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Abstract

In this work we analyze the Onsager theory of conduction within the context of low-
dimensional nonlinear systems. After presenting the thermodynamics of conductive pro-
cesses, we introduce the logistic map as a paradigmatic example for non-conservative
chaotic dynamics. In the fully chaotic case, when the logistic map coincides with the
Ulam map, we exactly characterize the exponential regression to equilibrium of a uni-
formly distributed set of initial values of particle positions. This new approach gives rise
to the question of whether the Onsager theory could be generalized by introducing an
adapted concept of microscopic reversibility.
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Chapter 1

Introduction

Conduction occurs when physical properties of matter within a given material are trans-
ported through time and space by the interactions of neighboring particles [1]. A valid
theoretical description of conduction developed by Onsager [2, 3] uses fluctuations of
non equilibrium thermodynamic quantities to link the microscopic particles’ dynamics
to macroscopic conduction effects under the assumption of microscopical reversibility.

It therefore becomes interesting to test whether Onsager’s theory provides a good physical
description of conduction even when the underlying dynamics of the particles becomes
more complex. In particular, how it adapts in the context of non Hamiltonian particle
trajectories and more generally when microscopic reversibility is lost. In this thesis we
make an effort in this direction by exploring the thermodynamics of conduction in the
case of non linear maps of the logistic class. These maps provide a simple description of
chaotic behavior and for this reason they represent a natural framework for the study of
conduction in a chaotic system. We will specifically focus on maps for which a closed-form
solution for the dynamics is known in order to fully characterize the conductive properties
of such systems.

We start by introducing the thermodynamics of conduction. In particular we explain
why thermodynamic variables shall be treated as local fields. Before tackling the more
complex case of conduction in chaotic systems, we apply the methods shown in Ref. [4]
to the relatively simpler framework of Brownian moving particles. Finally, we focus on
the analysis of conduction in the case of fully chaotic logistic-map driven particles. This
has resulted in the development of a new method to derive the probability distribution
function of the particles at any time given their initial distribution. This new approach to
the problem of conduction of chaotic particles will be used to further develop the results in
Ref. [4] by linking the microscopic non-Hamiltonian particles’ dynamics to the emerging
conductive properties of the system.
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Chapter 2

Thermodynamics of Conduction

2.1 Entropy formulation of Thermodynamics

From a thermodynamic perspective, equilibrium states of a simple thermodynamic system
are fully characterized in terms of extensive variables such as the internal energy U , the
volume V and the number of particles N1, N2, ..., Nr of the different chemical species that
compose the system [5]. At equilibrium it is possible to define the entropy as a function of
these extensive variables. It is then postulated that the values assumed by the extensive
variables at equilibrium in the absence of internal constraints are those that maximize the
entropy over the manifold of constrained equilibrium states.

The following example will make this postulate clearer. Imagine to enclose N identical
particles that are in equilibrium with an energy U inside a box of volume V . It is possible
to add an internal constraint on the extensive variables that define the system, for example
by dividing the box into two equal compartments by means of a fixed separator. Let’s
further suppose such separator to be adiabatic - i.e. it does not permit any exchange of
heat - but permeable to the particles. We are thus fixing the volumes V(1), V(2) and the
internal energies U(1), U(2) of the two subsystems. For the sake of reasoning, we shall now
accept that the energy is fixed in the two subcompartments even if the particles can flow
from one side to the other. Ideally this could be obtained by controlling the temperature
of the two. In addition it must still hold N = N(1) +N(2) and the analogous relations for
the energy and the volume. Let us consider all possible configurations with N(1) particles
in (1) and N − N(1) in (2). If we fix each configuration - for example by making the
partition instantly impermeable to particles - once equilibrium is established within each
compartment it is possible to compute the constrained entropy

SC
(
N(1)

)
= S

(1)
C

(
U(1), V(1), N(1)

)
+ S

(2)
C

(
U(2), V(2), N −N(1)

)
.

The above mentioned postulate then states that once the partition has been removed and
equilibrium has settled, the extensive parameters will assume the values corresponding to
the maximum of the constrained manifold, i.e. max

N(1)

SC
(
N(1)

)
.

The maximal information on a system at equilibrium is then given by the entropy written
in terms of the extensive variables that characterize the system i.e. for a system of r
different species of particles in a volume V with internal energy U , S(U, V,N1, N2, ..., Nr).
The derivative of S with respect to an extensive variable while keeping the others fixed
defines the corresponding intensive variable

3
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1

T
:=

∂S

∂U

∣∣∣
V,N1,...,Nr

P

T
:=

∂S

∂V

∣∣∣
U,N1,...,Nr

µj
T

:= − ∂S

∂Nj

∣∣∣
U,V,Nr 6=Nj

(2.1)

where T is called temperature, P is the pressure and µj is the chemical potential of the
jth species. From now on for simplicity we will assume the system to be composed by only
one chemical species and therefore drop the j subscript.

2.2 Onsager Theory

A detailed account of Onsager Theory of conductive processes can be obtained trough the
continuum description. In such a context it is convenient to consider space as made up of
material points. A material point is defined as a region of space (for sake of simplicity, let us
assume it cubical) which is small enough to be considered punctiform from a macroscopic
point of view. On the other hand, the same material point contains so many atoms or
molecules that it is possible to consider it as a large system, where the thermodynamic
limit is applicable. A classical example of a material point is a cubic portion of an ideal
gas under normal conditions of side L = 1 mm. Its volume V = 10−9 m3 contains N =
V NA ' 2.7× 1016 particles, where NA is the Avogadro constant. This number is large
enough that it is possible to apply the thermodynamic limit within the material point.
Therefore in the language of continuum physics thermodynamic variables become local
fields, functions of time and of the position in the space of material points.

In view of the applications that follow, we focus our discussion on a system composed of N0

equal particles confined inside a cylinder of length L and base A (as shown in Figure 2.1).
The cylinder is thermally, mechanically and chemically isolated. Moreover we reduce to
a one dimensional problem by assuming the radius of the cylinder to be much smaller
than the length L and particles to be uniformly distributed over any cross section. The
3D particle distribution function will therefore be referred to as N(x, t). Although we
will focus on diffusion, other conduction processes like the electric or thermal one can be
treated similarly.

-L/2 0 L/2

A

Figure 2.1: N0 particles distributed within a cylinder of section A and length L.

