
UNIVERSITY OF PADOVA
Department of Information Engineering

Master Degree in Computer Engineering

MASTER THESIS

UserLoop:
User-in-the-Loop verification for

Privacy Protection in Mobile
Applications

Candidate
Paolo Montesel
University of Padova
Dept. of Information Engineering

Supervisor
Prof. Mauro Conti

University of Padova
Department of Mathematics

Co-supervisor
Prof. Giovanni Russello
University of Auckland

Department of Computer Science

February 21, 2017 Academic Year 2016/2017

To my parents and my brothers
To the friends who supported me in these years

“ The only truly secure system is one that is powered off,
cast in a block of concrete and sealed in a lead-lined room

with armed guards – and even then I have my doubts.”
– Gene Spafford

An extract of this thesis is included in a research paper that we plan to publish at a major
research venue in the computer security area.

Abstract

Smartphones use has spread in many aspects of the everyday life of billions of users all
across the globe. The vast amount of personal data stored on mobile devices is extremely
sensitive in that smartphones have become a digital extension of their users’ identities.
Unfortunately, current systems do not allow the user to be fully in control of his device
and his data. Mobile devices pose a significant challenge to security researchers as they
need to be both secure and easy to use for the average user. For this reason, it is crucial
to implement a security model that empowers the user to control his data and the way in
which Apps manipulate and share it.

In this thesis we propose UserLoop, a system which makes use of sensor data and human
feedback to enforce user awareness of sensitive actions performed by mobile applications.
We present the architecture of the proposed system, describe our prototype implementation
and report on the thorough evaluation we run in order to assess its performance both with
regards to its effectiveness and its runtime footprint. The result of our evaluation on the
prototype system confirms the feasibility of the system and its ability to prevent permission
abuses performed by malicious Apps. Moreover, it shows that the overhead introduced by
UserLoop doesn’t impair the functionalities of the device.

i

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Organization . 3

2 State of the Art 5
2.1 Android source code modification . 6
2.2 Firmware Modification . 8
2.3 Application Repackaging . 9
2.4 Sandbox-based approaches . 10

3 Android 11
3.1 Security model . 12
3.2 Android Permission Check . 13

4 Our proposal: UserLoop 15
4.1 Architecture . 16
4.2 XUserLoop . 17
4.3 Context Tracker . 17
4.4 Policy Manager . 18
4.5 Client App . 19

5 Implementation 23
5.1 Xposed . 23
5.2 XUserLoop . 24

5.2.1 UserLoop Service Injection . 24
5.2.2 Policy Enforcement Point . 27

5.3 ContextTracker . 29
5.3.1 Listening for Activity focus changes 29
5.3.2 Detecting Input Events . 30
5.3.3 Tracking the screen lock state . 31

iii

5.3.4 Tracking the screen state . 31
5.4 Logging . 32

6 Evaluation 33
6.1 Security . 33
6.2 Performance . 36

7 Conclusion 43
7.1 Future work . 43

Appendix 47

A Configuration File 47

B UserLoop Interface Definition 53

iv

List of Figures

2.1 Main Android Security Extensions [9] . 5
2.2 CRePE Architecture [3] . 7
2.3 Overview of MOSES [14] . 7
2.4 SAINT Overview [17] . 8
2.5 FlaskDroid Architecture [5] . 9

3.1 Android Resource Access Framework [19] 12
3.2 Android permission history [13] . 13

4.1 UserLoop Architecture . 16
4.2 Detailed views of an App inside the GUI 20
4.3 UserLoop GUI . 21

6.1 Policies violated per App . 37
6.2 Battery level over three hours . 38
6.3 Median overhead with increasing number of policies (values in ms) 41

v

List of Tables

6.1 Policy set . 34
6.2 Permissions blocked . 36
6.3 Mean operation duration with varying number of policies (results in ms) . 40

vii

Chapter 1

Introduction

In recent years, smartphones have become the preferred way to access the Internet [1], and
the use of Apps is now pervasive in many aspects of people’s lives. The security and privacy
of such devices is challenging due to the amount of personal data stored on them, the ever
increasing presence of sensors which can be abused and the constant Internet connection.

The security model of mobile OSes is slowly improving but it is still far from ideal
and the ease-of-use seems to often be favored when it comes to trade-offs between the two.
Android versions prior to 6.0 implemented a permission system which required the user to
accept all the permissions required by an App at install time without a way to revoke them
selectively. This all-or-nothing approach was limited in that the user had no knowledge
of why a permission was requested nor when it was requested. Android 6.0 has seen the
introduction of Runtime Permissions, a feature which allows to toggle permissions on and
off after the installation of an App. This has been a significant improvement, but it is not
enough to protect users’ privacy [2]. The main issue is that the model is still based on the
concept of a set of coarse-grained permissions granted by the user to an App. After being
granted a permission, Android does not stop a malicious App from using it to perform
actions without user consent.

In order to tackle the limitations of the status quo, security researchers have proposed
a wide range of security models and extensions. In fact, the open source nature of the
Android OS has facilitated the study of its security model and therefore a significant body
of literature is dedicated to it. There have been some focus on context-aware models which
also consider information such as location, time and other sensors while performing Access
Control at run-time [3, 4, 5]. These systems are based on predefined policies which must
be created by the end-user or a third-party and therefore require a high degree of security
expertise of the policy maker to be effective. For this reason, they are best suited for
enterprise environments where security administrators are in charge of defining policies.
Moreover, none of these proposals aims at using contextual information to provide a truly
user-centered security system. As a result, their ability to make sure that the user is in the
loop is limited.

Another key challenge in securing smartphones is the presence of many constraints
that must be kept in mind during the design phase. For example, special care must be

1

2 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

taken when implementing security features which could significantly increase the power
consumption of a device. Responsiveness and battery life are two of the most important
factor to consider and failing to do so results in a degradation of the user experience. It must
also be noted that, while the power of smartphones’ CPU is steadily increasing, battery
capacity have not followed Moore’s Law [6] and so battery life remains the single most
problematic component of a system.

1.1 Motivation

Recent history has shown that the users’ privacy must not only be protected against
malware, but also against benign Applications. In fact, cases have been reported of widely
used Apps requiring too many permissions or leaking user information to their servers
intentionally [7]. To make things even worse, several models of cheap Android handsets
have been found to be transmitting personally identifiable information, including call logs
and the content of text messages, to remote servers [8].

Despite the introduction of several extensions to the Android security model, little
attention has been paid to possible mechanisms able to check whether a sensitive action is
intended by the user or not, based on contextual information. This shortcoming severely
limits the ability of a system to actually be secure and protect its users. For example, let
us consider the case of a geo-tagging photo App. Such an App would typically require
camera and location information for legitimate purposes. Moreover, Internet access might
be needed to share the pictures among its users. In this scenario, nothing prevents the
App from leaking the user location continuously while running in background or while the
screen is off.

The permission granting process could be improved by using sensors’ data and other
contextual information, thus making it a well-informed task. Examples of such information
could be knowing whether the screen is on/off, the time since last user input, the presence
of the user in front of the screen or the rotation/position of the phone itself. Permission
enforcement systems should exploit this data to try to block privileged but unsolicited
actions requested by an App, therefore limiting potential privacy breaches.

In this thesis we introduce UserLoop, a user-centric and interaction-aware Access Control
model which is, to the best of our knowledge, the first attempt of its kind to try to improve
defenses against privacy leaks. UserLoop aims at making sure that the user is in the loop
when permissions are requested and, consequently, it aims at blocking actions which exploit
permissions granted by the user but used in an unintended way. To make the system
effective, we provide the user with a reasonable set of sane default policies which he is able
to edit in an intuitive way through a simple client App. In order to make this process easier,
we also provide per-App statistics in a graphical manner to guide his decisions. Feedback
from the user is essential for the system to be effective as it’s difficult to cover all the edge
cases a priori. Still, the defaults can be instrumental in reducing the user frustration in
defining common scenarios.

Chapter 1. Introduction 3

1.2 Contribution
In this thesis we propose, to the best of our knowledge, the first user-centric and context-
based policy enforcement security model that uses data from sensors to enforce user-
awareness of sensitive actions: UserLoop. We present the full architecture of our system and
describe its implementation as an extension of the Android security model. We also prove
that, since we build upon Android’s built-in security model, the security of our system is at
least as good as Android’s.

The concept of context-based access control has already been investigated on mobile
devices by the research community, but no system so far has exploited contextual information
to put the user and its interaction with the device in the center of the security model.
Moreover, existing systems have a limited definition of context which is mostly static and
is used only to change the set of policies depending on environmental attributes such as
the time of the day or the location of the device. UserLoop, on the other hand, can apply
different policies based on the instantaneous value of any of its contextual variables, thus
adapting automatically to the user’s needs. Furthermore, the UserLoop client App provides
an easy and effective way for the user to detect suspicious Apps which perform sensitive
requests behind his back.

With UserLoop, we achieve a fine-grained control policy over Android Apps by making
the default Android permission model context-dependent. Our system doesn’t require
installing custom ROMs or radical changes to the OS, thus giving it the ability to be
deployed on different devices and different Android versions with minimal to no changes.
UserLoop’s only requirement is root access at install time.

The measurements performed on our prototype implementation show that UserLoop’s
approach is feasible and provide a baseline for research into similar user-centric security
models. Furthermore, the overhead of the prototype is negligible and does not impair the
user-experience.

The security evaluation we performed proves that UserLoop is effective in preventing
privacy leaks while the user is not in-the-loop. It also shows that even mainstream Apps
perform several sensitive operations without user consent.

Finally, our system also poses as a framework for future analysis of Apps’ behavior
when the user is not in-the-loop. In fact, by storing the permissions requested in a central
database along with their respective contextual information, it opens up the possibility of
using machine-learning techniques to improve the security of the user.

