
 

        
 

 

 

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE 

 

 
 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA 

DELL’AUTOMAZIONE 
 

 

 

 

 

 

“MARKERLESS MOTION CAPTURE VIA 
CONVOLUTIONAL NEURAL NETWORK” 

 

 

 

 

 

 

Relatore: Prof. Alessandro Chiuso 

Correlatore: Prof.ssa Zimi Sawacha 

 

 

 

 

Laureando: Niccolò Monaco 

 

  

                 

                 

 

 

ANNO ACCADEMICO 2021 – 2022 

Data di laurea: 5 ottobre 2022 

DIPARTIMENTO 

DI INGEGNERIA 

DELL’INFORMAZIONE 

  



 

 

2 

  



 

 

3 

Abstract ........................................................................................................................... 5 

Sommario ......................................................................................................................... 7 

1. Motion Capture ............................................................................................................ 9 

1.1 Human Pose Estimation .................................................................................................... 10 
1.1.1 Marker-based and markerless approaches .......................................................................................... 11 
1.1.2 Applications in biomechanics ............................................................................................................... 14 

1.2 Background Subtraction .................................................................................................... 16 
1.2.1 Challenging scenarios ........................................................................................................................... 17 
1.2.2 Literature .............................................................................................................................................. 17 
1.2.3 ConvNet ................................................................................................................................................ 19 
1.2.4 Deep learning-based approaches......................................................................................................... 20 

2. Multi-scale Convolutional Neural Network for Motion Capture .................................... 23 

2.1 Architecture ...................................................................................................................... 24 
2.1.1 Encoder ................................................................................................................................................. 24 
2.1.2 Feature Pooling Module ....................................................................................................................... 25 
2.1.3 Decoder ................................................................................................................................................ 27 
2.1.4 Global Average Pooling (GAP) .............................................................................................................. 27 

2.2 Network Training Phase .................................................................................................... 28 
2.2.1 Database and training samples ............................................................................................................ 28 

3. Experimental Results ................................................................................................... 31 

3.1 Test Dataset and Evaluation Metrics .................................................................................. 31 

3.2 Feature Maps .................................................................................................................... 32 
3.2.1 Encoder ................................................................................................................................................. 33 
3.2.2 M-FPM .................................................................................................................................................. 38 
3.2.3 Decoder ................................................................................................................................................ 41 

3.3 Foreground Masks ............................................................................................................ 43 

3.4 Metrics Values .................................................................................................................. 61 

4. Discussion and Conclusions ......................................................................................... 65 

Bibliography ................................................................................................................... 67 

 

 

  



 

 

4 

  



 

 

5 

Abstract 
 

A human motion capture system can be defined as a process that digitally records the 

movements of a person and then translates them into computer-animated images. 

To achieve this goal, motion capture systems usually exploit different types of algorithms, 

which include techniques such as pose estimation or background subtraction: this latter aims 

at segmenting moving objects from the background under multiple challenging scenarios. 

Recently, encoder-decoder-type deep neural networks designed to accomplish this task have 

reached impressive results, outperforming classical approaches. 

The aim of this thesis is to evaluate and discuss the predictions provided by the multi-scale 

convolutional neural network FgSegNet_v2, a deep learning-based method which represents 

the current state-of-the-art for implementing scene-specific background subtraction. 

In this work, FgSegNet_v2 is trained and tested on BBSoF S.r.l. dataset, extending its scene-

specific use to a more general application in several environments. 
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Sommario 
 

Un sistema di motion capture per soggetti umani può essere definito come un processo 

digitale che registra i movimenti di tali soggetti e li converte in animazioni computerizzate. 

Per raggiungere tale scopo, i sistemi di motion capture generalmente utilizzano diversi tipi di 

algoritmi che includono tecniche quali pose estimation o background subtraction: 

quest’ultima mira a segmentare e separare gli oggetti in movimento dallo sfondo in diversi 

scenari difficili. 

Recentemente, le reti neurali di tipo encoder-decoder progettate per questo obiettivo hanno 

raggiunto risultati impressionanti, surclassando gli approcci classici. 

Lo scopo di questa tesi è di analizzare e valutare le previsioni fornite dalla rete neurale 

convoluzionale FgSegNet_v2, un metodo basato sul deep learning che costituisce l’attuale 

stato dell’arte per l’implementazione della tecnica di background subtraction per scene 

specifiche. 

Il modello è stato allenato e testato sul dataset di BBSoF S.r.l., estendendo il suo utilizzo per 

scene specifiche ad un’applicazione più generale in diversi ambienti.  
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1. Motion Capture 
 

 

Motion capture is defined as the process of digitally tracking and recording the movements of 

objects or living beings in space. 

Thanks to their versatility, motion capture systems are implemented in a wide range of 

applications, such as healthcare and clinical settings, sports (postural efficiency analysis for 

improving athletes’ performance), smart surveillance systems, industrial settings like 

entertainment, gaming industry, sectors of robotics and automotive applications [19]. 

Human motion tracking can be formulated as a keypoint-based pose estimation problem 

(especially for biomechanical applications), since several studies have shown that human 

motion can be defined by a few coherently moving points [14][15], or as a silhouette-based 

background subtraction method. 

The aim of this work is to evaluate an existent robust deep learning-based model for 

background subtraction to be integrated with BBSoF S.r.l. markerless motion capture system, 

whose application involves two main scenarios [9]: 

o scheduling customized training sessions depending on motion needs detected on tested 

athletes 

o optimizing rehabilitation process, establishing recovery time, and guaranteeing to the 

athlete a safe return into practicing competitive activity in case of lower limbs injuries  

The thesis is divided into four chapters, where the first one describes the literature of human 

motion capture in the context of biomechanics applications, including marker-based and 

markerless methods for pose estimation and silhouette-based methods for background 

subtraction. Furthermore, the focus is put on the variety of deep learning-based methods 

expressly designed for background subtraction. 

The second chapter describes the architecture of FgSegNet_v2 and reports the details of its 

training phase. 

The third chapter includes the definition of the experimental setup (i.e., test frame dataset and 

chosen evaluation metrics) and some intermediate (i.e., feature maps) and final (i.e., 

foreground masks) results. 

