation.

As a consequence one can see that $\rho_{T}=2, \operatorname{ker}\left(i_{*}\right) \subset \operatorname{ker}\left(\xi_{*}\right)$, and $\operatorname{NE}\left(\left.\varphi_{3}\right|_{E_{2}}\right) \not \subset$ $\operatorname{ker}(\alpha \circ \xi)_{*}$.

Recall that $R_{3} \cdot E_{2}<0$, so $E_{1} \cdot R_{3} \geq 0$ but one can see that $R_{3} \cdot E_{1}=0$. Hence $R_{3} \subset \mathrm{~N}_{1}\left(E_{1}, X\right), \mathrm{N}_{1}\left(E_{1}, X\right)=\mathbb{R}\left(R_{1}+R_{3}\right)$, and

$$
\mathrm{N}_{1}\left(E_{1}, X\right) \cap \mathrm{NE}(X)=R_{1}+R_{3} .
$$

To conlcude the proof of this lemma one can use what we proved so far to obtain that id C is a curve in E_{2} then

$$
[C] \in R_{1}+R_{2}+R_{3}
$$

Lemma 4.4. Let X be a Fano manifold of dimension n. Suppose that there are three divisorial rays R_{1}, R_{2} and R_{4} such that:

1. $R_{2}+R_{4}$ is a face of $N E(X)$;
2. R_{1} is of type $(n-1,1)$;
3. $E_{1} \cdot R_{4}>0$;
4. $E_{2} \cdot R_{1}>0$;
5. $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$;
6. $R_{4} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$.

Then $\left(\varphi_{2}\right)_{*}\left(R_{4}\right)$ is of fiber type and $\rho_{X} \leq 4$.
Proof. Set $D \doteq \varphi_{2}\left(E_{1}\right)$. Since $R_{2}+R_{4}$ is a face, then $\left(\varphi_{2}\right)_{*}\left(R_{4}\right)$ is a ray of $\mathrm{NE}\left(Y_{2}\right)$. Since $E_{1} \cdot R_{4}>0$ and φ_{2} is finite on E_{1}, then $D \cdot\left(\varphi_{2}\right)_{*}\left(R_{4}\right)>0$. Since the locus of $\left(\varphi_{2}\right)_{*}\left(R_{4}\right)$ contain $\varphi_{2}\left(E_{4}\right)$, then the contraction is either divisorial or of fiber type. By Lemma(1.3.29), and by Theorem (1.3.24), R_{4} is of type $(n-1, n-2)^{s m}$. Consider a non-trivial fiber of $\varphi_{4}, F \subset X$. Since $E_{2} \cdot R_{1}>0$, then $\varphi_{2}(F) \cdot \varphi_{2}\left(E_{4}\right) \geq 0$. Therefore φ_{2} cannot be divisorial. Thus $\left(\varphi_{2}\right)_{*}\left(R_{4}\right)$ is of fiber type. By using Lemma (2.7), $\rho_{Y_{2}} \leq 3$ hence $\rho_{X}=\rho_{Y_{2}}+1 \leq 4$.

Remark 4.5. Observe that the Lemma (4.4), holds also with weaker hypotesis. Indeed one could ask that R_{1} is divisorial and $\operatorname{dim} \mathrm{N}_{1}\left(E_{1}, X\right)=2$.

Lemma 4.6. Let X ba a Fano manifold of dimension n. Suppose there are R_{i} divisorial rays for $i=1,2,3,4$ such that :

1. $R_{2}+R_{4}$ is not a face of $N E(X)$;
2. $\mathrm{N}_{1}\left(E_{1}, X\right)=\mathbb{R}\left(R_{1}+R_{3}\right)$;
3. $E_{1} \cap E_{4}=\emptyset$;
4. $E_{1} \cdot R_{3}=0$.

Let S be a ray of $N E\left(Y_{4}\right)$ positive on $\varphi_{4}\left(E_{1}\right)$. Let R_{5} be the extremal ray of $N E(X)$ such that $R_{4}+R_{5}$ is a face and $\varphi_{4 *} R_{5}=S$.

Then one of the following occours:

1. $\rho_{X} \leq 4$;
2. R is of type $(n-1, n, 2)^{\text {sm }}$ and $R \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$.

Proof. By contruction $R_{2} \neq R_{5}$. Since $E_{4} \cap E_{1}=\emptyset$, then $\varphi_{4}^{-1}\left(\varphi_{4}\left(E_{1}\right)\right)=E_{1}$. Hence $E_{1} \cdot R_{5}>0$. Thus $R_{3} \neq R_{5}$ and $R_{1} \neq R_{5}$.

Since $\mathrm{N}_{1}\left(E_{1}, X\right) \cap \mathrm{NE}(X)=R_{1}+R_{3}$, then $R_{5} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. Therefore the contraction of R_{5} has every non-trivial fiber of dimension 1. Since X is Fano, R_{5} is not small by Corollary (1.3.21). By Theorem (3.6), either $\rho_{X} \leq 4$ or R_{5} is of type $(n-1, n-2)^{s m}$ with $R_{5} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$.

Lemma 4.7. [Cas09, Remark 4.7] Let X be a Fano manifold of dimension $n \geq 4$ with a divisorial ray R_{1} of type $(n-1,1)$. Suppose that exists a birational extremal ray R_{2} such that $E_{1} \cdot R_{2}>0, E_{2} \cdot R_{1}=0$ and $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. Then the following hold:

1. $\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R} R_{2}+\mathbb{R} R_{1}$;
2. R_{2} is of type $(n-1, n-2)^{s m}$.

Furthermore Y_{2} is Fano, it has an elementary contraction σ of type $(n-1,1)$ and φ_{2} is the blow-up of a smooth fiber of σ.
Proof. Every fiber of φ_{2} is at most one-dimensional by Lemma (1.3.29). Then by Theorem (1.3.24) φ_{2} is of type $(n-1, n-2)^{s m}$. Observe that $E_{1} \cap E_{2} \neq \emptyset$. Since $E_{2} \cdot R_{1}=0$, then E_{2} has to contain some fibers F of φ_{1} of dimension $n-2=\operatorname{dim} \varphi_{2}\left(E_{2}\right)$. Note that $R_{2} \not \subset \mathrm{~N}_{1}(F, X)$ since $R_{1} \neq R_{2}$. Thus φ_{2} is finite on F, so $\varphi_{2}(F)=\varphi_{2}\left(E_{2}\right)$. Hence

$$
\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R} R_{2}+\mathrm{N}_{1}(F, X)=\mathbb{R}\left(R_{1}+R_{2}\right)
$$

This allow us to conclude that every extremal ray $S \subset \mathrm{NE}(X)$ different from R_{2} must have non-negative intersection with E_{2}, i.e. $E_{2} \cdot S \geq 0$. Indeed, $\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R} R_{2}+\mathrm{N}_{1}(F, X)=\mathbb{R} R_{2}+\mathbb{R} R_{1}$ and $R_{1} \cdot E_{1}=0$. Hence Y_{2} is Fano by Lemma (1.4.9).

By Lemma (1.4.12), $R_{1}+R_{2}$ is a face whose contraction is birational because both contractions are birational. Note that E_{1} cannot be sent to a point by the contraction associated with the face $R_{1}+R_{2}$, otherwise we would have $\mathrm{N}_{1}\left(E_{1}, X\right)=\mathbb{R}\left(R_{1}+R_{2}\right)$. However, this is not possible because $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. Then $\left(\varphi_{2}\right)_{*}\left(R_{1}\right)$ is a ray of type $(n-1,1)$ of $\operatorname{NE}\left(Y_{2}\right)$ that send $\varphi_{2}\left(E_{1}\right)$ to a curve. The associated contraction $\sigma: Y_{2} \rightarrow Z$ has exceptional divisor $\varphi_{2}\left(E_{1}\right)$ and φ_{2} is the blow-up of a fiber of such contraction.