2.2.1 Thermodynamics of conduction

We would now like to adapt to continuous systems the basic thermodynamic notions that
were briefly recalled at the beginning of this chapter. We will assume thermodynamic

4
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equilibrium within each material point. As anticipated, the extensive variables now be-
come local fields i.e. functions of the position in the space of material points. Since the
extensive variables depend on the position, global equilibrium is lost. Therefore we will
indicate the 3D distribution function as N(x, t) and similarly define the analogous quan-
tities for the energy and the volume U(x, t), V (x, t). Thus, entropy becomes a functional
of these extensive-variable fields S[U(x, t), V (x, t), N(x, t)] under the assumption of local
equilibrium. Ideally two neighboring material points will no longer be in equilibrium so
they can be considered as two different constrained thermodynamic systems. For this
reason entropy will not be maximum everywhere and its functional derivatives with re-
spect to the constrained variables while keeping the other variables fixed will express the
fluctuation from equilibrium. We will only take in account small (linear) fluctuations from
equilibrium and for clarity we shall uniquely consider the particle-distribution dependence
of the entropy, i.e. S[N(x, t)]. Furthermore we will apply the formalism developed so
far to the cylindrical system in Fig. 2.1. We will be interested in the behavior of the
3D-distribution function’s N(x, t) nth-order moments

Nn[N ] := A

∫
D
xnN(x, t) dx

with D = {x ∈ R : −L/2 ≤ x ≤ L/2} and A the area of the cross section of the cylinder.
Under the hypothesis of local equilibrium we then define the entropy density the function
σ(N(x, t)) for which the system’s constrained entropy becomes

S[N ] = A

∫
D
σ(N(x, t)) dx .

A measure of the system’s fluctuation from equilibrium can thus be computed by taking
the first order variation of the entropy

δS[N ] = A

∫
D

∂σ(N(x, t))

∂N(x, t)
δN(x, t) dx = −A

∫
D

µ

T
(N(x, t)) δN(x, t) dx

where we have defined µ
T (N(x, t)) := − δS[N ]

δN(x) = −∂σ(N(x,t))
∂N(x,t) which is the translation of the

last of the relations in Eq. (2.1) in the language of continuum physics. For what concerns
the distribution function we must apply some conditions. In particular we require the
variation of the density profile δN(x, t) to satisfy δN0 = A

∫
D δN(x, t) dx = 0 which

encodes the fact that no particles are allowed to flow in or out of the cylinder. The
definition of entropy requires that for the equilibrium distribution δS[Neq] = 0, even
though in principle Neq could also be nonuniform. We highlight this concept since while
for the first example we will treat (the Brownian one) we will eventually find a uniform
equilibrium distribution, as we will see - e.g. in the case of the logistic-map driven dynamics
- this is not always the case. However since the equilibrium distribution maximizes the
entropy, it is possible to recover a conserved quantity. If we consider the reallocation of
an arbitrary particle from x1 ∈ D to x2 ∈ D we get

0 = δS[Neq] = −A
∫

D

µ

T
(Neq(x))

[δ(x− x1)− δ(x− x2)]

A
dx =

[
µ

T
(Neq(x))

∣∣∣∣x2
x1

5



2.2. ONSAGER THEORY CHAPTER 2. CONDUCTION

which means that µ
T (Neq(x)) is constant on D . To study the fluctuations of the system

from equilibrium we expand S around equilibrium

S[N ] = S[Neq] +
A

2

∫
D

∂2σ

∂N2

∣∣∣∣
Neq(x)

δN2(x, t) dx+O
(
δN2

)
and recognize in the term

δS[N ]

δN(x)
=

∂2σ

∂N2

∣∣∣∣
Neq(x)

δN(x, t)

the local generalized thermodynamic force. This force is linear in the fluctuation δN(x, t)
and its intensity depends on the second derivative of the entropy density with respect to
the particles’ distribution function. It can physically be seen as the force that takes care
of the unconstrained system’s fluctuations and drives it back to equilibrium. Einstein’s
formula [6] shows that the probability of a fluctuation from equilibrium is proportional to
the exponential of the constrained entropy, and therefore through a Gaussian integration
it is possible to recover a relation for the fluctuation’s expected value

E [δN2(x)] =

∫
Γ

δN2(x)

N
exp

[
A

2kB

∫
D

∂2σ

∂N2

∣∣∣∣
Neq(x)

δN2(x) dx

]
D(δN(x)) =

= − kB
AL

[
∂2σ

∂N2

∣∣∣∣
Neq(x)

]−1

where N is the normalization and Γ the set of all possible curves δN(x) such that
δN(±L) = 0. Einstein’s formula is valid for any observable, once the distribution function
is known. Therefore we recover an explicit relation between the thermodynamic response
and the average squared fluctuation

∂2σ

∂N2

∣∣∣∣
Neq(x)

= − kB
AL

1

E [δN2(x)]
.

2.2.2 Linearly varying intensive parameter

As we have shown, for the equilibrium distribution Neq(x) we expect µ
T (x) to be a constant

function of x hence for continuity - for small fluctuations from equilibrium - we assume
µ
T (x, t) to be spatially smooth. We will now consider linear variations of µ

T (x, t), that
will provide a clearer physical interpretation of our previous derivations. First of all since
as proven in Appendix A any distribution N(x, t) is fully described by its nth moments
Nn[N ], the entropy functional S[N ] can be seen as an ordinary function of the particles’
distribution moments [7]. Therefore it is possible to write

S[N ] = S(Nn[N ]). (2.2)

From now on we will simply consider S(N0, N1) which corresponds to a second order
expansion of S(Nn[N ]) (see again Appendix A), so taking the functional derivative in
Eq. (2.2) we get

−µ
T

(x, t) =
δS[N ]

δN(x)
=
∂S(N0, N1)

∂N0

δN0

δN(x)
+
∂S(N0, N1)

∂N1

δN1

δN(x)
+O

(
x2
)

=

= −µ
T

+
∂S(N0, N1)

∂N1
x+O

(
x2
)
,

6
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where we have defined the global intensive parameter µ
T

:= −∂S(N0,N1)
∂N0

. Let us consider
the Taylor expansion around x = 0 of − µ

T (x, t)

−µ
T

(x, t) = −µ
T

(0, t)−∇x
µ

T
(0, t) x+O

(
x2
)
,

by comparison with the former expression we find

∂S(N0, N1)

∂N1
= −∇x

µ

T
(0, t).

We have written the x derivative as a gradient to stress that this derivation can be easily
generalized to the 3 dimensional case. From the last expression it is clear that the intensity
of the thermodynamic force that restores equilibrium is related to the gradient of the
intensive parameter µ

T . Since we have imposed impermeable boundaries, N0 is the number
of particles which compose the system which is constant once the initial distribution in
specified. With this in mind we will omit the entropy’s dependence on N0 since it is an
irrelevant thermodynamic parameter and write

S(N1) = S(N1,eq) +
1

2

∂2S

∂N2
1

∣∣∣∣
N1,eq

δN2
1 (x, t) +O

(
δN2

1

)
,

obtaining the expansion for the thermodynamic force around x = 0

∂2S

∂N2
1

∣∣∣∣
N1,eq

δN1(t) = −∇x
µ

T
(0, t) = − kB

E [δN2
1 ]
δN1(t).