Finally, a brief discussion and some theoretical conclusions are included in the last section of 

this work. 
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1.1 Human Pose Estimation  
 

A human pose estimation algorithm is a function able to map video frames into 2D or 3D 

coordinates of body parts. 

Objects of interest are represented by collections of pixels, which include keypoints that are 

associated to semantic meaning (such as joints or other body parts): the connection of these 

pixels provides visual data such as a skeleton model or a graph. 

As an additional component, human pose estimation algorithms can integrate temporal 

information into processed data. 

 

    

Fig. 1.1: Examples of human pose estimation algorithm implementations 

 

However, human pose estimation systems may face several non-trivial challenges, such as 

variations in body shape, clothing, lighting issues, and partial or full joint occlusions, which 

may lead to inaccurate predictions. 

Most importantly, the research in deep learning-based methods for this application has been 

motivated by the need to explore and detect all possible natural poses, a task that previous 

approaches and even deep learning models cannot fully accomplish because of failure in 

atypical postures generalization (such as yoga poses) with respect to the training set. 

 

 

Fig. 1.2: Examples of challenging scenarios for human pose estimation task: in the left image, the right arm is 

occluded, while in the right image the left body half is not visible 
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During the last 10 years, deep learning-based methods have approached this task by learning 

low and high-level human body features, developing the ability to capture the full context of 

each joint and becoming more tolerant to variations in the training set with respect to classical 

approaches. In addition to that, these methods can follow holistic reasonings, and therefore 

predict the location of an occluded joint or limb by exploiting the visible parts of the pose and 

anticipating subject’s motion [36]. 

On the other hand, incorporating priors about human body structure in deep learning models 

is a difficult task since their low-level mechanisms are often hard to interpret [34]. 

A huge advantage in using deep learning-based methods for motion capture is given by the 

great flexibility of these ones, which allow the user to define the points of interest that should 

be tracked: features are directly extracted from the original image and passed through layers 

to obtain high-dimensional information of the processed frame [35]. 

Moreover, the dataset used for training the model defines the input-output relationships that 

this one should learn: the learning process consists in the iterative update of model’s 

parameters (called “weights”) for the minimization of the chosen loss function. 

The keypoints estimation task can be achieved following two completely different 

approaches: it can be formulated as a regression problem, where the deep learning model is 

trained to track body parts (whose coordinates are the targets to predict) or, alternatively, it 

can be treated as a classification problem, where the model predicts a heatmap (scoremap) of 

location probabilities for each body part rather than key joint locations on the human skeleton 

[14]. 

 

 

Fig. 1.3: Examples of heatmaps for joint localization 

 

1.1.1 Marker-based and markerless approaches 

Deep learning-based methods for motion capture can be divided into two categories: model-

based tracking algorithms and feature-based tracking algorithms [38]. The first ones perform 

the tracking task using as reference a 3D model of the object to be tracked, while the latter use 

points of interest in the frames for object(s) tracking. 
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Furthermore, feature-based tracking algorithms can be distinguished into two different 

approaches, namely marker-based and markerless motion capture systems: the first one 

requires the attachment of markers to the body’s segments, while the second one directly 

maps raw video frames to coordinates. 

Both approaches aim to identify approximately well 2D or 3D human joint locations using 2D 

frames coming from a monocular camera or a synchronized multi-view camera system [22]: 

the 3D segmented model is constructed exploiting the projection of subject’s detected pose 

from each camera. 

 

          

Fig. 1.4: Examples of marker-based (first image) and markerless motion capture approaches 

 

Usually, marker-based systems are more accurate than markerless ones, and markers represent 

useful tools for visual detection algorithms: they are manually placed by expert operators on 

anatomical points of interest for visually enhancing them and tracking their motion while 

processing sequencies of frames. 

Position and movement of markers are used to infer the relative movement between two 

adjacent segments (e.g., anterior cruciate ligament, ACL), with the goal of accurately defining 

the joint movement. 

On the other hand, markers could modify the naturalness of a subject’s movement and, more 

importantly, skin deformation and displacements may cause dislocations between a marker 

and the underlying bone it is labeling: this latter issue, known as skin artifact or soft tissue 

artifact, represents the major obstacle to obtain accurate joint kinematics estimations and may 

potentially invalidate injury risk detection [18]. 

Moreover, it is not possible for marker-based methods to extract additional keypoints at a later 

stage, which is instead achievable by markerless motion capture methods [14]. 

Another limitation related to marker-based methods application is the necessity of subjects to 

wear skin-tight clothing [10]. 
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The use of markerless motion capture methods, particularly for clinical applications, has been 

limited by the complexity of acquiring accurate 3D kinematics: without the use of markers, 

the general problem of motion estimation has less constraints, leading to the construction of a 

model with a high number of parameters or degrees of freedom (DOF), increasing the risk of 

overfitting. 

However, this issue can be tackled by introducing an a priori model of the subject that 

incorporates limb orientations and shape, providing therefore anthropomorphic constraints 

that are automatically satisfied when processing input data. Analogously, the number of 

recording cameras can be increased and the space of possible poses can be limited to the 

anatomically appropriate ones. 

Figure 1.6 reports an example of model designed for studying musculoskeletal biomechanics 

via markerless motion capture [40]: it is composed of 12 main anatomical segments (i.e., feet, 

shanks, thighs, pelvis, combined torso and head, arms, and forearms) and characterized by 33 

degrees of freedom, divided into: 

o 3 DOF in rotation for hip and knee joints (i.e., flexion-extension, adduction-abduction, 

internal-external rotation) 

o 2 DOF in rotation for ankles (plantar-dorsi flexion, in-eversion) 

o 1 DOF in rotation for movement between torso and pelvis (flexion at the 5th lumbar) 

o 3 DOF in rotation for shoulders (flexion-extension, adduction-abduction, internal-

external rotation) 

o 2 DOF for elbows (flexion-extension, pronation-supination) 

o 6 DOF for pelvis translation and rotation in space 

 

 

 

Fig. 1.5: Model in reference pose and 33 DOF full body model 
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Neural networks for articulated human pose estimation are typically designed as encoder-

decoder architectures: a common strategy consists in integrating encoder models which were 

pre-trained on one or more huge image datasets (such as ImageNet). 

