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Abstract

Radio frequency indoor sensing technologies are becoming a widely studied topic in
recent years due to their large applicability in security and monitoring systems. In
this work the problem of person identification from the reflected signal of a radar de-
vice is addressed, exploiting the Doppler effect caused by small motions that happen
as the subject moves. This phenomenon, called micro-Doppler signature, is specific
of each person depending on the particular reflective properties of the individual
and can be used as a discriminator of the person identity among a group. To extract
and process the complex features of the signal that carry the micro-Doppler infor-
mation a novel processing algorithm is proposed, comprising adaptive denoising,
density based clustering and classification. The classifier structure makes use of the
recent developments in deep learning models to perform automatic feature extrac-
tion. The evaluation of the proposed approach is carried out on a publicly available
dataset of indoor mm-wave radar measurements, resulting in an improvement over
the state of the art in both accuracy of the classification and adaptability of the de-
signed processing pipeline. An accuracy ranging from 84 to 90% was reached among
5 subjects, depending on the level of information available on the noise distribution.
The clustering phase, on the other hand, allowed to separate contributions from
multiple targets present in the environment enabling multi-person identification, a
not yet explored application in the literature. Multi-person identification is demon-
strated on own measured data from a mm-wave device and 2 subjects, showing the
versatility of the approach.
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Sommario

Le tecnologie di indoor sensing a radiofrequenza stanno guadagnando crescente
interesse negli ultimi anni per la loro applicabilità ai sistemi di sicurezza e di moni-
toraggio. In questa tesi viene affrontato il problema dell’identificazione di persone
dal segnale reflesso di un dispositivo radar, sfruttando l’effetto Doppler causato dai
piccoli movimenti che avvengono durante la camminata. Questo fenomeno, chiam-
ato firma micro-Doppler, è specifico di ogni persona: dipende dalle particolari pro-
prietà riflettive dell’individuo e può essere utilizzato per distinguere l’identità del
soggetto all’interno di un gruppo. Per estrarre e processare le complesse carat-
teristiche del segnale, contenenti le informazioni riguardo all’effetto micro-Doppler,
viene proposto un nuovo algoritmo che comprende le fasi di rimozione del rumore
in maniera adattiva, di clustering e infine di classificazione. Il classificatore utilizza
i recenti modelli proposti nel campo del deep learning per effettuare un’estrazione
automatica delle caratteristiche del segnale. L’approccio proposto è stato valutato
su un dataset pubblicamente disponibile ottenuto con un radar a onde millimet-
riche, ottenendo dei risultati che migliorano lo stato dell’arte sia come precisione
nella classificazione che nell’adattabilità degli algoritmi. L’accuratezza ottenuta
varia dall’84 al 90% tra cinque soggetti, in base a quanta informazione è disponibile
sulla distribuzione del rumore. La fase di clustering, inoltre, permette di separare il
contributo di diversi soggetti presenti contemporaneamente nell’ambiente rendendo
così possibile l’identificazione di persone multiple, argomento ancora non trattato
in letteratura. La dimostrazione di questo fatto è stata condotta su dei dati mis-
urati con un dispositivo radar a onde millimetriche su due soggetti, mostrando la
versatilità dell’approccio proposto.
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1
Introduction

In the field of wireless communications signals transmitted from a source are re-
ceived in multiple reflected and attenuated copies at the receiver due to the mul-
tipath effect. This aspect, usually considered as negative from a communication
standpoint, can be exploited in another perspective to gain information about the
location and the type of obstacles in the environment from the features of the
backscattered signal, as recent research works have shown [4]. The most prominent
development in this sense regards the use of radar sensors, a consolidated technology
that exploits reflected radio waves to infer the position and velocity of certain tar-
gets present in the environment. Recently, however, the technological development
of antenna arrays and the extensive utilization of mm-wave transceivers, i.e. wire-
less transmitters and receivers using frequency bands above 10 GHz, has increased
the interest in applications exploiting the information available from reflected radio
waves, giving birth in the lat few years to the field of radio sensing. Research on
this topic aims at utilizing fine-grained information on the wireless signal such as
phase changes and the so called micro-Doppler effect to infer a precise and detailed
description of particular aspects of the environment, especially the presence and
behavior of humans. Applications of this concepts range from obstacles and pedes-
trian detection in the automotive field to the monitoring of indoor environments
for health care or security purposes. With respect to widely used devices such as
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wearable sensors, LIDARs∗ and cameras, radio waves have several benefits: they are
relatively low-cost and energy efficient, they do not require good light conditions to
work effectively and do not suffer from performance degradation if dust is present in
the environment, finally, no device needs to be worn or carried by a human subject.
The above advantages come at the cost of processing complexity. Due to the many
hardware non-idealitities and to the difficulty of precisely model multipath reflec-
tions, which are subject to a countless number of disturbances and unpredictable
variations, extracting useful features from the received signal is a difficult task.
These problems can however be tackled by using an empirical, measurement-based
approach, with the aid of modern deep learning algorithms that allow automatic fea-
ture extraction from data and that have shown their effectiveness in a large number
of fields including signal processing and time-series analysis.

1.1 Person Identification from micro-Doppler Signatures

In this work we focus on person identification from the features of the reflected radar
signal by the person itself. In particular, the micro-Doppler (µ-D) effect caused by
gait is used to identify a person among a group from their individual specific fea-
tures. The physical phenomenon of µ-D effect refers to the frequency modulation
of the reflected signal caused by small motions of the reflector such as rotations
and vibrations [22]. If the target is a walking human, its specific way of walking,
i.e. the gait, causes a peculiar µ-D signature in the reflected waveform that under
appropriate processing can be used to identify the subject distinguishing it from oth-
ers. This application of radio sensing has recently gained increasing attention both
from the industry and the research community for the huge impact it could have on
security and surveillance systems, allowing identification of intruders even in bad
visibility conditions. We restrict the discussion to the case of indoor environments
and mm-wave radar devices for two reasons: first, indoor environments are more
challenging for being more affected by secondary and unwanted reflections due to
walls and static objects that cause disturbance to the identification process, second,
mm-wave radars enable higher precision and resolution properties, especially when
dealing with µ-D signals as shown in Section 2.5.

∗Laser Imaging Detection and Ranging is a technique that allows a precise mapping of objects
and surfaces in an environment using laser impulses.
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Here, we analyze the problem of identification from the µ-D signature of gait
starting from the raw data obtained by the radar to the final classification of the
subject. We propose a signal processing workflow that, using a different approach
from those found in the literature, allows the adaptive denoising, clustering and final
classification of the µ-D signals. The contributions of this study can be summarized
as follows:

1. The development of a time-adaptive denoising algorithm that operates on
the radar range-Doppler maps (see Section 2.3) based on a non-parametric
statistical estimation technique called Kernel Density Estimation (KDE).

2. The application of density-based clustering algorithms (HDBSCAN) to isolate
and manage the reflections from multiple targets, allowing a more accurate
and powerful denoising and the possibility of multi-target identification.

3. The implementation of an elaborate classifier architecture based on deep Con-
volutional Neural Networks (CNN) and Inception Modules (IM) that carries
out the task of automatic feature extraction and classification in the consid-
ered complex setting.

4. The experimental evaluation of the proposed algorithms on a mm-wave radar
dataset and, partially, on independently measured data.

The evaluation of the proposed algorithms will be done on a public dataset of
µ-D data from 5 different subjects, obtaining an accuracy as high as 90% in classi-
fying the identity of the specific person among the group of 5, outperforming the
classifiers from the literature. We stress, however, that the most important contri-
bution of this work is in the novel approach to the pre-processing of the data: an
adaptive denoising phase and clustering enable future developments in the direction
of multiple-subject identification, a not yet studied setup.

The thesis is structured as follows. In Chapter 2 a basic overview of radar devices
is presented, focusing on the mathematical model of the transmitted and received
signals in the specific case of Frequency Modulated Continuous Wave (FMCW)
radars. The second part is dedicated to the mathematical description and derivation
of the range-Doppler maps and the µ-D spectrograms, the main signals discussed in
the thesis. In Chapter 3 the main algorithms used to process the data are thoroughly
reviewed, from the density estimation technique used for denoising, KDE, to density
based clustering and deep learning. A large part of this chapter focuses on the CNN
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description as one of the fundamental tools in recent deep learning applications,
along with the training algorithms and optimization techniques used. Chapter 4
presents a detailed discussion of the proposed solution, proceeding step by step
through the processing phases and design choices. In Chapter 5 an evaluation of
the algorithms is carried out, presenting their performance and effectiveness under
different metrics. Chapter 6 presents the conclusions drawn from the study and a
brief discussion on possible future developments of this work.

1.2 State of the Art

The problem of human identification from radar sensors is a recent topic in the
literature that is rapidly gaining momentum. Many works have been published
targeting the classification of the subject identity from the µ-D signature of gait
using radio signals [5, 3, 6, 7, 8, 9, 10]. Other studies focus on human activity
recognition or vital signs detection [11, 12, 13, 14, 15, 16, 17]. The general setup
is the recognition of different human movements and activities from the features
of the backscattered signal for security or smart-home applications [11, 12, 13, 14],
or the tracking of the respiration rate and heartbeat as these cause a detectable
movement of the subject’s chest [15, 16, 17].

In [11], Principal Component Analysis (PCA) is employed to extract features from
µ-D spectrograms and a CNN is used as a classifier for a crowd-counting application.
A similar aim is pursued in [12], but here the authors exploit the feature-extraction
capabilities of deep learning models and only use a deep CNN. The model is able
to learn automatically what features to keep from the data and at the same time
perform the classification.

A more complex deep learning architecture is used in [13] to classify µ-D signa-
tures into 12 different classes corresponding to activities such as running, walking,
crawling, falling and others. A deep CNN whose weights are initialized by means of
an auto-encoder is adopted, using filter concatenation techniques to extract small
scale and wide scale information from the input concurrently.

In outdoor environments radars are also used for automotive applications, as in
[14] for vulnerable road users classification. The authors developed a CNN classifier
to distinguish if detected obstacles in the radar range are other cars, cyclists or
pedestrians, guaranteeing an accuracy of 94 % and 87% on two different test sets.
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Mm-wave radars provide interesting sensing capabilities also in the health-care
field. In [15] a low power FMCW radar at 77 GHz is used to successfully measure the
respiration rate and the heartbeat of a person with bare chest in front of the device.
Despite the un-realistic setup, the study proves that the small movement of the
chest due to the heart beating and respiration is detectable and can be monitored
without the person needing to wear any sensor or additional device. [16] and [17]
also target the respiration rate estimation, the first using a classical signal processing
approach and an ad-hoc radar device, the second using a 1D deep CNN. In [17], in
addition, a classification between 4 different respiration patters was performed with
considerable accuracy.

The main focus of this thesis is however gait recognition and person identification.
For this reason a more detailed description of the works on this topic is provided in
the following.

In [5] the authors employ for the first time a classifier based on the deep CNN
AlexNet† to identify a person from the µ-D signature of gait, reaching an accuracy
of about 97% with 4 subjects. Differently from our setup, their experiment takes
places in an outdoor environment, where correlated noisy reflections from static
objects are typically weaker: walls in indoor environments are significantly close to
the target of interest in most scenarios and they cause the noise level to increase
making the extraction of the useful signal features harder.

Chen et al. [8] instead utilized a multi-static radar with three nodes and a pre-
trained deep CNN for image recognition in order to classify an armed/non-armed
person or identify a person between two subjects in an indoor environment, mostly
for security applications. In [6] a complex novel CNN architecture is presented,
based on the technique of adaptive weight learning, for the identification of a person
identity using the µ-D signature of six different movements including walking and
running. Running turned out to be the most discriminative action, providing an
identification accuracy of 95.21% among 15 subjects.