Lemma 4.8. Let X be a Fano manifold of dimension $n \geq 4$. Suppose there exists a divisorial extremal ray $R_{1} \subset N E(X)$ of type $(n-1,1)$. Moreover suppose that $\operatorname{dim} \mathrm{N}_{1}\left(E_{1}, X\right)=2$. Let R_{2} be an extremal ray such that:

1. R_{2} is positive on E_{1}, i.e. $E_{1} \cdot R_{2}>0$;
2. R_{2} is divisorial;
3. $R_{1} \cdot E_{2}>0$;
4. $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$;
5. Y_{2} is not Fano.

Then $\rho_{X} \leq 4$.
Proof. Since Y_{2} is not Fano, by Corollary (2.1.5), there is a ray \widetilde{R} with nonpositive anticanonical degree such that the associated contraction $\widetilde{\psi}: Y_{2} \rightarrow \widetilde{Z}$ is small.

Let us show that every non-trivial fiber is at most one dimensional. By contradiction, suppose that $\widetilde{\psi}$ admits a fiber F with dimension at least 2. By Remark (2.1.6) $\operatorname{dim} \varphi_{2}(F) \geq 3$, hence $\operatorname{dim}\left(\varphi_{2}^{-1}(F) \cap E_{1}\right) \geq 2$. Consider a non-trivial fiber of $\varphi_{1}, F_{1} . F_{1}$ has dimension $n-2$. Hence $\varphi_{2}^{-1}(F) \cap E_{1}$ and F_{1} have to intersect in a subset of dimension at least 1 , so $\varphi_{2}^{-1}(F) \cap E_{1}$ contains a curve with numerical class in R_{1}. Thus $R_{1} \subset \mathrm{~N}_{1}\left(\varphi_{2}^{-1}(F), X\right)$ and $\mathrm{NE}(\widetilde{\psi})=\left(\varphi_{2}\right)_{*}\left(R_{1}\right)$, so $D \subseteq \operatorname{Exc}(\widetilde{\psi})$. This is not possible because $\operatorname{Exc}(\widetilde{\psi})$ is strictly smaller than D.

Then $\widetilde{\psi}$ is a small contraction with fibers of dimension at most one. Consider the elementary contraction φ_{3} such that

$$
\mathrm{NE}\left(\tilde{\psi} \circ \varphi_{2}\right)=\mathrm{NE}\left(\varphi_{2}\right)+\operatorname{NE}\left(\varphi_{3}\right)=R_{2}+R_{3}
$$

Note that φ_{3} exists because if X is a Fano variety, then it always exists a lift of $\widetilde{\psi}$ by Remark (1.4.10).

We can apply Lemma (3.7). Then R_{3} is of type $(n-1, n-2)^{s m}, R_{3} \cdot E_{2}<0$ and $R_{2}+R_{3}$ is a face of $\mathrm{NE}(X) . X$ has at least 3 different rays, so $\rho_{X} \geq 3$.

By Lemma (4.3) we know that

$$
E_{1} \cdot R_{3}=0, \text { and for every curve } C \subset E_{2} \text { we have }[C] \in R_{1}+R_{2}+R_{3}
$$

Furthermore note that $\mathrm{N}_{1}\left(E_{1}, X\right)=\mathbb{R}\left(R_{1}+R_{3}\right)$. Consider $\varphi_{1}: X \rightarrow Y_{1}$. Recall that it is divisorial of type $(n-1,1)$ and consider the prime divisor $\varphi_{1}\left(E_{2}\right) \subset Y_{1}$. By Corollary (2.6), we may take a ray NE $(\eta) \subset \mathrm{NE}\left(Y_{1}\right)$ positive on it, i.e. $\varphi_{1}\left(E_{2}\right) \cdot \mathrm{NE}(\eta)>0$. Denote $\eta: Y_{1} \rightarrow W$. Let R_{4} be the extremal ray of $\mathrm{NE}(X)$ such that $R_{1}+R_{4}$ is a face and $\left(\varphi_{1}\right)_{*}\left(R_{4}\right)=\mathrm{NE}(\eta)$.

By Lemma (4.3), $\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R}\left(R_{1}+R_{2}+R_{3}\right)$. Hence $\operatorname{dim}\left(\mathrm{N}_{1}\left(\varphi_{1}\left(E_{2}\right), Y_{1}\right)\right)=$ 2, because $\mathrm{N}_{1}\left(\varphi_{1}\left(E_{2}\right), Y_{1}\right)=\mathbb{R}\left(\varphi_{1 *} R_{2}+\varphi_{1 *} R_{3}\right)$. By Lemma (2.7), if η is of fiber type, then $\rho_{W} \leq 2$ and $\rho_{X} \leq 4$. Suppose now that η is birational. Let us prove that every non-trivial fiber is one-dimensional. First we will show that η is finite on $\varphi_{1}\left(E_{2}\right)$. Indeed, since $\operatorname{NE}\left(\eta \circ \varphi_{1}\right)=\operatorname{NE}\left(\varphi_{4}\right)+\mathrm{NE}\left(\varphi_{1}\right)$, then if η is not finite on $\varphi_{1}\left(E_{2}\right)$, it exists a curve $[C] \in R_{4}$ such that $C \subset E_{1} \cup E_{2}$. Then $[C] \in R_{4}$ and $[C] \in R_{1}+R_{2}+R_{3}$. Moreover, since $\mathrm{N}_{1}\left(E_{1}, X\right) \cap \mathrm{N}_{1}(X)=$ $R_{1}+R_{3}$, then $R_{4}=R_{2}$ or $R_{4}=R_{3}$. Both cases cannot happen, otherwise we would get $\operatorname{Exc}(\eta)=\varphi_{1}\left(E_{2}\right)$ and $\varphi_{1}\left(E_{2}\right) \cdot \mathrm{NE}(\eta)<0$, a contradiction.

By Lemma (1.3.29), then every non-trivial fiber of η has dimension 1. Then by Lemma (3.7) the following hold:

1. R_{4} is of type $(n-1, n-2)^{s m}$;
2. $\operatorname{Exc}(\eta)=\varphi_{1}\left(E_{4}\right)$.

Note that $R_{1} \not \subset\left(E_{4}, X\right)$. Otherwise $R_{4}=R_{3}$, which we already know that it is not possible. Hence $\varphi_{1}\left(E_{4}\right)$ is a divisor. Again by Lemma (3.7), the following hold:

1. $E_{1} \neq E_{4}$;
2. η is a divisorial Mori contraction and $\operatorname{Exc}(\eta) \cap \varphi\left(E_{1}\right)$ is a union of fibers of η;
3. $R_{4} \cdot E_{1}=0$.

We know that $\operatorname{Exc}(\eta) \cap \varphi_{1}\left(E_{1}\right)$ is a union of fibers of η but η is finite on $\varphi_{1}\left(E_{1}\right)$ because $\varphi_{1}\left(E_{1}\right) \subset \varphi_{1}\left(E_{2}\right)$. Hence $\operatorname{Exc}(\eta) \cap \varphi_{1}\left(E_{1}\right)=\emptyset$ and $E_{1} \cap E_{4}=\emptyset$. Note that $\operatorname{Exc}(\eta)$ must intersect $\varphi_{1}\left(E_{2}\right)$, so $E_{4} \cap E_{2} \neq \emptyset$. E_{2} cannot contain curves with numerical classi in R_{4} because $\mathrm{N}_{1}\left(E_{2}, X\right)=R_{1}+R_{2}+R_{3}$ and $R_{4} \neq R_{i}$ for $i=1,2,3$. Then $E_{2} \cdot R_{4}>0$.