Let us try to interpret the δN1(t) term. We want to show its relation to the particle’s
number flux JN (x, t). Let us suppose for simplicity to be in a quasi-stationary state within
the cylinder i.e. that the thermodynamic parameters are almost time independent. Such
states can only occur if the number flux is uniform. In this way the number of particles
entering arbitrarily small volumes in a given time interval is the same of those flowing out.
Under such assumptions

JN (x, t) := JN (t)

[
Θ

(
x+

L

2

)
−Θ

(
x− L

2

)]
where Θ(x) denotes the Heaviside function and taking the x gradient we find

∇x JN (x, t) = JN (t)

[
δ

(
x+

L

2

)
− δ
(
x− L

2

)]
.

If we write the continuity equation at a point x for δN(x, t), and since δN(x, t) = N(x, t)−
Neq(x) and N(x, t) have the same time dependence, we get

∂t δN(x, t) = ∂tN(x, t) = −∇x JN (x, t).

Finally, we want to show that the variation of the first moment δN1(t) is the fundamental
parameter in order to study regression to equilibrium. Therefore we notice that

∂tδN1(t) = A ∂t

∫
D
x δN(x, t) dx = A

∫
D
x ∂tN(x, t) dx =

= −A
∫

D
x JN (t)

[
δ

(
x+

L

2

)
− δ
(
x− L

2

)]
dx = AL JN (t),

which means that the first variation of N1, the most relevant term of the thermodynamic
force that takes care of fluctuations from equilibrium, is proportional with the volume to
the number flux JN .

7



2.2. ONSAGER THEORY CHAPTER 2. CONDUCTION

2.2.3 Onsager’s equilibrium regression

According to Onsager [2,3], the behavior of δN1 and therefore of the thermodynamic force
governing fluctuations from equilibrium shall not depend on whether the fluctuation is
spontaneous or generated by an external field or reservoir. The main assumption we will
make in the following derivations is that this argument holds regardless of the underlying
dynamics of the system. It is a crucial one, since Onsager’s theory is derived under
the hypothesis of microscopic reversibility. This condition will definitely hold for our
first application of conduction theory - Brownian motion - but will eventually become
questionable as soon as we will move to chaotic systems due to the nonlinearity of the
dynamics.

Let us now consider a small fluctuation from equilibrium at time t0, as we know it can be
monitored by δN1(t0). It has been shown [8] that the most likely behavior for δN1(t0 +τ),
which we will denote with δN1(t0 + τ), is linear in the thermodynamic force and in time if
we consider a small |τ | expansion (for |τ | larger than the molecular time scales but smaller
than the macroscopic ones)

δN1(t0 + τ)
|τ |�1
' δN1(t0)− |τ | Λ

2
∇x

µ

T
(0, t0). (2.3)

Λ is a positive coefficient which we will show to encode the transport properties of the
system. Therefore,

JN (t0 + τ) =
1

AL
∂t δN1(t0 + τ) '

' 1

AL

δN1(t0 + τ)− δN1(t0)

|τ |
= − λ

2AL
∇x

µ

T
(0, t0).

If we assume that the the intensive parameter can be viewed, as we did in the equilibrium
case, as the chemical potential µ divided by the temperature T and that the latter is
uniform along the system, then the previous relation can be written in a more convenient
fashion

JN = −D ∇xN, (2.4)

where have defined the diffusion coefficient

D :=
Λ

2AL

1

T

∂µ

∂N
.

Relation (2.4) is commonly known as the Fick’s First Law [9].

It is also possible to show [10–12] that the Λ coefficient depends on the fluctuation’s
autocorrelation by the Green-Kubo relation

Λ = − 2

kB |τ |
(E [δN1(t0 + τ) δN1(t0)]− E [δN2

1 (t0)])

in which E [δN2
1 (t0)] = E [δN2

1 ] is an average over the equilibrium distribution. Instead of
using Λ, we can define

λ :=
kB Λ

E [δN2
1 ]

and rewrite Eq.(2.3) into

δN1(t0 + τ)
|τ |�1
' δN1(t0)− λ|τ |

2
δN1(t0).

8
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Moreover, under the hypothesis of Gaussian and Markovian dynamical evolution, the
Doob’s theorem [13, 14] ensures that the fluctuation at larger τ follows an exponential
decay

δN1(t0 + τ) = δN1(t0) e−
λ|τ |
2 . (2.5)

In summary, we have shown that fluctuations from equilibrium of a macroscopic observable
are governed by E [N2

1 ], which determines the strength of the force that drives the system
back to equilibrium. Sensible information on the conductive properties of the system
encoded into λ can be gained by monitoring the time evolution of δN1(t).

2.3 Brownian Motion

We are now going to show how to apply the developed theory in the simple case of Brownian
Motion. This will be useful to understand the actual relations between the mathematical
objects we have defined in the previous chapter and their physical meaning before moving
to the chaotic case.

2.3.1 Brownian Dynamics

In 1827 a botanist called Robert Brown was observing the dynamics of the pollen of
Clarkia Pulchella in water. He noticed that the pollen’s motion, which has then been
called Brownian, appeared to be random. It was only in 1905 that Albert Einstein, in
one of his first scientific contributions, arrived to a statistical-mechanics explanation of
such motion as a result of collisions of the pollen with the much smaller particles of water.
Even if these kind of dynamics is Hamiltonian, and therefore the analytic solution for the
motion of each particle exists within Classical Mechanics, the complexity of the problem
makes the classical approach impracticable.

The statistical-mechanics approach works under the assumption that the motion of the
Brownian particles is compensated by the one of the smaller particles with which they
interact in order to preserve energy and momentum of the system and to be in condition of
null convection. The Brownian particle’s motion is then affected by a stochastic term which
describes the impacts of fluid particles. If we consider the position x(t) of a Brownian
particle of mass m in an external bath the equation of motion will read

mẍ(t) = − ẋ
µ

(t)−∇V (x, t) + f r(t). (2.6)

The first term on the right hand side is a friction term due to viscosity, the second is the
action of an external potential for example gravity and f r(t) is the random force. We
assume the stochastic term to have mean zero. If we now consider the external potential
to be zero, and we focus on the study of the overdamped limit, i.e. the viscosity term is
assumed to be much bigger than the inertial one, Equation (2.6) becomes

ẋ(x, t) = v(x) + η(t),

where v(x) := −µ∇V (x, t) is called deterministic velocity and η(t) := µf r(t) is called
stochastic velocity and has zero mean. This equation is referred to as the Langevin Equa-
tion [15]. It is possible to use the Central Limit Theorem to support the assumption that
η(t) is proportional to a Gaussian distribution with zero mean and standard deviation√

2D, where D ∈ R is a parameter related to diffusion.