The above studies focused on simplified experimental scenarios, where the person
had to be constrained walking on a straight line in radial direction from the device.
In [7] instead a treadmill positioned at different distances from the radar is used,

†Krizhevsky Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet classification with deep
convolutional neural networks.” Advances in neural information processing systems. 2012.
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and a ResNet50‡ neural network is trained for the classification of 22 subjects.
This approach can be useful to simplify the classification by making gait features
more evident, but is not realistic and lacks the generality needed for a practical
application.

Vandersmissen et al. [3] instead used a dataset where 5 subjects are free to
walk randomly in two different rooms to train a CNN classifier, attempting to move
towards a more robust learning. However, some insight on the data statistical distri-
bution is needed to lower the noise level by thresholding, otherwise the classification
performance of the network drops significantly. This may limit the applicability of
this approach in situations where the noise level changes from time to time, or
where an analysis of the noise distribution cannot be conveniently carried out. The
same authors also propose two improvements over this baseline. In [9] a Reservoir
Computing Network (RCN) is employed. This kind of model is based on Extreme
Learning Machines (ELM) [18] and is particularly suited to problems where training
speed is an important factor as they are typically solvable in closed form and only
require few seconds/minutes to be trained. The accuracy results are obtained on
raw data without noise removal but are still inferior to the baseline in [3]. In [10]
a generative model based on Deep Hidden Markov Models (DHMM) is utilized to
generate hidden states corresponding to the gait features of the target. On top of it,
a RNN classifier provides the labels for the classification task receiving as input the
generated states. At the cost of requiring a further log-scaling in the pre-processing
steps, in addition to noise thresholding, this network provides a significant improve-
ment in terms of accuracy with respect to [3]. The problem of low generality of
this kind of processing, however, remains because the denoising is still tailed to the
specific dataset and no separation of multiple targets is possible.

In this thesis we enhance the accuracy of the identification and aim at generalizing
even more the classifier capabilities. On one hand we do not make use of any dataset-
specific parameter or prior knowledge on the noise distribution and we propose a
signal processing framework that can work adaptively on any µ-D spectrogram
data; on the other hand our algorithm can be easily extended to the case where
multiple subjects are walking at the same time in a room, selecting automatically
the reflection from each individual and carrying out the identification independently.

‡He Kaiming, et al. ”Deep residual learning for image recognition.” Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.
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2
Overview of the Radar Technology

This chapter provides a general overview of the working principles of radar devices.
The topic is too wide for an accurate review of the related literature, so the focus
will be on the particular technology used in the experimental work of this thesis,
that is the Linear Frequency Modulated Continuous Wave (LFMCW) radar, treated
in Section 2.2. However, an attempt to put this description into perspective is made
in Section 2.1, providing the basics of radar target detection and a classification of
existing technologies.

2.1 Introduction to Radar Devices

A radar is an electronic system that transmits radio-frequency (RF) electromagnetic
waves in the environment, usually towards a preferred direction, and receives the
reflected signal from the objects located in the radiation area [1]. The received wave
can be processed to obtain interesting properties of the targets, such as the distance
from the device (range), the velocity component in radial direction from the radar
and the position in space.

The main blocks of a generic radar architecture are shown in Figure 2.1.

1. Transmitter: generates the waveform to be transmitted.

2. Antenna: propagates the waveform into the transmission medium (i.e. the
atmosphere).
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3. Switch: ensures that the antenna is used only by the transmitter or by the
receiver at a given time.

4. Receiver: amplifies the received signal and performs the mixing and demod-
ulation depending on the type of radar device.

5. Signal Processor: operates on the output of the receiver to analyze the
data, performing the target detection.

Figure 2.1: General block diagram of a radar device, figure from [1].

There are many factors that may compromise the detection of the target: thermal
noise in the receiver circuits, unwanted reflections, called clutter, from other objects
different from the target (i.e. buildings or trees in an outdoor environment, walls
in an indoor environment) or interference from other RF sources.

The most basic operation that can be performed by a radar is the target range
estimation, that is the measurement of the distance of the target from the device.
This can be done by, upon receiving the reflected signal from the target, comput-
ing the delay of this reception with respect to the original waveform transmission,
called τ . Then the expected range of the target can be computed as:

R =
cτ

2
, (2.1)
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where the factor 2 accounts for the fact that the distance R is traveled two times by
the signal and c ≈ 3× 108 m/s is the speed of light. To precisely compute τ some
kind of timing mark is needed on the signal, like the waveform being time-limited,
though not all kind of radar devices provide this, as we will see in the following.

Another quantity of interest is the velocity of the target. This can be estimated
exploiting the physical phenomenon called Doppler effect: when a moving object
comes in contact with an electro-magnetic wave with frequency f , the reflected
wave undergoes a frequency shift f + fd where fd is the Doppler frequency:

fd = 2 · v
c
· f =

2v

λ
, (2.2)

where λ = c/f is the wavelength and v is the relative velocity of the target with
respect to the radar. The factor 2 is due to the fact that the Doppler effect affects
both the waveform emitted from the transmitter and encounters the target and the
reflected copy from the target itself that becomes a secondary source.

2.1.1 Basic Radar Configurations and Waveforms

Radar devices are classified according to their antenna configuration in two main
categories:

• Mono-static: the receiver and transmitter antennas are the same device, or
are very close to each other (i.e. on the same structure).

• Bi/multi-static: the transmitter and receiver antennas are enough separated
in space to consider them as different devices. In the case of muli-static radars,
multiple receiver antennas are displaced in the environment to capture target
reflections from multiple angles.

It is important to notice that what distinguishes the two categories is the distance
between the TX/RX antennas and not the fact that they are the same antenna or
not.

Regarding instead the waveform type, we have the pulsed and the continuous
wave radar:

• Continuous wave (CW): the transmitted waveform is continuous in time,
therefore the device is always transmitting when in operation. This kind
of radar is highly sensitive to transmitter/receiver interference because they
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need to work simultaneously. For this reason in CW radars usually the bi-
static configuration is preferred and the applications are usually limited to
close-range [1]. Plain CW transmission can not be used for range estimation
because the signal lacks the needed timing mark to compute the delay of the
reflection. The velocity of the target is instead easily estimated by computing
the frequency shift on the received waveform.

• Pulsed: the waveform is limited in time to an interval T called pulse width.
Pulses are sent each pulse repetition interval (PRI), denoted in the following
by TREP , and the idle time between the end of the transmission and the
successive one is used by the receiver to detect the reflected signal. During
transmission the receiver is completely turned off to avoid interference. To
perform the detection, after transmitting a pulse the received signal must
be sampled with a sampling period long at most T , otherwise the returning
waveform may be missed.
Target ranging can be performed by computing the delay of the returning
pulse during the detection, while velocity estimation is usually performed
on a pulse-to-pulse basis, sampling the Doppler shift at the pulse repetition
frequency (PRF) fREP = 1/TREP .

The radar device considered in this thesis belongs to the category of LFMCW
radars, that exploit linear frequency modulation of the transmitted waveform and
a CW approach, as described in the following section.

2.2 LFMCW Radar Model

The LFMCW radar combines the benefits of continuous wave transmission, that is
radial velocity estimation, with the capability to estimate the range of the target.
This is performed by means of transmitting a sequence of chirp signals of duration
T every TREP , where the frequency of transmission is linearly increased from a
base value f0 to a maximum f1, as depicted in Figure 2.2. We denote the quantity
B = f1 − f0 as the bandwidth of the chirp pulse. Therefore, the expression of the
instantaneous frequency of the transmitted signal is [19]

fTX(t) = f0 +
B

T
t = f0 +Kt for 0 ≤ t ≤ T, (2.3)

where we defined the chirp constant K = B/T , that is the slope of the linear relation
between time and frequency of the signal.
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Figure 2.2: Visual representation of the chirp signal parameters.

By definition, the phase of the transmitted signal ϕTX(t) is related to the instan-
taneous frequency by the following relation

1

2π

dϕTX(t)

dt
= fTX(t), (2.4)

so we can derive it as [19]

ϕTX(t) = 2π

∫ t

0

fTX(t′)dt′ = (2.5)

= 2π
[
f0t

′ + 0.5Kt′2
]t
0
= (2.6)

= 2π
(
f0t+ 0.5Kt2

)
. (2.7)

If we assume to transmit a complex exponential signal, its expression will then
be:

s(t) = ej2π(f0+0.5Kt)t for 0 ≤ t ≤ T (2.8)

according to the above argument. In practice radar devices transmit real sinusoidal
signals, but the overall discussion is substantially the same.
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2.3 Range and Velocity Estimation

The common assumption done with radar devices is that the signal will encounter
the target at some point in space, generating a backscattered copy that can be
detected at the receiver antenna. For now we assume that the receiver has a sin-
gle antenna element, while the extension to the Multiple Input Multiple Output
(MIMO) case will be done in the next section.

The reflection will be equal to the transmitted waveform with a delay τ depending
on the distance of the target from the radar R and its relative radial velocity v. In
addition, we need to add a multiplicative complex constant α to account for the
reflective properties of the material of the target and a noise term w(t), due to the
thermal noise receiver electric circuitry, that we assume to be zero-mean, Gaussian
and circularly symmetric. The final expression for the received signal is therefore
[20]

r(t) = αs(t− τ) + w(t), (2.9)

where τ can be expressed as:
τ =

2(R + vt)

c
. (2.10)

With c we denoted the speed of light c = 3 · 108m/s and the factor 2 accounts for
the round trip distance.

f		TX	(t)												

	s(t)

r(t)*

y(t)

TX

RX

Figure 2.3: FMCW radar simplified block diagram.

Typical receiver implementations for an FMCW radar compute the conjugate

12



product of the transmitted and received signal through a mixer, obtaining the so
called beat signal (see Figure 2.3)

y(t) = s(t)r∗(t) = (2.11)
= αej2π(f0t+0.5Kt2−f0(t−τ)−0.5K(t−τ)2) + w′(t) = (2.12)
= αej2π(f0τ+Ktτ−0.5Kτ2) + w′(t) ≈ (2.13)
≈ αej2π(f0τ+Ktτ) + w′(t), (2.14)

where the last approximation is motivated by the fact that usually τ/T ≪ 1 so
the second order term at the exponent can be neglected [19], and w′(t) is a rotated
version of w(t) with the same statistics. The beat signal is the starting point for the
estimation of the range and velocity of the target. If we substitute Equation (2.10)
into Equation (2.11), we obtain

y(t) ≈ αej2π(
2f0R

c
+

2f0v
c

t+ 2KR
c

t+ 2Kv
c

t2) + w′(t). (2.15)

The second order term at the exponent is called range-Doppler coupling and can
be neglected as before. Grouping together the terms that depend on t we get

y(t) ≈ αej2π[
2f0R

c
+( 2f0v

c
+ 2KR

c )t] + w′(t), (2.16)

where it is evident how the frequency shift on the received signal has a component
due to the Doppler effect 2f0v/c = 2v/λ = fd, with λ being the wavelength, and
one due to the distance of the target from the radar that we call beat frequency
fb = 2KR/c.

At the output of the mixer we sample y(t) with sampling frequency fs = 1/Ts.
This operation is called fast time sampling and is performed on each transmitted
chirp pulse. The result can be written as:

y(n) ≈ αej2π[
2f0R

c
+(fd+fb)nTs] + w′(n) for n = 1, . . . , N. (2.17)

Assuming now that a total of P chirps are sent, we can additionally perform a slow
time sampling by taking a single sample for each pulse, every TREP . Combining
the new signal obtained from this operation with the one from Equation (2.17) we
obtain a 2-D output for which the expression is derived as follows. Considering
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slow time sampling, the range at which the target is found in each sampling instant
pTREP is given by R + vpTREP with p = 1, . . . , P . Therefore, accounting for this
modified range, the output of the mixer becomes [20]:

y(n, p) ≈ αe
j2π

[
2f0(R+vpTREP )

c
+
(

2f0v
c

+
2K(R+vpTREP )

c

)
nTs

]
+ w′(n, p) (2.18)

≈ αej2π[
2f0R

c
+fdpTREP+(fd+fb)nTs] + w′(n, p). (2.19)

The above expression points out that the 2-D output of the mixer is an exponen-
tial signal with frequency components fd + fb in the fast time domain and fd in
the slow time domain. These frequencies can be extracted by performing first an
FFT in the fast time domain, obtaining a delta function centered in (fd + fb)NTs

and another FFT in the slow time domain obtaining a delta function centered in
fdPTREP , where N and P are the number of samples taken along the fast and
slow time domain respectively∗. By estimating the location of the two peaks we get
estimates of the Doppler frequency fd and, by subtraction, of the beat frequency fb,
that can be related to the range and radial velocity of the target respectively as

R̂ =
fbc

2K
, (2.20)

v̂ =
fdc

2f0
, (2.21)

the last from Equation (2.2). The locations of the peaks could be modified by the
presence of noise, therefore leading to a wrong estimate of the target position in the
range-Doppler dimension.