1.3 Organization
We hereby describe the general structure of this thesis. In chapter 2, we discuss the
state of the art of security research on the Android OS, laying out the main security
extensions with their strengths and their weaknesses. We also analyze the approaches
available when it comes to implementing such extensions. In chapter 3, we briefly describe
the Android OS and its execution model. We then turn to describing its key security

4 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

features, with special attention to its history and the current trends. Furthermore, we
discuss its limitations and possible improvements. Chapter 4 introduces the architecture of
UserLoop and gives and overview of its various modules and their purpose. In chapter 5, we
delve into the implementation details of our system, discussing system API hooking and
context tracking. Chapter 6 presents the methodology we used to evaluate UserLoop and
its prototype implementation. Moreover, it discusses the results of the performance and
security measurements we performed on our test device. Finally, in chapter 7 we draw our
conclusions and explore possible directions for future research using or extending UserLoop.

Chapter 2

State of the Art

The subject of improving the security architecture of Android, and smartphones in general,
has been widely researched and still is. Mainstream research has given much attention to
the topic of improving Access Control in Android devices by creating several extensions to
the built-in features [9][10][4][3][11][5][12]. Some of the main Android security extensions
are shown in Figure 2.1. In this chapter we analyze the main approaches used to implement
security extensions in mobile devices.

Figure 2.1: Main Android Security Extensions [9]

The rest of the chapter describes several security extensions proposed in the literature.
The systems are grouped into sections according to the underlying technique used to
implement them.

In section 2.1, we discuss the systems using the most straightforward method for
implementing security extensions: modifying the Android source code. This approach is

5

6 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

the most flexible but comes with several drawbacks.
Section 2.2 describes firmware modification-based systems and their advantage in

comparison with the ones using source code modification.
Section 2.3 briefly introduces the concept of application repackaging, a technique used

to implement security extensions without modifying the operating system.
Finally, section 2.4 describes two novel security architectures which employ a sandbox-

based approach to implement radically new security models.

2.1 Android source code modification
Android’s source code is openly available and this makes it easy to implement security
extensions by modifying the Operating System directly. Doing so allows researchers to alter
significantly the existing system and is the most flexible option among the one analyzed in
this thesis.

The Android ecosystem is getting mature, however its permission model does not show
signs of moving towards more fine-grained permissions. In fact, around 44.8% of the
Apps have been found to request permissions that they do not need, thus violating the
least-privilege principle [13]. This, combined with lack of flexibility in the security model
configuration, is what lead researchers to propose several Android security extensions.

In [3] the authors describe CRePE, a context-aware system capable of enforcing fine-
grained policies in Android phones. Figure 2.2 shows the architecture of the system. As
in our work, their system intercepts the Android permission check at the framework level.
The context is defined as a set of variables such as position, time, light, etc. This approach
is interesting but makes a limited use of sensors, requires the user (or a third-party) to
manually define a set of rules and doesn’t take into account the interaction of the user with
the device.

The automatic use of context tracking to dynamically switch security profiles has been
investigated in MOSES [14]. This work introduces the concept of ”mode of use” and security
profiles to enforce different policies for accessing applications and data. Switching profiles
doesn’t require user intervention but the system still requires the user, or a third-party, to
provide the profile definitions. Figure 2.3 shows how MOSES implements different security
profiles related to, for example, the working and the private environments.

Apex [4] allows the user to selectively grant permissions to Apps as well as impose
constraints on their use of resources. It also considered the end-user side of the security
equation by providing an easy-to-use interface to set such constraints from the package
installer. Since Android 6.0, the ability to selectively deny or grant permissions has been
integrated in the system by Google.

COMPAC [15] turns Android’s UID-based security model into a UID and component-
based one. It allows users and developers to assign a subset of an application’s permissions
to some of its components. In particular, COMPAC allows to group Java packages into
components, which in turn are what the Apps are made of. Using this hierarchical separation
of an App into smaller units, COMPAC can enforce different policies for different parts of

Chapter 2. State of the Art 7

Figure 2.2: CRePE Architecture [3]

Figure 2.3: Overview of MOSES [14]

a single App. This approach can be used to restrict the access to sensitive permissions and
enforce the least-privilege principle on Android.

In TISSA [16], the authors introduce the concept of privacy mode for Android devices.
Such functionality allows users to control in a fine-grained manner the sensitive information
that is made accessible to an App.

SAINT [17] takes on the diametrically opposite issue of creating a framework to allow
App developers to defend from other Apps. The authors note that Android provide
limited functionalities for developers to specify how the interfaces and the resources of
their applications are accessed by third-parties. As such, SAINT gives Apps the ability to

8 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

provide install-time policies that regulate the access to their interfaces. SAINT policies
can make use of contextual information to dynamically change the restrictions at runtime.
Figure 2.4 shows the overview of the SAINT system. As said above, the policy file is
shipped together with the APK.

Figure 2.4: SAINT Overview [17]

An interesting approach to Android Access Control has been studied in [5]. The authors
introduce a novel security architecture, named FlaskDroid, which uses a SELinux-inspired
policy language and works at both the framework and the kernel level. FlaskDroid leverages
SELinux to dynamically enforce policies through the use of boolean flags that are toggled
at runtime. This gives the ability to implement context-dependent policies and have them
enforced at all the levels of the Android software stack. The authors make use of contextual
information in the policy engine but it’s limited to environmental variables that don’t
capture user interaction and awareness. Still, FlaskDroid is interesting in that, ruling out
Linux kernel exploits, it is able to enforce policies even if system process are compromised.
This is because SELinux is able to perform mandatory access control on both the kernel
and the framework level.

In order to reduce the need for pre-defined policies, [18] introduces a context-aware and
adaptive security framework for Android which makes use of sensors data to inform a user
about whether a requested action poses a low or a high security risk. They model the risk
assessment as a Multi-criteria Decision Making problem and use Analytic Hierarchy Process
to deal with it. This system could be used to bypass the need for user-defined policies, but
the authors don’t consider user awareness in their model.

2.2 Firmware Modification
A less invasive technique when it comes to implementing security extensions to the Android
OS is firmware modification. This technique involves modifying some files on the system in
order to extend the capability of the OS without flashing a complete ROM. The two main
drawbacks are that root privilege is required and that heavily-customized ROMs may not

Chapter 2. State of the Art 9

Figure 2.5: FlaskDroid Architecture [5]

work well together with the extension. Still, this approach usually works on a wide range of
devices without requiring changes to the source code and is therefore an interesting method.

DeepDroid [19], a dynamic enterprise security policy enforcement scheme, allows for the
definition of fine-grained context-based policies. Their approach is based on the dynamic
instrumentation of both Dalvik and native code. In addition to the ordinary information
about the permissions requested by an App, it can extract extra information (e.g., an
URL associated with an http request). Being targeted at enterprise, DeepDroid requires a
pre-defined set of fine-grained policies to be effective. Moreover, it fails to consider the user
interaction and to exploit user feedback.

Considering the lack of source code for most commercial devices, we chose to implement
UserLoop with this technique.

2.3 Application Repackaging

Application repackaging is a technique which bypasses completely the need to modify the
Android source code or the firmware installed on a device. Instead of extending the security
model of the operating system, repackaging works by modifying the Apps before installing
them. Hooks and policy enforcement logic are injected into the App binaries and therefore
systems using this technique do not need to adapt the Android OS to their needs. The main
drawback of repackaging systems is that the security guarantees are only as good as the
tool that analyses and repackages the Apps. If a malicious App is obfuscated well enough,
it could prevent the hooks from being inserted into its code, thus making the system useless.
Aurasium [10] is an example of this technique.

10 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

2.4 Sandbox-based approaches
Boxify [20] leverages Android’s isolated processes to run applications in a sandbox. A key
advantage of this work is that it doesn’t require any system nor application modification
as it is implemented as a normal Android application. As most systems it suffers from
the lack of kernel support for policy enforcement, as that would require custom kernel
extensions. Moreover, the authors themselves acknowledge that Boxify requires a wide set of
permissions to be able to provide them to the sandboxed Apps. This could be exploited by
malicious Apps due to the fact that Android doesn’t provide any mean to drop permissions
at runtime. While being an interesting general purpose Access Control mechanism, the
authors don’t provide information about applications of their system.

Another novel approach is introduced by [21] with the FlowFence system. FlowFence
performs the equivalent of taint analysis by making data and control flows of the Apps
explicit. This system is targeted at IoT security, but its core concepts could also be applied
to the Android OS. FlowFence is implemented by making use of Android’s isolated processes.
Such processes have restricted IPC capabilities and permissions and are therefore a perfect
candidate to implement sandboxes. In order to make the flows explicit, FlowFence separates
Apps into Quarantined Modules and normal code. The formers are small snippets of code
which operate on sensitive data inside a sandbox. In the system, sensitive data cannot
escape the sandbox and normal code only sees an opaque handle when the data is returned
from a sandbox. Apps derive their functionality by chaining together Quarantined Modules
and declaring their flows, which must be approved either by the information sources/sinks
or by the final user. This approach is quite interesting but is completely different from the
permission-based approach of Android an thus can’t be easily integrated with it.

Chapter 3

Android

Android is an open-source, Linux-based mobile operating system developed by Google and
the Open Handset Alliance. Applications are written in a mix of Java and C/C++, with
the former being the most popular and officially recommended option. Once compiled,
the Java Virtual Machine (JVM) bytecode is translated to a custom format that is run
by the Dalvik Virtual Machine (DVM). Android 4.4 saw the introduction of the Android
Runtime (ART), an experimental new runtime environment that became the default since
version 5.0 [22]. It introduced ahead-of-time compilation taking Dalvik binaries as input
and outputting ELF binaries.

In Android, applications are started by cloning an initial process, named Zygote, which
is afterwards given proper permissions and Linux user identifier (UID). Such UID is unique
and assigned to an App at install time and guarantees that each application runs in a
separate process, isolated from the others. Inter-Process Communication (IPC) is performed
through a well-defined mechanism implemented and enforced at the framework level: the
Binder. In the Linux kernel, the Binder is implemented as a custom driver and that is
capable of serializing and unserializing complex objects to transfer them across process
boundaries.

In section 3.1, we lay out how the Android security model works and what are its main
features. We then explain shortly how it has improved over the years and what is still
lacking from a user-centric security point of view. The final part deals with the worrying
trend of the number of new dangerous permissions being introduced with every Android
release.

