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Introduction

Genetic Algorithms (GAs) are adaptive heuristic search algorithms premised on the

evolutionary ideas of natural selection and genetic. The basic concept of GAs is de-

signed to simulate processes in natural systems necessary for evolution, specifically

those that follow the principles first laid down by Charles Darwin of survival of the

fittest. As such, they represent an intelligent exploitation of a random search within a

defined search space to solve a problem.

Genetic algorithms have been applied in a vast number of ways: in fact, nearly

everyone can gain benefits from them, provided that:

• he/she can encode solutions of a given problem to chromosomes;

• he/she can compare the relative performance (fitness) of solutions.

An effective GA representation and meaningful fitness evaluation are the keys of the

success in GA applications.

The appeal of GAs comes from their simplicity and elegance as robust search al-

gorithms as well as from their power to discover good solutions rapidly for difficult

high-dimensional problems. GAs are useful and efficient when:

• the search space is large, complex or poorly understood;

• domain knowledge is scarce or expert knowledge is difficult to encode to narrow

the search space;

• no mathematical analysis is available;
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• traditional search methods fail.

GAs have been used for problem-solving and for modelling. GAs are applied to

many scientific, engineering problems, in business and entertainment, including opti-

mization, automatic programming, machine and robot learning, economic models and

ecological models.

The purpose of this thesis is to apply genetic algorithms in statistics and to study

their performances in that field. Since statistics is a large area, we narrowed our focus

on two of the most significant problems; in particular, we will consider the two prob-

lems of variable selection and of likelihood maximization.

In the first chapter genetic algorithms are introduced and their working is explored, in

order to better comprehend the tools that we will be using.

In the second chapter we will see a first, simple, application of genetic algorithms:

the maximization of a univariate function. During this task, we will observe in greater

detail the single elements which compose a GA. While analyzing the results, we will

explore some variations of the algorithm’s parameters, and this should help under-

standing the role of each one.

In the third chapter we will start with “real” problems, and in particular with the

variable selection one. We will consider a dataset with many explicative variables, too

many to be all included in the regression model and most of them probably not signif-

icant enough. The task of the GA will be to choose a subset of (hopefully) meaningful

variables from the original set.

In the fourth chapter we will tackle the likelihood maximization problem. We will

consider a particular distribution, the skew-normal, and try to maximize its likeli-

hood with a problematic dataset.
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At the end we will try to draw some conclusions about the use of genetic algorithms

in statistics.
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Chapter 1 - Genetic algorithms:

structure and functioning

1.1 - Genetic algorithms

1.1.1 Definition

A genetic algorithm (often called GA) can be defined as an heuristic and adaptive

search technique, whose goal is to find true or approximate solutions to optimization

and search problems. Genetic algorithms belong to a broader family of evolutionary

algorithms and they lay their foundation on evolutionary biology and genetics.

1.1.2 History

Computer simulations of evolution began to spread in the 1950s. In the 1960s, Rechen-

berg (1965, 1973) introduced the so-called evolutionary strategy, and the topic was ex-

panded further on by Schwefel (1975, 1977). Fogel, Owen and Walsh (1966) developed

evolutionary programming, a technique whose candidate solutions were finite state ma-

chines. During those years, many other scientists worked with automatic learning and

algorithms inspired by evolution: amongst them, we can find Box (1957), Friedman

(1959), Bledsoe (1961), Bremermann (1962), and Reed, Toombs and Barricelli (1967).

However, the father of genetic algorithms (GAs) is surely John Holland, who in-

vented them in the 1960s and developed them with a group of students and colleagues
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in the 1960s and 1970s. Holland presented his creation in his book Adaptation in Natu-

ral and Artificial Systems (1975). Still, GAs’ research was mainly theoretical until the

mid-1980s, when the First International Conference on Genetic Algorithms was held

(1985). Moreover, Holland’s student David Goldberg did a great part in spreading

these new methods, thanks to his studies which climaxed in the publication of Genetic

Algorithms in Search, Optimization and Machine Learning (1989).

In the course of time, along with the involvement in these issues grew also the machines’

power, making possible a constantly wider practical application of those methods.

Nowadays the GAs’ diffusion is so large that a majority of Fortune 500 companies use

them to solve a wide range of problems, like scheduling, data fitting, trend spotting

and budgeting problems (from Wikipedia).

1.1.3 Holland’s GA

Holland’s original goal, citing M. Mitchell, “was not to design algorithms to solve spe-

cific problems, but rather to formally study the phenomenon of adaptation as it occurs

in nature and to develop ways in which the mechanisms of natural adaptation might be

imported into computer systems”.

Holland’s GA, as presented in his book (1975), is a method to pass from an initial

population of chromosomes to a new one, more fit to the environment, using a natural

selection mechanism and the genetic operators of crossover, mutation and inversion.

Each chromosome is made of a certain number of genes (i.e. bits); each gene is in

turn the instance of an allele (i.e. 0 or 1). So, a 7-bits chromosome could present itself

like this: 1011010.

The selection operator decides which chromosomes can reproduce, so that the best

chromosomes (the fitter to the environment) produce a number of offspring larger than

the worst chromosomes (the less fit).

The crossover operator swaps subsets of two chromosomes, with a procedure similar

to that of biological recombination between two haploid (single-chromosome) organ-
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isms.

The mutation operator randomly alters allele’s value in some locations of the chro-

mosomes.

The inversion operator inverts the order of a contiguous section of the chromosome.

1.1.4 GAs’ applications

GAs can be successfully used in a huge range of fields, mainly computer science, en-

gineering, economics, chemistry, phyisics and, last but not least, mathematics and

statistics.

Two distinct purposes which can be aimed for through GAs are the following:

• optimizing or improving the performance of operating systems, such as a gas

distribution pipeline system, traffic lights, travelling salesmen, allocation of funds

to projects, scheduling, etc.... The choice of particular values for the system’s

parameters will lead the system to a certain performance, which can be measured

through some relevant objective or fitness function. Since in realistic problems

the interaction amongst the parameters aren’t analitically encodable in a simple

way, GAs are widely used in this field.

• testing and fitting quantitative models, that is searching for the parameters’ values

which minimize the discrepancy between a model and the data on which the

model is built. In this case, the objective function is more an error function than

a fitness function, and it will be a function of the difference between the observed

data values and the data values that would be predicted from the model (fitted

values).

The distinction between these two areas of potential use for GAs could seem a distinc-

tion between maximization (of a system’s fitness) and minimization (of the discrepancy

between data and a model). We have to remember, though, that maximization and

minimization are always interchangeable.
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1.2 - The basic elements of GAs

Despite the great confusion about the exact meaning of “genetic algorithm”, most of

the methods called with that name have in common at least the following elements:

• a population composed by chromosomes;

• selection based on the fitness;

• crossover for the procreation;

• random mutation in the offspring.

Inversion (see paragraph 1.0.3) is rarely used in current implementations.

1.2.1 Chromosomes’ population

Generally the chromosomes of a GA’s population are bit sequences (but they could be

also characters sequences, integers sequences, etc...). Each chromosome’s site (bit) can

assume the values (alleles) 0 or 1.

Each chromosome represents a point in the search space of the candidate solutions.

In fact a generic chromosome encodes a possible solution to the problem taken into

account; therefore it exists a correspondence between the search space of the solutions

and the chromosomes’ space. To make a very simple example about this, we can

consider the following problem: finding the greatest k-bits number. The relationship

between chromosomes and solutions is easy: a k-bits string (chromosome) corresponds

to the number represented in binary by that string (solution). If k = 4, a possible

chromosome is 1011, and the corresponding candidate solution will be:

1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 8 + 0 + 2 + 1 = 11.

The GA replaces each population with another one, obtained through the selection,

crossover and mutation operators. Hopefully, the new population will be more fit to

the environment than the previous one.
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1.2.2 Fitness function

The selection operator needs (and we will see this later) an evaluation of the cur-

rent population. This evaluation is performed through the so-called fitness func-

tion, which assigns to each population’s chromosome a score (the fitness). The fitness

depends on how the chromosome works out in the problem at issue; it could be a

mathematical function, or an experiment, or a game. Recalling the example seen in

paragraph 1.1.1, the fitness of a chromosome is simply the value of the number rep-

resented by that chromosome. In that problem, the goal was to maximize that value

and therefore to maximize the fitness. A possible population (of size n = 6), equipped

with the fitness of each chromosome, is this:

Population’s individual

(chromosome)

Corresponding candidate

solution

Corresponding fitness

value

0001 1 1

0010 2 2

0101 5 5

1001 9 9

1011 11 11

1101 13 13

Table 1: Example of chromosomes with associated candidate solutions and fitnesses

Remember two things.

• The fitness can be also a minimization, as well as a maximization. In fact the

fitness is only a objective function and the goal could be to minimize it (in this

case, though, it could be more appropriate to call it cost function, but we will

refer to it always using its most common name).
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• In this example, the candidate solution and its fitness value were the same “ob-

ject” (a number), and, even more, they had the same numerical value. However,

they can be (and in most cases they are) very different things: as we will see in

Chapter 3, the candidate solution could be a linear regression model, while its

associated fitness could be a goodness of fit indicator (R-squared, AIC, etc...).

1.2.3 Selection

This operator selects the population’s chromosomes for the reproduction. The basic

idea is very simple: the largest is the chromosome’s fitness, the higher is its probability

to procreate. In practice, though, the selection operator can present itself in wide-

ranging shapes. The most common are:

• roulette wheel selection (or proportional selection): consider a roulette in

which each population’s individual occupies a space proportional to its fitness

(the largest the fitness, the higher the space taken up, therefore the bigger the

probability of being extracted as parent). If fi = fitness value of individual i,

F =
n∑

i=1

fi = total fitness, and f c
i =

i∑

j=1

fj = cumulated fitness of individual i, a

possible implementation of roulette wheel selection is this:

– extract a random number r in range (0, F );

– select the first popultion’s individual whose f c
i ≥ r.

It is easy to see that each individual has probability
fi

F
of being selected to be

parent;

• tournament selection: this selection method randomly picks j population’s

individuals (usually j = 2) and chooses amongst them the individual with largest

fitness to become parent.

The procedures that we just saw select only one parent; obviously, they will have to

be repeated as many times as the number of needed parents.
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There are also some variations that can be applied before carrying out the “real”

selection. The most common are:

• rank selection: the population’s individuals are ranked by fitness; then roulette

wheel selection is performed on ranks. This expedient is used when the fitnesses’

values differ greatly (for example, if the best individual occupies 90% of the

roulette) to avoid selecting always the same individual.

• elitism: the best individual (or the first j best individuals) is copied without

alterations in the next population, in this way preserving its genetic code from

crossover and mutation. In addition, the corresponding j worst individuals can

be deleted. After that, the actual selection is performed.

Recalling again the example from paragraph 1.1.2, suppose that we want to perform

roulette wheel selection (without variations). Firstly, we have to compute the individ-

uals’ cumulated fitness, and then divide it, for each individual, by the total fitness.

The probability of extraction of individual i is easily calculated:

pi =
f c

i

F
-

f c
i−1

F
=

fi

F

where F =
n∑

j=1

fi and f c
0 = 0.

17



Chromosome i fi f c
i

f c
i

F
pi

0001 1 1 0.024 0.024

0010 2 3 0.073 0.049

0101 5 8 0.195 0.122

1001 9 17 0.415 0.220

1011 11 28 0.683 0.268

1101 13 41 1.000 0.317

Table 2: Example of chromosomes with associated fitnesses and probabilities of extrac-

tion

We can see from Table 2 that the chromosomes with bigger associated values have

higher probability of being extracted. In particular, the chromosome with the largest

associated values (13) has the highest probability (0.317) of becoming parent.

At this point, we should extract random numbers in range (0, 41) and compare them

with cumulated fitnesses (fourth column of the previous table); alternatively we could

extract random numbers in range (0, 1) and compare them with the values in the fifth

column (the relative cumulated fitnesses). Suppose that we extract this random num-

bers’ sequence (in range (0, 1)):

18



Random number Selected chromosome

0.6299 1011

0.6012 1011

0.9456 1101

0.1812 0101

0.8907 1101

0.3367 1001

Table 3: Example of selection

We have obtained a set of parents; now we have to pair them to form the offspring

(with the crossover operator). We can simply take them in order, therefore forming

these three couples:

• ( 1011, 1011 );

• ( 1101, 0101 );

• ( 1101, 1001 ).

Each couple will generate offspring (two chromosomes), reaching a total of 6 children

chromosomes, which will form the new population. Note that the two worse individuals

did not reach the status of “parents” and they will not procreate.

1.2.4 Single point crossover

The single point crossover operator chooses a random point on the two chromo-

somes (the parents), and genetic material is exchanged around this point in order to

form two children chromosomes. To clarify this concept, we can see an example:

19



Figure 1: Example of single point crossover

Recalling, as usual, the problem from paragraph 1.1.3, consider the second parents

couple that we selected, that is ( 1101, 0101 ) and suppose that we randomly extracted

the second locus. The children will be 1101 and 0101. Note that, in this case, we have

obtained children with the same genetic code of their parents.

There are also other crossover types, like two point crossover (it chooses two

locus instead of one) and uniform crossover (each bit is copied randomly from one

parent or the other). We can see examples of these crossovers:

Figure 2: Example of two point crossover
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Figure 3: Example of uniform crossover

However, the so-called simple GA (we will see it in paragraph 1.2) uses single point

crossover.

1.2.5 Mutation

The mutation operator randomly changes some chromosome’s bits. Mutation can

happen in any string’s position, with a very low probability (0.001 is commonly used).

Consider one of the children generated in the example of paragraph 1.1.4, that is, the

chromosome 1101, and suppose that a random mutation happens in the third locus:

the resulting chromosome would be 1111.

1.3 - The simple genetic algorithm (SGA)

We have seen the basic elements with which a GA is composed. Now we can see how

such elements are composed to effectively form a GA.

GAs are classified in three different classes ([15]), depending on the operators (and

possible variations) that they employ.

• Simple GA (or SGA): single point crossover, mutation, roulette wheel selection.

• Refined GA: uniform crossover, mutation, roulette wheel selection plus possible

variations (such as elitism).
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• Crowding GA: uniform crossover, mutation, random selection plus possible

variations.

Now we will consider in greater details the simple genetic algorithm (from now on

SGA), whose definition and formalisation are due to Goldberg (1989).

Given a well defined problem and a bit-string representation for the candidate

solutions, a SGA works like this:

1. randomly generate a population of n individuals (chromosomes composed by l

bits, that is the candidate solutions);

2. compute, for each population’s chromosome x, its fitness f(x);

3. repeat the next steps until n children chromosomes have been created:

• choose a couple of chromosomes (parents) from the current population. The

largest the fitness of one chromosome, the higher its chances of being selected

as parent. The selection is carried out with replacement, that is, the same

chromosome can be selected more than once to become parent.

• with probability pc (crossover probability or crossover rate), crossover is

carried out (between the two selected parents) in a random locus (chosen

with uniform probability). If crossover does not happen, the created children

are precise copies of their parents (the genetic codes remain immutated).

• mute the children chromosomes in each locus with probability pm (mutation

probability or mutation rate) and position the resulting chromosomes in the

new population.

If n is odd, a new member of the population can be randomly discarded.

4. swap the current population with the new one;

5. go to step 2.
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A complete iteration of this procedure (from step 2 to step 4) is called genera-

tion. A GA is tipically made of a number of generations between 50 and 500 (or even

more). The complete set of generations is called run. At the end of a run, the current

population should contain one or more chromosomes highly fit to the environment.

Considering, though, the role played by randomness in each run of the algorithm, it’s

clearly visible that two different runs (built with different random seeds) will obtain

different results. Because of this issue, it is better to execute some runs for the same

problem (instead of only one), and then compare their results, or combine them some-

how.

To better visualize the procedure that we illustrated, we can see some graphical

illustrations.

Figure 4: Cycle of a SGA

This figure shows the main loop of the SGA. The figure also assumes a predefined

number of generations (100): this means that after 100 generations, the run is con-
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sidered complete. However, instead of stopping the algorithm after a certain number

of generations, we can fix more general termination criteria, as we can see in the next

figure.