2.3.1 Resolution

The resolution of a radar is the precision with which it is able to estimate range and
velocity of the target. In the LFMCW case, resolution depends on the bandwidth
and on the PRF of the transmission.

Regarding range resolution, we call ∆R the minimum distinguishable range of a
LFMCW radar. From Equation (2.20), we see that the range precision depends on

∗Note that the number of samples in slow time is equal to the number of transmitted pulses
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the precision of the estimate of the beat frequency, ∆fb, as

∆R =
∆fbc

2K
. (2.22)

Due to the Discrete Fourier Transform (DFT) properties, the smallest detectable
frequency is equal to the inverse of the chirp duration 1/T . If we substitute this
result into Equation (2.22) we get

∆R =
c

2KT
=

c

2B
. (2.23)

The above equation states the important fact that the resolution of a LFMCW
radar does not depend on any parameter other than the bandwidth of the chirp
pulse. The range precision is therefore not affected by the slope of the linear sweep,
by the pulse duration or the PRF.

Velocity resolution instead depends on the Doppler frequency resolution ∆fd, and
therefore on TREP as follows

∆v =
∆fdc

2f0
, (2.24)

and the precision in the estimate of fd depends on TREP and L as ∆fd = 1/PTREP ,
again because of the properties of the DFT. Equation (2.24) becomes

∆v =
c

2f0PTREP

. (2.25)

The radar parameters also set a maximum range and an interval of velocities
beyond which the device cannot get information about the target. The maximum
detectable range can be computed from the fast time sampling period Ts as

R̂max =
c

2TsK
(2.26)

The velocity measurement instead is limited by the sampling theorem: the maxi-
mum detectable Doppler frequency is fmax

d = |fREP/2| where we recall that fREP = 1/TREP

is the pulse repetition frequency. For this reason the radar device can measure ve-
locities in the interval [−cfREP/4f0, cfREP/4f0].
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2.4 Angle of Arrival (AoA) Estimation

The previous discussion focuses on the calculation of range and velocity informa-
tion from a target. However, with a single antenna element that provides omni-
directional transmission, nothing can be inferred about the angular position of the
object. With multiple antennas (at least at the receiver) instead, angular informa-
tion can be extracted from the received signal: if we denote the three dimensional
position of a target in spherical coordinates as the triple (R, θ, ϕ), where θ and ϕ are
respectively the azimuthal and elevation angle, depending on whether a planar or a
linear antenna array is available the full triple or the couple (R, θ) can be estimated
respectively. With no loss of generality we focus for now on the case of a linear
array, so the estimation of the range R, velocity v and azimuthal angle θ is possible.

Figure 2.4: Scheme of the transmitter and receiver antenna array (Figure adapted from [2]).

Assume to have a linear antenna array of L elements spaced apart of a distance
d from each other†, where index l = 0, . . . , L − 1 is used to specify the element
number. The different position of each element translates into a different distance
from the target and therefore into a different delay. The additional distance that the
wave has to travel to reach antenna element l with respect to the reference distance
of element 0 is computed as ld sin θ thanks to the far-field approximation, where
θ is the angular position of the target in the azimuth plane. In the most general
case, a total of Q targets are present in the radar illumination range, identified

†Usually d ≈ λ
2
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by indices q and with positions (Rq, vq, θq) in the range-Doppler-azimuth space for
q = 0, . . . , Q − 1. The delay of the reflection from target q at the l-th antenna
element is given by

τlq =
2(Rq + vqt) + ld sin θq

c
. (2.27)

Therefore, if we consider the spatial diversity introduced by the multiple antennas
at the receiver, we obtain the output of the mixer in the case of linear antenna
arrays and multiple targets as the three dimensional signal given by the sum of the
reflections from each target at different angles [20]

y(n, p, l) ≈
Q−1∑
q=0

αqe
j2π

[
2f0Rq

c
+fdqpTREP+

f0ld sin θq
c

+(fdq+fbq)nTs

]
+ w′(n, p, l), (2.28)

where each sample received at a given antenna, denoted by index l, has a different
additional delay term according to Equation (2.27). Performing a DFT along the
three dimensions n, p, l, we can identify for each target the locations of the three
peaks in (fdq + fbq)NTs, fdqPTREP and f0Ld sin (θq) /c. As in Equation (2.20) and
Equation (2.21), we can estimate the range and the velocity of the target q, but
now we can also get information regarding its angular position on the azimuthal
plane by deriving θq from the peak in the l dimension.

2.5 micro-Doppler

Real radar targets typically present vibration or different moving parts, therefore
their overall motion is more complex than just translation. As an example, a
person moving has arms and legs rotating around the joints and the head or the
chest performing small movements as well. The small-scale vibrations or rotations
also cause a Doppler shift that depends on time and is usually represented as a
frequency modulation on the reflected signal that presents unique features based on
the specific target considered [21].

In [22] is presented an extensive study of this effect, called µ-Doppler signature
of the target, of which here we give a brief introduction referring to the paper for
further details. Assuming that the vibration of the target has the form of a periodic

17



oscillation, it causes a variation of the reflected signal phase expressed as:

ϕ(t) =
4πDv

λ
sin(ωvt), (2.29)

where Dv is the maximum vibration amplitude and λ is the wavelength. Computing
the time-dependent Doppler frequency shift as the derivative of the phase we get:

fD =
1

2π

dϕ(t)

dt
=

2Dvωv

λ
cos(ωvt), (2.30)

therefore the maximum value assumed by the shift is fD = 2Dvωv/λ. Equation (2.30)
is only valid under the unrealistic assumption that the vibrating motion is a pure
oscillation, however it gives an important insight on the fact that for very small
λ, even low values of Dv, ωv give significant frequency shifts. The use of mm-wave
radar transmitters is therefore motivated by the higher sensitivity to the µ-D effect.

The extraction of the µ-D signature from the received signal can be performed
by computing an STFT on the slow-time sampled waveform to estimate the power
spectral density (PSD) along the Doppler dimension, as done in [7]. An alternative
is to compute the R-D map first and then integrate along the range dimension [3].
The second option is computationally more expensive but is preferred here for two
reasons:

1. The R-D map can be used to locate the person in the range-Doppler space
and remove possible noisy peaks with suitable algorithms.

2. From the R-D map a clustering step can be performed to separate different
subjects present at the same time in the environment, while the µ-D spectro-
gram does not allow this distinction lacking the range information.
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3
Algorithms

This chapter covers the algorithms and methods used in this thesis from theoretical
standpoint. At first, Section 3.1 describes Kernel Density Estimation for back-
ground removal [23], in Section 3.2 Density-based Clustering algorithms are pre-
sented [24, 25]. Section 3.3 focuses on Convolutional Neural Networks [26] and
Auto-encoders [27, 28], the deep learning algorithms used for feature extraction and
classification.

3.1 Kernel Density Estimation

Kernel density estimation (KDE) is a widely known non-parametric approach to
the probability density function (PDF) estimation problem [29].

Assume that we have a set of observation points xi ∈ X , i = 1, . . . , N of dimen-
sionality D, drawn from an unknown PDF p(x). With this approach, no assumption
on the underlying distribution is made, and the target PDF is empirically estimated
from the set of N available data points X = {x1, . . . ,xN} as

p̂(x) =
1

N

N∑
i=1

Kσ(x− xi), (3.1)

where Kσ is a kernel function and σ a parameter called bandwidth of the kernel.
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A kernel function must satisfy the following properties:

1. Kσ(x) =
1
σDK(x

σ
),

2. K(x) ≥ 0,

3.
∫ +∞
−∞ K(x)dx = 1.

This kind of estimate converges to any distribution for a large N [23]. The
simplest choice for the kernel function is derived from the so called Parzen window,
that represents an hypercube of side σ centered on the origin

k(x) =

{
1, |xj| < 1

2
, j = 1, . . . , D

0, otherwise
. (3.2)

The above expression implies that the number of observation points that fall into
the region delimited by the hypercube of side σ centered in the data point xi is
computed as

∑N
i=1 k((x− xi)/σ), therefore to satisfy property 3 the Parzen window

needs to be normalized with the factor 1/σD obtaining a valid kernel function
Kσ(x) =

(
1/σD

)
kσ(x/σ) as for property 1.

The resulting estimate of the PDF as in Equation (3.1) is equivalent to an his-
togram and presents discontinuities due to the definition of k(x). To avoid this
fact, that leads to the undesirable property of non-differentiability, smoother kernel
functions are often used. The most common example is the Gaussian kernel, in
which case σ represents the standard deviation and Equation (3.1) becomes:

p̂(x) =
1

N

N∑
i=1

1√
2πσ2

exp

(
−||x− xi||2

2σ2

)
. (3.3)

The value of the parameter σ is critical to obtain a good estimate, similarly to the
problem of choosing a good binning interval for histograms. It must be carefully
selected taking into account that a too small value can lead to overfitting on the
points in the dataset, while a large one often can not describe the data with sufficient
accuracy.

The problem with practical implementations of KDE is computational speed,
especially in cases where the number of input data points is large because the
complexity of the algorithm is linear in the number of observations [29].
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3.2 Density Based Clustering

Density-based clustering can be viewed as an alternative approach to the clustering
problem other than the so called distance-based algorithms. The central idea is that
what identifies a cluster of objects in a dataset is that it has greater density than the
outer points, where the meaning of density needs to be precisely defined. Among
other density-based techniques, the Density Based Spatial Clustering for Applica-
tions with Noise (DBSCAN) algorithm stands out for implementation simplicity
and versatility [24]. The algorithm requires two parameters, described in the follow-
ing, whose selection is not always easy as their correlation can be hard to predict.
To solve this problem, a hierarchical modification of DBSCAN, called HDBSCAN,
was proposed in [25]. This version works with only one parameter, the minimum
number of data points that can form a cluster, whose selection is significantly sim-
pler. The discussion on DBSCAN will serve as an introduction to HDBSCAN, that
is the method used in the proposed processing pipeline (see Chapter 4).

3.2.1 DBSCAN

The DBSCAN algorithm in its original version is able to identify clusters based
on their density, classifying points with density below a certain threshold as noise.
Moreover, the number of clusters does not need to be known in advance as in
distance-based approaches like k-means [30]. We start by describing the notation
used in the following and then proceed giving some useful definitions from the
original paper [24].

The problem is to cluster a set of N data points called X. Each point belonging
to the set will be identified by xi, for i = 1, . . . , N . We also assume that some kind
of distance function is defined between the points in X, e.g. the Euclidean distance,
denoted by d(·, ·). This allows us to formalize the intuitive idea of density, as the
property of having at least a certain number of points in a neighborhood specified
in terms of the distance d. The algorithm takes as input two parameters, called
nmpts and ϵ, representing respectively the minimum number of points needed in the
neighborhood and the distance defining it. The following definition expresses how
the distance metric relates to the neighborhood:

Definition 1 (ϵ-neighborhood) The ϵ-neighborhood of a point x1, denoted by Nϵ(x1)
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is the set:
Nϵ(x1) = {x2 ∈ X|d(x1, x2) ≤ ϵ} (3.4)

If we consider a generic cluster, there will be points that lie inside the cluster, called
core points and points that are in its border, the border points. We define the core
points as the points that have at least nmpts points inside their ϵ-neighborhood.
Simply requiring that to belong to a cluster a point should have a certain density
level, for example at least nmpts points inside its ϵ-neighborhood, would exclude
border points, that still belong conceptually to the cluster but have lower density.
For this reason the notion of direct density-reachability is introduced:

Definition 2 (Directly density-reachable) A point x1 is directly density-reachable
from another point x2 with respect to the parameters ϵ and nmpts if:

1. x1 ∈ Nϵ(x2)

2. |Nϵ(x2)| ≥ nmpts

This notion is not symmetric for couples including a core point and a border point.
From a core point we can always directly reach a border point according to the
above definition, while the opposite does not hold.