Finally, in section 3.2, we describe how the Android permission check is performed when
an App makes a request. In particular, we note that since Android 6.0, the procedure has
become a bit cumbersome because of the need to maintain retro-compatibility with Apps
written for older versions of the OS. This poses a security threat due to the fact that, even
on recent Android versions, Apps targeting older versions of the SDK are still checked
with the old procedure. Thus, they don’t require explicit user consent when requesting
dangerous permissions at runtime.

11

12 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

3.1 Security model
Security wise, Android uses a multi-layer security model with a mix of both Discretionary
Access Control (DAC) and Mandatory Access Control (MAC). It implements a kernel-level
application sandbox by leveraging UIDs and UNIX-style file permissions. Since version
4.3 of the OS, SELinux was introduced and from version 4.4 it started being deployed in
enforcing mode. At the framework level, MAC is enforced through the use of labels called
permissions. Such permissions, once granted to an App, allow it to perform privileged
operations and to access protected features of the OS (e.g., Internet connectivity). Apps
who want to make use of them must declare in their manifest file the set of permissions
that they will use in their lifetime. Moreover, since Android 6.0, sensitive permissions
must be explicitly requested to the user at runtime and they can potentially be selectively
disabled afterwards. Figure 3.1 shows an abstracted overview of the Android resource access
framework and the permission checks it performs.

Figure 3.1: Android Resource Access Framework [19]

Beside the introduction of runtime permissions, the security of Android has recently
seen other improvements on the user side. In version 5.0, Google introduced Smart Lock,
a system which allows the user to unlock the phone using a trusted device, such as a
Bluetooth/NFC beacon, a smart-watch or through facial recognition. In version 6.0, the
company also introduced a fingerprint API. All these features are a step forward in making
security easier for the average user and do so by exploiting some contextual information.
For example, a Bluetooth beacon provides an effective way to check whether a legitimate
user is close to his device or not. An improved permission model based on these principles
could successfully reduce privacy breaches while keeping the friction for the end user at a
minimum.

However, Android’s security model is still based on a set of coarse-grained permissions.
With every new version of the OS the permission set has been extended but the permissions
themselves have not been made more fine-grained [13]. What’s more alarming is that
the subset of dangerous permissions is the largest one and that the subset of signature or

Chapter 3. Android 13

signatureOrSystem permissions has been expanded significantly, as shown in Figure 3.2.
Permissions labeled as signature are only available to Apps signed with the same certificate
as the application that declared the permission. Similarly, signatureOrSystem has the same
policy but grants access also for applications shipped with the Android system image. It
must be noted that such permissions are granted automatically if the requirements are met,
thus bypassing completely the end-user.

Figure 3.2: Android permission history [13]

3.2 Android Permission Check
In Android versions before 6.0, App permissions were granted at install time without
the ability to disable them selectively. Since 6.0, dangerous permissions are now asked
explicitly to the user when requested the first time and then granted automatically. Due to
retro-compatibility concerns, Apps targeting SDKs before version 23 are still subjected to
the old behavior even on modern devices. The high-level flowchart of how permissions are
granted, depending on the SDK version, is shown in Figure 3.3.

Whenever an App requests a privileged operation, such request is serialized and sent
to the system server, the process which hosts most of the default Android services. Here,
it reaches the service in charge of processing it. Before actually performing any sensitive
operation, every service calls the checkUidPermission(String perm, int uid) method
of the PackageManager service. Thus, this method is where the actual permission check is
performed, using just the permission name and the UID of the requesting App. In UserLoop
we append custom logic at the end of checkUidPermission to implement additional security
checks.

14 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

Figure 3.3: Android permission work-flow [23]

Chapter 4

Our proposal: UserLoop

This chapter discusses the high-level architecture of the UserLoop security model. UserLoop
is designed in a modular fashion in order to decouple its parts as much as possible. Moreover,
it is split between the client App in user-space and the core system which is injected at
runtime into the Android middleware. This provide us with a high degree of flexibility
when it comes to changing the system or implementing new features.

The first section, 4.1, introduces the UserLoop architecture with special focus on the
interplay between the different modules of the system. It also lays out the basic structure
of the permission checking routine and show how it is positioned with respect to Android’s
built-in permission check.

Then, section 4.2 briefly discusses the role of the XUserLoop module in starting UserLoop,
registering it as a system service and performing the actual permission checks using the
information gathered from the other modules.

After that, in section 4.3, we show how UserLoop aggregates different sensors and
contextual variables in order to achieve the goal of estimating whether the user is in-the-
loop or not. We also analyze how every sensor could give UserLoop information about the
state of the interaction with the user.

In section 4.4, we discuss how the UserLoop policies are defined from the logical point of
view. The section also deals with how our system deals with multiple intersecting policies
in order to avoid conflicts. Moreover, the role of the default policy and permission grouping
is explained.

Finally, section 4.5 introduces the client App and the way it interacts with the UserLoop
service. We discuss how having a GUI is essential in order to allow the end-user to change
and review the policies deployed by default. The section also showcases a simple scenario
that gives an idea of how, just by using the client App, a user could be able to spot malicious
Apps and their permission abuses.

15

16 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

4.1 Architecture
The architecture of UserLoop is shown in Figure 4.1. UserLoop is composed of three main
modules: an Xposed module named XUserLoop, a service and a client App. XUserLoop is
the Policy Enforcement Point (PEP) and is used to relay Android’s UID-based permission
check to the UserLoop service. The service is itself composed of different modules which
encapsulate its main functionalities. The Logger module is in charge of storing permission
requests together with contextual information in order to provide useful statistics to the
front-end App. The Context Tracker is the module which gathers data from the sensors and
keeps track of the current context. The Policy Manager acquires contextual information from
the Context Tracker and provides XUserLoop with policies to enforce. It also communicates
with the Policy Provider, which is where the policies are stored. Finally, the client App,
the user-facing part of the system, is used to manipulate policies and show the user useful
information on the Apps and their permission requests. The client can also update the
UserLoop configuration whenever the user make a change to a policy.

Figure 4.1: UserLoop Architecture

The numbered arrows in the diagram follow the flow of a permission request inside the
system. Whenever an App requests a privileged action through the Android Framework, a
permission check is performed inside the PackageManager.checkUidPermission(String
permName, int uid) method 1 . The string permName uniquely identifies the permission
being requested, while uid is the Linux UID of the requesting App. If the check performed
by Android has a positive outcome, XUserLoop intercepts the return value and performs
additional checks by forwarding the request to the UserLoop service 2 . Here the request
is logged in a database and handed to the Context Tracker, which appends contextual
information and hands it to the Policy Manager 3 . At this point, the system goes through
the policies to determine if one of them applies and the result is sent back to the Xposed
module 4 . The final step is the actual enforcement of the policy 5 which can result in one

Chapter 4. Our proposal: UserLoop 17

of the following scenarios:

1. No policy applies.

2. At least one policy applies.

In the first case, the system applies the default policy. Such policy is user-defined and could
grant or deny the permission based on the configuration set by the user inside the UserLoop
App. In the latter case, the first matching policy is applied. UserLoop also provides a
whitelist and a blacklist that can be used to bypass the rule system in special cases. The
entries to those lists are tuples composed of a package name and a set of permissions. The
use of a whitelist is especially useful in that it can be used to grant vital permissions to
important services like messaging Apps. At the same time, the blacklist can be used to
manually deny specific permission to Apps that the user does not trust.

4.2 XUserLoop
XUserLoop is the module in charge of placing the hooks into the Android OS. As the name
suggests, it relies heavily on the Xposed framework to achieve this goal.

XUserLoop intercepts the Android booting process and, at the right moment, registers
the UserLoop sevice, thus making it available to the client App. It also gets a reference to
the system server Context instance, as it needed for most operations involving the Android
framework.

By hooking the checkUidPermission(String permName, int uid) method, XUser-
Loop becomes the PEP of our security model. Whenever the Android PackageManager
grants a permission to an App, this module intercepts the return value of the check in
order to let the UserLoop service perform its additional checks. If Android’s permission
checking routine denies a request, XUserLoop simply returns the original value as we are
only interested in making the Android security model stricter. Thus, UserLoop never grants
a request that was denied by Android.

The explanation of XUserLoop’s inner workings is laid out in chapter 5 as it mostly
involve the technical details of hooking the internal components of the Android OS.

4.3 Context Tracker
The Context Tracker is one of the main modules of our system and provides contextual
information to the rest of UserLoop. In UserLoop, the context consists of a mix of data
gathered from the sensors and of information about software-based states. This module is
one of the key elements of our system, as every policy enforcement performed by UserLoop
uses the information about the context to grant or deny a permission request. Thus,
modeling the user context in an effective way is crucial in making the user more secure.

Being interested in understanding whether the user is using the phone or not, the most
valuable sensors are the rotation vector sensor, the accelerometer, the light sensor and

18 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

the proximity sensor. The rotation vector and the accelerometer are used to estimate the
position of the device in the 3D space and also to estimate the level of physical engagement
of the user. For example, if the accelerometer reports that the phone is in a still position it
is very likely that the user is not actually using it, even if the screen is on. The proximity
sensor is instrumental in checking if the phone is upside-down on a table, in a pocket or if
the user is facing the screen. Finally, the light sensor can augment the proximity data and
can also be used to check whether the user is sleeping or not.

In addition to these common Android sensors, UserLoop makes use of other information
from the OS. We identify five values which can significantly improve the value of UserLoop’s
security model: the screen state, the lock state, the visibility state of the App, the process
state and the time since the last user input. The first two are simple on/off boolean
values and are used to represent, respectively, if the screen is on or if it is locked. The
visibility state of the App is also a boolean value which encodes whether the App is in
foreground or in the background when it makes a permission request. The process state
takes a value of either system or user and enables us to differentiate between system Apps
and user-installed Apps. Finally, the time since the last user action is recorded. This is
useful to recognize scenarios in which the screen is on but the user is not paying attention
and is not actually interacting with the device. For this variable, we keep track of both the
global time since the last input and the time since the last input inside the App making
the permission request.

4.4 Policy Manager
Whenever an App requires a permission, the request reaches the Policy Manager module
with contextual information attached to it. Policies are defined as an ordered list of tuples

(permissionType, permission, dangerous, conditions, action),

where

• permissionType ∈ {SINGLE, GROUP, NULL} defines if permission refers to a
permission or to a permission group.