Now consider the subspace $R_{2}+R_{4}$ which can be a face or not.
Suppose that $R_{2}+R_{4}$ is a face. By Lemma (4.4), then $\rho_{X} \leq 4$.
Suppose that $R_{2}+R_{4}$ is not a face of $\operatorname{NE}(X)$. By Corollary (2.6), there exists a ray S of $\operatorname{NE}\left(Y_{4}\right)$ positive on the divisor $\varphi_{4}\left(E_{1}\right)$, i.e. $\varphi_{4}\left(E_{1}\right) \cdot S>0$. Consider the extremal ray $R_{5} \subset \mathrm{NE}(X)$ such that $R_{4}+R_{5}$ is a face and $\left(\varphi_{4}\right)_{*}\left(R_{5}\right)=S$. By Lemma (4.6), either $\rho_{X} \leq 4$ or R_{5} is of type $(n-1, n-2)^{s m}$ with $R_{5} \not \subset$ $\mathrm{N}_{1}\left(E_{1}, X\right)$. We are going to see that the latter cannot happen.

We apply similar arguments to R_{5} to the one applied for the case R_{2} divisorial. First note that $R_{5} \cdot E_{1}>0$ and $R_{5} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. By Lemma (1.3.29), every non-trivial fiber is one-dimensional. Since X is Fano, R_{5} is either of fiber type or divisorial by Corollary (1.3.21). If R_{5} is of fiber type, $\rho_{X} \leq 3$ by Lemma (2.7). If R_{5} is of divisorial type, then it is of type $(n-1, n-2)^{s m}$ by Theorem (1.3.24). Note that $R_{1} \cdot E_{5} \geq 0$ and $E_{1} \cap E_{5} \neq \emptyset$. We will distinguish the two cases $E_{5} \cdot R_{1}>0$, and $E_{5} \cdot R_{1}=0$.

Suppose $E_{5} \cdot R_{1}=0$. By Lemma (3.9) applied to E_{5} and φ_{1} either $\rho_{X} \leq 4$, or there exists an extremal ray $R_{0} \neq R_{1}$ of $\mathrm{NE}(X)$ of type $(n-1, n-2)^{s m}$
such that $E_{1} \cdot R_{0}<0$. We will see that the last one cannot occour. Indeed $R_{0} \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$, so $R_{0}=R_{1}$ but they are of different rays (for instance they have different intersection with E_{1}).

Suppose $E_{5} \cdot R_{1}>0$ and let $\varphi_{5}: X \rightarrow Y_{5}$ be associated contraction to R_{5}. If Y_{5} is Fano, then $\rho_{X} \leq 4$ by Lemma (4.1). Suppose Y_{5} not Fano. By a similar argument to the one applied for R_{2}, it exists an extremal ray $R_{6} \neq R_{5}$ of type $(n-1, n-2)^{s m}$ such that $E_{5} \cdot R_{6}<0, R_{6}+R_{5}$ is a face, and $E_{1} \cdot R_{6}=0$.

Summarizing one of the following holds:

- $\rho_{X} \leq 4$;
- it exists a ray $R_{6} \neq R_{5}$ of type $(n-1, n-2)^{\text {sm }}$ such that $E_{5} \cdot R_{6}<0$, $R_{6}+R_{5}$ is a face, and $E_{1} \cdot R_{6}=0$.

If $\rho_{X} \leq 4$ we are done. Suppose we are in the last case, so $R_{6} \subset \mathrm{~N}_{1}\left(E_{1}, X\right)=$ $\mathbb{R} R_{1}+\mathbb{R} R_{3}$. Note that $R_{6} \neq R_{1}$ because they are of different types. Hence $R_{3}=$ R_{6}. Then $E_{6}=E_{3}=E_{2}$. By $E_{5} \cdot R_{6}<0, E_{5}=E_{6}$. Hence $E_{5}=E_{2}$. Consider a curve $C \subset E_{5}$ with numerical class in $[C] \in R_{5}$, then $C \subset E_{2}$. Therefore $[C]=R_{1}+R_{2}+R_{3}$. This is impossible because $R_{5} \neq R_{i}$ for $i=1,2,3$.

The next Theorem allows us to obtain a bound on the Picard number of a Fano manifold admitting a contraction sending a divisor onto a curve. We will obtain that the Picard number is at most 5. A bound for the case 6 . of the next Theorem will be shown separately in Proposition (4.10).

Theorem 4.9. [Cas09, Theorem 4.2.] Let X be a Fano manifold of dimension $n \geq 4$ and let R_{1} be an extremal ray of type $(n-1,1)$. Let R_{2} be an E_{1}-positive ray. Then one of the following holds:

1. φ_{2} is either of type $(n, n-2)$, or $(n, n-1)$, or $(n-1, n-3)$, and $\rho_{X}=2$;
2. φ_{2} is a conic bundle and $\rho_{X}=3$;
3. φ_{2} is of type $(n-2, n-4)$ and $\rho_{X} \leq 3$;
4. $n=4, \varphi_{2}$ is of type $(2,0)$ and $\rho_{X}=4$;
5. $\rho_{X} \leq 4$ and either φ_{2} is of type $(n-1, n-2)^{\text {sm }}$, or φ_{2} is of type $(n-1, n-2)$;
6. φ_{2} is of type $(n-1, n-2)^{s m}, E_{2} \cdot R_{1}=0$, and there exists an extremal ray $R_{0} \neq R_{1}$ such that $E_{1} \cdot R_{0}<0$.

Proof. Since $R_{2} \cdot E_{1}>0$, we infer that E_{1} intersects every non-trivial fiber of φ_{2}. Let F be an irreducible component of a non-trivial fiber of φ_{2}; then φ_{1} is finite on $E_{1} \cap F$ because φ_{1} and φ_{2} correspond to contractions of different extremal rays and F is a fiber of φ_{2}. Thus

$$
\operatorname{dim} F-1 \leq \operatorname{dim}\left(F \cap E_{1}\right)=\operatorname{dim} \varphi_{1}\left(E_{1} \cap F\right) \leq 1
$$

so every non-trivial fiber of φ_{2} is at most two-dimensional:

Since $\operatorname{dim} \mathrm{N}_{1}\left(E_{1}, X\right)=2$ and $R_{2} \cdot E_{1}>0$, we can apply Theorem (3.6). Recall that, for the Corollary (1.3.22), if R_{2} is small is of type $(n-2, n-4)$ so the cases (i) and (ii) of Theorem (3.6) gives the cases 1., 2., 3., and 5. with $\rho_{X} \leq 3$ of the statement.

We are left to consider the following cases:

1. φ_{2} is of type $(n-1, n-2)^{s m}$ and $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$;
2. φ_{2} is small and it exists a smooth prime divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from E_{2}. Furthermore if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure, then for every fiber f of π the following hold:
(a) $E_{1} \cdot f>0$;
(b) $D^{\prime} \cdot f=-1$;
(c) $f \not \subset E_{1}$.

The two cases will be treated separately.
Case 1: φ_{2} is of type $(n-1, n-2)^{s m}$. Since R_{1} and R_{2} are two different divisorial rays and $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$, then $E_{2} \cdot R_{1} \geq 0$. Hence, either $E_{2} \cdot R_{1}=0$ or $E_{2} \cdot R_{1}>0$.