9
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2.4 Conduction and Brownian Motion

The distribution function of the N0 particles within the cylindrical system is

N(x, t) :=
1

A

N0∑
i=1

δ(x− xi(t)),

in which x ∈ R is an Eulerian coordinate while xi(t) ∈ R defines the Lagrangian coordinate.
In this approach there are actually two sources of randomness involved. The first regards
the initial particles’ distribution N(x, t0), the second is due to the random term in the
dynamical evolution equation. It can be shown [15] that the most likely evolution of the
distribution function N(x, t) is ruled by the Fokker-Planck Equation

∂t N(x, t) = D ∇2
xN(x, t). (2.7)

The solution in the case of reflecting boundary conditions for x = ±L
2 can be found by

applying the appropriate Green function to the initial distribution N(x0, t0)

N(x, t) =
1

L

∫
D

[
1 + 2

∞∑
n=1

e−
n2π2D
L2 (t−t0) cos

(
nπ

2x+ L

2L

)
cos

(
nπ

2x0 + L

2L

)]
N(x0, t0) dx0 .

The equilibrium distribution Neq = lim
x→∞

N(x, t) is found to be uniform Neq = N0
AL , inde-

pendently of N(xo, t0), as the symmetry of the problem suggests. We are now interested
in the first order variation δN1(t) which can easily be calculated

δN1(t) = A

∫
D
x
[
N(x, t)−Neq(t)

]
dx =

= −4

∞∑
n=1
nodd

AL

n2π2
e−

n2π2D
L2 (t−t0)

∫
D

cos

(
nπ

2x0 + L

2L

)
N(x0, t0) dx0 .

If we choose N(x0, t0) sufficiently close to Neq and consider the t � 1 limit, δN1(t) is
dominated by the n = 1 term

δN1(t)
t�1' δN1(t0) e−

π2D
L2 t

and therefore it is possible to recover the relation written in Eq. (2.5) with

λ :=
2π2

L2
D.

We stress this exponential-decay dependence because it shows how the macroscopic prop-
erties of conduction are encoded by the local microscopic transport properties and the
global geometry of the system.

10



Chapter 3

Chaotic Dynamics

At the end of the nineteenth century, French mathematician Henri Poincaré was probably
the first scientist to address the problem of chaotic dynamics. He was studying the three-
body problem in celestial dynamics. What he had discovered is that given a set of initial
points in the phase space of certain planets or stars, the resulting orbits - which are now
called chaotic - are nonperiodic even though they are limited and they do not approach
any fixed point. We are briefly going to explain what Chaos Theory is, in particular by
focusing on nonlinear maps of the logistic class.

3.1 Dynamical Systems

First of all we introduce the definition of a dynamical system. From a mathematical point
of view it is possible to define a dynamical system as follows.

Definition 3.1.1. (Dynamical System) A dynamical system is the set 〈M, f, T 〉, withM
a manifold, T the domain for time - e.g. non-negative reals, the integers, ... - and f an
evolution rule t 7→ f(t) (with t ∈ T such that f(t) is a diffeomorphism of the manifold to
itself. So, f(t) is a diffeomorphism, for every time t in the domain T .

Therefore, a dynamical system is a deterministic prescription for the time evolution of the
state of a system [16]. The most common example of a dynamical system widely treated
in Physics is given by

ẋ(t) = −F [x(t)],

in which x(t) and F [x(t)] are N-dimensional vectors. Known the initial state of the system
x(t) it is possible to solve the equation for its evolution at any t. The space in which the
N coordinates are defined is called phase space. Paths in the phase space followed by a
system that evolves in time are called orbits or trajectories. The last key mathematical
definition we would like to introduce is the one of attractor. An attractor is a bounded
subset of the phase space to which regions of initial condition of nonzero phase-space
measure asymptote as time increases. As a consequence of Poincaré recurrence theorem,
conservative dynamical systems do not have attractors.

11
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3.1.1 Nonlinear Mappings

The simplest setting in which it is possible to develop a theory of chaos is the one-
dimensional. Of course in higher dimensions, complex patterns emerge almost naturally,
but in principle the one dimensional case provides an easier and simple enough framework
to approach chaos. We will consider only discrete, integer-valued time maps which can be
written in the form

xn+1 = f(xn),

in which xn+1 is usually called the (time) iterate of xn. A map f is said to be invertible
if given xn+1, there exists one and only one xn such that xn = f−1(xn+1). f−1 is then
called the inverse of the map f . If the map is invertible then there can be no chaos unless
the dimension of the phase space d ≥ 2 [16]. For such reason to find chaotic patterns
in d = 1 we have to look for non invertible maps. One of the simplest one-dimensional
non-invertible maps is the tent map discussed in Appendix B. This map is important since
it is linear, but nonetheless extremely sensitive to initial conditions [16]. A main point we
want to clarify is that chaotic behavior can arise even in completely deterministic systems
- i.e. systems in which a univocal evolution law has been specified. The chaotic behavior
of the system is then related to the non predictability of the dynamics, which corresponds
to the fact that two arbitrarily close initial points, even at small t, can be mapped into
very distant iterates.

In the language of dynamical systems a measure of the exponential separation of two
adjacent points is called Lyapunov exponent and is usually indicated with λ. Thus, if two
initial points x0 and x0 + δ are separated by a distance δ and after iterating N times the
map they reach a distance l := ||fN (x0 + δ) − fN (x0)||, the Lyapunov exponent can be
defined as

l = δeNλ.

Nonlinear mappings, like the logistic one which we are about to discuss, are indeed maps in
which f is nonlinear. Nonlinear maps can definitely produce positive Lyapunov exponents.

12
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3.2 Chaotic Dynamics

3.2.1 Physical Applications

The physical applications of chaos theories are potentially countless. On the one side this
is because chaotic patterns can arise from the most simple dynamical system - e.g. the
harmonic oscillator in Classical Mechanics. This is due to the separation in phase space
of two arbitrary close initial values [17, 18]. On the other side it is possible to provide
examples of intrinsically chaotic dynamics that are not even deterministic [16] in the
Classical-Mechanic sense. In general examples of chaotic behavior can be largely found all
over in Nature. The rise of computers has made it possible to find numerical solutions for
many dynamical systems, and has shown the importance of a deep understanding of the
behavior of chaos in the complex-system framework.

