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Introduction

Over the last fifteen years, following the global financial crisis and the European sovereign
debt crisis, the introduction of negative interest rates policies has been a quite particular event
for our economies. Nowadays it is somehow surprising to find articles and books published
prior the financial crisis in which authors rule out any possibility for interest rates to cross the
zero lower bound. However, the most recent events showed the world how unpredictable the
economic scenario can be.

The context considered for this dissertation is the European one, with the focus being on the
European Central Bank, one of the major central banks that resorted to the negative interest rate
policy (NIRP) significantly. This is the reason why in chapter 1 we introduce the concepts and
the intuition behind the NIRP, as well as its effects on economic agents. After providing an
overview on which are the central banks that implemented such policy, we present the main
monetary policy tools at disposal of the European Central Bank. In chapter 2 we recall the main
theoretical concepts of interest rate theory as well as continuous time short rate models, with a
particular focus on the Vasicek and the Hull-White model.

Given the particular macroeconomic framework we find ourselves in, interest rate modelling
had to adopt new solutions in dealing with negative deposit rates and yield curves. The analysis
carried out in this thesis implements one of these solutions, namely the “shadow rate model”,
which is based on a simple and intuitive mechanism introduced by Black (1995). In particular,
under some assumptions, the mechanism prevents the short rate to take values below a given
lower bound. By relying on the mechanism, in this dissertation we explore how different
specifications of such lower bound affect a shadow rate model’s performance in terms of
parameters estimates, goodness of fit and forecasting liftoff horizons, namely the length of time
after which we can expect the short rate to cross the lower bound from below. Therefore, in
chapter 3, we start describing the most common problems in modelling interest rates in a NIRP
environment, and we present the “zero lower bound mechanism” by explaining how it helps in
solving such problems.

The last chapter is dedicated to the empirical analysis. Given two different lower bound
specifications, namely a single lower bound and a regime switching lower bound, we estimate
their corresponding shadow rate models over the entire sample period (i.e. from August 2005
to September 2021) by employing end-of-month observations of the Euro OIS yield curve.
Given the decisions of the ECB to cut the deposit rate several times below zero, the aim of the
estimation is to test the ability of the different lower bound specifications to capture the shifts

in interest rates in negative territory that were driven by such cuts. Thus, we compare the
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different models’ performance after estimating their parameters as if we were doing it “real
time”, meaning that we first set ourselves at the beginning of 2014 and we re-estimate the two
models at the beginning of each year up to 2021 by adding, at each re-estimation date, the last
twelve end-of-month observations. Subsequently, by means of a Monte Carlo simulation we
derive the models-implied liftoff horizons to explore how the two lower bound specification
affects such measure. Additionally, we provide a comparison with respect to the real market
expectations provided by the ECB Survey of Monetary Analysts (SMA) for the periods of May
and August 2021.



CHAPTER 1

1. The negative interest rate policy (NIRP)

In this chapter we provide a brief overview of the negative interest rate policy (NIRP) and
its worldwide implementation. We then focus on the European macroeconomic framework, and
we close the chapter with a discussion about the economic agents that may benefit and those

that may lose in a negative interest rate environment.
1.1. What is the NIRP

The NIRP is an unconventional monetary policy tool which consists in the central bank to
set some key policy rates in negative territory, that is below what was commonly perceived to
be a “zero-lower bound”. Considering the rationale and the objectives behind this policy, one
can think of the NIRP to be the natural continuation of the classic expansionary monetary policy
below the “zero-lower bound”. This poses questions regarding where the effective lower bound
actually is, as long as the cash option remains available to economic agents.

IMF (2017) provides some case studies, from which it is quite easy to understand the main
objectives of the NIRP, that is generally applied within a more complex picture of conventional
and unconventional monetary policies. We find the pursue of inflation targets, the support of
the credit market in a perspective of growth stimulation, but also fixed exchange rate defence
as main objectives.

Generally speaking, a positive interest rate implies a lender to earn interests on a given
amount lent to a counterparty. Contrarily, a negative interest rate implies a cost for the lender,
who may decide to manage liquidity in a different way. This is exactly the case of financial
institutions: if on the one hand, in a context of low interest rates, they may raise cheaper funding
liquidity, on the other they typically earn a negative return from holding excess reserves with
the central bank implementing the NIRP. Effects on both the credit activity and the money
markets are natural consequences, as banks have the incentive to lend any excess of liquidity to
businesses and households, therefore stimulating investments and consumption.

The feasibility of a long run implementation of such policies is object of discussion. The
main issues concern financial intermediaries profitability and households’ willingness to earn
a negative rate on deposits rather than holding cash (see Bech and Malkhozov 2016 and Blanke
and Krogstrup 2016 for a general overview about these issues). However, we will come back

to these aspects in section 1.4.
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1.2. The NIRP implementation around the world

Although the focus of this dissertation is on the euro area, the European Central Bank (ECB)
was not the only monetary authority to adopt negative interest rates. Among the others, policy
rates have been set negative also in Denmark, Sweden, Japan and in Switzerland, even though
the motives behind their introduction were quite different. Let us discuss all these cases
respectively.

In order to pursue its price stability mandate in a situation of persistent low inflation
expectations and to stimulate lending into the economy, Draghi (2014) announced on the 5% of
June 2014 the ECB’s decision to set the deposit facility rate at negative 0.1 percent starting
from the 11" of the same month. After June 2014, further adjustments took place, with the
deposit facility rate to finally reach a negative 0.5 percent in September 2019.! Notice that the
ECB’s NIRP, which had no precedent in the euro area, was actually an integral part of a more
general set of monetary policies. In particular, the package introduced in June 2014 came along
with reductions in other key interest rates, such as the one on the main refinancing operations
and the rate on the marginal lending facility, but also with the introduction of the “Targeted
longer-term refinancing operations (TLTRO),? and preparatory work related to outright
purchases of asset-backed securities” (ECB 2014a).

Going back in history, one of the first countries that adopted the NIRP was Denmark, but its
purposes were different from the ones of the ECB. As the mandate of the Danmarks
Nationalbank (DN) is to ensure low inflation by relying on both monetary and foreign-exchange
policies, including intervention in the foreign-exchange market,* the defence of the exchange
rate was the cause of the NIRP. As indicated in IMF (2017), following a solid growth in 2010,
a significant output gap in 2011 and the euro area struggling with the sovereign debt crisis, the
Danish Krone was perceived to be a safe currency, with a consequent appreciation against the
euro from the middle of 2011. The DN intervened by charging banks a certificate of deposits
rate of negative 0.2 percent from July 2012, and by taking corrective interventions in the foreign
exchange market aimed at supplying krone and increasing foreign currency reserves. IMF
(2017) underlines how Denmark had to deal with huge capital inflows in the early 2015 as well,
as a consequence of the ECB Asset Purchase Programme and the Swiss National Bank’s

decision to abandon the exchange rate floor against the euro. The DN response was aligned

1 See ECB’s website: https://www.ecb.curopa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html

% The complementary policies are usually as much as important as the NIRP. For example, for what concerns the ECB, the
introduction of the TLTRO, an unconventional tool with the aim of providing banks with additional term funding, is considered
to be the starting point of the Asset Purchase Programme (APP). See:
https:/www.ecb.europa.eu/mopo/implement/app/html/index.en.html

3 See Danmarks Nationalbank’s website: https://www.nationalbanken.dk/en/marketinfo/Pages/default.aspx
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with the corrective actions taken in 2011, with the Certificate of deposit rate set at negative 0.75
percent in February 2015 along with foreign exchange market interventions. Eventually, the
DN reached its objective, and the Certificate of deposit rate was raised to negative 0.65 in
January 2016.*

The case of Sweden seems to go hand in hand with the ECB one, as it must be contextualized
in an environment of low inflation expectations. The Sveriges Riksbank (SR) set a zero-repo
rate in October 2014, with a further reduction to negative 0.10 percent in February 2015 and,
to sustain the increase in monetary base, the SR committed itself in purchasing public debt as
well. To give the idea of the magnitude of the intervention, notice that in February 2016 the RN
charged an historical minimum repo rate of negative 0.5 percent (see Sveriges Riksbank 2019)
and, by the middle of the same year, public debt holdings reached 30% of the outstanding
nominal government bonds (see Bech and Malkhozov 2016). As IMF (2019) suggests, the
effects on inflation were positive, as we witness a HICP inflation and a Core HICP inflation of
1.4 and 0.9 respectively at the end of 2016, and 1.8 and 1.6 at the end of in 2017. On top of that,
even though the RN has no exchange rate target,” Sveriges Riksbank (2019) shows the
intervention had positive side effects for the exchange rate as well: the lowering of the
government yield helped stabilizing the Swedish Krona, that was previously experiencing an
appreciation.

The Bank of Japan (BoJ) followed the example of the ECB and the other European central
banks by announcing, at the end of January 2016, the introduction of the "Quantitative and
Qualitative Monetary Easing (QQE) with a Negative Interest Rate" programme “in order to
achieve the price stability target of 2 percent at the earliest possible time” (Bank of Japan 2016).
The peculiar feature of the japanese NIRP was the Three-Tier System: each financial
institution’s current account outstanding balance was divided in three tiers, to which it was
assign respectively a positive interest rate of 0.1 percent, a zero-interest rate and a negative
interest rate of 0.1 percent according to some criteria that penalized reserves exceeding the
required amount. Also in this case, as pointed out by IMF (2017) the NIRP must be considered
within the broader picture of the QQE asset purchase program, that was initiated as a remedial
measure to a weak production growth and a sharp decline in inflation at the end of 2015.

For what concerns Switzerland, the motives that led to the adoption of the NIRP date back
to the global financial crisis in 2008 and the sovereign debt crisis in 2010. The Swiss case study

in IMF (2017) explains that in such uncertain financial conditions, the perception of the Swiss

4 See Danmarks Nationalbank’s website:
https://www.nationalbanken.dk/en/marketinfo/official interestrates/Pages/Default.aspx
5 See Sveriges Riksbank’s website: https://www.riksbank.se/en-gh/about-the-riksbank/the-tasks-of-the-riksbank/
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Franc to be a safe currency created a significant appreciation pressure. As a response, the Swiss
National Bank (SNB) decided to set a floor on the exchange rate against the euro in September
2011, that is “with immediate effect, it will no longer tolerate a EUR/CHF exchange rate below
the minimum rate of CHF 1.20” (Swiss National Bank 2011). Bech and Malkhozov (2016)
reports that three years later, in order to defend the CHF minimum rate, the SNB set an interest
rate of negative 0.25 percent on sight deposit account balances, but in January 2015 the
appreciation pressure forced the SNB to discontinue the CHF minimum rate and, in the hope of
discouraging investments in the country, the SNB lowered interest rate on sight deposit to
negative 0.75 percent. As in the japanese case, this NIRP was based on a tiering system which
provides for an exemption threshold of sight deposits at the SNB below which negative interest
rates were not charged. Similarly to the Danmarks Nationalbank, also in Swiss National Bank
(2014) it is remarked the purchase of foreign currency by the SNB was an important tool at the
central bank disposal to keep appreciation pressures at bay.
1.3. The European framework
The primary goal of the European Central Bank is to ensure that price stability is maintained
over the medium term by evaluating economic developments and by assessing how its policy
decisions are transmitted to the economy.® In 2003, the ECB specified its aim to stabilize
inflation rates “below, but close to, 2% over the medium term” ECB (2011). Having in mind
the primary objective of the ECB, in this section we provide a broad description of the main
instruments of monetary policy at its disposal. In this subsection, we mainly refer to ECB
(2011).
1.3.1. The main instruments of monetary policy
The ECB toolbox of conventional monetary policies can be divided into three main
categories: open market operations, standing facilities and minimum reserve requirements. As
described in ECB (2011) the open market operations can be further classified in:
- Main refinancing operations (MRQO’s): liquidity-providing operations which are carried
out on a weekly basis, whose total available liquidity is previously decided by the ECB.
They are short-term oriented operations, as their maturity is typically one week. Their
procedure is based on a standard tender, that is in accordance with a pre-announced
schedule which is supposed to help liquidity managers in planning funding. The ECB
also decides whether to set up fixed-rate tenders or variable rate tenders, even though,
from October 2008, MRO’s are based on fixed-rate tenders with the full allotment of

liquidity the commercial bank wish to transact. To participate, counterparties must fulfil

6 See ECB’s website: https://www.ecb.curopa.eu/mopo/strategy/princ/html/index.en.html




general eligibility criteria, but substantially all the euro area credit institutions are
potentially eligible.

- Longer-term refinancing operations (LTROs): liquidity-providing operations aimed at
solving structural problems of liquidity.” They are conducted on a monthly basis.
Typically they are characterized by a three-months maturity, whose rationale is to
prevent financial institutions to rollover MRO’s. If deemed necessary, the governing
council may implement additional LTRO’s with longer maturities (even up to a year).
However, irrespectively of the maturity, LTRO’s are based on a standard tender in a
decentralized manner, with the ECB to act as a “rate taker” to not influence money
market rates over such long terms. In normal circumstances they are pure variable rate
tenders with the ECB announcing in advance the total liquidity to be allotted, while
under exceptional circumstances they may be based on fixed-rate tenders with full
allotment of liquidity needed (and requested) by each counterparty. As for MRO’s all
counterparties fulfilling the general eligibility criteria can participate.

- Fine-tuning operations: they are both liquidity-providing and liquidity-absorbing
operations aimed at steering interest rates and smoothing their fluctuations due to
unexpected liquidity events. Coherently with their objective, their frequency and
maturity are not regular, and their procedure is generally a “quick” tender (it takes one
hour from their announcement to the communication of the results).® To take part of
these operations, given their characteristics, there is a list of around 2000 eligible
counterparties.

- Structural operations: they aim at adjusting the liquidity amount in the market over
longer horizons by means of liquidity-providing and liquidity-absorbing operations. By
being conducted at the initiative of the governing council, their frequency can be regular
or non-regular, and they can be based on either standard tenders or bilateral procedures.

The second main category of the monetary policy’s toolbox concerns the standing facilities,
which allow the central bank to manage liquidity positions vis-a-vis single counterparties, but
only at their initiative. Indeed, they are implemented upon request of commercial banks, either
because in need of additional liquidity or in need of liquidity absorption. ECB (2011) explains
that the ad-hoc request of liquidity provisions (or liquidity absorption) implies a cost (or a
profit) for commercial banks that is unfavourable with respect to the one they would incur in

the money market. ECB (2011) distinguish the standing facilities into:

7 The Targeted longer-term refinancing operations (TLTRO’s) mentioned in the previous section are particular types of
LTRO’s, whose main features are the advantageous conditions in terms of interests, and the focus on the private sector.

8 Under exceptional circumstances, they may even be bilateral procedures.



- Marginal lending facility (MLF): it allows a counterparty that fulfils the general
eligibility criteria, to obtain liquidity with an overnight maturity from its national central
bank. The interest rate under the facility is instead defined at the discretion of the ECB’s
governing council. Liquidity amounts can be provided with no limits, but only against
eligible assets, either through overnight repurchase agreements or as overnight
collateralised loans. Notice that the pre-specified rate on this type of facility implicitly
determine the “cap” of the corridor of interest rates in the interbank market, in
particular in the overnight money market.

- Deposit facility (DF): it allows a counterparty that fulfils the general eligibility criteria,
to deposit any excess amounts of liquidity with its national central bank. Also for this
facility, the maturity can only be overnight, with interests payment calculated on a pre-
specified fixed rate.’ The deposit facility rate outlines the “floor” of the corridor which
characterizes the overnight money market.

As we mention before, the third element described in ECB (2011) which composes the toolkit
of the monetary policy is the minimum reserve requirements. Generally speaking, commercial
banks must hold balances on their current accounts (i.e. “required” reserves) with the
corresponding national central bank (NCB) for a given amount calculated on the basis of their
reserve base. There are three fundamental elements of the minimum reserves system which
worth attention. Let us quickly explain them:

-The reserve base: it refers to the bank’s financial liabilities considered for the minimum reserve
requirements’ calculation, to which reserve ratios are applied. The bank’s liabilities subject to
reserve requirements are distinguished in terms of maturity. Specifically, short-term liabilities
are applied a positive reserve ratio (that to date is one percent) while longer maturity liabilities
are applied another reserve ratio (which currently is a zero-reserve ratio). At the same time, the
minimum reserves regulations specify some criteria according to which some financial
liabilities may be excluded from the reserve base.

-The averaging provision: it indicates the reserve requirement (i.e. the average balance) that a
commercial bank must hold with the NCB over the maintenance period. In other words, banks
are given the possibility to hold a balance deficit (or a surplus) over their reserve requirement,
provided that they counter the imbalance before the end of the maintenance period (i.e. when

the reserve requirement becomes binding). As stated in ECB (2011), one of the objectives of

% Given the importance of the facility, the governing council can change or adapt the features of the facility and, if deemed
necessary, even suspend it.



the averaging provision is to favour conditions for the stabilization of money market interest
rates.'?
-The maintenance period is the time window underlying the averaging provision compliance.
More precisely, the average of the daily balances on the institution’s current account must
comply with the averaging provision. ECB (2011) indicates the maintenance period lasts around
a month and an indicative maintenance period schedule is published by the ECB three months
before the start of each calendar year.'!
Besides the commonly known prudential liquidity purposes, ECB (2011) specifies a second key
objective of the minimum reserve requirement, meaning the creation of a structural liquidity
shortage in the system, that leads the increase of commercial banks’ demand of credit in order
to comply with the averaging provision. The credit demand may be addressed to both the
interbank market and the central bank, making it easier for the latter to influence interest rates
levels.
1.3.2. The transmission of the NIRP to the money market rates: evolution and features
Recent assessments, such as ECB (2020a), state that so far the NIRP has reached its
objectives. As a matter of fact, we witness a boost of the economic activity through an increase
in lending volumes (which offsets lower interest income) and an improvement of
creditworthiness. Finally, it is contributing to price stability. However, the aim of this section
is to provide some intuitions about how negative policy rates are supposed to be transmitted to
the economic system. This is not an easy task,'? but we provide general intuitions. For further
theoretical details we address the reader to Beyer at all. (2017), sections 2 and 3. For an
assessment about the NIRP results, we refer to ECB (2020a), sections 3 and 4, along with Arteta
et al (2016) which analyse implications on some key financial variables (such as lending rates,
sovereign bond yields and inflation) both in the eurozone and outside. '*
The interest rate channel
The fundamental element to consider for what concerns the interest rate channel is the
interbank market. ECB (2011) and Beyer at all. (2017) suggest the implementation of liquidity-

providing or liquidity-absorbing operations in order to steer money market rates, depend on the

10 Consider, for example, the case in which a bank believes that short-term rates are likely to decline at the end of the
maintenance period. The compliance with the average provision at the end of the maintenance period allows the bank to
destinate reserves to lending at first and run surpluses only at the end of the period by borrowing at a possibly lower rate

! The rationale behind scheduling is to help banks managing their liquidity over the year.

12 Beyer et al. (2017) indicate the influence on the economy occur through a myriad of transmission mechanisms of the
monetary, macroprudential and microprudential policies, as well as the interactions between them.

13 Notice this assessment dates year 2016, therefore it considers just the first two cuts of the ECB.
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level of liquidity in the interbank market, and to the inflation target the ECB wants to achieve.'*
In order to understand how the ECB steered interest rates overtime, in figure 1 we plot the
evolution from January 1999 to September 2021 of the key policy rates, and two of the most
relevant money market rates: the EONIA and the one-month maturity EURIBOR. It is quite
evident the interest rates charged by the ECB on standing facilities delineate the range (i.e.
“corridor” of interest rates) within which money market rates fluctuate. More precisely, the rate
under the deposit facility and that under the marginal lending facility respectively define the
floor and the cap of the overnight interbank market. As a matter of facts, the “revolutionary”
package announced by Mario Draghi to counter low inflation expectations in June 2014 was
firstly transmitted in the interest rate channel. As announced in ECB (2014b) the package
included a cut on the MRO’s and the MLF interest rates, that were lowered to 0.15 and 0.40
percent, respectively. On top of that, the deposit facility rate was set at a negative 0.10 percent.
During the press conference on the very same day, which sets the beginning of the NIRP in the
euro area, Draghi (2014) stated that, according to him, the “lower bound was reached®, but he
did not rule out the possibility of potential future “technical adjustments”.

As we can see in figure 1, to date we witness four downward adjustments in the deposit facility
rate (currently at negative 0.5 percent) after the initial cut in June 2014, as well as two
downward adjustments in the marginal lending facility rate (currently at positive 0.25 percent),
and two downward adjustments in the marginal refinancing operation’s rate (currently at a zero-
rate). Regardless the cuts being in negative territory, Bech and Malkhozov (2016) argue
negative interest rates have been transmitted to the money market exactly as normal (i.e. in
positive territory) interest rate cuts do, with the EONIA moving as well in negative territory
from August 2014. Figure 1 is also quite useful to spot differences between the dynamics of
interbank rates before and after the breakthrough of June 2014. From January 1999 to 2014, we
witness significant volatility in both the EONIA and the EURIBORm, with the EONIA
remaining attached to the MROs rate until the peak of October 2008, a signal of the notorious
liquidity troubles in money markets during the global financial crisis. Due to the unconventional
measures adopted by the ECB to keep at bay the effects of the financial crisis'> and then the
sovereign debt crisis we witness a consistent downshift of the corridor, with the EONIA floating
at a level which is very close to the corridor’s floor, reflecting the great amount of liquidity in

the system. The introduction of the NIRP narrowed the corridor and accentuated the downward

14 The uncertainty of the lag period between the central bank’s action and the actual effect on interest rates is a big issue in
monetary policy making, but it is outside the focus of this dissertation

15 For example, along with low policy rates, the unlimited credit provided to financial institutions through “fixed rate full
allotment” on all the refinancing operations (see ECB 2010) was one of the first measures that enhanced the liquidity provision
to the interest rate channel.
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pressure on the EONIA. Indeed, although the corridor is not violated when its floor is negative,

the so-called “stickiness” of interbank rates to the corridor’s floor is quite evident.

ECB Policy Rates, EONIA and EURIBOR1m

6.00 T T T T T T T

5.50 EONIA -~
Deposit Facility Rate

5.00 Marginal Lending Facility

Main Refinancing Operations
EURIBOR,

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Figure 1. EONIA, EURIBOR ,,, and PO]iCy Interest Rates: 04/01/1999 — 31/08/2021. Market holidays dates not considered.
Source: Statistical Data Warehouse, European Central Bank. Available at: https://sdw.ecb.europa.eu/

We will come back to these issues in interest rates’ dynamics in chapter 3 to discuss how
they affects the most common continuous-time short rate models, but figure 1 already provide
us with some good intuitions that are worth of notice. In particular, we anticipate three elements
which characterized interest rates’ dynamics after the negative interest rate breakthrough:
-The traditional idea of a zero lower bound is nowadays outdated, as it is replaced by the idea
of a negative, and possibly time-varying, lower bound. Thus, the real question concerns where
the lower bound actually lies.

-Interest rates float in negative territory for very long periods of time;

-They tend to be quite stable and almost attached to the (negative) monetary policy lower bound.
As we can see graphically, this is true not just for the EONIA, but for the EURIBOR i1, as well,
which “breaks” the floor of the deposit facility rate at the beginning of 2021.

The credit channel

Once the corridor has been set, the main objective of the ECB is to pass negative interest
rates to the credit activity, in order to stimulate borrowing from corporations and households.
Beyer at all. (2017) explain that as inflation do not react immediately to changes in interest
rates, the real cost of borrowing charged on corporate loans and household mortgages will
decrease, encouraging credit and purchase of goods and services. This will in turn boost

production, demand for labour and finally the level of prices. However, as pointed out by Arteta
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et al. (2016), the “pass through” may not be so straightforward, as financial institutions may be
reluctant to lend, given the erosion of interest income and the credit risk being entirely on their
shoulders. On the other hand, policy rates affect banks’ interest expenses as well, by making it
cheaper to gather funding liquidity both in terms of retail deposits and general wholesale
funding. However, up to date, negative interest rates have not been charged to depositors in a
relevant way,'¢ as this may trigger substantial deposit withdrawing by those for which cash is
a valid option.

Arteta et al (2016) continue that lower rates on loans and mortgages actually reflect banks’
cheaper wholesale funding, while banks which have a predominant share of deposit funding
struggle to reduce rates on interest earning assets, as it would further shrink their profitability.
This is confirmed also in more recent studies, such as ECB (2020a), which include in the
analysis interest rate cuts subsequent to 2016: banks with a more heterogeneous funding have
been able to reduce interest expenses and preserve their intermediation margin, while banks
whose funding structure is mainly deposits (retail and corporate) find it more difficult to
(proportionally) reduce their interest expenses when facing cuts in interest income. ECB
(2020a) denotes how the problem may become significant in case negative rates persist
overtime, eventually leading those credit institutions to change their funding structure. Finally,
the uncertainty regarding retail deposit’s lower bound is amplified by deposits and cash not
being perfect substitutes, given the fact that banks provide payment services that would not be
accessible with cash-only, that is “this convenience has an intrinsic monetary value” ECB
(2020a).

Other transmission channels

To underline how the different channels are connected with each other, we provide some
hints about other transmission channels linked with the very first NIRP packages of June 2014.
Arteta et al. (2016) argue that asset prices and wealth channels definitely play a role. More
specifically, in response to lower interest rate levels, investors may increase purchases, and thus
valuations of risky instruments (such as equities) which in turn could prompt investments by
the issuing firms and by the holders of such instruments. On top of that, Beyer at all. (2017)
add that valuation effects impact on collaterals’ values, with consequences on credit activities,
meaning the amounts that can be borrowed against the affected collateral. In such a context, we
may witness the so-called “wealth effect”: portfolio’s value of risky instruments become more

valuable, making owners wealthier and more prone to increase their consumption’s level.

16 As we discussed in section 1.4 negative rates were mostly applied on large-sized current accounts.
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Additionally, the risk-taking channel induce risk seekers in a low-rates environment to look
for higher-return opportunities. These types of investments may lead to a further ease of
financing towards riskier activities as well, allowing the liquidity stimulus to expand in the
economy not only via banking system. In this regard, notice how a cut in interest rates could
create downward pressure on the longer-maturity rates of the yield curve, potentially leading to
its inversion. This is due to market agents which anticipate (or react to) interest rates’ cuts and
try to “lock in” the long-term rates currently prevailing in the market. The same intuition applies
for the return-seeking agents, thus creating an upward pressure on long term bond prices. As the
ECB (2020a) suggests, this allows the monetary accommodation to spread over the whole terms
structure, and not just to the short end of the yield curve.!” Finally, among the transmission
channels employed by the ECB’s NIRP package of June 2014, we find the money channel, that
is called upon by the preparatory work for the APP'® and the TLTRO introduction,'® but also
the expectation channel, regarding which the forward guidance given by the ECB’s president
by not excluding further cuts, was a fundamental element.

1.4. The effects of negative interest rates on economic agents

The first market agents which are directly affected by the monetary policies are, of course,
the commercial banks. We have already mentioned that the erosion of interest income cannot
be fully compensated by the cheaper funding costs, especially for those intermediaries relying
mostly on retail deposits. However, the European banking survey of the first quarter 2020
provides additional details. Specifically, in ECB (2020b)*° we see the majority of the
institutions claim the negative deposit facility rate (included the two-tier system?!), has affected
their profitability mostly because of the lower lending rates across all the different loan
categories. On the other hand, lending volumes towards enterprises increased, as well as
housing loans and consumer credit. The results of the survey are confirmed by empirical
analysis as well. Klein (2020), by means of data of euro area banks, shows the positive
association between net interest margin and lending that we normally observe does not hold

(i.e. it becomes statistically insignificant) in periods of short-term negative rates. The intuition

17 Theoretically speaking, the effects on the long end of the yield curve described above are also coherent with the expectation
hypothesis: persistent negative/low short-term rates should lead to lower long-term rates as well. As a matter of fact, ECB
(2020) argues that after June 2014 agents expectations about future short-term rates have a non-negligible probability of being
negative, and the further cuts increased the likelihood that the June 2014 cuts were not temporary.

18 The package has laid the foundations for the APP, which subsequently led to a consistent increase in the monetary base.

19 Theoretically, more lending should imply, via monetary multiplier, an increase in money supply (see Beyer at al. 2017).

20 The questions were made from the 19" of March 2020 to the 3" of April 2020, and it explicitly asks ad-hoc questions
regarding the impact of the negative DFR (along with the two-tier system) on profitability over the last and the next 6 months.
2! The two-tier system was introduced by the ECB on the 30" of October 2019. For each institution is calculated an “allowance”,
that is an amount of reserves, in excess of the compulsory ones, to which it is applied a remuneration of zero percent. See:
https://www.ecb.curopa.eu/mopo/two-tier/html/index.en.html
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is that increasing the credit activity with the aim of offsetting the margin’s erosion helps banks
to support profitability. Notice the profitability issue and the uncertainty regarding the duration
of negative rates concerns insurance companies, investment funds and pension funds as well.
By promising (or aiming) at providing consistent returns to investors, they may not be able to
cover the interest liability with a sufficiently high interest income. Intuitively, the issue is more
serious compared to banks: if the latter may implement internal reorganizations, cost-cutting,
or cross subsidization,?? pension funds or insurance companies cannot rely in the same way on
these strategies. On top of that, pension funds are typically required to invest a given share of
their liquidity in top-rated instruments, which are not quite profitable in a low-rate
environment.”?

Along with financial institutions, the NIRP have mixed effects on depositors and firms: the
stimulation of the credit channels favour their access to credit, but, on the other hand, depositors
and firms’ will earn no interest on their deposits, especially on the demand ones. The problem
is amplified for corporations, whose cost of cash storage is higher compared to depositors. So
far, we do not witness negative rates applied to demand deposits of regular savers in the euro
area, but there have been cases concerning the demand deposits of the wealthiest clients.?*

Finally, governments, especially the ones with a high debt-to-GDP ratio, do benefit from the
general low-interest context. However, the negative policy rates of the central bank are not the
primary determinant of the government’s ability to raise cheap funding. Among various
reasons, we find the implementation of large-scale asset purchase programs (particularly
relevant for the euro area governments), but also the great worldwide demand of safe assets and
the attractiveness of medium-high yields of government bonds. For what concerns the latter,
even if a government’s security is not top rated, it may be seen as profitable, and relatively safe,
compared to risky assets issued by other market agents. It is therefore difficult to quantify the
effects of the NIRP per se’ on government bond yields, but for sure governments are the true
winners in such an environment. In front of a consistent drop of OIS rates and sovereign bond
yields from the first cuts in June 2014 to the end of 2019, Giacomo Carboni, Wolfgang Lemke
and Daniel Kapp estimated the isolated effect of the NIRP on sovereign bond yields by the end

of 2019, reaching the conclusion that the two-year maturity and the ten-year maturity yields

22 Since their business model also concerns the provision of payment services, banks can either charge higher fees and
commissions or sell new types of product and services to customers which have been attracted by low-interest loans, high-
interest certificates of deposit, and so on.

2 For example, the German 30-year bund was sold at an average yield of negative 0.11% for the first time at an auction in
August 2019. See: https://www.reuters.com/article/germany-auction-idUSLSN25H29G

24 For example, UniCredit in Italy. See: https://www.reuters.com/article/us-unicredit-rates-idUSKBNIWT1L1
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have been lowered by around 40 basis points and 35 basis points, respectively. For further

details, see ECB (2020a), Article 2.
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CHAPTER 2

2. Short rate models in continuous time

In the following we provide the theoretical framework of the continuous-time short rate
models. We start from the most important concepts of interest rate theory, such as basic
definitions and zero-coupon bonds’ valuation, ending up discussing the Vasicek and the Hull-
White models. Although the empirical analysis of this dissertation is not focused on pricing
applications, we think it is important to present the fundamental ideas of arbitrage-free pricing
theory, in particular with respect to zero-coupon bonds. The purpose is to highlight the
importance of the (risk-free) short rate path and its evolution over time in bonds and interest
rate derivatives’ valuation. For the discussion of section 2.1. we mainly refer to the definitions
of Bjork (2009), Brigo and Mercurio (2006). We use Hull (2014) as a main reference for what
concerns OIS rates.