Suppose $E_{2} \cdot R_{1}=0$. Then by Lemma (4.7)

$$
\mathrm{N}_{1}\left(E_{2}, X\right)=\mathbb{R} R_{2}+\mathbb{R} R_{1}=\mathbb{R}\left(R_{1}+R_{2}\right)
$$

By applying Lemma (3.9) to E_{2} and φ_{1}, we obtain either $\rho_{X} \leq 4$ ond we gat case 5. of the statement, or φ_{2} is divisorial of type $(n-1, n-2)^{s m}, E_{2} \cdot R_{1}=0$, and there exists an extremal ray $R_{0} \neq R_{1}$ of $\mathrm{NE}(X)$ such that $E_{1} \cdot R_{0}<0$. Hence we heve case 6. of the statement.

Suppose $E_{2} \cdot R_{1}>0$. In this case $D \doteq \varphi_{2}\left(E_{1}\right) \subset Y_{2}$ is a prime divisor, E_{2} intersect every non-trivial fiber of φ_{1} and $A \doteq \varphi_{2}\left(E_{2}\right)$ is a smooth subvariety of dimension $n-2$ (recall that R_{2} is of type $(n-1, n-2)^{s m}$). Let C be an irreducible curve of Y_{2} not contained in A. Lemma (2.1.3) yields to $-K_{Y_{2}} \cdot C \geq 1$ and the inequality is strict whenever C intersects A. If Y_{2} is Fano, by Lemma (4.1), $\rho_{X} \leq 4$. If Y_{2} is not Fano, by Lemma (4.8), $\rho_{X} \leq 4$. In both cases we obtain case 5 . of the statement.

Case 2: φ_{2} small. Recall that every fiber of φ_{2} is at most two-dimensional and that exists a divisor $D^{\prime} \subset X$ with a \mathbb{P}^{1}-bundle structure which is disjoint from E_{2}. Furthermore, if $\pi: D^{\prime} \rightarrow Y$ is the map giving the bundle structure, then for every fiber f of π the following hold:

1. $E_{1} \cdot f>0$;
2. $D^{\prime} \cdot f=-1$;
3. $f \not \subset E_{1}$.
X is Fano and every fiber is at most two-dimensional. We can apply Corollary (1.3.22) to φ_{2}, so φ_{2} is of type $(n-2, n-4)$. Note that $E_{1} \cap E_{2} \neq \emptyset$, so $\operatorname{dim}\left(E_{1} \cap\right.$ $\left.E_{2}\right) \geq n-3$. Hence $\operatorname{dim}\left(E_{1} \cap E_{2}\right)=n-3$. Let F_{2} be a non-trivial fiber of φ_{2}. Since $E_{1} \cap F_{2} \neq \emptyset$, then $\operatorname{dim}\left(E_{1} \cap F_{2}\right)=1$ so $\varphi_{2}\left(E_{1} \cap F_{2}\right)=\varphi_{1}\left(E_{1}\right)$. Hence F_{2} intersects horizzontaly φ_{1}. Thus E_{2} intersects every non-trivial fiber of φ_{1}. Then every non-trivial fiber of φ_{1} cannot be contained in D^{\prime} because $D^{\prime} \cap E_{2}=\emptyset$. Therefore $D^{\prime} \cdot R_{1}>0$ and D^{\prime} intersects every non-trivial fiber of φ_{1}. Since D^{\prime} and E_{2} are disjoint, then φ_{1} is finite on E_{2}. Hence

$$
n-3=\operatorname{dim}\left(E_{1} \cap E_{2}\right)=\operatorname{dim} \varphi_{1}\left(E_{1} \cap E_{2}\right) \leq 1
$$

hence $n=4$ and φ_{2} is of type $(2,0)$. Since R_{2} is small and $E_{1} \cdot R_{2}>0$, then $R_{2} \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$ by Corollary (1.3.30). Thus $\mathrm{N}_{1}\left(E_{1}, X\right) \cap \mathrm{NE}(X)=R_{1}+R_{2}$. Note that $[f] \notin \mathrm{N}_{1}\left(E_{1}, X\right)$. Otherwise $[f]=a R_{1}+b R_{2}$ with $a, b \geq 0$. This would imply:

$$
0>[f] \cdot D^{\prime}=a R_{1} \cdot D^{\prime}+b \cdot D^{\prime}=a\left(R_{1} \cdot D^{\prime}\right)
$$

and $a<0$, a contradiction. Moreover $\pi\left(D^{\prime} \cap E_{1}\right)=Y$, since $D^{\prime} \cdot f>0$. Thus

$$
\mathrm{N}_{1}\left(D^{\prime}, X\right)=\mathbb{R}[f] \oplus \mathbb{R} R_{1} \oplus \mathbb{R} R_{2}
$$

and $\operatorname{dim} \mathrm{N}_{1}\left(D^{\prime}, X\right)=3$.
Since $D^{\prime} \cdot f<0$, there is an extremal ray $\widetilde{R}_{2} \subset \operatorname{NE}(X)$ with negative intersection with f, i.e. $\widetilde{R}_{2} \cdot D^{\prime}<0$. Foremost, note that \widetilde{R}_{2} is not of fiber type, so \widetilde{R}_{2} is birational. Let F be and irreducibile component of the exceptional locus $\widetilde{E_{2}}$ of \widetilde{R}_{2}. If \widetilde{R}_{2} were small, by Theorem (1.3.14) $F \cong \mathbb{P}^{2}$. Hence $\pi(F)=Y$, and $\operatorname{dim} \mathrm{N}_{1}\left(D^{\prime}, X\right)=2$, which would give a contradiction. Therefore \widetilde{R}_{2} is divisorial. Since $\widetilde{R}_{2} \cdot D^{\prime}<0$ and D^{\prime} is a prime divisor, D^{\prime} is the exceptional divisor of \widetilde{R}_{2} by Proposition (1.3.13). Since $\mathrm{N}_{1}\left(E_{1}, X\right) \cap \mathrm{NE}(X)=R_{1}+R_{2}, D^{\prime} \cdot R_{1}>0$, and $D^{\prime} \cdot R_{2}=0, \widetilde{R}_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. Hence \widetilde{R}_{2} is of type $(3,2)^{s m}$, and $E_{1} \cdot \widetilde{R}_{2}>0$.

We apply similar arguments to \widetilde{R}_{2} to the one applied when R_{2} is of divisorial type. Let $\widetilde{\varphi_{2}}: X \rightarrow W$ be the contraction associated with \widetilde{R}_{2} and $\widetilde{E_{2}}$ be the exceptional divisor. Note that $\widetilde{E_{2}} \cdot R_{1} \geq 0$. We will distinguish the two cases $\widetilde{E_{2}} \cdot R_{1}>0$ and $\widetilde{E_{2}} \cdot R_{1}=0$.

Suppose $\widetilde{E_{2}} \cdot R_{1}=0$. By Lemma (3.9) applied to E_{5} and φ_{1} either $\rho_{X} \leq 4$, or there exists an extremal ray $\widetilde{R}_{0} \neq R_{1}$ of $\operatorname{NE}(X)$ of type $(n-1, n-2)^{s m}$ such that $E_{1} \cdot \widetilde{R}_{0}<0$. Suppose that $\rho_{X} \geq 5$. Then \widetilde{R}_{0} si contained in $\mathrm{N}_{1}\left(E_{1}, X\right)$ but \widetilde{R}_{0} is different both from R_{1} and form R_{3}. Hence we obtain a contradiction. If $\widetilde{E_{2}} \cdot R_{1}>0$. Then we will distinguish the two cases: W Fano or W, not Fano.