• permission ∈ Permissions ∪ PermissionGroups ∪ {NULL} is the name of a per-
mission or a permission group.

• dangerous ∈ {TRUE, FALSE, NULL} defines if the rule applies to dangerous
permissions, normal permissions or both.

• conditions is a list of conditions composed of a UserLoop contextual variable, a
comparison operator and a value. Such conditions are concatenated through the use
of multiple AND boolean operators.

• action ∈ {GRANT, DENY } defines the action that must be taken if all the conditions
are satisfied.

Chapter 4. Our proposal: UserLoop 19

In the policy definition, NULL attributes are considered to be matching regardless of
their actual value. We note that the user is spared from dealing directly with the policy
implementation language thanks to the client App.

UserLoop eliminates the risk of overlapping or conflicting policies by checking them in a
cascading manner. Because of this, the closer the policy to the start of the policy list the
higher its priority. Policy Manager also holds a global policy which has an empty condition
and therefore defines the default outcome when no other policy applies. The final user can
decide if this global policy should grant or deny requests not covered by any rule. The
Policy Manager interacts with the Policy Provider to retrieve and store policies. Thus, the
latter is basically a storage for policies.

In order to provide a more effective control on the permissions, they are grouped
according to the Android permission grouping. Such grouping differs from an Android
version to another and so groups are created at runtime by inspecting the Manifest class.
Using groups allows, for example, to use of a single UserLoop policy for both coarse and
fine location requests.

4.5 Client App
We provide a front end App to UserLoop in order to let the user review and tune the
policies shipped by default. Moreover, since we gather statistics about the permission
requests, we are able to show some useful information to let him quickly grasp if an App is
suspicious. For this reason, the UserLoop client App contributes to our security model by
giving feedback to the system.

In order to showcase the usefulness of UserLoop and its GUI, we developed a custom App
named EvilApp. EvilApp is a simple parking App which asks for the location information
to save it and later tell the user where he parked his car. We chose this simple scenario
because the Play Store is flooded with free Apps providing similar functionalities. Once
EvilApp gets the location permission, it sets up a periodic timer which is used to record
the user position without him being aware of it. The timer is also restarted after every
boot in order to make the threat persistent across reboots. We then deployed two simple
policies to deny dangerous permissions when an App is in background or when it has not
received user input recently. Figure 4.2 is an example of what the user would see upon
clicking on EvilApp inside the UserLoop GUI. It is immediately clear that it violated the
policies several times and also that it is recording the user location while it is running in
background. Figure 4.3 shows four of the main views present inside the client App. In
the current iteration of UserLoop, the data is stored on the device only for visualization
purposes, but with minimal changes it could be sent to a remote server to perform more
complex analysis.

20 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

Figure 4.2: Detailed views of an App inside the GUI

Chapter 4. Our proposal: UserLoop 21

Figure 4.3: UserLoop GUI

Chapter 5

Implementation

This chapter discusses the implementation of the main components and the hooking logic
used by UserLoop. Our system works at the framework level and is therefore implemented
in Java.

We begin in section 5.1 by giving a brief introduction of Xposed, the framework used to
implement the hooks needed by XUserLoop. We also analyze the choice of using it instead
of modifying directly the Android source code.

We then discuss XUserLoop itself in section 5.2. The module is central in bootstrapping
the UserLoop service at system startup and in placing the hooks required to perform the
UserLoop permission check.

Section 5.3 deals with the challenges faced in implementing an effective and power
efficient context tracking mechanism and how they were overcome.

Finally, section 5.4 gives an high-level view on how we implemented the permission
request logging in UserLoop, with a focus in keeping the system responsive even under a
load higher than normal.

5.1 Xposed
Xposed is a framework that makes it easy to change the behavior of any App on an Android
device without modifying any APK. It achieves this goal by allowing third-party modules to
hook java methods from other packages. Despite being an unofficial runtime modification
tool, it has seen wide adoption due to its flexibility and its ability to modify system Apps
without requiring the users to flash a custom ROM. For this reason, we chose to use it to
implement our system hooking routines.

Xposed works by installing a custom app process binary that is run at system startup
instead of the original one. The extended binary, once loaded, injects an additional jar file
in the classpath. This happens before the main of Zygote is called and therefore gives the
ability to perform operations inside the Zygote process itself[24].

The power of the framework comes from the fact that if provides facilities to hook and
replace any java method from any package on the system. This includes system Apps and

23

24 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

system service and so it can be used to hook the system Context. In UserLoop we exploit
this functionality to register a custom service inside system server. This is essentially the
same as modifying the Android source code and installing a custom ROM, but without
having to actually do it.

The main drawback of using Xposed is that it requires root privileges at installation
time. Moreover, they must be granted after every system update as updates wipe it from
the system by restoring the stock app process. Still, Xposed doesn’t technically require
root privileges after it has been installed.

From the security point of view, Xposed could pose a threat as malicious Apps could
trick the user into installing modules which would compromise the entire system. In fact,
while Xposed modules do not have root privileges, they can inject custom code in every
Android process and thus have control over potentially every part of the system. For this
reason, the Xposed module manager requires the user to manually activate a module after
it has been installed by an App.

5.2 XUserLoop
In this section we discuss XUserLoop, the component that performs all of the Android
OS hookings, starts the UserLoop service and execute our custom permission check using
contextual information.

5.2.1 UserLoop Service Injection
One of the key challenges in implementing UserLoop was to find the proper places in the
Android framework where to place the hooks needed for it to work. The first step that we
need to do in order to get the server part of our system up and running is to hook into the
Android startup procedure. To properly inject our custom service inside system server, we
need to wait long enough for the system to perform the initial setup of its core services, but
not too long. In fact, if UserLoop starts too late, its security could be compromised because
a malicious App would be able to bypass it. After evaluating different options, we decided
to place our hooking logic at the end of the systemMain() method of ActivityThread.
From here we are able to place hooks to get a reference to both the system Context
and the WindowManagerService, which will be used later to intercept touch-screen input
before it’s delivered to the Apps. The actual startup of UserLoop itself is delayed until the
systemReady() method of ActivityManagerService is invoked by Android.

The initial hooking is performed with the following code, executed inside Zygote:
1 Class <?> at = Class. forName (" android .app. ActivityThread ");
2 XposedBridge . hookAllMethods (at , " systemMain ", new XC_MethodHook ()

{
3 @Override
4 protected void afterHookedMethod (MethodHookParam param) throws

Throwable {

Chapter 5. Implementation 25

5 ... // Code to be executed at system startup
6 }
7 }

From inside the hook above, we get a reference to the system instance of Context by
intercepting the constructor of ActivityManagerService:

1 final ClassLoader loader = Thread . currentThread ().
getContextClassLoader ();

2
3 // Hook the system context
4 final Class <?> am = Class. forName (
5 "com. android . server .am. ActivityManagerService ", false , loader
6);
7 XposedBridge . hookAllConstructors (am , new XC_MethodHook () {
8 @Override
9 protected void afterHookedMethod (MethodHookParam param) throws

Throwable {
10 mSystemContext = (Context) param.args [0];
11 }
12 });

On line 10, UserLoop gets the reference to the system context. Every system service in
Android gets a copy of it as an argument to its constructor. In fact, just as for normal
Android Apps, most of the operations performed on the device require access to a Context
instance.

UserLoop then gets a reference to the WindowManagerService in a similar way:

1 // Get an instance of WindowManagerService
2 final Class <?> wm = Class. forName (
3 "com. android . server .wm. WindowManagerService ", false , loader
4);
5 XposedBridge . hookAllConstructors (wm , new XC_MethodHook () {
6 @Override
7 protected void afterHookedMethod (MethodHookParam param) throws

Throwable {
8 mWindowManagerService = param. thisObject ;
9 }

10 });

By hooking the constructor of the WindowManagerService, UserLoop is able to get access
to the instance just created. In Xposed, such instance is contained inside the thisObject
field of the hook argument param, of type MethodHookParam.

At this point, UserLoop has just to wait for the call to systemReady() and register its
service before the method is executed. The operation just described is performed by placing
an additional hook inside of the ActivityManagerService:

26 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

1 // Register the UserLoop service when the system is up and running
2 XposedBridge . hookAllMethods (
3 am ,
4 " systemReady ",
5 new XC_MethodHook () {
6 @Override
7 protected final void beforeHookedMethod (final MethodHookParam

param) {
8 if (mSystemContext == null) {
9 d(" System UserLoopContext is null :/");

10 }
11
12 UserLoopService . register (
13 mSystemContext , mWindowManagerService
14);
15
16 // Clean up unused references
17 mSystemContext = null;
18 mWindowManagerService = null;
19 }
20 }
21);

Finally, the registration is performed by calling the method addService(String
serviceName, IBinder service, boolean allowIsolated) of the Android
ServiceManager. The first argument is the name of the service being added, which will
later be used to access the functionalities it offers. The second argument is the instance
of the service that must be added. Its type is IBinder and this means that the service
must provide a Binder interface. This is usually done by creating an Android Interface
Definition Language (AIDL) file and letting the SDK tools generate the needed Stub
interface. The complete UserLoop interface definition is listed in Appendix B. The last
argument is a boolean flag which indicates whether or not Android’s isolated processes can
access the service. In the current iteration of the implementation it is set to true, but in
future versions it will be disabled as it shouldn’t be needed.

Unfortunately, the ServiceManager is not available in the standard SDK as it cannot
be used by regular Apps, so UserLoop needs to access it through the Java reflection API:

1 static void register (Context systemContext , Object wm) {
2 d(" Registering ...");
3
4 mUserLoopService = new UserLoopService (systemContext , wm);
5
6 Class <?> cServiceManager = null;
7 try {
8 d(" Adding service ...");

Chapter 5. Implementation 27

9 cServiceManager = Class. forName (" android .os. ServiceManager ",
false , null);

10 Method mAddService = cServiceManager . getDeclaredMethod ("
addService ", String .class , IBinder .class ,

11 boolean . class);
12 mAddService . invoke (null , SERVICE_NAME , mUserLoopService , true)

;
13
14 mUserLoopService .init ();
15 d(" Service added succesfully !");
16 } catch (ClassNotFoundException e) {
17 e. printStackTrace ();
18 } catch (NoSuchMethodException e) {
19 e. printStackTrace ();
20 } catch (IllegalAccessException e) {
21 e. printStackTrace ();
22 } catch (InvocationTargetException e) {
23 e. printStackTrace ();
24 }
25 }

On line 4, the UserLoop service instance is created and saved in a static variable.
On line 12, the service is added to the system server.