2.1. Basic concepts and notation

The first element to consider in zero-coupon bond pricing theory is the concept of (risk-free)

“short rate”. In facts, as it will be clearer ahead in the chapter, bond prices entirely depend on

the path of the short rate under the Q-measures.

Definition: The short rate at time t denoted by r(t) is the instantaneous spot rate prevailing
at time t for the interval [¢,t + dt] where dt is an infinitesimal period of time. The short rate

r(t), under the P-measures, is the solution of the following SDE:
dr(t) = u(t,r(©)dt + o(t, 7())dWP (t) (2.0
where dW P (t) is the infinitesimal change of a Wiener process under the P-measures at time ¢.

Definition: The value at time t > 0 of a money market account B;, also commonly referred

to as bank account, can be defined as:

t
B, = exp <f r(s)ds), @1
0
where:
{dB(t) =r(t)B(t)dt 2.2)
BO)=1

This means that investing 1€ at time zero in a bank account paying a stochastic interest rate

r(t) on a continuous basis, yields to a bank account value equal to (2.1) at time ¢t = 0. The rate
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r(t) paid by the bank is considered “risk-free”, and it is an instantaneous spot rate (i.e. short

rate).

Definition: A zero-coupon bond with maturity time T, also known as 7-bond or ZCB bond,
is a contract which pays a face value of one unit of currency at time T, with no intermediate

payments. Its price at a generic time t is indicated as P(t,T), and P(T,T) = 1 for every T.

The value of P(¢t,T)is fundamental for what concerns bond pricing theory, since every
coupon-bond, under the assumption of the existence of a market for all possible T-bonds, can
be evaluated as a composition of T-bonds. In facts, what we observe in the market are mainly
coupon bonds, that guarantee the bondholder a stream of cash inflows which is typically
predetermined. For further details see Bjork (2009), section 22.3.

As we will see in the following section, the price of zero-coupon bonds and thus coupon
bonds depends only on the underline path of the short rate, meaning their value derives from
the short rate. However, in financial markets, bonds are not considered to be actual derivative
contracts. Among the latter, a fundamental derivative contract in interest rate theory is the
interest rate swap. We provide the definition of such instrument in its elementary and most

common form.

Definition: An interest rate swap is a derivative contract entered at Ty with ending date
T that obliges its buyer to exchange fixed payments for floating payments at pre-determined
points in time over the interval [Ty, T]. The fixed payments, commonly referred to as the ‘fixed
leg” of the swap, are anchored to a fixed rate R, known as swap rate, while the floating ones
are indexed to a reference rate, and they are referred to as the “floating leg” of the swap.
Typically, the reference rate is an interbank rate, such as the Libor or the Euribor, and both the

swap rate and the reference rate are applied to a pre-determined principal value K.

By assuming equally spaced payment dates T; fori = 1, ...,n,where T,, = Tand T; — T;_; =
&, and assuming a Euribor spot rate, indicated as E(T;_1, T;),? as a reference rate, the floating

payment at a generic time T; will be equal to

E(Ti—]J Tl)6K 5

where

P(Ti—1,T))—1

E(Ti-0T) = = (Ti=Ti—)P(Ti—1,T))

5 Notice the Euribor spot rate E (T;_q, T;) is quoted at time i — 1 for the for the interval [T;_4, T;], but the payment occurs only
at time T;.



18

The fixed payment will instead be
R6K ,

and the net cash flow at time T; will finally be equal to
OK[E(T;-1,T;) — R] .

Bjork (2009), section 22.3.3 indicates that, using a cash flow replication argument by means of
a self-financing bond strategy, the value m(t) at time t < T, of an interest rate swap can be
expressed as

m(t) = KXo [P(t, Ti-1) — (1 + 6R)P(L, TY)] .

Notice that the value of the swap rate R is determined at the time of creation of the contract t,
which we assume to be equal to the starting date of the swap T,,. Thus, under the assumption

t = 0 = T, the swap rate R is determined in such a way that 7(0) = 0, that is

_ 1-P(0,Ty)
R= SYM,P(OT)

We conclude the discussion regarding swap rates and thus current section by recalling the
concept of OIS rates. The reason is that they are commonly perceived to be good
approximations of risk-free rates, especially after the global financial crisis proved that the

creditworthiness of the interbank market, as well as the governments’ one, are not indisputable.

Definition: The overnight index swap is a particular type of interest rate swap, in which the
reference rate of the floating leg is an overnight index rate. The fixed rate underlying the fixed
leg which makes the value of the swap equal to zero is referred to as “OIS rate”.>° The overnight
index swap has a starting date T and an ending date T, and both rates are applied to a notional

amount K.

It has to be noticed that the OIS rate is define over a given period, which is generally the
overall time period of the swap. Swaps lasting more than 1 year are typically divided into
multiple subperiods, even though the most liquid OIS markets are those of 1-month or 3-month
swaps.

A natural question is how the overnight index rate is treated. Normally, the overnight rate, such
as the EONIA, against which the OIS rate is exchanged, is typically rolled over day by day
(comprised of principal and interests) over the period of reference, thus obtaining the geometric

average of the overnight rates. Typically, the payments are settled at the end of the contract

26 For further details see Hull (2014), section 9.2.
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period (or at the end of each subperiod for the swaps lasting more than a year), to avoid actual
cash flow exchanges during the lifetime of the contract.

The OIS rate leads us to the Euribor-OIS spread, one of the most important indicators of the

“health state” of the interbank market. A high spread level suggests the presence of financial
stress in the banking sector, with banks struggling in finding counterparties with a good
creditworthiness status.
To better understand this concept, consider for example the 3-month Euribor rate. A three-
month loan at the spot Euribor rate is the equivalent of a rate paid on a term deposit, from which
the lender (or depositor) is going to earn the Euribor rate at the end of the 3-month period. In
the meantime, the lender has no right for an early redemption of the loan (or deposit). On the
other hand, the OIS rate corresponding to the same time period can be thought as a rate paid on
a demand deposit, the lender has the option to deny the rollover in any point in time (everyday).
In this way, the lender is hedged against a potential deterioration of the borrower’s
creditworthiness.?” Clearly, the spread between the two reflects the credit risk associated with
lending without the option of early repayment, meaning it is the risk premium asked to the
borrower. At this point it should be quite clear to the reader the reason why we can think of OIS
rates to be risk-free: the implicit option they consider allows the lending party to run a very
little default risk while lending money to another. In facts, the risk is now confined in an
overnight period of time.

Similarly to yield curves and (other) risk-free curves, we can think of a graphical
representation of OIS rates over different maturities T: the OIS zero curve. For what concerns
the short end of the curve, the construction is favoured by the liquidity of short-term OIS
market. In practice, as explained by Hull (2014), the 1-month OIS rate is interpreted as the 1-
month zero risk free rate, the 3-month OIS rate is interpreted as the 3-month zero risk free rate,
and so on. If there are OIS contracts divided into multiple subperiods, with settlements at the
end of each sub-period, Hull (2014) specifies a swap rate can be interpreted as a par yield
bond,?® so that we can reduce the derivation of the OIS zero curve on a classical bootstrap
method in which the periodic settlements are set equal to the principal amount of a
(hypothetical) par yield bond. However, the main problem concerns the derivation of the OIS
rates for the longest maturities. The typical solution is to consider the spread between the

longest maturity OIS rate available (either from market quotations or resulting from the

27 The intuition is even clearer by noting that the OIS rate is set in such a way that the swap it fairly priced. In other words, it
can be seen as the geometric average of the reference rate over the period in question.

28 This is done by assuming the OIS is fairly priced and its underlying fixed and floating legs are the equivalent of a fixed
coupon bond and a floating bond, respectively. A further assumption is the former pays the OIS rate and, at the same time, the
OIS curve is used for discounting. This means its value is equal to its principal. See Hull (2014), sections 7.6 and 9.2.
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bootstrap method) and the “LIBOR/EURIBOR zero curve”?® at the same maturity. Thus, the
spread is assumed to be the same for all longer maturities, meaning the long end of the OIS
curve is derived from the LIBOR/EURIBOR zero curve adjusted for the calculated spread.3°
2.2. Pricing zero-coupon bonds in an arbitrage-free market

For this section, our main reference is Bjork (2009) and Brigo and Mercurio (2006).
Occasionally, we will also refer to Hull (2014). In the following sub-sections we will provide
some hints about zero-coupon bond pricing theory, as well as the difference between P-
measures and Q-measure. A necessary premise to be made is that we assume the existence of a
zero-coupon bond arbitrage-free market for every maturity T, its frictionless nature, and the
differentiability of all P(t,T) with respect to maturity T. A further assumption requires the
presence of the money market account described in (2.1) and (2.2). It will work as a risk-free
asset in the bond market we just described.

2.2.1. The term structure equation

Before providing the treatment that leads to the term structure equation, it is useful to clarify
the notation and the exact meaning that is given in this dissertation to the words “term structure”
and “term structure equation”, as many times they are object of confusion in the literature. The
“term structure” is the function which associates a given maturity T to P(t, T). Consequently,
it represents how the bond price varies across different maturities. Instead, with the term “term
structure equation” we define the PDE satisfied by the pricing function of a ZCB, for an
arbitrary maturity T.

In order to find a pricing formula which allows us to solve the term structure equation that
we are going to derive, it is important to start with a basic intuition: in an arbitrage free zero-
coupon bond market, bond prices at different maturities must be consistent with each other, i.e.
they must prevent any market agent to exploit profitable opportunities. As a consequence, if we
manage to price a “reference” bond, we should be able to price all the others as long as they
have shorter maturities.

The full treatment provided by Bjork (2009) in section 23.2 is generally composed by three
steps. First of all, we assume that the price of a pure discount bond (a T-bond) with maturity T,

is a smooth function of time t and the short rate r(t), whose SDE is (2.0). Formally, we express

29 Interbank market rates’ maturities, such as the LIBOR and the EURIBOR are available up to 12 months. However, the
LIBOR/EURIBOR zero curve is derived by means of quoted swap rates. See Hull (2014), section 7 for additional details about
the derivation of the LIBOR/EURIBOR zero curve.

30 The same technique is implemented when long time series of OIS rates are needed. Since OIS rates became widespread from
2005/2006, if one needs the OIS curve prior the year in which the first OIS curve is available, a “spread-based” construction
can be implemented.
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P(t,T) =FT(t,r(t)). (2.3)

Secondarily, consistently with what we said in the previous section, and given (2.3) we can
write
F(T,r)=1. (24)

where r indicates any of all the possible realizations of the process r(t) att = T.

The third step of Bjork derivation makes use of the construction of a self-financing portfolio
of two bonds with maturities S and T, whose weights us and u; make it risk-free. The
weights are to be determined and S < T. By applying It6’s formula to (2.3), we respectively
get the following dynamics for the T-bond and for the S-bond

dFT = FTaydt + FTopdWF, (2.5)
dFS = FSasdt + FSagdWP | (2.6)
where,
ay = i +uFr; :%azFrTr ’ (2.7)
op = t;FTrT , (2.8)

with the subscripts r and t in (2.7) and (2.8) indicating partial derivatives. Clearly, (2.7) and

(2.8) are in the same form for the S-bond.

We can then express the infinitesimal rate of return of the portfolio,

‘i,_v { arT dFS}‘ (2.9

By substituting (2.5) and (2.6) in (2.9), and by manipulating the equation to separate the drift

term from the volatility term, we get
av ="V- {uTaT + u,sas}dt +V- {uTO'T + uSas}dWP . (210)
At this stage, the weights ug and u; must be determined in such a way that the volatility

coefficient {uror + ugag} in (2.10) equals zero. This condition, along with the obvious one

which requires the weights’ sum to equal one, allows us to find:
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In this way, we rule out the influence of the Wiener component on the portfolio dynamics in
(2.10). In other words, by holding the amount u; of T-bonds and the amount ug of S-bonds, the

portfolio value dynamics is given by

dv = V.{M}dt. (2.11)

or—0s

Under the assumption of no-arbitrage, the infinitesimal return of the riskless portfolio must be
equal to the infinitesimal short rate return over the same interval [¢, t + Jt], otherwise arbitrage

opportunities would be possible. By formalizing the intuition we obtain

&V — ESITTATIS — (¢, for all t, (2.12)
v oT—05
which can be rewritten as
as(t)—r(t) _ ar(t)-r(t) (2.13)
as(t) or(t)

Equation (2.13) allows to introduce the fundamental concept of the market price of risk in an
arbitrage-free bond market. In facts, it has to be noticed the right-hand side of (2.13) is a
stochastic process which does not depend on S, while the same stands for the left-hand side
with respect to the maturity T. In addition, the equal sign suggests they actually are the same
process, which is the reason why in the literature it is referred to as universal. Let us formalize

the intuition.

Definition: In an arbitrage-free bond market, there exist a universal process called market
price of risk, that only depends on current time ¢ and on the instantaneous spot rate r(t). It is

generally defined as

A(t) — ar(t)-r() (2.14)

or(t)

, for every maturity time T.

In plain words, at a given time t, for every possible maturity time T, A(t) assumes the same

value.

At this point, the careful reader will notice the numerator is composed by a;(t), which
belongs to the drift term of the T-bond SDE in (2.5), and by the risk-free rate r(t). The former
represents the expected rate of return®! of the T-bond, while 7(t) represents the instantaneous
profit an individual can make from putting its money in the deterministic bank account. The

numerator is therefore quantifying how well the T-bond is (infinitesimally) performing with

31 We write “expected” rate of return because even though we ruled out stochastic movements in the infinitesimal portfolio
return, the T-bond SDE preserves its own Wiener process. Hence, there is a source of randomness.
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respect to the risk-free short rate (7). Additionally, at the denominator we have the volatility
or(t), that is the risk the same individual takes by investing in the T-bond. As a consequence,
the market price for risk may be referred to as “excess return of the T-bond over the risk-free
asset per unit of volatility”.

To sum up, there are three elements that stand out from the concept of market price for risk:

I.  Itis independent of the maturity of the T-bond;

II. It depends on current time t and on the short rate r(t), i.e. it changes overtime;
II.  Itis the risk premium over the risk-free rate per unit of volatility required by the market
to the T-bond (for all T) to prevent arbitrage opportunities.*?
Finally, we can derive the term structure equation by replacing (2.7) and (2.8) in (2.14) and

by recalling the boundary condition of (2.4). Let us formalize its definition.

Definition: The term structure equation of an arbitrage-free zero-coupon bond market, which

we can refer to as the family of bond price processes, is the following PDE,

1 2.15
FtT+{u—Aa}FTT+§02FrTT—rFT=0, @-13)

FI(T,r) =1,

whose solution is the pricing function FT (¢t,7(t)).

Notice, u and o refer to the drift term and the volatility term of the SDE of r(T) in (2.0),

while the function FT(t,7(t)) and its partial derivatives have been written without arguments
for convenience.
Equation (2.15) is a standard PDE. However, as we pointed out earlier in the section, the market
price of risk A is a function of both the current time t and the instantaneous spot rate r(t). This
does not allow to determine 4 within the model, so that it is impossible to solve (2.15). To do
it, we should exogenously determine the market price of risk A, as well as ¢ and a.

The risk neutral valuation formula is derived straight from the term structure equation by
means of a Feynman-Kac representation of FT (¢t,r(t)).>* In order to do that, we have to fix a
point in time t and a point in space, that is r(t) = r. By means of Itd’s formula applied to the

following process

32 At a given time t, the risk premium per unit of volatility required by the market is the same for all the instruments. In facts,
whatever T-bond we consider, it will have dynamics that affect the numerator and the denominator, respectively through ar
and oy, in such a way to keep A(t) constant.

33 Given a PDE with a boundary condition, that in our case is equation (2.15), the Feynman-Kac formula allows to find its
solution exploiting the link of the PDE with a naturally associated SDE. For more details we address the reader to the Bjork
(2009), section 5.5.
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exp{— f:r(u)du}FT(s,r(s)), (2.16)

where the function FT (t,7(t)) satisfies (2.15), we obtain the following:

Definition: The risk neutral valuation formula of zero-coupon bond prices at a given time ¢,
with realization r(t) = r can be expressed as the risk neutral expected value of the final payoff

(i.e. the face value of one unit of currency) discounted at present date .

FT(t,r) = ES [e-ff rds.q] | 2.17)

where FT(t,7) = P(t,T) , and the expected value operator is taken under the risk neutral

measures Q with the following dynamics of the short rate:

dr(s) = {u — Ao}ds + adW?(s) , (2.18)
r(t)=r.

where WY(s) is a Wiener process under the Q-measures.

It will now be clear to the reader the reason why the main result of this section is that bond
prices entirely depend on the path of the short rate under the Q-measures.>* As Bjork (2009)
points out, bonds are deterministic contingent claims,> but the risk neutral valuation formula
is actually valid for whatever contingent claim depending on the short rate r(T) we consider.
2.2.2. The risk neutral valuation of bond prices

The main result of the previous sub-section is the T-bond pricing function expressed as in

(2.17), namely
T
FT(t, r) = EL?T [e_ft T(S)ds] )
In order to better understand what we mean by taking the expectation E ,_?r, let us focus on the
market price of risk in (2.14):

/1(t) — aT(t)_r(t).

or(t)

34 The result is the risk neutral valuation principle of derivatives applied to T-bonds. For what concerns derivative contracts,
the principle implies that, under the assumption of equality between the expected rate of return of the underlying asset and the
risk-free rate, the derivative price is obtained by discounting its expected payoff at the risk-free rate.

35 Differently from derivative contracts they pay a final payoff that is stochastic, a bond’s face value is typically determined at
the time of writing the contract.
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By simply assuming the market price of risk A(t) equals zero, we obtain a(t) = r(t), where
ar(t) is the expected rate of return of the T-bond. This the classical underline assumption of a
traditional risk neutral expectation.>¢

However, the derivation of the risk neutral valuation formula in (2.17) by means of a
Feynman Kac representation of the pricing function FT(t,7(t)) has shown the existence of
alternative risk neutral worlds. In our particular case, the risk neutral measure Q depends not
only on time ¢, but also on the short rate r(t). It is important to point out that the reason for this
result relies on the lack of completeness of the bond market we assumed in the first place.*’

To understand the meaning of the martingale measure Q employed by the ZCB’s valuation
formula, we should focus on the SDE of the short rate 7(t) under the Q-measures. Its dynamics,

expressed without arguments for sake of simplicity, are specified as in (2.18):

dr(t) = {u — Ao}dt + adWC(t),
r(t)=r.
By discounting the final bond payoff at the risk neutral measures Egr, the expectation will be
affected not only by time, but also by the dynamics of r(¢t) under Q. Thus, the market price of
risk 4 affects the bond’s evaluation since it appears in (2.18).

The result is that the way the bond market prices risk is going to affect the bond’s valuation.
In other words, we have different martingale measures Q for different choices of market price
for risk A, with the latter being in turn affected by plenty of market factors (among which market
participants’ risk aversion and market forces, such as supply and demand, stand out as main
determinants).

Moreover, it can be quickly shown that A is going to affect the expected return of a T-bond

as well. From equation (2.5) we have
dFT = FTaTdt + FTO'TdWP ,
where, ar and g are given by (2.7) and (2.8).

By expressing (2.14) (and omitting the arguments for convenience) as ay =1 + op4d , and

substituting it in the previous equation we get

dFT = (r + o D)FTdt + FTo,dWP .

36 If this was the case, we would have simply indicated the expected value operator as EtQ (without the “r”” subscript).

37 In our market, the number of exogenously given traded assets without considering the risk-free asset is zero, while the sources
of randomness equal one (i.e. the Wiener process). According to the meta-theorem (see Bjork (2009), chapter 8), the market is
arbitrage-free but not complete, meaning that it is not possible to replicate derivatives, such as a T-bond, with the assets we
dispose of.
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To some extent, the change in T-bond’s price implied by how differently the market prices risk
will be reflected by a different expected return of the bond itself. Notice that a change of 4
affects the drift term of the T-bond, while the volatility term remains unchanged. This is one
face of the Girsanov theorem which we will discuss in the following section.

Finally, it becomes clear that by determining the price dynamics of a T-bond, equation (2.14)
allows to retrieve the market price for risk A(t), so that all the other S-bond prices, for S < T,
can be determined by the term structure equation.

2.2.3. Objective measures and risk neutral measures

The previous section introduced a very clear distinction between the physical (or objective)
measures P, and the risk neutral (visk adjusted or martingale) measures Q. The former relates
to the real world, while the latter refers to a risk neutral world in which all market agents are,
indeed, risk neutral. A generic stochastic process X (t) under the objective measures is said to
have P-dynamics, while under the risk neutral measures it has O-dynamics.

Suppose that the stochastic process in question is the short rate r(t). Once a model for the
dynamics of r(t) has been specified either under the Q-measures or the P-measures, its
parameters are estimated by means of statistical techniques.®

For what concerns pricing applications, risk neutral measures are employed. Thus, the
dynamics of the short rate process r(t) must be modelled under the Q-measures. As suggested
in Hull (2014), this is done by employing a cross-section of market data, such as bond prices,
at a given time. In this way, we obtain the parameters estimates in the (artificial) risk neutral
world according to the way the market “maps” prices in that point in time. One technique to
calibrate models under the Q-measures is the minimization of the sum of squares of the
difference between the data observed and the one predicted by a model.

Instead, for what concerns risk management applications, that is modelling the future, the
dynamics of the short rate r(t) must be modelled by means of time series of market data. The
intuition is that by looking at the past history in the real (subjective) world we are able to predict
its future, by incorporating in the model movements in interest rates that reflected “actual”
expectations and distributions. This can be done either through regression methods of the
change in rate on the rate level, or by means of maximum likelihood estimations.

2.2.4. The Girsanov theorem

A very important theorem to reconcile the real world with the risk neutral world is the

Girsanov theorem, which concerns how to define the dynamics of a P-Wiener process under

the Q-measures. In plain words, the theorem shows how the SDE of a process is affected by

38 For example, what we employ in chapter 4 for our analysis is a Maximum Likelihood Estimation with Extended Kalman
Filter.
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changing its measure of reference. For a detailed derivation of the Girsanov theorem we address
to Bjork (2009) from section 11.2 to 11.5. Formalizations of the theorem can be find in Musiela
and Rutkowski (1998), Appendix A and Brigo and Mercurio (2009), Appendix C.5. Here, we
just enunciate the final result.

Bjork (2009) derives the following result for the Girsanov theorem:

dWP(t) = p(t)dt + dWQ(0), (2.19)

with ¢ being a vector process and W being a Wiener process under the Q-measures.>”
Therefore, for what concerns the Girsanov transformation towards the risk neutral measures of

a generic process X (t) with P-dynamics given by

dX(t) = u(t)dt + a(t)dWPF(¢), (2.20)

the Girsanov theorem allow us to retrieve the corresponding Q-dynamics with a simple
substitution of (2.19) in (2.20). The drift term will be affected, while the diffusion term will be

invariant. By expressing the time-dependence with subscripts, we obtain
dXt = (‘ut + O-t(pt)dt + O-thVtQ

As a matter of fact, we have already encountered this result in section 2.2.1. During the
derivation of the term structure equation, the dynamics of the short rate r(t) (both expressed

without arguments for sake of simplicity) were specified as:

dr(t) = udt + cdW?F(t) , under the P-measures
and

dr(t) = {u — Ao}dt + adW?(t), under the Q-measures.

The Q-dynamics differ from the P-dynamics just in the drift term because of the appearance of
the market price of risk, with the volatility coefficient ¢ being equal. This result is indeed
explained by the Girsanov Theorem.

We conclude the section by underlining the fact that the drift terms of the two SDE above,
can be estimated directly by using the proper dataset, that is either a cross section for martingale
modelling or a time series for what concerns the real world. To put it differently, u, 4 and o are
not estimated on a stand-alone basis, but they are implicit in the model’s estimates. Brigo and

Mercurio (2006) suggest a combination of statistical techniques can sometimes be useful: by

39 For derivation purposes it is fundamental to define a likelihood process L under some particular assumptions, such as the one
that L is a martingale. However, we do not enter in the details of the derivation, as what is important for our purposes is the
Girsanov result.
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exploiting the fact that ¢ is invariant, one can estimate its value under the P-measures and then
estimate just 4 and 4 under Q. It is also common to use the historical ¢ as an initial estimate
when a starting value is required by the statistical technique employed.

2.3. The Vasicek model and the Hull-White model

Given the importance of the short rate for pricing contingent claims as well as for risk
management applications, there is a vast literature covering short rate models.*° In this section
we are going to discuss the Vasicek model and the Hull-White model, as they turned out to be
suitable for the shadow rate model that we will present in the next chapter. We follow the
notation of Brigo and Mercurio (2009) that is our main reference together with Bjork (2009)
and Musiela and Rutkowski (1998). In line with the literature, we discuss both models under
the risk neutral measures Q.

2.3.1. The Vasicek model
In the Vasicek model, that was introduced by Vasicek (1977), the short rate dynamics under

4

the Q-measures*! are defined as an Ornstein-Uhlenbeck process:

dr(t) = k[ — r()]dt + adW(¢), (2.21)
T'(O) =T,
where the parameters k, 6 , o and 1, are constant and positive.

Equation (2.21), is a linear SDE, thus it makes it is possible to easily derive its unique

solution.** The process 7(t) described by the SDE in (2.21), obtained using It5’s lemma, is

r(t) =r(s)e ™9 + 9(1 — e k=) + o fste‘k(t‘”)dWQ(u), (2.22)

forany s < t.
Given a set of information available at time s, denoted as the filtration Fg, the conditional

mean and variance of 7(t) under Q will be respectively®:
E[r(0)|Fs] = r(s)e™* =) + (1 — (=) (2.23)
Var[r(t)|Fs] = g 1— e‘z"(t‘s)]. (2.24)

Along with the linearity of the SDE, another important feature of an Ornstein-Uhlenbeck

process is the Gaussian property, which favours the analytical tractability of the model. In

40 We suggest Brigo and Mercurio (2009), chapter 3 for a detailed overview of short rate models. An alternative reference is
Musiela and Rutkowski (1998), chapter 10.

4! The model was originally introduced by Vasicek (1977) under the real-world measures.

42 See Musiela and Rutkowski (1998), Lemma 10.1.2. The hint is to apply It5’s lemma to the process ¥, = r,e?¢~Swith t > s.
43 See Musiela-Rutkowski (1998), Lemma 10.1.2 for the derivation. The conditional mean and the conditional variance are
derived by exploiting respectively the zero mean property and the It5’s isometry of the Itd’s integral in (2.22).
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particular, r(t)|Fs is normally distributed with mean and variance respectively given by (2.23)
and (2.24).
Additionally, Musiela and Rutkowski (1998), point out that the limits which tend to infinity

of (2.23) and (2.24), whose derivation is quite straightforward, are the following:

lim E[r(6)|Fs] = 6,

. o?
lim Var[r(O)|Fs] = 5,

2
concluding the short rate r(t) has a stationary distribution, that is the Gaussian N [9, :—k ] On

the other hand, as a direct consequence of the Gaussian distribution there are probabilities
greater than zero for the short rate 7(t) to take negative values at any time t.**

Notice the parameter 6 is sometimes referred to as the “long run mean” of the process.
Indeed, it is clear the mean reversion of r(t): when at a given time t the process r(t) assumes
a value lower than 6, the drift term of (2.21) will be positive, and it will be negative when r(t)
is greater than 6. The magnitude of the drift term, and thus the push given to the process towards
the long run mean, is amplified or reduced by the parameter k, which is also called “speed of
reversion”.

The Gaussian property make the model very tractable from an analytical point of view. In
particular, it is quite easy to calculate bond prices, and consequently spot rates and forward

rates. From the previous section we know that a ZCB price is given by
T
FT(t, r) = Et?r I:e_ft r(s)ds . 1]

Bjork (2009), in the context of a Gaussian short rate process, suggests a first ZCB pricing

T
method: since the integral of the discount factor (i.e. e~ Je T()%9)

is obviously a sum, the
Gaussian property of r(t) is transmitted to the integral. Thus, bond prices can be computed as
the expectation of a log-normal stochastic variable.

Alternatively (and principally), Bjérk (2009) also provides the following result*:

Definition: The term structure, meaning the graphical representation of P(¢t,T) at any given
point in time t, over all the possible maturities T can be expressed as:

P(t,T) = eA(t,T)—B(t,T)r(t), (2.25)

4 In Vasicek (1977) and, more generally, up to a decade ago this possibility was seen as a great limitation of the model. In the
next chapter we will discuss how and to what extent this limitation can actually be an advantage.

4 The formula (2.25) is provided by Bjork (2009), sections 24.3, 24.4. Additional derivations are provided by Musiela and
Rutkowski (1998), chapter 10.

Note that Bjork (2009) exploits the “affine term structure” form of the Vasicek model, as well as Musiela and Rutkowski
(1998), Proposition 10.1.3.
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where

B(t,T) = {1 — e *T-0},

1
(BT -T+t} (k20 —502)  52B2(1,T)
k2 4k

A(t,T) =

Short rate models whose ZCB prices are expressed as in (2.25) are said to have an “affine term
structure”.*® In Appendix A we (partially) derive this form in order to provide the logic behind
the ZCB price formulas under the Vasicek and the Hull-White model.

Although the Vasicek model is quite tractable, there is a major issue in its practical feasibility
concerning the inversion of the yield curve, meaning the estimation under the Q-measures of
the set of parameters of a chosen short rate model, like the Vasicek one. By denoting the

parameter vector @ = [k, 8, a], we can express (2.21) in general terms as
dr(t) = u(t,r(t); a)dt + o (t,r(t); a)dW(t),

and, by solving the term structure equation (2.15), we can derive the theoretical term structure,
namely T — P(t,T; a), for all the possible values of T. If at t = 0 (i.e. today) we retrieve from
market data the empirical term structure, that we denote as T — P*(0,T), we can estimate, by
means of an optimization algorithm, the parameter set a*in such a way T — P(0,T; a*) best
fits T - P*(0,T).

Leaving aside the potential computational burden of this approach, the finite number of
parameters to be estimated does not allow the theoretical term structure T — P(0,T; @) to
perfectly fit the observed term structure T — P*(0,T), especially when the latter assumes
“particular” shapes relative to the classical one. As the literature indicate, in facts we are dealing
with a system composed by one equation for each possible maturity, meaning a system with an
infinite number of equations and a finite number of parameters to be determined. Since the
problem lies in the finite number of parameters, the issue will be there regardless of the
calibration method employed, the number of maturities T considered, and the parameters’
values obtained.

Intuitively, the solution is to introduce in the model an infinite number of parameters, that is
equivalent to include a deterministic function of time, so that we improve the fit between the

theoretical (and time-dependent) term structure T — P(0,T; a(t)) and the empirical term

4 Terminology could be misleading. The term “affine term structure” used in the literature refers to the expression of the
continously compounded spot rates implied by the short rate model and, indeed, affine in the short rate. However, in our
dissertation, with the word “term structure” we refer to the family of prices of a ZCB over all the possible maturities. For further
details regarding the affine term structure models (as affine in the short rate) we address to Brigo and Mercurio (2009), section
3.24.
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structure T — P*(0,T). This is the reason that led practitioners to prefer time-dependent
parameters models over time-homogenous models (that is, with constant parameters)*’, as they
allow to perfectly reproduce the initial market term structure T — P*(0, T).*®
2.3.2. The Hull-White (extended Vasicek) model

The Hull-White model is the time-varying version of the Vasicek model. We present one of
its most popular version, by allowing the parameter 6 of (2.21) to be deterministic and
dependent on time.*’

The short rate dynamics under the Q-measures are defined as

dr(t) = [0(t) — ar(t)]dt + cdW(t), (2.26)

where 6 is determined to perfectly fit the current observed term structure, while the parameters
a and ¢ are constant and positive.