This design choice, which dramatically reduces the required data amount for the training 

phase, comes from the principles of transfer learning, a machine learning branch which 

focuses on gaining information while solving a specific task and then applying the stored 

knowledge to a related (but different) problem [37]. 

In the deep learning-based methods literature, there have been identified two main approaches 

to accomplish the markerless pose estimation task: the first one localizes one or more 

individuals and then performs pose estimation per detected individual (top-down method), 

while the other one localizes body parts and uses a pre-trained network to predict their 

connections within individuals (bottom-up method) [22]. 

As well as keypoint-based human pose estimation, markerless motion capture can also be 

achieved by tracking the silhouette, namely separating the subject(s) of interest from the 

background. 

A common method for accomplishing this task is by applying the technique of background 

subtraction, whose aim, methods in literature and implementations are described in Section 

1.2. 

 

1.1.2 Applications in biomechanics 

In the biomechanics field, pose estimation algorithms represent optimal tools for the 

investigation and detailed analysis of big topics such as functional mechanisms, injury 

prevention, rehabilitation, and motor control of human movements [22].  

The backbone of several applications implemented in these areas is the classification of 

movement patterns, which allows researchers to focus onto the distinction of pathological 

kinematics from normal ones. 

More specifically, these algorithms are mainly used for the diagnosis of pathomechanics (i.e., 

kinematics of misplaced or damaged bones) due to musculoskeletal diseases, preventive 

interventions for musculoskeletal diseases, and development and evaluation of rehabilitative 

treatments [16]. 

A common method for solving tasks in clinical context is gait analysis, namely the systematic 

visual study of human walking, augmented by the use of instrumentation for measuring body 

mechanics to assess and compare human movement patterns into a variety of health factors 

[17]. This method allows to extract spatiotemporal parameters (e.g., gait speed, step length, 
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stride width, etc.), which represent useful clinical measures for detecting either negative (due 

to pathologies) or positive (thanks to rehabilitation processes) changes in subjects’ gait 

patterns [33]. 

 

 

 

Fig. 1.6: Gait cycle phases 

 

The current gold standard methods for gait analysis are marker-based motion capture systems, 

which can be divided into two categories: active marker systems and passive marker systems. 

The first ones employ markers that contain a source of light (generally infrared rays) which 

can be detected by sensors, while the latter use markers that reflect light back to sensors. 

Despite their accuracy, marker systems use in clinical routines is limited due to several 

reasons, such as labor costs for data acquisition and processing, equipment costs and the need 

for a controlled laboratory environment [21]. 

A more difficult scenario for motion capture systems is represented by sports applications, 

where data analysis often has to deal with highly dynamic motions, that are more difficult to 

capture than slow movements (such as gait analysis). Moreover, selecting the most suitable 

system for the given experimental setup can be a labor-intensive and difficult task: for 

example, the necessity of sampling at high frequency may cause an excessive amount of data 

and information corruption due to high-frequency noise, and data acquisition may require 

expensive high-speed and high-quality cameras [38]. 

The development of machine learning and deep learning-based methods for biomechanical 

applications plays a fundamental role in advancing human movement research, improving 

clinical decision making and accelerating rehabilitation processes for patients affected by 

neuromuscular and musculoskeletal diseases [39]. 
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1.2 Background Subtraction 
 

Background subtraction, also known as foreground segmentation, is a common and widely 

used technique to implement motion detection algorithms. 

During the last three decades, it has been one of the most active research topics in computer 

vision, owing to many applications such as pedestrian detection, traffic monitoring, action 

recognition and industrial machine vision [8]. 

As the name suggests, this technique performs a subtraction between the processed frame and 

the so-called background model (i.e., the static part of the scene or, more in general, 

everything that can be considered as part of the background) to generate a foreground mask 

(namely, a binary image containing the pixels that belong to the motion region) by using static 

cameras [7][23]. 

A complete foreground segmentation technique has therefore four main components: a 

background initialization process, a background modeling strategy, a model update 

mechanism (to add new static objects in the scene to the background model [28]) and a 

subtraction operation [11]. 

In addition, a well-performing background subtraction algorithm must be able to capture 

significant visual changes in subsequent video frames, while neglecting noise-produced 

disturbances [27]. 

 

 

Fig. 1.7: Examples of background subtraction operations: the first row illustrates the original frames, the second 

one shows the background models and the third one reports the foreground masks 
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1.2.1 Challenging scenarios 

Challenging scenarios for a background subtraction algorithm include illumination changes 

(either sudden or gradual), shadows labeled as part of the foreground object, dynamic 

background motion (due to atmospheric conditions such as rain, snow, or waving trees), 

camera motion (jittering and panning-tilting-zooming), and subtle regions (i.e., similarities 

between foreground pixels and background pixels). 

Despite conventional approaches have been designed to eliminate or heavily mitigate all the 

mentioned issues, these methods perform well only on some specific scenarios and lack the 

problem in a general setting [2]. In addition to that, the constant improvement of camera 

technologies is leading to videos increase in complexity, size, and numbers [27]: this latter 

issue shows that it is necessary to build background subtraction models that can efficiently 

handle big data. 

Not surprisingly, neural networks became very useful methods to address such challenges: 

models are trained on huge datasets of frames taken from specific-issued videos to effectively 

learn how to deal with the encountered challenges and then generalize to more complex 

scenarios. 

 

1.2.2 Literature 

Based on mathematical theories, the simplest way to obtain a background image is to compute 

the temporal average or the temporal median of a given set of frames belonging to the same 

scene. More practically, background subtraction implementations involved a big variety of 

models, going from signal processing to machine learning.  