5.2.2 Policy Enforcement Point
As explained in chapter 4, every privileged request in the Android framework reaches
the checkUidPermission(String permName, int uid) method of class PackageManager
at some point. This is because such method is where Android’s permission checking is
performed. It is therefore the perfect place where to add the additional permissiong checking
routine that UserLoop must execute.

In order to add our custom login inside the PackageManager, we exploit Xposed’s ability
to set a listener that triggers when a new package is loaded by the Android OS:

1 @Override
2 public void handleLoadPackage (XC_LoadPackage . LoadPackageParam lpp)

throws Throwable {
3 if (" android ". equals (lpp. packageName)) {
4 d(" Hooking system_server ...");

Here, handleLoadPackage(...) gets called every time a package is loaded. Since UserLoop
is only interested in the PackageManager, it does not do anything if the hook is being
executed in the wrong process. PackageManager is one of the many services hosted by
inside the system server, whose process is named android.

If the check is successful, UserLoop proceeds by placing its permission checking logic
after checkUidPermission(...):

28 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

5 XposedHelpers . findAndHookMethod (
6 "com. android . server .pm. PackageManagerService ",
7 lpp. classLoader ,
8 " checkUidPermission ",
9 String .class ,

10 "int",
11 new XC_MethodHook () {
12 @Override
13 protected void afterHookedMethod (MethodHookParam param)

throws Throwable {

When the hook is executed, our custom logic is run inside PackageManager. Since the
hooks are placed before UserLoop is actually started, we first need to check if it is running:

14 // If system is still being initialized
15 if (! UserLoopService . isRegistered ()) {
16 return ;
17 }

If it is not running yet, we confirm the decision taken by PackageManager and return
immediately. It must be noted that the permission requests made before UserLoop is started
are performed by the Android OS, so allowing them no matter what does not pose a security
threat.

UserLoop then checks if the permission was already denied by the PackageManager. In
such case, UserLoop doesn’t need to perform additional checks since it only provides stricter
security guarantees than stock Android:

18 // If Android denied it we don ’t need to do anything else
19 boolean androidDenied = ((int) param. getResult ()) ==

PackageManager . PERMISSION_DENIED ;
20 if (androidDenied) {
21 return ;
22 }

Finally, XUserLoop reaches the UserLoop PEP and thus forward the permission check
to the UserLoopService:

23 // If we reach this point , it means that Android pre -
approved the request and we

24 // now need to enforce UserLoop policies .
25 PermissionAction action = UserLoopService . getClient ().

checkUidPermission (
26 (String) param.args [0], (int) param.args [1]
27);
28 param. setResult (action . equals (PermissionAction .GRANT) ?

PackageManager . PERMISSION_GRANTED : PackageManager .
PERMISSION_DENIED);

Chapter 5. Implementation 29

29 }
30 });
31 }
32 }

5.3 ContextTracker
Context Tracker is the UserLoop module that keeps track of the user context and hands
this information to the permission checking routine when needed. Most of the values that
compose the context are gathered from the sensors on the device with the usual APIs
that Android provides for user-installed Apps. For example, data from sensors such as the
accelerometer and the proximity sensor is recorded through a standard listener registered in
Android’s SensorManager. There are, however, four contextual variables that need special
handling: keeping track of the Activity currently in foreground, detecting input events,
checking whether the device is locked or not and checking if the screen is on.

In the following subsections we explain how we implemented the aforementioned opera-
tions.

5.3.1 Listening for Activity focus changes
The definition of UserLoop context requires knowledge about which App the user is currently
interacting with. In other words, UserLoop needs to always know the identity of the App in
foreground.

One way to achieve this goal is by polling the Android API that gives information about
the running tasks. However, polling is slow and not very precise: if an Activity is started
between a call to the API and the next, it would be treated as if it where in background.
Moreover, polling requires continuous busy-waiting, a situation that is better to avoid in a
resource-constrained device such as a smartphone.

After evaluating different options, we settled on using Xposed once again to hook into
the ActivityManagerService method setFocusedActivityLocked(ActivityRecord r,
String reason). This method is called by the Android framework whenever an Activity
needs to be in foreground. The ActivityRecord argument contains informations about
the App the Activity belongs to, including its UID.

Using a hook instead of a polling mechanism has the advantage of avoiding the busy-
waiting that is inevitable with the latter method. The code UserLoop uses to implement
this behavior is given in the following snippet:

1 XposedBridge . hookAllMethods (
2 am ,
3 " setFocusedActivityLocked ",
4 new XC_MethodHook () {
5 @Override

30 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

6 protected void afterHookedMethod (MethodHookParam param) throws
Throwable {

7 if (param.args [0] == null) {
8 return ;
9 }

10
11 // param = { ActivityRecord , String reason }
12 Class <?> cActivityRecord = Class. forName (
13 "com. android . server .am. ActivityRecord ", false , loader
14);
15 Field fAppInfo = cActivityRecord . getDeclaredField (" appInfo ")

;
16 fAppInfo . setAccessible (true);
17 ApplicationInfo appInfo = (ApplicationInfo) fAppInfo .get(

param.args [0]);
18 UserLoopService . getClient (). setFocusedApp (appInfo .uid);
19 }
20 }
21);

Once the UID is retrieved and given to the UserLoop service (line 18), it is available to the
Context Tracker at any moment.

5.3.2 Detecting Input Events
UserLoop’s context contains two variables which record the time since last input: one refers
to touches local to the App requesting a permission, the second to the global input of the
device. Android performs its low-level input handling routines with native code and there
is not an API to intercept all user inputs, probably for legitimate security concerns.

The Android OS has an internal class, WindowManagerPolicy, which allows for other
parts of the framework to register pointer event listeners. This seems to be the best place
to get information about all the touchscreen inputs, but unfortunately this functionality is
not available in the standard SDK. For this reason, we used Java’s reflection API to call
the registerPointerEventListener(...) method:

1 final Class <?> cPointerEventListener = Class. forName (
2 " android .view. WindowManagerPolicy$PointerEventListener "
3);
4 Method mRegisterPtrListener = mWindowManager . getClass ().

getDeclaredMethod (
5 " registerPointerEventListener ", cPointerEventListener
6);
7 Object oPointerEventListener = Proxy. newProxyInstance (
8 cPointerEventListener . getClassLoader (),
9 new Class []{ cPointerEventListener },

Chapter 5. Implementation 31

10 new InvocationHandler () {
11 @Override
12 public Object invoke (Object proxy , Method method , Object []

args) throws Throwable {
13 if (" equals ". equals (method . getName ())) {
14 if (! cPointerEventListener . isInstance (proxy)) {
15 Log.d(TAG , "not instance ");
16 return false;
17 } else {
18 return proxy == args [0];
19 }
20 } else if (" onPointerEvent ". equals (method . getName ())) {
21 onMotionEvent ((MotionEvent) args [0]);
22 return null;
23 }
24 Log.d(TAG , "Proxy method not implemented : " + method . getName

());
25 return null;
26 }
27 }
28);
29 mRegisterPtrListener . invoke (mWindowManager , oPointerEventListener)

;

On line 7, a new instance of PointerEventListener is created and is then registered in
the last line of the snippet.

5.3.3 Tracking the screen lock state
In order to give UserLoop the ability to behave differently when the screen of the device is
locked, it needs access to such information whenever a permission request reaches the PEP.

Fortunately, Android provide the state of the screen lock by a simple call to a standard
SDK API. This API is part of the Keyguard service and is implemented in UserLoop in the
following way:

1 public boolean isLocked () {
2 KeyguardManager mKeyguardManager = (KeyguardManager)

mSystemContext . getSystemService (Context . KEYGUARD_SERVICE);
3 return mKeyguardManager . inKeyguardRestrictedInputMode ();
4 }

5.3.4 Tracking the screen state
Knowing the screen state is another useful piece of information when implementing a
context-based security model such as UserLoop.

32 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

As for the screen lock, Android provides an official API to query the state of the screen.
Such API is managed by the DisplayManager service, which also supports multi-screen
devices. Being targeted at common smartphones, UserLoop considers the screens as being
on if at least one of them is on. In normal devices, this reduces to checking if the only
screen present is on. The following snippet of code shows the current implementation of
the functionality just described:

1 public boolean isScreenOn () {
2 DisplayManager dm = (DisplayManager) mSystemContext .

getSystemService (Context . DISPLAY_SERVICE);
3 for (Display display : dm. getDisplays ()) {
4 if (display . getState () != Display . STATE_OFF) {
5 return true;
6 }
7 }
8 return false;
9 }

5.4 Logging
The key functionality that is needed to provide useful information to the user in the
UserLoop client App is logging the permission requests. The Logger module stores not
only the identity of the App requesting a permission, but also the complete content of the
UserLoop context at the moment of the request.

Instead of using a textual log, we opted for using a SQLite database. The database has
a single table, named log, which stores a permission request per row. The main advantages
of this approach are that SQLite support is already baked in in Android and that it allows
the GUI to perform complex SQL queries, needed to visualize the data to the user, in a
clean way.

The client App implements a ContentProvider on top of the database to give the User-
Loop service the ability to insert new rows through the standard Android IPC mechanisms.
The service performs the row insertion asynchronously in a separate thread in order to
avoid blocking the system server when a high number of permissions are being requested
in a short time.

Chapter 6

Evaluation

In this chapter we discuss the thorough evaluation of our system by assessing its security
performance and its overhead compared with a clean device.

In particular, section 6.1 discusses the increase of the security offered by the Android
OS when equipped with UserLoop. We evaluated our system on a selection of free Apps
from the Play Store. Our results show that performing privileged operations while the user
is not in-the-loop in common practice among the Apps we analyzed.