In order to fit the empirical term structure, it is more convenient to make a comparison
between forward rates term structures®’. More precisely, we want to fit the theoretical forward
rate term structure denoted as T — f(0,T), with the empirical one T — f*(0,T), where
f£7(0,T) denotes the market instantaneous forward rate at t = 0 for a maturity T, associated to

the observed bond price P*(0,T). We express it as

. _ _3IP(01)
f (0, T) - at )
It is shown?! that 8 must be determined as:
* 2
9(1:) — 6fa(t()Jt) + af*(o’ t) + ;_a (1 _ e—Zat)’ (227)

where or @y
ot

is the partial derivative of the market instantaneous forward rate f*(0,t) with

respect to time. Equation (2.27) allows the theoretical term structure to perfectly fit the one

observed in the market, meaning T — P(0,T) will equal T — P*(0, T), for all the possible T.

47 Brigo and Mercurio (2009) define time-homogeneous models as “endogenous” because of the (endogenous) predicted term
structure they produce which does not perfectly fit the observed one. At the same time, short rate models with time-varying
parameters are defined as “exogenous”, because of the exogenous nature of their predicted term structure.

4 As pointed out by Hull (2014), time-homogeneous models can still be valid for simulations over long horizon, in particular
for those applications in which the current term structure is not particularly important.

49 This is the simplest version of the Hull-White model, with the only parameter 8 to be time-dependent. However, the model
was originally presented in the version which allows all parameters to depend on time. See Hull and White (1990).

30 To understand how to reconcile a forward term structure with a price term structure see Bjork (2009) Lemma 22.4. In short,
the relationship between forward rates and bond prices is specified as P(t,T) = exp {— ftT f(, s)ds}.

3! For the derivation of the equation (3.11) we suggest to Bjork (2009), section 24.4.4, where the derivation is based on the
affine term structure form of the Hull-White model. Alternatively, a derivation of the Hull-White model and thus of equation

(3.11) is provided by Hull (2004), Technical Note No. 31 that can be find at the following link: http:/www-
2.rotman.utoronto.ca/~hull/technicalnotes/TechnicalNote31.pdf
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Similarly to the Vasicek case, from the linear SDE in (2.26) we can derive a unique solution.>?

The process r(t) described by the dynamics in (2.26), for any s < ¢, is

r(t) = r(s)e”4t=s) 4 fste—a(t—u)e(u)du n O'fste_a(t_u)dWQ (w) (2.28)
=r(s)e~t=%) 4+ q(t) — a(s)e"2t=5) + ¢ fste‘a(t‘u)dWQ(u)

where

a(®) = f1(0,6) + 25 (1 — ™2,

Given a set of information available at time s, denoted as Fs, the conditional mean and

variance of 7(t) under Q will be respectively™:

E[r()|Fs] = r(s)e~ ) + a(t) — a(s)e 2= (2.29)
Var[r(D)|Fs] = 2 [1 - e720¢-9)], (2.30)

We recall an Ornstein-Uhlenbeck process like the one in (2.26) has the Gaussian property,
that is (t)|Fs is normally distributed with mean and variance respectively given by (2.29) and
(2.30). As a consequence, normality allows r(t) to take negative values for every time t with
positive probability.

Finally, we are now going to define the term structure of bond prices in the Hull-White
model. By referring to Bjork (2009) we provide the following definition:

Definition: The term structure P(t,T) at any given point in time t, over all the possible
maturities T can be expressed as:

P(t, T) — eA(t,T)—B(t,T)r(t),

where A(t,T) and B(t,T) are the solutions of

{Bt(t, T)=aB(t,T) -1,
B(T,T) = 0.

{At(t, T) = 0(0)B(t, T) — %0232(@ ™,
A(T,T) = 0.

that are

52 The first expression of (12) is obtain by It5’s lemma applied to the process Y (t) = r(t)e®(~5), while the second expression
is obtained by substituting (3.11) in the first expression.

33 As before, the conditional mean and the conditional variance, exploit respectively the zero mean property and the 1t5’s
isometry of the Itd’s integral in (3.12).
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B(t,T) = %{1 —e"aT-0}

ACLT) = fT{% 62B2(s,T) — 0(s)B(s, T)}ds.

where 0 is expressed in (2.27) and B, (t, T) is the partial derivative of B(t, T) with respect to

time.
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CHAPTER 3

3. Shadow rate models in continuous time

3.1. Problems in a negative interest rate environment

Negative interest rate policies are probably the most “revolutionary” unconventional tool
implemented by many central banks over the last decade, as it led economists, analysts, and
mathematicians to face challenges in terms of interpretation and analytical computation. In
particular, there are several drawbacks in applying the classic interest rate models in contexts
in which interest rates fluctuate in negative territory. On the other hand, the Gaussian property
of the Gaussian models is a necessary pre-requisite to address the problem, but also such models
are not immune from shortcomings. In the literature, a common solution is the implementation
of the “shadow rate” approach, whose idea was firstly introduced by Black (1995).
3.1.1. The natural zero-lower bound

We now discuss why the classical short rate models are not optimal in modelling the
dynamics of the negative rates we observe in the market. Let us list some most common short

rate models in the literature>*:

= Vasicek dr; = k[0 — r;]dt + odW,,

= Cox-Ingersoll-Ross (CIR) dry = k[0 — r]dt + o,[rdW,,

= Dothan dry = aridt + or dWy,

= Hull-White (extended dry = [0 — k. ]dt + at\/r_tth,
CIR)

Models that are log-normally distributed (for example, the Dothan model) or which entail
square root processes (for example, the CIR and its Hull-White extension) are not able, by
construction, to predict interest rates evolutions in negative regions, as they embody a “natural”
zero-lower bound. In practice, there exist methods that permit to these models to describe

negative rates, such as shifting methods to allow r(t) to take negative values. This implies

% The subscript t denotes time-dependence.
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valuation challenges with respect to the shift parameter. However, these techniques are outside
the scope of this dissertation.

There are some points to mention regarding the unsuitability of the above-mentioned models.
A lognormal process and a square root process, not only rule out negative values for r(t), but
do not even allow r(t) to take value of zero. To be more precise, we can underline as in Lemke
and Vladu (2016) the difference between the floor and the effective lower bound (interpreted as
the level around which interest rates fluctuate with low volatility during the NIRP): if in the
euro area the standing facilities of the ECB denote the cap and the floor of the interest rate’s
corridor, it is clear that the deposit facility rate (from here on denoted as “DFR”) cannot be
consider as the effective lower bound, but rather a floor that, as explained in section 1.3.1, is
not (typically) reached by the interest rates we observe in the interbank market. Of course, the
lower the DFR (i.e. the floor) and the lower the effective lower bound should be, at least for
“reasonable” negative values of the DFR. However, the spread between the two might increase
the lower the DFR is.>*All of this to say that as long as the floor set by the ECB is zero (as it
was from July 2012 to June 2014), both types of processes might be still applicable.

As a matter of fact, the true problem of lognormal processes, on top of ruling out negative
values for r(t), concerns the volatility implied by the short rate dynamics. Black (1995)
specifies that a major issue is the volatility decreasing substantially as the rate approaches zero,
that is too rapid compared to what we see in reality.’® For what concerns the square root
processes, such as the CIR, the square root diffusion term prevents r(t) to take negative values,
as it was originally introduced to ensure the positive sign of (t).

Eventually, the main drawback (i.e. the Gaussian property) of the linear SDE models turned
out to be suitable with the application of the shadow mechanism, which will be discussed in the
section 3.2. Nonetheless, the allowance of negative rates is not sufficient: as we saw in figure
1, interest rates floating in negative territory show some peculiar features that a short rate model
must reproduce.

Let us discuss two crucial application problems of the Gaussian models in describing interest
rates at the zero lower bound (from now on denoted as ZLB). For further details regarding these

issues we address the reader to Krippner (2015), chapter 2.°’

55 The intuition might sound quite rudimentary but in facts there are no evidence of where the effective lower bound actually
is. In other words, how deep interest rates’ can go remains a big question mark of the NIRP.

36 It must be also said that, if a lognormal process is implemented to model negative rates’ dynamics by means of a shifting
technique, this property turns out to be quite valuable. In facts, as we describe in the next subsection, negative rates are
characterized by a “stickiness property”” when they approach the zero lower bound.

7 The discussion provided refers to US data, but the problems are of course the same whatever dataset we consider.
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3.1.2. The Gaussian property

The Gaussian property of the short rate r(t) allows r(t) to freely move in negative territory
once it approaches the ZLB. Let us denote the probability of (t) to assume a negative value at
time t as P(r(t) < 0). Before the NIRP breakthrough, Gaussian short rate models were
implemented with the idea of bearing a little probability P(r(t) < 0). However, when the
model is calibrated, either under the P-measures or under the Q-measures, on the basis of
interest rates’ data observed in a negative environment, P(r(t) < 0) becomes substantial,
meaning 7(t) is allowed to move in negative regions with non-negligible probabilities when it
fluctuates close to the ZLB.

In practice, this creates problems for term-structure modelling as well. On the basis of the
terminology and notation of Krippner (2015), we denote R(t,t) as the Gaussian spot rate
determined at t for the time to maturity T, that is over the interval of time [t, t + t]. R(¢t, T) can
be expressed as the mean of the expected short rates (i.e. forward rates).>® Let us formalize the

concept.

Definition: The standard continuous-time term structure relationship, is defined as

R(tT) =~ f; f(twdu, 3.1

with f(t, T) being the Gaussian forward rate prevailing at time t.

Given the integral properties, we conclude Gaussian forward rates f(t, ) and Gaussian spot
rates R(t, ) also have non-negligible probabilities of assuming negative values. However, this
is at odds with reality: if, on the one hand, interest rates take negative values, on the other they
are bounded by a lower bound, denoted as LB, that we can assume to be equivalent to the
monetary policies’ rates imposed by the central bank (in our case the DFR).> Hence, this is the
first issue that must be addressed in modelling the dynamics of negative interest rates.
3.1.3. The stickiness of interest rates and the volatility issue

In chapter 1, while discussing figure 1, we have pointed out how different the volatility in
the EONIA and the EURIBOR 1y, is after the DFR is set below zero. In facts, the low volatility
of the DFR and of the overnight rates are transmitted into the short-term interest rates, which
tend to be attached to the lower bound for long periods of time. We refer to this feature as the

“stickiness of interest rates”.

38 Note that the relationship between short rates and forward rates involves an additional term, that is the volatility effect.

% As previously discussed, we might think the effective LB to be slightly above the floor set by the DFR. However, for
simplicity, we do not consider any spread between the two and we assume the LB at any time t to be equal to the DFR at the
same t.
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In figure 2 we plot four maturities of the EURIBOR, namely 1-month, 3-month, 6-month and
1-year maturities, together with the DFR. The series go from the 1% of January 1999 to the 31
of December 2020.
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Figure 2. Euribory,, Euriborsy, Euriborey, Euribor;, and DFR: 31/01/1999 — 31/12/2020. End of month observations.

Source: Statistical Data Warehouse, European Central Bank. Available at: https://sdw.ecb.europa.eu/

Let us consider, for example, the 1-month Euribor and the 1-year Euribor. After the
introduction of the NIRP, the flatness of all rates is evident. If we split the time window in two
period, before June 2014 and after June 2014, we find the average historical monthly volatility®
before June 2014 is approximately 0,28% and 0,30%, respectively, while the average historical
monthly volatility after June 2014 is 0,04% and 0,07%.

To strengthen the idea of the stickiness feature, in figure 3 we plot daily observations of the
EONIA rate over the interval which goes from March 2016 to September 2019, that is the period
over which the DFR is set to a negative 0.40. The EONIA fluctuates in a very restricted range
with occasional daily spikes, up to a maximum value of -0,241, and down to a minimum of -
0,379. The average value over the period is -0,356. Subsequently, from the cut in September
2019 up to date,®* meaning the period over which the DFR is set to a negative 0.5, the EONIA
reaches a maximum of -0,426 and a minimum of -0,498, with an average value of -0,46742.

The shift in lower bound occurring in September 2019 is quite evident.

%0 We calculated the square root of the sum of the squared differences between each end of month observation and the average
of the end of month observations over the year, divided by the number of end of month observations in a year.
6! The EONIA daily observations we have at our disposal are up to the 6" of September 2021.
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Figure 3. EONIA rate: 16/03/2016 — 06/09/2021. Daily observations. Market holidays dates not considered.

Source: Statistical Data Warehouse, European Central Bank. Available at: https://sdw.ecb.europa.eu/

We conclude the volatility issue created by the stickiness of the observed rates must be
considered in modelling the short rate dynamics. Clearly, Gaussian short rate models do not
entail such a feature: a Gaussian term structure model, such as the Vasicek and its Hull-White
extension, implies 7(t) to have, over an infinitesimal period, the same volatility at each point
in time (regardless the point of evaluation). As a consequence, the short rate volatility does not
decrease when the short rate approaches zero (or, more generally, the LB we consider.).
Therefore, if a Gaussian short rate model is used to model negative interest rates, it cannot
embody the stickiness feature in its predictions.

3.2. The ZLB mechanism

Before seeing how the shadow rate approach, originally presented in Black (1995), can solve
the problems described above, we present the intuition behind it.
3.2.1. Intuition

Black (1995) specifies the (ZLB) short rate to take the maximum value between the shadow
short rate and a zero lower bound. The reason is that nominal short rates are bounded below by
zero, or more generally by a lower bound since investors prefer to earn a zero nominal interest
rate from holding cash rather than being charged a negative interest rate in whatever investment
opportunity they might have.

By formalizing the concept:

r(t) = max{ZLB,r(t)} (3.2)
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where:

- r(t) is the (ZLB) short rate;
- r(t) is the shadow short rate;
- ZLB is the zero lower bound.

While the (ZLB) short rate can be interpreted as the “observable” short rate, the shadow short
rate r(t) represents what the short rate would be if the cash option was not available, and it is
equivalent to the short rate implied by a given short rate model.®?> From now on, with the term
“short rate” we refer to the (ZLB) short rate r(t).

As pointed out in Black (1995), given that currency is an option then also the short rate has
an option-like profile. In facts, Krippner (2015) provides the following specification of the ZLB

mechanism which emphasizes the option component:

r(t) =r(t) + max{—r(t),ZLB}

where max{—r(t), ZLB} is the payoff of an instantaneous call option of holding cash at time
t. This is the equivalent to say investors are willing to invest in r(t) irrespectively of its sign.
In case r(t) is negative, investors are hedged by the option of holding currency at a zero nominal
rate.

A crucial element of the mechanism is the lower bound, that can be assumed to be non-zero.
For example, a non-zero lower bound, denoted as LB, can be slightly negative or slightly

positive when the mechanism is applied in a euro area context or in a US context,®’

respectively.
It may also be treated as a time-dependent random variable, as well as many other possible
specifications (see section 3.2.2 for a general overview of lower bound’s specifications in the
literature).

In this section, for sake of simplicity, we assume the lower bound to be constant, but the
same reasonings are valid for whatever type of lower bound we consider. Please note that from
now on, for sake of convenience, we will refer to (3.2) simply as “LB mechanism” regardless
on whether the lower bound is set at zero or not.

3.2.2. The existence of negative rates in an arbitrage-free economy

Black (1995) proposes the LB mechanism on the premise that, in an arbitrage-free economy,
negative rates are not allowed as long as investors can short the asset paying r(t) < 0 and hold
the proceeds in currency earning a zero-nominal return. Jarrow (2013) argues this point in the

context of a Heath—Jarrow—Morton (HJM) arbitrage-free term structure model by showing how

%2 Clearly, what best fits the approach is a Gaussian model. However, square root and log-normally distributed models can be
implemented as well by assuming a positive lower bound.
% To date, FED’s policy rates are very close to zero, but not negative.
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storage costs and credit risk makes it too difficult for economic agents to exploit the arbitrage
opportunities created by a negative rate, thus eliminating it.

Differently from the standard Heath—Jarrow—Morton (HJM) model, that is frictionless and
competitive with ZCB for all conceivable maturities and a money market account paying the
risk-free short rate r(t), Jarrow (2013) extends the model by including the possibility to trade
cash, together with the presence of consumers, firms, banks and non-bank financial institutions.
In such framework, the author assumes consumers cannot short the money market account or
any ZCB because of credit risk, a factor that the standard HIM does not consider. This makes
it extremely costly for them to implement such a strategy. In addition, he reasonably assumes
that firms and financial institutions cannot store cash, as logistic problems would arise as well
as theft risk. With such conditions if 7 (t) happens to be negative, arbitrage opportunities would
not exist, implying negative short rates r(t) are compatible with an arbitrage-free model.®*

Leaving theoretical discussions aside, we now describe how the LB mechanism proposed by
Black (1995) is helpful in terms of term structure modelling.

3.2.3. The LB mechanism as a solution for negative interest rate modelling

For what concerns the first issue described in section 3.1, that is the possibility of the shadow

short rate r(t) to freely move in a negative region, the lower bound plays the role of an

absorbing barrier by ruling out any possible realization of the short rate below the lower bound.

Simulation at 31/01/2014

0.015 T T T T T T T T T
Shadow Rate
Short Rate

0.01 r b

0.005 r ]

0 V' | | ?ﬁ \ I.;“l ,
R .'|‘|_|
‘f# i fﬂﬂ u

001 a | I‘}--

0. Ll|| f }’ ! ‘

0.015 . . . . . | ‘ . . \
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

|
0005 - | l} {Jt,
'ﬂ! |' _ﬂ

hﬂ,.

Figure 4. Simulated Short Rate trajectory on the 31 January 2014. LB = 0.0466%.
Constant LB model estimated on 31 January 2014. See appendix B for parameters’ estimates.

64 To show this result Jarrow (2013) makes use of the concept of convenience yields, a decreasing function in the size of an
agent’s cash holdings.
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As we can see in figure 4, if the shadow rate r(t) can take any value, the observed short rate
r(t) equals the lower bound whenever the barrier absorbs r(t). In other words, r(t) < LB
cannot occur at any t. The escape from the lower bound will occur as soon as the shadow short
rate assumes values greater than LB.

The shadow rate mechanism permits to reproduce the stickiness property of interest rates as
well. By assuming the shadow short rate to be described by a Gaussian model, such as the
Vasicek or its Hull-White extension, it is clear that all the properties of a Gaussian model are
inherited by the shadow rate, including the conditional normal distributions of r(t) at any t.
The effect of the lower bound is to prevent any realization of r(t) belonging to the fraction of
the normal distributions below the bound, meaning we obtain a censored normal distribution of
the short rate r(t) at any t. Furthermore, as we can see in figure 5, all the realizations of r(t)

at or below a given LB are associated with a probability mass for r(t) to be realized at LB.

0.4 r
0.35
0.3}
0.25 |
0.2t
0.15 |
0.1t

0.05

5 4 3 2 4

Figure 5. Censored Normal Distribution with probability mass at the Lower Bound.

Clearly, the greater P(r(t) < 0), the tighter the censored distribution of r(t), so that r(t) is
allowed to assume only values very much close to zero. This may be true for very long periods
of time if negative realizations of r(t) are very persistent. As a consequence, by means of the
continuous-time term structure relationship, Gaussian spot rates R (t, T) will be affected by the
negative realitions of r(t), allowing us to replicate the flat shape of the yield curves observed

in the last years.® In facts, the low volatility of the deposit rates and the overnight rates that we

65 Clearly, the continuous-time term structure relationship is calculated with respect to the short rate r(t). More details are
provided in the next chapter.
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observe in the market are transmitted into the shorter-maturity interest rates, that tend to be
attached to the lower bound for long periods of time. This is also true for longer maturities if
expectations on negative deposit rates are persistent.

On top of that, if we consider r(t) to be described by a Gaussian model and we assume a
positive mean reversion level, the longer the maturity considered the higher the probabilities of
r(t) and thus r(t) to take values greater than LB. As indicated by Krippner (2015) the longer
maturity interest rates will be less sticky than the shortest ones, simply because 7(t)
distributions will be much more symmetric at longer maturities relative to shorter maturities.
Thus, it is reasonable to expect the yield curve to be upward sloping for very long tenors.
Obviously, the mechanism is applicable also in periods which are not characterized by negative
rates. A shadow rate model estimated in “normal” circumstances will most probably cause, by
construction, the shadow short rate to entail little probabilities of taking negative values, even
at short-term maturities. Therefore, the resulting r(t) distributions will be very close to the r(t)
distributions.

Finally, we must be aware of the main drawback of the mechanism, namely the cost we have
to pay for being able to model negative interest rates with this approach is to give up on close-
form analytic solutions for ZCB prices and yields, relying instead on numerical solutions. In
chapter four we detail the problem and the numerical method we employ.

3.2.4. The lower bound: different specifications

As mentioned before, the lower bound is a crucial element in the LB mechanism. Most of
the papers in the literature simply set the lower bound at a constant level. Some examples are
Wu and Xia (2016) and Christensen and Glenn D. Rudebusch (2016a), both concerning US
data,_that set the lower bound to 25 basis points, and to 0 basis point, respectively. The former
level was simply the annual interest rate paid on reserves by the FED since 2008 back at the
time, while the zero level is justified by the fact that the US treasury yields data they use never
violate the zero lower bound. Alternatively, the constant lower bound may be treated as a free
parameter to be estimated, such as in Kim and Priebsch (2013).

If a constant lower bound could be a reasonable assumption for US data applications, it does
not really fit in a European context, where the several downward adjustments of the DFR over
the most recent years suggest a lower bound that is (at least) time dependent. Thus, it is not
surprising that models with alternative lower bounds’ specifications are more commonly
applied to the euro area rather than the US.

Among those models, a time-varying lower bound can be found in Kortela (2016), who
shows how from January 1999 to March 2016 the risk-free rates, approximated by OIS rates

based on EONIA and government bonds yields of Germany and France, an exogenous time-
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varying lower bound outperforms the constant LB model. More specifically, with such a lower

bound, we can re-write (3.2) as

r(t) = max{LB,, ()}

where the subscript t indicates the time dependence of LB.
In Kortela (2016), LB is defined as an exogenous sequence determined by the data, meaning
LB = {LB,}T_, where LB, is specified in five different ways:

- LB} = min{R:(t),0} where R;(t) are the observed yields at time tand 7 are the
maturities included in the sample, that is T = {0.25,0.5,1, 2, 3,5, 10}. Hence, LB{* will
be the most negative of the observed yields across maturities at time ¢;

- LB = min{{R;(1)}}_,, 0} where {R;(7)}!_, is the lowest yield in the sample up to
time t;

- LBg is the deposit facility rate at time t;

- LB is a constant lower bound which firstly considered at negative 0.3 percent for all ¢,
and then at negative 0.4 percent for all t.

- LB¢ is a sequence of estimated constant LB resulting from a recursive estimation of a
shadow rate model in which LB is treated, differently from the other cases, as a free
parameter. Mathematically, LBf = min{LB{,0} where LB is the estimated lower
bound considering all the observations up to time t. The shadow rate model with a time-
varying lower bound is then estimated using the sequence LB{ as an exogenous process.

Another relevant reference for the euro area is Lemke and Vladu (2016) that analyse the yield
curve from 1999 to mid-2015 using a combination of OIS rates based on EONIA and spread-
adjusted zero rates based on Euribor swaps.®® They define a discrete-time shadow rate term
structure with a constant lower bound being allowed to shift to a new level in specific points in
time. In particular, by considering two potential shifting times, that are May 2014 and
September 2014, they compare different specifications of LB. In practice, they consider three
subperiods, that are January 1999 - April 2014, May 2014 - August 2014 and September 2014
- June 2015, and they impose different restrictions on LB with respect to the three subperiods.
The different specifications go from the most flexible one, that is three potential different values
of LB, each one for each subperiod, to the most rigid one, that is one constant value for the

overall time window. In conclusion, they find the best model is the one ensuring two lower

66 Calculating the average spread between OIS rates and Euribor swap rates, with the latter being used to extend Euribor
maturities over the year, is one of the most common techniques to construct OIS dataset for time periods prior 2005. In facts,
OIS rates are not available before 2005.
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bound regimes: a constant level of LB for the period January 1999 — August 2014, and a lower
LB for the period September 2014 — June 2015.

As we just saw, in most of the literature LB is assumed to be constant, or exogenously
determined. The issue is that in such models agents are myopic, that is they do not consider
future possible changes in the level of LB. To allow for forward-looking agents, Wu and Xia
(2020) employ end-of-month observations of OIS rates based on EONIA from July 2005 to
June 2017, with two policy indicators relative to the euro area conditioning the discrete
movements of LB. More specifically:

r(6) = max{LB,,r(t)}

where the subscript t indicates the time dependence of LB.

In particular, there are three components determining LB;: the deposit facility rate, a spread
component, A, and A}, where the latter two are binary random variables that capture market’s
expectations of the immediate monetary policy stance and long-term monetary policy stance,
respectively. For what concerns the DFR, after observing the ECB’s cuts by a constant step of

0.1%, they model their Q-dynamics in such a way LB, can only move downward,®’ that is
Qu(ry =78 —01) = a?, (3.3)
Qt(rg—l = rtd) =1- af,t
where Q, is the conditional probability under the Q-measures and 2 is the deposit rate at time
t.
The policy indicator A, capture agents’ expectations of the next period’s DFR and takes value

of 1 if there is a great probability of a cut in the next period, 0 otherwise. The corresponding Q-

dynamics are modelled as a two-state Markov chain process, that is

Q:(Dey1 =0]A,=0) = “go_t G4
Qs =1 =1) = alQl,t

Equation (3.3) can be re-expressed by including the indicator A;:

Qu(rf, =7t —01) = Q(rf, =7 — 0.1]r&, A) = aly,, 3.5)

67 This assumption is explained by the authors considering the fact that once a DFR of a given negative level has been reached,
investors will not assume the LB to be a higher number. On top of that, back to that time, the authors had no market signals of
upward movements of the DFR.
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Similarly, the policy indicator Al assumes value of 1 if there is a great probability of further
curs at longer horizons, 0 otherwise. In particular, Al is allowed to influence A;, so that we can

express (3.4) as

Qt(A¢41 =04, =0) = Q(At+1 = 0|At =0, Alt) = a(()zo,Aé (3-6)
QB =118, = 1) = Q(Aesy = 1JAc = LAY =2,
By finally assuming
{Q(AlHl =04l = 0) = ad (3.7
Q(Al, = 1]alk = 1) = ay?

the lower bound can be expressed as:
LB, =y + (1 — yt)EtQ(Ttgl-l)
= rtd — (1 —-vyaga, x0.1

where y; represents the number of days, expressed as a fraction of the month from ¢t to t + 1,
between the end of the current month t and the next ECB’s meeting day.®®

The crucial aspect of this specification is that the combination of (3.5), (3.6) and (3.7) allow the
authors to capture various shapes of the observed yield curves, especially for what concerns its
short end. Finally, a spread component is considered, given the fact that the deposit rate is
always lower than the EONIA and thus the OIS rates considered. After expressing the spread
component sp; as an AR(1) under the risk neutral measures, the lower bound is finally

expressed as:
LBt = T'td - (1 - ]/t)al’At x 0.1+ SPe

A similar set up, that is a regime-switching model, has been previously implemented in Wu
and Xia (2017), in which LB; is affected by a monetary policy component, that is the DFR, and
a spread component. The difference with Wu and Xia (2019) concerns the former, the so-called
“policy lower bound” component that is permitted to move only by a constant value of 0.1%,
but differently from before it can move also upward, or to stay at its current level. A second
difference is that, in order to incorporate the persistency of a trend of the DFR and thus of LB

(i.e. the momentum of the lower bound movements), an indicator A; is used to describe the

68 A calendar effect is considered given the fact that the ECB’s council meeting does not occur necessarily at the end of each
month, while the dataset is composed by end-of-month observations.
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trend direction: it takes value of 1 for an upward trend, or a value of -1 for a downward trend.

In both states, persistency at the current level is allowed.
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CHAPTER 4

4. Real time estimation and ex-post estimation: a comparison

In this chapter we estimate a two-factor shadow rate model under two different lower bound
specifications, namely a constant and a regime-switching lower bound. This is done by means
of the iterated extended Kalman filter with maximum likelihood estimation. Subsequently, for
each approach we calculate the model-implied short rate liftoff’s timings in the post-2014
period.®
4.1. Literature review

Among the ZLB literature, liftoff’s timings have been studied mainly for monetary policy
analysis. The most common approach, that is well-discussed in Bauer and Rudebusch (2016b),
consists in the examination of the simulated liftoff dates distribution. More precisely, a liftoff
date, also referred to as “liftoff horizon” is the time at which the short rate is expected to cross
a given threshold and to stay above it for at least a pre-specified period of time. Given the strong
asymmetry that in most of the cases is obtained in the liftoff horizon distribution, Bauer and
Rudebusch (2016b) argue that the median time is an optimal measure of liftoff.

One of the first papers to introduce the concept of liftoff horizon (LOH) was Wu and Xia
(2016), however without requiring duration, meaning the short rate to float above the threshold
for a given period of time. The same definition of LOH is used in Pericoli and Taboga (2015),
meaning the first date at which a threshold is exceeded by the short rate. On the basis of the
method of Bauer and Rudebusch (2016b), some of the main results among the literature that
compares LOH against different lower bound specifications are the ones of Lemke and Vladu
(2016) and Kortela (2016), which represent the most relevant ZLB studies concerning the euro
area. In particular, Lemke and Vladu (2016) find the high sensitivity of the LOH to the
estimated level of the lower bound in a euro area context, meaning different lower bound
specifications lead to substantially different median lift-off-timings, with changes even up to
48 months. This results, contrasts with Kortela (2016), that still with respect to the eurozone
provides evidence about the robustness of the LOH measures across different time-varying
lower bounds specifications, an evidence that is also obtained by Krippner (2015) relative to

US data.

89 With the term “liftoff” we refer to the upward movement of the short rate from a negative region to a positive one so that
the shadow rate, and thus the short rate, takes a positive value.
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4.2. Research question

From chapter 1 we know that the big question mark of the most recent years is where the
lower bound actually is. Thus, we first want to verify the existence of a time-varying LB as
opposed to the idea of a single LB. Additionally, as detailed in the subsection 4.5.4, we
recursively estimate a two-factor shadow rate model and we derived its implied LOH under the
assumption of a constant LB as if we were doing it real time, that is conditionally on all the
information available at each date considered.”® At the same dates we repeat the recursive
estimations for the regime-switching model presented in subsection 4.5.1, that is a shadow rate
model whose LB is allowed to switch to a new discrete value at specific points in time.

For simplicity, we refer to the estimation of a regime-switching model as the “ex-post
approach”, and we compare its performances with the single constant LB model, namely the
“real time approach”. The rationale behind this terminology is that a regime-switching LB
specification, that follows from the idea of a time-varying lower bound, comes after the several
ECB’s adjustments in the DFR in negative territory that we witnessed in the last years, while
the idea of a single LB was commonly agreed before the introduction of the NIRP. In other
words, up to 2014 the market could not expect the DFR to be cut several times in negative
territory down to the current level of -0.50 percent, that is the idea of a regime-switching LB
was not conceivable as it is nowadays. Hence the terminology “ex-post”.

Notice that the constant LB specification is what differentiates a real time model from most
of the estimates we find in the literature, in which the LOH distribution is analysed after
employing a LB specification that has been previously evaluated over the whole sample,
typically for macroeconomic analysis.”' In particular, our real time model estimations concern
a not so common risk-management application that makes the topic particularly interesting
given that real time decision-making is subject to a lot of noise and uncertainty that a classic
ex-post estimation does not consider. Finally, compared to Kortela (2016) and Lemke and
Vladu (2016) we dispose of a larger amount of OIS rates over the NIRP period, so that our

dataset is made up of interest rates whose dynamics are entirely determined by market forces.””

70 In facts, before the introduction of the NIRP the idea of a ZLB was commonly shared. A regime-switching lower bound is
instead an assumption which comes after multiple cuts in the DFR. Thus, we think the idea of a single lower bound is reasonable
in a real time scenario.

7! For example, Lemke and Vladu (2016) estimate LOH on the basis of a “preferred” model, that is a two-regime lower bound
specification. They also estimate LOH for a model with a constant lower bound, but their data are only up to 2015. Kortela
(2016) estimates a shadow rate model in which the time-varying LB is an exogenous sequence previously estimated or pinned
down on the basis of what the dataset suggests. Alternatively, we consider the lower bound as a free parameter to estimate.