Definition 3 (Density-reachable) A point xn is density-reachable from another
point x1 with respect to the parameters ϵ and nmpts if there exists a chain of points
x1, x2, . . . , xn such that xi+1 is directly reachable from xi.

The notion of density-reachability allows to extend the model with a measure of
connection between a generic core point and a border point even if they are not
in the neighborhood of one another. However, for a point to be density-reachable
from another one we must have that all previous points in the chain satisfy the core
point condition. Therefore we also introduce the notion of density-connectedness,
that links together two border points by exploiting the fact that they must be both
density-reachable from the same core point.

Definition 4 (Density-connected) A point x1 is density-connected to another point
x2 with respect to the parameters ϵ and nmpts if there exists a point x3 such that both
x1 and x2 are density reachable from x3 with respect to the parameters ϵ and nmpts.
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We are now ready to define the notion of cluster based on density.

Definition 5 (Cluster) A cluster C on the set of data points X with respect to ϵ

and nmpts is a non-empty subset of X that satisfies the following conditions:

1. (Maximality condition) ∀x1, x2, if x1 ∈ C and x2 is density-reachable from x1

with respect to ϵ and nmpts, then x2 ∈ C.

2. (Connectivity condition) ∀x1, x2 ∈ C, x1 is density-connected to x2 with respect
to ϵ and nmpts.

The first condition states that all points that are density-reachable from a point
belonging to the cluster must also belong to the cluster. This fact is in agreement
with the idea that the cluster can end with points that do not satisfy the core point
condition, given that they are density-reachable from points that satisfy it. The
second condition instead is needed to guarantee that the cluster is connected, i.e.
there is continuity in terms of density.

In addition to defining the clusters, we also intend to classify some of the points
in the dataset as noisy points: they do not satisfy the core point condition and they
are not density-reachable from any core point, therefore they cannot be considered
to belong to any cluster.

Definition 6 (Noise) Let C1, C2, . . . , Ck be the clusters of the dataset X with respect
to the parameters ϵi and nmptsi for i = 1, . . . , k. Then the noise W in X is defined
as the set of points that do not belong to any of the clusters:

W , {x ∈ X|∀i : x /∈ Ci} (3.5)

The DBSCAN algorithm is based on the following fact: the clusters can be obtained
from dataset X by firstly verifying the core point condition for all x ∈ X, then,
starting from a randomly chosen point among the ones that satisfy the property,
we can add to the cluster of point x1 all points that are density-reachable with
respect to ϵ and nmpts from it. This approach raises an important point: a cluster is
uniquely identified by any of its core points and contains all and only the elements
that are density-reachable from it. The following lemmas formalize these concepts.
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Lemma 1 Let x ∈ X be a data point that satisfies the core point condition, i.e.
Nϵ(x) ≥ nmpts. Then the set O of all the points in X that are density-reachable
with respect to ϵ and nmpts from x is a cluster with respect to ϵ and nmpts.

Lemma 2 Let C be a cluster with respect to ϵ and nmpts. Let x ∈ C be any data
point that satisfies the core point condition, i.e. Nϵ(x) ≥ nmpts. Then it holds that
C coincides with the set O of the points in X that are density-reachable from x with
respect to ϵ and nmpts.

3.2.2 HDBSCAN

Hierarchical DBSCAN (HDBSCAN) is an extension of DBSCAN that improves it
adding a hierarchical structure to the obtained clusters [25]. This fact has an impor-
tant implication in removing the need for the parameter ϵ in the algorithm, greatly
simplifying the choice of the parameters and enhancing its robustness. In [25], the
algorithm is presented by relating it to a slightly modified version of DBSCAN
called DBSCAN∗, that eliminates the notion of border point and only defines clus-
ters based on core points. The following definitions are the DBSCAN∗ versions of
the ones presented in the previous section. We keep the notation identical for the
sake of clarity.

Definition 7 (Core points) A data point x1 is called a core point with respect to ϵ

and nmpts if its ϵ-neighborhood contains at least nmpts points, i.e. Nϵ(x1) ≥ nmpts.
Any other point for which the core point condition is not satisfied is considered to
be noise.

Core points are defined as in DBSCAN, while border points are eliminated from
the model. Points that are not core points are labeled a noise.

Definition 8 (ϵ-reachability) Two data points x1 and x2 are ϵ-reachable with respect
to ϵ and nmpts if x1 ∈ Nϵ(x2) and x2 ∈ Nϵ(x1).

The new definition of reachability is now transitive.

Definition 9 (Density-connected) Two data points x1 and x2 are density-connected
with respect to ϵ and nmpts if they are directly or transitively ϵ-reachable.
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Where by transitively ϵ-reachable we mean that, similarly to Definition 3, the point
can be reached via a chain where each point is directly reachable from the previous
point. In this case however the relation is always symmetric as it was for core points
in DBSCAN. The definition of cluster is adapted to include only core points.

Definition 10 (Cluster) A cluster with respect to ϵ and nmpts is a non-empty
maximal subset C of X such that

∀x1, x2 ∈ C : x1 and x2 are density connected. (3.6)

The key idea behind HDBSCAN is to perform a hierarchical clustering on a trans-
formed version of the data points, using a transformation that separates the impor-
tant data from the noise. Typically, hierarchical clustering requires the creation of
a complete graph Gd where each edge is weighted with the value of the distance
between the two nodes connected to it. From this graph, a hierarchical partitioning
of the dataset is usually obtained by computing the minimum spanning tree (MST)
and iteratively drop the edges with the lowest weight to construct a dendrogram
that represents the hierarchy between clusters. This is the approach, for example,
of the common Single Linkage Algorithm [31].

HDBSCAN follows the same steps but on a different graph, called Gnmpts , that
is based on the mutual reachability distance between nodes instead of the normal
distance. The definitions below clarify this new concept:

Definition 11 (Core distance) The core distance of a point x1 ∈ X with respect to
nmpts is the distance of x1 from its nmpts-nearest neighbor, denoted by dcore(x1).

The core distance will generally be small for core points, as their density is high,
while it will assume much larger values for noise points.

Definition 12 (ϵ-core point) A point x1 ∈ X is called an ϵ-core point for every
value of ϵ that is greater than or equal to the core distance of x1 with respect to
nmpts.

Definition 13 (Mutual reachability distance) The mutual reachability distance (MRD)
between two points x1 and x2 is defined as:

dmreach(x1, x2) , max{dcore(x1), dcore(x2), d(x1, x2)}. (3.7)
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Definition 14 (Mutual reachability graph) The mutual reachability graph over dataset
X is a complete graph Gnmpts in which the points in X are the vertices and the
weight of each edge is the mutual reachability distance with respect to nmpts between
the points connected to it.

Given that the core distance for noise points is large, for such points it will be
the dominant term in Equation (3.7). For this reason, in Gnmpts noise points are
even more separated from core points than they are in Gd, while core points remain
untouched because of the small dcore that makes d(x1, x2) dominant inside the max

operator. This reasoning makes evident how the mutual reachability graph is much
more suited than the distance graph for clustering purposes.

For the sake of clarity we report a simple example of the previously described
steps. Consider the dataset X of bi-dimensional points as in Figure 3.1, obtained
by generating two clusters of bi-dimensional noisy points from two moon-shaped
distributions.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.5

0.0

0.5

1.0

Figure 3.1: Example dataset.

For each point in X the mutual reachability distance is computed, and the MST
of the graph Gnmpts obtained is depicted in Figure 3.2.

Rearranging the tree into a dendrogram, we obtain the scheme in Figure 3.3.
From this structure, every possible output partitioning of the data given by DBSCAN∗

can be obtained by cutting the dendrogram at a certain level determined the dis-
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Figure 3.2: Mutual reachability graph MST obtained from the example dataset.

tance ϵ (i.e. removing all the edges with greater value of the distance). For notation
simplicity, instead of ϵ we will refer to the parameter λ = 1/ϵ.
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Figure 3.3: Dendrogram obtained from the MST of the example dataset.

So far HDBSCAN only performs single linkage on the transformed graph Gnmpts .
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However, inspecting Figure 3.3 one can easily realize how the obtained dendrogram
contains many splits that are not significant to extract a meaningful hierarchy.
Indeed, many of the separations that happen by incrementing λ are just single or
few points that are excluded from persistent clusters: these events should not be
considered as meaningful splits. For this reason, after computing the MST of Gnmpts ,
the algorithm simplifies the dendrogram obtained with the following rule:

1. Progressively increase the value of λ (decrease ϵ).

2. At each removal, focus on the resulting components after the split and label
as noise every component that contains less than nmpts points.

3. If all components resulting from the split are noise we say that the cluster has
disappeared.

4. If a single component is not noise then we interpret the split as the cluster
shrinking due to the reduced ϵ and we keep its previous label.

5. If two or more components are not noise then we have a valid split and we
assign new labels to each new cluster.

The above procedure is summarized in the following algorithm:

Algorithm 3.1 Condensed tree
1: Assign the same label to all x ∈ X for the root cluster.
2: Sort edges in decreasing order.
3: for all edges in the MST
4: Set the dendrogram scale to the weight of the edge.
5: Remove the edge.
6: After the removal: process each cluster that contained the just removed

edge(s) and label it with: the noise label if it contains less than nmpts points,
the same label as the before-splitting cluster if it’s the unique non-noise com-
ponent, new labels if more than one components are non-noise.

7: end for

Figure 3.4 shows the resulting tree, after the above procedure. Each cluster is repre-
sented by a rectangle whose width represents the number of points it contains. The
shrinking of a component corresponds to a shrink of the associated rectangle. This
structure is much simpler than before and can be utilized to perform hierarchical
clustering over all the possible outputs of DBSCAN∗.

28



0

1

2

3

4

5

6

7

 v
al

ue

0

20

40

60

80

100

120

140

Nu
m

be
r o

f p
oi

nt
s

Figure 3.4: Condensed dendrogram of the example dataset.

The problem now is to design a method to extract a flat clustering partition
from such a structure, and to do so in a meaningful manner. Intuitively we want to
select those clusters that are more robust to variations of λ, because they do not split
easily into smaller clusters and contain less noisy points. To do this we introduce
the notion of cluster stability. We define the quantity λmax(xj, Ci) = 1/ϵmin(xj, Ci)

as the value of λ for which point xj is excluded from cluster Ci (either because it is
labeled as noise or because of a cluster split), and λmin(Ci) = 1/ϵmax(Ci) the value
of λ for which the cluster Ci disappears.

Definition 15 (Stability) The stability of a cluster in the condensed tree of the
HDBSCAN algorithm is:

S(Ci) =
∑
xj∈Ci

(λmax(xj, Ci)− λmin(Ci)) =
∑
xj∈Ci

(
1

ϵmin(xj, Ci)
− 1

ϵmax(Ci)

)
(3.8)

Therefore, the best clustering partition based on the condensed tree can be obtained
by maximizing the overall stability of the selected clusters, i.e. the sum of each sta-
bility for clusters in the final partition. In addition, no cluster that is a descendant
of an already selected cluster can be chosen, because we search for a flat partition
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of the data points. To this end the following optimization problem can be solved
[25]:

max
δ2,...,δK

K∑
i=2

δiS(Ci)

s. t. δi ∈ {0, 1}, for i = 2, . . . , K∑
j∈Ih

δj = 1, ∀h ∈ L,

(3.9)

where:

L , {h|Ch is a leaf cluster}
Ih , {j|j ̸= 1 and Cj is ascendant of Ch}

δi =

{
1, if Ci belongs to the chosen partition.
0, otherwise.