3.2.2 Logistic Map

The logistic map was introduced in 1976 by the biologist Robert May as a discretization
of Verhulst’s logistic equation. It was used to represent a rough ecological model for the
yearly variations in the population of an insect species [16]. Let us suppose that these
insects hatch out of eggs every spring. They eat, grow, mate, lay eggs and then die. If we
assume the same condition every year, i.e. the same weather, predator population, etc.,
the population at year n+1 is only determined by the one at year n. Moreover, imagining
that each insect every year lays on average r > 1 eggs, the following year the population
will grow from zn to zn+1 = rzn, i.e. it will experience an exponential growth. However,
if the population grows too much the food supplies might become scarce. If we suppose
that the number of eggs laid for each insect decreases linearly with the population, for
example of a factor r(1 − zn

z ) where z represents the theoretical carrying capacity of the
environment minus the current population and letting yn := zn

z we get

yn+1 = ryn(1− yn). (3.1)

If we require y ∈ [0, 1] we obtain r ∈ [0, 4]. Eq. (3.1) is the logistic map evolution equation.
Its relative simplicity makes it a widely used point of entry into chaos theory. In view of
the applications that follow we will consider a different representation of the map

xt+1 = 1− µx2
t , (3.2)

where xt ∈ [−1, 1] and µ ∈ [0, 2] is the control parameter of the map. The two represen-
tations in Eq. (3.1) and Eq. (3.2 can be topologically conjugated for r ∈ (2, 4]. We show
how it is possible to pass from one representation to the other in Appendix F.

The logistic map iterates behavior is extremely sensitive to variations in the control pa-
rameter r or µ. Exponential divergence of sequences of iterates for certain values of the
control parameters show the connection between chaos and unpredictability and are en-
coded by positive Lyapunov exponents. Hence, predictions about future states become
progressively - indeed, exponentially - worse when there are even very small errors in the
knowledge of the initial state.

13
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Figure 3.1: Logistic Map bifurcation diagram as a function of the control parameter r.

In Fig. (3.1) we show the logistic map bifurcation diagram in the r representation of the
map. The bifurcation diagram displays the set of values of x visited asymptotically from
almost all initial conditions by the iterates of the logistic equation at a fixed r value. We see
that while for example for certain values of r, i.e. between 0 and 3, the iterates converge to
a certain attractor (1-cycle), for other values the dynamics is completely different. Beyond
r ' 3.56995 - that is called the onset of chaos - at the end of the period-doubling cascade,
we fall into the chaotic end of the map. From almost every initial condition, we no longer
see oscillations of finite period.

The Ulam map At the very end of the chaotic region of the map for r = 4 we are
in what is called the fully chaotic case. In the µ representation the iteration equation
becomes

xn+1 = 1− 2x2
n

and is also referred to as the Ulam Map. This map has several simplifying properties
which are not generally valid for the complete logistic map. One of them is that it can
be topologically conjugated to the linear tent map as we have shown in Appendix B. A
fundamental property is the existence of one of the two closed-form solutions of the logistic
map [19,20], i.e. a function for the iterate xt at any time t, given the initial value x0

xt = 2 sin2

[
2t arcsin

√
1

2
(x0 + 1)− 1

]
. (3.3)

The other known exact solution [19] is for r = 2 and therefore is a 1-cycle solution.
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3.3 Conduction in chaotic systems

Now that the explicit solution for the Ulam map has been presented, we are going to
focus on the main subject of the thesis, i.e. the study conduction in chaotic systems.
Our derivations will still adapt to the cylindrical system in Fig. (2.1) but without loss of
generality we choose to fix |L| = 2. We will use the µ representation of the map, which is
defined for x ∈ [−1, 1] and therefore can be more easily adapted to the system. Mimicking
what we did for Brownian motion, we would like to find an equivalent to the Fokker-Planck
equation for N chaotically moving particles, for which the dynamics is governed by the
logistic map iteration equation

xi(t) = 1− µx2
i (t− 1),

where xi(t) ∈ [−1, 1] are the Lagrangian coordinates and t ∈ N0 represents the (discrete)
time and µ ∈ [0, 2] the control parameter of the map. For simplicity we will drop the
i subscript and assume the following relations to hold for each particle that composes
the system. To shorten the notation we additionally define the Lagrangian coordinate as
xt := xi(t). If we introduce Eulerian coordinates it is possible to write the probability of
finding a particle at a certain point x and time t

p(x, t) =

∫
D
p(xt|yt−1) p(yt−1) dy ,

and since we know that the evolution of the Lagrangian coordinate is given by the logistic
map we get that the transition probability is a Dirac δ-function

p(xt|yt−1) = δ(xt − (1− µy2
t−1)).

With all this in mind it is possible to write

p(x, t) =

∫
D
δ[xt − 1 + µy2

t−1] p(yt−1) dy =

=

∫ 0

−1
δ[xt − 1 + µy2

t−1] p(yt−1) dy +

∫ 1

0
δ[xt − 1 + µy2

t−1] p(yt−1) dy .

If we consider the change of variables

u := 1− µy2 =⇒ y = ±
√

1− u
µ

and dy = ± du

2
√
µ(1− u)

,

where the plus sign applies for y ∈ [−1, 1− µ] and the minus for y ∈ [1− µ, 1] we get

p(x, t) =

∫ 1

1−µ
δ(x− u)

p
(
−
√

1−u
µ

)
2
√
µ(1− u)

∣∣∣∣∣∣
t−1

du−
∫ 1−µ

1
δ(x− u)

p
(

+
√

1−u
µ

)
2
√
µ(1− u)

∣∣∣∣∣∣
t−1

du =

=


0 if x ∈ [−1, 1− µ];

[
p
(
−
√

1−x
µ

)
+ p

(
+
√

1−x
µ

)
2
√
µ(1−x)

]∣∣∣∣∣
t−1

if x ∈ [1− µ, 1].

(3.4)
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Let us check that it behaves as a probability distribution function, i.e. that it is correctly
normalized to 1.

∫ 1

−1
p(x, t) dx =

∫ 1

1−µ

p
(
−
√

1−x
µ

)
+ p

(
+
√

1−x
µ

)
2
√
µ(1− x)

∣∣∣∣∣∣
t−1

dx =

=

∫ 1

0

[
2µu

2
√
µ(µu2)

p(u)

]∣∣∣∣∣
t−1

du+

∫ 0

−1

[
2µu

2
√
µ(µu2)

p(u)

]∣∣∣∣∣
t−1

du =

=

∫ 1

0

[
p(u)

]∣∣∣∣
t−1

du+

∫ 0

−1

[
p(u)

]∣∣∣∣
t−1

du =

= 1

which shows the correct normalization, provided of course that p(x, 0) is normalized to 1.
So Eq. (3.4) represents the probability distribution function of finding a certain particle in
x at time t. An interesting property of the map is the equilibrium probability distribution
function peq, that should satisfy

peq(x) =
peq

(√
1−x
µ

)
+ peq

(
−
√

1−x
µ

)
2
√
µ(1− x)

. (3.5)

In order to find the equilibrium distribution we shall introduce the transfer operator
method [21]. Given a probability density function p(x, t), it is possible to define the
Perron-Frobenius operator L as

p(x, t) = L [p(x, t− 1)].