In section 6.2 we evaluate the performance overhead introduced by UserLoop. We first
profiled the smartphone during normal usage in order to get a list of the privacy-related
permissions requested most frequently. For each permission, we then chose an operation
that triggers it and then performed a micro-benchmark with and without UserLoop. We
also measured how the overhead scales with the number of policies deployed on the system.

Our test device is a Nexus 6 from Motorola Mobility, running stock Android 6.0 and
Xposed version 87.

6.1 Security
We evaluated the security performance of our implementation using a sample of free Apps
from the Play Store. The default policy chosen for testing is to deny every request, but
a policy was added to grant non dangerous permissions to balance usability and security.
Moreover, system Apps are assumed to be safe and so they are trusted regardless of the
contextual information. Finally, we note that messaging Apps require constant internet
connection and contact list access and must therefore be whitelisted accordingly. Other
edge cases such as GPS navigation Apps, if they are used in background, must also be
whitelisted.

Before delving into empirical results, we observe that UserLoop comes into play only
after Android has already granted a permission to an App. For this reason, we are able to
conclude that it does not reduce the Android security. In fact, by performing additional
checks its security is always at least as good as Android’s. In our analysis we don’t consider
privacy breaches that happen while the user is interacting with the device as leaks, as those

33

34 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

would be prevented effectively only by not using an App.
For the evaluation, we chose 6 free Apps: Facebook, Skype, ES File Explorer , 360 Security

- Antivirus, Text Free by Pinger, Inc and Glide. The first four are widely known and
have more than 1M downloads while the others are less known but still have over 100.000
downloads. Facebook and Skype were chosen because, even if they come from well-respected
companies, their history raises privacy concerns. ES File Explorer is a famous file manager
which has recently started showing intrusive ads and including adware, according to many
user comments on the Google Play Store1. 360 Security - Antivirus is a free antivirus which
claims to also optimize background processes, memory space and battery power. We chose
to include it in our tests as an example of a ”boosting” app, because such Apps often come
with intrusive ads and nagging notifications2. The last two Apps, Text Free and Glide, were
reported to send potentially sensitive data to both its servers and to third-parties [25].

For the assessment of our system, we deployed the set of policies defined in Table 6.1.
During our preliminary testing we found that accelerometer and gyroscope data wasn’t
very useful with regards to our aim of making sure the user is in the loop. This is because
the current iteration of our system uses the instant value from the sensors, neglecting the
time dimension. Further work is required to see if an activity recognition-based approach
would yield better results.

Table 6.1: Policy set

ID Condition Action
R0 Location when App in foreground, screen on, phone unlocked GRANT
R1 Dangerous permission, App in background DENY
R2 Dangerous permission, no touch in the last 20 seconds DENY
R3 App in foreground, screen on, phone unlocked GRANT
R4 Screen on and unlocked, recent input inside the App GRANT
R5 Screen off, low light DENY
R6 Screen off, low proximity DENY
R7 SEND SMS permission, screen off DENY
R8 CALL PHONE permission, screen off DENY
R9 Non-dangerous permission, screen on, phone unlocked GRANT

In the initial phase of the security evaluation, we downloaded and installed the Apps on
our test device. We then proceeded by manually opening them and creating accounts where
required. After that, we performed manual testing by opening each App and interacting
with it. In this phase, we modified some contextual values un purpose in order to activate
the policies we deployed. Finally, we rebooted the phone and recorded the activity of the
Apps for two days.

1https://play.google.com/store/apps/details?id=com.estrongs.android.pop&hl=en
2https://www.reddit.com/r/androidapps/comments/4jqni5/list_of_apps_which_you_should_

not_use_at_all/

https://play.google.com/store/apps/details?id=com.estrongs.android.pop&hl=en
https://www.reddit.com/r/androidapps/comments/4jqni5/list_of_apps_which_you_should_not_use_at_all/
https://www.reddit.com/r/androidapps/comments/4jqni5/list_of_apps_which_you_should_not_use_at_all/

Chapter 6. Evaluation 35

The complete list of permission requests that UserLoop blocked is shown in Table 6.2.
We note that during our test 360 Security - Antivirus crashed several times as a result
of its permission requests being denied. We also note that the App makes an abnormal
amount of requests for permissions while the user is not in the loop and this reveals its
potentially malicious nature. As we expected, the permission blocked most frequently
is ACCESS NETWORK STATE. This is because such permission is often used to check
whether there is an active network connection or not, before actually conntecting to the
Internet. While the network state itself isn’t a very privacy-sensitive information, it allows
Apps to potentially track the user through the SSID of the Wi-Fi networks the phone
is connected to. For this reason, the decision to permit out-of-the-loop access to this
information should be made on a per-App basis through the use of the whitelist. Another
interesting result is that, with the exception of Skype, all the Apps request the GET TASKS
permission several times. This permission is used to get a list of the tasks running or
recently visited by the user. Google deprecated it in Android 5.0 because of potential
privacy leaks derived from the introduction of document-centric recents [26]. For example,
Chrome tabs, if shown in the App switcher, could leak information about the pages recently
visited by the user. To mitigate this threat, Android now returns a limited subset of
information which is considered to be not sensitive. Our analysis shows that, despite being
deprecated, GET TASKS is still widely used. Moreover, it is requested when the user is
not in the loop and is therefore blocked by UserLoop. The results for Glide and Text Free
confirm previous findings [25]: they both request permissions several times while the user is
not in the loop. The permissions, if granted, would give access to location, user accounts,
contacts, phone number and network information. Location access is especially suspicious
since these are messaging Apps and there doesn’t seem to be a reason for them requesting
such data so often. ES File Explorer requested the least amount of permissions but still
tried to access bluetooth and show an overlay window when the user wasn’t actively using
the App. Facebook requested READ CONTACTS and this suggest that it might transmit
the data to its servers. While this could be used to suggest friends, we believe this to be a
privacy leak anyway as the user is not explicitly informed of the action. Skype asks for the
network state several times, but what is more interesting is its use of CALL PHONE and
WRITE CONTACTS. The first permission is used to initiate a call without going through
the Dialer App. In our test, the permission was requested a suspicious number of times
even though no call was started. The second is also requested a non-negligible number of
times.

Figure 6.1 shows which policies trigger UserLoop’s request denials. Our findings suggest
that all the Apps perform sensitive operations while the user is not in the loop. UserLoop
successfully blocks them but a manual analysis of the Apps is required to see how they
operate on the information gathered. Unfortunately, it would involve reverse-engineering as
the source code is not available and is thus excluded from our research at this point.

It is important to note that a vast amount of Apps still targets pre-M Android versions
and therefore only ask for permission at install time. This happens even if the device is
running a more recent release in order to avoid backward compatibility issues. For security
reasons, we let UserLoop work also on pre-M Apps. Of course, this is a two-sided coin:

36 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

Table 6.2: Permissions blocked

Permission 36
0

Se
cu

ri
ty

E
S

F
ile

E
xp

lo
re

r

Fa
ce

bo
ok

G
lid

e

Sk
yp

e

T
ex

tF
re

e

ACCESS COARSE LOCATION 3 0 0 2605 0 489
ACCESS FINE LOCATION 6 0 0 2606 0 0
ACCESS NETWORK STATE 96064 130 8552 3366 13083 19908
ACCESS WIFI STATE 0 3 162 0 13084 0
BLUETOOTH 0 16 0 0 0 0
CALL PHONE 0 0 0 0 13078 0
GET ACCOUNTS 79765 0 1 4216 0 6208
GET TASKS 83641 70 148 878 0 5480
READ CALL LOG 0 0 0 1 0 0
READ CONTACTS 0 0 57 67 7 6
READ PHONE STATE 39566 116 0 451 6 485
SYSTEM ALERT WINDOW 0 2 0 1 0 0
WRITE CONTACTS 0 0 0 67 6544 0
WRITE SETTINGS 0 27 0 0 0 0
Total: 299045 364 8920 14258 45802 32576

on one hand, we can provide increased privacy to the user, on the other hand, old Apps
are likely to crash because they expect permissions to be granted at install time. Usually,
other systems work around this problem by granting the permission but providing fake
data to the requesting App. While this would work, it would also significantly increase the
complexity of the system as it would require hooks in every sensitive API to be implemented
effectively. We therefore leave this as an open issue for future investigations as it is beyond
the scope of this paper.

6.2 Performance
We measured the power consumption and the timing of the permission check before and
after the deployment of UserLoop in order to estimate its overhead in a real-world setting.
We also estimated how the system scales with the increase in number of policies installed
on a device.

In order to evaluate the power consumption of our system, we used the Power Monitor

Chapter 6. Evaluation 37

R
1

R
2

R
5

R
6

R
8

D
ef

au
lt

0

20000

40000

60000

80000

100000

120000
360 Security

R
1

R
2

R
5

R
6

R
8

D
ef

au
lt

0

20

40

60

80

100

120

140

160
ES File Explorer

R
1

R
2

R
5

R
6

R
8

D
ef

au
lt

0

1000

2000

3000

4000

5000

6000
Facebook

R
1

R
2

R
5

R
6

R
8

D
ef

au
lt

0

2000

4000

6000

8000

10000

12000
Glide

R
1

R
2

R
5

R
6

R
8

D
ef

au
lt

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Skype

R
1

R
2

R
5

R
6

R
8

D
ef

au
lt

0

2000

4000

6000

8000

10000

12000

14000
TextFree

Figure 6.1: Policies violated per App

38 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

FTA22D, manufactured by Monsoon Solutions, Inc3. However, our measurements showed
that in a small time-scale the increase in power consumption was undetectable. For this
reason, we switched to measuring the battery drop over a longer period of time. We
developed an App which requests a permission every second and let it run for three hours
on a fully charged device. During a typical day usage, our device records an average of
≈1.38 permissions requests per second. System Apps account for ≈0.95 permissions per
second while the rest comes from user-installed Apps. For this reason, by making a request
every second we can simulate a scenario that is more demanding than what we recorded on
our device. We then recorded the battery charge drop in terms of the percentage reported
by the Android OS. By repeating this experiment, we are able to estimate how the energy
consumption scales with the number of policies in place.

Figure 6.2 shows that the increase in power consumption induced by our system is
within an acceptable range. In particular, during normal usage we estimate the number
of policies to be well within 50. In such case, in a three hours period, the consumption is
increased by only 1%. It should also be noted that, in a real world scenario, denying a
permission for a computationally expensive operation could compensate for the increase in
power consumption caused by UserLoop.