Suppose W Fano, then $\rho_{X} \leq 4$ by Lemma (4.1).
Suppose W not Fano. It exists an extremal ray R_{7} of divisorial type such that $R_{7} \neq \widetilde{R}_{2}, \widetilde{E_{2}} \cdot R_{7}<0$ and $E_{1} \cdot R_{7}=0$. This last case leads to a contradiction because R_{7} is different form R_{1} and R_{2}.

The next Proposition allows us to conclude that a Fano manifold with a divisorial contraction of type ($n-1,1$) has Picard number at most 5 .

Proposition 4.10. [Cas09, Proposition 4.8.] Let X a Fano manifold of dimension $n \geq 4$ with a divisorial contraction of type ($n-1,1$). Suppose that there exists a ray $R_{0} \neq R_{1}$ with $E_{1} \cdot R_{0}<0$. Then $\rho_{X} \leq 5$ and $R_{0}+R_{1}$ is a face of $N E(X)$. Furthermore, $E_{1} \cong W \times \mathbb{P}^{1}$ where W is a Fano manifold, and φ_{0} is the blow-up of a smooth subvariety isomorphic to W.

If $\rho_{X}=5$, then there exists a Fano manifold Z with $\rho_{Z}=3$ and $\operatorname{dim} Z=n$, having an elementary contraction of type ($n-1,1$), such that X is the blow-up of Z along two fibers of such contraction.

Proof. Let F_{0} be a non-trivial fiber of φ_{0}. Every non-trivial fibers of φ_{1} have dimension $n-2$ and $R_{0} \neq R_{1}$, so F_{0} is one-dimensional. Since φ_{0} is a Mori contraction, φ_{0} is not small by Corollary (1.3.21). Furthermore, φ_{0} is not of fiber type because every non-trivial fiber is contained in E_{1}. Hence φ_{0} is birational with fibers of dimension at most one. Hence φ_{0} is of type $(n-1, n-2)^{s m}, Y_{0}$ is smooth, and E_{1} is smooth by Theorem (1.3.24). Let $W \subset Y_{0}$ be the smooth codimension 2 subvariety blowed-up by φ_{0}, then E_{1} has a \mathbb{P}^{1}-bundle structure over W given by φ_{0} as in Remark (1.3.31).

Note that $\mathrm{N}_{1}\left(E_{1}, X\right)=\mathbb{R}\left(R_{0}+R_{1}\right)$ and $\mathrm{N}_{1}\left(E_{1}, X\right) \cap \mathrm{NE}(X)=R_{0}+R_{1}$. Hence there are no other extremal ray with negative intersection with E_{1}.

In the next step we will prove that $R_{0}+R_{1}$ is a face of the Mori cone $\mathrm{NE}(X)$. For $i=0,1$ let C_{i} be a curve with class in R_{i} and consider a supporting nef divisor H_{i} for R_{i} (1.3.4). i.e. H_{i} is a nef divisor such that it intersect the Mori exactly on R_{i}. Hence if $S \subset \operatorname{NE}(X)$ an extremal ray, then $H_{i} \cdot S \geq 0$, and $H_{i} \cdot S=0$ if and only if $S=R_{i}$. Consider the divisor

$$
H \doteq\left(H_{0} \cdot C_{1}\right) H_{1}+\left(H_{1} \cdot C_{0}\right)\left(-E_{1} \cdot C_{1}\right) H_{0}+\left(H_{0} \cdot C_{1}\right)\left(H_{1} \cdot C_{0}\right) E_{1} .
$$

Let R be a ray of $\mathrm{NE}(X)$ such that $R \neq R_{i}$ for $i=0,1$. By the construction of supporting nef divisor for a ray (Theorem 1.3.4), $R \cdot H_{i}>0$ for $i=0.1$. Furthermore $H_{0} \cdot C_{1}>0, H_{1} \cdot C_{0}>0$, and $-E_{1} \cdot C_{1}>0$. Hence $H \cdot R>0$. Note that $H \cdot R_{0}=0$ and $H \cdot R_{1}=0$. Hence H is nef. To summarize, $R_{0}+R_{1}$ is a face of the Mori cone with supporting nef divisor H.

Now we will prove that E_{1} is Fano. Consider $\gamma \in \operatorname{NE}\left(E_{1}\right) \backslash\{0\}$, then by projection and adjunction formula

$$
-K_{E_{1}} \cdot \gamma=-\left.\left(K_{X}+E_{1}\right)\right|_{E_{1}} \cdot \gamma=-\left(K_{X}+E_{1}\right) \cdot i_{*}(\gamma)
$$

where $i: E_{1} \hookrightarrow X$ is the inclusion. Consider A an ample divisor on X, then by projection formula

$$
A \cdot i_{*}(\gamma)=\left.A\right|_{E_{1}} \cdot \gamma>0
$$

because $\left.A\right|_{E_{1}}$ is still ample. Hence $i_{*}(\gamma)$ is not zero. Since $\gamma \in \overline{\mathrm{NE}}\left(E_{1}\right) \backslash\{0\}$, we get $i_{*}(\gamma) \in R_{0}+R_{1}$. Then $E_{1} \cdot i_{*}(\gamma)<0$. Thus E_{1} is Fano.

The map $\left.\varphi_{1}\right|_{E_{1}}: E_{1} \rightarrow \varphi_{1}\left(E_{1}\right)$ is a surjective morphism with connected fibers sending E_{1} to a curve. Recall that E_{1} is also the exceptional divisor of φ_{0},
whose fibers are isomorphic to \mathbb{P}^{1}. Hence E_{1} is covered by fibers of $\left.\varphi_{0}\right|_{E_{1}}$ and $\varphi_{1}\left(E_{1}\right)$ is rational. By Theorem (1.3.33) $\left.\varphi_{0}\right|_{E_{1}}$ induces a Mori contraction

$$
\phi: E_{1} \rightarrow \mathbb{P}^{1}
$$

that does not contract the fibers of $\left.\varphi_{0}\right|_{E_{1}}$. Then by Lemma (1.3.32), $E_{1}=W \times$ \mathbb{P}^{1}.

The next part of the proof will be focused on finding that $\rho_{X} \leq 5$.
By Lemma (1.4.11), we may consider R_{2} a positive ray on E_{1}. Then $R_{2} \neq R_{0}$ and $R_{2} \neq R_{1}$, so $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. Thus $\rho(X) \geq 3$ and φ_{2} is finite on E_{1}. By Theorem (1.3.25), either φ_{2} is a conic bundle or φ_{2} is a divisorial contraction of type $(n-1, n-2)^{s m}$. Suppose first that φ_{2} is a conic bundle. By Lemma (2.7) $\rho_{Y_{2}} \leq 2$ and $\rho_{X} \leq 3$. Hence $\rho_{Y_{2}}=2$ and $\rho_{X}=3$.

Suppose that φ_{2} is a divisorial contraction of type $(n-1, n-2)^{s m}$. Then Y_{2} is smooth, $A \doteq \varphi_{2}\left(E_{2}\right)$ is a smooth subvariety and it is contained in the prime divisor $D \doteq \varphi_{2}\left(E_{1}\right)$ since E_{1} intersects every non-trivial fiber of φ_{2}, i.e. $A \subset D \subset Y_{2}$.