In the logistic map case such operator acts as we have shown in Eq 3.4. This operator
therefore encodes the time evolution of the dynamical system. Actually, it can be seen
as the analogous of the the Liouville operator L̂[f ] := −i{f,H} in Classical Mechanics
where { · , · } denotes the Poisson bracket and H the Hamiltonian of the system. In this

analogy the role of L is assumed by LH := exp
[
−iL̂t

]
, where t is the time interval in which

the evolution has taken place. Looking for an invariant distribution means searching for
a fixed point of the Perron-Frobenius operator of the specific map. The fixed point is
indeed an entire function, the equilibrium probability density function peq(x). No analytic
expression has been found [21] for the invariant distribution of the logistic map for values
of µ different from 0 and 2.

3.3.1 The Fully Chaotic Case

Let us focus on the fully chaotic case. As we have stated previously, this case is obtained
for µ = 2. It can be shown (see Appendix B) that the equilibrium distribution in this case
is

peq(x) =
1

π
√

1− x2
. (3.6)

We now address the problem of finding the probability distribution p(x, t) at a point x
and time t for the fully chaotic case µ = 2. We will use the general approach viewed
above and adapt it to the case in which the analytic solution of the dynamics is known.
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First of all let’s recover the explicit solution Eq. (3.3). Accordingly to what we have done
previously, the probability distribution p(x, t) can be found passing to Eulerian coordinates
x ∈ [−1, 1]. Having a closed-form solution though means that it is possible to compute
p(x, t) directly from the initial distribution that we call p(y0)

p(x, t) =

∫
D
p(x, t|y, 0) p(y, 0) dy .

The transition probability p(x, t|y, 0) is still given by a Dirac δ-function

p(x, t|y, 0) = δ

[
x−

(
2 sin2

[
2t arcsin

√
1

2
(y + 1)

]
− 1

)]
.

Let’s now call u(y) := 2 sin2
[
2t arcsin

√
1
2(y + 1)

]
− 1. Inverting this change of variable is

a crucial but tricky calculation that has been explicitly worked out in Appendix C. After
performing this variable change we are left with

p(x, t) =

2t−1∑
k=0

∫
Ik

δ(x− u) p̃(u, 0) du , (3.7)

where p̃(u, 0) := p(y(u), 0). We also recall our definition of

Ik(t) := [− cos
(
2−tkπ

)
,− cos

(
2−t(k + 1)π

)
]

that are the intervals of monotonicity of the function u(y) i.e. those on which it is possible
to invert the function in order to compute p(x, t) from Eq. (3.7). A straightforward
calculation, reported in Appendix C yields to

p(x, t) =

2t−1∑
k=0

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2
p
(
− cos

[
2−t
(

arccos[(−1)k+1x] + kπ
)]
, 0
)
.

Now that the probability distribution function is known, it is possible to test Onsager’s
approach. All the calculations that follow are explained in detail in Appendix D. We
analyze relaxation to equilibrium for different initial particles’ distributions. For the sake
of clarity we have chosen to report only the crucial passages in order to deliver the main
picture.

Uniform distribution Considering a uniform initial distribution p(x, 0) = 1
2 , ∀x ∈ D ,

from Eq. (3.7) we see that

p(x, t) =
1

2

2t−1∑
k=0

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2
.

Therefore

δN1(t) := N1(t)−N1,eq = N1(t) =

=
A

π

2t−1∑
k=0

∫
D
x

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t+1
√

1− x2
dx =

=
A

π

2t−1∑
k=0

dk(t),
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having defined

dk(t) :=

∫
D
x

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t+1
√

1− x2
dx .

Analogously to what we have shown in Appendix D for the small linear perturbation, the
sum has then been evaluated with Mathematica giving the following output

δN1(t) =
A

π

cos2
[
2−t−1 π

]
4t − 1

+
1

2

2t−1∑
k=1

(−1)k
cos
[
2−tπ a1(k)

]
+ cos

[
21−tπ a2(k)

]
4t − 1

 =

=
A

π

1

4t − 1
.

Step distribution function The last interesting initial distribution we are going to
analyze is the one in which the particles are all uniformly distributed within the positive
x half of the cylinder, i.e.

p(x, 0) =

{
0, if x ∈ [−1, 0)

1, if x ∈ [0, 1]

Remembering that

p(x, t) =

2t−1∑
k=0

sin [zk(x, t)]

2t
√

1− x2
p(zk(x, t), 0)

and

zk(x, t) = − cos
[
2−t
(

arccos[(−1)k+1x] + kπ
)]

=⇒

{
zk(x, t) < 0, if 0 ≤ k ≤ 2t−1 − 1

zk(x, t) ≥ 0, if 2t−1 ≤ k ≤ 2t − 1,

in this case p(x, t) assumes the following form

p(x, t) =
2t−1∑
k=2t−1

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2
.

Finally calculating the fluctuation

δN1(t) := N1(t)−N1,eq = N1(t) =

=
A

π

2t−1∑
k=2t−1

∫
D
x

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2
dx =

=
A

π

2t−1∑
k=2t−1

(−1)k
cos
[
2−tπ a1(k)

]
+ cos

[
21−tπ a2(k)

]
4t − 1

=

=
A

π

1

4t − 1

where as in the previous cases (see Appendix C and D) we have used Mathematica to find
the proper coefficients of the sum.

Just as in the Brownian case, we see that the dominant time dependence of the fluctuation
δN1(t) tipically follows an exponential law.
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Conclusions

In this work we have shown how a fully chaotic system relaxes to equilibrium. As seen
at the end of the previous chapter, the fluctuation of the first moment of the particle-
distribution function tipically follows an exponential decay. In the Brownian case, when
the microscopic dynamics was ruled by the Fokker-Planck equation Eq. (2.7), we were able
to find a relation between the exponent −λt of the fluctuation from equilibrium δN1(t)
and both the dynamical and geometric properties of the system

λ =
2π2

L2
D.

In the chaotic case this translates to

δN1(t) ∼ 1

4t
= e−γt,

with γ := log(4) = log[µL].
The last explicit formulation for γ = log[µL], although being an heuristic one, exhibits a
possible link between the emerging thermodynamic properties of a conductive system and
the underlying microscopic dynamics. If this relation will be proven to hold for all values of
the control parameter µ ∈ [0, 2], Onsager theory could be generalized to non-Hamiltonian
systems characterized by a chaotic dynamics. Future work then might involve testing if
the same exponential relaxation to equilibrium pattern can be found when the control
parameter of the logistic map r is set to 2. Indeed, r = 2 is the only other value of the
control parameter for which a closed-form solution for the dynamics is known. As for the
µ = 2 case this would mean that it is possible to find an analytic expression for δN1(t).
The study of such quantity could bring additional evidence of the correct parametrization
of the exponential decay of the fluctuation suggested above as encoding the microscopic
dynamical information together with the geometric properties of the system. This would
definitely link the underlying microscopic properties of particles’ dynamics to the emerging
(macroscopic) conductive ones. Furthermore, of particular interest would be to analyze
relaxation processes at the onset of chaos, where the Lyapunov exponent vanishes.
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Chapter 5

Appendices

5.1 Appendix A

Moments’ characterization of a distribution function N(x,t) Let us consider a
distribution function N(x, t). This function can equivalently be written in its Fourier
representation in the k ∈ R Fourier space

N̂(k, t) =
1√
2π

∫
R
N(x, t) e−ikx dx .