72 Lemke and Vladu (2016) employ constructed OIS rates for the period prior 2005 based on an average EURIBOR swaps —
OIS rates spread, while Kortela (2016) uses government bonds’ rates.
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In practice, a real time estimation of the model is particularly relevant for monetary policy
analysis, as the LOH provides an indication about the stance of monetary policy perceived by
the market. In particular, Kortela (2016) and Krippner (2015) argue that LOH measures can be
interpreted as a measure of the likelihood the economic agents give to the possibility of facing
negative policy rates in the short and medium-term. Thus, they can be used to guide the stance
of monetary policy during NIRP periods. In addition, projections of the yield curves can be
made based on what we expected the short rate to be, meaning that a real time simulation of the
model can be relevant for all the yield curve-related decisions one can possibly think of. Finally,
a real time estimation of the model and related simulations of the short rate under the Q-
measures are relevant for valuation purposes as well. However, this is not the main focus of this

dissertation, as we forecast liftoff horizons under the P-measures.
4.3. Dataset

We employ Euro OIS rates in line with the vast majority of the post-financial crisis literature.
The (risk-free) OIS yield curve that we consider is formed by the following 9 maturities: 1m,
3m, 6m, ly, 2y, 3y, 5y, 7y, 10y, where the subscripts “m” and “y” indicate months and years,
respectively.

The choice of these tenors is quite standard. However, differently from related analysis we
include a 1-month tenure, with the aim of enhancing the focus on short term expectations about
the policy rate, as suggested by Krippner (2015). Given the fact we recursively estimate the
model at the beginning of each year, we think a stronger focus on the short term is coherent
with a real time estimation.”

For the purpose of estimation by means of an Extended Kalman Filter with Maximum
Likelihood we need a dataset which explains how the yield curve evolves overtime.
Specifically, we consider end-of-month observations of the yield curve defined above over an
interval of 16 years and 2 months, meaning our time window goes from the 31% of August 2005
to the 30™ of September 2021, for a total of 194 observations. The interval of time between
each observation is obviously one month, as well as the periodicity of our model. Data are
provided by Refinitiv Eikon on the 19" of October 2021, whose codes are “OIEURIM”,
“OIEUR3M”, “OIEUR6M”, “OIEURI1Y”, “OIEUR2Y”, “OIEUR3Y”, “OIEURSY”,
“OIEUR7Y” and “OIEU10Y”. Our (unusual) starting date is somehow forced by the lack of
data for OIS rates relative to long maturities prior august 2005, while the ending date represents

the last end-of-month observation at the moment of data gathering.

73 Clearly, the choice of tenures reflect the scope of the application. We think it is reasonable assuming a risk management
application, such as a real time estimation of the model, to be short-term oriented. Additionally, one can think an unconventional
monetary policy such as the NIRP to be only temporary.
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4.3.1 Dataset analysis

In figure 6 we plot Euro OIS rates for the 1-month, 5-year and 10-year maturities. Along with
the downward trend which starts from the global financial crisis, what is really noticeable is a
strong correlation, especially between the two longest maturity rates. From the NIRP
breakthrough the 1-month OIS rate lies on a level that is essentially the DFR adjusted upward
by a little spread.”* Most importantly, it is evident that if until 2014 the idea of a zero-lower
bound was reasonable, from the occurrence of the NIRP the lower bound has changed
frequently. In particular, it has always been revised downward, thus supporting the idea that a

fixed constant lower bound covering the whole sample clashes in a shadow rate mechanism.
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Figure 6. 1-month OIS, 5-year OIS, 10-year OIS: 31/08/2005 — 30/09/2021. End of month observations.
Source: Refinitiv Eikon. Date of access: 19/10/2021.

In figure 7 we plot the yield curve observed on the 31st of January 2006 and on the 29th of
January 2021. By considering these two indicative dates we highlight the huge differences in
level, slope and curvature in the OIS yield curve before and after the NIRP. While the yield
curve in January 2006 starts from a 1-month OIS rate well above 2% and it shows a quite
traditional shape, the most recent curve entirely lies in a negative territory, being slightly
decreasing until the 3-year maturity and slightly increasing afterwards. The OIS yield curves
observed in our dataset are therefore quite heterogenous and affected by the several well-known
shocks of the last sixteen years, thus making the estimation quite challenging. However, the

shadow rate mechanism allows us to replicate entirely negative yield curves as well.

74 From the 18™ of September 2019 the DFR is set equal to -50 bps per annum: from that date to the last observation at our
disposal, the average end-of-month spread between the DFR and the 1-month OIS rate is -3.4 bps.
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Figure 7. OIS curves on 31% of January 2006 and 29" of January 2021. Maturities: 1m, 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y.
Source: Refinitiv Eikon. Date of access: 19/10/2021.

Table 1 show the mean, median, standard deviations and the 12-months autocorrelation over
the entire sample period, namely August 2005 — Seeptember 2021, of the Euro OIS rates
composing the dataset, while in table 2 we represent the correlations of such OIS rates over the
same period of time. Notice how the means of OIS rates with maturities up to a year are very
close to each other, thus suggesting a flat shape of the short end of the yield curve on average,
while the increasing means at longer maturities indicate an upward slope for the long end. The
standard deviations are very similar across maturities, meaning that shocks and expectations
affected the yield curve in (almost) the same way on average. Finally the autocorrelations are
quite high and significant for all tenors, while the correlations between maturities are high, with

only the one between 1-month maturity and 10-year maturity being lower 0.90.

Mean Median Std Dev Autocorr

12 months
Im 0.71194 0.0925 1.4709 0.74264
3m 0.72134 0.087 1.4959 0.74529
6m 0.7385 0.0805 1.5248 0.74858
ly 0.77724 0.08 1.5644 0.76001
2y 0.8619 0.1355 1.5807 0.78762
3y 0.97444 0.256 1.5936 0.80627
Sy 1.2261 0.6047 1.597 0.82299
Ty 1.4611 0.9628 1.5794 0.82794
10y 1.7534 1.4192 1.5445 0.8262

Table 1. Mean, Median, Std Deviation in percentage points and 12-month lag Autocorrelation for each OIS rate maturity.
All sample period considered.
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1m 3m 6m ly 2y 3y Sy Ty 10y

Im 1 0.99935 0.99757 0.99306 0.98298 0.97108 0.94596 0.92282 0.8983
3m 0.99935 1 0.99934 0.99609 0.98657 0.97445 0.94891 0.92541 0.90048
6m 0.99757 0.99934 1 0.99849 0.99042 0.97871 0.95336 0.92987 0.90481
ly 0.99306 0.99609 0.99849 1 0.99575 0.98604 0.96278 0.94035 0.91589
2y 0.98298 0.98657 0.99042 0.99575 1 0.99685 0.98159 0.96375 0.94268
3y 0.97108 0.97445 0.97871 0.98604 0.99685 1 0.99317 0.98061 0.96372
Sy 0.94596 0.94891 0.95336 0.96278 0.98159 0.99317 1 0.99655 0.98727
Ty 0.92282 0.92541 0.92987 0.94035 0.96375 0.98061 0.99655 1 0.99693
10y 0.8983 0.90048 0.90481 0.91589 0.94268 0.96372 0.98727 0.99693 1

Table 2. Correlation table between the observed OIS rates over the whole sample period.

4.4. Model set up

In this section, we first provide a model description in continuous time, and then we detail
its discretization for empirical analysis.
4.4.1. The lower bound

Given the difference in lower bound specification between the two approaches, we define

the shadow rate model as follow:

r(t) = max{LB,r(t)}, for the real time estimation;

r(t) = max{LB;,r(t)}, for the ex-post estimation.

For what concerns the real time estimation, we express the lower bound by omitting the
subscript t because, in facts, we estimate a constant LB at each re-estimation date, i.e. every
year. Instead, under the ex-post scenario, the subscript t allows LB; to be time-dependent, that
is the lower bound is defined over different regimes.
4.4.2. The shadow short rate

In line with our main reference, namely Krippner (2015), we employ the Gaussian
specification provided by Dai and Singleton (2002) pp.437-38 for the shadow rate r(t). More
specifically, we adopt a standard two-factor Gaussian model in which the instantaneous short

rate r(t) is an affine function of two state variables. In matrix notation, we have:

r(t) = ag + byx(t) (4.0)

where r(t) is a scalar, a, is a constant, by is a constant 2 X 1 vector, and x(t) is the 2 X 1
vector of state variables.
The vector of state variables x(t), under the objective P-measures, evolves according to the

following Ornstein-Uhlenbeck vector process:

dx(t) = k[0 — x(t)]dt + cdW?F (1) 4.1
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where 6 is a constant 2 X 1 vector representing the long-run mean of the vector of state
variables x(t), k is a constant 2 X 2 matrix of mean reversion coefficients, o is a constant 2 X 2
matrix representing the noise coefficients ruling the innovations to x(t). More specifically, o
is composed by the variances and the correlation parameters between the two state variables
relative to dW (t), a 2 X 1 vector of independent Wiener processes, where dW (t)~N (0,1)dt.

The dynamics of x(t) under the P-measures are defined as the solution of (4.1), that is

t+t
x(t+1)=6+ e_kf[x(t) - 0]+ f e—rc[r—u]o.de(u) (4.2)
t

-kt

where 7 is the length of the horizon considered from the current time t and e™™* is a matrix
exponential.”
Under the risk neutral Q-measures, the dynamics of x(t) are defined as
dx(t) = k?[0? — x(t)]dt + adW?(t) (4.3)

where the mean reversion and long-run parameters include a market price of risk component
relative to their P-measure counterparts, while the solution of (4.3) is the Q-measures equivalent
of (4.2).
4.4.3. The Gaussian affine term structure of the shadow short rate

To define the standard continuous-time term structure relationship, a crucial element to
consider is the volatility effect of the short rate on expected returns due to the Jensen’s
inequality. In this regard, for sake of completeness, we report the expression proposed by

Krippner (2015) p.50, pp.63-64, that is
VE(@) = f) bhe *I5la[o’ [ e =5l pydu]ds. (4.4)

By defining the (instantaneous) Gaussian forward rate prevailing at time ¢t under the Q-
measures as
f&. D) =E°[r(t+ Dlx(®)] - VE(D) (4.5)

where

E2[r(t + Dlx(t)] = ao + byEL [x(t + 7)|x(t)]

ap + b(’){@‘2 +e T x () — 9‘?]},

75 For analytical purposes, Krippner (2015) applies an eigensystem decomposition of k to express the matrix exponential
e~*7 in terms of scalar exponentials. For additional details see Krippner (2015), section 3.1.2.
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we can express the Gausstian spot interest rate at time t for the horizon t as

R(t,7) = %forf(t, u)du = lfOTEtQ [r(t + w)|x(t)]du — %LTVE(u) du

T

(4.8)

Clearly, (4.8) allows us to derive the Gaussian term structure.”®
4.4.4. The non-linearity issue: a closed form analytic solution

The LB mechanism introduces non-linearity in what it would be a standard Gaussian affine
term structure model with the short rate r(t) being affine in the state variables x(t). In this
regard, the shadow rate model proposed by Krippner (2015) is very convenient, as it provides
continuous-time closed form analytic expressions for the forward rate and thus yields and bond
prices in a LB environment.”” We make use of those closed form expressions, and we refer to
forward rates, spot rates and bond prices resulting from a LB mechanism with the additional
term LB, namely LB forward rates, LB spot rates and LB bond prices.

By expressing the LB mechanism at time t + T emphasising the option component, we have

r(t+7)=r(t+1)+max{LB—r(t+1),0}. 4.9)

The Gaussian forward rate, that under the Q-measures is defined as (4.5), can equivalently

be expressed by ignoring the volatility effect,’® so that we have

f(t,7) = EG[r(t + Dlx(®)] (4.10)

where E tQH denotes the expected value operator is taken under the t + 7 forward Q measures.
Clearly, (4.10) is still valid if applied with respect to its LB short rate and the LB forward

rate counterparts:

f(t,7) = Ele[r(t + Dx(0)]

By denoting f(t, ) as “LB forward rate” (i.e. the Gaussian forward rate bounded below by

the lower bound) and by substituting the LB mechanism in (4.9) we obtain:

f(&,0) = El[r(t + D|x(0)] (4.10)

= E _[r(t + D) |x(®)] + EX [max{LB — r(t + 1), 0}|x(t)]

76 In this chapter and thus in the empirical analysis, when we write “term structure” we refer to the Gaussian interest rates
prevailing at t for the interval [t, T] rather than the family of bond prices. However, it is commonly known the standard

. . 1 P(t,
expression of the continously compounded spot rate R(t, 7) = — ogf(r)

7 For additional details see Krippner (2015), section 4.1.
78 Specifically, Krippner (2015) points out that is more convenient to treat the Gaussian forward rate expression (4.5) under the
t + 7 forward Q measures.

, which allows to move from spot rates to bond prices.
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= f(t,7) + z(t,7)

where f(t, T) is the Gaussian forward rate and z(t, 7) is a forward rate option effect.

The closed form solution of f(t,T) is equation (4.5) under the Q-measures, equivalently
expressed as (4.10) under the t + 7 forward Q measures, while a closed-form analytic
expression for z(t,t) is derived by Krippner (2015) and it is the crucial element for the

tractability of the model. Specifically, the forward rate option effect can be expressed as:

f(t,t)— LB
w(T)

F(t,1) — LB] (4.11)

z(t,t) = [LB — f(t,7)] <1 - o > + a)(‘c)(;b[ (D)

where @[] and ¢[-] are the cumulative distribution function (CDF) and the density function

(PDF) of the unit normal distribution respectively, and [w(7)]? = var2[r(t + 7)|x(t)].”
Notice how the CDF and the PDF of the unit normal distribution introduce non-linearity in the
LB forward rate expression.

Finally, by substituting (4.11) into (4.10) we obtain the closed form solution for the LB

forward rate,®’ namely

f(t,7)— LB

= f(t, ) — LB (4.12)
f(61)= LB+ [f(6,1) = LB]- & [ 7 —]

]+w(‘t)-¢> ")

The convergence of f(t,T) to LB in prolonged periods of negative interest rates is quite

straightforward. Let us consider the following limits of the Gaussian forward rate f(t, 7):

. f(tT)-LB] _
B f(t,‘[l)IB—oo [ w(T) ] - 0

f(tD)-LB] _
. L [ w(®) ] =0

Itisclearthat lim f(t,7) =LB.
ft)»>—00—
At the same time, by considering
- lim @ M] =1
f(t,T)> w(7)

. f(t,T)-LB] _

) f(tl}r)rlwcp w(1) ] =0

we obtain f(tl,!rr)rlmo i(t, ) = f(t,1).

7 The formula is provided by Krippner (2015) at p. 129.
80 A discrete-time version of (4.12) is proposed by Wu and Xia (2013) and it is quite common in the literature.
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Consequently, the LB counterpart of the standard continuous-time term structure relationship
can be simply developed as the sum of a Gaussian shadow component, denoted by R(t, 7), and

an option component, denoted by Z (¢, 7):

1" 1" 1" (4.13)
R(t,7) = —f f(t,uw)du = —f f(t,w)du+ —f z(t,u)du = R(t, ) + Z(t,7)
o TJo — TJo TJo
where R(t, 7) is the LB spot rate at time t over the horizon 7.
We can express the measurement equation in a LB context as
R =R, =, (4.14)

where R,°S represents the 9 x 1 vector of observed yields at time ¢ for all 9 maturities, R, is

the 9 X 1 vector of predicted yields at time ¢ for all 9 maturities via (4.13), and 1, is the 9 X 1
vector of the observed yields which are not explained by R;.

Finally, LB bond prices, indicated by P(t, ), can be expressed as

P(t, ‘L') — e—rg(t,r) — e—r~R(t,T) X e—TAZ(t,‘r)

4.4.5. The model specification and discretization

The models parameters must be calibrated (i.e. restricted) to permit a unique identification.
As described in subsection 4.4.2, the two-factor Gaussian model describing the shadow rate has
19 parameters in total, namely the constant a,, the 2 X 1 vector by, the 2 X 2 matrix k, the
2 X 1 vector 8, the 2 X 2 matrix o, the 2 X 2 matrix k9 and the 2 X 1 vector 9.

Following the standard specification in the literature, we restrict 9 parametrs so that the
remaining 10 are free parameters to estimate. More specifically, we set ag = 0, by is specified
as a 2 X 1 unit vector, while a5, kfl, kfz, kgl, 9101, and 9201 are set equal to zero.

To sum up, we have
ag = O, bo = [1]

oy 0

— [31]’ o= [ 5
z P1202 0241 —pi,
0 0
k@ = [0 ¢]’ 9Q = [g],

k k
k= [ 11 12]
ka1 kool



57

This specification is consistent with a two-factor Nelson and Siegel (1987) model (i.e. ANSM),
in particular for the restrictions at zero of ay and k,.%!

Obviously, by introducing a LB mechanism and treating LB as a free parameters to estimate,
we obtain a two-factor shadow rate model with 20 parameters in total, of which 11 are free to
estimate.

x1(t)
x2(t)

r(t) = ay + bix(t)

Given the state variables vector x(t) = [ ], the specification implies that

ol

=x1(8) + x2(t)

Finally, yield curve data are observed at specific (i.e. discrete) points in time, so that we

= [1,1] - [

proceed with a discretization of our model. Under the P-measures, equation (4.2) can be

expressed in discrete time as

t+At
M+ B0 = Blx(+A0lx@]+ [ e B toaw” ) 19
t

=60 +e7* [x(t) — 0] + e(t + At)

where At is the discrete time interval of one month, as the periodicity of the dataset is.

Equation (4.15) is equivalent to a first order Gaussian VAR:
xe =0+e A (x,_1 —0) + & (4.16)
= 0+F(xt_1_9)+€t
where ¢; is the 2 X 1 vector of innovations to x;, and the time interval between x; and x,_; is
one month.

4.4.6. Numerical integration

From (4.13) we know that

1 T
R =7 [ flwd
0

However the CDF and the PDF included in the expression of f (t, u) prevent us to find a closed

form analytic solution of the integral. As suggested by Krippner (2015), we can rely on a

numerical integration of f(t, 1) based on constant rectangular increments with end-increment

81 As explained by Krippner (2015) the two zero restrictions on a, and kfl imply x; (t) moves as a random walk, while x, (t)
moves as a mean reverting process under the Q-measures. The arbitrage-free Nelson and Siegel (1987) model is in facts a
common subclass of Gaussian models.
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LB forward rate evaluation. This is done by discretizing the integral, so that we end up

expressing R(t,7) as the mean of end-increment LB forward rates.

More specifically, given a constant time increment At ® and by expressing | = i, we obtain

T ]
R(t,7) = % f ftwdu = ! Z f(6,jAT) At
0 =

T

= mean {f(t, AT), ... ,f(t,jAT)}
where R(t, t) will be referred to as the “LB interest rate function”.

Given that R(t, T) = mean { f(t, AT, ..., f(t, jAr)}, LB bond prices end up being expressed as

4.5. Model estimation

The state-space representation of the model comprises the measurement equation given by
(4.14) and the state equation given by (4.16). Moreover, since we have a nonlinear measurement
equation, we must use a nonlinear filtering technique, namely the iterated extended Kalman
filter. The nonlinearity requires the calculation of the measurement equation to be done using a
first-order Taylor approximation of the LB interest rate function around the best available
estimate of x(t). Each iteration of the Kalman filter allows to improve the estimate of x(t)
with which we repeat the approximation. This procedure continues either for a pre-determined
number of iterations or, as in this dissertation, up to a tolerance condition in the update of x(t).
For further details about the estimation algorithm see appendix C.

For the purpose of estimation by means of an Iterated Extended Kalman Filter with
Maximum Likelihood estimation an initial guess is needed for each parameter, meaning that
we instruct the estimation with an initial set of suitable parameters. Differently from related
papers regarding the euro area, we derive a suitable initial set of parameters from the estimation
of an ANSM(2) (i.e. without the lower bound). We use the resulting estimates as initial guesses
for the estimation of its shadow version.®® The idea is that since we observed under both
approaches a high sensitivity in the shadow model’s final parameters relative to their initial

guesses, with such method we are able to obtain solid starting values. Finally, in the MATLAB

82 In practice we use At = 0.01.
8 Such technique is suggested by Christensen and Rudebusch (2016).
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codes (Appendix D) we use the “fminsearch” function which employs the Nelder-Mead
algorithm to maximize the log-likelihood function.
4.5.1. Overall sample estimation

By employing the whole dataset, that is 194 end-of-month observations, we test the idea of
a time-varying lower bound. Thus, we estimate a two-factor shadow rate model with a regime-

switching lower bound, in the sense that we allow discrete movements in LB at the specific

points in time indicated in table 3. Formally, we have

r(t) = max{LB,,r(t)}, 4.17)

where the subscript t denotes the lower bound is time dependent, meaning it is allowed to shift
to a new level exactly at the dates of cuts in the DFR. Hence the terminology “regime-
switching”.

As described in table 3, the dates of cuts are June 2014, September 2014, December 2015,
March 2016 and September 2019, and we want to estimate 6 different bound levels with respect
to 6 lower bound regimes. We refer to the lower bound values corresponding to each regime as
LBy, LBg, LB, LBp, LB and LBr, whose initial guesses are the DFR prevailing at the

corresponding sub-period. All the other parameters are estimated over the entire time window.

. DFR
Time Interval
(Initial Guess for LB)
Regime A August 2005 - May 2014 0.000
Regime B June 2014 - August 2014 -0.100
Regime C September 2014 - November 2015 -0.200
Regime D December 2015 - February 2016; -0.300
Regime E March 2016 - August 2019 -0.400
Regime F September 2019 - September 2021 -0.500

Table 3. Lower Bound Regimes and corresponding Initial Guesses.

For comparison, we then estimate a two-factor shadow rate model with a single constant

lower bound, namely

r(t) = max{LB,r(t)}. (4.18)

8 MATLAB codes are based on the ones provided by Leo Krippner are publicly available at:
https://www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-
united-states-monetary-policy/matlab-code-for-krippner-2015-shadow-zlb-term-structure-model
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As for the initial guess of the lower bound, we use the DFR prevailing at the end of the sample
estimation (i.e. -0.50%).
4.5.2. Estimation results

Table 4 shows the parameter estimates for both approaches over the period that goes from
August 2005 to September 2021. Calculations of the standard errors are based on the inverse of
the Hessian matrix evaluated around the final parameter estimates, that is by taking the square
root of its diagonal elements as described in Krippner (2015) pp.74.

For what concerns the lower bound estimations, the two approaches results are in line with
each other: the model with a constant lower bound provides a value of -0.5218% for LB, that is
very close to the one resulting for LBp, namely -0.50%. Both reflect the DFR prevailing from
September 2019, that is -0.50% indeed. However, the regime-switching mechanism captures
the significant downward trend in the value of the lower bound, reflecting the influence exerted
by the ECB’s decisions, with LBy, LB, LBp, LBy, LBf being statistically significant. Notice
LB, is not statistically different from zero, thus supporting the idea of a constant ZLB prior the

NIRP.

Constant LB: Log-likelihood: -9386.39 Regime-switching LB: Log-likelihood: 891789.53
Initial Guess Estimate Std Error Initial Guess Estimate Std Error
) 0.1244 0.3473 0.0003 ¢ 0.1244 0.1244 0.0000
k11 0.0092 0.0206 0.0172 ki1 0.0092 0.0092 0.0000
2P -0.0202 -0.0030 0.0003 ki, -0.0202 -0.0202 0.0000
ko1 0.0651 0.0207 0.0192 ko1 0.0651 0.0651 0.0000
koo 0.0163 0.0020 0.0000 koo 0.0163 0.0163 0.0000
01 -0.2189 -0.1036 0.1335 0, -0.2189 -0.2190 0.0000
6, 0.6186 0.0290 1.5527 0, 0.6186 0.6186 0.0000
(2] 1.3883 34118 0.0011 (21 1.3883 1.3884 0.0000
0, 1.5766 3.9099 0.0006 () 1.5766 1.6160 0.0000
P12 -93.7111 -96.9152 0.0000 P12 -93.7111 -93.7110 0.0000
LB -0.5000 -0.5218 0.0000 LBy, 0.0000 0.0000 0.0129
LBg -0.1000 -0.1000 0.0417
Table 4. Final Parameters of a constant LB model (left panel) and LB, -0.2000 -0.2025 0.0000
of a regime-switching model (right panel). 84, 6,, 0y, 0,, p1,, LB LB -0.3000 -0.3019 0.0000
and the corresponding standard errors are expressed in percentage b
terms (i.e. multiplied by 100). Initial guesses result from an LBy -0.4000 -0.4000 0.0000
ANSM(2) estimation.
LBg -0.5000 -0.5000 0.0001
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Additionally, the estimation provides a long run mean for the short rate (i.e.
0; + 6, ) that is not statistically significant under the constant lower bound assumption, while
with a regime-switching specification we obtain a long run mean of 0.3996%. Both values are
reasonable, considering long term yields have been persistently low as well. By allowing the
lower bound to change in time we obtain lower variance coefficients for both state variables, as
well as a lower correlation parameter. Regarding the latter, such high values suggest the
estimated state variables have (almost) opposite dynamics. Intuitively, this helps in ensuring
the flatness of the shadow short rate r(t) with the two factors compensating each other.

The values of the standard errors are worth of mention since under a regime-switching LB
they are extremely low for all the model’s parameters. This is a curious result, especially if we
compare such values with the (still low) standard errors obtained under a constant LB
specification. There are different possible explanations behind this results. One of them is that
the estimation date, namely September 2021, is two years distant from the last ECB’s
adjustment in the DFR. This implies that the last 25 end-of-month observations of the Euro OIS
curve are not affected by any shock, thus being very similar between them. The incredibly low
variability of the dataset may be reflected by the very high values of the standard errors. To
give an idea in table 5 we provide the minimum, maximum and the average of the observed
OIS rates over the last 25 end-of-months observations, namely from September 2019 to
September 2021. However, as we point out in subsection 4.5.5 it has to be noticed that the low

variability is not the only determinant of such low standard errors.

1 month | 3 month | 6 month | 1 year 2 years | 3years | Syears | 7 years 10 years
MIN -0.4863 -0.5064 -0.535 -0.5629 -0.5898 -0.612 -0.574 -0.489 -0.355
MAX -0.44 -0.4441 -0.4444 -0.4464 -0.4278 -0.406 -0.2675 -0.129 0.071
MEAN -0.4657 -0.4740 -0.4837 -0.4993 -0.5093 -0.5076 -0.4333 -0.3394 -0.1802

Table 5. Minimum, maximum and mean of end-of-month Euro OIS rates at each maturity. Time window: August 2015 — September 2021.

For what concerns the goodness of fit, table 6 and table 7 show the regime-switching model
and the constant LB model provide root mean squared errors (RMSE) and mean absolute errors
(MAE) that are in line with each other for most maturities but for the long-end of the yield
curve, namely for the 7-year and 10-year maturities, where the regime-switching model seems
to have a poor predictive power.®> However, the standard deviation for the 10-year maturity is

much more contained under a regime-switching LB, as well as the standard deviations

8 The poor fit at the extremes of the yield curve is somehow expected under both models. Krippner (2015) specifies a better
goodness of fit at the very short end and the very long end of the yield curve can be achieved by exploiting the extra flexibility
offered by a three-factor shadow rate model.
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corresponding to the maturities below the year, suggesting a much better fit to the short end of
the yield curve. At the same time, the standard deviations of the 1-year, 2-year and 3-year

maturities, are larger under a regime-switching LB compared to a constant LB model.

Constant LB

I month | 3 month | 6 month | 1 year 2 year 3 year 5 year 7 year 10 year

RMSE 13.13 6.66 0.34 8.25 12.66 11.94 6.36 1.10 12.06
MAE 9.32 4.72 0.03 592 9.41 9.09 4.85 0.42 10.46
STD DEV* 3433 25.23 14.35 3.86 4.70 4.35 6.29 12.66 51.84

Table 6. RMSE, MAE and STD DEV. All values are in basis points (i.e. multiplied by 10000). The STD DEV* represents the standard
deviation estimated by the iterated extended Kalman filter for each maturity. Time window August 2005 — September 2021.

Regime-Switching LB

1 month | 3 month | 6 month | 1 year 2 year 3 year 5 year 7 year 10 year

RMSE 12.44 6.47 1.99 8.72 13.44 12.55 5.56 12.35 28.78
MAE 9.26 5.05 0.38 7.24 11.77 10.88 2.66 10.67 24.83
STD DEV* 12.38 6.30 0.01 7.83 12.99 13.46 3.17 13.46 33.71

Table 7. RMSE, MAE and STD DEV*. All values are in basis points (i.e. multiplied by 10000). The STD DEV* represents the standard
deviation parameters, for each maturity, resulting from estimation. Time window August 2005 — September 2021.

4.5.3. Cumulative estimations: real time scenario and ex-post scenario

From the previous estimations it is clear the constant LB model does not provide us with
information regarding the evolution of the time-varying lower bound. However, in real time
estimation and forecasting we do not dispose of information regarding the future evolution of
the bound, as we did not when negative rates were adopted by the ECB. Let us analyse how the
two approaches perform by setting ourselves at the beginning of each year starting from January
2014. Thus, we calculate the model implied LOH under both approaches and compare
differences.

Notice the update frequency of one year is a good compromise between a very-short term
update, which is not needed considering policy rates do not change frequently, and a longer-
term update, which could make us lose some new market information. Thus, considering the
governing council meeting of the ECB schedules its meeting every three month, we decided to
employ a one-year update. Additionally, we adopt a cumulative estimation method, so that at
each time we re-estimate the model we add the last 12 end-of-month observations.®® By
implementing a cumulative window rather than a rolling window we are able to exploit the
whole variability of the dataset up to each estimation date, especially in those periods in which

OIS rates are extremely stable. Finally, the choice of January 2014 as starting date comes from

8 The approach is similar to Christensen and Rudebusch (2016) that implement a (cumulative) weekly re-estimation using
US treasury yields.
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two reasons. First, the estimate in January 2014 will be based on 102 end-of-month
observations, providing a solid initial estimate. Second, estimating the model in January 2014
sets us exactly 6 months before the first negative cut, allowing us to check whether the market
anticipated negative cuts over the year.

We organize the real time estimation as follow: starting from January 2014, we re-estimate
the two-factor shadow rate model with a constant lower bound, formally expressed as (4.18), at
a yearly frequency up to January 2021, for a total of eight real time estimations. The choice of
a constant lower bound for the real time estimation comes from the commonly agreed idea of a
ZLB prior the NIRP. We therefore carry on this idea over time, meaning after the cuts in
negative territory. However, by updating the shadow rate model we actually question the value
of the bound every 12 months.®” As for the real time estimation, we re-estimate the regime-
switching model in (4.17) at the same dates conditionally on information available at each date.
In facts, the difference with the real time scenario is the LB mechanism in (4.17) is an
information we dispose of after evaluating the entire time window. More specifically, when
we re-estimate the model by adding new observations which include a date of a cut in the DFR,
we allow the bound to switch to a new value. As a consequence, the shadow rate models
estimated under the two approaches in January 2014 are equivalent. The lower bound
specifications, and thus the estimations start to diverge from January 2015 onwards. Table 8

sums up the lower bound specifications under the two scenarios.

Real Time Estimation Ex-post Estimation
Estimation Window

r(t) = max{LB,r(t)} r(t) = max{LB;,r(t)}.
August 2005 — January 2014 LBM LB, = LB,®
August 2005 — January 2015 LB® LB; = {LB4,LBg, LB-®}
August 2005 — January 2016 LBM LB, = {LB4, LBg, LB¢, LBp®}
August 2005 — January 2017 LBM LB, = {LBy,LBg, LB, LBp, LBz}
August 2005 — January 2018 LB™ LB; = {LBy4, LBy, LB, LB, LB;®}
August 2005 — January 2019 LB™ LB, = {LBy4, LBg, LB¢, LBp, LB}
August 2005 — January 2020 LBM LB, = {LBy, LBg, LB, LBp, LDy, LB}
August 2005 — January 2021 LB® LB, = {LBy,LBg, LB¢,LBp, LD, LB;®}

Table 8 Lower bound specifications under a real time scenario and an ex-post scenario.
Notes: (1) LB is estimated over the entire corresponding window.
(2) Regime C starts in September 2014 up to January 2015.
(3) Regime D starts in December 2015 up to January 2016.
(4) Regime E starts in March 2016 up to January 2017.
(5) Regime E starts in March 2016 up to January 2018.
(6) Regime E starts in March 2016 up to January 2019.
(7) Regime F starts in September 2019 up to January 2020.
(8) Regime F starts in September 2019 up to January 2021.