Since E_{1} intersects every non-trivial fiber of φ_{2}, then $\varphi_{2}\left(E_{1} \cap E_{2}\right)=\varphi_{2}\left(E_{2}\right)$. Since $E_{1} \neq E_{2}$ and $\operatorname{NE}(X) \cap \mathrm{N}_{1}\left(E_{1}, X\right)=R_{0}+R_{1}$ then for every curve $C \subset E_{1}$ $E_{2} \cdot C \geq 0$. Since φ_{2} is of type $(n-1, n-2)^{s m}$, then

$$
-K_{X}=\varphi_{2}^{*}\left(-K_{Y_{2}}\right)-E_{2}
$$

Consider a curve $C_{2} \subset Y_{2}$. Let $C \subset X$ be the strict transform of C_{2}. If C_{2} is not contained in $\varphi_{2}\left(E_{2}\right)$ then $C \cdot E_{2} \geq 0$, hence

$$
-K_{Y_{2}} \cdot C_{2}=\left(\varphi_{2}^{*}\left(-K_{Y_{2}}\right)\right) \cdot C=\left(-K_{X}+E_{2}\right) \cdot C>0
$$

If C_{2} is contained in $\varphi_{2}\left(E_{2}\right)$, since $\varphi_{2}\left(E_{1} \cap E_{2}\right)=\varphi_{2}\left(E_{2}\right)$ then C can be considered inside E_{1}. For every curve $C \subset E_{1}, E_{2} \cdot C \geq 0$, so by using the projection formula as before, $-K_{Y_{2}} \cdot C_{2}>0$. Hence Y_{2} is Fano.

Consider an elementary contraction $\psi: Y_{2} \rightarrow Z$ such that $D \cdot \mathrm{NE}(\psi)>0$. If ψ is of fiber type, then by Lemma (2.7), $\rho_{Z} \leq 2$ and $\rho_{X} \leq 4$. Suppose that ψ is birational. Then ψ is finite on D, because
$\mathrm{N}_{1}\left(D, Y_{2}\right) \cap \mathrm{NE}\left(Y_{2}\right)=\left(\varphi_{2}\right)_{*}\left(\mathrm{~N}_{1}\left(E_{2}, X\right) \cap \mathrm{NE}(X)\right)=\left(\varphi_{2}\right)_{*}\left(R_{0}\right)+\left(\varphi_{2}\right)_{*}\left(R_{1}\right)$.
Suppose was not finite on D, then $\operatorname{NE}(\psi)=\left(\varphi_{2}\right)_{*}\left(R_{0}\right)$ or $\operatorname{NE}(\psi)=\left(\varphi_{2}\right)_{*}\left(R_{1}\right)$. In both cases $\operatorname{Exc}(\psi)=D$ and this is not possible because $\mathrm{NE}(\psi)$ is positive on D. Since ψ is finite on D and $\operatorname{NE}(\psi) \cdot D>0$, then by Lemma (1.3.29) every nontrivial fiber is one-dimensional. Thus ψ cannot be small by Corollary (2.1.5), so ψ is divisorial. Therefore, ψ is of type $(n-1, n-2)^{s m}$ and Z is smooth by Lemma (1.3.25). Since the hypothesis of Lemma (3.7) are satisfied and ψ is birational, than $\operatorname{Exc}(\psi) \cap A$ is a union of fibers of ψ. Since ψ is finite on A, then $\operatorname{Exc}(\psi) \cap A=\emptyset$. The composition $\psi \circ \varphi_{2}$ is the blow-up of two disjoint,
smooth subvarieties of codimension 2.

Set $\widetilde{E_{2}} \doteq \varphi_{2}^{-1}(\operatorname{Exc}(\psi)) ; \operatorname{Exc}\left(\psi \circ \varphi_{2}\right)=E_{2} \cup \widetilde{E_{2}}$.
Note that $E_{2} \cap E_{1}$ has pure dimension at least 2. Since $\varphi_{1}\left(E_{1}\right)$ is a curve, then the map $\left.\varphi_{1}\right|_{E_{1} \cap E_{2}}: E_{1} \cap E_{2} \rightarrow \varphi_{1}\left(E_{1}\right)$ has fibers of positive dimension. Let F be a such fiber, and let $C \subset F$ be a curve. C is in a fiber, so $C \in R_{1}$ and $C \subset E_{1} \cap E_{2} \subset E_{2}$. Hence C is disjoint from $\widetilde{E_{2}}$ and $\widetilde{E_{2}} \cdot R_{1}=0$. In the same way $E_{2} \cdot R_{1}=0$. Then $E_{1} \cap E_{2}$ and $E_{1} \cap \widetilde{E_{2}}$ are union of finitely many fibers of φ_{1}. By Lemma (1.4.12), $R_{1}+R_{2}$ is a face on $\mathrm{NE}(X)$ and $S_{1} \doteq\left(\varphi_{2}\right)_{*}\left(R_{1}\right)$ is a ray of type $(n-1,1)$ of $\operatorname{NE}\left(Y_{2}\right)$ with exceptional divisor D. Note that the other possible ray contained in $\mathrm{N}_{1}(D, X)$ is $\left(\varphi_{2}\right)_{*}\left(R_{0}\right)$.

Observe that $E_{2} \cdot R_{0}>0$. If $E_{2} \cdot R_{0}<0$ then $E_{0}=E_{2}$ but $E_{0}=E_{1}$, hence $E_{2}=E_{1}$. This is not possible since $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$. If $E_{2} \cdot R_{0}=0$, then some curve contracted by φ_{0} are contained in E_{2} and some are not. Hence $R_{0}, R_{1}, R_{2} \subset \mathrm{~N}_{1}\left(E_{2}, X\right)$. Hence E_{2} contains a fiber F_{i} of R_{i} for $i=1,2,0$. This is not possible because F_{1} is of dimension $n-2$, and F_{i} of dimension 1 for $i=0,2$.

The ray S_{1} is the only ray with negative intersection with D. Indeed, the other ray contained in $\mathrm{N}_{1}\left(D, X_{2}\right)$ is $S_{0} \doteq\left(\varphi_{2}\right)_{*}\left(R_{0}\right)$, but $D \cdot \varphi_{2 *}\left(R_{0}\right) \geq 0$.

Theorem (4.9) applied to Y_{2}, D and S_{1} yelds to $\rho_{Y_{2}} \leq 4$ and $\rho_{X} \leq 5$.
Recall that $\mathrm{NE}(\psi) \subset \mathrm{NE}\left(Y_{2}\right)$ is a ray of type $(n-1, n-2)^{s m}$. Moreover $\widetilde{E_{2}} \cdot R_{1}=0$ and $\widetilde{E_{2}} \doteq \varphi_{2}^{-1}(\operatorname{Exc}(\psi))$ yields $\operatorname{Exc}(\psi) \cdot S_{1}=0$. Hence by Lemma (1.4.12), Z is Fano, $\psi_{*}\left(S_{1}\right)$ is of type $(n-1,1)$ with exceptional divisor $\psi(D)$ and X is the consecutive blow-up of Z along two fibers of the associated contractions. Since φ_{2} is finite on E_{1} and ψ is finite on D, then $\psi \circ \varphi_{2}$ is finite on E_{1}. Hence the normalization of $\psi(D)$ is $W \times \mathbb{P}^{1}$.

We will now give an application to the case of a Fano manifold of dimension 4.

Corollary 4.11. [Cas09, Corollary 1.3] Let X be a Fano 4-fold. Then one of the following holds:

1. $\rho_{X} \leq 6$;
2. X is a product and $\rho_{X} \leq 11$;
3. every contraction of X is of type $(3,2)$ or $(2,0)$.