Figure 5: Cycle of an elitist GA

This figure, besides considering unspecified termination criteria, inserts in the algo-

rithm the elitist variation. In Chapter 3, we will talk more specifically about elitist GA.
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Figure 5 also remembers us that, before entering the main loop of the algorithm, we

have to define parameters and fitness function. In fact, in order to effectively execute

the algorithm, we will need to fill the blanks left from the algorithm, i.e.:

• population’s size (how much chromosomes compose the population?);

• crossover rate (probability of doing the crossover);

• mutation rate (probability of carrying out a mutation);

• fitness function (when a chromosome is highly fit? when not?);

• codification process (from candidate solutions to chromosomes and viceversa).

All these decisions are not to be taken superficially, because the GA’s performance

greatly depends on these details.
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Chapter 2 - A first, simple,

application of SGA

After seeing the GAs foundations and the basic theory behind them, it is time to move

towards their practical applications and to see them in action. We will start with

a simple task, that is, the maximization of a univariate and unimodal function. We

will see the performance of the SGA on this problem, and then try some alterations

of the algorithm’s parameters (population size, number of generations, crossover rate,

mutation rate).

2.1 - Maximization of a univariate function

The first things that anyone using a GA has to do are:

• clearly define the problem;

• decide the encoding for the chromosomes (that is, decide the structure of the

individuals of the population);

• define the fitness function.

These three issues constitute the only input that the human has to give to the computer

(as well as the algorithm’s parameters, but those can be easily modified, as we will see

later), and they have to be thought of very carefully.
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2.1.1 Problem’s definition

Our problem is to determine the global optimum of the univariate function:

f(x) = y = 100 − (x − 4)2

where x ∈ [0, 13).

The function graphically presents itself like this:

0 5 10 15 20

0
20

40
60

80
10

0

Univariate function

x

y

Figure 6: Univariate function

The red dashed line indicates the end of our domain (remember that x ∈ [0, 13)); the

black line is our function and the red dot points towards the function’s only maximum,

located in x = 4.
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2.1.2 Chromosome’s encoding

The candidate solutions for this problem are values in the domain, that is [0, 13);

therefore our chromosomes need to be able to represent values in that range. One way

to accomplish this is to make the chromosomes encode values in the range [0, 1) and

then multiply their value by 13, hence obtaining a value in the desired domain.

We can accomplish this by selecting a length, n, for a chromosome and making each

bit of the chromosome carrying a value. For example, we might decide that the i-th

bit carries the value of 0 if it’s a 0 or 2−i if it’s a 1. In this case, the chromosome

1000100100 represents the value:

1∗2−1 +0∗2−2 +0∗2−3 +0∗2−4 +1∗2−5 +0∗2−6 +0∗2−7 +1∗2−8 +0∗2−9 +0∗2−10 =

0.53515625

To transform this value in the range [ 0 , 13 ) we multiply it by 13:

0.53515625 ∗ 13 = 6.95703125 ∼= 6.957.

For our problem, we do not need such level of precision and so many digits after the

decimal point; this means we can restrict ourselves to a relatively small number of bits

for the candidate solutions. In our tests, we will limit chromosomes’ length to 8 bits,

resulting in a distance of 0.05078125 (2−8 ∗ 13) between any two contiguous values of

our representation.

2.1.3 Fitness function

Now that we have clearly defined the problem and encoded the individuals of the

population, it is time to think about the fitness function. Remember that the fitness

function is a function that accepts a chromosome as input and returns as output the

“goodness” of that chromosome in terms of our problem.

In this problem the formulation is explicitly based on the maximization of some func-

tion, so the fitness function is exactly that function. This means that there is no noise

or other factor that makes the evaluation of the chromosome’s fitness fuzzy.

In fact, our chromosomes (according to the encoding established in the previous para-
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graph) represent values of the independent variable (x) of our univariate function. So,

each chromosome is connected (through the univariate function) to one and only one

value of the dependent variable (y), the quantity that we want to maximize.

Let us see the fitness function in pseudo-code:

Fitness function( chromosome k )

calculate the decimal value (h) that the chromosome k represents

multiply h by 13, obtaining x

calculate the value y = f(x)

return y

It is simple to see that the bigger the value of y is, the higher is the fitness of

the chromosome. In other words, the chromosomes which have high values of their

“connected” y are fit to the environment of our problem. The GA assumes that they

carry a good genetic code, so they are good for reproduction: they will be selected as

parents with higher probability than the chromosomes with lower fitness.

2.2 Description of a generation

We have defined the problem, the encoding and the fitness function.

Now we can describe an entire generation of the SGA for this problem.

2.2.1 Step 1 (initialization)

We randomly generate the individuals of the first population. In pseudo-code, it looks

like this:

randomFirstPopulationCreation

{

∀ population’s chromosome (individual)

∀ chromosome’s bit
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extract a random number r ∈ (0, 1)

if ( r < 0, 5 )

put 0 in the bit

else

put 1 in the bit

}

2.2.2 Step 2 (fitness)

We compute the fitness of each population’s individual through the fitness function

(the one descripted in the previous paragraph).

2.2.3 Step 3 (selection)

Now that the existing population has been evaluated, we can choose the parents, that

is, the chromosomes fit to reproduce. We have what we need to do roulette wheel

selection, the selection method used in SGA. We proceed as described in paragraph

1.2.3.

The pseudo-code of the part that selects a parent is the following:

parentsRouletteWheelSelection

{

fi = fitness of individual i

F =
popSize∑

i=1

fi = total fitness

f c
i =

i∑

j=1

fj = individual’s cumulated fitness

f cp
i = f c

i /F = individual’s cumulated fitness scaled down in range (0,1)

extract a random number r ∈ (0, 1)

∀ population’s individual (with increasing f cp
i )

if( f cp
i ≥ r ) {

select individual i as a parent
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return

}

}

2.2.4 Step 4 (crossover)

For each couple of parents selected with STEP 3, we have to make them to reproduce,

in order to generate the so-called offspring (two children which will be individuals of

the following population).

The pseudo-code of this part (which uses single point crossover) is:

crossover( parent A, parent B )

{

extract a random number r ∈ (0, 1)

if( r > crossoverRate )

copy the parents A and B (as they are) in the next population

else

k = chromosome size (in bits)

extract a random number h ∈ (0, k) and cast the number to integer

∀ bit of the chromosomes of children C and D

if( bit position < h )

C [ bit position ] = A [ bit position ]

D [ bit position ] = B [ bit position ]

else

C [ bit position ] = B [ bit position ]

D [ bit position ] = A [ bit position ]

put C and D in the next population

return

}

We repeat this procedure (choose two parents and generate offspring) until we have
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completely filled the next population (the population size has to remain the same).

2.2.5 Step 5 (mutation)

We now randomly mutate some bits of the new population’s individuals. The pseudo-

code is:

mutatePopulation

{

∀ population’s individual (chromosomes)

∀ bit

extract a random number r ∈ (0, 1)

if( r < mutationRate )

flip the value of the bit

}

After this, we have completed the first generation and we can go back to STEP 2 with

the new population.

The SGA is considered complete after a large number of generations (approximately

between 50 and 500) is done.

Remember that:

• the crossover rate is the probability of combining the genetic code of two parents

(in opposition to leave their genetic code unchanged);

• the mutation rate is the probability of changing the value of an individual’s bit.

2.3 Results

Finally, we can execute the SGA for our problem. But first we have to fix the values of

the algorithm’s parameters. We will begin using the values shown in the following table.
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Parameter Population

size

Number of

generations

Crossover

rate

Mutation

rate

Value 50 100 0, 75 0, 001

Table 4: Parameters’ values

In Chapter 1 we said that each run of a SGA will have different results, because

of the central role of randomness in the algorithm. So, in order to make more general

speculations, for each set of parameters we will execute 10 runs of the SGA and com-

pute the mean of their results. We consider the result of a run the mean fitness of the

final population.

In the following table, we report the mean fitness of the final population of each per-

formed run; in the end we calculate the average result on the 10 runs.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

98.6794 99.5364 97.4253 99.9203 99.9944 98.3326

Run 7 Run 8 Run 9 Run 10 Average

99.5713 98.4759 96.658 99.8301 98.8424

Table 5: Results of the 10 runs

The average result of the 10 runs is 98.8424: this is very good, if we think that our

goal was 100!

Moreover, we have to remember that this result cannot be exactly 100. The reason

for this has to be found in our codification/decodification process. Our chromosomes

represent floating point numbers with a specific precision; that value has then to be

multiplyed by 13, and this operation makes almost impossible to reach the precise value

of 4.0 for x (and therefore of 100.0 for y).
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2.3.1 Changing population size

So far, we have seen that our SGA (with the parameters shown in Table 4) works fine.

Now, we can see what happens if we modify some of the parameters, one at a time

(to better comprehend the difference in the results). We shall start by modifying the

population size.

Population size Average fitness

20 96.3063

30 98.3643

40 98.9429

50 98.7512

60 99.0199

70 99.5567

80 99.0659

90 98.9602

100 98.7167

120 98.9487

Table 6: Results of SGA with different population sizes

We can see from Table 6 that the population size has a little role (though not vital)

in this problem’s results. In fact, the average fitness is good in all instances, but is a

bit worse with very small population. In particular, the worst result is obtained with

population size = 20, the best with population size = 70.
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2.3.2 Changing number of generations

We shall try to modify another parameter, i.e., the number of generations of each

run. We preserve the inital values of the other parameters (population size = 50,

crossover rate = 0.75, mutation rate = 0.001).

# generations Average fitness

10 95.0670

20 96.1546

35 96.9471

50 98.3094

70 99.1944

80 98.8897

100 98.6132

150 98.0872

200 98.5816

Table 7: Results of SGA with different generations’ numbers

The number of generations parameter has an evident behaviour, as we can see from

Table 7. The SGA needs a certain number of generations to reach the “convergence”

on the solution for our problem; after that it maintains the goodness of the results,

with some alterations due to random mutations.

2.3.3 Changing crossover rate

We shall now see how the algorithm reacts by changing the crossover rate, that is,

the probability of effectively doing the crossover when making individuals procreate

(instead of copying their genetic code in the next population). As usual, we preserve
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the intial values of the other parameters (generations number = 100, population size

= 50, mutation rate = 0.001).

Crossover rate Average fitness

0.25 98.8613

0.50 97.8205

0.70 98.5307

0.75 98.1522

0.80 98.1505

0.85 98.3973

0.90 97.7203

1.00 98.4599

Table 8: Results of SGA with different crossover rates

In this case the parameter’s modification has not had valuable effects: the SGA

always finds a good solution to our problem. This could be caused by the simplicity of

our problem.

2.3.4 Changing mutation rate

We can try varying the last parameter left, the mutation rate. This parameter

represents the probability that each locus of each chromosome flips its value. We will

preserve the initial values of the other parameters, that is:

• population size = 50;

• number of generations = 100;

• crossover rate = 0.75;

37



Mutation rate Average fitness

0.0001 99.2635

0.0005 98.2141

0.001 98.5449

0.005 97.9856

0.01 96.5034

0.05 92.3261

0.1 87.1942

Table 9: Results of SGA with different mutation rates

With these changes we can see very serious alterations in the results: by increasing

the mutation rate, the precision of the solution drastically becomes worse. This happens

because a high mutation rate excessively shuffles the chromosomes currently present in

the population.
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Chapter 3 - Variable selection for

regression models

After seeing that the SGA works fine with a simple problem (the maximization of

a univariate function), we can move on to more complicated (and more interesting)

problems; in particular we will focus on problems of statistical kind. To begin with, we

will see a problem of variable selection for linear regression models. We will consider

a moderately large dataset, with various independent variables. The goal is to select

the most important and meaningful variables. In order to compare the goodness of fit

of different regression models, we shall make use of the Akaike Information Criterion.

In fact, the R-squared wouldn’t be appropriate, because this would certainly take us

to the regression model which includes all the variables present in the dataset. With

the AIC criterion, instead, we consider the trade-off between the performance of the

regression model and the number of independent variables included in the predictors.

3.1 - Variable selection

The problem that we are considering in this section, variable selection, is very well

known in literature and it is part of a more general and complex issue (model selec-

tion); it is also known as subset selection (we will soon understand why).

Suppose that Y (a variable of interest) and X1, X2, ..., Xp (a set of potential ex-

planatory variables) are vectors of n observations. The problem of variable (or subset)
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selection comes into existence when one wants to model the relationship between Y

and a subset of X1, X2, ..., Xp, but is not sure about the subset to use. This issue

is particularly significant if p is very large and if a lot of Xi could be redundant or

irrelevant variables.

Usually, to choose the variables to include in a model, one has to consider some

different formulations of the model and make a comparison based on some significant

indicator. Some possible indicators are:

• R2, the coefficient of determination. It represents the proportion of variability

explained by the model. It can be expressed in many ways, the most common of

which are: R2 = SSR

SST

= 1− SSE

SST

, where SST =
∑

i (yi − y)2 (total sum of squares),

SSR =
∑

i (ŷi − y)2 (regression sum of squares) and SSE =
∑

i (yi − ŷi)
2 (sum

of squared errors). Hence, R2 is a descriptive measure about the goodness of

fit of the model and it assumes values in the range (0, 1). The closer to one,

the better the model. However, it has a drawback: its value can only increase

(and not decrease) as we increase the number of variables in the model, causing

overfitting. Using this measure to compare models in our problem would take us

to include all the variables. In conclusion, R2 is not an appropriate measure for

variable selection.

• Adjusted R2, that is a modification of R2 which takes into account the number

of variables in the model. When increasing the number of explanatory terms,

adjusted R2 increases only if the new term significantly improves the model. The

adjusted R2 is defined as: 1− (1−R2) n−1
n−k−1

where k is the number of regressors

of the considered model. Hence, this measure could be used in variable selection.

• AIC (Akaike Information Criterion), which we will properly discuss in the next

paragraph.

• BIC (Bayesian Information Criterion) = −2 ∗ ln (L) + k ∗ ln (n), where L is

the maximized value of the likelihood function for the estimated model, k is the
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number of regressors (including the constant) and n is the number of observations.

Under the assumption that the model errors are normally distributed, we can

rewrite the expression as: n∗ln (SSE

n
)+k∗ln (n). Between two models, one should

choose the one with lower value of BIC. The BIC penalizes free parameters more

strongly than the Akaike Information Criterion does.

• “Mallows Cp = SSE

σ̂2
FULL

+ 2 ∗ k − n, where SSE is the residual sum-of squares

for the model at issue and σ̂2
FULL is the usual unbiased estimate of σ2 based on

the full model. Motivated as an unbiased estimate of predictive accuracy of the

model at issue, Mallows (1973) recommended the use of Cp plots to help gauge

subset selection, see also Mallows (1995). Although he specifically warned against

minimum Cp as a selection criterion (because of selection bias), minimum Cp

continues to used as a criterion.” [9]

Another option to consider for the variable selection problem is the method of

stepwise regression. Stepwise regression is a greedy algorithm that adds the best

feature (or deletes the worst feature) at each iteration. In stepwise regression there

are two possibilities: forward selection (find the best one-variable model, then the best

two-variable model with that first variable included, and so on until no addition is

statistically significant) or backward selection (begin with the model with all variables,

remove the least significant one, and so on until all variables are statistically significant).

Several criticisms have been made about stepwise regression, which does not necessarily

find the best model among all the possible variable combinations.

Drawing some conclusions, the best catches are probably AIC and BIC. In partic-

ular, we will focus on the first one.

3.2 - AIC

AIC (Akaike Information Criterion), introduced by Hirotugu Akaike in his seminal 1973

paper (“Information Theory and an Extension of the Maximum Likelihood Principle”),
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is considered the first model selection criterion and is derived as an estimator of the

expected Kullback discrepancy between the true model and a fitted model. AIC has

limited demands, in fact it requires only a large sample size (n); moreover, when the

candidate model is relatively small (k is small) its estimation of Kullback discrepancy

is approximately unbiased. We shall now see AIC derivation.