It is now possible to perform a Taylor expansion around k = k0 (without losing generality
we can take k0 = 0)

N̂(k, t) =
1√
2π

∞∑
n=0

(−ik)n

n!

∫
R
xn N(x, t) e−ikx dx

∣∣∣∣
k=0

=

=
1√
2π

∞∑
n=0

(−ik)n

n!
Nn[N ]

that shows that the distribution N(x, t) is fully characterized in terms of its moments
multiplied by appropriate coefficients. Anti-transforming

N(x, t) =
1√
2π

∫
R
N̂(k, t) eikx dk =

1

2π

∞∑
n=0

Nn[N ]

n!

∫
R

(−ik)n eikx dk =

=
1

2π

∞∑
n=0

Nn[N ]

n!

∫
R

(−1)n
dn

dxn
eikx dk =

=
∞∑
n=0

(−1)n

n!
Nn[N ]

dn

dxn

(
1

2π

∫
R
eikx dk

)
=

=

∞∑
n=0

(−1)n

n!
Nn[N ] δ(n)(x)

we find the final expression for N(x, t) as a function of its moments, in which we have of
course denoted δ(n)(x) := dn

dxn δ(x).
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5.2 Appendix B

Invariant distribution for µ = 2 We find the invariant distribution for the mapping

f(x) = 1− 2x2

where x ∈ [−1, 1]. This is also known as the Ulam map.
First off, we notice that the change of variable u := 1

π arccos(−x) =: φ−1(x), u ∈ [0, 1]
transforms the map into a topologically conjugated map g(u) for which

− cos(πg(u)) = 1− 2 cos2(πu) = − cos(2πu).

Let us now introduce another map, the tent map. Since the topological conjugation of
an invariant density is still invariant, we want to show that the tent map has a simple
invariant density distribution and that it is possible to make a topological conjugation of
its invariant density to the one of the Ulam map. The tent map is defined as follows

f(x) =

{
2x, if x ∈ [0, 1

2 ]

2(1− x), if x ∈ (1
2 , 1]

where x ∈ [0, 1]. As Fig. (5.1) suggests, this map preserves the length of arbitrary intervals.
In other words, the preimages l′1, l

′
2 of an interval of length l satisfy

l = l′1 + l′2.

It is then clear that the uniform distribution function peq(x) = 1 is an invariant probability
density.

0 0.5 1

0.5

1

x

f
(x

)

l′1 l′2

l

Figure 5.1: The tent map and the length conservation l = l′1 + l′2.

Finally it is possible to find the invariant density for the Ulam map. The invariant density
should satisfy the conservation of probability relation

px,eq(x) = pu,eq(u) | det Jφ−1 |

22



CHAPTER 5. APPENDICES 5.2. APPENDIX B

where Jφ−1 is the Jacobian of u = φ−1(x) that clearly becomes the x derivative in one
dimension. Since for the tent map pu,eq(u) = 1, differentiating we get

px,eq(x) =

∣∣∣∣dφ−1

dx

∣∣∣∣ =
1

π
√

1− x2
.

Let’s focus on the properties of peq(x). First of all we notice that it is an even function,
secondly we check that it satisfies Eq. (3.5). Since peq(x) is even it suffices that it verifies

peq(x) =
peq

(√
1−x
µ

)
√
µ(1− x)

for µ = 2. Plugging in our definition of peq(x) we obtain

peq

(√
1−x

2

)
√

2(1− x)
=

1

π

1√
1− 1−x

2

1√
2 (1− x)

=
1

π

1√
1 + x

1√
1− x

=

=
1

π
√

1− x2
= peq(x).

(5.1)
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5.3 Appendix C

Change of variable We will now discuss in detail the change of variable performed in
Eq. (3.7). Specifically we would like to compute the integral

p(x, t) =

∫ 1

−1
δ

[
x−

(
2 sin2

[
2t arcsin

√
1

2
(y + 1)

]
− 1

)]
p(y, 0) dy

introducing

u(y) := 2 sin2

[
2t arcsin

√
1

2
(y + 1)

]
− 1 = − cos

[
2t arccos(−y)

]
,

with u, y ∈ [−1, 1]. In order to perform the substitution we need to compute
∣∣∣ dydu

∣∣∣ and

therefore we must find y(u) := u−1(y). First of all Let us consider the following inequalities

−1 ≤ y ≤ 1 =⇒ 0 ≤ arccos(−y) ≤ π =⇒ 0 ≤ 2t arccos(−y) ≤ 2tπ.

In order to invert the cosine we need to divide the interval [0, 2tπ] into 2t contiguous
intervals of span π

kπ ≤ 2t arccos(−y) ≤ (k + 1)π

with k = 0, 1, ..., 2t − 1, so that multiplying by −2−t within each interval

2−t(k + 1)π ≤ − arccos(−y) ≤ 2−tkπ.

Notice that z := − arccos(−y) ∈ [0, π] and therefore cos(z) is monotonically increasing in
its domain of definition. Solving for y we get

cos
(
2−t(k + 1)π

)
≤ −y ≤ cos

(
2−tkπ

)
=⇒ − cos

(
2−tkπ

)
≤ y ≤ − cos

(
2−t(k + 1)π

)
.

Hence we define Ik(t) :=
{
y ∈ R : y ∈ [− cos

(
2−tkπ

)
,− cos

(
2−t(k + 1)π

)
]
}

. Finally, within
each interval Ik(t) it is possible to invert

u(y) = − cos
[
2t arccos(−y)

]
.

Let v(y) := 2t arccos(−y). Omitting for clarity the y dependencies, the previous relation
becomes cos(v) = −u and v ∈ [kπ, (k + 1)π]. Inversion gives{

v = arccos(−u) + kπ, if k is even

v = arccos(u) + kπ, if k is odd

or more compactly

v = arccos
(

(−1)k+1u
)

+ kπ

and since v(y) := 2t arccos(−y) eventually we get

y = − cos
[
2−t
(

arccos
(

(−1)k+1u
)

+ kπ
)]
.