Proof. Let X be a Fano 4 -fold with $\rho_{X} \geq 7$. Then X cannot have elementary contractions of type:

1. $(3,0)$, since otherwise $\rho_{X} \leq 3$;
2. $(3,1)$, since otherwise $\rho_{X} \leq 5$;
3. $(2,1)$ and $(1,0)$ because small K_{X}-negative contraction cannot have fibers of dimension 1 by Corollary (1.3.21);
4. $(4,0)$, since otherwise $\rho_{X}=1$;
5. $(4,1)$, since otherwise $\rho_{X}=2$.

Therefore the only possible elementary contractions are of type $(4,3),(4,2)$, $(3,2)$ or $(2,0)$. If X has a contraction of type $(4,2)$ then by Corollary (1.4.13) $X \cong \mathbb{P}^{2} \times S$ with S del Pezzo surface thus $\rho_{X} \leq 10$. By using again Corollary (1.4.14), if X has a contraction of type (4,3), either $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \times S$ or $X \cong$ $\mathbb{F}_{1} \times S$ hence $\rho_{X} \leq 11$. If X is not a product, then it can only have contractions of type $(3,2)$ and $(2,0)$.

5 Some applications to Fano 5-folds

We will now give some applications for the 5 -fold case.
Notation: if we denote a ray with R_{i}, then its exceptional locus will be denoted with E_{i}, the associated contraction with $\varphi_{i}: X \rightarrow Y_{i}$, and a general fiber with F_{i}, unless otherwise stated.

Lemma 5.1. Let X be a Fano 5 -fold with $i_{X}>1$. Suppose there exists an extremal ray R_{0} of type (4,2). Suppose moreover that there exists an extremal ray $R_{1} \subset N E(X)$ such that $R_{1} \neq R_{0}$, and $E_{0} \cdot R_{1}<0$.

Then $\rho_{X}=3, R_{1}$ is of type $(4,2)^{\text {sm }}$, and $E_{0}=\mathbb{P}^{2} \times \mathbb{P}^{2}$.
Proof. First of all, observe that φ_{1} is not of fiber type, so φ_{1} is birational. Let F_{1} be a non-trivial fiber of φ_{1}. Since every non-trivail fiber of φ_{0} has dimension at least 2, then $\operatorname{dim} F_{1} \leq 2$.

Suppose that $\operatorname{dim} F_{1}=1$, then φ_{1} is of divisorial type by Corollary (1.3.21). Hence $E_{0}=E_{1}$ and $l\left(R_{1}\right)=1$ by Ionescu-Wiśniewski inequality (1.3.20). Thus this case cannot occurs, since $i_{X}>1$.

Suppose $\operatorname{dim} F_{1}=2$. Then φ_{1} can be either divisorial or small. Suppose that φ_{2} is small. By Ionescu-Wiśniewski inequality (1.3.20) $l\left(R_{1}\right)=1$, which contradicts $i_{X}>1$. Hence φ_{1} is a divisorial contraction. Thus $E_{0}=E_{1}$ and every non-trivial fiber of φ_{0} and of φ_{1} is two-dimensional.

Note that R_{0} and R_{1} are rays of length $l\left(R_{1}\right)=l\left(R_{2}\right)=2$ with fibers of dimension 2 in X, then by Lemma (1.3.23) R_{0} and R_{1} are of type $(4,2)^{s m}$.

Furthermore R_{0} and R_{1} are the only rays of $\operatorname{NE}(X)$ in E_{0}, so $\mathrm{N}_{1}\left(E_{0}, X\right)=$ $\mathbb{R}\left(R_{1}+R_{0}\right)$.

By Lemma (1.4.11), we can consider an extremal ray $R \subset \mathrm{NE}(X)$ positive on E_{0} and let $\varphi: X \rightarrow Y$ be the associated contraction. Note that $\rho_{X} \geq 3$, and $R \not \subset \mathrm{~N}_{1}\left(E_{0}, X\right)$. Then by Theorem (1.3.24), eihter φ is a conic bundle or φ is of type $(4,3)^{s m}$. If φ is of type $(4,3)^{s m}$, then $l(R)=1$ a contradiction. Thus φ is a conic bundle and $\rho_{X}=3$ by Lemma (2.7).

Consider the restrictions of φ_{0} and φ_{1} on $E_{0}, \varphi_{0| |_{E_{0}}}$ and $\varphi_{\left.1\right|_{E_{0}}}$. Then, by [Sat85, Theorem A (1)], $E_{2} \cong \mathbb{P}^{2} \times \mathbb{P}^{2}$.

The next example is an example of a Fano 5-fold that satisfies the hypothesis of the previous Lemma.

Example 5.2. [CO06, Example j.1] Let $\mathcal{F}=\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}} \oplus \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1)$. Consider $X=\mathbb{P}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(\mathcal{F})$. Let $\pi: X \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$ be the projection map, ξ be the tautological line bundle on X, and E be the section that corresponds to the surjection

$$
\mathcal{F} \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}} \rightarrow 0
$$

Hence

$$
-K_{X}=2 \xi-\pi^{*}\left(K_{\mathbb{P}^{2} \times \mathbb{P}^{2}}+\operatorname{det} \mathcal{F}\right)=2\left(\xi+\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}\right)\right) .
$$

Note that $\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}\right)$ is nef, and by projection formula it vanishes only on the fibers f of π. Furthermore $\xi \cdot f=1$. Therefore X is a Fano variety and $i_{X}=2$.

Observe that X has three extremal rays. One is of fiber type and corresponds to the projection π. The other two rays are of type $(4,2)$, have exceptional divisor E, and each one corresponds to the contraction of one of the "rulings" of E.

Lemma 5.3. Let X be a Fano 5-fold. Suppose there are two extremal rays $R_{0}, R_{1} \subset$ $N E(X)$ of type $(4,2)$ such that $R_{0} \cdot E_{1}<0$. Let $R_{2} \subset N E(X)$ be an extremal ray positive on E_{1}. Then one of the following occour:

1. $\rho_{X}=3$ and φ_{2} is a conic bundle;
2. $\rho_{X} \in\{3,4\}$ and φ_{2} is of type $(4,3)^{s m}$;
3. φ_{2} is of type $(4,3)^{s m}$ and $R_{0} \cdot E_{2}=R_{1} \cdot E_{2}=0$.

Proof. First note that $E_{1}=E_{0}$ and $\mathrm{N}_{1}\left(E_{1}, X\right)=\mathbb{R}\left(R_{0}+R_{1}\right)$. Moreover the non-trivial fibers of φ_{0} and φ_{1} are equidimensional, thus every non-trivial fiber has dimension 2. By Lemma (1.4.11), we may consider an extremal ray $R_{2} \subset$ $\mathrm{NE}(X)$ positive on E_{1}. Since R_{2} is different from R_{1} and from R_{0}, then $\rho_{X} \geq 3$. Note that $R_{2} \not \subset \mathrm{~N}_{1}\left(E_{1}, X\right)$, so by Lemma (1.3.29) every non-trivial fiber is onedimensional. Hence by Theorem (1.3.24), one of the following occours:

1. φ_{2} is a conic bundle;
2. φ_{2} is of type $(4,3)^{s m}$.