To solve the problem we can follow a recursive approach. The initial step is to
compute the stability of the leaf clusters in the tree. From this information, we can
proceed by processing the parent nodes, keeping track of the best so far encountered
stability in each subtree. At each cluster division, a decision between keeping the
cluster (node) Ci or the best clusters in its subtrees has to be made, therefore we
introduce the notion of total cluster stability for the node Ci recursively as follows:

Ŝ(Ci) =

{
S(Ci), if Ci is a leaf node
max

{
S(Ci), Ŝ(Ci1), Ŝ(Ci2), . . . , Ŝ(CiM )

}
, if Ci is an internal node

(3.10)
where Ci1 , Ci2 , . . . , CiM are the children of node Ci. After having processed the
whole tree the selection of the clusters with the highest stability is straightforward.
Algorithm 3.2 provides a summary of the solution steps.

In Figure 3.5 is represented the solution in the case of the example dataset pre-
sented above, both on the tree structure and on the points themselves. We can
see how HDBSCAN correctly identifies the two clusters and labels outliers as noise.
The complete HDBSCAN procedure is stated in algorithm 3.3, it makes use of
algorithms 3.1 and 3.2.

30



Algorithm 3.2 Problem 3.9 solver
1: Set δ2 = δ3 = · · · = δK = 1 and Ŝ(Ci) = S(Ci) for leaf clusters.
2: Traverse the tree starting from leaf clusters:
3: if S(Ci) <

∑M
m=1 Ŝ(Cm):

4: set Ŝ(Ci) =
∑M

m=1 Ŝ(Cm) and δi = 0
5: else
6: set Ŝ(Ci) = S(Ci) and δj = 0 for Cj in Ci subtrees.
7: end if
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Figure 3.5: Solution of problem (3.9) for the example dataset on the condensed tree (left) and on
the points scatter plot (right).

Algorithm 3.3 HDBSCAN
1: Compute the core distance w.r.t. nmpts of all x ∈ X.
2: Compute the MRD for all couples x1, x2 ∈ X.
3: Build the graph Gnmpts

based on the MRD and its minimum spanning tree.
4: Obtain the condensed tree structure with algorithm 3.1.
5: Compute the stabilities S(Ci) of each node cluster Ci.
6: Solve problem 3.9 recursively with algorithm 3.2.
7: Output the resulting partition.
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3.3 Overview of Convolutional Neural Networks

Artificial Neural Networks (ANN) have become in recent years the most successful
approach to many classification and regression problems. The aim of this section
is to introduce the basics of what a Neural Network is and focus mostly on Convo-
lutional Neural Networks (CNN), a particular type of ANN that has been used in
this work. For a deeper understanding of the basics we refer to [26, 29].

3.3.1 Artificial Neural Networks

An ANN can be represented as weighted graph G = {N,E} whose nodes are called
neurons in analogy with the human brain. Each neuron processes its input x, that it
receives through the incoming connections, by applying a non-linear function called
activation function f(·) to it. Before entering the neuron, the input is weighted by
the weights of the incoming edges Ein and a constant term, the bias b, is added.
The final input-output relation of each neuron is:

y = f

(∑
e∈Ein

wex+ b

)
(3.11)

The structure of each neuron is therefore equal to the perceptron [32], a funda-
mental algorithm in machine learning for linear binary classification, to which a
non-linearity is applied. Possible choices for the activation function can be the sig-
moid function, defined as σ(x) = 1/ (1 + e−x) or the more common Rectified Linear
Unit (ReLU), defined as ReLU(x) = max(x, 0) [26].

The goal of an ANN is to learn some function f that depends on the input to the
network, x ∈ Rd and on the weights and biases, that are the network parameters
θ = {W , b}. If we think of a classification problem, f can be a mapping from the
input space to the discrete set of possible classes C. The simplest architecture for
an ANN is the Feedforward Neural Network (FFNN), whose neurons are organized
in a Directed Acyclic Graph (DAG), that processes the input without any structural
feedbacks. In addition to the DAG properties, the structure of a FFNN is such that
different layers of neurons can be identified, and each layer processes only the output
of the previous layer without cross-connections, as shown in Figure 3.6. Moreover,
each neuron at a certain layer receives as input the output of every neuron at the
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Figure 3.6: Graph structure of a feedforward neural network.

previous layer and passes its output to every neuron of the next layer, i.e. the
network is fully-connected. The input-output relation of a neuron can be rewritten
in the case of a FFNN due to this particular structure:

y = f (Wx+ b) (3.12)

Layers between the input and the output layer are called hidden layers, and when
their number is large (i.e. usually more than 5-6), the network is called deep.

Usually the output of the network, in the classification case, is a vector with
a number of components equal to |C| constrained between 0 and 1 that express
the probability that the input belongs to the class identified by the index of the
component. Learning is performed by tuning the parameters in such a way that the
output of the network approximates the one of the function f , with the objective of
minimizing a specific loss function L. The loss function usually provides a measure
of the similarity between the output of the network ŷ and the correct output given
by the label y, averaged over all the available N input samples. Further details on
possible choices for the loss function and the training algorithms will be given in
Section 3.3.2 for Convolutional Neural Networks.

It has been proved that even with a single hidden layer a neural network can learn
to approximate any function, although the cost is in the number of neurons that
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becomes exponential in the input dimension [33]. The difficulties in the training
procedures of deep neural networks, however, have prevented for many years their
extensive utilization. The correct configuration of parameters to reach a global
minimum of the loss function is usually hard to find, because it requires the solution
of a non-convex optimization problem. Iterative methods such as the Gradient
Descent algorithm and its relatives (see Section 3.3.3) are used, but there is no
guarantee that the resulting minimum is global and not local. More details on the
implementation difficulties in deep learning is provided in the next section.

3.3.2 Convolutional Neural Networks

Convolutional Neural Networks are a particular kind of FFNN that specializes on
learning spatial features of the input [26]. A fully-connected FFNN has the following
issues:

• Every neuron has connections with every neuron in the previous layer and
every neuron in the next layer, therefore the number of weights can be huge
in large networks, making the training intractable.

• The fully-connected property does not preserve the spatial features of the
input because each input component is fed to every neuron of the following
layer. Therefore, the information about where a certain component is located
in the input vector or matrix is lost.

The CNN solves these problems and has been proved to perform extremely well
on input types where spatial structure is important and the number of components
is high, like images.

A CNN usually deals with bi-dimensional input data, that can be represented
as a three-dimensional structure called tensor whose dimensions account for the
input data height and width and eventual multiple channels (e.g. RGB channels
in an image); therefore layers in a CNN are three-dimensional tensors of nodes
instead of uni-dimensional arrays. The key difference with respect to the FFNN
is the operation performed by each node: the matrix multiplication between the
weights and the input is replaced by the convolution with a filter, or kernel, K of
smaller dimension, that is passed over the whole input I. Each neuron on a layer
l is therefore connected only to a region of layer l − 1, of the same dimension of
the kernel, as shown in Figure 3.7, that is called receptive field of the neuron. This

34



Figure 3.7: Graphical representation of the relation between the filter, the receptive field and the
feature map of the next layer.

fact reduces the number of connections drastically with respect to a fully connected
architecture, making the number of parameters to train significantly lower. The
convolution operation is defined differently from the classical convolution between
signals, and is actually a discrete cross-correlation [26]

(I ⊗K)(m,n) =

k1−1∑
i=0

k2−1∑
j=0

I(i+m, j + n)K(i, j), (3.13)

where k1 × k2 is the dimension of the kernel.
The result of applying the cross correlation between I and K is a tensor of di-

mensions that depend on how the filter is slid across the input; the stride parameter
regulates of how many positions we shift the kernel after each correlation step. If
the input dimension does not match with the selected kernel dimension and stride,
padding can be applied before the transformation. The following equation com-
putes the height/width of the output of the correlation O given the parameters
kernel dimension k, stride S, padding P and input dimension D

O =
D −K + 2P

S
+ 1. (3.14)
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Figure 3.8: Graphical representation of several feature maps at layer l.

Intuitively, we aim to make the network learn meaningful filters K, such that each
filter extracts a certain feature in the input. For this reason, the parameters of a
filter should be the same across the whole input because the presence of a certain
shape does not depend on where that shape is located, that is the result should be
invariant to translations. This is achieved by parameter sharing: at a certain layer,
a filter keeps the same weights in the connections with the whole next layer, instead
of having a different weight for every neuron in the previous layer. An additional
effect of this technique is to further reduce the number of parameters to tune during
the training phase. The result of the cross-correlation between a tensor and a kernel
is called feature map, and at each layer multiple feature maps can be computed with
different kernels and therefore different parameters, as shown in Figure 3.8.

A common choice for the activation function of a convolutional layer is the ReLU,
because of its simple implementation and good practical results. Recently, however,
often the Exponential Linear Unit is preferred [34]

ELU(x) =

{
x, if x > 0

α(ex − 1), if x ≤ 0
, (3.15)
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Figure 3.9: Graphical representation of a 2× 2 max pooling operation.

because is solves some issues with the ReLU that arise during training (e.g. the
vanishing gradient problem, see Section 3.3.3).

As we described, the convolutional layers of a CNN can be seen as extractors of
particular shapes or features from the input data. To further improve the robustness
of this extraction, and additionally reduce the dimensionality of the hidden layer
representations in the feature maps, after each convolution and non-linearity, usually
a pooling layer is applied. Pooling refers to the following operation: we select a
window on the output of the non linearity and retain only one value from this
window, that can be the average or, more commonly, the maximum. These two
practices are called respectively average pooling and max-pooling. The pooling
layer has been proven to be fundamental to improve the learning in CNN, and is
based on the fact that losing the information about where a feature is located is
not important if the relative position with respect to other features is kept intact.
Figure 3.9 shows how pooling reduces the dimensionality of the feature maps before
the next convolutional layer.

The last layers of a CNN are typically fully connected, as they are used to per-
form the actual classification after the convolutions and pooling have extracted the
most meaningful features from the data. For this reason, after the last pooling
operation is applied the hidden tensor representing the feature maps is flattened
into a uni-dimensional vector and passed to a fully connected layer. The last layer,
as in standard FFNN, contains as many neurons as the number of classes in the
classification problem, that we call M , and each neuron represents a class. The
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activation of this last layer is usually the softmax function, defined for each neuron
m as follows

softmax(xm) =
exm∑M
j=1 e

xj

. (3.16)

The denominator is a sum over all the last layer neurons, that ensures that the
output is between 0 and 1. This output value of neuron m can be interpreted as
a probability: it’s the probability that the input data belongs to class m. Under
this setting, the labels with the correct classification can be provided with a one-
of-K representation [29], that is each integer label from 1 to M is replaced by an
M -dimensional binary vector in which only the component corresponding to the
label value is set to 1 and the rest to 0. Ideally, a perfect network should provide
probability 1 for the correct class and 0 for the others, therefore matching perfectly
the label in one-of-K representation. Measuring the error made by the network can
be done using the cross-entropy loss

L(ŷ,y) = −
N∑

n=1

M∑
j=1

ynj ln(ŷnj), (3.17)

where with y and ŷ we represent the correct label and the network output respec-
tively. The loss is accumulated over each input sample for n = 1, . . . , N and over
each neuron in the output layer for j = 1, . . . ,M . To train the network, adaptation
of the parameters is needed in order to approximate the target labeling function.
However, a direct approach is not possible due to the indirect dependencies between
the weights in the hidden layers and the loss function that by definition can only
be computed on the output of the last layer. The following section describes the
training algorithms used in deep learning to solve this issues and perform learning
in an efficient way.