87 Technically we are assuming a constant lower bound, but to some extent by re-estimating the model we derive an estimated
sequence of constant lower bounds.
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4.5.4. Estimation results

The results of our estimations are reported in the Appendix (B). For comparison, here we
plot parameters’ estimates under the two scenarios to analyse differences and parameters
stability over time.

Figure 8 shows the series of real time estimates of a constant lower bound closely resembles
the bound values assumed by a regime-switching model estimated in January 2021. The real
time lower bound in 2014 is slightly positive, while is it not significant under the ex-post
scenario. Additionally, a clear downward trend leads to a real time estimate in January 2021 of
-0.5315%, and a slightly higher value of -0.4965% for the last regime lower bound at the same
estimation date. However, despite minor differences, the two approaches are in line with each
other, reproducing the adjustments in the DFR quite precisely. Obviously, allowing the bound
to switch at the DFR cut dates in the ex-post approach means updating the bound specification
as soon as the cut occurs, while under a real time yearly re-estimation we incorporate market
information with some degree of delay. However, this problem could be improved with a more

frequent real time re-estimation to immediately capture current market perceptions.

Real Time LB Evolution
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Figure 8. Panel 1: dotted points represent the estimated real time LB in January of each year.
Panel 2: estimated LB regimes under an ex-post estimation in January 2021.

For what concerns mean reversion values, i.e. the elements of the matrix k, figure 9 shows a
poor parameters stability under both approaches, especially in the first half of the window. Each
speed of reversion coefficient assumes similar values under both scenarios, with the real time
estimates showing slightly more persistence, that is lower estimated values. Noticeably, in
January 2017 a regime-switching specification leads to substantially different estimates for k,,

k21and kzz.
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Figure 9. Mean reversion parameters k4, k1,,k,; and k,, estimated under a real time and ex-post scenario.

Estimated values which are not significant are set equal to zero.

Generally, mean reversion parameters seems to achieve stability from January 2018, meaning

over a period which is not characterized by DFR cuts, with the only exception of September

2019, a cut that seems to be reflected by the little adjustments in the 2020 estimates of k;, and

kq,. In facts, from the January 2018 updates, re-estimations of both models lead to changes in

parameters values that are smoother than the ones we witness before 2018. This is reasonable

if we consider that 4 cuts out of 5 occurred before January 2017.

Figure 10.
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In Figure 10 we plot the estimated long run means of the two state variables. In this case,
poor stability is observed for both 8; and 6, under a real time scenario, while updates are flatter
when we employ a regime-switching mechanism. Estimates are quite similar with the exception
0of 2017 and 2018. However, what is important is actually the combined effect of 6; and 6,, i.e.
their sum, that is equivalent to the long run mean of the shadow short rate r(t). In figure 11 we
can see the long expectation of 7(t) moves in the same direction each time the model is updated
under both scenarios, with the only exception of January 2019. However, magnitudes are quite
different, as well as the sign in estimated means in 2018 and in 2019. Finally, except for the

estimates in 2017, long run means float around zero.®
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Figure 11. Long run mean of shadow short rate r(t) estimated under a real time and ex-post scenario.

These results, and the fact that the long run mean does not decline as the LB does, are not
surprising for two reasons. First, also related analysis in the literature, such as the one of Lemke
and Vladu (2016) and Kortlea (2016), show parameters estimated under the P-measures are less
accurate than the ones under the Q-measures.?’ Second, Krippner (2015) proposes the shadow
short rate r(t), and thus its long run mean, as an indicator of monetary policy stance, meaning
it may reflect long-term market expectations regarding future central bank decisions. In this

perspective, r(t) moving in the same direction at each update but in 2019, suggests expectations

8 The average estimated long run mean is -0.47% and 0.85% under a real time estimation and ex-post estimation, respectively.

8 In this regard, Lemke and Vladu (2016) specifies the reason is that estimates under the P-measures do not exploit the full
data cross section observed at a given point in time as estimates under the Q-measures do. For example, the 2017 estimate of
0, is 0.0772 (i.e. 7.72%) against a standard error of 0.0342, meaning it is just slightly significant.
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under the two scenarios are captured in a similar way. However, further analysis are needed,
and the sole indication provided by long run mean must be treated with care given the poor
accuracy issue mentioned above.

As for the long run means, in figure 12 we see how estimated volatility coefficients are
always similar under the two scenarios, but still showing remarkable differences in 2017 and in
2018. As before, a regime-switching mechanism permits to obtain more stable parameters.
Irrespectively of the lower bound specification, we obtain similar magnitudes for o;and o,.
This is not surprising given the high correlation parameters (i.e. p1,) that we obtain under both
approaches. Such values of g; and g,, together with a high value of p;, guarantee the estimated

series of x4 (t) and x, (t) to reproduce the flatness property of the observed yields.
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Figure 12. Volatility coefficients g;and o, estimated under a real time and ex-post scenario.
Estimated values which are not significant are set equal to zero.

Finally, in figure 13 we plot ¢ that is the speed of reversion of the state variable x,(t) under
the Q-measures. Again, the regime-switching specification allows smoother changes in the
value of ¢, and the estimated values show substantial differences in 2017 and 2018.

To sum up, it seems the two approaches provide different estimates in 2017 and 2018.
Curiously, if we consider the time distance between each re-estimation date and the previous
DFR cut, then 2017 and 2018, together with 2019, represent the more distant re-estimation dates

t'90

from the previous rate cut.”” However, it may also be the case that recursive differences in

90 The last cut we observe prior January 2017 is 9 months before, that is March 2016, and the following one occurs only in
September 2019.
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parameter estimates observed in the same years may actually compensate each other, so that

both models are, on overall, similar.
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Figure 13. Mean reversion parameter ¢ estimated under a real time and ex-post scenario.

To conclude, it has to be noticed how estimation results in appendix (B) show similar final
parameter estimates compared to their corresponding initial guesses. This is particularly true
for a regime-switching model from the 3™ cumulative window (i.e. 2005-2016) onwards, while
it is not always the case for a constant LB model. Additionally, we have already pointed out in
section 4.5.2 that, for what concerns the values obtained for the standard errors, the low
variability of the dataset may be an important determinant. As we can see in table 9, in which
we provide the standard deviations of the observed yields at each estimation date (i.e. up to that
date, from the introduction of the NIRP volatility has dramatically decreased. However, an
additional point must be made: by looking at the standard errors obtained at the different
estimation dates in appendix (B), we do not observe relevant and systematic differences
between the two LB specifications. Moreover, although the distance of the estimation date from
the date of the previous DFR cut impacts on the variability of the dataset, this cannot be the
only explanation of such values of the standard errors. In facts, standard errors are definitely
lower for most parameters under a regime-switching LB in January 2016, with a cut happening
only in December 2015, as well as in January 2017 with the cut happening in March 2016.
Additionally, the estimate of January 2019, that is almost three years later the previous DFR
cut date (i.e. March 2016) does not lead to extremely low standard errors as for the estimates
of January 2021 and the one of section 4.5.2 (i.e. September 2021). In other words, the distance

of the estimation dates from the DFR cut dates do not necessarily lead to low values of the
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standard errors. Another factor that could possibly explain such results is the fact that we
employ the estimates of a Gaussian model, that is ANSM(2), as initial guesses for the shadow
rate model estimation. This means that in facts we are estimating parameters twice, and what
we generally observe, especially from the estimate of January 2016 onwards, is the final

parameters estimates being very close to their initial guesses.

1-month 3-month 6-month 1-year 2-year 3-year S-year 7-year | 10-year
2014 1.5241 1.5487 1.5720 1.5873 1.5280 | 1.4609 | 1.3136 | 1.1804 | 1.0501
2015 1.5201 1.5456 1.5717 1.5953 1.5578 | 1.5132 | 1.4056 | 1.2970 | 1.1783
2016 1.5206 1.5475 1.5760 1.6054 1.5845 | 1.5563 1.4782 | 1.3901 1.2886
2017 1.5256 1.5524 1.5819 1.6162 1.6103 | 1.5982 | 1.5508 | 1.4829 | 1.3937
2018 1.5201 1.5461 1.5751 1.6103 1.6090 | 1.6011 1.5629 | 1.5021 1.4171
2019 1.5079 1.5332 1.5616 1.5975 1.5981 1.5911 1.5557 | 1.4996 | 1.4203
2020 1.4943 1.5199 1.5490 1.5871 1.5950 | 1.5967 | 1.5778 | 1.5373 1.4747
2021 1.4808 1.5062 1.5355 1.5751 1.5892 | 1.5992 | 1.5968 | 1.5736 | 1.5324
I-month | 3-month | 6-month | l-year 2-year 3-year S-year 7-year 10-year
;’(r)el-iune 1.5207 1.5460 1.5706 1.5896 1.5393 1.4803 1.3439 1.2151 1.0747
Post-June
5014 0.1437 0.1452 0.1467 0.1516 0.1671 0.1996 0.2721 0.3406 0.4196

Table 9. Euro OIS rates volatilities at each estimation date (panel 1).
Euro OIS rates volatilites prior and after June 2014 (panel 2).
Time window: August 2005 — January 2021.

4.5.5. A parallel analysis: the importance of updating the LB

In order to doublecheck the importance of treating the LB as a free parameter to estimate and
to be regularly updated, we carry out a recoursive estimation of a model in which the LB is set
to the value estimated over the entire time window in section 4.5.2 under the constant LB model.

Formally, we have

r(t) = max{LB,r(t)},
where LB = -0.5218% at each re-estimation date.

As expected, the estimation is quite problematic. First of all, not allowing the LB to be
updated overtime implies a larger computational burden in carrying out such estimates. In
particular, it dramatically increases the time required by the estimation algorithm to reach
convergence, that is to provide estimates of the model’s parameters (see appendix C for more
details on the iterated extended Kalman filter with maximum likelihood estimation). This issue
makes it impossible to obtain estimates for some re-estimation dates with our current hardware.

Additionally, for those time windows for which we are able to reach convergence, we obtain
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an extremely high mean reversion parameter under the Q-measures (i.e. ¢) and very low mean
reversion parameters under the P-measures (i.e. kq1, k12, k21, k22). The long run mean of r(t)
assumes, for some estimation dates, extremely positive values as well as extremely negative
values for some others. As a consequence, these results imply a very poor goodness of fit.

This further analysis strengthens the hypothesis of a time-varying LB, thus the importance
to allow the model to update the LB value overtime. In other words, even though the LB value
has been previously estimated and it is significantly negative, the fact that we do not allow the
update implies practical problems in the estimation and it dramatically decreases the model’s
predictive power.

4.6. The liftoff horizon

In this section, we calculate the LOH at each estimation date under both scenarios. The
difference is that with a real time approach the LOH reflects the set of all the available
information up to the estimation dates. Contrarily, LOH calculated with an ex-post estimation
of the model are obtained on the basis of a model’s specification previously evaluated by
exploiting all the dataset at our disposal.

In line with the literature, we define the liftoff measure at current time t as LOH,, that is the
median future point in time in which the short rate is expected to cross a given threshold and to
float above it for at least a given time. We repeat the following procedure for all eight estimation
dates, so that we obtain eight LOH measures under each approach: by employing the parameter
estimates obtained in the previous section, we use a Monte Carlo simulation to derive | =
10000 short rate paths over a 10-year horizon under the P-measures,”’ and we find the first
point in time at which each simulated short rate crosses a threshold of 0.10% and stays above
it for at least K months. %2

By expressing with LOH, ; the liftoff horizon at the current time t of the jt" simulated path,

we have
LOH.; = inf{f |r(t +s) >0.001,fors =7,7+1,..., T+ K — 1} (4.19)
where K is equal to 3, 6 and 12 months.

At time t, each J* simulated path provides a LOH¢ j, and the resulting LOH; will be the median

of such distribution. Given the extreme flatness of the observed yields, differently from related

91 We use only parameters that are statistically significant.
92 We use a slightly positive threshold since we have slightly positive LB estimates for January 2014. In addition, this choice
gives more accuracy to the LOH estimates relative to a simple zero threshold.
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studies,” we choose to consider different values of K so that, to some extent, we derive different
degrees of accuracy for LOH,.**

Concerning the simulation, the choice of employing estimated parameters under the P-
measures is to capture real world expectations about the ECB’s decisions. Notice that under the
ex-post scenario, at each simulation date we assume the future values of the LB to be the ones
we previously estimated over the entire sample period. In other words, with respect to the
simulation date, the future movements of the LB are the ones estimated in section 4.5.2 and
presented in table 5, with the LB value to shift exactly at the dates of change in regime. For
example, for the simulation date of January 2014, the LB value is assumed to change in June
2014, September 2014, December 2015, March 2016 and September 2019 and to take the
corresponding regime’s estimated LB value. The same reasoning goes for the simulation date
of January 2015, with the LB value to change in December 2015, March 2016 and September
2019, and so on for the following simulation dates. However, this is not a sensitive assumption:
by calculating LOH, with respect to a threshold and not with respect to the LB, the value of the
latter per se’ has little importance. Finally, any estimated LOH, ; exceeding 10 years is recorded
at the maximum value of 10 years. Consequently, this is valid also for LOH, as well as the
resulting standard deviations.”

4.6.1. Model-implied liftoff horizons

As we can see in table 10, in January 2014, while the DFR was at 0 percent, the model-implied
liftoff measure for LOH,(14 is equal to 3.75 years for K = 3 months under a real time scenario.
Higher values of K imply higher values for LOH, (14, thus suggesting the 3.75 years estimate
to be quite weak. Although we cannot say anything regarding expectations of a cut in negative
territory, it seems market participants expect the zero-rate policy to last for years. At the same
time, uncertainty is substantial, as standard deviations are around 4 years for whatever K.
Results are very similar under the ex-post scenario being the two models equivalent in 2014.

The difference in lower bound specification leads to different estimates starting from January
2015: under a real time scenario the estimated values of LOH,,5 under all K suggest solid
expectations of a liftoff in positive territory in the following 2 or 3 years, with less variability

relative to 2014. In particular, a LOH,,5 equal to 3.74 years for with K = 1 year is very

% Lemke and Vladu (2016), Kortela (2016), Pericoli and Taboga (2015) and Wu and Xia (2016) do not derive multiple
measures of LOH for different duration requirements.

94 Kortela (2016) considers a 6-month period, while Lemke and Vladu (2016) one year period.

95 We think it makes little sense to consider such long liftoff’s dates. A 10-year LOH would be interpreted as the market does
not expect upward adjustments in DFR any soon.
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indicative of the market perception of a temporary NIRP. Under the ex-post scenario, liftoff
estimates for LOH,,,5 are higher for all values of K, as well as their standard deviations.”®
Liftoff estimates from 2016 to 2019 under both scenarios imply very little probabilities given
by market agents to a DFR upward adjustment any time soon. Notice, this corresponds to the
longest period over which the ECB did not revise its decisions: the DFR was kept at -0.40%

from March 2016 to September 2019, before being cut even further to -0.50%.

REAL TIME SCENARIO® EX-POST SCENARIO®Y
3 months 6 months 1 year 3 months 6 months 1 year
2014 3.75 5.63 8.25 3.94 5.73 8.38
StdDev? (4.14) (4.07) (3.93) (4.15) (4.07) (3.94)
2015 2.02 (2.67) 3.74 3.96 6.83 10
StdDev? (3.76) (3.83) (3.89) (4.08) (4.02) (3.75)
2016 10 10 10 10 10 10
StdDev? (3.46) (3.30) (3.09) (3.47) (3.32) (3.11)
2017 10 10 10 8.69 10 10
StdDev? (3.47) (3.29) (3.18) (2.70) (2.61) (2.49)
2018 5.71 7.48 10 6.64 7.93 10
StdDev? (4.03) (3.94) (3.82) (3.70) (3.59) (3.45)
2019 10 10 10 10 10 10
StdDev? (3.48) (3.31) (3.07) (2.79) (2.61) (2.40)
2020 2.89 3.32 3.93 2.15 2.46 2.83
StdDev? (3.05) (3.15) (3.28) (2.43) (2.59) (2.81)
2021 10 10 10 10 10 10
StdDev? (2.74) (2.40) (2.03) (1.75) (1.52) (1.26)
Sept.2021 3.98 5.50 8.01 8.63 10 10
StdDev? 3.97) (3.93) (3.82) (3.51) (3.40) (3.25)

Table 10. LOH calculations and standard deviations under the real time and ex-post scenarios.
10000 simulated short rate paths under the P-measures. LOH measures are median dates expressed in years.
Notes: (1) LOH exceeding 10 years have been set equal to 10 years.
(2) LOH exceeding 10 years have been set equal to 10 years in the StdDev calculation.

Curiously, market agents seem to start questioning the NIRP duration in January 2020: under
both scenarios measures of LOH,,, indicate the market to expect an increase in the short rate
in the following 2 or 3 years, probably not taking into account the pandemic effects yet, as one
might deduce by ECB (2020c).”” Under the ex-post scenario, estimates are less uncertain for all
K, as indicated by the lower standard deviations. However, in January 2021 liftoff measures do

not seem to reflect expectations about a short rate increase any soon. Intuitively, a reasonable

% For LOH,y;5 = 10 years with K = 1 year we obtain a standard deviation of 3.75 years. However, most values of the liftoff’s
distribution exceed 10 years, thus making such standard deviation meaningless.
97 In the press conference of 23 January 2020 there were no references to possible effects of Covid 19. See ECB (2020c)
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explanation may be the expansionary policies implemented to sustain the eurozone during the
pandemic as ECB (2021a) suggest.”®

Finally, under a real time scenario, liftoff measures in September 2021 seem to ease the idea
of a long-term NIRP implied by the estimates of the beginning of the year, probably reflecting,
among other factors, the more recent increase in inflation rate.”” However, the regime-switching
model does not revise the January 2021 estimates, except for a slight downward adjustment in

LOHgep 2021 for K = 3 months. Volatilities still suggest a widespread uncertainty.

Differences in LOH measures

3 months 6 months 1 year
2014 0.19 0.10 0.13
2015 1.94 4.16 6.26
2016 0 0 0
2017 1.31 0 0
2018 0.87 0.45 0
2019 0 0 0
2020 0.74 0.86 1.10
2021 0 0 0

Sept.2021 4.65 450 1.99

Table 11. Differences in absolute terms in LOH measures.
Values expressed in years.

The LOH measures we obtain under the two approaches are generally in line with each other.
From table 11, that shows the difference in LOH measures for each date and for every K, we
see remarkable differences only in January 2015 and September 2021. For all the other
estimation dates LOH measures differ by a magnitude within the year, but for 2017 that is 1.31
years for K = 3 months. Additionally, the two models seem to agree in forecasting a long-term
implementation of the NIRP in the period 2016-2019.

Notice the high liftoff estimates that we derived from 2016 to 2019, as well as 2021, are not
surprising: by setting a threshold of 0.10% we require the short rate to overcome such positive
level for at least K months. In other words, we are actually evaluating the horizon after which
market participants expect the NIRP to finish rather than a simple liftoff from the current lower
bound (i.e. the current DFR). As shown in the following section, the market participants
reasonably expects a series of gradual upward adjustments in the DFR. In particular, if the short

rate is stuck at negative levels such as -0.30%, -0.40% and -0.50%, as it is in those years, if

98 ECB (2021) was conducted between 7 and 11 January 2021 indicates inflations expectations to be 0.9%, 1.3% and 1.5% for
2021, 2022 and 2023 respectively. Additionally, survey participants expect the ECB’s main policy rates to remain unchanged
until at least 2023.

9 See Eurostat (2021).
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there are no clear signals of an ECB move, the time required to cross the threshold may be
substantial, thus such a jump is logically not contemplated by the market.
4.6.2. Comparison of liftoff horizon measures with survey evidence

Given the observation provided above, we compare our model-implied estimates of LOH
with real market expectations. For this purpose, we use the most recent ECB Survey of
Monetary Analysts (SMA),'” which report, among the others, survey’s participants answers
relative to the expected size of the next increase in DFR, as well as the expected timing of the
next increase. Although the two answers may affect each other, we will focus on the median of
the answer’s distributions. Unfortunately, surveys’ results are publicly available only from June
2021, so that we are forced to employ the ones of June 2021 and September 2021. Their
corresponding survey periods are from 25 May 2021 to 28 May 2021 and from 23 August to
27 August 2021, respectively. In line with the survey periods, the simulation dates we consider
are the 31% of May 2021 and the 31% of August 2021. As before, we simulate using parameters
under the P-measures, which have been estimated given all the available information up the
simulation date.

Notice that both surveys provides us with an expected median size of the next DFR increase
being equal to 10 basis points. This suggest the market expects a gradual upward adjustment in
the DFR by the ECB. As a consequence, for the purpose of this comparison, LOH estimates are
derived with respect to a threshold of -0.45%. Such a threshold allows us to focus on the liftoff
from the current estimated lower bound, that in 2021, as we saw in section 4.4.2, is basically
equivalent to -0.50%.

Formally,

LOH;; = inf{t |[r(t +5s) > —0.0045, fors = 7,7+ 1,..., T+ K—1 4.19
t’]

where K is equal to 3, 6 and 12 months.
At time ¢, each J*" simulated path provides a LOH;, j» and the resulting LOH; will be the median
of such distribution.

It has to be noticed that, if on the one hand we are able to forecast a liftoff horizon from the
current level of the DFR, we cannot say anything about its size, while the answers of the
survey’s partecipants in terms of timing and size may affect each other. Given this remark, it is
curious to test what our models suggest at least from a timing point of view, considering also
the fact that expectations about the size of the ECB’s adjustments are embodied in the observed

OIS rates that we use for the exercise. Results are in table 12.

100 See ECB’s website for additional details: https://www.ecb.europa.eu/stats/ecb_surveys/sma/html/index.en.html
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REAL TIME SCENARIO EX-POST SCENARIO
3 months 6 months 1 year 3 months 6 months 1 year
31 May 2021 1.37 2.11 3.38 423 5.77 8.42
StdDev'! (3.71) (3.87) (3.99) (3.98) (3.93) (3.82)
31 August 2021 2.16 3.04 451 9.72 10 10
StdDev'! (3.74) (3.84) (3.90) (2.69) (2.59) (2.47)

Table 12. LOH and standard deviations under the real time and ex-post scenario.
10000 simulated short rate paths under the P-measures. LOH measures are median dates expressed in years.
Notes: (1) LOH exceeding 10 years have been set equal to 10 years in the StdDev calculation.

As the results obtained in the previous subsection, the standard deviations of the LOH
distribution are quite large, reflecting the widespread uncertainty of the market regarding the
timing ECB’s decisions. This makes it difficult to express a judgement regarding the accuracy
of such measures. However, the model-implied LOH estimates that we obtain seem to be in
line with real market expectations. In particular, for what concerns measures of LOHyqy 21,
ECB (2021b) indicated the expected median timing of the next DFR increase to be May 2024,
meaning 3 years later. Our real time model seems to replicate this forecast: the most solid LOH
estimate, that is the one with K = 1 year, is 3.38 years. In other words, our model forecasts an
upward adjustment from the current level of the DFR of -0.50% in 3.38 years. Even though we
cannot say anything about the size of the increase, our estimate is in line with the market
expectations in terms of timing. Additionally, under a duration requirement of K = 6 months
we obtain an estimate of 2.11 years, in line with the 25" percentile of the SMA, that is
LOHyqy 21 being September 2023. As in table 10, standard deviations take values from 3.70 up
to 4 years, reflecting a wide LOH distribution. On the other hand, the regime-switching model
seems to be less sensitive to market expectations, providing us with an estimate of 8.49 years
for K =1 year, 5.77 years for K = 6 months and 4.23 years for K = 3 months.

Similarly, relative to liftoff’s expectations in August 2021, ECB (2021c) indicates the
median size of the next DFR increase to be 10 basis points, with the expected median timing
being December 2024, that is 3.33 years later. Also in this case, by considering the most
accurate LOHyy, 4 51 estimates, namely for K = 6 months and for K = 1 year, the real time model
provides similar liftoff horizons, that are 3.04 years and 4.51 years, respectively. Under an ex-
post scenario horizons are again overestimated to the extent that the model does not foresee any
upward adjustment any soon.

Differently from LOH measures with respect to a positive threshold, estimates regarding an
upward adjustment in the DFR are quite different under the two approaches, especially in
August 2021. Although, we cannot reach further conclusion on the basis of two surveys,

differences in table 13 suggest a possible sensitivity relative to the lower bound specification
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that we generally do not observe in table 11. A similar result is provided by Lemke and Vladu
(2016), that observe changes up to 48 months in liftoff measures across models with different
lower bound specifications. Additionally, the interquartile range of their estimated LOH
distributions float between 3 and 7 years under their preferred (regime-switching) model, that

1s in line with our standard deviations.

Differences in LOH measures

3 months 6 months 1 year
31 May 2021 2.86 3.66 5.04
31 August 2021 7.56 6.96 5.49

Table 13. Differences in absolute terms in LOH measures.
Values expressed in years.

Finally, we consider ECB pre-meeting poll results provided by Reuters: figure 14 clearly
shows how, from 2013 up to 2021, polls’ participants never expected an upward adjustment in
the deposit rate, that is maximum expectations about the level of the deposit rate are always
equivalent to the current DFR value. However, median poll results (i.e. the blue line) shows
how participants anticipated all ECB’s cuts in negative territory but the one in September 2014.
Although Reuters polls only refer to the immediate ECB governing council’s meeting and do
not include long-term forecasts, there is a clear downward trend in DFR real expectations that
correlates with the actual cuts. Over the same period, regardless the scenario considered, table
9 shows that our LOH estimates predict short rates to turn back positive in the medium term
(i.e. in no less than 5 years), with the exceptions of the most optimistic forecasts, namely 2014,
2015, 2020 and September 2021 in which LOH estimates are in any case no less than 2 years.
Thus, our results seem to be coherent with the general economic sentiment, especially over the
period 2016 — 2019, in which everyone seems to agree on the current deposit rate level, while

our estimates suggest the market to not foresee the end of the NIRP any time soon.

ECB - Deposit Rate

M Actual Reuters Poll Min M Max

Figure 14. Actual DFR and pre-meeting poll results (median) 2013 — 2021, included minimum and maximum poll answers. Source: Reuters.
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4.7. Goodness of fit

In table 14 we report the average for each maturity of the RMSE, MAE and the standard
deviations resulting from the two models estimates. As pointed out in section 4.4.2, the poor fit
at the extremes of the yield curve, namely 1-month and 10-year maturities is expected from a
two-factor model. However, a regime-switching LB specification does not seem to provide a
better fit to the observed yields: all the indicators are, on average, slightly higher relative to the
constant LB model, but for the long-end of the yield curve in which the fit provided by a regime-
switching model is substantially worse. Moreover, the lower standard deviations we observe
for the 1-month, 2-month and 3-month maturities do not seem to compensate the worse fit the
model generally provides.

By observing the estimates on a standalone basis (see appendix B), we note that for the
period 2005-2015 a regime-switching LB specification allows to obtain a slightly better fit: in
tables A7 and A8, for all maturities but 6-month and 7-year maturities, RMSE and MAE are
slightly lower than with a constant lower bound. Also the estimated STD DEV suggest a better
fit to the observe yields for most maturities under a regime-switching model. Over the period
2005-2016 the regime-switching model starts providing a worse fit: in tables A11 and A12,
RMSE and MAE are slightly higher for all maturities but 7-year and 10-year, with no significant
differences in terms of estimated STD DEV. However, in the periods 2005-2017 and 2005-
2018, the fit provided by the regime-switching models start being substantially worse than
constant LB as all the indicators suggest, especially for maturities above 2 years. Finally, from
the window 2005-2019 onwards, RMSE, MAE and STD DEV are very similar, especially for
the period 2005-2019, while still being slightly higher under an ex-post scenario for the
remaining windows.

Real Time Scenario: Constant LB

Im 3m 6m ly 2y 3y Sy Ty 10y
RMSE 14.35 7.31 0.22 9.09 13.83 12.95 5.70 3.77 15.47
MAE 10.85 5.68 0.03 7.30 11.70 11.09 4.68 3.11 13.17
STD DEV 16.74 9.12 1.73 8.59 12.61 12.17 5.93 5.64 20.92

Ex-Post Scenario: Regime-Switching LB

Im 3m 6m ly 2y 3y Sy Ty 10y
RMSE 14.35 7.39 1.19 9.53 14.99 14.44 6.60 6.31 20.93
MAE 11.03 5.90 0.24 8.04 13.17 12.65 5.09 5.24 17.56
STD DEV 14.29 7.23 0.22 9.16 14.96 14.47 6.24 6.48 23.59

Table 14. Average RMSE, MAE and STD DEV for each maturity.
All cumulative windows considered, included the one on the overall sample. All values are in basis points.
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Under both models it seems there is a problem in fitting the observed yields at the long-end
of the yield curve. In this regard we recall the fact that we use three maturities below the year,
namely 1-month, 3-month, 6-month maturities, to accentuate the focus of the models on the
short term. This choice could generally explain the poor predictive power of long maturities.
However, the problem is observed with more frequency under a regime-switching LB, in
particular for the estimates of January 2017 and January 2018. Thus, it seems that by allowing
the lower bound to switch downward, the model loses additional predictive power for what

concerns longer maturities.
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CHAPTER 5

5. Conclusions

After having established the existence of a time-varying lower bound, we found that
including historical information regarding shifts in LB in a two-factor model through a regime-
switching specification does not allow to significantly improve the model performance, at least
in a context of a recursive model estimation. Although it guarantees more stable parameters, a
regime-switching mechanisms provides parameter estimates that are not particularly different
compared to a single LB specification where the value of the bound is re-estimated and thus
updated at each estimation date. Additionally, the goodness of fit of its predicted yield curves
appears to be in line with the one under a single LB specification. However, as pointed out by
Hull (2014) the quality of the goodness of fit may not be particularly relevant for a real time
estimation aimed at scenario analysis over the long term, that is the current term structure may
not be particularly important.

More specifically, a sequence of estimated single LB closely resembles the estimated LB
regimes values, allowing a single LB model to incorporate the current market perceptions about
the value of the LB. Additionally, mean reversion parameters and long run mean estimates do
not seem to be affected by the lower bound specification when employing the same initial
guesses. However, we observed differences in estimates at two dates, namely 2017 and 2018,
but the fact this is true for all parameters suggests differences may compensate each other, so
that the two models have similar predictive power on overall.

For what concerns liftoffs to a positive region, forecasts under the two approaches seem
broadly in line with each other: with the exceptions of 2 estimation dates out of 9 (i.e. January
2015 and September 2021) at which LOH measures vary significantly, we observe little
sensitivity against LB specifications for whatever K we require. When they greatly differ, LOH
estimates vary up to 6.36 years for K =1 year and around 60 months for K =3 and K =6
months, in line with Lemke and Vladu (2016) that found differences up to 48 months for K =1
year with a three-factor model. For all the remaining dates we do not observe systematic
differences, meaning that LOH are quite robust to LB specification.

However, the additional estimates of LOH with respect to the current DFR are instead
sensitive to the LB specification. Thus, it is difficult to reach a conclusion regarding a preferred
specification for what concerns LOH forecasts, as in facts, up to date, we are still facing a DFR
of -0.50%. What we observe is that LOH measures under a regime-switching LB seem more

“cautious” and seem to reflect less real market expectations, at least according to surveys. A
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possible explanation is that a downward regime-switching mechanism accentuate the influence
of the downward trend in rates on parameter estimates compared to parameters of a constant
LB model. In other words, the short rate may be strongly instructed to stick to the LB, thus
requiring more time to permit a liftoff. A possible explanation is that by emplyoing cumulative
windows rather than a rolling window the weights of new observations on the estimation results
is less relevant. This could explain the reluctance of the model in forecasting a LOH any time
soon. However, we employ cumulative windows also for the estimation of the constant LB
model, the regime-switching specification could be the element playing a big role in delaying
LOH forecasts.