These models can be classified as: 

o mathematical models, including statistical models (based on Gaussian mixtures, 

GMMs), fuzzy models and Dempster-Schafer models 

o filter-based signal processing models (Wiener filter, Kalman filter, maximum 

correntropy Kalman filter and Chebycev filter) 

o machine learning and deep learning-based models, such as subspace learning models 

(reconstructive, discriminative, or mixed), robust PCA subspace learning, support 

vector machines and neural networks 

As previously described, conventional approaches rely on building a background model for a 

specific scene by using statistical or parametric methods, which implement mixtures of 

Gaussians (either with fixed or dynamical number of components) to model each pixel as a 

background or foreground pixel. 
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This strategy has been enhanced and improved by machine learning and deep learning-based 

methods: foreground segmentation is indeed formulated as a pixel-based binary classification 

problem, where background (and foreground) pixel representation can be learnt in a 

supervised or unsupervised manner. 

Machine learning models developed for this specific task implement algorithms that are 

mainly based on kernel density estimates (KDE) or principal component analysis (PCA): the 

main advantage provided by these approaches consists in their ability to tackle the issue of 

parameters estimation and update in GMMs. 

The first ones follow a probabilistic approach for scene modeling: it is estimated the 

probability density function of a pixel value by analyzing a set of consecutive frames and 

using the Normal distribution N(0, ) as kernel estimator function. Efficient implementations 

of these methods include additional parameters such as adaptive kernel size and a decaying 

factor in the model update mechanism to reduce older samples influence. 

On the contrary, PCA methods aim to build a background model by decomposing the input 

frames into a time-variant low-rank subspace: the distinctive characteristic of these methods is 

the significant reduction of the space dimensionality, which allows to speed up computations 

while achieving satisfying accuracy values. 

However, these approaches do not perform well in scenarios where background pixels 

constantly change (due to non-static lightning conditions or changes of camera angle) or 

where foreground pixels remain unchanged (problem known as intermittent object motion). 

The great impact that deep learning-based methods had in solving background subtraction 

tasks has been favored by the possibility to develop end-to-end systems for image 

segmentation: not surprisingly, deep neural networks (DNNs) and deep convolutional neural 

networks (CNNs) have achieved impressive results, outperforming classical approaches. 

Still nowadays, CNNs are considered the best tools for solving computer vision tasks such as 

object detection, feature extraction, and scene classification. As aforementioned, these models 

are fed with 2D data, which are processed and gradually downsampled while the number of 

learnt features increases: this learning mechanism (that characterizes CNNs) is based on the 

implementation of strided-pooling layers (like max-pooling or average-pooling layers), which 

reduce the spatial resolution by computing a summary statistic over a local spatial region. 

The main purpose behind the use of these modules is to promote invariance to local input 

transformations [6]. 

Despite CNNs have been a research topic for a long time, their use for accomplishing 

computer vision tasks has been initially limited by factors such as the size of available labeled 

training datasets or the models’ computational capacity [8][13]. More recently, these models 
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have reached great success in large-scale image and video recognition thanks to the 

implementation of huge public image repositories (e.g., ImageNet [25]) and high-performance 

computing systems like GPUs [3]. 

 

1.2.3 ConvNet 

The first convolutional neural network specifically designed for background subtraction, 

which led to a turning point for the solution of this task, was realized in 2016 and took the 

name of ConvNet [11]. 

The core of this work, which is still considered a cornerstone, was to demonstrate that the 

complexity of foreground segmentation task could be addressed during subtraction operation, 

instead of requiring a complex background modeling strategy. More in detail, the background 

is obtained by computing the temporal median of few video frames and is further modeled 

within a single grayscale image, while the task of subtracting background image from input 

frame is delegated to the neural network. 

The main benefit of this method consists in the ability of the network to learn deep and 

hierarchical features, which turns out to be a more efficient strategy than the extraction of 

hand-crafted features for comparing image patches (strategy implemented by conventional 

approaches). 

This model has similar architecture to LeNet5 [12], a popular neural network used for 

handwritten digit classification: ConvNet is composed of two feature stages followed by a 

classical two-layer fully connected feed-forward neural network, where each feature stage 

consists of a convolutional layer followed by a max-pooling module. 

 

 

Fig. 1.8: FgSegNet_v2 architecture workflow 
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This model involves four stages in foreground masks generation: 

1) background image extraction (by using a temporal gray-scale median) 

2) specific-scene dataset generation 

3) network training 

4) background subtraction 

 

 

Fig. 1.9: ConvNet algorithm pipeline 

 

More specifically, this model uses a patch-wise training strategy: for each frame in a specific 

scene, image patches are extracted and combined with the corresponding background patches. 

Then, combined patches are fed to the neural network to predict the foreground probabilities 

of their center pixels. 

Despite its meaningful impact, this first deep learning application for foreground 

segmentation has several limitations, such as computational inefficiency and possible 

overfitting due to highly redundant data. In addition to that, foreground masks may contain 

isolated false positives and false negatives since each pixel is processed independently. 

From the publication of this work, many studies have been conducted in the field of deep 

learning applications to background subtraction, demonstrating the efficiency of these 

methods. Moreover, DNNs have also been employed in complementary tasks, such as 

background initialization and foreground detection enhancement [1][8]. 

1.2.4 Deep learning-based approaches  

Further works developed CNNs following different types of approach to solve the background 

subtraction task (e.g., by incorporating temporal data and building a background dynamical 

model, or by classifying pixels as part of the foreground mask or as background components). 

Therefore, a big variety of a models have been designed and tested, allowing comparisons 

between divergent approaches, and highlighting the most relevant characteristics for 

designing a task-specific neural network and improving several aspects of its performance. 

These models’ architectures include multi-scale and cascaded CNNs, fully connected CNNs, 

deep CNNs, double encoding CNNs and even generative adversarial networks (GANs). 

More in detail, one of the first approaches (following the guideline outlined by ConvNet) 

consists of a CNN designed for vehicle detection and classification in low resolution traffic 
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videos [30], able to detect vehicles and distinguish their type among 6 different categories 

(i.e., jeep, sedan, truck, bus, SUV, and van). 

Another work consists of and encoder-decoder structured CNN [26] which takes as input the 

concatenation of the target frame, its previous frame, and the correspondent background 

model: then, the encoder generates a feature vector of the given images, and finally the 

decoder converts this vector into a segmentation map. 