Suppose we have:

• f(y|θ0), the true or generating model (unknown);

• f(y|θk), the candidate or approximating model.

For two arbitrary parametric density f(y|θ) and f(y|θ∗), the Kullback-Leibler in-

formation or Kullback’s directed divergence between f(y|θ) and f(y|θ∗) with

respect to f(y|θ), is defined like this:

l(θ, θ∗) = Eθ[ln
f(y|θ)
f(y|θ∗)

]

where Eθ denotes the expectation under f(y|θ).

l(θ, θ∗) is a measure of distance between the two models, although it is not a formal

distance measure. Note that:

• l(θ, θ∗) ≥ 0

• l(θ, θ∗) = 0 ⇐⇒ θ = θ∗

In particular, we will consider l(θ0, θk), which is the Kullback-Leibler information be-

tween f(y|θ0) and f(y|θk) with respect to f(y|θ0).

Now, we define the Kullback discrepancy as:

d(θ0, θk) = Eθ0{−2 ln f(y|θk)}.

It can be proved that there is a relationship between the Kullback discrepancy and

Kullback-Leibler information, that is:

2l(θ0, θk) = d(θ0, θk) − d(θ0, θ0)
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Since d(θ0, θ0) does not depend on θk, we can consider (for our purposes of ranking

candidate models) l(θ0, θk) equivalent to d(θ0, θk).

We have a problem, though: we cannot evaluate d(θ0, θk), since θ0 is unknown. Here

arrives Akaike with his work (1973). He suggests, as biased estimator of d(θ0, θk),

the quantity −2 ln f(y|θ̂k). He also asserts that the bias adjustment can often be

asymptotically estimated by twice the dimension of θk, i.e., k. Therefore Akaike defines

the criterion:

AIC = −2 ln f(y|θ̂k) + 2k

whose expected value should, under appropriate conditions, asymptotically approach

the expected value of d(θ0, θ̂k).

So, AIC provides us with an asymptotically unbiased estimator of Eθ0{d(θ0, θ̂k)}

(the so-called expected Kullback discrepancy), in settings where n is large and k is

comparatively small. AIC is derived on the assumption that the fitted model is either

correctly specified or overfitted; regardless, AIC can still be effectively used in case of

underspecified models.

In the special case of least squares estimation with normally distributed errors, AIC

can be expressed as:

AIC = n ln (σ̂2) + 2k

where

σ̂2 =
∑

i
(̂ǫi)

2

n
.

and the ǫ̂i are the estimated residuals from the fitted model. Note that k must be the

total number of parameters in the model, including the intercept and σ2.

3.3 - Problem’s definition

In this section, we want to solve a variable selection problem. We will use a dataset

coming from Baseball data from M.R. Watnik (1998), “Pay for Play: Are Baseball
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Salaries Based on Performance”, Journal of Statistics Education, Volume 6, number

2. This dataset contains salaries in 1992 and 27 performance statistics for 337 baseball

players (no pitchers) in 1991. The metric unit of the salary is $1000s. The performance

statistics are:

• average = batting average

• obp = on base percentage

• runs = runs scored

• hits

• doubles

• triples

• homeruns

• rbis = runs batted in

• walks

• sos = strike outs

• sbs = stolen bases

• errors

• freeagent (or eligible for free agency)

• arbitration (or eligible for arbitration)

• runsperso = runs/sos

• hitsperso = hits/sos

• hrsperso = homeruns/sos
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• rbisperso = rbis/sos

• walksperso = walks/sos

• obppererror = obp/errors

• runspererror = runs/errors

• hitspererror = hits/errors

• hrspererror = homeruns/errors

• soserrors = sos*errors

• sbsobp = sbs*obp

• sbsruns = sbs*runs

• sbshits = sbs*hits

We would like to model a relationship (if any) between the salary and the per-

formance statistics of the baseball players. The explicative variables are many, and

probably a lot of them are redundant or unimportant. So we would like to use only a

subset of those variables; choosing this subset is our problem.

We can do a brief exploratory analysis about the explicative variables’ correlation.

With 27 variables the dispersion graphs are too many to be presented here. Instead, we

insert here an “information summary” of the dispersion graphs, that is, the correlation

matrix; in the (i, j) box of the following table we have the correlation between xi and

xj. The correlation values are in the range (−1, 1). The maximum degree of correlation

corresponds to a value of 1 or -1; the minimum one to a value of 0. Obviously cor( xi,

xi ) = 1. Since cor( xi, xj ) = cor( xj, xi ), the matrix is symmetrical.
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cor y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y 1.0 0.27 0.32 0.64 0.62 0.57 0.23 0.59 0.66 0.56 0.4

x1 0.27 1.0 0.8 0.43 0.5 0.45 0.26 0.21 0.36 0.27 0.07

x2 0.32 0.8 1.0 0.51 0.45 0.4 0.19 0.31 0.39 0.59 0.2

x3 0.64 0.43 0.51 1.0 0.92 0.83 0.54 0.68 0.83 0.82 0.68

x4 0.62 0.5 0.45 0.92 1.0 0.88 0.54 0.61 0.85 0.72 0.64

x5 0.57 0.45 0.4 0.83 0.88 1.0 0.41 0.63 0.82 0.64 0.6

x6 0.23 0.26 0.19 0.54 0.54 0.41 1.0 0.12 0.33 0.3 0.32

x7 0.59 0.21 0.31 0.68 0.61 0.63 0.12 1.0 0.87 0.62 0.74

x8 0.66 0.36 0.39 0.83 0.85 0.82 0.33 0.87 1.0 0.72 0.74

x9 0.56 0.27 0.59 0.82 0.72 0.64 0.3 0.62 0.72 1.0 0.66

x10 0.4 0.07 0.2 0.68 0.64 0.6 0.32 0.74 0.74 0.66 1.0

x11 0.25 0.2 0.23 0.52 0.42 0.29 0.52 0.07 0.2 0.35 0.27

x12 0.12 0.14 0.09 0.34 0.41 0.33 0.19 0.15 0.29 0.24 0.3

x13 0.56 0.05 0.17 0.3 0.29 0.22 0.05 0.29 0.3 0.35 0.22

x14 0.12 0.09 0.01 0.14 0.18 0.2 0.15 0.03 0.12 0.03 0.03

x15 0.23 0.41 0.38 0.37 0.29 0.27 0.26 -0.01 0.13 0.2 -0.21

x16 0.2 0.54 0.35 0.22 0.33 0.26 0.2 -0.1 0.12 0.07 -0.31

x17 0.47 0.26 0.27 0.43 0.41 0.44 0.01 0.71 0.6 0.34 0.27

x18 0.35 0.48 0.35 0.29 0.38 0.37 0.12 0.22 0.41 0.19 -0.12

x19 0.26 0.3 0.57 0.33 0.27 0.22 0.12 0.0 0.15 0.5 -0.15

x20 -0.13 0.04 0.14 -0.21 -0.3 -0.27 -0.16 -0.13 -0.24 -0.11 -0.22

x21 0.25 0.14 0.27 0.4 0.28 0.24 0.18 0.26 0.27 0.4 0.27

x22 0.26 0.19 0.25 0.35 0.33 0.27 0.17 0.26 0.3 0.37 0.28

x23 0.29 0.07 0.19 0.32 0.25 0.28 -0.01 0.56 0.44 0.39 0.43

x24 0.19 0.09 0.11 0.47 0.48 0.43 0.25 0.4 0.47 0.39 0.63

x25 0.28 0.22 0.27 0.54 0.43 0.3 0.5 0.09 0.21 0.38 0.27

x26 0.32 0.23 0.27 0.6 0.49 0.36 0.51 0.16 0.29 0.43 0.31

x27 0.32 0.26 0.25 0.59 0.54 0.4 0.56 0.15 0.31 0.41 0.33
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cor x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

y 0.25 0.12 0.56 0.12 0.23 0.2 0.47 0.35 0.26 -0.13

x1 0.2 0.14 0.05 0.09 0.41 0.54 0.26 0.48 0.3 0.04

x2 0.23 0.09 0.17 0.01 0.38 0.35 0.27 0.35 0.57 0.14

x3 0.52 0.34 0.3 0.14 0.37 0.22 0.43 0.29 0.33 -0.21

x4 0.42 0.41 0.29 0.18 0.29 0.33 0.41 0.38 0.27 -0.3

x5 0.29 0.33 0.22 0.2 0.27 0.26 0.44 0.37 0.22 -0.27

x6 0.52 0.19 0.05 0.15 0.26 0.2 0.01 0.12 0.12 -0.16

x7 0.07 0.15 0.29 0.03 -0.01 -0.1 0.71 0.22 0.0 -0.13

x8 0.2 0.29 0.3 0.12 0.13 0.12 0.6 0.41 0.15 -0.24

x9 0.35 0.24 0.35 0.03 0.2 0.07 0.34 0.19 0.5 -0.11

x10 0.27 0.3 0.22 0.03 -0.21 -0.31 0.27 -0.12 -0.15 -0.22

x11 1.0 0.17 0.05 0.1 0.26 0.1 -0.03 -0.02 0.17 -0.11

x12 0.17 1.0 -0.01 0.21 0.06 0.12 0.04 0.07 0.05 -0.61

x13 0.05 -0.01 1.0 -0.39 0.1 0.1 0.24 0.17 0.23 -0.05

x14 0.1 0.21 -0.39 1.0 0.13 0.11 0.04 0.12 0.01 -0.12

x15 0.26 0.06 0.1 0.13 1.0 0.75 0.28 0.64 0.68 0.04

x16 0.1 0.12 0.1 0.11 0.75 1.0 0.21 0.82 0.6 -0.09

x17 -0.03 0.04 0.24 0.04 0.28 0.21 1.0 0.56 0.2 -0.05

x18 -0.02 0.07 0.17 0.12 0.64 0.82 0.56 1.0 0.52 -0.07

x19 0.17 0.05 0.23 0.01 0.68 0.6 0.2 0.52 1.0 0.06

x20 -0.11 -0.61 -0.05 -0.12 0.04 -0.09 -0.05 -0.07 0.06 1.0

x21 0.19 -0.37 0.2 -0.04 0.23 0.0 0.13 0.03 0.18 0.59

x22 0.13 -0.4 0.22 -0.05 0.07 0.05 0.14 0.09 0.13 0.57

x23 -0.05 -0.27 0.21 -0.04 -0.06 -0.14 0.38 0.06 0.0 0.4

x24 0.25 0.83 0.02 0.15 -0.08 -0.11 0.12 -0.04 -0.08 -0.44

x25 0.99 0.15 0.07 0.1 0.28 0.11 -0.01 0.0 0.2 -0.09

x26 0.95 0.17 0.08 0.11 0.27 0.12 0.03 0.02 0.19 -0.08

x27 0.95 0.2 0.07 0.13 0.23 0.15 0.03 0.05 0.16 -0.12
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cor x21 x22 x23 x24 x25 x26 x27

y 0.25 0.26 0.29 0.19 0.28 0.32 0.32

x1 0.14 0.19 0.07 0.09 0.22 0.23 0.26

x2 0.27 0.25 0.19 0.11 0.27 0.27 0.25

x3 0.4 0.35 0.32 0.47 0.54 0.6 0.59

x4 0.28 0.33 0.25 0.48 0.43 0.49 0.54

x5 0.24 0.27 0.28 0.43 0.3 0.36 0.4

x6 0.18 0.17 -0.01 0.25 0.5 0.51 0.56

x7 0.26 0.26 0.56 0.4 0.09 0.16 0.15

x8 0.27 0.3 0.44 0.47 0.21 0.29 0.31

x9 0.4 0.37 0.39 0.39 0.38 0.43 0.41

x10 0.27 0.28 0.43 0.63 0.27 0.31 0.33

x11 0.19 0.13 -0.05 0.25 0.99 0.95 0.95

x12 -0.37 -0.4 -0.27 0.83 0.15 0.17 0.2

x13 0.2 0.22 0.21 0.02 0.07 0.08 0.07

x14 -0.04 -0.05 -0.04 0.15 0.1 0.11 0.13

x15 0.23 0.07 -0.06 -0.08 0.28 0.27 0.23

x16 0.0 0.05 -0.14 -0.11 0.11 0.12 0.15

x17 0.13 0.14 0.38 0.12 -0.01 0.03 0.03

x18 0.03 0.09 0.06 -0.04 0.0 0.02 0.05

x19 0.18 0.13 0.0 -0.08 0.2 0.19 0.16

x20 0.59 0.57 0.4 -0.44 -0.09 -0.08 -0.12

x21 1.0 0.92 0.7 -0.2 0.21 0.24 0.2

x22 0.92 1.0 0.71 -0.23 0.15 0.18 0.18

x23 0.7 0.71 1.0 -0.09 -0.04 0.0 0.0

x24 -0.2 -0.23 -0.09 1.0 0.24 0.28 0.29

x25 0.21 0.15 -0.04 0.24 1.0 0.96 0.95

x26 0.24 0.18 0.0 0.28 0.96 1.0 0.97

x27 0.2 0.18 0.0 0.29 0.95 0.97 1.0
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In this table we highlighted the correlation values higher than 0.8 or lower than

-0.8. This means that we have marked the more correlated pairs of variables; this will

turn out to be worth later, when we will analyze some regression models and we will

want to compare their variables’ set.

In Appendix A, four of the most significant dispersion graphs are presented. The choice

is based on the correlation values and on the analysis that we will make in paragraph

3.9.2 (Variables’ subset comparison).

3.4 - Chromosome’s encoding

The encoding of the chromosomes for this problem is very simple. We will use chro-

mosomes 27 bits long, each bit representing one performance statistic. A 0-valued

bit encodes the absence of that statistic from the candidate model, while a 1-valued

bit encodes the presence of that statistic in the candidate model. For example, this

chromosome:

100001010010010100100000000

represents the candidate model whose regressors are average, triples, rbis, sbs, arbitra-

tion, hitsperso, walksperso.

3.5 - Fitness function

Like we said before, the fitness function is useful to compare the chromosomes’ good-

ness. In this problem, the “goodness” of any chromosome is the goodness of the cor-

responding candidate model. So, we have to use a criterion for comparing models; we

already discussed this issue and we decided to exploit AIC. In our computer program

we will make use of R routines to adapt linear models to our data and to calculate the

AIC values. In particular, the R functions used are lm and AIC. So, the pseudo-code

of this fitness function looks like this:
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Fitness function( chromosome c )

adapt the linear model to the formulation that the chromosome c represents

calculate the AIC value of the adapted model

return f(AIC)

It has to be noted that the lower the AIC value, the better the model. So, in this

problem we would have to minimize (instead of maximize) with respect to that value

(AIC). To avoid this problem, we operate a transformation on the set of chromosomes’

AIC values; this is why in the pseudo-code we return f(AIC) instead of simply return-

ing AIC.

Here is how this transformation works: first of all, we change the sign of AIC values,

to return to a maximization problem; then we scale them in the range (0, 1).

So, suppose we have this simple set of AIC values for our population:

{5350, 5370, 5380, 5400, 5430, 5450, 5500}

Then, the passages of the transformation are summarized in this table:

Initial AIC value AIC with inverted sign AIC scaled

5350 −5350 1

5370 −5370 0.8667

5380 −5380 0.8

5400 −5400 0.6667

5430 −5430 0.4667

5450 −5450 0.3333

5500 −5500 0

Table 10: Example of the scaling of AIC values

We can see now that the “best” individual (the one with the higher transformed
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fitness) is the first, that is, the chromosome with an AIC value of 5350, the lower one.

We obtained what we wanted.

3.6 - A comparison term

In the example of Chapter 2 (the maximization of a univariate function), we knew

what we had to find: the maximum of the function was easily observable, so we could

judge the results on our own. In this case, though, we have no idea of what to expect

or what to hope from our SGA: we grope in the dark.

So, we need a comparison term: in R there is a function (step) which “resolves” a

problem of variable selection using the stepwise regression technique that we mentioned

before. Therefore, we can apply that function to our data and compute the AIC of the

resulting model. Then, we will use that AIC value as touchstone.