Finally, differently from Christensen and Rudebusch (2016a) that found differences in
parameter estimates of a standard Gaussian model compared to its shadow rate representation,
we find that with a consistent number of observations, parameters resulting from the estimation
of an ANSM(2) mirror the final estimates of its shadow version, as well as LB estimates closely
resemble the DFR. Thus, a regime-switching specification seems to allow a shortcut in model
estimation reducing the computational burden and thus the estimation time required by a full

shadow rate model. However, this is not valid for a constant LB specification.
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APPENDIX A: The affine term structure

We present the definition and a (partial) derivation of an affine term structure as according
to Bjork (2009). This result is extremely important for the analytical tractability of the Vasicek
and Hull-White models.

Definition A. Suppose to have a generic short rate model, whose dynamics under the Q-
measures are:

dr(t) = u(t,r(©))dt + o(t,7(£))dW (t), (A1)
where

u(t,r) = a(®r+ (),

and

o(t,r) =/y(r+ 6(t).

Then the model admits an ATS form, meaning P(¢t,T) = exp{A(t,T) — B(t,T)r(t)} where

A(t,T) and B(t, T) are the deterministic functions and solutions of

{Bt(t, TY + a()B(t,T) — %y(t)Bz(t, Ty = -1, (A2)

B(T,T) = 0.

{At(t, Ty = BB T) — %5(032@, ™, (A3)

A(T,T) = 0.

Proof: Assume the model in (Al) admits an ATS form: FT(¢t,r(t)) = exp{A(t,T) —
B(t, T)r(t)}. Considering term structure equation (2.15) must be solved by FT (¢,r(t)), after

deriving the partial derivatives F, ET, ET., and plugging them in (2.15) we obtain

1
Ac(6,T) — {1+ B.(t, )}r — u(t,r)B(t,T) + Eaz(t, r)B?(t,T) =0 (A4)
with the boundary value of (2.15) implying
{A(T, T) =0, (A5)
B(T,T) = 0.

If (A4) and (AS) are satisfied, then the ATS exist. In particular, as Bjork (2009) points out, there
will be choices of u(t,r) and o(t,r) which, under some conditions, ensure the A(t,T) and
B(t, T) exist such that (A4) is satisfied.

These conditions are obtained by assuming an affine form for y(t,r) and o (t,r), that is
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{ u(t,r) = a(t)r + B(t),
a(t,r) =Jy(®)r+ 6(0).

so that (A4) is a separable differential equation that can be re-written as
1 1
A(6.T) = BOBT) +5 8B (¢, T) - {1 +B,(t,T) + (DB T) - 3y (©B(, T)}r -0

(A6)
Given that (A6) holds for all t, T and r, we can fix t and T. Now (A6) holds for every r, making

us conclude that its coefficient must be equal to zero, that is

B.(t,T) + a(t)B(t,T) —-y(OB(t,T) = -1, (A7)

and, consequently,

A(t,T) = B(t)B(t, T) — %5(t)Bz(t, T). (A8)

Thus, we conclude A(t, T) and B(t, T) must satisfy (AS), as well as (A8) and (A7), respectively.
As stated above, this is a partial derivation. It must be remarked u(t, r) and (¢, ) do not have
to be necessarily affine to guarantee an ATS to be admitted. However, affinity is a necessary

condition for a model to admit an ATS when w(r) and a(r) are not dependent on time.



APPENDIX B: Estimation Results

1%t window 2005 - 2014:

2005-2014 Constant LB: Log-likelihood: -4780.43

2005-2014 Regime-switching LB

Log-likelihood: -4780.43
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Initial Guess Estimate Std Error Initial Guess Estimate Std Error
® 0.1203 0.2053 0.0085 ) 0.1203 0.2053 0.0085
ki1 0.1285 0.1683 0.0154 ki1 0.1285 0.1683 0.0154
K1z 0.0422 0.0405 0.1343 K1z 0.0422 0.0405 0.1343
k2 -0.0799 -0.0782 0.1364 Ky1 -0.0799 -0.0782 0.1364
K22 0.0097 0.0104 0.0749 Kys 0.0097 0.0104 0.0749
0, 04123 0.1015 0.1974 6, 04123 0.1015 0.1974
0, 0.0341 0.0194 0.0547 0, 0.0341 0.0194 0.0547
o1 1.8104 2.8029 0.0034 o 1.8104 2.8029 0.0034
o 2.1134 3.0381 0.0064 o 2.1134 3.0381 0.0064
D1z 947277 -96.1682 0.2614 P12 947277 -96.1682 0.2614
LB 0.0000 0.0466 0.0000 LB, 0.0000 0.0466 0.0000

Table Al. Final Parameters of a constant LB model. 8, 0,, d;,
0,, P12, LB and the corresponding standard errors are expressed
in percentage terms (i.e. multiplied by 100).

Table A2. Final Parameters of a regime-switching model. 6,
6,, 01, 05, P12, LB and the corresponding standard errors are
expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*
Im 17.00 13.35 18.57 Im 17.00 1335 18.57
3m 8.69 7.12 8.05 3m 8.69 7.12 8.0
6m 0.10 0.02 0.23 6m 0.10 0.02 0.23
1y 10.86 9.23 11.14 1y 10.86 9.23 11.14
2y 17.05 14.95 1533 2y 17.05 14.95 15.33
3y 16.41 14.40 16.96 3y 16.41 14.40 16.96
S5y 8.26 6.95 8.33 5y 8.26 6.95 8.33
7y 0.03 0.01 0.25 7y 0.03 0.01 0.25
10y 9.20 7.64 8.62 10y 9.20 7.64 8.62

Table A3. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting
from estimation.

Table A4. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting
from estimation.
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2" window 2005 - 2015:

2005-2015 Regime-switching LB

2005-2015 Constant LB: Log-likelihood: -5421.10 Log-likelihood: -5458.22

Initial Guess Estimate Std Error Initial Guess Estimate Std Error
) 0.1287 0.2980 0.0046 ¢ 0.1287 0.2582 0.0002
ki1 0.0043 0.0141 0.0000 ki1 0.0043 0.0030 0.0156
ki, -0.0078 0.0011 0.0001 kio -0.0078 0.0277 0.0054
kyq -0.0205 0.0197 0.0001 kaq -0.0205 -0.0117 0.0161
kyp 0.0375 0.0016 0.0000 koo 0.0375 0.0041 0.0158
0, 0.0848 0.2001 0.0621 6, 0.0848 0.2554 2.3770
0, 1.0099 4.8177 6.3133 0, 1.0099 0.5836 0.4691
o1 1.4556 4.5527 0.0000 01 1.4556 4.3788 0.0156
0y 1.7322 5.3806 0.0000 0, 1.7322 5.1435 0.0416
P12 -91.8250 -98.8342 0.1726 P12 -91.8250 -99.2175 0.0527
LB -0.2000 -0.0606 0.0201 LB, 0.0000 0.0626 0.0072
LBg -0.1000 0.0111 0.0187
TebloA.Fa Fammoes of s coan L5 ol 0,5

expressed in percentage terms (i.e. multiplied by 100).
Table A6. Final Parameters of a regime-switching model. 6,,
6,, 0y, 05, P12, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*

Im 16.54 13.31 16.48 I m 15.89 12.01 15.52

3m 8.27 6.71 8.85 3m 7.98 6.20 7.96

6m 0.09 0.01 0.05 6 m 0.45 0.23 091

ly 9.71 7.72 9.85 ly 9.72 7.59 9.71

2y 13.65 11.37 13.24 2y 13.62 11.14 14.65

3y 12.51 10.76 12.51 3y 12.36 10.41 12.40

Sy 6.38 5.59 5.95 Sy 6.29 5.35 6.39

7y 0.02 0.01 0.27 Ty 0.03 0.01 0.21

10y 8.63 7.09 8.88 10y 7.08 5.65 7.03
Table A7. RMSE, MAE and STD DEV (all wrt residuals p.55. Table A8. RMSE, MAE and STD DEV. All values are in basis
All values are in basis points (i.e. multiplied by 10000). points (i.e. multiplied by 10000). The STD DEV* represents
The STD DEV* represents the standard deviation parameters the standard deviation parameters, for each maturity, resulting

i.e. the std dev of the residuals p.55, for each maturity, resulting from estimation.
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34 window 2005 — 2016:

2005-2016 Regime-switching LB

2005-2016 Constant LB: Log-likelihood: -5836.81 Log-likelihood: -5838.42

Initial Guess Estimate Std Error Initial Guess Estimate Std Error
[0) 0.1305 0.1326 0.0000 [0) 0.1305 0.1311 0.0004
ki1 0.2712 0.2690 0.0071 ki1 0.2712 0.2743 0.0000
Ky 20.0261 20.0258 0.0000 kg 20.0261 20.0254 0.0000
ko1 -0.2632 -0.2606 0.0111 kyq -0.2632 -0.2592 0.0000
Ko 0.0314 0.0317 0.0014 Ko 0.0314 0.0311 0.0000
6 0.7225 0.7273 0.0000 0, 0.7225 0.7383 0.0219
0, 0.1992 0.1986 0.9178 6, 0.1992 0.2030 0.0000
o1 1.7255 1.7565 0.0016 o1 1.7255 1.6891 0.0000
[P 1.9635 1.9285 0.0000 [P 1.9635 1.9768 0.0105
P12 -93.9670 -94.0421 0.0014 P12 -93.9670 -94.0106 0.0456
LB -0.3000 -0.3114 0.0000 LB, 0.0000 0.0126 0.0047
Table A9. Final Parameters of a constant LB model. 85, 6,, ;, LBz 0.1000 01010 00917
05, P12, LB and the corresponding standard errors —are LB¢ -0.2000 -0.1976 0.0000
expressed in percentage terms (i.e. multiplied by 100). LB, 20,3000 03114 0.0000

Table A10. Final Parameters of a regime-switching model. 6,,
0,, 0y, 05, p1,, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*

Im 15.00 11.80 14.60 1m 15.28 12.23 15.11

3m 7.69 6.30 7.82 3m 7.83 6.49 7.73

6 m 0.58 0.05 0.01 6m 1.07 0.15 0.01

ly 9.60 8.24 9.45 ly 9.74 8.42 8.85

2y 14.43 12.96 14.29 2y 14.55 13.11 13.43

3y 12.53 11.20 12.58 3y 12.60 11.30 12.78

Sy 0.66 0.06 0.13 S5y 1.02 0.14 0.14

Ty 14.17 12.30 14.78 Ty 14.01 12.19 15.11

10y 32.01 27.54 35.71 10y 31.66 27.19 36.19
Table A11. RMSE, MAE and STD DEV. All values are in basis Table A12. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting the standard deviation parameters, for each maturity, resulting

from estimation. from estimation.
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4™ window 2005 - 2017:

2005-2017 Regime-switching LB

2005-2017 Constant LB: Log-likelihood: -6660.87 Log-likelihood: -94.4215
Initial Guess Estimate Std Error Initial Guess Estimate Std Error
¢ 0.1208 0.3036 0.0023 0} 0.1208 0.1188 0.0000
kyiq 0.0402 0.1076 0.0774 kas 0.0402 0.0416 0.0000
ks -0.0639 0.0322 0.0459 kia -0.0639 -0.0644 0.0000
ka1 -0.0675 -0.3411 0.0003 ka1 -0.0675 -0.0650 0.0000
ko 0.1075 -0.0923 0.0776 ka2 0.1075 0.1008 0.0000
0, 1.7946 -2.6070 4.1632 0, 1.7946 1.5925 0.0002
0, 2.7896 7.7220 3.4157 0, 2.7896 3.0823 0.0001
o1 1.7984 4.8792 0.1124 01 1.7984 1.5347 0.0001
0, 2.0384 5.8125 0.0553 ey 2.0384 2.0257 0.0000
P12 -94.9796 -98.9723 0.1746 P12 -94.9796 -94.9455 0.0005
LB -0.4000 -0.4074 0.0124 LB, 0.0000 -0.0067 0.0129
LBy -0.1000 -0.1018 0.0585
Table A13. Final Parameters of a constant LB model. 8, 6,,
0y, 03, P12, LB and the corresponding standard errors are LB, -0.2000 -0.1986 0.0001
expressed in percentage terms (i.e. multiplied by 100). LB, 203000 03418 0.0001
LBg -0.4000 -0.3557 0.0002

Table A14. Final Parameters of a regime-switching model. 6,,
0,, 0y, 0,5, P15, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*

1m 14.15 10.22 14.14 Im 14.83 11.65 13.76

3m 7.14 5.26 7.08 3m 7.60 6.17 7.61

6 m 0.00 0.00 0.05 6m 1.10 0.23 0.06

ly 8.34 6.13 8.39 ly 9.53 8.17 8.67

2y 10.66 8.43 10.58 2y 14.37 12.76 16.24

3y 8.30 6.87 8.56 3y 12.60 11.12 12.32

Sy 1.82 1.40 3.33 Sy 1.64 0.63 0.98

Ty 5.10 421 5.97 Ty 14.43 12.30 11.50

10y 12.65 10.77 13.08 10y 34.03 28.70 40.05
Table A15. RMSE, MAE and STD DEV. All values are in basis Table A16. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting the standard deviation parameters, for each maturity, resulting

from estimation. from estimation.



5% window 2005 - 2018:

2005-2018 Constant LB: Log-likelihood: -7317.18

Initial Guess Estimate Std Error

¢ 0.0765 0.2214 0.0001
kiq 0.1117 0.1151 0.0000
ki -0.0153 -0.0183 0.0000
kyq -0.0368 -0.0214 0.0000
koo 0.0436 0.0375 0.0000
6, 2.2014 -2.5991 0.0047
0, 0.1246 0.3848 0.0001
01 23138 5.2636 0.0178
[P 2.5679 6.0275 0.0629
P12 -97.6825 -99.3918 0.0486
LB -0.4000 -0.3930 0.0164

Table A17. Final Parameters of a constant LB model. 6,, 6,,
0y, 05, P12, LB and the corresponding standard errors are
expressed in percentage terms (i.e. multiplied by 100).

2005-2018 Regime-switching LB

Log-likelihood: -4798.39
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Initial Guess Estimate Std Error
[} 0.0765 0.0763 0.0000
ki1 0.1117 0.1121 0.0000
ki, -0.0153 -0.0155 0.0000
ko1 -0.0368 -0.0359 0.0000
koo 0.0436 0.0435 0.0000
6 2.2014 2.2126 0.0001
0, 0.1246 0.1241 0.0001
(2] 2.3138 2.3248 0.0001
0, 2.5679 2.5909 0.0001
P12 -97.6825 -97.6938 0.0001
LB, 0.0000 0.0051 0.0161
LBp -0.1000 -0.1010 0.0625
LB. -0.2000 -0.2005 0.0002
LBp -0.3000 -0.3031 0.0004
LBg -0.4000 -0.3970 0.0003

Table A18. Final Parameters of a regime-switching model. 6,
6,, 01, 05, P13, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*
I'm 13.69 9.85 13.75 Im 14.11 11.00 14.00
3m 6.96 5.07 7.16 3m 7.33 5.93 7.18
6m 0.07 0.02 0.34 6m 126 0.20 0.14
ly 8.48 6.21 8.55 ly 9.71 8.43 9.46
2y 12.16 9.44 12.11 2y 16.49 14.84 16.24
3y 11.21 9.02 11.18 3y 17.36 15.52 17.66
S5y 5.90 4.87 5.93 5y 10.69 9.39 11.10
Ty 0.00 0.00 0.13 7y 0.63 0.12 0.53
10y 7.94 6.63 7.92 10y 16.80 13.48 18.64

Table A19. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting
from estimation.

Table A20. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting
from estimation.
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6" window 2005 - 2019:

2005-2019 Regime-switching LB

2005-2019 Constant LB: Log-likelihood: -7720.92 Log-likelihood: -6937.10

Initial Guess Estimate Std Error Initial Guess | Estimate Std Error
¢ 0.0723 0.0880 0.0002 ) 0.0723 0.0727 0.0021
kqs 0.1207 0.1157 0.0000 k11 0.1207 0.1212 0.0072
[ 0.0058 0.0057 0.0788 kiz 0.0058 0.0059 0.0730
kaq -0.0811 -0.0821 0.0000 ka1 -0.0811 -0.0775 0.0000
ko 0.0161 0.0160 0.0747 ka, 0.0161 0.0161 0.0730
6, -0.4059 -0.3900 0.0000 61 -0.4059 -0.3954 0.7226
0, 1.5733 1.5457 1.6343 0, 1.5733 1.5981 0.0001
o1 2.3725 2.4601 0.0224 o1 23725 2.2814 0.0133
oy 2.6168 2.6186 0.0211 0, 2.6168 2.6441 0.0000
P12 -98.0001 -98.0052 0.0238 P12 -98.0001 -98.0028 0.2089
LB -0.4000 -0.3808 0.0084 LB, 0.0000 0.0071 0.0236
LBg -0.1000 -0.1010 0.0693
expressed in percentage terms (i.e. multiplied by 100). LB, 203000 EIT] 0.0019
LBg -0.4000 -0.3575 0.0005

Table A22. Final Parameters of a regime-switching model. 6,,
0,, 0., 05, p1, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*

Im 13.40 9.92 13.52 Im 13.50 9.73 13.16

3m 6.95 5.41 6.81 3m 6.99 5.25 7.03

6m 0.13 0.03 0.27 6 m 1.11 0.23 0.31

ly 9.17 7.80 9.12 ly 9.17 7.54 8.93

2y 15.77 14.00 15.72 2y 15.46 13.13 15.96

3y 16.56 14.55 17.33 3y 16.20 13.61 17.05

S5y 10.03 8.62 10.96 Sy 9.85 8.21 11.03

Ty 0.04 0.00 0.08 Ty 0.65 0.05 0.09

10y 15.17 12.23 18.42 10y 15.99 12.23 17.68
Table A23. RMSE, MAE and STD DEV. All values are in basis Table A24. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting the standard deviation parameters, for each maturity, resulting

from estimation.

from estimation.
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2005-2020 Regime-switching LB

2005-2020 Constant LB: Log-likelihood: -8237.89 Log-likelihood: -4228.49
Initial Guess Estimate Std Error Initial Guess Estimate Std Error
[0)] 0.1072 0.1476 0.0006 )] 0.1072 0.1075 0.0000
ki1 0.1343 0.0821 0.0004 k11 0.1343 0.1343 0.0006
kiz 0.1008 0.0574 0.0053 ki, 0.1008 0.0996 0.0009
kyq 0.0076 0.0092 0.0002 ka1 0.0076 0.0076 0.0006
koo 0.0149 0.0109 0.0052 ko2 0.0149 0.0150 0.0009
6, 0.8372 0.0566 0.0000 0, 0.8372 0.8342 0.0099
0, 1.3740 1.5645 0.0032 6, 1.3740 1.3750 0.0081
(2] 1.3426 2.0608 0.0019 o1 1.3426 1.3460 0.0001
0, 1.5262 2.0941 0.0001 0, 1.5262 1.5321 0.0014
P12 -92.7555 -97.5259 0.0920 P12 -92.7555 -92.7782 0.0000
LB -0.5000 -0.4996 0.0024 LB, 0.0000 -0.0003 0.0148
LBy -0.1000 -0.0997 0.0582
Table A25. Final Parameters of a constant LB model. 6, 6,,
01, 0y, P12, LB and the corresponding standard errors are LB¢ -0.2000 -0.2006 0.0003
expressed in percentage terms (i.e. multiplied by 100). LB, 03000 03055 0.0006
LBg -0.4000 -0.4112 0.0002
LBgr -0.5000 -0.4997 0.0034

Table A26. Final Parameters of a regime-switching model. 6,,
6,, 0,, 0,5, P15, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV* RMSE MAE STD DEV*
1m 13.50 10.44 13.34 1m 13.40 10.46 13.40
3m 6.97 5.57 5.45 3m 7.01 5.71 6.85
6m 0.43 0.04 0.21 6m 1.68 0.31 0.25
ly 9.16 7.82 8.81 ly 9.51 8.32 9.52
2y 15.69 13.96 15.56 2y 16.23 14.75 16.84
3y 16.24 1437 1533 3y 17.09 1539 1579
Sy 9.52 8.28 8.68 S5y 10.61 9.26 11.10
7y 1.13 0.36 1.65 7y 2.35 1.17 2.82
10y 13.40 11.60 12.26 10y 15.61 13.07 17.76
Table A27. RMSE, MAE and STD DEV. All values are in basis Table A28. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting the standard deviation parameters, for each maturity, resulting

from estimation. from estimation.
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8" window 2005 - 2021:

2005-2021 Constant LB: Log-likelihood: -8846.44

Initial Guess Estimate Std Error
¢ 0.1294 0.1902 0.0101
ki1 0.0341 0.0129 0.0084
k1o -0.0043 -0.0051 0.0064
kyq -0.0401 -0.0277 0.0056
ka, 0.0303 0.0288 0.0009
0, 2.5519 2.1264 1.1626
6, -3.6151 -3.2233 1.2877
0y 1.2824 1.6092 0.0321
0, 1.4649 1.5796 0.0000
P12 -91.9531 -94.6035 0.4245
LB -0.5000 -0.5316 0.0046

Table A29. Final Parameters of a constant LB model. 6, 6,,
01, 03, P12, LB and the corresponding standard errors are

expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV*
lm 12.72 9.38 11.95
3m 6.49 4.95 5.67
6 m 0.26 0.03 0.04
ly 8.15 6.64 8.18
2y 12.43 10.74 12.00
3y 10.88 9.50 10.75
S5y 2.38 1.54 3.79
7y 12.34 10.70 15.00
10y 28.20 24.57 31.50

Table A31. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting

from estimation.

2005-2021 Regime-switching LB

Log-likelihood: 85671.59

Initial Estimate Std Error
Guess
¢ | 01294 | 0.1262 | 0.0000
ki, | 00341 | 0.0336 | 0.0000
ki, | -0.0043 | -0.0043 | 0.0000
kyx | -0.0401 | -0.0401 | 0.0000
ky; | 00303 | 0.0301 | 0.0000
0, | 25519 | 24996 | 0.0000
6, | -3.6151 | -3.6398 | 0.0000
o, | 12824 | 12996 | 0.0000
o, | 14649 | 14631 | 0.0000
p1z | 919531 | 91.7861 | 0.0000
LB, | 0.0000 | 0.0022 | 0.0403
LBy | -0.1000 | -0.1049 | 0.0454
LB, | -0.2000 | -0.2064 | 0.0000
LBy | -0.3000 | -0.3214 | 0.0000
LBz | -0.4000 | -0.4023 | 0.0000
LBz | -0.5000 | -0.4965 | 0.0001

Table A30. Final Parameters of a regime-switching model. 6,,
6,, 01, 05, P12, lower bounds and the corresponding standard
errors are expressed in percentage terms (i.e. multiplied by 100).

RMSE MAE STD DEV*
I'm 12.68 9.59 12.75
3m 6.8 5.21 6.34
6m 1.95 0.39 0.03
ly 8.85 7.45 836
2y 13.67 12.10 12.97
3y 12.78 11.18 11.83
S5y 5.49 3.18 3.94
7y 1235 10.67 1435
10y 2921 25.27 32.62

Table A32. RMSE, MAE and STD DEV. All values are in basis
points (i.e. multiplied by 10000). The STD DEV* represents
the standard deviation parameters, for each maturity, resulting
from estimation.
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APPENDIX C: Kalman Filter with Maximum Likelihood
Algorithm

In this appendix we provide the main intuitions about the functioning of the estimation
algorithm implemented in the MATLAB codes. The Kalman filter is applied via maximum
likelihood, meaning that we maximize the log-likelihood value of observing the OIS rates at
each observation date. Moreover, the presence of non-linearity requires the use of nonlinear
filtering technique, that is the iterated extended Kalman filter (i.e. IEKF). We address the reader
to Krippner (2015) for a detailed explanation about each single step of the estimation algorithm.

A Kalman filter is an optimal estimation algorithm, which allows to estimate an unobservable
process making use of an observable one, under the assumption that the former affects the latter.
In particular, the filter, upon a comparison with the observable process, uses the measurement
errors obtained at a given point in time from the estimates of the unobservable process to update
and improve them. In this way we are able to get the best estimates of the unobservable process
from what we can observe instead. In our case, we utilize the Kalman Filter in the estimation
of a shadow rate model whose shadow rate is described by gaussian dynamics. A shadow rate
model describes the short rate r(t), something that is unobservable in reality, while what we
observe in reality are yields of ZCB (i.e. OIS rates). Thus, our unobservable process is the short
rate 7(t), and therefore the state variables x(t), while our observable process concerns OIS
rates. The filter will then make use of the information we get from the measurement errors
obtained to improve its predictive power.

A Kalman Filter estimation requires a state equation that describes how the state variables
x(t), and thus r(t) evolve overtime, and a measurement equation which tells us how the state
variables explain the observed OIS rates at each observation time, that is from t = 1 to T. The
latter is a function of the state variables x(t) and residuals, namely the measurement errors,
which are the key for the proper functioning of the algorithm.

The full estimations of the shadow rate models presented in the dissertation provide, as
outputs, the estimated time series of state variables, as well as estimates of the parameters of
the models. To implement such estimation, repeated applications of the Kalman filter are
required. In figure C1 we provide a broad scheme of how the estimation works. The
optimization algorithm is composed by two blocks: the implementation of the IEKF and the
maximization of the log-likelihood function. For additional details see Krippner (2015),

sections 3.2.2, 3.2.3,4.2.2 and 4.2.3.
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Full Estimation with Kalman Filter via MLE

Optimization Algorithm
IEKF algorithm
1. Setup and estimation constraints
2. State initialization
3. Kalman Recursion:
Fort=1:T

3.1. Prior state estimates

3.2. Measurement/posterior state estimates
Iterations up to tolerance condition

3.3. Posterior state estimates

nextt

Maximize: log-L ({&, ...,&},A\)
Tolerance condition

Figure C1. Algorithm of a Full Estimation by means of the Iterated Extended Kalman Filter wth MLE.

The first step of the IEKF algorithm requires the set up (i.e. the evaluation) of parameters
vectors and matrices needed for estimation. The evaluations are subject to particular constraints
which are required for a smooth functioning of the algorithm.

Obviously, the IEKF requires some starting values. In step 2, we proceed to define the
starting values for the state variable vector x(t) and its variance, that typically are identified in
the unconditional expectation and the variance of the state equation, respectively.'?!

The Kalman recursion is made up of three steps, that are applied to all the observed OIS
curves from t = 1 to T. Notice that for each time t, multiple iterations of the Kalman filter are
implemented in step 3.2, hence the name IEKF.

In step 3.1, for t = 1 the algorithm uses the parameters set up in step 1 and the starting values
from step 2 to calculate projections, also called prior estimates, of the state vector x(t) and its
variance. The prior estimates will be then updated thanks to the information we extract in step
3.2, so that we derive the so called posterior state estimates. Subsequently, fromt = 2 upto T

the algorithm uses as prior state estimates the posterior state estimates obtained from t — 1. In

101 For additional details see Krippner (2015), section 3.2.1.
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facts, the main difference between the two estimates is that the prior ones are not optimal, as
they only reflect the previous time information.

The crucial step of the algorithm is 3.2, where the measurement equation comes into place.
In particular, the model-predicted yield curve for time t is compared with the t-observed OIS
curve. However, the nonlinearity issue requires to derive the predicted OIS curve at time ¢ via
first-order Taylor approximation of the LB interest rate function around the best available
estimate of x(t). Furthermore, for each time ¢, the initial best estimate is the projection of x(t)
from step 3.1. However, the information provided by the measurement errors obtained from the
measurement equation are fundamental to improve the initial best estimate (i.e. the prior
estimate). More specifically, residuals at time t are used to derive an essential element of the
IEKF, namely the Kalman gain matrix, which includes the new information needed to update
the prior estimates of the state variable vector x(t) (in step 3.2) and its variance. (in step 3.3) The
initial best estimate is then updated, so that we obtain a (temporary) posterior estimate of x(t)
(i.e. a (new) best estimate) around which we repeat the first-order Taylor approximation of the
Krippner interest rate function thus the comparison between the model-predicted yield curve at
time t and the t-observed OIS curve. As before, the residuals obtained with the (new) best
estimate of x(t) are used to improve such estimate. To sum up, each iteration of the Kalman
filter improves the estimate of x(t) which is in turn used to repeat the comparison. The process
repeats up to a tolerance condition in the update of x(t).

Finally, step 3.3 defines the posterior estimate of x(t), which has been derived in the previous
step, and most importantly the posterior estimate of its variance. This is done by using the prior
estimate of the variance, as well as the information coming from step 3.2. Posterior estimates
are now optimal, since they reflect both the information coming from the previous time step as
well as information from the current ¢, and will be used as starting values for t + 1. The Kalman
recursion repeats up to time 7.

The second block of the optimization algorithm requires the maximization of the log-
likelihood function, namely log-L ({&Obs, ...,&Obs},A) where &Obsrepresents the 9 x 1
vector of observed yields at time ¢ for all 9 maturities, and A is the set of free parameters and
fixed (i.e. specified) parameters of the model, that are required by the IEKF algorithm for
estimation, included the lower bound. Notice that log-L ({&Obs, &Obs},[\k) is a function of

elements obtained by the IEKF algorithm.!?> Moreover, once the IEKF algorithm repeats the

102 Specifically, the IEKF is employed at each time step to maximize the time-corresponding log-likelihood function.
However, the total log-likelihood function log-L ({Rlobs, . RTObS} , A) will be the sum of each time log-likelihood
function.



94

above-mentioned procedure up to time T those elements, such as the residuals and the projected
variances of the state variable vector x(t) are passed to the second block for maximization,
which leads to a new parameter set A that is sent back to step 1 of the IEKF algorithm. Notice
that, regardless of the parameter set A passed back to the IEKF algorithm, the constraints in
step 1 prevent the IEKF to deliver infinite or imaginary values that could lead to potential fail
of the algorithm. The procedure repeats until a convergence condition is satisfied, meaning
when an additional implementation of the algorithm will not increase the value of the log-
likelihood function more than a pre-specified threshold. Once convergence is reached, the set
of parameters A are the final parameters estimates.

In conclusion, the algorithm provides as outputs the estimated set of parameters A, the

estimated time series of state variable vector x(t) and the corresponding variances.
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APPENDIX D: MATLAB Codes

The following codes are based on the ones of Leo Krippner, which are publicy available at:

https://www.rbnz.govt.nz/research-and-publications/research-programme/additional-

research/measures-of-the-stance-of-united-states-monetary-policy/matlab-code-for-krippner-

2015-shadow-zlb-term-structure-model. However, some of them have been modified for the

purpose of this dissertation. Thus, we provide their modified versions with comments along the
code’s scripts. Please notice that the codes of the functions “AAC KAGM SingleLoop”,
“AAD KAGM R and dR dx”, “AAE_KAGM f and df dx”, “G”, “normdist”,
“AAF _FiniteDifferenceHessian” and “AAL_CommonSaveName” are original codes from Leo
Krippner. They have been reported for a matter of completeness along with related comments.
Page numbers along the scripts refer to Krippner (2015). The Monte Carlo simulations and the
LOH estimates codes have been written from scratch.

Here, we provide the codes employed for the estimation of the constant LB model and the
regime-switching model over the entire sample period. However, they can be easily modified
to estimate the models on a different time window, i.e. for the recursive estimations, by
selecting the time window of interest within the code. The same goes for the Monte Carlo
simulations and LOH estimates codes for the constant LB and regime-switching models which
report the simulations dates of August and May 2021, respectively. The MATLAB codes
implemented for the derivation of the initial guesses, namely for the estimation of an ANSM(2),

are not reported, but they can be found at the link above.
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Constant lower bound model

Main code

clc

clear

global Max IEKF Count
global Max IEKF Point

format short

o)

% format long

restoredefaultpath;

o©

Model is K-ANSM(2), with lower bound free parameter to estimate
There are 11 free parameter to estimate + 9 Measurement equation std dev:
rL.