 

 

Fig. 1.10: Background subtraction encoder-decoder structured CNN architecture 

 

A different temporal-based strategy involves the implementation of a multi-scale CNN [27] 

for tracking visual changes in a video sequence by applying convolutions to the most recent 

frames. This network can handle multiple scenarios without performing scene-specific fine-

tuning and does not need to build and update a background model. 

An important study includes the use of a highly accurate semi-automatic method for 

segmenting foreground moving objects pictured in surveillance systems [29]; this work aims 

to pursue two main objectives: produce foreground masks sufficiently accurate to be used as 

ground truth for other models and minimize user interventions. 

Moreover, this research includes a set of metrics values that define human annotation error 

margin in foreground objects segmentation, i.e., a F-measure of 0.94, a percentage of wrong 

classifications (PWC) of 0.9 and an error distance of 3.6 pixels. 

Another important conclusion that this study provides is that multi-scale CNNs with a 

cascaded architecture are the best performing models for background subtraction task. 

Finally, it is necessary to mention BScGAN [31], a deep foreground segmentation method 

based on a conditional generative adversarial network (cGAN): this type of neural network 

learns statistical invariant features of input frames to generate similar images. 

The model consists of two subsequent networks, namely generator and discriminator, which 

compete in a game theoretic scenario. More in detail, the generator’s aim is to learn the 

mapping function that associates inputs (i.e., target frame and background) to the output (i.e., 

foreground mask) to produce predictions that cannot be distinguished from ground truth 

images. 
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Then, the discriminator learns a loss function to train this mapping mechanism by comparing 

generator’s prediction (fake foreground) with ground truth mask (real foreground). 

As noticeable, this approach addresses foreground detection as a segmentation problem (and 

not as a classification task), where the segmentation operation is carried out by the generator. 

 

 

Fig. 1.11: Background subtraction conditional generative adversarial network 
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2. Multi-scale Convolutional Neural 

Network for Motion Capture 
 

 

In this section there are reported the architecture and the training phase details of the 

implemented tool used for achieving background subtraction: the multi-scale convolutional 

neural network FgSegNet_v2 [1]. 

 

 

Fig. 2.1: FgSegNet_v2 architecture workflow 

 

This model addresses the foreground segmentation task as a supervised pixel binary 

classification problem (i.e., pixels belong to foreground mask or to background). 

The choice of implementing this neural network comes from the fact that it represents the 

state-of-the-art method for the background subtraction task, showing impressive results in 

terms of classification accuracy (i.e., an average overall F-measure of 0.9874 on CDnet2014 

[32] datasets) without the need to incorporate temporal data. 

As a deep learning-based method for solving background subtraction, FgSegNet_v2 does not 

rely on building a stationary background model, since this method has been shown to be not 

very effective in adapting to difficult scenarios such as rapid illumination changes, shadow 

detection, dynamic background motion and/or camera motion. 

On the contrary, this specific network and other CNNs based on gradient learning 

demonstrated to be very powerful tools in extracting useful features representations from data. 
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2.1 Architecture 
 

The network is constructed following an encoder-decoder architecture, trained end-to-end and 

characterized by three main components: an encoder, a feature pooling module (M-FPM, 

implemented to extract features at multiple scales) and a decoder with Global Average 

Pooling (GAP) modules [1]. 

The encoder consists of a modified version of VGG-16 Net [3], a popular neural network 

originally designed for object classification and then fine-tuned for other visual tasks, such as 

object detection or semantic segmentation [26]: this component has the main function of 

extracting visual features from the input image. 

Then, M-FPM extracts features at multiple scales by applying parallel dilated convolutions. 

Finally, the decoder takes downsampled features, gradually upsamples them until the desired 

resolution is reached, and predicts the foreground mask of the input frame. 

As a multi-scale convolutional neural network, FgSegNet_v2 is characterized by the 

incorporation of features from shallow, mid-level and deep layers, and by the distinctive 

feature of processing multiple branches of the same 2D data at several resolution values 

[20][27]: this scale-aware mechanism enables the network to use image length and width 

information more effectively, improving its performance in many scenarios [41]. 

 

2.1.1 Encoder 

As aforementioned, this component includes the first four blocks of pre-trained VGG-16 Net 

(the fifth block and the third max-pooling layers have been removed by the authors to obtain 

higher-resolution feature maps), where Dropout [4] layers (with dropout rate of 0.5) have 

been positioned between all the convolutional layers of the fourth block to improve 

generalization performance and to avoid overfitting (by preventing activations from becoming 

strongly correlated) [6]. Then, only this last block is fine-tuned, while other blocks keep the 

pre-trained coefficients of the original network [1][2]. 

More in detail, the first and the second block include two consecutive convolutional layers of, 

respectively, 64 and 128 hidden neurons. These first two blocks are both followed by a max-

pooling module, which has the main function of downsampling the processed data, and which 

is characterized by a 2×2 filtering kernel. 

The third and the fourth block are both composed of three convolutional layers of, 

respectively, 256 and 512 hidden neurons. All the convolutional layers are characterized by 

3×3 kernels. 
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 Fig. 2.2: Encoder structure (modified VGG-16) 

 

2.1.2 Feature Pooling Module 

The introduction of “Modified Feature Pooling Module” (referred to as M-FPM) comes from 

the idea of dilated convolution: this technique computes convolution by multiplying filter 

coefficients in a spatially sparse way.  

Moreover, this design choice has been motivated by the promising results shown by dilated 

convolution in semantic segmentation domain, with the major effect of enlarging field of 

views in the neural network without learning extra parameters. 

As aforementioned, this module operates on top of the final encoder layer to extract features 

at multiple scales by applying a 2×2 max-pooling layer (followed by a 1×1 convolution) and 

four parallel dilated convolutions. More in detail, these latter comprise a normal 3×3 

convolution and three 3×3 dilated convolutions with dilation rates of 4, 8 and 16. 

All the convolutional layers are composed of 64 hidden neurons. 
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Fig. 2.3: M-FPM module 

 

According to the figure above, the resultant features fa from normal 3×3 convolution are 

concatenated with feature maps F (obtained from the output of the encoder) and progressively 

pooled by 3×3 convolution with dilation rate of 4, resulting in features fb. 