It is now possible to compute
∣∣∣dydu

∣∣∣, needed to perform the change of variable

∣∣∣∣dydu

∣∣∣∣ =

∣∣∣∣∣(−1)k
2−t sin

[
2−t
(
arccos

[
(−1)k+1u

]
+ kπ

)]
√

1− u2

∣∣∣∣∣
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and therefore

p(x, t) =

∫ 1

−1
δ

[
x−

(
2 sin2

[
2t arcsin

√
1

2
(y + 1)

]
− 1

)]
p(y, 0) dy =

=

∫ u(1)

u(−1)
δ(x− u) p̃(u, 0)

∣∣∣∣dydu

∣∣∣∣ du =

=
2t−1∑
k=0

∫
Ik(t)

δ(x− u) p̃(u, 0)

∣∣∣∣∣2−t sin
[
2−t
(
arccos

[
(−1)k+1u

]
+ kπ

)]
√

1− u2

∣∣∣∣∣du =

=
2t−1∑
k=0

∣∣∣∣∣sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2

∣∣∣∣∣ p̃(x, 0) =

=

2t−1∑
k=0

∣∣∣∣∣sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2

∣∣∣∣∣ p(− cos
[
2−t
(

arccos[(−1)k+1x] + kπ
)]
, 0
)
,

where we have indicated with p̃(u, 0) := p(y(u), 0). Moreover, the absolute value can be
removed noticing that the only possibly negative quantity is given by

sin
[
2−t
(

arccos
[
(−1)k+1x

]
+ kπ

)]
.

But since k = 0, ..., 2t−1, if we call z :=
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
the argument of

the sine
0 ≤ arccos

[
(−1)k+1x

]
≤ π =⇒ 0 ≤ 2t z ≤ (k + 1) π.

Therefore it becomes clear that

0 =

[
2−tk

]∣∣∣∣
k=0

≤ z ≤
[
2−t (k + 1) π

]∣∣∣∣
k=2t−1

= π

and sin(z) is non negative.

Hence we are left with

p(x, t) =
2t−1∑
k=0

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2
p
(
− cos

[
2−t
(

arccos[(−1)k+1x] + kπ
)]
, 0
)
.
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5.4 Appendix D

Explicit calculation of δN1(t) First of all we show how a linear perturbation at t = 0
of the equilibrium distribution

p(x, 0) =
1

π
√

1− x2
+ ε x

with 0 < ε� 1, evolves in time.

For t > 0 we get

p(x, t) =
2t−1∑
k=0

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2
p
(
− cos

[
2−t
(

arccos[(−1)k+1x] + kπ
)]
, 0
)

=

=

2t−1∑
k=0

sin
[
2−t
(
arccos

[
(−1)k+1x

]
+ kπ

)]
2t
√

1− x2

(
1

π
√

1− cos2(zk(x, t))
− ε cos(zk(x, t))

)
=

=

2t−1∑
k=0

1− ε sin(zk(x, t)) cos(zk(x, t))

2t π
√

1− x2
=

1

π
√

1− x2
− ε

2t−1∑
k=0

sin(zk(x, t)) cos(zk(x, t))

2t π
√

1− x2

where we have called zk(x, t) := 2−t
(
arccos[(−1)k+1x] + kπ

)
.

From this relation it is possible to find the variation of the number of the particles

δN1(t) := N1(t)−N1,eq =

= Aε
2t−1∑
k=0

∫
D
x

sin [zk(x, t)] cos [zk(x, t)]

2t π
√

1− x2
dx =

=
Aε

π

2t−1∑
k=0

ck(t),

having defined

ck(t) :=

∫
D
x

sin [zk(x, t)] cos [zk(x, t)]

2t
√

1− x2
dx =

=

∫ 1

−1
x

sin
[
2−t
(
arccos[(−1)k+1x] + kπ

)]
cos
[
2−t
(
arccos[(−1)k+1x] + kπ

)]
2t
√

1− x2
dx .

The computation of ck(t) performed on Mathematica leads us to the following result

ck(t) =


2

cos2
[
2−t π

]
4t − 4

, if k = 0

(−1)k
cos
[
21−tπ a1(k)

]
+ cos

[
22−tπ a2(k)

]
4t − 4

, if k > 0

with

a1(k) := 2

⌊
k

2

⌋
+ 1 and a2(k) :=

⌊
k + 1

2

⌋
+ 1,

where b · c denotes the floor function. Hence, we finally find

δN1(t) =
Aε

π

1

4t − 4

2 cos2
[
2−t π

]
+

2t−1∑
k=1

(−1)k
(
cos
[
21−tπ a1(k)

]
+ cos

[
22−tπ a2(k)

]).
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5.5 Appendix E

Odd perturbations of the equilibrium distribution function We show that any
odd perturbation of the equilibrium distribution function reduces to the invariant distri-
bution after one time step. Consider at time t = 0 any odd perturbation of the invariant
density

p(x, 0) =
1

π
√

1− x2
+ x2n+1 = peq(x) + x2n+1

with n ∈ N.

Adapting the iteration rule Eq. (3.4),

p(x, t = 1) =



0 if x ∈ [−1, 1− µ];

p
(
−
√

1−x
µ

)
+ p

(
+
√

1−x
µ

)
2
√
µ(1− x)

∣∣∣∣∣∣
t=0

if x ∈ [1− µ, 1]

and using Eq. (5.1)

=



0 if x ∈ [−1, 1− µ];

peq(x) +


(
−
√

1−x
µ

)2n+1
+
(

+
√

1−x
µ

)2n+1

2
√
µ(1− x)


∣∣∣∣∣∣∣
t=0

if x ∈ [1− µ, 1]

=


0 if x ∈ [−1, 1− µ];

peq(x) if x ∈ [−1, 1− µ].
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5.6 Appendix F

Different representations of the logistic map We show how to topologically con-
jugate the two different representations of the logistic map in Eq. (3.1) and Eq. (3.2),
explicitly

yn+1 = ryn(1− yn) = g(yn) 7−→ xn+1 = 1− µx2
n = f(xn), (5.2)

where y ∈ [0, 1], r ∈ [0, 4] and x ∈ [−1, 1], µ ∈ [0, 2]. We are looking for a change of
variable x := ψ(y) such that

xn+1 = f(xn) = ψ(yn+1) = ψ(g(yn)) =⇒ f(xn) = ψ(g(yn)).Le

If we put in Eq. (5.2) the ansatz of a linear transformation, thus

ψ(y) = Ay +B

we get

xn+1 = ψ(yn+1) = ψ[ryn(1− yn)]
!

= 1− µx2
n = 1− µ[ψ(yn)]2

and therefore

ψ[ryn(1− yn)] = 1− µ[ψ(yn)]2 =⇒ A[ryn(1− yn)] +B = 1− µ[Ayn +B)]2.

Rearranging the terms, supposing A 6= 0 and comparing equal powers of yn we get


µA− r = 0

Ar + 2ABµ = 0

B2µ+B − 1 = 0

=⇒


A =

1

µ

[√
1 + 4µ+ 1

]
B = − 1

2µ

[√
1 + 4µ+ 1

]
r =

√
1 + 4µ+ 1

and therefore

ψ(y) =

(
y − 1

2

)
1

µ

[√
1 + 4µ+ 1

]
.

We stress that such conjugation is valid only in the case r ∈ (2, 4].
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