KappaQ2; Bounded below by zero.

KappaPll;

KappaPl2

KappaP21

KappaP22

ThetaPl

ThetaP2

9. Sigmal; Bounded below by zero.

10. Sigma2; Bounded below by zero.

11. Rhol2; Bounded by +/- 1.

In addition:

12-20. Measurement equation std deviations

o® o° o o oo

o©

d® o° o o° o° oe oe
O ~J oy U WD

oe

o

Hyperparameters.
N=2; % FIXED: Number of factors.
dTau=0.01; % OPTION: Spacing for TauGrid, used to numerically obtain R.

o)

KappaP_Constraint='Direct'; % FIXED: KappaP matrix values are set directly,
% (but subject to an eigenvalue constraint in
"AAC_EKF CAB GATSM SingleLoop').
ZLB Imposed=1l; % FIXED: O0=ANSM(2) or 1=K-ANSM(2).
DailyIterations=200; % OPTION: Sets number of iterations between interim
saves.
IEKF Count=-le-5; % OPTION: EKF if 0, IEKF steps if >0, tolerance if <0
(e.g. -1le-5).
FinalNaturalParametersGiven=0; % OPTION: Full estimation if 0 (the
Optimization toolbox is required),
% partial estimation with given parameters if 1 (not used).
HessianRequired=1l; % OPTION: Omits Hessian and standard errors if O,

calculates them if 1.

%% Import Euro OIS Dataset

Country='Euro OIS Dataset';

DataFileName='Euro OIS Dataset';

[DataImported, TextImported]=xlsread('Euro OIS Dataset.xlsx');
DataFrequency="'Monthly';

FirstDay=datenum('31-Aug-2005"); % Start of dataset
LastDay=datenum('30-Sep-2021"); % End of dataset
SampleMaturities=Datalmported(l,l:end); %extract maturities from
DataImported

MonthlyYieldCurveData=DataImported(2:end, l:end); S%extract yields from
DataImported

MonthlyDateIndex=datenum(TextImported, 'dd/mm/yyyy'); %extract dates from
TextImported

%% Set starting parameters
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%These lines manually set parameters from "ANSM(2)" estimation
FinalNaturalParameters=[-0.0050 0.12443578 0.00923884 -0.020230345
0.065148363 0.016258272 -0.002189487 0.006185622 0.0138829 0.015765896

-0.937110655 0.00123762 0.000629684 1.16E-06 0.00078304 0.001299465
0.001338296 3.17E-04 1.35E-03 0.003371196];
InitialNaturalParameters=FinalNaturalParameters;

%Set Dt e Iterations (for fminsearch function) and transpose maturities
Dt=1/12;

Iterations=DailyIterations*21; %may be used in fminsearch

Tau K=SampleMaturities';

%% Select window of interest

FirstDayRolling=datenum('31-Aug-2005");
LastDayRolling=datenum('30-Sep-2021");

CutoffFirst=find (MonthlyDateIndex==FirstDayRolling);

CutofflLast=find (MonthlyDateIndex==LastDayRolling) ;
MonthlyDateIndex=MonthlyDateIndex (CutoffFirst:Cutofflast,:);
MonthlyYieldCurveData=MonthlyYieldCurveData (CutoffFirst:Cutofflast, :);
YieldCurveDateIndex=MonthlyDateIndex; %rename MontlhylDatelIndex in
YieldCurveDateIndex

YieldCurveData=MonthlyYieldCurveData; S%rename MonthlyYieldCurveData in
YieldCurveData

%% Estimation.

if FinalNaturalParametersGiven==1 %original code line to enable partial
estimation
% No partial estimation in our case
else %full estimation
disp(['Estimating K-AFNSM(2) for ',Country,' using ',...
num2str (SampleMaturities (1)), '-',num2str (SampleMaturities (end)),'
year data at ',...
DataFrequency, ' frequency for period ', ...
datestr (YieldCurveDateIndex (1)), ' to
',datestr (YieldCurveDateIndex (end))])
Exitflag=0;
while Exitflag==
if strcmp (KappaP_ Constraint, 'Direct')
InitialParameters=InitialNaturalParameters;
InitialParameters (11l)=fzero (Q (x)x/ (l+abs (x))-
InitialNaturalParameters (11),1);
elseif strcmp (KappaP_Constraint, 'S/A")
disp ('Nothing here.")
end

% Extended Kalman filter estimation.
TimeO=now () ;

FINAL=0;

Max IEKF Count=0;

Max IEKF Point=0;

[x T,FinalParameters,Fval,Exitflag,Output]=

AAB KAGM Estimation NelderMead(YieldCurveData,Tau K,N,InitialParameters,Dt,
dTau, KappaP Constraint,ZLB Imposed, IEKF Count, FINAL,Iterations);
Timel=now () ;

if strcmp (KappaP_ Constraint, 'Direct')
% Values from KF are "proxies" in p.71 we have to convert them
% Take the absolute value of Sigma parameters.
FinalNaturalParameters=FinalParameters;
FinalNaturalParameters (9)=abs (FinalParameters(9)); S%mechanism p.73
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FinalNaturalParameters (10)=abs (FinalParameters (10)); %$mechanism
.73
% Convert correlation parameters into correlations.

FinalNaturalParameters (l1l)=FinalParameters (11l)/ (l+abs (FinalParameters (11)))
; %$mechanism p.73

FinalNaturalParameters (12:end)=abs (FinalParameters (1l2:end)) ;

% Calculate the state equation quantities based on parameter
values.

KappaQ=[0,0;0,FinalNaturalParameters (2)];

KappaP=[FinalNaturalParameters (3),FinalNaturalParameters (4) ;FinalNaturalPar
ameters (5),FinalNaturalParameters (6)];
[V,Dl=eig (KappaP) ;
dl=D(1,1);
d2=D(2,2);
if any([real(dl),real (d2)]1<0)
if real (dl)<O0

dl=complex (le-6,imag(dl)); S%$to ensure F<1l, See p.72
end
if real (d2)<0

d2=complex (le-6,imag(d2)) ; %$to ensure F<1, See p.72
end

D=diag([dl,d2]);
KappaP=real (V*D/V) ;

FinalNaturalParameters (3)=KappaP (1,1);
FinalNaturalParameters (4)=KappaP(1l,2);
FinalNaturalParameters (5)=KappaP(2,1);
FinalNaturalParameters (6)=KappaP (2,2);

end
elseif strcmp (KappaP Constraint, 'S/A")
disp('Nothing here')
end
rL=FinalNaturalParameters (1) ;
KappaQ2=FinalNaturalParameters (2) ;

KappaP=[FinalNaturalParameters (3),FinalNaturalParameters (4);FinalNaturalPar
ameters (5),FinalNaturalParameters (6)];
ThetaP=[FinalNaturalParameters (7);FinalNaturalParameters (8)];
Sigmal=FinalNaturalParameters (9);
Sigmaz2=FinalNaturalParameters (10);
Rhol2=FinalNaturalParameters (11);

% disp(Exitflag)

disp([Max IEKF Point,Max IEKF Count])
format long

disp (Fval)

format short

disp (FinalNaturalParameters(1:10))
format short
TextImported=TextImported (CutoffFirst:Cutofflast, :)
date=TextImported(:,1);
dates=datetime (date) ;

dates=datenum (dates) ;

plotyy (dates,x T',dates,sum(x T)"')
formatIn = 'yyyy';

datetick('x', formatIn);
ylim('manual');

x1lim('padded'")

pause (0.1)

% Reset InitialNaturalParameters for next iteration (if ExitFlag of
fminsearch = 0).
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InitialNaturalParameters=FinalNaturalParameters;
end
end

%% Diagnostics and output.
% Calculate Hessian and standard errors for parameters, if required.
if HessianRequired==

% Calculate Hessian and standard errors for natural model parameters.
fHandle=@AAC KAGM SingleLoop;

FINAL=1;

NaturalHessian=AAF FiniteDifferenceHessian (fHandle,FinalNaturalParameters,1
e—
10,YieldCurveData, Tau K, N, Dt,dTau,KappaP Constraint,ZLB Imposed, IEKF Count,
FINAL) ;
NaturalParameterStandardErrors=sqgrt (abs (diag (inv (NaturalHessian))))';
else
NaturalParameterStandardErrors=-
9.999*0ones (1, length (FinalNaturalParameters)) ;
end

o)

% Display output.

clc
dTime=Timel-Time0;
disp([num2str (dTime*24), "' hours (=',num2str (dTime*24%*60),"' minutes',')"'])

disp (Output)

disp (Exitflag)

format long

disp(Fval)

format short

disp([InitialNaturalParameters(1:10);FinalNaturalParameters (1:10); ...
NaturalParameterStandardErrors (1:10)1])

%% t-stat and residuals

clc
tstat=(FinalNaturalParameters./NaturalParameterStandardErrors) ;
format long

disp (tstat)

KappaQ=1[0,0;0,KappaQ2];
disp ([KappaP,eig (KappaP) , KappaQ-KappaP])

[T,K]=size (YieldCurveData) ;
Residuals=NaN (T, K) ;
PlotCurves=1;
for t=1:T
YieldCurveData t=YieldCurveData(t,:)';

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL,KappaQ2,Sigmal, Sigma2,Rhol2, Tau
_K,dTau, ZLB Imposed) ;
if PlotCurves==
plotl=plot (Tau K,100*Fitted R t,Tau K,YieldCurveData t);
set (plotl(2), 'Marker','o', 'LineStyle', 'none');
ylim([-2 101]);
pause (0.3)
end
Residual t=0.0l1*YieldCurveData t-Fitted R t;
Residuals (t, :)=Residual t;
$disp (t)
end
RMSE_Residuals:sqrt(sum(Residuals.*Residuals)/T);
disp ([mean (Residuals) ;RMSE Residuals])
ABS residuals=abs (Residuals);
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MAE Residuals=sum(ABS_ residuals)/T;

%$Scatter Index

format long;

AverageY=mean (YieldCurveData) ;
AverageY=AverageY*0.01;

SI=(RMSE Residuals./AverageY)*100;

% Save final output in MatLab file.
SaveName=AAL CommonSaveName (DataFileName,ZLB Imposed, IEKF Count, SampleMatur
ities,N,DataFrequency, FINAL,-10);

disp (SaveName)

% Save final output in MatLab file.
save (SaveName)

disp('end'");
The “Nelder Mead” function (AAB_KAGM_Estimation_NelderMead)

function [x T,FinalParameters,Fval,Exitflag,Output]=...

AAB KAGM Estimation NelderMead (R data,Tau K,N,InitialParameters, Dt,dTau,Kap
paP_Constraint,ZLB Imposed, IEKF Count, FINAL, Iterations)

Parameters=InitialParameters;
Options=optimset ('Display’', 'iter', 'MaxFunEvals',1e30, 'TolFun',le-

2,'TolX',1le-2, 'MaxIter',1e30); % Set tolerances for the fminsearch function
[FinalParameters, Fval,Exitflag,Output]=fminsearch (QEKF_ function,Parameters,
Options) ;

function EKF logL=EKF function (Parameters)

[EKF logL,x T]=AAC KAGM SingleLoop (R _data,Tau K,N,Parameters,Dt,dTau, KappaP
_Constraint, ZLB_Imposed, IEKF Count, FINAL) ;

end
end

The Kalman Filter function (AAC_KAGM_SingleLoop)

)

% The code follows the pseudo algorithm in appendix C.

function

[EKF logL,x T]=AAC KAGM SingleLoop (R _data,Tau K,N,Parameters,Dt,dTau, KappaP
_Constraint,ZLB Imposed, IEKF Count, FINAL)

% Extended Kalman filter for the CAB-AFNSM(2) .

global Max IEKF Count

global Max IEKF Point

if FINAL==

S
e

[EKF logL,x T]=AAC EKF CAB GATSM SingleLoop FINAL(R data,Tau K,N,Parameters
,Dt,dTau, KappaP Constraint,ZLB Imposed, IEKF Count, FINAL) ;
return
% The parameters are in their natural form, including Rho wvalues.
rL=Parameters (1) ;
KappaQ2=Parameters (2) ;
KappaP=[Parameters (3),Parameters (4) ; Parameters(5),Parameters (6)];
ThetaP=[Parameters (7) ; Parameters (8)];
Sigmal=abs (Parameters (9));
Sigma2=abs (Parameters (10)) ;
Rhol2=Parameters (11);
else

o©
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% The parameters are in one of their restricted forms.

if strcmp (KappaP Constraint, 'Direct')
rL=Parameters (1) ;
KappaQ2=Parameters (2) ;
KappaP=[Parameters (3),Parameters (4) ; Parameters (5),Parameters (6)];
ThetaP=[Parameters (7) ; Parameters (8)];
Sigmal=abs (Parameters (9));
Sigmaz2=abs (Parameters (10)) ;
Rhol2=Parameters (11l)/ (1+abs (Parameters (11)));

else
KappaQ2=Parameters (1) ;
L=[Parameters (2), 0;Parameters (3), Parameters(4)];
A=[0, Parameters (5) ;-Parameters (5),0];
KappaP=L*L'+A;
ThetaP=[Parameters (6) ; Parameters (7)];
Sigmal=abs (Parameters (8)) ;
Sigma2=abs (Parameters (9));
Rhol2=Parameters (10)/ (1+abs (Parameters (10)));

end

end

SIGMA=[ Sigmal , 0 e
Rhol2*Sigma2, Sigma2*sqgrt (1-Rhol272)];
OMEGA=SIGMA*SIGMA';

Sigma Nu=Parameters (l2:end);

[T,K]=size (R _data);
KT=K*T;

% Extended Kalman filter items.
=NaN (N, T) ;

T
T=NaN(N,N,T);

b4
P_
% Calculate the state equation quantities based on parameter values.
[V,D]=eig (KappaP); %Eigen decomposition of K, See p.66
dl=D(1,1);
d2=D(2,2);
if any([real(dl),real (d2)]<0)

if real(dl)<O0

dl=complex (le-6,imag(dl)); %$to ensure F<1l See p.72
end
if real (d2)<0
d2=complex (le-6, imag (d2)) ; %to ensure F<1

end

D=diag([dl,d2]);

KappaP=real (V*D/V) ;
end
F=expm (-KappaP*Dt) ;
if any(abs(eig(F))>1)

error ('SingleLoop:argChk', 'abs(eig(F))>1")
end

Q=[ G(2*dl,Dt),G(d1+d2,Dt);
0 ,G(2*d2,Dt) 1,
Q=Q+transpose (triu(Q, 1))
% NOTE: Use TRANSPOSE, because ' gives congugate transpose.
U=V\OMEGA/transpose (V) ;
0=U.*Q;
Q=V*Q*transpose (V) ;
O=real (Q);

o)

% The measurement equation quantities depend on the state variables, and
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so have to be re-calculated at each step of the Kalman filter.

o

Starting the Recursion.

Unconditional mean and variance of state variable vector.
_Plus=ThetaP;
P Plus=[ 0.5/d1l, 1/(dl+4d2);...

0 , 0.5/d2 1;

P Plus=P_Plus+transpose (triu(P_Plus,1));
P Plus=U.*P Plus;
P Plus=V*P Plus*transpose (V);
P Plus=real (P_Plus);

o° oe

b

$IEKF Count=2;
logL=0;
% Extended Kalman filter if IEKF Count=0, iterated EKF with fixed
% IEKF Count iterations if IEKF Count>0, and iterated EKF with fixed
% tolerance abs (IEKF Count) if IEKF Count<0.
if IEKF Count<0
x Tolerance=abs (IEKF Count) ;
IEKF Count=20;
end
for t=1:T
% Forecast step.
x Minus=(eye (N)-F) *ThetaP+F*x_Plus;
P Minus=F*P Plus*F'+Q;

% Update step.

Observations for time t.

y Obs=0.01*R data(t,:)"';

y Missing=isnan(y Obs) ;

y Obs=y Obs(~y Missing);

R=diag(Sigma Nu(~y Missing).”2); %R = ? n eq.3.31, see step 3.2 p. 121

o

x Plus i Minus 1l=x Minus; %Initial set up, see step 3.2. p.121

x Plus_i0=x Minus;

for i=1:1+IEKF_Count

EKF and IEKF iterations

Following Simon (2006), p. 409 and pp. 411-12.

Note that the EKF step is the i=1 iteration. To see this, note
that x Minus - x Plus 10 = 0 in eqg. 13.64.

y_t Hat=h(x Minus,0), i.e. fitted values of y t given x Minus.
Ht=dR/dX (x_Minus), i.e. the Jacobian given x Minus.

o o° oo o

o° oe

[y Hat,H i]=AAD KAGM R and dR dx(x Plus i0,rL,KappaQ2,Sigmal, Sigma2,Rhol2,T
au_K,dTau, ZLB_Imposed) ;

y Hat=y Hat (~y Missing);

H i=H i(~y Missing,:);

HPHR i=(H i*P Minus*H i'+R); %HPHR i = M t,i in step 3.2 p.121

K i=P Minus*H i'/HPHR i; %kalman gain matrix

w i=y Obs-y Hat-H i*(x Minus-x Plus i0);

x_Plus_il=x Minus+K i*w_1i; S%current temporary posterior estimate

if IEKF Count==20

)

% Using tolerance, so check for convergence.

if i>15
% Large number of iterations, so print output to screen.
disp([num2str(t),' ',num2str(i-1),' ',num2str(x Plus il'),'
',num2str(x Plus i0'),' ',num2str(x Plus il'-x Plus 10')])
end

if all(abs(x Plus il-x Plus 10)<x Tolerance) % Exit condition
in step 3.2. p.121
% Difference from last update within tolerance, so exit.
break

end
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if all(abs(x_Plus il-x Plus i Minus 1)<x Tolerance)
% Allows for numerical cycling between i+1l, i, i-1 updates.
% Difference from i-1 update within tolerance, so exit.
x Plus i1=0.5*(x Plus il+x Plus 1i0);
break
end
end
% Record these values to allow testing for convergence.
x Plus i Minus 1=x Plus 1i0;
x Plus i0=x Plus il;
end

% Calculate final posterior values and record values.
x Plus=x Plus il;

P Plus=(eye(N)-K i*H i)*P Minus;

x T(:,t)=x Plus;

P T(:,:,t)=P Plus;
logL=logL+log (det (HPHR i))+w i'/HPHR i*w i;

% Hold IEKF count.
if i-1>Max IEKF Count
Max IEKF Count=i-1;
Max IEKF Point=t;
end
sdisp ([num2str(t),"' ',num2str(i-1),"' ',num2str(x Plus il'-x Plus i0')])
format long

o

% str = sprintf('%s %s %3.10f',t,i,logl);

% disp(str);

% disp([num2str(t),"' ',num2str(i-1),"' ',num2str (logl)])

% disp([num2str(t),"' ',num2str(i-1),"' ',sprintf('%3.16f',logL)])

$std_SSR(t)=sqrt ([1,1]1*P_T(:,:,t)*[1;1]);
end
% log likelihood value to maximize.
EKF logL=-0.5*KT*log(2*pi)-0.5*1ogL;

% Negate the log likelihood value because fminunc minimizes.
EKF_logL=-EKF_ logL;

disp ([EKF logL*le-3,Parameters(1:10),Rhol2]) %, real (eig(KappaP)) ']);
set (0, 'DefaultFigureWindowStyle', "docked")

plot ([x T',sum(x T)'])

pause (0.01)

end
LB interest rate calculation (AAD KAGM_R and_dR _dx)

function
[CAB GATSM R,CAB GATSM dR dx]=AAD KAGM R and dR dx(x_t,rL,KappaQ2,Sigmal,Si
gmaZ,Rhol2, Tau K,dTau,ZLB_ Imposed)

Tau K T=round(Tau_ K/dTau); %Tau K = tenors expressed in years
%$dTau = constant time to maturity increment

$Tau K T = tenors expressed "in terms of
increments"

%This is done because we are going to derive
forwards and spot rates at each point of the taugrid

TauMax=max (Tau K) ;
TauGrid=(0:dTau:TauMax) ';

Swith the next function we simply calculate the forwards
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[CAB GATSM f,CAB GATSM df dx]=AAE KAGM f and df dx(x_t,rL,KappaQ2,Sigmal,Si
gmaZ2,Rhol2, TauGrid, ZLB Imposed) ;

% [CAB GATSM fl12,~]=AAE CAB GATSM f and df dx(x t-
[0.000001;0],KappaQ, ThetaQ, SIGMA, TauGrid) ;

[CAB GATSM f13,~]=AAE CAB GATSM f and df dx(x t+[0.000001;0],KappaQ, ThetaQ,
SIGMA, TauGrid) ;

% [CAB GATSM f22,~]=AAE CAB GATSM f and df dx(x t-
[0;0.000001],KappaQ, ThetaQ, SIGMA, TauGrid) ;

[CAB GATSM f23,~]=ARE CAB GATSM f and df dx(x t+[0;0.000001],KappaQ, ThetaQ,
SIGMA, TauGrid) ;

% Test=[ (CAB_GATSM fl13-CAB GATSM f12)/(2*0.000001), (CAB_GATSM f23-
CAB_GATSM f22)/(2*0.000001)1];

%$Now, with the calculated forward, we derive the relevant R(t,T) as the
mean of the sum of the forwards up to
%each point of interest

SWith the next two lines we calculate R(t,T) at each point in time of the
taugrid

$See eq.4.25 p.122

CAB_GATSM R=cumsum (CAB GATSM f); Scumulative sum of forwards

CAB GATSM R=CAB GATSM R./(l:length(CAB GATSM f))'; %divide from 1 to 1001,
so we obtain the means at each point in time

gWith the next two lines we do the same for the Jacobian, but considering
$that df/dx is a matrix (CAB _GATSM R of lines 23, 24 is a vector)

%See eg.4.32 p.1l24

CAB GATSM dR_dx=cumsum(CAB GATSM df dx);

CAB GATSM dR dx=CAB GATSM dR dx./repmat ((l:length(CAB GATSM df dx))',1,2);
%repmat Horizontally stack the column vector (l:length(CAB GATSM df dx))'
two times

% Record required results in matrix.

CAB GATSM R=CAB GATSM R(Tau K T); %eg. 4.25: TauGrid determines the
positions in the vector of the relevant maturities

CAB GATSM dR dx=CAB GATSM dR dx(Tau K T,:); %eq. 4.32 TauGrid determines
the positions in the matrix of the relevant maturities

$since spot rates R e dR/dx (for jacobian) are calculated in each point in
time of the tau grid, we extract the relevant ones with Tau K T

end

LB forward rate calculation (AAE_ KAGM f and_df dx)

function
[CAB GATSM f,CAB GATSM df dx]=AAE KAGM f and df dx(x_t,rL,KappaQ2,Sigmal,Si
gma2,Rhol2,TauGrid, ZLB Imposed)

gl=ones (length (TauGrid), 1) ;

Gl=TauGrid;

g2=exp (-KappaQ2*TauGrid) ;

G2=(1-g2) /KappaQ2; %eq 4.40 p.128

% Expected path of short rate.

SR=x t(1)*gl+x t(2)*g2; %eq 3.37 p.62 (that is first part of formula 4.39
p.128)

%expectation is taken at current time "t", but we obtain the expectation
%over all the future points in time indicated by TauGrid

% Volatility effect. NB: "tau" in formula 4.39 is the equivalent of Gl
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VE=-0.5*Sigmal”2*Gl.*G1-0.5*Sigma2"2*G2.*G2-Rhol2*Sigmal*Sigma2*Gl.*G2;
%see eq.4.39 p.128

%also here we obtain VE's evaluated at current time "t", over all the
%possible future points in time indicated by TauGrid

% Forward rate. %eq 4.39 p.128

GATSM f=SR+VE; %plus sign because we expressed it negative in the first
place

%$so that we obtain forward rates evaluated at current time "t", over all
$the possible future points in time indicated by TauGrid

$so far we have calculated just the shadow component f (t,tau), now we
%calculate the option component f (t,tau)

if ZLB_ Imposed==
% Calculate annualized option volatility, Omega.

G _11=TauGrid;
G _22=(l-exp(-2*KappaQ2*TauGrid)) / (2*KappaQ2); %4.40 p.128 evaluated in

G 12=G2; %eq.4.40 p.128 evaluated in ?
Omega=sqrt (Sigmal”2*G 11+Sigma2”2*G 22+2*Rhol2*Sigmal*Sigma2*G 12);
%eq.4.47 p.129

% Calculate cumulative normal probabilities for N(0,1) distribution.
d=(GATSM f-rL)./Omega; %cdf eq. 4.45 p.129
normsdist erf d=normsdist erf(d);
% Calculate gradiant and CAB GATSM f

CAB GATSM df dx=[gl.*normsdist erf d,g2.*normsdist erf d]; %Eg.4.56
p.132 for the jacobian

CAB GATSM f=rL+ (GATSM f-rL).*normsdist erf d+exp (-
0.5*d.*d) .*Omega/sqrt (2*pi); %eq. 4.45 p.129
else

% ZLB not imposed, so just constant gradiant and GATSM f.

CAB GATSM df dx=[gl,g2];

CAB GATSM f=GATSM f;
end

o

format long

disp (normsdist erf d(end))
if normsdist erf d(end)<0.9
end

o oo

o

end
“G” function

function G _Phi Tau=G (Phi, Tau)

if Phi<=0

G_Phi Tau=Tau;
else

invPhi=1/Phi;

PhiTau=Phi*Tau;

ExpNegPhiTau=exp (-PhiTau) ;

G_Phi Tau=invPhi* (1-ExpNegPhiTau) ;
end
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Normal distribution function (normsdist)

function normsdist=normsdist erf (x)
serf x=erf (x/sqrt(2));

normsdist=0.5* (1+erf (x/sqrt(2))); %calculate CDF of [f(t,tau) -

rL] /omega (tau)=(GATSM f-rL)./Omega

% The cumulative distribution function (CDF) of the normal, or Gaussian,
distribution with standard deviation ? and mean ? is

oe

?2(x)=0.5% (1+erf ((x??)/(2*sqrt(2)) the CDF of the normal distribution with
?=0 and ?=1
end

Vo

Hessian matrix calculation (AAF_FiniteDifferenceHessian)

function Hessian =

AAF FiniteDifferenceHessian(Function,x,minDiff,R data, Tau K,N,Dt,dTau, Kappa
P Constraint, ZLB_ Imposed, IEKF Count, FINAL)

$NaturalHessian=AAF FiniteDifferenceHessian (fHandle,FinalNaturalParameters,
le-

10,YieldCurveData, Tau K,N,Dt,dTau,KappaP Constraint,ZLB Imposed, IEKF Count,
FINAL) ;

%output: NaturalHessian

o

FINDIFFHESSIAN calculates the numerical Hessian of funfcn evaluated at
the parameter set x (FinalNaturalParameters) using finite differences.
Adapted from MatLab code in fminusub, line 431-548.

o° oP

numberOfVariables=length (x) ;

f=feval (Function,R data,Tau K,N, x,Dt,dTau, KappaP_ Constraint,ZLB Imposed, IEK
F_Count, FINAL) ;

Hessian = zeros (numberOfVariables) ;

% Define stepsize

CHG = eps” (1/4)*sign(x).*max (abs(x),1);
% Make sure step size lies within DiffMinChange and DiffMaxChange
CHG = sign (CHG+eps) .*max (abs (CHG) ,minDiff) ;

o

Calculate the upper triangle of the finite difference Hessian element
by element, using only function values. The forward difference formula
we use is

o° o oo

o

Hessian(i,3) = 1/(h(1)*h(3)) * [f(x+h(i)*ei+h(j)*ej) - f(x+h(i)*ei)
- f(x+h(§)*ed) + £(x)] (2)

o©

o©

The 3rd term in (2) is common within each column of Hessian and thus
can be reused. We first calculate that term for each column and store
it in the row vector fplus_array.

fplus_array = zeros(l,numberOfVariables);

o° oP

o

for j = l:numberOfVariables
xplus = x;
xplus(j) = x(j) + CHG(3);
% evaluate
% (R _data,Lambda, ParamFix,x Fixed,ParamFree,x Free,Dt,Tau,EA)

fplus=feval (Function,R data,Tau K,N, xplus,Dt,dTau,KappaP Constraint, ZLB_ Imp
osed, IEKF Count, FINAL) ;

fplus array(j) = fplus;
end
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= l:numberOfVariables

For each row, calculate the 2nd term in (4). This term is common to
the whole row and thus it can be reused within the current row: we
store it in fplus 1.

xplus = x;

xplus (i) = x (i) + CHG(1);

)

% evaluate

-

for

oe

o oo

fplus_i=feval (Function,R data,Tau K,N,xplus,Dt,dTau,KappaP_Constraint,ZLB I
mposed, IEKF Count, FINAL) ;

for j = i:numberOfVariables % start from i: only upper triangle
% Calculate the 1st term in (2); this term is unique for each element
% of Hessian and thus it cannot be reused.
xplus = x;
xplus (i) = x(i) + CHG(1);
xplus(j) = xplus(j) + CHG(J);

o)

$ evaluate

fplus=feval (Function,R data,Tau K,N, xplus,Dt,dTau,KappaP Constraint,ZLB Imp
osed, IEKF Count, FINAL) ;

Hessian(i,j) = (fplus - fplus i - fplus array(j) +
£)/(CHG (1) *CHG(3) ) ;
end
end
% Fill in the lower triangle of the Hessian
Hessian = Hessian + triu(Hessian,1l)';
end
Save function (AAL_CommonSaveName)
function

SaveName=AAL CommonSaveName (DataFileName, ZLB_Imposed, IEKF Count, SampleMatur
ities,N,DataFrequency, FINAL, rL)

SUNTITLED Summary of this function goes here

% Detailed explanation goes here

o

global rL
% Time stamp for file names.
TimeStamp=datestr (now(),' yyyy mm dd HH MM SS'");
if ZLB Imposed==

ModelType="'ANSM';
else

ModelType="KANSM';
end
if FINAL==

FinalOrInterim='Final';
else

FinalOrInterim='Interim';
end
if TIEKF Count<O0

IEKFString=[' E',num2str(logl0(-IEKF Count))];
else

IEKFString=num2str (IEKF Count);
End
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Regime-switching model

The functions called within the code’s script which are not reported are in common with the
constant LB model estimation code. Here, the main difference is in
“AAC_KAGM_SingleLoop” which have been properly modified to allow the LB to switch to

new values at given points in time.

Main code

clc

clear

global Max IEKF Count
global Max IEKF Point

format short

o)

% format long

restoredefaultpath;

o

Model is K-ANSM(2), with lower bound free parameter to estimate
There are 11 free parameter to estimate + 9 Measurement equation std dev:
rL.

KappaQ2; Bounded below by zero.

KappaPll;

KappaPl2

KappaP21

KappaP22

ThetaPl

ThetaP2

9. Sigmal; Bounded below by zero.

10. Sigma2; Bounded below by zero.

11. Rhol2; Bounded by +/- 1.

In addition:

12-20. Measurement equation std deviations

o° oo o°

o° oP

o° oP

o

O J oy U WD

o d° o o° o o

oe

Hyperparameters.
N=2; % FIXED: Number of factors.
dTau=0.01; % OPTION: Spacing for TauGrid, used to numerically obtain R.

o)

KappaP_Constraint='Direct'; % FIXED: KappaP matrix values are set directly,
% (but subject to an eigenvalue constraint in

"AAC EKF CAB GATSM SingleLoop') .

ZLB Imposed=1l; % FIXED: O0=ANSM(2) or 1=K-ANSM(2).

DailyIterations=200; % OPTION: Sets number of iterations between interim

saves.

IEKF Count=-le-5; % OPTION: EKF if 0, IEKF steps if >0, tolerance if <0

(e.g. —-le-5).

FinalNaturalParametersGiven=0; % OPTION: Full estimation if 0 (the

Optimization toolbox is required),

o

% partial estimation with given parameters if 1.

HessianRequired=1; % OPTION: Omits Hessian and standard errors if O,
calculates them if 1.