The R commands used are these:

> baseball = read.table( file.choose(), header=T, sep=” ”, dec=”.” )

> attach( baseball )

> modelloConSolaIntercetta = lm( y ∼ 1 )

> step( modelloConSolaIntercetta, ∼ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

+ x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22

+ x23 + x24 + x25 + x26 + x27, trace=F )

Call:

lm(formula = y ∼ x8 + x13 + x14 + x26 + x10 + x7 + x18 + x24 + x3)

> miglioreModello = lm( y ∼ x8 + x13 + x14 + x26 + x10 + x7 + x18 + x24 + x3 )

> AIC( miglioreModello )

[1]5377.877

Hence, we will keep the value 5377.877 in mind and we will compare it to our

results.

N.B.: When using the step function, R sets automatically the direction to backward,
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so these results are obtained with a backward procedure. It has to be noted that using

the forward procedure leads us to the same model (that is, the model with variables:

x8 + x13 + x14 + x26 + x10 + x7 + x18 + x24 + x3).

3.7 - Description of a generation

The beauty of GAs is their providing the user with a complete framework which,

excluding the choice of parameters’ values, needs only the definition of:

• the chromosomes’ structure;

• the fitness function.

Apart from these two issues, the rest is always the same. This is the reason why we do

not have to describe anything different from what we saw in paragraph 2.2. We have

already discussed about the chromosomes’ structure (in paragraph 3.4) and about the

fitness function (in paragraph 3.5).

3.8 - Results

It is time to see some results. Like in the example of Chapter 2, for each set of chosen

parameters we will execute more than one GA’s run (to avoid biased results caused by

randomness). Besides, since this problem is far more complicated than the previous

one, we will use a larger number of runs and we will do a more thorough analysis.

In fact, in addition to the simple genetic algorithm (SGA), we will use a modification

of the SGA, that is the genetic algorithm with elitism. We will then compare the

performances of the two algorithms; also, in the elitist GA (let us call it EGA), we will

try different crossover’s types (two point and uniform, in addition to single point).

We shall begin with the SGA (which means roulette wheel selection and single point

crossover). Before executing our SGA we have, as usual, to specify the values of the

algorithm’s parameters. We will use these values:
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Parameter Population

size

Generations Crossover

rate

Mutation

rate

Runs

Value 40 200 0.75 0.001 50

Table 11: Parameters’ values

In Figure 7 we report the mean fitness for each generation in the 50 runs. This

means that, during the execution of the algorithm, we store the mean fitness at each

generation of each run; we obtain a matrix whose rows represent the generations and

whose columns represent the runs:

Run 1 ... Run j ... Run 50

Generation 1 fitness1,1 ... fitness1,j ... fitness1,50

... ... ... ... ...

Generation i fitnessi,1 ... fitnessi,j ... fitnessi,50

... ... ... ... ... ...

Generation 200 fitness200,1 ... fitness200,j ... fitness200,50

Table 12: Matrix of fitnesses

At the end, for each generation we compute the mean of the mean fitnesses in

the 50 runs (speaking in matrix terms, we compute each mean by rows). By doing

this we “smooth” the trend of the mean fitness, removing oscillations due to random

mutations.

The result of these computations is shown in Figure 7:
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Figure 7: Results of Simple Genetic Algorithm

The red line of Figure 7 represents our comparison term, which is the AIC of the

best model obtained by R. The black dots represent the mean of the mean fitnesses of

each generation. We can see that the convergence towards the final value (the value at

which the algorithm becomes steady) is pretty quick. In fact, the “final value” stays

around 5376 and at the 27th generation we are already under 5380. Looking at our

comparison term (the red line), we have a good news: our SGA slightly outperforms

R. In fact, our algorithm reaches the comparison term after about 50 generations; after

the 75th it remains steadily below it.
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Now we can see what the elitist genetic algorithm (EGA) accomplishes. We re-

member from Chapter 1 that elitism is an algorithmic variant that copies some of the

better elements of the current population in the next population, without risk of losing

their genetic code. In this specific case, we will keep the two best elements.

This is the result of the EGA’s execution (the parameters’ values are the same of the

SGA):
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Figure 8: Results of Elitist Genetic Algorithm

The two figures that we just saw are highly detailed, but hardly comparable as

regards to the convergence speed. So, let us concentrate on the first 20 generations

and put both the results of SGA and EGA on one graph, as shown in Figure 9:
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Figure 9: Comparison between SGA and EGA

From Figure 9 we can see that the elitist GA is a little faster in convergence than

the simple GA. This happens because the EGA preserves the best individuals and at

the beginning of the run (when there are very dissimilar individuals and many of them

do not have a good genetic code) it makes a difference. In the long run, instead, the

SGA too can reach good results, because it has the time to narrow the genetic pool

around the best individuals’ genetic codes.

After seeing this comparison, we could wonder if the crossover type makes any dif-

ference in the results of the EGA. Remember that the most common types of crossover
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available are the following ones:

• single point crossover : one crossover point is selected, binary string from begin-

ning of chromosome to the crossover point is copied from one parent, the rest is

copied from the second parent;

• two point crossover : two crossover points are selected, binary string from begin-

ning of chromosome to the first crossover point is copied from one parent, the

part from the first to the second crossover point is copied from the second parent

and the rest is copied from the first parent;

• uniform crossover : bits are randomly copied from the first or from the second

parent.

As before, we concentrate on the first 20 generations and corresponding mean fitnesses.
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Figure 10: Comparison of the three crossover methods

From Figure 10 we cannot see a significant change in the results of the three types

of crossover. If we necessarily wanted to find some difference, we could argue that the

worst crossover is the single point: in fact the red line is a slightly higher than the

other twos.
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3.8.1 - Changing population size

We have explored some algorithmics’ variations, keeping the parameters’ set unchanged.

Now we can try some parameters’ variations (like we did in the univariate function ex-

ample): we will change population size, crossover rate and mutation rate.

N.B.: For all the next tests, we will reduce num runs to 20 and num generations to

100.

We shall begin with the population size parameter. We will execute each of the

4 algorithms with these population sizes: 10 (small), 40 (medium), 70 (large). Then:

• for each population size, we will compare in a graph the results of the 4 algorithms;

• for each algorithm, we will compare in a graph the results of all population size

values.

We begin by considering the performance of the four algorithms with population

size = 10; as a first general consideration, we can say that this population is very small,

so it carries little genetic variety; probably this will take us to worse results than those

obtained with larger population sizes. The results are shown in Figure 11.
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Figure 11: Population size = 10

From Figure 11, we can see what we were expecting: the convergence towards the

comparison term (5377.88) is much slower than with population size = 40. In fact,

after 100 generations, the mean fitness of all four algorithms is far from that value.

Another thing that we can observe from this figure is the different behaviour of the

elitist algorithm with two-point crossover in comparison to the other three algorithms:

its convergence is noticeably the slowest. This could be due to the interaction of two

facts:

• the algorithm is elitist, so the two best chromosomes are preserved at each gen-

eration: in a population of 10 elements, 2 is one fifth (a lot), so there is less

shuffling of genetic codes;
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• two-point crossover preserves the genetic codes more than uniform and single

point crossover.
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Figure 12: Zoom on population size = 10

If we look more closely in the range (5380, 5395), as shown in Figure 12, we can

see that the best algorithm of the four is the elitist with uniform crossover (EGAu);

this happens thanks to the algorithm’s characterics. In fact, the uniform crossover

shuffles more randomly the genetic codes, which in a small population is fundamental

to explore a larger number of candidate solutions; on top of that, the elitism assures

that the best elements are not lost in this process.
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We have roughly already seen what happens with population size = 40; now we

have to create a graph comparable with the ones we are analysing now.
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Figure 13: Population size = 40

Figure 13 shows us that all the four algorithms have a good performance, since

they all reach a “final value” that is lower than the comparison term. To explore more

deeply the differences between the algorithms, we can look the zoomed Figure 14:
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Figure 14: Zoom on population size = 40

From Figure 14 we see clearly that there is a virtual ranking in the algorithms’

performances: from the best to the worse, we have EGA with uniform crossover (red

line), EGA with two point crossover (green line), EGA with single point crossover (blue

line) and, at last, SGA. Also in this case the EGAu turns out to be the best of the

four algorithms. Anyway, this concerns mostly the convergence speed, because they all

reach good results at the end of the 100 generations.

We can get on to population size = 70. We can expect a similar performance from

the 4 algorithms, since with a population size so large, the algorithm’s variations should
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not matter so much. Moreover, the performance should be very good, having a genetic

pool so vast. The results are shown in Figure 15.
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Figure 15: Population size = 70

Figure 15 confirms what we thought and at the same time introduces a new cue. In

fact, the performance of the four algorithms is good, like we prefigured; the convergence

speed, otherwise, is very good, but only for three of the four algorithms.

The elitist-algorithms (EGAsp, EGAtp, EGAu) convergence is quicker than the one

with population size = 40: at the 20th generation their mean fitness is already below

5380 (with population size = 40, this happened after 27 generations).
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The convergence of the non-elitist algorithm (SGA), instead, is slower. We can look

more closely at it, narrowing the graph to the range (5376, 5385).
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Figure 16: Zoom on population size = 70

We see more clearly from Figure 16 the difference of SGA with respect to the other

algorithms. The SGA’s convergence speed is firmly worse than the other three genetic

algorithms’ ones, especially if we compare this figure to Figure 14, in which the algo-

rithms’ convergences were fairly close. Why in this case the SGA moves itself away

such markedly? A possible explanation is that the SGA could be less capable (when

having such a large genetic pool available) of focusing on the very best chromosomes,
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whereas the elitists versions have precisely this distinctive ability, so they let their light

shine in circumstances like this (vast populations).

Now we can see, for each of the four algorithm, a comparison based on the three

population sizes we tried (small, medium and large). We shall begin with the simplest

of the four algorithms, that is SGA:

0 20 40 60 80 100

53
80

54
00

54
20

54
40

54
60

54
80

SGA vs Population size

generation

fit
ne

ss

small (10)
medium (40)
large (70)

Figure 17: SGA versus population size

It is evident from Figure 17 that the small population size takes the algorithm to

a seriously slower convergence than with the other two sizes. Moreover (and more
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importantly), it prevents the algorithm from reaching a good final value. As for the

relationship between the medium and the large population sizes, we can shrink the

vertical range of the graph:
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Figure 18: Zoom on SGA versus population size

From Figure 18 we see a strange behaviour: until about the 40th generation the

medium-sized algorithm is better than the large-sized one; after that, the relationship

changes and the large-sized algorithm does better than the medium-sized one. Con-

sidering that what we want is a good final result, we prefer the large-sized algorithm,

since it does better on the last stages, reaching a lower average AIC value.
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Let us pass on to the elitist algorithm with single point crossover (the one called

EGAsp in the previous graphs).
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Figure 19: EGA with single point crossover versus population size

Figure 19 resembles very much Figure 17: the performance of the small-sized algo-

rithm is far worse than the other twos, which appear very similar. In order to see the

difference between them, we have, as usual, to focus only on a small part of the y-axis.
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Figure 20: Zoom on EGA with single point crossover versus population size

In Figure 20 we can see that till the 20th generation, the two algorithms have almost

the same mean fitness; after that, though, the large-sized algorithm outperforms (in

convergence, not in “final value”) the medium-sized one.

Now, we will see the results of the elitist algorithm with two-point crossover (the

one called EGAtp in the previous graphs).
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Figure 21: EGA with two point crossover versus population size

In Figure 21 we can see the same pattern of the previous figures (17 and 19), but

with a difference:

• in Figure 17 and 19, the black line stayed always at a almost fixed small distance

from the blue and the green lines;

• in Figure 21, instead, for the first 60 generations the black line stays at a very

bigger distance, but after that it begins a descent that takes it close to the other

lines (circa at the same level of Figure 17 and 19).
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This could take us to the conclusion that the elitist GA with two-point crossover is

highly unfit with small populations. As regards to the comparison between medium-

sized and large-sized algorithm, let us develop the following comparison.
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Figure 22: Zoom on EGA with two point crossover versus population size

In Figure 22 we can see a relationship (between the two algorithm) very similar to

the one observed in Figure 18.

Finally, we shall see what the elitist algorithm with uniform crossover (called EGAu)

has to offer us.
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Figure 23: EGA with uniform crossover versus population size

Figure 23 does not present us with anything new than we already observed: small-

sized algorithm’s performance can be called “bad” compared to the other two algo-

rithms (medium-sized and large-sized). To complete this analysis about population

sizes’ and genetic algorithm’s variations, we shall see the last plot (an y-axis reduced

version of the previous one).
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Figure 24: Zoom on EGA with uniform crossover versus population size

There is not much to comment about Figure 24, too, being it alike the other ones.

Which conclusions can we derive from this analysis? A first, evident remark is this:

the larger the population, the better. In fact, with all the four genetic algorithm’s

variants, the best results were obtained with the large-sized version. Although, we can

go deeper into this issue: we can say that with very small populations the results are

not satisfactory (we remain always above the comparison term taken from the step-

wise regression of R), and this happens especially with EGAtp. Instead, the results of
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medium populations are almost as good as the large populations ones, while requir-

ing less computations to be produced. In fact, we have to take into account also the

executional length of the algorithms. Considering this, a medium population size is

probably the best trade-off between goodness of results and speed of execution.

And what about the algorithm variants? Which of them could be the best catch? Ex-

cluding from these thoughts the results obtained with the small population size (which

are not significant as they were not satisfactory), we could say that the worst algo-

rithmic variant is the SGA (which convergence is the slowest); the elitist algorithm

are instead all very good, in particular with large population sizes; when dealing with

medium population sizes the best of the three is the EGA with uniform crossover.

3.8.2 - Changing crossover rate

We have analysized all about population sizes and their relationship with some algo-

rithmic variants. Now, we will do a similar analysis in which the subject is, instead of

population size, crossover rate. Remember that the crossover rate is the probability

with which two individuals’ genetic codes are mixed to form the offspring, instead of

copying their genetic codes straight into the offspring; in other words it represents the

probability of effectively doing the crossover. As we did in the analysis of population

size, we will consider three possible values for crossover rate: 0.25 (low), 0.75 (medium,

the one we always used till now), 1.00 (high). The population size that we will use in

these tests, given our final considerations on that matter, is 40 (medium).

Let us begin with the small crossover rate:
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Figure 25: Crossover rate = 0.25

From Figure 25 we are compelled to do the same considerations that we did before:

the performance ranking between the algorithms’ variants, with a given set of param-

eters, is EGAu, EGAtp, EGAsp, SGA (in descending order). As usual, we can see this

more clearly in the following figure i.e. Figure 26:
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Figure 26: Zoom on crossover rate = 0.25

We already analyzed and commented the results obtained with the medium value

of crossover rate (0.75). Precisely, we did it in Figure 13 and 14 (where the population

size was 40 and the crossover rate 0.75). Therefore, we can get on to the high value of

crossover rate (1.00): this means that the algorithm always carries out the crossover.
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Figure 27: Crossover rate = 1.00

Apart from the usual “SGA’s convergence is slower” observation, we cannot say

much from Figure 27 (because the lines are too intertwined); reducing the vertical

range of the graph takes us to the following.
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Figure 28: Zoom on crossover rate = 1.00

Figure 28 tells us no more than what we already know: the best among the four

algorithms is the elitist one with uniform crossover, followed by the single and the two

point algorithms (which behave quite similarly); last of all comes the SGA.

Now we can compare the three crossover rate values performances on each of the

four algorithmic variants, starting with SGA.

N.B.: Since the “wider” graph doesn’t reveal much, we can skip it and get on to the

“reduced” graph:
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Figure 29: Zoom on SGA versus crossover rate

In Figure 29 we can see that the black line is always above the other two lines

(blue and green): the algorithm with a low crossover rate performs worse than the

medium and high rates’ variants. In fact, it reaches the comparison term after about

70 generations, while the other two reach that after only 40 generations (near a half!).