3.3.3 Training Algorithm

Optimization in the deep learning field is almost always non-convex [26]. For this
reason, numerical methods are necessary to provide a solution to the problem of
finding the best network parameters θ = {W , b}. The most widely used algorithm
is Gradient Descent (GD) along with its variants [35]. GD allows to find a stationary
point of a differentiable function f(θ), with no guarantees to converge to a global
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minimum, using a first order Taylor approximation of the function. In a stationary
point the gradient of the function with respect to the parameters is a vector of zeros,
while in a non-stationary point the gradient is a vector that points in the direction
of steepest ascent of the function. The steps of the algorithm can be summarized
as follows:

1. Start from an initial selection for the parameters θ(0).

2. Compute a linear approximation of the function using Taylor expansion

g(θ) = f(θ(i))−∇f(θ(i))T (θ − θ(i)), (3.18)

where ∇f(θ(i)) is the gradient vector of f computed in θ(i).

3. Adjust the parameters in order to go downhill in the function f , towards a
stationary point where ∇f(θ) = 0; the downhill direction is given by the
opposite of the gradient vector: −∇f(θ(i)).

4. Iterate points 2 and 3 until a convergence condition is met. Examples could
be that a certain number of iterations have been performed, or that the norm
of the gradient vector is small enough.

It can be proven that the correct adjustment on the parameters in order to
perform a step towards a local minimum or a saddle point is given by [35]

θ(i+1) = θ(i) − η∇f(θ(i)), (3.19)

where η is an hyperparameter, called learning rate, that controls the size of the step
performed, influencing the convergence speed and the accuracy of the final result.

To train a neural network, the function that we need to minimize is the loss
function L, that not inly depends on the parameters but also on the input x. Indeed,
we can express the total loss function as the sum of the loss computed on each data
point

L(y, ŷ) =
N∑

n=1

L(yn, ŷn,xn). (3.20)

The global loss computed on all data points and the local loss for a single point will
be distinguished in the following by their arguments: we will always make explicit
the dependence on xn for the local loss. Typically we have a sequence of input
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points belonging to a dataset, so the update in Equation (3.19) can be computed
summing over all the N data points

θ(i+1) = θ(i) − η
N∑

n=1

∇L(θ(i),xn). (3.21)

However, for large datasets, this approach is too costly from the computational
point of view, as it requires loading into memory the whole sequence of points and
computing the gradient for each of them. For this reason in practical application
plain GD as we described it is almost never used. What is actually implemented is
a variant of GD called Stochastic Gradient Descent (SGD), that uses the following
rule for updating θ

θ(i+1) = θ(i) − η∇L(θ(i),xn). (3.22)

The above equation states that for the update in SGD we use only one point from
the dataset, therefore only one point needs to be loaded into memory at each step.
SGD uses multiple updates as the one in Equation (3.22) instead of a single update
using the whole dataset. This approach leads to the same update as the standard
GD on average if we pick the vector xn uniformly at random each time [33], but the
partial updates can also lead to a completely different update path than standard
GD.

Compromises between standard GD and SGD are also used, and are the most
popular choice in practical implementations. In these cases instead of one single
point, a so called minibatch, i.e. a small random selection of points from the dataset,
is loaded and used for the update. The update rule in this case is

θ(i+1) = θ(i) − η
∑
xn∈B

∇L(θ(i),xn), (3.23)

where we denote the minibatch with B. Typical sizes for the minibatch are powers
of 2 like 32, 64, . . . , 256 to fully exploit parallelization properties of the computing
hardware (in particular of GPUs). The utilization of a small number of points
provides a trade-off between memory usage or computational speed and stability in
the convergence of the algorithm.

To perform learning in neural networks we need to apply Equation (3.23) itera-
tively, so the knowledge of the gradient of the loss function with respect to every
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network parameter is required. The efficient computation of the gradient is the
most difficult part in the training phase of an ANN, and is done in two phases:
forward pass and backpropagation described in the following sections. Forward pass
consists in feeding the network with an input sample and propagating it forward
towards the output, performing all the convolutions and operations needed at each
layer. When the sample reaches the output layer the network output ŷ is com-
puted and the value of the partial loss function L(θ(i),xn) is obtained. From the
forward pass we also retain the intermediate values of the outputs of the activation
functions and their inputs for every neuron in the network. Using this information,
with the backpropagation the gradient of the loss with respect to each parameter
is computed proceeding backwards from the output layer to the input. Alternating
forward pass and backpropagation for every input sample allows the learning proce-
dure with SGD to be completed. We say that an epoch is finished when all the data
samples used for training have been used once to update the parameters. Typically
deep networks are trained for several epochs before the loss function converges.

Forward pass

The forward pass requires an input sample x and a current choice for the param-
eters of the CNN, θ. As we are discussing CNNs, the input is assumed to be
bi-dimensional, and so are the kernels for each feature map and each layer (we
describe the simpler case of single-channel input, but the case is similar for RGB
images or other data with more channels). A CNN is assumed to be structured as a
sequence of convolutional and pooling layers, followed by some final fully connected
layers. We introduce the following notation:

• l = 1, 2, . . . , L represents the layer index.

• The input feature map to a layer has shape H ×W with respective indices
i, j.

• The kernel w for a certain layer has shape k1 × k2 with indices m,n.

• wl
m,n represents the weight connecting neurons from layer l − 1 to layer l.

• bl is the bias for layer l.

• f(·) is the activation function.
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• yli,j is the output at layer l:
yli,j = f(ali,j) (3.24)

• ali,j is the activation at layer l, that is the result of the cross-correlation be-
tween the receptive field in the output of layer l − 1 and the kernel of layer
l.

• L(w, b) is the loss function that depends on the collection of the network
parameters.

A generic convolutional layer l applies a certain number of filters to the input ten-
sor. Each filter is passed through the whole tensor computing the cross-correlation
with the receptive field of each neuron in layer l + 1. The activation of a neuron is
computed as

ali,j =

k1−1∑
m=0

k2−1∑
n=0

wl
m,ny

l−1
i+m,j+n + bl, (3.25)

and applying the activation function the output of a neuron is

yli,j = f(ali,j) = f

(
k1−1∑
m=0

k2−1∑
n=0

wl
m,ny

l−1
i+m,j+n + bl

)
, (3.26)

After the convolution and non-linearity are computed, pooling is usually applied,
selecting for each window defined by the pooling width and height the maximum
or the average value depending on the pooling type.

Equation (3.26) can be used for every convolutional layer in sequence to propagate
the input inside the network. In the last layers however the situation changes,
because of the full connectivity. After the last convolution or pooling is applied,
the output is flattened into an uni-dimensional vector, that is passed through the
feedforward layers using Equation (3.12). The last layer applies softmax activation
(Equation (3.16)) to obtain the network output or prediction ŷ, that is used to
compute the loss L(ŷ,y,x), concluding the forward propagation.

Backpropagation

Backpropagation is the standard algorithm used to train every neural network,
so it can be also applied to the CNN. It is an iterative algorithm that allows to
compute the gradient of the cost function with respect to each network parameter
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in order to perform the weights and biases update as in Equation (3.22). The
algorithm has to be executed after a forward pass through the network, because
it requires the knowledge of the activations and the outputs of every neuron, and
uses the chain rule of the derivative to compute the gradient of the loss starting
from the last layer and going backwards propagating the gradients at each layer in a
recursive manner (hence the name backpropagation)∗. In the following we provide
the detailed mathematical description of the algorithm in the case of CNNs, using
the same notation as in the forward pass description.

The aim of the backpropagation algorithm is to compute the gradient of the cost
function with respect to every parameter of the network, that is

∂L(w, b)

∂wl
m,n

, ∀ l,m, n (3.27)

∂L(w, b)

∂bl
, ∀ l. (3.28)

Knowing this quantities means knowing how much each single parameter influences
the total loss, allowing the computation of the upgrade step in the SGD iteration.
For notation simplicity we omit the dependence of the loss from the currently pro-
cessed input sample as it would lead to confusion between the indices. Anyway,
all the processing done in the forward and backward procedures has to be done for
each input sample so specifying it would be redundant.

We first focus on the weights w. The following decomposition holds, from the
chain rule of the derivative

∂L(w, b)

∂wl
m,n

=

H−k1∑
i=0

W−k2∑
j=0

∂L(w, b)

∂ali,j

∂ali,j
∂wl

m,n

(3.29)

=

H−k1∑
i=0

W−k2∑
j=0

δli,j
∂ali,j
∂wl

m,n

, (3.30)

where we defined δli,j = ∂L(w,b)

∂ali,j
as the derivative of the loss with respect to the

activation at layer l. Now, using Equation (3.25), we can compute the term ∂ali,j
∂wl

m,n

∗The chain rule of the derivative allows to compute the derivative of a composite function
f(g(x)) as df

dx = df
dg

dg
dx . In the case of backpropagation, this method can be used to unfold the

dependencies of the gradient of the loss from the activations and the outputs in the hidden layers.
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as simply
∂ali,j
∂wl

m,n

= yl−1
i+m,j+n, (3.31)

so Equation (3.29) becomes

∂L(w, b)

∂wl
m,n

=

H−k1∑
i=0

W−k2∑
j=0

δli,jy
l−1
i+m,j+n = δl ⊗ yl−1

m,n, (3.32)

that is the cross-correlation between the output of layer l − 1 and the derivative
of the loss with respect to the activation at layer l. At this point we are left with
computing δli,j, with the chain rule of the derivative we can decompose it exploiting
its relation with the activation of the next layer

δli,j =
∂L(w, b)

∂ali,j
=

k1−1∑
m=0

k2−1∑
n=0

∂L(w, b)

∂al+1
i−m,j−n

∂al+1
i−m,j−n

∂ali,j
(3.33)

=

k1−1∑
m=0

k2−1∑
n=0

δl+1
i−m,j−n

∂al+1
i−m,j−n

∂ali,j
, (3.34)

if we can express the last term in the above equation as a function of known elements
then we have completed a recursive formulation for δl, that could be computed
knowing δl+1. We have that

al+1
i−m,j−n =

k1−1∑
m′=0

k2−1∑
n′=0

wl+1
m′,n′y

l
i−m+m′,j−n+n′ + bl+1, (3.35)

therefore

∂al+1
i−m,j−n

∂ali,j
=

∂

∂ali,j

(
k1−1∑
m′=0

k2−1∑
n′=0

wl+1
m′,n′y

l
i−m+m′,j−n+n′ + bl+1

)
(3.36)

=
∂

∂ali,j

(
k1−1∑
m′=0

k2−1∑
n′=0

wl+1
m′,n′f

(
ali−m+m′,j−n+n′

))
. (3.37)

If we consider the last expression, it’s easy to notice that whenever m′ ̸= m,n′ ̸= n,
the summation becomes a constant with respect to the derivation variable ali,j.
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Therefore the derivative is non-zero only for m′ = m and n′ = n

∂al+1
i−m,j−n

∂ali,j
= wl+1

m,n

∂f(ali,j)

∂ali,j
= wl+1

m,nf
′(ali,j). (3.38)

Using this result into Equation (3.33) we get

δli,j =

k1−1∑
m=0

k2−1∑
n=0

δl+1
i−m,j−nw

l+1
m,nf

′(ali,j) (3.39)

= f ′(ali,j)

k1−1∑
m=0

k2−1∑
n=0

δl+1
i−m,j−nw

l+1
m,n. (3.40)

The above expression allows to compute the values of δl in a recursive fashion, using
δl+1. For layer L, however, we do not have a following layer, so the derivative of
the loss with respect to the activation is just

δLi,j =
∂L(w, b)

∂yLi,j
f ′(aLi,j), (3.41)

that can be directly computed knowing the activation at layer L and the output of
the network, values that are obtained in the forward pass. Therefore, after perform-
ing a forward pass, all values needed are available to compute recursively the values
of δ at all layers from L to the input one. Once all δ are known, Equation (3.32)
can be used locally at each layer to compute the gradient of the loss with respect
to that layer’s weights, and consequently perform the GD update as

wl
m,n = wl

m,n − η
∂L(w, b)

∂wl
m,n

. (3.42)

To update the biases we follow similar steps, starting from the gradient of the
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loss with respect to the biases

∂L(w, b)

∂bl
=

H−k1∑
i=0

W−k2∑
j=0

∂L(w, b)

∂ali,j

∂ali,j
∂bl

(3.43)

=

H−k1∑
i=0

W−k2∑
j=0

δli,j
∂ali,j
∂bl

(3.44)

=

H−k1∑
i=0

W−k2∑
j=0

δli,j, (3.45)

where the last passage is motivated looking at the expression of the activation
in Equation (3.25), that has a linear dependence with coefficient 1 from the bias,
therefore the derivative it’s equal to 1.