%% Import Euro OIS Dataset

Country='Euro OIS Dataset';

DataFileName='Euro OIS Dataset';

[DataImported, TextImported]=xlsread('Euro OIS Dataset.xlsx');
DataFrequency="'Monthly';

FirstDay=datenum('31-Aug-2005"); % Start of dataset
LastDay=datenum('30-Sep-2021"); % End of dataset
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SampleMaturities=Datalmported(l,l:end); %extract maturities from
DataImported

MonthlyYieldCurveData=DataImported(2:end, l:end); S%extract yields from
DataImported

MonthlyDateIndex=datenum (TextImported, 'dd/mm/yyyy'); %$extract dates from
TextImported

%% Select window of interest

FirstDayRolling=datenum('31-Aug-2005");
LastDayRolling=datenum('30-Sep-2021");

CutoffFirst=find (MonthlyDateIndex==FirstDayRolling) ;

CutofflLast=find (MonthlyDateIndex==LastDayRolling) ;
MonthlyDateIndex=MonthlyDateIndex (CutoffFirst:Cutofflast,:);
MonthlyYieldCurveData=MonthlyYieldCurveData (CutoffFirst:Cutofflast, :);
YieldCurveDateIndex=MonthlyDateIndex; %rename MontlhylDateIndex in
YieldCurveDateIndex

YieldCurveData=MonthlyYieldCurveData; S%rename MonthlyYieldCurveData in
YieldCurveData

o

% Set starting parameters

$These lines set parameters from "ANSM" estimation

load(['ANSM results','.mat'], 'FinalNaturalParameters');
FinalNaturalParameters=[0 FinalNaturalParameters(:,:) -0.1/100 -0.2/100 -
0.3/100 -0.4/100 -0.5/100]; %add guesses on LB values over LB regimes
InitialNaturalParameters=FinalNaturalParameters;

$Setto Dt e Iterations

Dt=1/12;

Iterations=DailyIterations*21; %may be used in fminsearch
Tau K=SampleMaturities';

%% Estimation.

if FinalNaturalParametersGiven==1 %original code line to enable partial
estimation

% No partial estimation for us

else

Q

% Estimate final parameters.
disp(['Estimating K-AFNSM(2) for ',Country,' using ',...
num2str (SampleMaturities (1)), '-',num2str (SampleMaturities (end)),'
year data at ',...
DataFrequency, ' frequency for period ', ...
datestr (YieldCurveDateIndex (1)), ' to
',datestr (YieldCurveDateIndex (end))])
Exitflag=0;
while Exitflag==
if strcmp (KappaP_Constraint, 'Direct')
InitialParameters=InitialNaturalParameters;
InitialParameters (l1l)=fzero (@ (x)x/ (l+abs (x))-
InitialNaturalParameters(11),1); %modified
elseif strcmp(KappaP Constraint, 'S/A')
disp ('Nothing here.')
end

% Extended Kalman filter estimation.
TimeO=now () ;

FINAL=0;

Max IEKF Count=0;

Max IEKF Point=0;

[x T,FinalParameters,Fval,Exitflag,Output]=

AAB KAGM Estimation NelderMead(YieldCurveData,Tau K,N,InitialParameters,Dt,
dTau,KappaP_ Constraint,ZLB Imposed, IEKF Count,FINAL, Iterations);
Timel=now () ;



110

if strcmp (KappaP Constraint, 'Direct')

%Values from KF are "proxies" (p.71) we have to convert them

% Take the absolute value of Sigma parameters.

FinalNaturalParameters=FinalParameters;

FinalNaturalParameters (9)=abs (FinalParameters(9)); %mechanism p.73

FinalNaturalParameters (10)=abs (FinalParameters (10)); %mechanism
p.73

% Convert correlation parameters into correlations.

FinalNaturalParameters (11)=FinalParameters (11)/ (1+abs (FinalParameters (11)))
; %$mechanism p.73
FinalNaturalParameters (12:20)=abs (FinalParameters (12:20));
% Calculate the state equation quantities based on parameter

values.
KappaQ=[0,0;0,FinalNaturalParameters(2)];

KappaP=[FinalNaturalParameters (3),FinalNaturalParameters (4);FinalNaturalPar
ameters (5),FinalNaturalParameters (6)];
[V,D]l=eig (KappaP) ;
dl=D(1,1);
d2=D(2,2);
if any([real(dl),real (d2)]<0)
if real (dl)<0

dl=complex (le-6,imag(dl)); S%$to ensure F<1l, See p.72
end
if real (d2)<0

d2=complex (le-6,1imag(d2)) ; %$to ensure F<1, See p.72
end

D=diag([dl,d2]);
KappaP=real (V*D/V) ;

FinalNaturalParameters (3)=KappaP (1,1);
FinalNaturalParameters (4)=KappaP (1, 2);
FinalNaturalParameters (5)=KappaP (2,1);
FinalNaturalParameters (6)=KappaP (2,2);

end
elseif strcmp (KappaP Constraint, 'S/A")
disp('Nothing here')
end
rL=FinalNaturalParameters (1) ;
rL2=FinalNaturalParameters (21);
rL3=FinalNaturalParameters (22) ;
rL4=FinalNaturalParameters (23);
rL5=FinalNaturalParameters (24) ;
rL6=FinalNaturalParameters (25);
KappaQ2=FinalNaturalParameters(2) ;

KappaP=[FinalNaturalParameters (3),FinalNaturalParameters (4) ;FinalNaturalPar
ameters (5),FinalNaturalParameters (6)];
ThetaP=[FinalNaturalParameters (7) ;FinalNaturalParameters (8)];
Sigmal=FinalNaturalParameters (9);
Sigmaz2=FinalNaturalParameters (10);
Rhol2=FinalNaturalParameters (11);

% disp(Exitflag)

disp([Max IEKF Point,Max IEKF Count])
format long

disp(Fval)

format short
disp(FinalNaturalParameters (1:21))
format short

TextImported=TextImported (CutoffFirst:Cutofflast, :)
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date=TextImported(:,1);
dates=datetime (date) ;
dates=datenum (dates) ;
plotyy(dates,x T',dates,sum(x T)")
formatIn = 'yyyy';
datetick('x',formatIn);
ylim('manual');
xlim('padded")
pause (0.1)
% Reset InitialNaturalParameters for next iteration (if ExitFlag of
fminsearch = 0).

InitialNaturalParameters=FinalNaturalParameters;

end
end

oe

% Diagnostics and output.
% Calculate Hessian and standard errors for parameters, if required.
if HessianRequired==
% Calculate Hessian and standard errors for natural model parameters.
fHandle=@AAC KAGM SingleLoop;

FINAL=1;

NaturalHessian=AAF FiniteDifferenceHessian (fHandle,FinalNaturalParameters,1
e-
10,YieldCurveData, Tau K, N, Dt,dTau,KappaP_Constraint,ZLB Imposed, IEKF Count,
FINAL) ;
NaturalParameterStandardErrors=sqgrt (abs (diag (inv (NaturalHessian))))';
else
NaturalParameterStandardErrors=-
9.999*ones (1, length (FinalNaturalParameters)) ;
end

o)

% Display output.

clc
dTime=Timel-TimeO;
disp([num2str (dTime*24), "' hours (=',num2str (dTime*24*60),"' minutes',')'])

disp (Output)

disp(Exitflagqg)

format long

disp(Fval)

format short

disp([InitialNaturalParameters(1:10);FinalNaturalParameters(1:10); ...
NaturalParameterStandardErrors (1:10)1])

%% t-stat and RMSE

clc
tstat=(FinalNaturalParameters./NaturalParameterStandardErrors) ;
format long

disp(tstat)

KappaQ=10,0;0,KappaQ2];
disp ([KappaP, eig (KappaP) , KappaQ-KappaP])

[T,K]=size (YieldCurveData) ;
Residuals=NaN (T, K) ;
PlotCurves=1; %plot curves considering the different LB regimes
for t=1:T
YieldCurveData t=YieldCurveData(t,:)"';
if t<=106

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL,KappaQ2,Sigmal, Sigma2,Rhol2, Tau
_K,dTau, ZLB_Imposed) ;
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else if t<=109

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL2,KappaQ2,Sigmal,Sigma2,Rhol2,Ta
u K,dTau,ZLB Imposed) ;
else if t<=124

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL3,KappaQ2,Sigmal,Sigma2,Rhol2,Ta
u_K,dTau, ZLB_Imposed) ;
else if t<=127

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL4,KappaQ2,Sigmal,Sigma2,Rhol2,Ta
u K,dTau,ZLB Imposed) ;
else if t<=169

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL5,KappaQ2,Sigmal,Sigma2,Rhol2,Ta
u_K,dTau, ZLB_Imposed) ;
else

Fitted R t=AAD KAGM R and dR dx(x T(:,t),rL6,KappaQ2,Sigmal,Sigma2,Rhol2,Ta
u K,dTau, ZLB Imposed) ;
end
end
end
end
end

if PlotCurves==
plotl=plot(Tau K,100*Fitted R t,Tau K,YieldCurveData t);
set (plotl(2), 'Marker','o', 'LineStyle', "none');
ylim([-2 10]);

pause (0.3)
end
Residual t=0.0l1*YieldCurveData t-Fitted R t;
Residuals (t, :)=Residual t;
$disp (t)

end
RMSEiResiduals=sqrt(sum(Residuals.*Residuals)/T);
disp ([mean (Residuals) ;RMSE Residuals])

ABS residuals=abs (Residuals);

MAE Residuals=sum(ABS residuals)/T;

%Scatter Index

format long;

AverageY=mean (YieldCurveData) ;
AverageY=AverageY*0.01;

SI=(RMSE Residuals./AverageY)*100;

% Save final output in MatLab file.

SaveName=AAL CommonSaveName (DataFileName,ZLB Imposed, IEKF Count, SampleMatur
ities,N,DataFrequency, FINAL,-10) ;

disp (SaveName)

)

% Save final output in MatlLab file.
save (SaveName)

disp('end");
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Kalman Filter function (AAC_KAGM_ SingleLoop)

function

[EKF_logL,x T]=AAC KAGM SingleLoop (R data,Tau K,N, Parameters, Dt,dTau, KappaP
_Constraint,ZLB Imposed, IEKF Count, FINAL)

% Extended Kalman filter for the CAB-AFNSM(2) .

global Max IEKF Count

global Max IEKF Point

if FINAL==1
[EKF logL,x T]=AAC EKF CAB GATSM SingleLoop FINAL(R data,Tau K,N,Parameters
,Dt,dTau, KappaP_Constraint, ZLB Imposed, IEKF Count, FINAL) ;
% return

% The parameters are in their natural form, including Rho wvalues.
rL=Parameters (1) ;
KappaQ2=Parameters (2) ;
KappaP=[Parameters (3), Parameters (4) ; Parameters(5),Parameters (6)];
ThetaP=[Parameters (7) ; Parameters (8) ];
Sigmal=abs (Parameters (9)) ;
Sigma2=abs (Parameters (10)) ;
Rhol2=Parameters (11) ;
rL2=Parameters (21);
rL.3=Parameters (22
rL4=Parameters (23
rL5=Parameters (24

(25

);
) ;
);
).

’

rL6=Parameters

else
% The parameters are in one of their restricted forms.
if strcmp (KappaP_ Constraint, 'Direct')
rL=Parameters (1) ;
KappaQ2=Parameters (2) ;
KappaP=[Parameters (3),Parameters (4) ; Parameters (5),Parameters (6)];
ThetaP=[Parameters (7) ; Parameters (8)];
Sigmal=abs (Parameters (9));
Sigma2=abs (Parameters (10)) ;
Rhol2=Parameters (11l)/ (1l+abs (Parameters (11)));
rL2=Parameters (21) ;
rIL.3=Parameters (22) ;
rL4=Parameters (23);
rL5=Parameters (24);
rL6=Parameters (25);
else
KappaQ2=Parameters (1) ;
L=[Parameters (2), 0; Parameters (3) ,Parameters (4)1];
A=[0, Parameters (5);-Parameters(5),0];
KappaP=L*L'+A;
ThetaP=[Parameters (6) ; Parameters (7)];
Sigmal=abs (Parameters (8)) ;
Sigma2=abs (Parameters (9));
Rhol2=Parameters (10)/ (1+abs (Parameters (10)));
end
end
SIGMA=[ Sigmal , 0 e

Rhol2*Sigma2, Sigma2*sqrt (1-Rhol272) ];
OMEGA=SIGMA*SIGMA';
Sigma Nu=Parameters (12:20);

[T,K]=size (R _data);
KT=K*T;

o)

% Extended Kalman filter items.
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x T=NaN(N,T);
P _T=NaN(N,N,T);
% Calculate the state equation quantities based on parameter values.
[V,D]l=eig(KappaP) ;
dl=D(1,1);
d2=D(2,2);
if any([real(dl),real (d2)]<0)

if real(dl)<O0

dl=complex (le-6,imag (dl)) ;
end
if real (d2)<0
d2=complex (le-6, imag(d2)) ;

end

D=diag([dl,d2]);

KappaP=real (V*D/V) ;
end
F=expm (-KappaP*Dt) ;
if any(abs(eig(F))>1)

error ('SingleLoop:argChk', 'abs (eig(F))>1")
end

O=[ G(2*d1,Dt),G(d1+d2,Dt);
0 ,G(2*d2,Dt) 1;
Q=Q+transpose (triu(Q, 1))
% NOTE: Use TRANSPOSE, because ' gives congugate transpose.
U=V\OMEGA/transpose (V) ;
0=U.*Q;
Q=V*Q*transpose (V) ;
Q=real (Q);

o©

The measurement equation quantities depend on the state variables, and
so have to be re-calculated at each step of the Kalman filter.

o

o

Starting the Recursion.
Unconditional mean and variance of state variable vector.
_Plus=ThetaP;
P Plus=[ 0.5/dl, 1/(d1+d2);...
0 , 0.5/d2 1;
P Plus=P Plus+transpose (triu(P_Plus,1));
P Plus=U.*P Plus;
P Plus=V*P Plus*transpose (V) ;
P Plus=real (P_Plus);

oe

b

$IEKF Count=2;
logL=0;
Extended Kalman filter if IEKF Count=0, iterated EKF with fixed
IEKF Count iterations if IEKF Count>0, and iterated EKF with fixed
tolerance abs (IEKF Count) if IEKF Count<0.
if IEKF Count<0
x_ Tolerance=abs (IEKF Count) ;
IEKF Count=20;
end
for t=1:T
% Forecast step.
X Minus=(eye (N)-F) *ThetaP+F*x Plus;
P Minus=F*P Plus*F'+Q;

o° oe

o©

% Update step.
Observations for time t.
y Obs=0.01*R data(t,:)"';

y _Missing=isnan (y Obs);

y Obs=y Obs(~y Missing);

oe
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R=diag (Sigma Nu(~y Missing) ."2);

x Plus_i Minus 1=x Minus;

x Plus i0=x Minus;

for i=1:1+IEKF_Count

EKF and IEKF iterations

Following Simon (2006), p. 409 and pp. 411-12.

Note that the EKF step is the i=1 iteration. To see this, note
that x Minus - x Plus 10 = 0 in eqg. 13.64.

y_t Hat=h(x Minus,0), i.e. fitted values of y t given x Minus.
Ht=dR/dX (x_Minus), i.e. the Jacobian given x Minus.

o 0P o o o

oe

%To allow for estimation of different LB values with shifts in
specific dates:
if t<=106 %Suntil May 2014 (included) --> first LB regime

[y Hat,H i]=AAD KAGM R and dR dx(x Plus i0,rL,KappaQ2,Sigmal, Sigma2,Rhol2,T
au_K,dTau, ZLB_Imposed);
else if t<=109 %until Aug 2014 (included) --> second LB regime

[y Hat,H i]=AAD KAGM R and dR dx(x Plus i0,rL2,KappaQ2,Sigmal, SigmaZ2,Rhol2,
Tau K, dTau, ZLB_ Imposed) ;
else if t<=124 %until Nov 2015 (included) --> third LB regime

[y Hat,H i]=AAD KAGM R and dR dx(x Plus i0,rL3,KappaQ2,Sigmal,SigmaZ2,Rhol2,
Tau K, dTau, ZLB_Imposed);
else if t<=127 %until Feb 2016 (included) --> fourth LB regime

[y Hat,H 1i]=AAD KAGM R and dR dx(x Plus i0,rL4,KappaQ2,Sigmal, SigmaZ2,Rhol2,
Tau K,dTau,ZLB Imposed);

else if t<=169 %Suntil Aug 2019 (included) --> fifth LB
regime

[y Hat,H i]=AAD KAGM R and dR dx(x Plus i0,rL5,KappaQ2,Sigmal, SigmaZ2,Rhol2,
Tau K,dTau,ZLB Imposed);
else Suntil Sep 2021 (included) --> sixth LB regime

[y Hat,H i1]=AAD KAGM R and dR dx(x Plus i0,rL6,KappaQ2,Sigmal, Sigma2,Rhol2,
Tau K, dTau, ZLB_Imposed) ;
end
end
end
end
end
y Hat=y Hat (~y Missing);
H i=H i(~y Missing,:);
HPHR i=(H i*P Minus*H i'+R);
K _i=P Minus*H i'/HPHR i;
w_i=y Obs-y Hat-H i*(x Minus-x Plus i0);
x Plus il=x Minus+K i*w 1i;
if IEKF Count==20

)

% Using tolerance, so check for convergence.

if i>15
% Large number of iterations, so print output to screen.
disp([num2str(t),"' ',num2str(i-1),' ',num2str(x Plus il'"),'
',num2str(x Plus i0'), "' ',num2str(x Plus il'-x Plus i0')])
end

if all(abs(x Plus_il-x Plus 10)<x Tolerance)
% Difference from last update within tolerance, so exit.
break

end

if all(abs(x_Plus il-x Plus i Minus 1)<x Tolerance)

o)

% Allows for numerical cycling between i+1l, i, i-1 updates.
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% Difference from i-1 update within tolerance, so exit.
x Plus i1=0.5*(x Plus il+x Plus 1i0);
break
end

end

% Record these values to allow testing for convergence.

x Plus i Minus 1=x Plus 1i0;

x Plus i0=x Plus il;

end

% Calculate final posterior values and record values.
x Plus=x Plus 1il;

P Plus=(eye(N)-K i*H i)*P Minus;

x T(:,t)=x Plus;

P T(:,:,t)=P Plus;
logL=logL+log (det (HPHR i))+w_ i'/HPHR i*w i;

% Hold IEKF count.
if i-1>Max IEKF Count
Max IEKF Count=i-1;
Max IEKF Point=t;
end
sdisp ([num2str(t),"' ',numZ2str(i-1),"' ',num2str(x Plus il'-x Plus i0')])
format long

o

% str = sprintf('%s %s %3.10f',t,i,logl);
% disp(str);
% disp([num2str(t),"' ',num2str(i-1),"' ',num2str (logl)])

o

disp ([num2str(t),"' ',num2str(i-1),"' ',sprintf('%$3.16f',logl)])
$std SSR(t)=sqrt([1,1]*P T(:,:,t)*[1;1]);

end

% log likelihood value to maximize.

EKF logL=-0.5*KT*log (2*pi)-0.5*1ogL;

% Negate the log likelihood value because fminunc minimizes.
EKF logL=-EKF logL;

disp ([EKF logL*le-3,Parameters(1:10),Rhol2]) %, real (eig(KappaP))']);
set (0, 'DefaultFigureWindowStyle', 'docked"')

plot ([x T',sum(x T)'])

pause (0.01)

end
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Monte Carlo simulation and LOH forecasts

Constant LB model

%% MONTE CARLO SIMULATION and LOH CALCULATION %%

clc
clear
close all

$UPLOAD estimation results at the date of interest
workspace name='AUGUST 2021 K ANSM realtime';
load([workspace name,'.mat']);

%Selection of parameters statistically significant

tstat abs=abs (tstat);

cutoff=1.96;

tstat logical=tstat abs>=cutoff;

FinalNaturalParameters logical=FinalNaturalParameters.*tstat logical;

$KappaQ2=FinalNaturalParameters logical (2);

KappaP=[FinalNaturalParameters logical(3),FinalNaturalParameters logical (4)
;FinalNaturalParameters logical (5),FinalNaturalParameters logical (6)];
ThetaP=[FinalNaturalParameters logical(7);FinalNaturalParameters logical (8)
1

Sigmal=FinalNaturalParameters logical (9);
Sigma2=FinalNaturalParameters logical (10);
Rhol2=FinalNaturalParameters logical (11);

%Set up

Time to mat=10; S%expressed in years

M=1000; S%number of increments from current "t" to Time to mat
delta=Time to mat/M; %in years

J=10000; %number of simulations

Simulations ShortRate=NaN (J,M) ;

Simulations ShadowRate=NaN (J, M) ;

%$Definition of the elements needed for simulation

$KappaP

$KappaQ

SIGMA=[ Sigmal , 0 A
Rhol2*Sigma2, Sigma2*sqrt (1-Rhol272)];

$Initial values and arrays

xt zero=x T(:,end); Swe set ourself at the time of last observation
currentdate=YieldCurveDatelIndex (end, :);

scycle for all simulations
=1;

J
for j=1:2:J %use of antithetic sampling to reduce computational burden
epselon norm=randn(2,M) ;
Xvectors simulated=NaN (2, M) ;
%$single simulation cycle
m=1;
xt minus one=xt zero;
for m=1:M
xt one=xt minus_ one+KappaP* (ThetaP-
xt minus one) *delta+SIGMA*sqgrt (delta) *epselon norm(:,m);
Xvectors_ simulated(:,m)=xt one;
xt minus_one=xt one;
m=m+1;
end
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o\
o

Transform increments in terms of days and plot
A= (0:1000)*0.01;

A=A (2:end); %increments expressed in years
B=A*365; %increments expressed in days
D=days (B) ;

tl=datetime (TextImported(end, 1)) ;

t2=t1+D;

o° oe

o° o° o° o

o° oo

plot (t2, sum(Xvectors simulated)');

hold on

yline (rL);

hold on

title(['Simulations at', TextImported(end,1l)]);

a° oe

o

o

o
oe

shadow rate=sum(Xvectors simulated);
LowerBound=NaN (1, M) ;

LowerBound (:, :)=rL;

ZLB shortrate=max (LowerBound, shadow rate);
Simulations ShortRate (j,:)=ZLB shortrate;

Simulations ShadowRate (j, :)=shadow_rate;
%% antithetic simulation cycle

m=1;

xt minus one=xt zero; %

for m=1:M

xt one=xt minus one+KappaP* (ThetaP-xt minus one) *delta-
SIGMA*sqrt (delta) *epselon norm(:,m); 5%
Xvectors simulated(:,m)=xt one;
xt minus_one=xt one;
m=m+1;
end

oe

plot

plot (t2, sum(Xvectors simulated)');

hold on

yline (rL);

hold on

title(['Simulations at', TextImported(end,1l)]);

o° oP

o o° o o°

o
o

shadow rate=sum(Xvectors simulated);

ZLB shortrate=max (LowerBound, shadow rate);
Simulations ShortRate(j+1,:)=ZLB_shortrate;
Simulations ShadowRate (j+1, :)=shadow rate;

end

%% Calculation LOH

%LOH threshold=0.0010; %for general LOH estimates (section 4.6.1)

LOH threshold=-0.0045; %for May 2021 and Sept 2021 estimates (section
4.6.2)

LOHresults=NaN (1, 3) ;

LOH std=NaN (1, 3);

i=1; %indicator "i
for i=1:3
switch (1)
case 1
increments=24; %25 increments correspond to three months (24
additional to the initial time r(t) crosses threshold)
case 2
increments=49; %50 increments correspond to half a year (49

additional)

for different persistence requirements
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case 3
increments=99; %100 increments correspond to a year (99
additional)
end
LOH _sim=NaN(J,1);
j=1;
for j=1:J
ShortRate logical=Simulations_ ShortRate (j,:)>=LOH threshold
%find crossing date and check persistence
$find all crossing dates
CDC=1; %crossing date counter
for CDC=1:M
crossingdates=find(ShortRate logical,CDC);
CDC=CDC+1;
end
%check duration
try
CDC=1;
for CDC=1:M
crossingdates check= crossingdates(1,CDC) + (O:increments);

if
crossingdates (1,CDC: (CDC+increments) )==crossingdates check;
LOH sim(Jj, :)=crossingdates (1,CDC) ;
break
else CDC=CDC+1;
end
end
catch
LOH sim(j, :)=M;
end

end

gmedian time
LOH=median (LOH sim) ;
LOH=LOH*delta; %in years
LOHresults (1, 1i)=LOH;
%std dev

LOH std=std(LOH_sim);
LOH std=LOH std*delta;
LOHstd (1,1i)=LOH std;

end

ssave

DataFileName='AUGUST 2021 K ANSM realtime';

SaveName=AAL CommonSaveName (DataFileName, ZLB Imposed, IEKF Count, SampleMatur
ities, N, DataFrequency, FINAL,-10) ;

save (SaveName)
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Regime-switching LB model

%% MONTE CARLO SIMULATION and LOH CALCULATION %%

clc
clear
close all

$UPLOAD estimation results at the date of interest and (manually) insert
the simulation date

workspace name='MAY 2021 K ANSM Expost';

load([workspace name,'.mat']);

SimulationDate={'31-May-2021"'}; %insert simulation date (i.e. the
estimation date)

%Selection of parameters statistically significant

tstat abs=abs (tstat);

cutoff=1.96;

tstat logical=tstat abs>=cutoff;

FinalNaturalParameters logical=FinalNaturalParameters.*tstat logical;

%KappaQ2=FinalNaturalParameters logical(2);
KappaP=[FinalNaturalParameters logical (3),FinalNaturalParameters logical (4)
;FinalNaturalParameters logical (5),FinalNaturalParameters logical (6)];
ThetaP=[FinalNaturalParameters logical(7);FinalNaturalParameters logical (8)
1
Sigmal=FinalNaturalParameters logical(9);
Sigmaz=FinalNaturalParameters logical (10);
Rhol2=FinalNaturalParameters logical (11);
SIGMA=[ Sigmal , 0 I

Rhol2*Sigma2, Sigma2*sqrt (1-Rhol272)];

%Set up

Time to mat=10; %expressed in years

M=1000; S%number of increments from current "t" to Time to mat
delta=Time to _mat/M; %in years

A=(1:1000) *delta; %increments expressed in years for plot
B=A*365; %increments expressed in days for plot

J=10000; S%number of simulations

Simulations ShortRate=NaN (J, M) ;

Simulations ShadowRate=NaN (J,M) ;

$Initial values and arrays

SimulationDate=datenum(SimulationDate) ;
[row,col]=find(YieldCurveDateIndex==SimulationDate) ;

xt zero=x T(:,row); Swe set ourself at the time of last observation
Scurrentdate=YieldCurveDateIndex (end, :) ;

%% creation of lower bound vector for simulation
LowerBound=NaN (1,M) ;

%find how many days between simulation date (current date) and cuts
firstcut=datenum('11-Jun-2014");
if SimulationDate>firstcut

incl=0;
else
NumDaysl=daysact (SimulationDate, firstcut) ;
incl=NumDaysl1*100/365; %increment up to firstcut in terms of days
LowerBound (1, l:round(incl))=rL; S%set LB to rL (i.e. estimated LB up to
first cut)
end
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secondcut=datenum('10-Sep-2014") ;
if SimulationDate>secondcut
inc2=0;
else
NumDays2=daysact (SimulationDate, secondcut) ;
inc2=NumDays2*100/365;
LowerBound (1, (round (incl)+1) :round(inc2))=-0.001; S%estimated LB regime
(whole sample estimate)
end

thirdcut=datenum('09-Dec-2015");
if SimulationDate>thirdcut
inc3=0;
else
NumDays3=daysact (SimulationDate, thirdcut) ;
inc3=NumDays3*100/365;
LowerBound (1, (round (inc2)+1) :round(inc3))=-0.002025; %estimated LB regime
(whole sample estimate)
end

fourthcut=datenum('16-Mar-2016");
if SimulationDate>fourthcut
inc4d=0;
else
NumDays4=daysact (SimulationDate, fourthcut) ;
inc4=NumDays4*100/365;
LowerBound (1, (round (inc3)+1) :round(inc4))=-0.003019; %estimated LB regime
(whole sample estimate)
end

fifthcut=datenum('18-Sep-2019");
if SimulationDate>fifthcut
inc5=0;
else
NumDays5=daysact (SimulationDate, fifthcut) ;
inc5=NumDays5*100/365;
LowerBound (1, (round (inc4) +1) :round(incb5))=-0.004; S%estimated LB regime
(whole sample estimate)
end

LowerBound (1, (round(inc5)+1) :end)=-0.005;
%% cycle for all simulations

j=1;
for j=1:2:J %Suse of antithetic sampling
epselon norm=randn(2,M) ;
Xvectors_ simulated=NaN (2, M) ;
$single simulation cycle
m=1;
xt minus one=xt zero;
for m=1:M
xt one=xt minus one+KappaP* (ThetaP-
xt minus one) *delta+SIGMA*sqgrt (delta) *epselon norm(:,m);
Xvectors_ simulated(:,m)=xt one;
xt minus one=xt one;
m=m+1;
end

%% Transform increments in terms of days and plot
A= (0:1000)*0.01;
A=A (2:end); %increments expressed in years
B=A*365; %$increments expressed in days
D=days (B) ;

o° oo o

o\©
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tl=datetime (TextImported (row,1));

o° oo

t2=t1+D;
% plot (t2, sum(Xvectors simulated)');
% hold on
% title(['Simulations at', TextImported(row,1)]);

oe
o°

shadow rate=sum(Xvectors_ simulated);
ZLB shortrate=max (LowerBound, shadow rate);
Simulations ShortRate(j, :)=ZLB_shortrate;

Simulations ShadowRate (j, :)=shadow rate;
%% antithetic simulation cycle

m=1;

xt minus_one=xt zero; %

for m=1:M

xt one=xt minus one+KappaP* (ThetaP-xt minus one) *delta-

SIGMA*sqrt (delta) *epselon norm(:,m); 5%
Xvectors simulated(:,m)=xt one;
xt minus_ one=xt one;

m=m+1;
end
%% plot
% plot (t2, sum(Xvectors simulated)');
% hold on
% title(['Simulations at', TextImported(row,1)]);

o
oe

shadow rate=sum(Xvectors simulated);

ZLB_ shortrate=max (LowerBound, shadow rate) ;
Simulations ShortRate (j+1, :)=ZLB shortrate;
Simulations ShadowRate (j+1, :)=shadow rate;

end

%% Calculation LOH

%LOH threshold=0.0010; %for general LOH estimates (section 4
LOH threshold=-0.0045; %for May 2021 and Sept 2021 estimates
4.6.2)

LOHresults=NaN (1, 3) ;

LOH std=NaN (1, 3);

i=1; %indicator "i" for different persistence requirements
for i=1:3
switch (i)
case 1
increments=24;
case 2
increments=49;
case 3
increments=99;
end

LOH_sim=NaN(J,1);
j=1;
for j=1:J

.6.1)
(section

ShortRate logical=Simulations_ShortRate(j, :)>=LOH threshold;

$find crossing date and check persistence
$find all crossing dates
CDC=1; S%crossing date counter
for CDC=1:M
crossingdates=find(ShortRate logical,CDC) ;
CDC=CDC+1;



end
%check duration
try

CDC=1;

for CDC=1:M

crossingdates check= crossingdates(1,CDC) + (O:increments);

if
crossingdates (1,CDC: (CDC+increments) )==crossingdates check;
LOH sim(j, :)=crossingdates (1,CDC) ;
break
else CDC=CDC+1;
end
end
catch
LOH sim(Jj, :)=M;

end
end

$median time
LOH=median (LOH sim) ;
LOH=LOH*delta; %in years
LOHresults (1,1)=LOH;
%std dev

LOH std=std(LOH_sim);
LOH std=LOH std*delta;
LOHstd(1,1i)=LOH std;

end

$save
DataFileName='MAY 2021 K ANSM Expost'
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SaveName=AAL CommonSaveName (DataFileName,ZLB Imposed, IEKF Count, SampleMatur

ities,N,DataFrequency, FINAL,-10) ;
save (SaveName)
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