Moreover, the low rate algorithm does not go much below the comparison term, while

the medium and high rates ones do. From this first graph, we could infer that the

crossover is an important part of the genetic algorithm; we shall see if we can confirm

this sensation with the other three algorithmics’ variants.
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As before, we do only the “reduced graph”, but this time with the elitist GA with

single point crossover.
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Figure 30: Zoom on EGAsp versus crossover rate

From Figure 30 we can derive conclusion similar to the previous ones. In this

case, though, there is quite a difference between the medium-rated algorithm and the

high-rated one (while in the previous figure their lines were almost overlapped). The

conclusion is always that crossover is fundamental for the GA’s performance. In fact,

in this case, the best of the three variants is definitely the one with crossover rate =

1.00 (it reaches the comparison term after circa 25/30 generations). Let us pass on to
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the elitist GA with two point crossover.
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Figure 31: Zoom on EGAtp versus crossover rate

Figure 31 is very alike Figure 29, with the difference that here the black line (low

crossover rate) is closer to the other two lines (especially in the last twenty generations,

where they almost intertwine themselves).

The last algorithmic variant to analyze is elitist with uniform crossover.
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Figure 32: Zoom on EGAu versus crossover rate

This figure (Figure 32) is similar to Figure 30 and does not present any novelty.

What have we learned with this analysis? Firstly, we confirmed one conclusion

derived from the analysis on population sizes (that is, the elitist GA with uniform

crossover is the best algorithmic variant). Besides, we recognised the key role played

by crossover in genetic algorithms, since, with all algorithmic variants, a low crossover

rate made the results unsatisfactory.
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3.8.3 - Changing mutation rate

Now, we should make inquiry about mutation rate. The role of it, though, seems very

clear and transparent: the higher the rate, the worse the performance (we saw this in

the univariate function example). So there is not the need to make all the test that we

did in the previous analysis’. We can choose a single algorithmic variant and explore

mutation rate only on that algorithm. Given our former conclusions, we pick the elitist

GA with uniform crossover (EGAu), which proved to be the best algorithmic variant.

As regards to the parameters, we can opt for the ones which took to best results in

our tests with EGAu; that is 1.00 for the crossover rate and 70 for the population size

(we keep constant the number of generations to 100 and the number of runs to 20). As

mutation rates we can compare 0.1 (very high), 0.01 (high), 0.001 (medium, the one

used till now), 0.0001 (low). The results of this experiment is represented in Figure 33:
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Figure 33: EGAu versus mutation rate

With a mutation rate of 0.1 (very high) the algorithm’s performance is, as we ex-

pected, very poor; in fact, the randomness introduced in the algorithm is definitely too

much. Instead, with a mutation rate of 0.01 (high) the algorithm’s performance is not

good but at the same time it is not so bad; the green line is, indeed, not so far from

the blue and the black lines.

However, the best performances came (quite obviously) from the algorithms with

medium and low mutation rates, that is the blue and the black lines. Those two lines

are quite lower than the R’s comparison term and they are practically intertwined.
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Since they are too close to derive some conclusion, we can focus our attention on them

and enlarge the figure.
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Figure 34: Zoom on EGAu versus mutation rate

From Figure 34 we can see that there is not a lot of difference between the two per-

formances; they converge at almost the same speed and they halt at almost the same

value (5376). The only clear distinction is that the black line is much “smoother” than

the blue one, which, instead, continues to go up and down (even if a little) to the end

of the generations. Evidently, this happens because of the mutation rates values: the

lower that value, the fewer the fluctuations.
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From the latter experiment we corroborated the hypotesis that we made: the higher

the mutation rate, the worse the performance. However, we have to remember that,

as a general rule, the mutation rate cannot be 0 (or something like that), because a

little of randomness in shuffling the genetic codes can, sometimes, take the algorithm

to a better solution. In our case, though, the fitness function appears to be convex:

finding a local maximum should be equivalent to finding the global one (which should

be located in the vicinity of 5375, as regards the AIC value). Given this assumptions,

removing the mutation from the algorithm should not worsen the results: instead, they

could actually improve! This happens because what the algorithm is doing (under the

assumption of convexity) is simply ascending the gradient, and introducing randomness

in this process (when there is only the global maximum) can slow it down.

We can try this interesting experiment (executing the algorithm with a mutation rate

of 0) to prove these claims.
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Figure 35: Zoom on EGAu versus mutation rate = 0

What does Figure 35 tell us? Firstly, we can see that the algorithm without mu-

tation (the green line) has a strong and fast convergence on its “final value”, which

then maintains steadily. Then, we see that the low-mutation algorithm (the blue line)

is always worse than the no-mutation one. The medium-mutation algorithm, instead,

does sometimes better than the no-mutation one; this happens, though, because its

mean fitness values are quite fluctuating (due to mutations); so, in this case, the no-

mutation algorithm offers us more guaranties than the others, in terms of convergence
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and of stability.

3.9 - Solution’s analysis

We have thouroughly explored almost all the possible facets of GAs in variable selec-

tion using AIC criterion: we have studied four different algorithmic variants, we have

changed the population size, the crossover rate and the mutation rate. These analysis

took us to reckon:

• the Elitist GA with uniform crossover as the best algorithmic variant;

• 70 as the best population size;

• 1.00 as the best crossover rate;

• 0.00 as the best mutation rate.

With these combination of parameters we can now perform an execution (a run) of the

EGAu algorithm and store the final population: we will finally see which is the best

solution (that is, the best model) to our original problem of variable selection. Since

we need the results of only one run (we cannot do the mean of statistical models!), we

will perform different runs and take the one with the best “final value”.

The best “final value” that we have seen in all our analysis is 5375.36; so we will take

the final population of a run that terminates with that value.

The final population that we obtained with this criterion was formed by only one

type of chromosome, which is:

000000111100110000100000100

This chromosome encodes the presence (in the regression model) of the following 8

variables:
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• homeruns

• runs batted in

• walks

• strike outs

• freeagent

• arbitration

• walks / strike outs

• stolen bases * on base percentage

corresponding to the statistical model

Yi = β0 + β7xi7 + β8xi8 + β9xi9 + β10xi10 + β13xi13 + β14xi14 + β19xi19 + β25xi25 + ǫi

where ǫi (i = 1, ..., 337) are independent, identically distributed N(0, σ2) random

variables.

Now we can study in more detail this regression model via R:
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Figure 36: Summary of linear regression model

This model’s summary shows us that all the present coefficients in the regression

model are statistically significants, except for the intercept; in fact their p-values (in

the tests where H0 : βi = 0 vs H1 : βi 6= 0) are all inferior to the threshold of 0.05.

This means that each variable (taken individually) has a corresponding coefficient

statistically different from 0. The test where H0 : β7 = β8 = β9 = ... = β25 = 0 also

has a p-value highly inferior to 0.05, indicating strong evidence against null hypotesis

(H0). The adjusted R-squared of this model is 0.6882, not so bad.

To check the homoschedasticity of the standardized residuals we can produce the plot

shown in Figure 37:
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Figure 37: Standardized residuals vs Fitted values

Figure 37 shows a quite bigger variability for high fitted values: this implies that

the residual’s variance is not constant, that is the residuals are not homoschedastics.

As regard to the residuals normality, we can perform some graphical checks.
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Figure 38: Histogram of standardized residuals with normal density
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Figure 39: Boxplot of standardized residuals
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Figure 40: Normal QQ-plot

Figure 38 shows that the standardized residuals’ estimated density is not quite co-

herent with that of the normal density. In Figure 39 we see that, although the mean is

very close to zero, the boxplot has many outliers. The QQ-plot in Figure 40 is not so

good, because of the marked drift in the right tail and in the center of the distribution

compared to the expected behaviour.

On the whole, the standardized residuals’ normality does not seem much satisfac-

tory; moreover the residuals are clearly deficient as regard to their homoschedasticity.

In conclusion, the solution we found to our original problem of variable selection is a

model which do not fully satisfy the usual assumptions. To understand if the genetic

algorithms failed or if the problem is the automation of the procedure, we can dig

deeper (and we will do it in the next paragraph).
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3.9.1 - Stepwise regression and GAs in comparison

We can continue our analysis studying the model obtained with stepwise regression in

R. Let us see all the previous paragraph’s figures with data from both models (the one

obtained with GAs and the one obtained with stepwise regression in R):
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Figure 41: Standardized residuals vs Fitted values
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Figure 42: Histogram of standardized residuals with normal density
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Figure 43: Boxplot of standardized residuals
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Figure 44: Normal QQ-plot

We can see in Figure 41 that the GA’s standardized residuals and the R’s one

exhibit the same behaviour, that is, a marked heteroschedasticity. The histograms and

the boxplots, too, show great resemblance. The difference lies in the Q-Q plot: while

the GA’s qqplot presents a drift only in the right tail, the R’s qqplot presents drifts

in both tail and deviates a little in the middle of the graph too. In the end, let us see

also the summary of this regression model, shown in Figure 45.
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Figure 45: Summary of linear regression model

The model’s summary shows us that not all the regression coefficients are statis-

tically significants. In fact, three variables (plus the intercept) have a p-value higher

than the threshold of 0.05. The adjusted R-squared of this model is 0.6867, quite close

to the GA’s one.

What can we say from this comparison? That neither the linear model found by

stepwise regression was good; in fact it was almost worse than the GA’s one, as seen

in the Q-Q plot.

This happens because we are using (in both genetic algorithms and stepwise regression)

automatic procedures, which do not check at each step if the regression model that they

are examining has good statistical properties (like residuals’ homoschedasticity and
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normality of the residuals’ distribution). So we have to take their results as important

suggestions (we could not possibly examine all the subsets from a set of 27 variables!),

but we have to do it very carefully; we have to check with caution every result that is

presented to us.

Now, we could wonder: if we had used another algorithmic variant (instead of

“EGAu”) and/or another set of parameters, how would the model have been? In fact,

at the end of the 100 generations the difference of fitness amongst the variants that we

tried was not so large (except for the ones with population = 10 or with great mutation

rates). Maybe one of those variants produces a model with a little bit lower AIC value

but with better statistical properties. We can try one variant at random and see what

happens. The choices for this experiment are:

• Algorithmic variant: SGA (simple genetic algorithm);

• Population size: 40;

• Crossover rate: 0.25;

• Mutation rate: 0.001.

With this parameters’ set, we execute one run made of 100 generations. The resulting

final population of this execution was composed by these chromosomes:
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Chromosome Absolute

frequency

Relative

frequency

AIC value

001000110110110001001001100 2 0.05 5377.129

001000110110110001000001100 1 0.025 5376.048

000000110110110001001001100 1 0.025 5377.986

000000110110110001000001100 35 0.875 5376.128

000000110110110000000001100 1 0.025 5376.346

Table 13: Final population obtained with SGA

We have to pick only one regression model from this population, in order to analyze

it and compare it to the others (the one obtained from stepwise regression and the one

from EGAu). We should choose the best model, which is the one with lower AIC

(5376.048). We want to determine if the standardized residuals are heteroschedastics

and if they are normal. To do this we will have to look at the previous graphs, but

with data coming from the model that we just chose.
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Figure 46: Anaysis of regression model obtained from SGA

From Figure 46, we see nothing different in comparison to what we already analysed.

The residuals are clearly heteroschedastics and their distribution is not probably normal

(because of the drift in QQ-plot).
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Figure 47: Summary of regression model obtained from SGA

From this summary, we see that there are 4 variables (plus the intercept) which

are not statistically significants (their p-values are higher than 0.05). The adjusted

R-squared is 0.6893, a little higher than the previous ones (which were 0.6882 and

0.6867).

In conclusion, the three models that we analysed are quite similar: for sure none of

them fully satisfy the statistical assumptions. The differences are:

• the AIC values;

• the adjusted R-squared values;

• the variables’ set and the variables’ significance.
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3.9.2 - Variables’ subsets comparison

Since the problem that we are trying to solve in this chapter is variable selection,

we should examine in detail the variables’ subsets chosen by the models that we took

into account. We can give a first glance to this issue with the help of the following

table. In the table we have marked with an “X” the variables included by each model.

In this way, it is easy to see which variables are included in all the three models (those

variables are highlighted in yellow) and which are not. The bold variables are those

not significant in the model to which they belong.
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Variable number Stepwise model (A) EGAu model (B) SGA model (C)

1

2

3 X X

4

5

6

7 X X X

8 X X X

9 X

10 X X X

11 X

12

13 X X X

14 X X X

15

16

17

18 X X

19 X

20

21

22

23

24 X X

25 X X

26 X

27

Table 14: Variables subsets’ comparison
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First of all, how many variables are included by each model? The model from

stepwise regression has 9 variables, the one from EGAu has 8 variables, and the one

from SGA has 10 variables.

Then, Table 14 shows us that there are 5 variables which are present in all of the three

models:

• x7 (homeruns)

• x8 (runs batted in)

• x10 (strike outs)

• x13 (eligible for free agency)

• x14 (eligible for arbitration)

Very likely, this happens because those five variables are very explicative and are nec-

essary to model the relationship between baseball players’ statistics and their salary.

As regards the other variables (the ones which are not present in all models), what

can we say? Many of them (a half, to be more precise) are present in two of the three

models, which could mean that their role is important, but not fundamental. Here are

some considerations about those variables and their potential correlation with other

variables.

• The variable x3 is present in models A and C; in B, instead, there is x9 (not

present in A and C) which is highly correlated to x3 (correlation value = 0.82);

therefore we can consider that all the three models have a component which is

represented by x3 in models A and C and by x9 in model B.

• A similar remark can be made about x11 and x25/x26: in fact, x11 is present

only in model C; though, this variable is very strongly correlated to both x25 and

x26 (the correlation values are, respectively, 0.99 and 0.95). Model A includes

x26, while model B includes x25; so, also in this case, we can say that all the
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models have in common a component which is represented by x26 in A, by x25

in B and by x11 in C.

• The model C seems to contain a redundancy, because it includes both x11 and

x25 (which correlation value is, as we said earlier, 0.99).

• The variable x18 is present in models A and C but it does not have a “substitute”

in model B; in fact x18 is highly correlated only to x16, a variable which cannot

be found in any of our models.

• The same goes for x19: it is included only in model B and there are not variables

greatly correlated to it.

• The last variable to discuss is x24, which is in model A and C but not in B; this

variable is highly correlated only to x12 (0.83), but x12 is not in model B (nor

in A, nor in C).

• All the variables which can be found in models A and C but not in B (except for

x26) are not statistically significant in their regression model. Maybe this is the

reason for model B being the one with lower AIC: model B is the only one with

variables that are all significant.

These considerations reinforce the thought that these models are very alike; in fact

about a half of their variables are in common (x7, x8, x10, x13, x14), while a lot of the

other variables of each model are strongly correlated with a variable of the other two

model.

This resemblance amongst the models could explain why their AIC values were not

markedly different: in fact there exists a rule of thumb which says that two models

which AIC values differs no more than 2 are to be considered equally good.
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Chapter 4 - Maximization of

skew-normal’s likelihood

In this chapter, we are going to see a likelihood maximization problem.

Maximum likelihood estimation (MLE) is a popular statistical method used to make

inferences about parameters of the underlying probability distribution from a given

data set.

Commonly, one assumes the data are independent, identically distributed (i.i.d.) drawn

from a particular distribution with unknown parameters and uses the MLE technique

to create estimators for the unknown parameters.

The method was pioneered by geneticist and statistician Sir R. A. Fisher between 1912

and 1922.