Then, F and fb are concatenated and fed to 3×3 convolution with dilation rate of 8, resulting 

in features fc.  

Again, F and fc are concatenated and fed to 3×3 convolution with dilation rate of 16.  

Finally, all features are concatenated to form 5×64 multi-scale depth features, which are 

passed through Instance Normalization [5], ReLU (Rectified Linear Unit) activation and 

Spatial Dropout [6] layers. 

Instance Normalization is used to normalize the activations of previous layer at each step (i.e., 

mean close to 0 and standard deviation close to 1), while Spatial Dropout is used to drop the 

entire 2D feature maps by a chosen rate (0.25 in this implementation): since multiple pooling 

layers operate on the same features, the concatenated features are likely to be correlated as 

well as adjacent pixels within feature maps. 

For this reason, Spatial Dropout is useful for improving the learning performance, preventing 

model overfitting and promoting independent features [1][2]. 
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2.1.3 Decoder 

The decoder with GAP modules is illustrated in Fig. 2.1: it includes the stack of three 3×3 

convolutional layers, each one characterized by 64 feature maps and followed by an Instance 

Normalization layer, and a 1×1 convolutional layer, with a single feature map that embodies 

the projection from feature space to image space.  

In addition to that, ReLU activation function is applied after each Instance Normalization 

layer, while sigmoid activation function is applied after the last 1×1 convolutional layer to 

provide the probability of each pixel to figure as component of the foreground mask (output 

value = 1) or as part of the background model (output value = 0). 

Then, a binarization thresholding operation (i.e., pixels are classified as foreground if their 

value is greater than a given threshold, below which pixels are instead embodied in the 

background) is applied to the output result to obtain binary segmentation labels [1]. 

 

2.1.4 Global Average Pooling (GAP) 

The main purpose of Global Average Pooling (GAP) layers implementation is to combine 

information from the low-level features of the encoder with the high-level features of the 

decoder: indeed, the two GAP modules operate on the second and on the fourth convolutional 

layers of modified VGG-16. 

The result of this pooling operation provides two coefficient vectors 𝛼𝑖, which are multiplied 

by the output features of the decoder’s first and second convolutional layers 𝑓𝑗 𝑖. Then, scaled 

features are added to the original ones, obtaining features 𝑓𝑗 ′𝑖 =  𝛼𝑖 ∙ 𝑓𝑗 𝑖 + 𝑓𝑗 𝑖 
where 𝑖 ∈ [0, 63] is the index of each feature depth (i.e., the index of correspondent channel) 

and 𝑗 is the index of an element in each feature slice. 

Finally, the concatenated features 𝑓𝑗 ′𝑖 are upsampled by 2× using bilinear interpolation and 

fed to
 
the subsequent layers [1]. 
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2.2 Network Training Phase 
 

The model has been implemented using Tensorflow Keras framework; then, it has been 

trained and tested on a NVDIA Tesla T4 GPU. 

The training loop involves the use of RMSProp as learning rate optimizer, with parameters  

 = 0.9,  = 10-8 and a batch size of one sample per batch. The learning rate is set to an initial 

value of 10-4, which is reduced by a factor of 10 if validation loss does not improve over 5 

consecutive epochs. 

Moreover, the maximum number of learning epochs is set to 100, but the training loop is 

stopped earlier if validation loss does not improve over 10 consecutive epochs. 

The model is trained using 200 frames, which are randomly split into training and validation 

datasets in a 70-30 percent rate. Furthermore, frames are compressed by a factor of 3.75 (i.e., 

from a resolution of 1920×1080 pixels to 512×288) to speed up model’s internal 

computations; ground truth labels have been manually generated for improving model’s 

accuracy in detecting edges. 

The chosen loss function for evaluating the difference between true pixel values and predicted 

ones (not binarized through thresholding during the training phase) of a single frame is binary 

cross-entropy loss: 

 

𝐿𝐵𝐶𝐸 =  − 1𝑛 ∑ 𝑦𝑖 ∙ log �̂�𝑖 + (1 − 𝑦𝑖) ∙ log(1 − �̂�𝑖)𝑛
𝑖=1  

 

where 𝑦𝑖 is the true label of the i-th pixel, �̂�𝑖 represents the model’s prediction and 𝑛 is the 

total number of pixels in a single frame (i.e., width×height). 

The scored average training time is of 160 ms/frame. 

 

2.2.1 Database and training samples 

The model has been trained on frames coming from approximately 150 videos belonging to 

BBSoF S.r.l. dataset: these samples involve, as main characteristics, 7 different environments 

(i.e., 4 outdoor football pitches, 2 indoor medical laboratories and an indoor basketball pitch) 

with subjects performing several tasks (i.e., gaits, sprints, cutting maneuvers, squats, pistol 

squats, lunges, jumps) or technical gestures (such as dunks for basketball players or pirouettes 

for skaters) in various lightning and atmospheric conditions. 
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3. Experimental Results 
 

 

This section describes the experimental setup (i.e., test dataset and metrics) used for 

evaluating model’s performance and reports some results generated by FgSegNet_v2 on 

BBSoF database frames. 

 

3.1 Test Dataset and Evaluation Metrics 
 

The dataset used for testing the model is structured in groups of 4 frames reporting the same 

recorded image from different angles. 

Moreover, the test dataset is divided into 8 different subsets according to BBSoF database 

categorization: these subsets include athletes performing various tasks in 6 different 

environments (i.e., the same ones used for training the model), with the aim of testing the 

model on several human poses. 

Since the problem is formulated as a pixel-wise binary classification task, each pixel can 

produce one of the following outcomes: 

• true positive (TP), corresponding to correctly classified foreground pixel 

• true negative (TN), corresponding to correctly classified background pixel 

• false positive (FP), corresponding to incorrectly classified background pixel 

• false negative (FN), corresponding to incorrectly classified foreground pixel 

 

Here there are reported the formulas of metrics used for evaluating model’s performance: 

 𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =  𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁      𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =  𝑇𝑃𝑇𝑃+𝐹𝑃 

 𝑅𝐸𝐶𝐴𝐿𝐿 =  𝑇𝑃𝑇𝑃+𝐹𝑁      𝐹1 − 𝑆𝐶𝑂𝑅𝐸 =  𝑇𝑃+𝑇𝑁𝑇𝑃+12(𝐹𝑃+𝐹𝑁) 
 

 =  2(𝑇𝑃 𝑇𝑁 −  𝐹𝑁 𝐹𝑃)(𝑇𝑃 + 𝐹𝑃)(𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁)(𝐹𝑁 + 𝑇𝑁) 
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3.2 Feature Maps 
 

For a convolutional neural network, the size of a hidden layer is given by the number of its 

neurons and the number of its channels.   