0 100 200
Number of policies

50

60

70

80

90

100

Ba
tte

ry
 le

ve
l

Baseline
UserLoop

Figure 6.2: Battery level over three hours

We now proceed to evaluate the overhead introduced by UserLoop on the permission
checking process. This evaluation is performed with a series of microbenchmarks on
five operations which trigger permissions commonly requested by Apps. In order to
choose the operations, we profiled our test system for an entire day and listed the most
requested permissions. After removing system Apps and non-sensitive permissions we found

3https://www.msoon.com/LabEquipment/PowerMonitor/

https://www.msoon.com/LabEquipment/PowerMonitor/

Chapter 6. Evaluation 39

that the most requested permissions or permission groups were, in order of frequency:
READ CONTACTS, GET ACCOUNTS, READ PHONE STATE, WRITE CONTACTS
and LOCATION. We triggered them using the following operations:

• OP0: a query from Android’s contact list

• OP1: ActivityManager ’s getAccounts()

• OP2: SubcriptionManager ’s getActiveSubscriptionInfoForSimSlotIndex()

• OP3: an update of a contact from Android’s contact list

• OP4: LocationManager ’s getLastKnownLocation()

We run each of these operations for 1000 times and measured the time required to get a
return value.

Upon performing the first measurements, we noticed that the results weren’t consistent.
Our hypothesis was that the CPU frequency scaling governor was introducing an effect way
stronger than the overhead produced by UserLoop. In fact, the default CPUFreq governor
in the Nexus 6 is interactive, a governor which is designed to decrease power consumption
by adapting the CPU frequency to demand and user interaction [27]. We set a fixed CPU
frequency equal to the one interactive sets immediately after a screen touch in order to
reduce the variance introduced by the governor. After doing so, the timings were still
subject to high variance but the results began being consistent across different runs. The
results, per action, of the measurements are shown in Figure 6.3, where the central red line
represents the median value of the timing samples. Table 6.3 shows the mean overhead
measured by our benchmarks with varying number of policies deployed. The policies are
randomly generated, target one of the aforementioned permissions and include the check for
a contextual variable. We note that OP3 is a complex operation that requires the check for
both the READ CONTACTS and the WRITE CONTACTS permission and the overhead
is therefore higher than normal. The relative overhead measured by the benchmarks ranges
from a minimum of 0.339ms to a maximum of 1.563ms (excluding OP3 results). For short
operations, such as OP1, the overhead can be as high as 77%. For longer operations, such as
OP0 and OP3, it is lower than 10%. We conclude that the performance penalty introduced
by UserLoop is not negligible but, being well below 2ms in the worst case, it is reasonably
within the threshold at which a human would notice it. We also stress that the current
system implementation is not optimized for speed.

40 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

Table 6.3: Mean operation duration with varying number of policies (results in ms)

Operation Baseline 0 10 20 30 40 50
OP0 14,70 15,70 16,01 15,46 15,62 16,27 15,49
OP1 0,77 1,11 1,15 1,21 1,24 1,31 1,37
OP2 3,69 4,92 5,12 5,09 5,04 5,17 5,17
OP3 49,00 52,16 52,35 52,57 51,38 52,95 52,72
OP4 1,10 1,78 1,77 1,84 1,81 1,79 1,83

Chapter 6. Evaluation 41

baseline 0 10 20 30 40 50 60
5

10

15

20

25

30
Get Contact

baseline 0 10 20 30 40 50 60
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Get Accounts

baseline 0 10 20 30 40 50 60
0

5

10

15

20

25
Get Phone State

baseline 0 10 20 30 40 50 60
30

40

50

60

70

80

90

100
Update Contact

baseline 0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8
Get Location

Figure 6.3: Median overhead with increasing number of policies (values in ms)

Chapter 7

Conclusion

In this work we presented UserLoop, a security extension to the Android OS that takes
advantage of contextual information in order to block permissions requested when the user
is not in the loop. UserLoop provides a mechanism to make the Android permission system
more fine-grained through the use of context-dependent policies. Our evaluation shows that
it is a viable way to give more control to the user over the Apps’ usage of sensitive APIs. It
also shows that Android applications abuse the permissions they are granted and use them
when the user is not in the loop.

We believe that Apps should limit their usage of privacy-related operations while the
user is not interacting with the phone and UserLoop proved to be effective in preventing
this behavior. Moreover, by providing the user with information about permission requests
and policies violated, it allows him to review the set of installed Apps. User awareness of
privacy infringing applications could also result in negative reviews on the Play Store and
therefore increase the security of the entire user base.

7.1 Future work
We acknowledge that the core implementation of the system hereby presented could be
improved to make it more effective. To begin with, UserLoop works only at the framework
level and so, for example, native applications could easily bypass it. It could be extended
to perform policy enforcement also at the kernel level but this is beyond the scope of this
thesis. In fact, as it is customary in security research, it is assumed that an adversary
motivated enough can always find a way to bypass the implementation of a security model.

An interesting first step to improve UserLoop would be to analyze the data it records
while it’s operating. For example, data gathered from devices could be sent to a remote
server in order to perform computationally-heavy tasks which are prohibitive even on a
cutting-edge smartphone. This would allow us to apply machine learning techniques to
mine policies or to create a system which automatically alerts the user if malicious activities
are detected.

Machine learning could also be used to create a contextual model that, given raw sensor

43

44 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

data as the input, would create an abstracted set of variables in an activity-recognition
fashion. It would be interesting to see how activity information could improve our model of
the user context and therefore allow for more fine-tuned policies.

We also note that he current iteration of our work is not yet optimized for performance
and our analysis shows that there is room for improvement. A faster permission check would
allow us to reduce both the power consumption and the runtime overhead of UserLoop,
thus making it more useful for the final user.

Finally, we plan to apply UserLoop to systematically evaluate Apps from the Play Store
in order to get a better understanding of how and when permissions are requested. With
this information we hope to be able to tune our system and make the end user more secure
to privacy leaks.

Appendix

45

Appendix A

Configuration File

What follows is the configuration file used for the security evaluation. UserLoop configuration
is stored in a json file named config.json:

1 // Comments are OK (Gson strips them out by default)
2 {
3 // We trust system apps
4 " trustSystemApps ": true ,
5 // Save some space
6 " logSystemApps ": false ,
7 " defaultAction ": "DENY",
8
9 " blacklist ": {

10 "com. android . camera2 ": [" android . permission . INTERNET "]
11 },
12 " whitelist ": {
13 // WhatsApp
14 "com. whatsapp ": [
15 " android . permission . ACCESS_NETWORK_STATE ",
16 " android . permission . INTERNET "
17],
18 // Xposed Installer
19 "de.robv. android . xposed . installer ": [
20 " android . permission . ACCESS_NETWORK_STATE ",
21 " android . permission . INTERNET "
22],
23 // Facebook Messenger
24 "com. facebook .orca": [
25 " android . permission . ACCESS_NETWORK_STATE ",
26 " android . permission . INTERNET "
27]
28 },
29 // Permissions we don ’t want to monitor

47

48 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

30 " ignorelist ": [
31 " android . permission . CHANGE_WIFI_MULTICAST_STATE ",
32 " android . permission . GET_PACKAGE_SIZE ",
33 " android . permission . INTERNET ",
34 " android . permission . READ_EXTERNAL_STORAGE ",
35 " android . permission . WRITE_EXTERNAL_STORAGE ",
36 " android . permission . VIBRATE ",
37 " android . permission . WAKE_LOCK "
38],
39 "rules": [
40 {
41 "id": 0,
42 "name": " Position in Foreground ",
43 " description ": "Allow position requests from Apps that are

in foreground with screen on (even if there ’s no recent
input). Useful for maps applications .",

44 " permissionType ": "GROUP",
45 " permission ": " android .permission -group. LOCATION ",
46 " dangerous ": null ,
47 " conditions ": [
48 { " variable ": " VISIBILITY ", " operator ": "EQ", "value": "

FOREGROUND " },
49 { " variable ": " SCREEN ", " operator ": "EQ", "value": "ON" },
50 { " variable ": "LOCK", " operator ": "EQ", "value": " UNLOCKED

" }
51],
52 " action ": "GRANT"
53 },
54 {
55 "id": 1,
56 "name": " Dangerous Background ",
57 " description ": "Block requests for dangerous permissions

while an App is in background ",
58 " permissionType ": null ,
59 " permission ": null ,
60 " dangerous ": true ,
61 " conditions ": [
62 { " variable ": " VISIBILITY ", " operator ": "EQ", "value": "

BACKGROUND " }
63],
64 " action ": "DENY"
65 },
66 {
67 "id": 2,
68 "name": " Dangerous No Input",

Chapter A. Configuration File 49

69 " description ": "Block requests for dangerous permissions if
the user hasn ’t touch the phone in a while",

70 " permissionType ": null ,
71 " permission ": null ,
72 " dangerous ": true ,
73 " conditions ": [
74 { " variable ": " GLOBAL_INPUT_AGE ", " operator ": "GT", "value

": 20 }
75],
76 " action ": "DENY"
77 },
78 {
79 "id": 3,
80 "name": "App in use",
81 " description ": "Allow requests from Apps in foreground ",
82 " permissionType ": null ,
83 " permission ": null ,
84 " dangerous ": null ,
85 " conditions ": [
86 { " variable ": " SCREEN ", " operator ": "EQ", "value": "ON" },
87 { " variable ": "LOCK", " operator ": "EQ", "value": " UNLOCKED

" },
88 { " variable ": " VISIBILITY ", " operator ": "EQ", "value": "

FOREGROUND " }
89],
90 " action ": "GRANT"
91 },
92 {
93 "id": 4,
94 "name": "App recently used",
95 " description ": "Allow requests from Apps with recent touch

input",
96 " permissionType ": null ,
97 " permission ": null ,
98 " dangerous ": null ,
99 " conditions ": [

100 { " variable ": " SCREEN ", " operator ": "EQ", "value": "ON" },
101 { " variable ": "LOCK", " operator ": "EQ", "value": " UNLOCKED