The SGD update for the biases is then

bl = bl − η
∂L(w, b)

∂bl
. (3.46)

3.3.4 Advanced Optimization Techniques

In most practical cases, optimization of an ANN parameters with plain SGD may
perform poorly. Many more advanced techniques have been developed, for a detailed
discussion we refer to [26]. Here we will focus on giving a brief description of
the most widely used approaches in order to improve SGD during the learning
phase. A simple idea that however has a great impact on the results is to make
the learning rate η adaptive during the epochs, starting with an higher value that
is lowered as the training proceeds. The intuition behind this procedure is that a
faster convergence is possible if an higher learning rate is used, but the risk is to
overshoot the solution, so an initial high learning rate that becomes smaller as the
epochs pass is a good trade-off between the two cases. In this case the learning rate
is considered as a sequence of learning rates ηt where the index t refers to the epoch
number. A sufficient condition for SGD to converge is that [26]{ ∑+∞

k=1 ηk →∞∑+∞
k=1 η

2
k <∞

. (3.47)
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Linear or exponential decay rates are widely used.
Another technique is the one of SGD with momentum. The update rule of SGD

is modified as follows, introducing a new quantity v that can be regarded as the
velocity of the update process during the epochs [26]

v(i+1) ← αv(i) − η∇L(θ(i),xn)

θ(i+1) ← θ(i) + v(i+1)
. (3.48)

The network parameters are updated by the quantity v, that is a weighted sum
(controlled by the hyperparameter α) between the past value of v and the standard
update of SGD based on the gradient of the loss. This causes the update process to
gain some momentum, in analogy with physics, in the direction where most of the
updates point. The effect is an increased stability of the optimization procedure,
that is less likely to oscillate randomly as in standard SGD.

Several other methods of increasing complexity have been studied, combining
momentum with adaptive learning rate, and trying to introduce information about
a second-order approximation of the cost function, we mention RMSprop [36],
Adadelta [37] and Adam [38]. In the particular case of Adadelta, the optimizer
used in this work, no learning rate needs to be provided as it is adaptively cho-
sen by the algorithm itself for each parameter, based on the intensity of previous
updates.

3.3.5 The Problem of Overfitting

A severe problem in deep learning is the one of overfitting. When training a neural
network, or a machine learning algorithm in general, what we would ideally do is
to minimize the so called true error of the model, i.e. the expected error under the
input data distribution

Ltrue = Ep(X) [L(y, ŷ,x)] (3.49)

where p(X) represents the true input data true distribution and L(y, ŷ,x) is the loss
function depending on the true label y, the algorithm prediction ŷ and the input
sample x ∼ p(X). In general p(X) is however unknown, so we can not compute
the expectation in Equation (3.49) and we need to instead minimize the training
error, i.e. the empirical average of the loss function over the training samples,
using the so called Empirical Risk Minimization (ERM) paradigm. The relation
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between the true and the training error has been widely investigated, and we refer
to [33] for a detailed discussion. The main risk of the ERM approach is that the
algorithm specializes on the training set, obtaining low values of the training error,
but is not able to generalize because it has not learned the features of the true
input distribution. Intuitively, the problem of overfitting can be though in this way:
minimizing the empirical error instead of the true one is most of the times the best
we can do, having at our disposal only the training samples to perform the learning
phase, however if too many parameters are available to our model, it may end up
memorizing the desired output result for each sample in the training set, performing
poorly when faced with unseen test data. This problem is especially severe with
deep learning models that easily have hundreds of thousands or millions of tunable
parameters and therefore more ”memorization” capabilities.

Here we present three widely used methods to counter or avoid overfitting when
training neural networks, namely regularization, dropout and data augmentation.

1. Regularization: This approach is the most studied one and presents several
other benefits other than reducing overfitting, like making the loss function
more convex thereby simplifying the learning optimization [33]. It consists in
modifying the loss function by adding a term that penalizes models that are
too complex, i.e. are not enough general. A common type of regularization is
the L2 regularization, where the additional term in the loss is λ||θ||2, where θ
represents the sum of all the network parameters and λ is a tunable parameter
that controls the strenght of the regularization with respect to the empirical
error minimization. It has been proven that reducing the norm squared of the
network weights has an effect in keeping under control the complexity of the
model [26, 33]. The complete loss function when L2 regularization is used is
therefore in the form

Lreg(y, ŷ) =
1

N

N∑
n=1

L(yn, ŷn,xn) + λ||θ||2. (3.50)

From the above equation one can see that minimizing a regularized loss func-
tion leads to different approximation capabilities on the training set, in general
lowering the accuracy of the model because the minimization is carried out
also on a term that does not depend on the training data. However this comes
with better generalization capabilities on test samples and better modeling of
the input distribution that is our final aim.

2. Dropout: While regularization is applied on a large number of machine
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learning models and comes from theoretical motivations, dropout is a specific
technique tailored for neural networks driven by empirical considerations. The
idea is very simple, yet incredibly effective: when training a network, at each
batch iteration we randomly ignore (drop) some neurons with a probability
pdrop, not updating their weights nor considering their output for the forward
and backward passes. This procedure causes the model to better generalize
because it makes the training more random, and each neuron can not spe-
cialize on certain input samples due to the possibility of being dropped and
therefore prevented from influencing the output. Using dropout basically al-
lows to train, with no additional computational cost, multiple models at once,
each obtained by removing a set of neurons from the original model. This
implies, citing [26], that dropout regularizes each hidden unit to be not merely
a good feature, but a feature that is good in many different contexts.

3. Data augmentation: The key problem in overfitting is that the minimiza-
tion of the training error may not correspond to a minimization of the true
error. Therefore a good method to reduce the difference between the two is
enlarging the training set, making it more difficult for the algorithm to spe-
cialize on each sample and at the same time making the training data more
representative of the distribution p(X). In practice however training data is
often scarce, so techniques to artificially enlarge it are used: adding noise,
rescaling, cropping etc. are all valid and widely utilized methods to generate
more data from the available set.

3.4 Auto-Encoders

For the training of deep neural networks, where the optimization problem is in
most of the cases non-convex, the random initialization of the parameters is often
not enough to ensure good results or even the training convergence [28]. For this
reason, methods to provide an intelligent way to initialize weights and biases before
the backpropagation training have been widely studied. Several works have shown
that unsupervised pre-training of single or multiple layers can improve significantly
the network learning by producing an high-level representation of the data encoded
in the network parameters, that can be afterwards trained in the usual supervised
manner to be fine-tuned on the particular dataset [39], [28]. Moreover, as we will
show in the following, the problem of learning an higher level representation of the
input is strictly related to the one of data compression and dimensionality reduction.
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[27] showed that a good way to carry out the pre-training is using a neural network
structure called autoencoder (AE): this particular neural network is made of two
parts, the encoder, that learns a lower dimensional representation of the data, and
the decoder that learns how to reconstruct the original input from the compressed
version. Focusing on a single layer structure for simplicity, we can mathematically
define an AE as follows.

We call encoder, fθe(x), the deterministic mapping that taken as input a vector
x of dimension d transforms it into its compressed representation y of dimension
l < d, parameterized on the collection of parameters θe. In the neural network
framework, this function can be represented by an affine function specified by the
network’s weights and biases θe = {W e, be}, followed by a non-linearity a(·)

fθe(x) = y = a (W ex+ be) ,

where W e is a l×d matrix and be a vector of l elements [28]. Notice that the above
formulation is equivalent to the one of a single layer neural network.

The decoder can be defined instead as the parametrized function

gθd(y) = x̂ = a (W dy + bd) ,

where W d is a d× l matrix and bd a d-dimensional vector [28].

The output of the decoder x̂ can be seen as an attempt to reconstruct the in-
put from its compressed version, therefore the loss function of the network should
intuitively compare this reconstruction to x, measuring their similarity. However,
what is really important about the way the AE learns is that it actually not only
maximizes the similarity between the input and the reconstructed output, but also
the mutual information between the random variable generating the input and the
one generating its lower dimensional representation y.

Let’s assume x and y are realizations of the corresponding random variables
X and Y , generalizing the previous discussion to stochastic mappings of the type
q(Y |X; θ). The mutual information between X and Y can be written as I(X,Y ) =

H(X) −H(X|Y ), where H(X) is the Shannon entropy of the random variable X.
Denoting with Ep(·) [·] the expectation under probability distribution p(·), entropy
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and mutual information are defined as

H(X) = Ep(X) [− log(p(X))] , (3.51)

I(X,Y ) = Ep(X,Y )

[
log

(
p(X,Y )

p(X)p(Y )

)]
. (3.52)

If we want Y to retain as much information as possible regarding X then we should
select the θ that makes q(Y |X; θ) such that I(X,Y ) is maximal. Using the previ-
ously stated decomposition for the mutual information, and noticing that the term
H(X) does not depend on θ as the distribution of the input is unknown and non
modifiable, the problem of maximizing I(X,Y ) is equivalent to

argmax
θ

I(X,Y ) = argmax
θ

H(X)−H(X|Y )

= argmax
θ

−H(X|Y )

= argmax
θ

Eq(X,Y ;θ) [log q(X|Y ; θ)] .

In addition, the following inequality holds for any distribution p(X|Y ):
Eq(X,Y ) [log p(X|Y )] ≤ Eq(X,Y ) [log q(X|Y )] [28], so the new optimization problem
over the parametrized distribution p(X|Y ; θ′)

argmax
θ,θ′

Eq(X,Y ;θ) [log p(X|Y ; θ′)] (3.53)

is a bound maximization problem on the mutual information between X and Y .
This general discussion holds in particular in the case of deterministic mappings p, q,
as we required in the AE description. Therefore, setting q(Y |X; θ) = δ(Y − fθ(X))

we fall back to the previously described situation in which Y = fθ(X) and the
bound maximization becomes

argmax
θ,θ′

Eq(X) [log p(X|Y ; θ′)] . (3.54)

In practice, the exact distribution q(X) is unknown, but given the available training
set we can approximate the expectation in Equation (3.54) with an empirical average
over the training samples. Finally, we set the AE loss function to be proportional
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to the negative log-likelihood of the data, given the output of the network

L(x, x̂) ∝ − log p(x|x̂), (3.55)

that under Gaussian assumption for p(x|x̂) becomes that squared-distance loss, and
under Bernoullian assumption and x ∈ [0, 1]d is the cross-entropy loss†.

The AE training with SGD minimizes the empirical average of the loss function
with respect to the encoder and decoder parameters θe, θd

argmin
θe,θd

Eq̃(X)

[
L(X, X̂)

]
= argmax

θe,θd

Eq̃(X) [log p(X|gθd(fθe(X)))] (3.56)

= argmax
θe,θd

Eq̃(X) [log p(X|Y = fθe(X); θd)] , (3.57)

where Eq̃(X) represents the empirical average over the available data samples and
the first passage is due to Equation (3.55). Equation (3.56) is therefore equivalent to
equation Equation (3.54), only replacing the expectation with its empirical version
and setting θ = θe and θ′ = θd.