If φ_{2} is a conic bundle then by Lemma (2.7), $\rho_{X} \leq 3$. Hence we obtain 1 . of the statement. Now suppose that φ_{2} is divisorial of type $(4,3)^{s m}$, so Y_{2} is smooth and φ_{2} is the blow-up of a smooth subvariety $A \doteq \varphi_{2}\left(E_{2}\right)$. Set $D \doteq \varphi_{2}\left(E_{1}\right)$, then $A \subset D$. Note that $\varphi_{2}\left(E_{1} \cap E_{2}\right)=\varphi_{2}\left(E_{2}\right)$, and $C \cdot E_{2} \geq 0$ for every $C \subset E_{1}$. Since

$$
\varphi_{2}^{*}\left(-K_{Y_{2}}\right)=-K_{X}+E_{2}
$$

by projection formula Y_{2} is Fano. Consider an elementary contraction $\psi: Y_{2} \rightarrow$ Z such that $D \cdot \mathrm{NE}(\psi)>0$. If ψ is of fiber type, then $\rho_{Z} \leq 2$, and $\rho_{X} \leq 4$. Hence $\rho_{X} \in\{3,4\}$ and we obtain 2 . of the statement.

Suppose ψ birational; ψ is finite on D. Suppose by contradiction ψ not finite on D. Recall that $\operatorname{NE}\left(E_{1}, X\right)=\mathbb{R}\left(R_{0}+R_{1}\right)$, then either $\operatorname{NE}(\psi)=(\psi)_{*}\left(R_{0}\right)$, or $\mathrm{N}_{1}(\psi)=(\psi)_{*}\left(R_{1}\right)$. In both cases $\operatorname{Exc}(\psi)=\varphi_{2}\left(E_{1}\right)$, but this is not possibile because $\operatorname{NE}(\psi) \cdot D>0$. Thus ψ is finite on D, so by Theorem (1.3.24) ψ is of type $(4,3)^{s m}$ and Z is smooth.

By Lemma (3.7), $\operatorname{Exc}(\psi) \cap A$ is a union of fibers of ψ, but ψ is finite on A so $\operatorname{Exc}(\psi) \cap A=\emptyset$. Hence $\psi \circ \varphi_{2}$ is the blow-up of two disjoint subverieties of Z. Set $\widetilde{E}_{2} \doteq \varphi_{2}^{-1}(\operatorname{Exc}(\psi))$, $\operatorname{so} \operatorname{Exc}\left(\psi \circ \varphi_{2}\right)=E_{2} \cup \widetilde{E}_{2}$ and $\widetilde{E}_{2} \cap E_{2}=\emptyset$.

Consider $E_{1} \cap \widetilde{E}_{2}$; since $\operatorname{NE}(\psi) \cdot D>0$, then $E_{1} \cap \widetilde{E}_{2} \neq \emptyset$. Therefore $E_{1} \cap \widetilde{E}_{2}$ is of pure dimension, $\operatorname{dim}\left(E_{1} \cap \widetilde{E}_{2}\right) \geq n-2=3$. So $E_{1} \cap \widetilde{E}_{2}$ has dimension 3, furthermore recall that $\operatorname{dim} \varphi_{1}\left(E_{1}\right)=1$. Therefore

$$
\varphi_{\left.1\right|_{E_{1} \cap \widetilde{E}_{2}}}: E_{1} \cap \widetilde{E}_{2} \rightarrow \varphi_{1}\left(E_{1}\right)
$$

has fibers of dimension 1. Consider a curve \widetilde{C} in one of this fiber, then $\widetilde{C} \subset \widetilde{E}_{2}$ and $[\widetilde{C}] \in R_{1}$. Since $E_{2} \cap \widetilde{E}_{2}=\emptyset$, then $E_{2} \cap C=\emptyset$. Therefore $E_{2} \cdot R_{1}=0$.

In the same way, by considering $\varphi_{\left.0\right|_{E_{1} \cap \widetilde{E}_{2}}}: E_{1} \cap \widetilde{E}_{2} \rightarrow \varphi_{1}\left(E_{1}\right)$, we obtain $E_{2} \cdot R_{0}=0$.

References

[AO02] Marco Andreatta and Gianluca Occhetta. Special rays in the Mori cone of a projective variety. Nagoya Mathematical Journal, 168:127137, 2002.
[AW97] Marco Andreatta and Jarosław A. Wiśniewski. A view on contractions of higher dimensional varieties. In Proceedings of Symposia in Pure Mathematics, volume 62, pages 153-184. American Mathematical Society, 1997.
[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D Hacon, and James McKernan. Existence of minimal models for varieties of log general type. Journal of the American Mathematical Society, 23(2):405-468, 2010.
[Cas08] Cinzia Casagrande. Quasi-elementary contractions of Fano manifolds. Compositio Mathematica, 144(6):1429-1460, 2008.
[Cas09] Cinzia Casagrande. On Fano manifolds with a birational contraction sending a divisor to a curve. Michigan Mathematical Journal, 58(3):783-805, 2009.
[Cas12a] Cinzia Casagrande. Mori dream spaces and Fano varieties. Notes for a minicourse given at GAG Géométrie Algébrique et Géométrie Complexe, CIRM, Marseille, pages 12-16, 2012.
[Cas12b] Cinzia Casagrande. On the Picard number of divisors in Fano manifolds. In Annales scientifiques de l'Ecole normale supérieure, volume 45, pages 363-403, 2012.
[CO06] Elena Chierici and Gianluca Occhetta. The cone of curves of fano varieties of coindex four. International Journal of Mathematics, 17(10):1195-1221, 2006.
[Deb01] Olivier Debarre. Higher-dimensional algebraic geometry. Springer Science \& Business Media, 2001.
[Har13] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science \& Business Media, 2013.
[HK00] Yi Hu and Sean Keel. Mori dream spaces and GIT. Michigan Mathematical Journal, 48(1):331-348, 2000.
[Ion86] Paltin Ionescu. Generalized adjunction and applications. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 99, pages 457-472. Cambridge University Press, 1986.
[Ish91] Shihoko Ishii. Quasi-gorenstein Fano 3-folds with isolated nonrational loci. Compositio Mathematica, 77(3):335-341, 1991.
[Kaw84] Yujiro Kawamata. The cone of curves of algebraic varieties. Annals of Mathematics, pages 603-633, 1984.
[Kaw89] Yujiro Kawamata. Small contractions of four dimensional algebraic manifolds. Mathematische Annalen, 284(4):595-600, 1989.
[Kle66] Steven L. Kleiman. Toward a numerical theory of ampleness. Annals of Mathematics, pages 293-344, 1966.
[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134. Cambridge university press, 1998.
[Kol13] János Kollár. Rational curves on algebraic varieties, volume 32. Springer Science \& Business Media, 2013.
[Laz84] Robert K. Lazarsfeld. Some applications of the theory of positive vector bundles. In Complete intersections, pages 29-61. Springer, 1984.
[Laz17] Robert K. Lazarsfeld. Positivity in algebraic geometry I: Classical setting: line bundles and linear series, volume 48. Springer, 2017.
[Mat13] Kenji Matsuki. Introduction to the Mori program. Springer Science \& Business Media, 2013.
[Mor82] Shigefumi Mori. Threefolds whose canonical bundles are not numerically effective. In Algebraic Threefolds, pages 155-189. Springer, 1982.
[Rei83] Miles Reid. Projective morphisms according to Kawamata. Citeseer, 1983.
[Sat85] Eiichi Sato. Varieties which have two projective space bundle structures. Journal of Mathematics of Kyoto University, 25(3):445-457, 1985.
[Sho86] Vyacheslav Vladimirovich Shokurov. The nonvanishing theorem. Mathematics of the USSR-Izvestiya, 26(3):591, 1986.
[Tsu06] Toru Tsukioka. Classification of Fano manifolds containing a negative divisor isomorphic to projective space. Geometriae Dedicata, 123(1):179-186, 2006.
[Wiś91] Jarosław A. Wiśniewski. On contractions of extremal rays of Fano manifolds. 1991.