" },
102 { " variable ": " APP_INPUT_AGE ", " operator ": "LT", "value":

"6" }
103],
104 " action ": "GRANT"
105 },
106 {

50 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

107 "id": 7,
108 "name": " Screen off and low light",
109 " description ": " Likely sleeping or phone in the pocket ",
110 " permissionType ": null ,
111 " permission ": null ,
112 " dangerous ": null ,
113 " conditions ": [
114 { " variable ": " SCREEN ", " operator ": "EQ", "value": "OFF"

},
115 { " variable ": "LIGHT", " operator ": "LTEQ", "value": 10 }
116],
117 " action ": "DENY"
118 },
119 {
120 "id": 8,
121 "name": " Screen off and screen touching surface ",
122 " description ": "Phone likely upside -down on a table or

inside a bag/ pocket ",
123 " permissionType ": null ,
124 " permission ": null ,
125 " dangerous ": null ,
126 " conditions ": [
127 { " variable ": " SCREEN ", " operator ": "EQ", "value": "OFF"

},
128 { " variable ": " PROXIMITY ", " operator ": "LTEQ", "value": 1

}
129],
130 " action ": "DENY"
131 },
132 {
133 "id": 9,
134 "name": "SMS with screen off",
135 " description ": "Don ’t send SMS when phone screen is off",
136 " permissionType ": " SINGLE ",
137 " permission ": " android . permission . SEND_SMS ",
138 " dangerous ": null ,
139 " conditions ": [
140 { " variable ": " SCREEN ", " operator ": "EQ", "value": "OFF" }
141],
142 " action ": "DENY"
143 },
144 {
145 "id": 10,
146 "name": "Call phone with screen off",
147 " description ": "Don ’t call when phone screen is off",

Chapter A. Configuration File 51

148 " permissionType ": " SINGLE ",
149 " permission ": " android . permission . CALL_PHONE ",
150 " dangerous ": null ,
151 " conditions ": [
152 { " variable ": " SCREEN ", " operator ": "EQ", "value": "OFF" }
153],
154 " action ": "DENY"
155 },
156 {
157 "id": 9999 ,
158 "name": "Non dangerous ",
159 " description ": "Allow non - dangerous when the phone is in use

",
160 " permissionType ": null ,
161 " permission ": null ,
162 " dangerous ": null ,
163 " conditions ": [
164 { " variable ": " SCREEN ", " operator ": "EQ", "value": "ON" },
165 { " variable ": "LOCK", " operator ": "EQ", "value": " UNLOCKED

" }
166],
167 " action ": "GRANT"
168 }
169]
170 }

52 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

Appendix B

UserLoop Interface Definition

What follows is the definition of the UserLoop Binder interface as declared in the file
IUserLoopService.aidl:

1 package it.unipd. montesel . userloop ;
2
3 import it.unipd. montesel . userloop . config . PermissionAction ;
4
5 interface IUserLoopService {
6 // System Guarded
7 void setFocusedApp (int userId);
8
9 // UserLoop GUI Guarded

10 void updateUidMap ();
11 void updateConfiguration (String config);
12
13 // No Check
14 PermissionAction checkUidPermission (String perm , int userId);
15 String hello ();
16 }

53

Bibliography

[1] The Guardian. Smartphone now most popular way to browse internet. 2015. url:
https://www.theguardian.com/technology/2015/aug/06.

[2] David Barrera et al. “A methodology for empirical analysis of permission-based
security models and its application to android”. In: Proceedings of the 17th ACM
conference on Computer and communications security - CCS ’10. 1. New York, New
York, USA: ACM Press, 2010, p. 73. isbn: 9781450302456.

[3] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. “CRePE: Context-Related
Policy Enforcement for Android”. In: 2011, pp. 331–345. isbn: 978-3-642-18178-8.

[4] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. “Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints Moham-
mad”. In: Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security - ASIACCS ’10 (2010), p. 328. issn: 9781605589367.

[5] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. “Flexible and fine-grained
mandatory access control on Android for diverse security and privacy policies”. In:
Proceedings of the 22nd USENIX Security Symposium (2013), pp. 131–146.

[6] J.A. Paradiso and Thad Starner. “Energy Scavenging for Mobile and Wireless Elec-
tronics”. In: IEEE Pervasive Computing 4.1 (2005), pp. 18–27. issn: 1536-1268.

[7] Arstechnica.com. Your iPhone calendar isn’t private. 2012. url: http://arstechni
ca.com/apple/2012/06/your-iphone-c.

[8] New York Times. Secret Back Door in Some U.S. Phones Sent Data to China, Analysts
Say. 2016. url: http://www.nytimes.com/2016/11/16/us/politics/china-
phones-software-security.html.

[9] Sven Bugiel et al. “XManDroid: A New Android Evolution to Mitigate Privilege
Escalation Attacks”. In: Technische Universität Darmstadt, Technical Report (2011),
pp. 1 –18.

[10] Rubin Xu et al. “Aurasium: Practical Policy Enforcement for Android Applications”.
In: Proceedings of the 21st USENIX conference . . . (2012), p. 27.

[11] Giovanni Russello et al. “FireDroid: hardening security in almost-stock Android”.
In: Proceedings of the 29th Annual Computer Security Applications Conference on -
ACSAC ’13 (2013), pp. 319–328.

55

https://www.theguardian.com/technology/2015/aug/06
http://arstechnica.com/apple/2012/06/your-iphone-c
http://arstechnica.com/apple/2012/06/your-iphone-c
http://www.nytimes.com/2016/11/16/us/politics/china-phones-software-security.html
http://www.nytimes.com/2016/11/16/us/politics/china-phones-software-security.html

56 UserLoop: User-in-the-Loop verification for Privacy Protection in Mobile Applications

[12] Michael Dietz et al. “Quire: lightweight provenance for smart phone operating systems”.
In: Proceedings of the 20th USENIX conference on Security 271.2012 (2011), p. 23.
arXiv: 1102.2445.

[13] Xuetao Wei et al. “Permission Evolution in the Android Ecosystem”. In: ACSAC
’12 Proceedings of the 28th Annual Computer Security Applications Conference April
2009 (2012), pp. 31–40.

[14] Giovanni Russello et al. “MOSES”. In: Proceedings of the 17th ACM symposium on
Access Control Models and Technologies - SACMAT ’12. New York, New York, USA:
ACM Press, 2012, p. 3. isbn: 9781450312950.

[15] Yifei Wang et al. “Compac: enforce component-level access control in android”. In:
Codaspy (2014), pp. 25–36.

[16] Yajin Zhou et al. “Taming information-stealing smartphone applications (on android)”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 6740 LNCS.November 2009 (2011),
pp. 93–107. issn: 03029743.

[17] Machigar Ongtang et al. “Semantically Rich Application Centric Security in Android”.
In: Acsac ’09 August 2011 (2009), pp. 658–673. issn: 1063-9527.

[18] Yaser Mowafi et al. “A Context-aware Adaptive Security Framework for Mobile
Applications”. In: Proceedings of the 3rd International Conference on Context-Aware
Systems and Applications - ICCASA ’14. ICST, 2014, pp. 147–153. isbn: 978-1-63190-
005-1.

[19] Xueqiang Wang et al. “DeepDroid: Dynamically Enforcing Enterprise Policy on
Android Devices”. In: Symposium on Network and Distributed System Security (NDSS)
February (2015), pp. 8–11.

[20] Michael Backes et al. “Boxify: Full-fledged App Sandboxing for Stock Android”. In:
24th USENIX Security Symposium (USENIX Security 15) (2015), pp. 691–706.

[21] Earlence Fernandes et al. “FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks”. In: Usenix Security (2016), pp. 531–548.

[22] Android Open Source Project. ART and Dalvik. 2017. url: https : / / source .
android.com/devices/tech/dalvik/index.html.

[23] Xamarin Inc. Android permission work-flow. url: https://blog.xamarin.com/
requesting-runtime-permissions-in-android-marshmallow/.

[24] How Xposed Works. url: https://github.com/rovo89/XposedBridge/wiki/
Development-tutorial{\#}how-xposed-works.

[25] Jinyan Zang et al. “Who knows what about me? A survey of behind the scenes
personal data sharing to third parties by mobile apps”. In: Technology Science 30
(2015).

http://arxiv.org/abs/1102.2445
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://blog.xamarin.com/requesting-runtime-permissions-in-android-marshmallow/
https://blog.xamarin.com/requesting-runtime-permissions-in-android-marshmallow/
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial{\#}how-xposed-works
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial{\#}how-xposed-works

BIBLIOGRAPHY 57

[26] Android Open Source Project. ActivityManager documentation. url: https : / /
developer.android.com/reference/android/app/ActivityManager.html.

[27] Android Open Source Project. Android Kernel Source. url: https://android.goog
lesource.com/kernel/msm/+/de9a6d36157b3eb10f72d6401a78277e3cc01a08.

https://developer.android.com/reference/android/app/ActivityManager.html
https://developer.android.com/reference/android/app/ActivityManager.html
https://android.googlesource.com/kernel/msm/+/de9a6d36157b3eb10f72d6401a78277e3cc01a08
https://android.googlesource.com/kernel/msm/+/de9a6d36157b3eb10f72d6401a78277e3cc01a08

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Organization

	2 State of the Art
	2.1 Android source code modification
	2.2 Firmware Modification
	2.3 Application Repackaging
	2.4 Sandbox-based approaches

	3 Android
	3.1 Security model
	3.2 Android Permission Check

	4 Our proposal: UserLoop
	4.1 Architecture
	4.2 XUserLoop
	4.3 Context Tracker
	4.4 Policy Manager
	4.5 Client App

	5 Implementation
	5.1 Xposed
	5.2 XUserLoop
	5.2.1 UserLoop Service Injection
	5.2.2 Policy Enforcement Point

	5.3 ContextTracker
	5.3.1 Listening for Activity focus changes
	5.3.2 Detecting Input Events
	5.3.3 Tracking the screen lock state
	5.3.4 Tracking the screen state

	5.4 Logging

	6 Evaluation
	6.1 Security
	6.2 Performance

	7 Conclusion
	7.1 Future work

	Appendix
	A Configuration File
	B UserLoop Interface Definition