Furthermore, each hidden neuron is characterized by a kernel (also named filter), namely a 

local receptive field encoding a specific feature. The combination between the kernels of a 

hidden layer provides a feature map of that layer, whose quantity is equal to the number of 

channels. 

Feature maps are useful to study the model’s behavior at each layer, obtaining visual 

feedbacks of the operations (e.g., edges detection, features extraction and encoding, dilated 

convolutions and foreground segmentation) that lead to neural network’s predictions. 

This section reports some feature maps (i.e., 16 per convolutional layer) of the reference 

frame below along with the correspondent layer, its total number of feature maps and the 

resolution of these ones. 

As illustrated by the feature maps of the next subsections, the encoder operates an edge 

detection to obtain downsampled representations of human body parts or full figures (i.e., it 

encodes a compact representation of human body features, which are then detected and 

segmented by the decoder). 

Then, the M-FPM applies parallel dilated convolutions to extract features at different scales, 

encouraging the isolation of the moving subject from the background. 

Finally, the decoder combines the information received from the two previous components to 

segment moving subject’s silhouette and therefore perform background subtraction operation. 

 

 

 

Fig. 3.1: Reference frame 
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3.2.1 Encoder 

 

Fig. 3.2: First convolutional layer of the first block (64 feature maps of resolution 512×288) 

 

 

 

Fig. 3.3: Second convolutional layer of the first block (64 feature maps of resolution 512×288) 

 

 

 



 

 

34 

 

 

Fig. 3.4: First convolutional layer of the second block (128 feature maps of resolution 256×144) 

 

 

 

Fig. 3.5: Second convolutional layer of the second block (128 feature maps of resolution 256×144) 
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Fig. 3.6: First convolutional layer of the third block (256 feature maps of resolution 128×72) 

 

 

 

Fig. 3.7: Second convolutional layer of the third block (256 feature maps of resolution 128×72) 
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Fig. 3.8: Third convolutional layer of the third block (256 feature maps of resolution 128×72) 

 

 

 

Fig. 3.9: First convolutional layer of the fourth block (512 feature maps of resolution 128×72) 
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Fig. 3.10: Second convolutional layer of the fourth block (512 feature maps of resolution 128×72) 

 

 

 

Fig. 3.11: Third convolutional layer of the fourth block (512 feature maps of resolution 128×72) 
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3.2.2 M-FPM 

 

Fig. 3.12: 1×1 convolutional layer after max pooling (64 feature maps of resolution 128×72) 

 

 

 

Fig. 3.13: 3×3 convolutional layer without dilation (64 feature maps of resolution 128×72) 
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Fig. 3.14: 3×3 convolutional layer with dilation rate of 4 (64 feature maps of resolution 128×72) 

 

 

 

Fig. 3.15: 3×3 convolutional layer with dilation rate of 8 (64 feature maps of resolution 128×72) 
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Fig. 3.16: 3×3 convolutional layer with dilation rate of 16 (64 feature maps of resolution 128×72) 
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3.2.3 Decoder 

 

Fig. 3.17: 1×1 convolutional layer before Global Average Pooling (64 feature maps of resolution 256×144) 

 

 

 

Fig. 3.18: 3×3 convolutional layer after Spatial Dropout (64 feature maps of resolution 128×72) 
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Fig. 3.19: 3×3 convolutional layer after first upsampling operation (64 feature maps of resolution 256×144) 

 

 

 

Fig. 3.20: 3×3 convolutional layer after second upsampling operation (64 feature maps of resolution 512×288) 
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3.3 Foreground Masks 
 

This section includes, in the following order, groups of 4 frames for 8 different categories 

reporting the same recorded image from different angles (i.e., input frames), the 

corresponding ground truth images, model’s predictions, and binarized results. 

Moreover, there are specified for each environment how many frames coming from it have 

been used during the training phase and the selected threshold value for optimizing binary 

predictions. 

The results of this section show that FgSegNet_v2 performs well both in indoor labs and 

outdoor football pitches. Furthermore, the model has been able to tackle issues such as 

dynamic background motion, illumination changes and shadows labeled as part of the 

foreground object, which represent common difficult scenarios especially for outdoor 

acquisitions. 

Many false positive pixels correspond to static human subjects (either fully visible or partially 

hidden), meaning that the model has been able to correctly encode human features. 

In addition to that, the model struggled into detecting human body features under very similar 

color conditions between these ones and other objects (e.g., basketball players hands and the 

basketball), in frames with blurred edges, or in conditions where subjects were not close to the 

camera. 

This lack of accuracy is also caused by the frames compression of a factor of 3.75: the model 

processes images with dimension 512×288, which are then expanded (once the elaboration is 

concluded) back to their original dimension of 1920×1080 pixels. 
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Calciatori Iozzino @lab 

(72 training frames coming from 4 cameras, threshold value = 0.7) 

       

       

       

       

Fig. 3.21: Drop squat 

 

       

       

       

       

Fig. 3.22: Pistol squat 
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Fig. 3.23: Lunge 

 

       

       

       

       

Fig. 3.24: Squat 
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Fig. 3.25: Gait 
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Inter 22.05.2018 @Appiano Gentile 

(55 training frames coming from 3 cameras, threshold value = 0.5) 

       

       

       

       

Fig. 3.26: Hop 

 

       

       

       

       

Fig. 3.27: Hop + Cutting maneuver 
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Fig. 3.28: Hop + Cutting maneuver 

 

       

       

       

       