4.1 - The skew-normal distribution

4.1.1 - A very brief history

The skew-normal (SN, hereafter) distribution is an extension of the normal (Gaus-

sian) probability distribution, allowing for the presence of skewness. This distribution,

originally introduced by Roberts (1966), was named and formally defined by Azzalini

(1985, 1986). After that, it has been generalized to the multivariate case by Azza-

lini and Dalla Valle (1996), and Azzalini and Capitanio (1999), who also explored its

statistical properties.
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4.1.2 - Formulation of the univariate form

The random variable X is said to have a scalar SN(Λ) distribution if its density function

is:

φΛ(x) =
2

λ2

φ(
x − λ1

λ2

)Φ(λ
x − λ1

λ2

)

where:

• Λ = (λ, λ1, λ2)
T ;

• −∞ < λ, λ1 < ∞, 0 < λ2 < ∞;

• φ denotes the standard Normal (Gaussian) density function, while Φ denotes its

distribution function;

• the λ parameter is called the shape parameter, while λ1 and λ2 are respectively

called location and scale parameters;

• the shape parameter regulates the distribution’s skewness, which is positive when

λ > 0 and negative when λ < 0: in fact, if the sign of λ changes, the density

is reflected on the opposite side of the vertical axis; as λ increases (in absolute

value), the skewness of the distribution increases.

Note that:

• when λ = 0 the skewness vanishes, and we obtain the standard Normal density;

• when λ → ∞ the density converges to the so-called half-normal (or folded nor-

mal) density function.

The skew-normal distribution is often useful to fit observed data with “normal-like”

shape of the empirical distribution, but with lack of simmetry. Some applications are:

estimation of stochastic frontiers, non-random sampling problems, censoring on normal

variates, graphical modelling, Bayesian analysis, portfolio selection of financial assets

and detection of skewness in stock returns.
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4.1.3 - Examples of the univariate form

We can look at graphs of the SN density function, with some parameters’ variations,

to better comprehend their role.

Figure 48: Density function of

SN(Λ) where Λ = (5, 0, 1)T

Figure 49: Density function of

SN(Λ) where Λ = (−5, 0, 1)T

From Figure 48 and 49 we can see what happens when changing the sign of λ: the

density is reflected on the opposite side of the vertical axis.

Figure 50: Density function of

SN(Λ) where Λ = (5, 0, 1)T

Figure 51: Density function of

SN(Λ) where Λ = (5, 0, 3)T
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From Figure 50 and 51 we can see what happens when increasing the value of λ2:

the density is spread on a larger area (it is less concentrated).

Figure 52: Density function of

SN(Λ) where Λ = (5, 3, 1)T

Figure 53: Density function of

SN(Λ) where Λ = (5,−3, 1)T

From Figure 52 and 53 we can see what happens when changing the value of λ1:

the density is traslated towards the new location value.

4.1.4 - Likelihood and Log-Likelihood functions

Since our purpose is to maximize the likelihood function of the SN distribution, it is

time to start looking at it. The likelihood function, LΛ, is defined as (remember we

are always talking about the univariate case):

LΛ = LΛ(x1, ..., xn; Λ)

= 2nλ−n
2

n∏

i=1

φ(
xi − λ1

λ2

)Φ(λ
xi − λ1

λ2

)

Since the above expression is not suitable for our purposes, we will work on the nat-

ural logarithm of the likelihood function, that is, the so-called log-likelihood function.

The derivation of that function is showed here:
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lΛ = log LΛ(x1, ..., xn; Λ)

= log(2n) + log(λ−n
2 ) +

n∑

i=1

log(φ(
xi − λ1

λ2

)Φ(λ
xi − λ1

λ2

))

= n log(2) − n log(λ2) +
n∑

i=1

log(φ(
xi − λ1

λ2

)) +
n∑

i=1

log(Φ(λ
xi − λ1

λ2

))

= n log(2) − n log(λ2) +
n∑

i=1

log(
e−

(
xi−λ1

λ2
)2

2√
2π

) +
n∑

i=1

log(Φ(λ
xi − λ1

λ2

))

= n log(2) − n log(λ2) +
n∑

i=1

−
(xi−λ1

λ2
)2

2
−

n∑

i=1

log
√

2π +
n∑

i=1

log(Φ(λ
xi − λ1

λ2

))

= n log(2) − n log(λ2) − n log
√

2π − 1

2

n∑

i=1

(
xi − λ1

λ2

)2 +
n∑

i=1

log(Φ(λ
xi − λ1

λ2

))

We can exclude from the last expression the elements which do not depend on

parameters. In fact, we are trying to maximize the function with respect to Λ, so the

summed elements not depending on any of the three parameters (λ, λ1, λ2) can be

removed. In particular, we can take out n log(2) and −n log
√

2π. Thus we obtain:

lΛ = log LΛ(x1, ..., xn; Λ)

= −n log(λ2) −
1

2

n∑

i=1

(
xi − λ1

λ2

)2 +
n∑

i=1

log(Φ(λ
xi − λ1

λ2

))

= −n log(λ2) −
1

2

n∑

i=1

(zi)
2 +

n∑

i=1

log(Φ(λzi))

where zi =
xi − λ1

λ2

.

4.1.5 - Problems of the likelihood function

Since 1985 (year of the Azzalini’s pioneering paper) it has been known that the esti-

mation of the SN distribution’s parameters is far from easy. In particular, there are

two big problems:
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• the profile likelihood function for λ has an inflection point at λ = 0, independently

of the observed sample; correspondingly, at λ = 0 the expected Fisher information

becomes singular.

• the likelihood function itself can be problematic: its shape can be far from

quadratic, even when λ is not near 0.

The singularity of the information matrix can be resolved with a different parametriza-

tion: see Azzalini (1985), Pewsey (2001) and Chiogna (2005). However, the MLE

(maximum likelihood estimator) evaluation and the likelihood shape remain largely

problematic; not even the method of moments gave satisfactory results.

4.2 - An interesting dataset

We will take into consideration the challenging dataset available at:

http://azzalini.stat.unipd.it/SN/frontier.dat.

This dataset contains n = 50 simulated data-points from a SN(5, 0, 1). It could seem

an innocuous dataset, but it is not: the maximum likelihood estimate of λ is infinite.

No other frequentist method seems to work on this dataset; the Bayesian approach

conducted by Lisero and Coperfido in 2002 brought to an estimate for λ of about 2.1

(quite far from the true one, 5). As Azzalini and Capitanio state about the divergence

of λ̂ (1999): “...The source of this sort of anomaly is easy to understand in the one-

parameter case with λ1 and λ2 known; λ1 = 0 and λ2 = 1, say. If all sample values

have the same sign, the final term of log-likelihood increases with ±λ, depending the

sign of the data but irrespective of their actual value.” “... When all three parameters

are being estimated, the explanation of this fact is not so clear, but it is conceivable

that a similar mechanism is in action.”.

What we are asking ourselves is: how will GAs act in this very difficult context? Could

they give us some help solving this problem? Could they at least clue us in when a

dataset presents these anomalies? We are going to answer to these questions.
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4.3 - Problem’s definition

As we already said before, the genetic algorithm depends on only two things, which

are the chromosomes’ encoding (that is the relationships between chromosomes and

candidate solutions) and the fitness function.

4.3.1 - Chromosomes’ encoding

First of all, we have to distinguish between two different cases:

1. maximizing the log-likelihood function with respect to all three parameters (λ,

λ1, λ2);

2. maximizing the log-likelihood function with respect to only one parameter (λ),

while keeping the other two at their true value (λ1 = 0, λ2 = 1).

The two cases will require different encoding; however they will be based on the same

notion, which we already saw in Chapter 2 (while maximizing the simple univariate

function).

The notion at issue is: each considered parameter will be represented by a certain

number of bits. The i-th bit of the bit string will contribute to the parameter’s pro-

visional value with an addend of either 0 or 2−i depending on its value (respectively

0 or 1). Thus, the bit string will encode values in the range [0, 1). From this range

we can obtain a value in any other desired range; suppose that the range we want the

parameter to belong to is (rangeMin, rangeMax). Then it is sufficient to apply this

formula (the parameter’s provisional value is represented by x, where x ∈ [0, 1)):

parameter’s final value = x ∗ (rangeMax − rangeMin) + rangeMin

Let us see an example of this encoding. Suppose that we want λ ∈ (−10, +10) and

that we represent λ with a string made of 7 bits. A possible bit string is then:

1011101
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This bit string takes us to the provisional value of:

1 ∗ 2−1 + 0 ∗ 2−2 + 1 ∗ 2−3 + 1 ∗ 2−4 + 1 ∗ 2−5 + 0 ∗ 2−6 + 1 ∗ 2−7 = 0.7265625

Then we apply the formula we saw before:

0.7265625 ∗ (10 − (−10)) + (−10) = 0.7265625 ∗ 20 − 10 = 4.53125

So, the bit string encoded the parameter value of 4.53125.

What is the precision of this kind of representation? We can compute it with a simple

formula:

p = 2−k ∗ w

where:

• p = precision of the representation = distance between two contiguous values;

• k = number of bits used in the encoding;

• w = range’s wideness = rangeMax − rangeMin.

In the example we just saw, the precision is:

p = 2−7 ∗ [10 − (−10)] = 2−7 ∗ 20 = 0.15625 ∼= 0.16

In the case of only one parameter to optimize, the chromosome is simply the bit

string which encodes its value. In the case of multiple parameters to optimize (three

in our case), the chromosome is the assembly of the three bit strings in a single string.

For example, if we use 7 bits for λ, 5 for λ1 and 5 for λ2, we will have chromosomes

made of 17 (7 + 5 + 5) bits.

4.3.2 - Fitness function

Once we have decoded a chromosome into the parameters’ values that it represents, cal-

culating the fitness value is very simple. In fact, the fitness function is the log-likelihood
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function (in particular we will use the final formulation obtained in paragraph 4.1.4).

We only have to insert the parameters’s values (encoded by the chromosome at issue)

into that formulation. The result of this computation will be the fitness value of that

chromosome.

If we are in the case of optimizing one parameter, the procedure is very similar; the

only difference is that the fitness formulation includes the fixed values of the other two

parameters and that the chromosome represents only one parameter’s value.

N.B.: When the parameters assume certain values, the fitness function goes to −∞.

If that happens, the fitness value is set to -10000.

4.4 - Results

We have defined all that we need to execute the algorithm, except for the decisions of:

• which algorithmic variant to use;

• which parameters’ values to use.

The algorithmic variant we will make use of is the elitist GA with uniform crossover

(“EGAu”). In fact, in Chapter 3, EGAu has been proven to be the best of all the

variants we tried.

As regards to the parameters’ values, they will be the following:

• number of generations = 200;

• population size = 100;

• crossover rate = 0.75;

• mutation rate = 0.001.
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In this problem we will not make changes to the parameters’ values or to the

algorithmic variant. In fact, the problem at issue is very difficult and it provides

enough interesting cues.

4.4.1 - The “one parameter” case (λ, 0, 1)

We shall begin with maximizing the log-likelihood function with only one parameter

unknown (λ). As for λ1 and λ2, we will use their “true” values (respectively, 0 and 1).

Now, we have to choose a range for the values of λ (remember our encoding process).

Since we should not have any knowledge of the λ value, we have to consider a range

with both positive and negative values. In particular, we can begin with the range

(−10, +10).

The number of bits with which we represent λ is 10. Therefore the distance between

two contiguous values is 0.02 ∼= 0.01953125 ( 2−10 ∗20, where 20 is the range wideness).

All is set: we have only to execute the algorithm. In particular, we will execute

10 runs, just to be sure to avoid taking wrong conclusions because of the randomness

role.

The results are shown in the following table. The first column contains the index

of the run. The second column contains the value of the highest fitness reached during

that run. The third column contains the value of λ that produced that value of fitness

during that run (so we can call it “the best λ”).
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Run Best fitness Best λ

1 −39.8135 6.54297

2 −39.8135 6.54297

3 −39.8135 6.54297

4 −39.8135 6.54297

5 −39.8135 6.5625

6 −39.8135 6.54297

7 −39.8135 6.54297

8 −39.8135 6.54297

9 −39.8135 6.54297

10 −39.8135 6.54297

Table 15: Results of the 10 runs

We can make some considerations about the results shown in Table 15:

• the runs were all successful: none of them gave strange results and all of them

reached the exact same value of fitness (that is, of log-likelihood);

• the “best λs” are all the same, except for the fifth one, which is only “a bit away”

from it. In fact their distance is 6.5625 − 6.54297 = 0.01953 ∼= 0.02, that is the

minimum possible distance (in our codification) between two values. However,

they reach the same value of fitness, so they can be considered equivalent.

• the value that the GA found for λ is 6.54. This result is good. In fact, the true

value was 5 and we are not so far from it.

Moreover, to see if the GA found the global maximum in the fitness function, we

can look at a plot of the latter.

N.B.: We can do this only in this case, that is, when one parameter is unknown.
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Obviously, in the next paragraph, when we shall talk about the “three-parameter

case”, we will not be able to do the same.

−10 −5 0 5 10

−
35

00
−

25
00

−
15

00
−

50
0

0

Log−likelihood function

lambda

lo
gl

ik
el

ih
oo

d

Figure 54: Log-likelihood function of SN(Λ) where Λ = (λ, 0, 1)T

Figure 54 seems to tell us that the values of λ in range (0, 10) take to equivalent

values of log-likelihood. The plot, though, is inaccurate, since its y-axis starts from

-3500 and we know that the “interesting” values are around -39. Thus, we can make

another plot, zoomed on that area.
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Figure 55: Zoom on log-likelihood function of SN(Λ) where Λ = (λ, 0, 1)T

In Figure 55 we see more clearly that the function has effectively one global max-

imum located in the proximity of 6.5. The red line represents the best fitness value

found by the GA (-39.8135). This shows us the precision of the GA in finding the

maximum. We have to remember, though, that this was a simple problem for the GA,

since there was only one parameter to optimize.

Now, we can proceed in two directions before passing on to the “three parameters

case”:

• see what happens changing the precision of the representation (that is, increas-

ing/decreasing the number of bits of the chromosomes);

• see what happens changing the range in which to optimize the parameter λ.
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4.4.1.1 - Changing precision

It could be interesting to see both what happens increasing and decreasing the pre-

cision of our chromosomes representation. We shall begin increasing the precision.

Theoretically, this could improve our solution or it could have no effect at all; anyway,

it should not worsen the results.

Let the chromosomes be made of 20 bits. The distance between two contiguous values

is then 0.00002 ∼= 0.000019073486328125 (2−20 ∗ 20).

The results are shown in the following table (we reduced the number of runs to 5).

Run Best fitness Best λ

1 −39.8135 6.54392

2 −39.8135 6.54667

3 −39.8135 6.54758

4 −39.8135 6.54646

5 −39.8135 6.55230

Table 16: Results of the 5 runs with increased precision

Table 16 shows us that the results are not changed. In fact, the λ values are slightly

different from the ones of Table 15, but, despite this, the corresponding fitness values

are always the same.

Let us see now what happens by decreasing precision. In particular, we will use

chromosomes 5-bits long, thus reaching a distance between contiguous values of 0.625

(2−5 ∗ 20). The results are shown in the following table (the number of runs is 5).
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Run Best fitness Best λ

1 −39.819 6.25

2 −39.819 6.25

3 −39.819 6.25

4 −39.819 6.25

5 −39.819 6.25

Table 17: Results of the 5 runs with decreased precision

Table 17 shows us that decreasing like that the precision of the candidate solutions

takes to slightly worse result. In fact, the fitness value has fallen from -39.8135 to

-39.819, and the best λ found is 6.25. In this case the difference is not so relevant, but

we will have to be more careful when optimizing three parameters at once.

4.4.1.2 - Changing range

Now we will see what happens on changing the range in which to optimize the param-

eter.

Firstly, we can reduce the wideness of the range, leaving out of it the optimal value

found in the previous tests. In particular, we shall use the range (−5, +5) and chromo-

somes 10-bits long. Thus the distance between contiguous values is 0.01 ∼= 0.009765625

(2−10 ∗ 10).

The result are shown in the following table.
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Run Best fitness Best λ

1 −40.0007 4.99023

2 −40.0007 4.99023

3 −40.0007 4.99023

4 −40.0007 4.99023

5 −40.0007 4.99023

Table 18: Results of the 5 runs with decreased range’s wideness

Table 18 shows us that the GA finds, as the optimal value, 4.99. That value is the

closest, in the employed range, to the previous optimal value (6.54). We could have

been expecting a similar behaviour, since the log-likelihood function increases until it

reaches the proximity of 6.5 and then starts decreasing. The GA has, as always, found

the maximum in the data which we gave to it.