Fig. 3.29: Cutting maneuver 
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Fig. 3.30: Cutting maneuver 
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2019-03-05 @Magic 

(5 training frames coming from one camera, threshold value = 0.6) 

       

       

       

       

Fig. 3.31: Gait 

 

       

       

       

       

Fig. 3.32: Drop lunge 

 

 

 

 



 

 

51 

 

 

       

       

       

       

Fig. 3.33: Drop squat 

 

       

       

       

       

Fig. 3.34: Gait 
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Fig. 3.35: Lunge 

 

       

       

       

       

Fig. 3.36: Lunge 
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csaPlantare @Vertigo 

(5 training frames coming from 2 cameras, threshold value = 0.55) 

       

       

       

       

Fig. 3.37: Drop + Jump squat 

 

       

       

       

       

Fig. 3.38: Gait 
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Fig. 3.39: Cutting maneuver 

 

       

       

       

       

Fig. 3.40: Cutting maneuver 
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2019-03-05 @CUS 

(7 training frames coming from 2 cameras, threshold value = 0.5) 

       

       

       

       

Fig. 3.41: Dribbling 

 

       

       

       

       

Fig. 3.42: Hoop 
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Fig. 3.43: Cutting maneuver 

 

       

       

       

       

Fig. 3.44: Dribbling 
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Fig. 3.45: Cutting maneuver 

 

       

       

       

       

Fig. 3.46: Hoop 

 

 

 

 

 

 



 

 

58 

cacb cam @Calcio Padova 

(41 training frames coming from 2 cameras, threshold value = 0.7) 

       

       

       

       

Fig. 3.47: Cutting maneuver 

 

       

       

       

       

Fig. 3.48: Cutting maneuver 

 

 

 

 

 



 

 

59 

Calciatori Soldo Drop @lab 

(No training frames, threshold value = 0.8) 

       

       

       

       

Fig. 3.49: Drop lunge 

 

       

       

       

       

Fig. 3.50: Drop squat 
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Pattinatrici @ MAGIC 

(4 training frames coming from one camera, threshold value = 0.8) 

       

       

       

       

Fig. 3.51: Axel (pirouette) 

 

       

       

       

       

Fig. 3.52: Axel (pirouette) 
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3.4 Metrics Values 
 

In addition to the mentioned metrics, another parameter used to evaluate FgSegNet_v2 

performance is ROC AUC, namely the “Area Under the Receiver Operating Characteristic 

(ROC) Curve”, a graph reporting the performance of a classification model at several 

classification thresholds. 

This area may assume values, by definition, between 0 and 1, and the graph has as axes the 

true positive rate (TPR) and the false positive rate (FPR), whose formulas are written below: 

 𝑇𝑃𝑅 =  𝑇𝑃𝑇𝑃+𝐹𝑁     𝐹𝑃𝑅 =  𝐹𝑃𝐹𝑃+𝑇𝑁 

 

This section reports the metrics obtained for each dataset category, whose values come from 

the comparisons between ground truth images and binarized results. 

The threshold values, which provided the highest F1 scores, correspond to the ones specified 

in the previous section and therefore have been omitted. 

 

 

 Accuracy Precision Recall F1 Score Cohen’s 

Kappa 

ROC 

AUC 

Calciatori 

Iozzino 

0.995 0.924 0.917 0.918 0.915 0.999 

2019-03-05 

@Magic 

0.995 0.878 0.92 0.895 0.892 0.999 

2019-03-05 

@CUS 

0.997 0.841 0.819 0.815 0.813 0.998 

Pattinatrici 0.991 0.719 0.849 0.775 0.771 0.996 

Calciatori 

Soldo Drop 

0.994 0.859 0.9 0.876 0.873 0.999 

Tab 3.1: Indoor medical labs values 
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 Accuracy Precision Recall F1 Score Cohen’s 

Kappa 

ROC 

AUC 

Inter 

22.05.2018 

0.998 0.94 0.923 0.931 0.93 0.999 

csaPlantare 0.995 0.828 0.865 0.841 0.839 0.999 

cacb cam 0.997 0.847 0.89 0.866 0.865 0.999 

Tab 3.2: Outdoor football pitches values 

 

 

The following graphs report how F1 score changes depending on the applied threshold value 

per video category. As for the metrics tabs, environments have been divided into outdoor and 

indoor classes. 

 

 

Fig 3.53: FgSegNet_v2 performance on indoor medical labs 
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Fig 3.54: FgSegNet_v2 performance on outdoor football pitches 
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4. Discussion and Conclusions 
 

This work consisted in exploring the use of the state-of-the art multi-scale CNN FgSegNet_v2 

to achieve background subtraction in a non-scene-specific context. 

Despite being used for handling a different task from the original experiment, the neural 

network reached satisfying results, reporting a F-measure score of 0.931 for the “Inter 

22.05.2018 @ Appiano Gentile” dataset category. 

As expected, the model was able to detect more easily targets in conditions of high contrast in 

colors between subjects and background; furthermore, higher scores in accuracy have been 

reached in the case of test samples that were very similar to the ones used during the training 

phase. 

The neural network demonstrated to be able to tackle several issues related to background 

subtraction task, which predominantly involve dynamic background motion, illumination 

changes and shadows labeled as part of the foreground object. 

The efficiency of this method mainly comes from its learning process, where the dataset used 

for training the model defined the input-output relationships. 

Most of the false positive pixel masks correspond to objects that may resemble human body 

parts or static subjects (either fully visible or partially hidden) in the background. Among 

these latter, the ones which were closer to the camera and fully visible were considered as part 

of the foreground masks: this choice follows the model training strategy of including human 

figures at different scales to obtain a better performance in motion tracking. 

Graphs have shown that F-measure starts to significantly decrease above a threshold value of 

 0.7 for outdoor pitches, while it maintains similar values in the range [0.5, 0.85] for indoor 

environments. 

Further developments may explore a different strategy in labeling (e.g., by removing all the 

subjects in the background), include the embodying of temporal information to remove static 

subjects, train the model on more environments to improve its adaptability to new contexts 

and its generalization capability, or develop two different models (i.e., one for the outdoor 

recording sessions and one for the indoor lab acquisition). 
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