Let us now increase the range. We will make use of the range (−40, +40) and of

chromosomes 20-bits long. The distance between two contiguous values is, in this case,

0.00008 ∼= 0.0000762939453125 (2−20 ∗ 80).

Run Best fitness Best λ

1 −39.8135 6.54549

2 −39.8135 6.54335

3 −39.8135 6.54549

4 −39.8135 6.55365

5 −39.8135 6.54953

Table 19: Results of the 5 runs with increased range’s wideness

Table 19 shows that the GA is not confused by the wideness of the range. It goes

straight to the optimal value for the parameter, which is, we repeat it, in the proximity
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of 6.54.

Now that we have explored those two directions, we can pass on to the “three

parameters” case.

4.4.2 - The “three parameters” case (λ,λ1,λ2)

For “three parameters” case we mean the maximization of the log-likelihood with re-

spect to all three parameters at issue (λ, λ1, λ2). The interactions amongst the values

of the three parameters make the problem exponentially more difficult.

To be more clear, hereafter we will make use of a table to show the precision of each

parameter and the range in which each parameter is considered. A prototype of such

table is the following.

Parameter Range min Range max Bits Distance

λ min max bits 2−bits ∗ (max − min)

λ1 min1 max1 bits1 2−bits1 ∗(max1−min1)

λ2 min2 max2 bits2 2−bits2 ∗(max2−min2)

Table 20: Schema of the parameters’ table

Table 20 shows us how we will represent the data concerning the three parameters.

For each experiment that we shall make with the algorithm, we will propose a similar

table containing the actual values used during that execution of the GA.

We can start making use of such a table right now, for the first test.
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Parameter Range min Range max Bits Distance

λ −10 +10 11 0, 009765625

λ1 −5 +5 10 0, 009765625

λ2 +0.01 +5 9 0, 009765625

Table 21: Parameters’ table

N.B.: The range-min for λ2 is 0.01 instead of 0 to avoid computing log(0).

We shall execute 10 runs of the GA. The results are shown in the following table.

Run Best fitness Best λ Best λ1 Best λ2

1 −38.6061 7.58789 0 1.16004

2 −38.0434 9.99023 −0.0878906 1.2575

3 −38.0267 9.36523 −0.0585938 1.18928

4 −38.0356 9.99023 −0.078125 1.2575

5 −38.0356 9.99023 −0.078125 1.2575

6 −38.6061 7.58789 0 1.16004

7 −38.0369 9.98047 −0.078125 1.2575

8 −38.9200 8.26172 0 1.2575

9 −38.0356 9.99023 −0.078125 1.2575

10 −38.0434 9.99023 −0.0878906 1.2575

Table 22: Results of the 10 runs

Here comes the problem that we anticipated in paragraph 4.1.5. We can see from

Table 22 that the highest value of fitness found in the 10 runs is approximately -38.03.

This value, besides being quite higher than the one found in the “one parameter” case

(−39.8135), corresponds to a strange triplet of parameters’ values. In fact, the λ value

associated to the higher fitnesses is very close to the upper bound of the considered
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range. These values go from 9.36523 to 9.99023.

These results urge a question: what would happen if we moved the upper bound of the

range? We shall answer right now. Let us consider the following parameters’ table.

Parameter Range min Range max Bits Distance

λ 0 20 11 0, 009765625

λ1 −5 +5 10 0, 009765625

λ2 +0.01 +5 9 0, 009765625

Table 23: Parameters’ table

The only difference between Table 23 and 21 is the range in which to optimize λ.

The results obtained by the algorithm are showed in the following table (we made 5

runs).

Run Best fitness Best λ Best λ1 Best λ2

1 −37.3354 19.9902 −0.107422 1.2575

2 −37.3490 19.9902 −0.0976563 1.2575

3 −37.3354 19.9902 −0.107422 1.2575

4 −37.3358 19.9805 −0.107422 1.2575

5 −37.3369 19.9512 −0.107422 1.2575

Table 24: Results of the 5 runs

It happened what we were expecting: this time the optimal λ value found is 19.99,

which means on the edge of the range. The values of λ1 and λ2 are, respectively, -0.1

and 1.26, not far from the true ones. The problem is that the λ value is going very far

from the true one: we can move the range indefinitely (towards +∞) and the optimal

value would always be on the upper bound of the range.
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The algorithm, though, does what it is supposed to do: it maximizes the log-

likelihood value, which effectively increase while increasing the value of λ. While in

the “one parameter case” the maximum log-likelihood value was -39.8135, now we have

a value of about -37.3, which is better (though not substantially).

Now, it could be interesting to see intermediate cases, which means setting the

value of one parameter to its true value and maximizing the log-likelihood function

with respect to the other two parameters. We could call this the “two parameters

case”. In particular we could consider two situations:

1. λ and λ1 unknown, λ2 fixed to its true value;

2. λ and λ2 unknown, λ1 fixed to its true value;

We shall not consider the situation with λ fixed to its true value, because that is the

most interesting parameter and the one which diverges to +∞.

4.4.3 - The “two parameters” case (λ,λ1,1)

We shall begin seeing the usual parameters’ table. In this case, though, λ2 is excluded

from the table, since we fixed it to its true value (that is, 1).

Parameter Range min Range max Bits Distance

λ −10 +10 11 0, 009765625

λ1 −5 +5 10 0, 009765625

Table 25: Parameters’ table

The results of the GA’s execution are shown in the following table.
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Run Best fitness Best λ Best λ1

1 −39.8135 6.54297 0

2 −39.7731 9.99023 −0.0488281

3 −39.8135 6.54297 0

4 −39.8135 6.5625 0

5 −39.7731 9.99023 −0.0488281

6 −39.8135 6.54297 0

7 −39.7757 9.46289 −0.0390625

8 −39.7739 9.95117 −0.0488281

9 −39.7759 9.55078 −0.0390625

10 −39.7855 8.16406 −0.0292969

Table 26: Results of the 10 runs

From Table 26 we can see an evident pattern and we can make some considerations.

• When the optimal value found for λ1 is 0, then the optimal value found for λ is

about 6.5 (like in the “one parameter case”). We have another confirm that with

λ1 = 0 and λ2 = 1 the log-likelihood function exhibits an appropriate behaviour.

• When the optimal value of λ1 is less than 0 (about -0.049), then the optimal

value found for λ goes to 9.99 (which is the upper bound of the range).

• The fitness function assumes a higher value when λ ∼= 9.99 and λ1
∼= −0.05 than

when λ ∼= 6.5 and λ1 = 0. This means that the best solution found by the

algorithm, throughout all the runs, has the λ value at the upper bound of its

range.

To better comprehend why the algorithm has found multiple solutions to this prob-

lem, we can look at a plot. In this plot we will draw the log-likelihood function for

three values of λ1, while λ2 will be fixed to 1 and λ will vary in the range (5, 10).
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Figure 56: Log-likelihood function of SN(Λ) where Λ = (λ, λ1, 1)T

In Figure 56 we can see that, when λ ∈ (−10, +10), the curves with λ1 = 0 and

λ1 = −0.05 have their maximums located at almost the same value (about −39.8).

This is why in some runs the GA founds the solution (6.5, 0) and in other runs it

founds the solution (9.99,−0.05).

Now we can move forward the range of λ to see what happens. The parameters’

table for the following execution of the algorithm is shown in Table 27.

Parameter Range min Range max Bits Distance

λ 0 +20 11 0, 009765625

λ1 −5 +5 10 0, 009765625

Table 27: Parameters’ table
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The results of the GA’s execution are shown in the following table.

Run Best fitness Best λ Best λ1

1 −39.7563 19.9902 −0.0878906

2 −39.7599 16.4648 −0.0781250

3 −39.7562 13.9844 −0.0683594

4 −39.7589 12.1777 −0.0585938

5 −39.7589 12.1875 −0.0585938

6 −39.7562 13.9844 −0.0683594

7 −39.7563 19.9902 −0.0878906

8 −39.7562 13.9746 −0.0683594

9 −39.7563 19.9902 −0.0878906

10 −39.7562 13.9844 −0.0683594

Table 28: Results of the 10 runs

As Table 28 shows, in this case, the GA has found a different solution in almost

every run. Despite that, the fitness values are very similar: they are all in the proximity

of −39.76.

Why does this happen? Because log-likelihood functions based on different λ1 values

reach their maximum with a different λ value. Moreover, in this particular range, some

of these maxima reach almost the same “height”, as proved by the fitness values. In

other words, in this situation there are more global maxima, so the algorithm finds

each time a different result. To assess these considerations, we can plot the fitness

function for some of the optimal λ1 values found, with λ ∈ (10, 20).
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Figure 57: Log-likelihood function of SN(Λ) where Λ = (λ, λ1, 1)T

As we anticipated, Figure 57 shows that the three loglikelihood functions plotted

reach almost the same value, with very different λ values (respectively about 13.98,

16.46 and 19.99).

In conclusion, it could seem that fixing λ2 eliminates the problem of λ’s divergence

to +∞. To be absolutely sure about this, let us do another test. In this test the

wideness of λ’s range will be severely increased, as shown in the following parameters’

table.
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Parameter Range min Range max Bits Distance

λ 0 +80 13 0, 009765625

λ1 −5 +5 10 0, 009765625

Table 29: Parameters’ table

The results of this test are shown in the following table (only 5 runs were performed).

Run Best fitness Best λ Best λ1

1 −39.135 79.9902 −0.107422

1 −39.135 79.9902 −0.107422

1 −39.135 79.9902 −0.107422

1 −39.135 79.9902 −0.107422

1 −39.135 79.9902 −0.107422

Table 30: Results of the 5 runs

From Table 30 it is clear that fixing λ2’s value does not prevent the divergence of

λ, it only delays its appearance.

We can pass on to the last case that we have chosen to examine.

4.4.4 - The “two parameters” case (λ,0,λ2)

Again, we shall begin seeing the parameters’ table. In this case λ1 is excluded from

the table, since we fix it to its true value (that is, 0).
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Parameter Range min Range max Bits Distance

λ −10 +10 11 0, 009765625

λ2 0.01 +5 9 0, 009765625

Table 31: Parameters’ table

The results of the 10 performed runs are shown in the following table.

Run Best fitness Best λ Best λ2

1 −38.6061 7.59766 1.16004

2 −38.6061 7.59766 1.16004

3 −38.6061 7.59766 1.16004

4 −38.6066 7.49023 1.16004

5 −38.6061 7.58789 1.16004

6 −38.6061 7.59766 1.16004

7 −38.6063 7.65625 1.16004

8 −38.6061 7.59766 1.16004

9 −38.6066 7.49023 1.16004

10 −38.6067 7.48047 1.16004

Table 32: Results of the 10 runs

Table 32 gives rise to some considerations.

• With the parameters’ table shown in Table 31, the optimal value of λ2 is clearly

1.16004. In fact, all the 10 runs found exactly the same value.

• The optimal values for λ range from 7.48 to 7.66 (values that are not too distant

from the real λ value, that is, 5).
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• The fitness values reached by the 10 runs are almost the same, all of them in

proximity of −38.6.

Does λ’s optimal value diverge to +∞ also in this case? We shall answer right now

to this question, doing a test with a quite wide range for λ, as shown in the following

parameters’ table.

Parameter Range min Range max Bits Distance

λ 0 +80 13 0, 009765625

λ2 0.01 +5 9 0, 009765625

Table 33: Parameters’ table

The results of this experiment are shown in the following table.

Run Best fitness Best λ Best λ2

1 −38.6233 8.12500 1.15029

2 −38.6066 7.49023 1.16004

3 −38.6073 7.76367 1.16004

4 −38.6061 7.58789 1.16004

5 −38.6091 7.55859 1.15029

6 −38.6061 7.59766 1.16004

7 −38.6066 7.49023 1.16004

8 −38.6066 7.49023 1.16004

9 −38.6061 7.58789 1.16004

10 −38.6061 7.58789 1.16004

Table 34: Results of the 10 runs

From Table 34 it is clearly visible that in this case (λ1 fixed to 0) the optimal value

for λ does not diverge to +∞.
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Thus we can say, with quite certainty, that fixing the λ1 value to its true one (0) the

MLE for λ and λ2 is ( ∼= 7.5, 1.16004 ), with a loglikelihood value of −38.6061.

4.4.5 - Summary

Let us briefly recap the results of all the tests that we made.

• Λ = (λ, 0, 1)T : the MLE for λ found by the GA is 6.54.

• Λ = (λ, λ1, 1)T : the MLE for λ diverges to +∞.

• Λ = (λ, 0, λ2)
T : the MLEs for λ and λ2 are, respectively, ∼= 7.5 and 1.16004.

• Λ = (λ, λ1, λ2)
T : the MLE for λ diverges to +∞.

4.5 - A method to acknowledge the problem

We have seen that in the “three parameters” case (that is, the most interesting one)

there is no way to stop the divergence of λ’s estimate. In fact, the log-likelihood con-

tinues to increase while increasing the value of λ. The GA (which should maximize the

log-likelihood) does its job and, by doing so, it founds the λ’s value which corresponds

to the higher log-likelihood. That value, though, changes each time we move its range.

Thus, it seems that we cannot solve the problem at all. Is there something that

we (with the help of a GA) can do? We could find a method to tell the user of this

GA that there is a problem in the dataset. Said in other words: if we cannot solve the

problem, we can, at least, warn that there is a problem.

How can we accomplish this task? With a “sliding-ranges” system. Let us explain

how this method works:

1. we fix the initial ranges for λ, λ1, λ2 in which the GA has to maximize the log-

likelihood. In general, since we should not know the true values of the parameters,

reasonable ranges are:
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• ( -10, +10 ) for λ;

• ( -5, +5 ) for λ1;

• ( 0.01, +5 ) for λ2.

2. we store the centers of the three ranges in the variables c, c1, c2 (with the above

choice of the ranges, these variables would, respectively, assume the values 0, 0,

2.495); we also store the wideness of the ranges (20, 10, 4.99);

3. we execute the algorithm for r runs and we store the best values that it finds in

each run (let us call them λ̂i, λ̂i
1, λ̂

i
2, where i is the index of the run);

4. we compute the mean values: λ =
1

r

r∑

i=1

λ̂i, λ1 =
1

r

r∑

i=1

λ̂i
1, λ2 =

1

r

r∑

i=1

λ̂i
2;

5. we assign the new centers of the ranges: c′ = λ, c′1 = λ1, c′2 = λ2;

6. if |c′−c| < widenessRange

m
and |c′1−c1| < widenessRange1

m
and |c′2−c2| < widenessRange2

m
:

STOP. The parameters’ estimates are steady.

7. if the previous conditions have failed, then assign the new values for the ranges’

centers (c = c′, c1 = c′1, c2 = c′2); the ranges have been translated;

8. goto 3.

This algorithm is repeated for no more than k times (that is, the ranges can be

moved at most k times). The value for k is decided by the user of the GA, as well as

the value of r.

The possible outcomes of such method are the following:

• the algorithm stops itself before completing k steps. This means that it has found

the parameters’ optimal values and that they are stable.

• the algorithm stops itself after the k − th step. This means that the ranges

continued to be moved and that the optimal values for the parameters have not

been reached. This could happen for three reason:
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1. the steps (k) were too few and the algorithm could not reach the parameters’

optimal values. This situation can be easily fixed by increasing k and re-

executing the algorithm.

2. there are not optimal values, probably because λ’s estimate diverges to +∞.

In this case, no fixing is possible.

3. the demanded precision was too much: we refer in particular to the value of

m, which influences the termination condition. If we use a value too high

for m, the algorithm could not stop itself, although it founds approximately

the same values in each step. For simplicity, suppose we are optimizing only

one parameter (λ, for example); if widenessRange = 20 and m = 200, then

the termination condition is |c′ − c| < 20
200

= 0.1. Then, if in one step the

GA founds 6.5 as the optimal value for λ, and in the following step it founds

6.7, the GA will not stop, because |c′ − c| = |6.5 − 6.7| > 0.1.

A similar situation could present itself if r is too low: then the randomness

(which, remember, has a very important role in the GAs) could prevent the

algorithm’s termination.

4.5.1 - Sliding-ranges method applied to our problem

We have explained the method; now it is time to try it. Firstly, we will apply the

method to our problem, which is represented by the frontier dataset. We know that

maximizing the log-likelihood with respect to all three parameters takes to the di-

vergence of λ’s value. Thus, our method should execute all the scheduled steps and

terminate with the message “There is a problem in your dataset”.

The parameters we are going to give to our method are:

• k = number of steps = 10;

• r = number of runs per step = 5;

• initial range for λ = (-10, 10), that is, c = 0 and widenessRange = 20;
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• initial range for λ1 = (-5, 5), that is, c1 = 0 and widenessRange1 = 10;

• initial range for λ2 = (0.01, 5.01), that is, c2 = 2.495 and widenessRange2 = 5;

• m = 100.

The parameters of the GA (number of generations, population size, crossover rate,

mutation rate) are always the same.

The results of this experiment are shown in the following table. For simplicity, we will

report here only the mean values reached in each step (that is, the mean of the best

values reached in each run of the considered step).

Step Mean λ Mean λ1 Mean λ2 λ range λ1 range λ2 range

1 9.13867 −0.044922 1.21267 (−10, 10) (−5, 5) (0.01, 5)

2 19.9844 −0.095703 1.23656 (0, 20) (−5, 5) (0.01, 5)

3 28.9902 −0.119141 1.25219 (9, 29) (−5, 5) (0.01, 5)

4 37.9902 −0.117188 1.25219 (18, 38) (−5, 5) (0.01, 5)

5 46.9824 −0.119141 1.24633 (27, 47) (−5, 5) (0.01, 5)

6 55.9902 −0.119141 1.25805 (36, 56) (−5, 5) (0.01, 5)

7 64.9902 −0.119141 1.25219 (45, 65) (−5, 5) (0.01, 5)

8 73.9805 −0.126953 1.25609 (54, 74) (−5, 5) (0.01, 5)

9 82.9902 −0.119141 1.25609 (63, 83) (−5, 5) (0.01, 5)

10 91.0371 −0.136719 1.25414 (72, 92) (−5, 5) (0.01, 5)

Table 35: Results of 10 steps

At the end of the 10 steps, as we were expecting, the program gives the message

“There is a problem in your dataset”. In fact, from Table 35 we clearly see that the λ

value is constantly moving: its position is always on the right edge of its range.

Thus, with this problem, the sliding-ranges method does what it is supposed to do.
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It warns the user of the GA that the considered dataset has a problem, since the λ’s

value is not at all steady.

4.5.2 - Sliding-ranges method applied to another problem

It could be interesting to try the sliding-ranges method on another problem (that is, on

values simulated from a skew-normal with another set of parameters). In particular,

we can consider the following parameters’ set:

• λ = 22;

• λ1 = 0;

• λ2 = 1.

Also, in order to have more precise results, we will consider a dataset made of 500 data

points (instead of 50). This dataset can be found in Appendix B.

As regards the parameters of our method, we will use the same of the previous para-

graph, except for r (which we fix to 10) and m (which we fix to 50).

The results of this experiment are shown in the following table.
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Step Mean λ Mean λ1 Mean λ2 λ range λ1 range λ2 range

1 8.86230 0.1533200 1.044060 (−10, 10) (−5, 5) (0.01, 5)

2 17.3662 0.0214844 0.993399 (−1, 19) (−4, 6) (0.01, 5)

3 20.5488 0.0068359 0.990469 (7, 27) (−4, 6) (0.01, 5)

4 19.4717 0.0166016 0.973867 (10, 30) (−4, 6) (0.01, 5)

5 20.7373 0.0126953 1.004140 (9, 29) (−4, 6) (0.01, 5)

6 21.3145 0.0087891 0.986563 (10, 30) (−4, 6) (0.01, 5)

7 20.0537 0.0156250 0.974844 (11, 31) (−4, 6) (0.01, 5)

8 19.0566 0.0205078 0.979727 (10, 30) (−4, 6) (0.01, 5)

9 19.1846 0.0156250 0.972891 (9, 29) (−4, 6) (0.01, 5)

10 // // // // // //

Table 36: Results of 10 steps

As we can see from Table 36, the algorithm stops at the 9-th steps and it gives the

message “All the ranges are steady.”. Besides, from step 3 to step 9, the algorithm

always finds λ’s optimal values that belong to a narrow gap (19, 21.3), so the center

of the range does not move itself so much. If we had used a lower value for m (thus

reducing the demanded precision), the algorithm would have stopped before reaching

the 9-th step.

So, in this case, the GA does not warn about problems in the dataset. Moreover, it

reaches quite good estimates for all the parameters: 19.2 instead of 22 (λ), 0.02 instead

of 0 (λ1), 0.97 instead of 1 (λ2).
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Conclusions

The purpose of this thesis was, like we said in the introduction, to apply genetic algo-

rithms to problems tipically encountered in statistics and to explore their performances.

At the end of this work, we can draw some conclusions.

In Chapter 2, we saw a first application of genetic algorithms: the maximization of

a univariate function. This problem was very easy to solve. In fact, SGA (the simplest

of all GAs) found quite quickly an optimal solution.

We also tried changing the initial parameters of the algorithm to see if the performance

would have been affected. The considerations arisen from those experiments are the

following.

• The size of the chromosomes’ population cannot be too small (like 20 or less

individuals).

• The number of generations cannot be too small (at least 50 generations are re-

quired, even for a simple problem).

• The crossover rate did not have valuable effects, but this could have been conse-

quence of the problem’s simplicity.

• A mutation rate too high can have destructive effects. A mutation rate too low,

instead, does not do particular harm, except for situations with a lot of local

maxima (where the algorithm could get stuck). The problem presented in Chap-

ter 2, though, did have only one maximum. Thus, a mutation rate very low gave
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rise to even better results (an average fitness of 99.26 with pm = 0.001 versus

98.5 with pm = 0.01).

In Chapter 3, we focused on the problem of variable selection. The task of the GA

was to choose a subset of (hopefully) meaningful variables from the original set, using

the AIC to compare models.

We used four different algorithmic variants:

• simple GA = SGA,

• elitist GA with single point crossover = EGAsp,

• elitist GA with two-point crossover = EGAtp,

• elitist GA with uniform crossover = EGAu

and compared their performance. The comparisons were repeated with some possible

parameters’ sets. Thus, the analysis has been as thorough and complete as possible.

The final purpose was to find out the best combination of paramters and algorithmic

variant. By “best combination” we mean the one which gave rise to the best results.

The outcomes were: EGAu, population size = 70, crossover rate = 1.00, mutation rate

= 0.0.

We studied the regression model obtained with EGAu and those parameters. We also

compared the model with the one achieved by R (with stepwise regression). The differ-

ences between the two models were not so marked. Both the models did not have good

statistical properties (as concerns residuals’ normality and homoschedasticity). How-

ever, the AIC reached by GAs was a little better than the one reached by R (5375.36

versus 5377.88).

The most important conclusion we can draw from Chapter 3 is that we have to be

careful while using automatic procedures like GAs, stepwise regression and so on.

Sometimes they can found very good solutions and they can take away the burden of
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a lot of manual work. Nevertheless, they are automatic procedures and for this reason

they have to be attended by a human being, which has to check what the algorithm

cannot.

In the particular case of variable selection, one surely can use GAs or stepwise regres-

sion. However, when a model is found, he/she has the duty to study it and analyze it.

In Chapter 4, we tackled the likelihood maximization problem. We considered a

particular distribution, the skew-normal, and tried to maximize its likelihood with a

problematic dataset. In this Chapter we did not focus on the algorithmic variant, nor

on the parameters’ set. Instead, we focused completely on the problem, which was

quite fascinating. In fact, maximizing the likelihood with respect to all three distribu-

tion’s parameters (λ, λ1, λ2) causes the λ’s MLE divergence to +∞.

We initially studied some different situations (maximizing with respect to only one or

two parameters out of three), to get acquainted with the problem. Then, we concen-

trated on the most troublesome case, which is the maximization of all three parameters.

Since it seems that there is no way to solve a problem like this, we settled for a humbler

goal: to advise the user of the GA that he/she has encountered a problematic dataset.

In order to achieve this purpose we created a “sliding-ranges” system. This method

moves dinamically the ranges into which optimize the parameters, until the centers

of these ranges have become steady. If this steadiness is not reached after a certain

number of iterations, then the method gives a message like “There is a problem in

this dataset”. Instead, if the steadiness is reached, the algorithm stops and gives a

message like “The parameters’ optimal values have stabilized themselves”. We tried

this method with two different datasets.

The first was the problematic dataset we just analyzed. In that case we knew that λ’s

estimate diverges to +∞, so the method should have given the message “There is a

problem in this dataset”. Actually, the program gave that message. Then, we tried

with another dataset. In this case the method showed that the λ’s estimate does not
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diverge to +∞. In fact, after 9 steps, it stopped giving the message “The parameters’

optimal values are steady”. Also, the optimal values reached were not far from the

true ones. This method seems to work.
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Appendix A

Dispersion graphs
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Appendix B

Dataset used in paragraph 4.5.2

0.05827, 0.5244, 0.2155, 0.3604, 1.586, 2.108, 1.511, 0.4639, 0.1606, 0.1307, 0.4315,

2.221, 0.3525, 0.8684, 0.719, 0.8396, 0.7573, 0.7928, 0.5228, 1.678, 0.144, 0.5611, 0.1216,

0.4485, 0.1029, 1.304, 0.967, 1.360, 0.6285, 1.625, 1.513, 2.345, 1.223, 0.1653, 0.06251,

0.3519, 0.2824, 0.4093, 0.2007, 2.145, 0.6152, 0.6245, 0.1514, 0.1606, 0.5325, 0.08263,

0.2445, 0.724, 1.125, 0.07981, 0.5328, 0.2928, 0.2816, 0.8759, 0.4034, 0.7858, 0.1188,

0.9293, 1.365, 0.005259, 1.340, 0.2567, 1.032, 0.009084, 0.1544, 1.499, 0.3424, 1.209,

0.3839, 0.9549, 0.9144, 0.1299, 1.248, 2.327, 1.048, 0.2911, 0.8706, 0.1909, 0.681, 1.930,

0.1474, 3.836, 0.2509, 0.4249, 0.538, 0.5575, 0.6365, 0.4921, 0.07098, 0.7984, 0.62,

0.9887, 0.9548, 0.0375, 1.148, 0.5608, 0.5514, 0.3421, 0.9861, 0.9601, 1.475, 1.551,

0.1052, 1.635, 1.070, 0.154, 1.181, 0.1257, 0.5014, 0.1375, 1.084, 0.1634, 1.802, 1.513,

2.251, 0.333, 0.484, 0.6137, 0.4207, 1.000, 1.122, 0.3697, 0.74, 0.9435, 1.520, 1.504,

0.5774, 1.280, 0.5519, 0.1180, 1.432, 0.6461, 0.8965, 0.8662, 1.154, 1.094, 0.1122, 1.071,

0.7185, 1.350, 0.7194, 1.008, 0.7466, 0.4252, 0.05436, 0.7845, 0.1927, 0.1652, 0.4345,

1.504, 0.1499, 0.2246, 0.8957, 0.3008, 0.5776, 1.773, 1.497, 0.7973, 0.4909, 0.1304,

0.2159, 0.3037, 0.8352, 1.009, 0.4018, 0.7048, 0.7127, 1.249, 1.631, 0.4638, 0.08656,

0.1824, 1.039, 1.097, 0.4205, 0.2713, 2.122, 1.276, 0.3132, 1.425, 0.4822, 0.1031, 0.2103,

0.3249, 0.9486, 0.5953, 0.6322, 0.6958, 0.05114, 0.4762, 1.243, 0.939, 1.177, 0.09517,

0.7097, 2.398, 1.835, 0.8783, 1.92, 1.076, 1.112, 1.162, 0.3612, 0.3233, 0.3653, 1.254,
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2.010, 0.2996, 0.4214, 0.4512, 0.5467, 0.4052, 0.5375, 0.3788, 0.553, 2.29, 1.675, 0.2032,

0.2506, 1.231, 0.8458, 0.3064, 0.5359, 0.2278, 0.4817, 0.1592, 0.799, 1.701, 0.6112, -

0.001033, 0.7979, 1.207, 0.2932, 0.9423, 1.373, 2.707, 0.5936, 0.9086, 0.6557, 1.691,

0.4636, 1.553, 1.338, 0.1157, 0.8808, 0.989, 1.038, 0.1122, 1.214, 0.4610, 1.817, 0.8668,

2.167, 0.7121, 0.8638, 0.7695, 0.1537, 0.992, 1.575, 0.1775, 0.3503, 0.6528, 0.5082,

0.4526, 0.4838, 0.4447, 0.01374, 0.101, 0.8204, 0.5034, 0.1076, 0.9489, 1.701, 0.6437,

0.5326, 0.9552, 0.421, 0.3275, 0.819, 0.4843, 2.337, 0.766, 0.2210, 0.508, 1.295, 0.4799,

1.004, 0.8519, 0.3416, 2.009, 0.6061, 0.587, 0.00902, 1.457, 0.1104, 0.929, 0.3144, 0.6317,

0.0724, 1.036, 1.136, 0.2372, 0.1962, 0.9185, 0.601, 2.413, 0.6851, 0.9493, 0.1103, 0.6715,

0.3881, 0.7671, 0.3838, 0.063, 0.2364, 0.4115, 1.992, 0.1267, 0.1738, 0.6953, 1.545, 1.081,

0.2868, 0.3608, 0.4957, 1.145, 1.208, 0.6858, 0.3088, 0.6317, 1.775, 1.041, 0.1528, 0.4159,

0.02736, 0.5353, 0.6089, 2.913, 1.045, 0.6482, 0.4768, 2.68, 0.739, 0.8479, 0.5364, 0.4818,

1.591, 0.6413, 1.601, 1.885, 1.187, 1.058, 0.2617, 0.5849, 0.4108, 0.2554, 2.170, 0.05038,

0.922, 0.548, 1.118, 0.4375, 0.2867, 1.258, 1.946, 1.285, 3.529, 0.1636, 0.6345, 0.4854,

0.7843, 0.1206, 0.01085, 1.109, 0.2941, 0.6337, 2.153, 0.259, 0.0638, 0.5984, 0.6349,

1.994, 0.2299, 0.613, 1.368, 0.4662, 0.8512, 0.952, 0.979, 0.05576, -0.005093, -0.02776,

0.7244, 0.4402, 2.255, 0.4005, 1.979, 1.303, 0.1755, 1.446, 1.91, 0.2385, 0.01685, 1.503,

0.5205, 1.468, 0.000354, 0.4726, 1.542, 0.6626, 0.2530, 1.789, 0.46, 0.4155, 1.057, 0.2215,

0.7964, 0.9316, 0.5375, 0.556, 0.5803, 0.6672, 1.044, 0.1653, 0.2469, 0.3610, 0.4914,

0.4712, 0.3293, 0.4251, 0.1339, 0.07557, 0.6384, 0.9532, 1.499, 0.2817, 0.0725, 0.2009,

0.1070, 0.3102, 0.2726, 0.1441, 0.7449, 0.4174, 1.006, 1.396, 0.4628, 1.693, 0.7006, 1.023,

0.7822, 1.744, 0.2818, 1.150, 1.674, 0.2679, 0.03785, 0.9016, 0.6949, 0.2040, 0.4537,

2.236, 0.069, 0.5856, 1.153, 0.321, 1.436, 1.260, 0.252, 0.1965, 0.01678, 1.396, 2.419,

0.6925, -0.09542, 0.3303, 1.326, 0.5899, 0.9218, 2.091, 0.4583, 0.3659, 0.3332, 1.122,

1.270, 0.652, 0.6947, 1.614, 0.7205, 2.409, 0.2418, 0.5793, 0.04454, 1.146, 0.1012, 2.021,

0.1094, 0.1273, 0.6518, 1.228
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