The previous discussion proves that training an AE implies learning an higher
level representation of the input data, generating a lower dimensional representa-
tion. This is ensured by the fact that minimizing the loss function of the AE we
indirectly maximize a lower bound on the mutual information between the input
and its compressed version. This fact is easily generalized to deeper structures with
many layers for the encoder and decoder parts. If we think of our original problem
of initializing a deep network’s weights, the AE provides a conceptually simple but
powerful solution: if we set the encoder to be equal to the network we want to
train, then the unsupervised pre-training can be carried out by attaching a decoder
network at the output of it, creating an AE that can be trained using only the orig-
inal data and no labels. After the training has converged to a low value of the loss
function, the decoder part can be removed and the final fine-tuning process can be
done in a supervised fashion. The fact that the lower dimensional representation Y

retains most of the information present in X ensures that the weights are initialized
in a meaningful manner, as shown from practical demonstrations [28, 39].

The risk with the above method for the parameters initialization, however, lies

†For this last case it is typically necessary to use a sigmoid activation function or another
non-linearity that ensures the bound on the components of x is respected.
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in the simple fact that to minimize the loss function, the AE is pushed towards
copying the input exactly, which would be useless as it would mean that the network
parameters have not learned the high level features of the input but just memorized
its value [28]. The fact that we required the compressed representation y to be
undercomplete, i.e. d > l, partially prevents this fact, as in most of the cases y is
a lossy compression and it is not possible to exactly reconstruct the input from it
because some information is lost. One of the most recent and successful techniques
in avoiding the AE learning the identity function, however, is the so called denoising
autoencoder, described in the following section.

3.4.1 Denoising Auto-Encoders

The principle behind a denoising autoencoder (DAE) [28] is to provide as input
to the network a corrupted version of the data, that we will call x̃, obtained by
artificially applying noise to x. The loss at the output of the decoder is however
measured between the reconstructed version of the input x̂ and the clean data x.
In this way we force the AE not to copy exactly the input, but rather to learn
removing the noise we applied to it. Intuitively, by learning to remove noise the
network parameters have to focus on important features of the input distribution,
that help in replicating the original data and therefore in lowering the loss.

We call the stochastic function that applies noise eD(·) according to the noise
distribution D, the equation describing the DAE are the following

x̃ = eD(x), (3.58)

y = fθe(x̃) = a (W ex̃+ be) , (3.59)

x̂ = gθd(y) = a (W dy + bd) , (3.60)

and the loss function, computed between x and x̂ can be for example the squared
loss L2 or the cross-entropy loss LH

L2(x, x̂) = k||x− x̃||2, (3.61)

LH(x, x̂) = −
d∑

i=1

[xi log x̂i + (1− xi) log(1− x̂i)] , (3.62)
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Figure 3.10: Block diagram of the denoising autoencoder architecture. The loss function is com-
puted using the clean data and the reconstructed version from the noisy input.

where k is a constant. The block diagram in Figure 3.4.1 represents the DAE
structure more clearly.

The key point that makes the DAE successful is that denoising is only performed
as a training procedure to learn high level features of the input: the intermediate
representation can be interpreted as a coordinate system for the data points onto
a lower dimensional manifold, and the DAE learns to map noisy input points back
onto the manifold.

Several different types of noise D have been investigated in the literature; here
we will focus on the most used ones:

• Gaussian noise: in this case eD(x) = x+w where w ∼ N (0, σ2I) and σ2 is
the noise variance per component.

• Salt and pepper noise: in this case with probability pSP each component of the
input is set to its maximum or minimum possible value with probability 0.5
each. As an example, in case the input components are limited to the interval
[0, 1], like in the output of a sigmoid activation function, we randomly set to
0 or 1 a percentage equal to pSP of components, on average.

54



4
Proposed Solution

This chapter describes in detail the proposed signal processing workflow. The overall
process is shown in Figure 4.1. The extraction of the gait features from the µ-D
spectrogram can be analytically very difficult, and the results are heavily influenced
by the environment and hardware non-idealities. Here we propose a framework that
exploits CNNs for an automatic feature extraction, after a denoising and successive
clustering phase. The raw data obtained at the output of the radar mixer, see
Equation (2.18), undergoes the following steps:

1. R-D map computation by double FFT and static objects contribution removal,
Section 4.1.

2. Denoising, using KDE to extract the foreground component of the signal,
Section 4.2.

3. Clustering with the HDBSCAN algorithm to separate residual noisy peaks
from the subject reflection and eventually select the different subject contri-
butions, Section 4.3

4. Classification with CNN on the µ-D spectrogram obtained via integration,
Section 4.5.

The human µ-D signature is complex as it contains the superposition of many
components due to the different parts of the body moving. Moreover, the high num-
ber of noisy reflections in an indoor environment and the hardware imperfections
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Figure 4.1: Signal processing workflow.

can cause non negligible disturbances to the useful signal which are hard to remove
by filtering. For the above reasons, an analytical extraction of the discriminative
features that are then fed to a classifier, such as a Support Vector Machine (SVM),
has been proven to perform worse than automatic feature extraction via deep learn-
ing [3, 40]. We follow the latter approach by training a deep CNN for the task
of human identification from gait features, introducing a novel workflow for noise
removal and clustering of the subject reflections. The computation of the R-D map
is needed to localize the subject in the range-Doppler dimension and pre-process the
data using this information to improve the classification accuracy. KDE is used to
automatically and adaptively provide an estimate of the noise probability density
function (PDF) so that the points that belong to the R-D image background can
be removed at the beginning of the process. This is achieved with a probabilis-
tic threshold, without any knowledge of the reflected power value in presence or
absence of a target.

Density-based clustering with HDBSCAN allows to group and filter out from
the R-D map any residual noisy peaks that resemble valid targets contributions,
caused by random reflections from the environment. In addition, in the case of
multiple subjects moving concurrently, clustering is essential to separate the various
contributions in order to still be able to perform the identification.

The CNN classifier is the main block of the processing pipeline, that carries out
the identification from the µ-D spectrogram. Portions of time-frequency µ-D signal
are fed as greyscale images to the CNN that outputs the classification among the
various possible subjects. The benefits of unsupervised pre-training are exploited
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in order to improve the training convergence time and the accuracy [39].

4.1 Range-Doppler Map Extraction

The first block in the pipeline receives as input the radar raw data, i.e. the matrix
containing the bi-dimensional signal represented by Equation (2.18). The device
outputs one of these signals at every time frame and, according to the discussion
in Section 2.3, an FFT for each dimension is computed to obtain the R-D map.
To lower the border contributions we applied an additional Hanning window h0,
defined below

h0(n) =

{
1
2

[
1− cos

(
2π

N−1
n
)]

, 0 ≤ n ≤ N − 1

0, otherwise.
(4.1)

The FFT is performed at first along the fast-time/range dimension and secondly
along the slow-time/Doppler dimension. The dimension of the R-D map is dictated
by the resolution of the radar device with the transmitted pulse duration and rep-
etition interval. In the range-Doppler space, all static objects are mapped onto
the vertical line in correspondence of the 0 velocity value: these reflections are not
useful to our scope, so we remove them by cutting the central columns from the
R-D map.

4.2 Denoising with KDE

In the computer vision field, extracting the foreground component of an image is a
core problem, for which many solutions have been designed.

The statistical approach is based on computing an estimate of the background
distribution, that in our case is the radar clutter, and then extract the foreground
points using a probability threshold or other more structured methods. In [23], the
non-parametric method of KDE is used for the first time to this end (see Section 3.1).

To compute the PDF of the power of noisy samples in the background, we ap-
ply KDE for each radar frame, refining the estimate with new samples each time.
Starting from an initial PDF, as a new frame is available the foreground points are
extracted as all the points that have a probability lower than a threshold p∗ to be
noise. The remaining noisy points are used to refine the PDF estimate using KDE,
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this new PDF is used on the next frame and so on, iteratively. The procedure is
summarized below.

Algorithm 4.1 KDE denoising
1: Start from an initial estimate of the noise PDF, p(t)(x).
2: At time frame t receive the corresponding R-D map.
3: Using p(t)(x), extract all the points belonging to the foreground as the points

with p(t)(x) < p∗.
4: Update the PDF estimate for the next timestep p(t+1)(x) with a random selec-

tion of the background points, using Equation (3.3).
5: Repeat from step 2 indefinitely.

Two practical issues had to be solved: the initialization of the PDF in the first
step can be done by applying KDE on an empty R-D map where only noise is
present; the computational cost of KDE is usually high, so only a random selection
of noisy points is used at each step.

The above approach assumes that each noisy pixel is a good representation of a
global behavior of the noise, and that it’s not necessary to compute an estimate
of the PDF per pixel as done in [23]. This assumption holds in the case of radar
clutter as we will see in Chapter 5, but it’s not applicable for foreground detection
in the computer vision field.

4.3 Clustering

To effectively perform clustering on each filtered R-D map and identify the sub-
ject reflection, we map each point (pixel) of the image to a vector of coordinates
xi = (ri, vi)

T where the components are respectively the range and the velocity
corresponding to the pixel. Only the points that are marked as belonging to the
foreground by the KDE at the previous phase are considered here. HDBSCAN
can be executed on the dataset of bi-dimensional points obtained, separating each
contribution based on the density: some points of low density are classified as noise
and discarded, while a partition of the remaining contributions is provided that we
denote with C0, C1, . . . , CK−1 with K the number of clusters identified. We assume
the list of clusters to be ordered in decreasing number of points.

In the case of multiple subjects, in number of Nsub, we can assume that the first
Nsub largest clusters among the K identified correspond to the reflections caused by
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the target movement. The next step is then to generate Nsub different R-D maps
where in each only one subject reflection is kept and the others, along with noisy
peaks, are removed. Each of these images is then treated as a separate frame, passed
to the classifier after integration along the range axis to get the µ-D spectrogram.

For the case of a single target, instead, we can increase the level of precision in the
clustering step. We consider the largest cluster in terms of number of points, called
C0, to be the useful reflection of the subject containing most of the information
needed about the µ-Doppler signature. In addition, the nearest cluster to C0 is
considered to be part of the person too, because it could be the reflection from an
arm or leg that extend outside the main cluster. This second cluster is called C1, and
is only considered is its distance from C0 is not larger than 1 m (otherwise it hardly
represents a part of the subject’s body). The distance among clusters considered in
this work is the distance between the peak power values of each cluster. Once C0

and C1 are identified, only the points belonging to one of the two are retained in the
R-D map, canceling all the other contributions. The effect of this operation is to
remove from the environment all the peaks that are caused by unwanted reflections
or fluctuations, that make the subsequent classification harder and less robust to
changes in the environment.

The clustering phase allows to maintain the same classifier architecture for both
the cases of single target and multiple targets, operating on the input data in the
R-D space. Separation in the µ-D spectrogram would be impossible due to the lack
of range information. In addition, we stress that the multiple subjects case includes
the single subject one: keeping only the main reflection surely leads to a loss of
information, but is a conservative approach in case an a priori decision of which of
the two cases we are in can not be made.

4.4 µ-Doppler Spectrogram

The µ-D spectrogram computation is straightforward once the cleaned R-D map is
obtained. Figure 4.2 depicts the procedure: each R-D image is transformed into a
uni-dimensional vector with as many components as the available Doppler channels
by summing all contributions of the different range bins. The resulting vectors are
aligned in time to obtain the spectrogram of the µ-D signature.
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Figure 4.2: Summation over all the range bins to compute the µ-D spectrogram from the time
sequence of R-D maps.

4.5 Proposed CNN Classifier Architecture

The proposed classifier architecture is based on Inception Modules, a recent CNN
structure developed for complex feature extraction in the case of image recognition
[41]. The idea behind this approach is to extract features at different scales, using at
every layer of the CNN different kernel sizes and concatenate the resulting feature
maps. In our case, 1× 1, 3× 3 and 9× 9 filters are applied at each layer, following
the idea to extract both small and wide scale characteristics of the µ-D signature
that has been proven to be effective in [13]. An efficient implementation of this
module is shown in Figure 4.3 on the left. Computationally expensive 3 × 3 and
9×9 convolutions are preceded by 1×1 convolutions that reduce the dimensionality
of the input by lowering the number of feature maps. In this way the number of
parameters is kept under control and can be prevented from becoming too large [41].
An additional branch to perform a pooling operation is usually added. The input
to the network is a sequence of 45 frames of µ-D vectors, for about 3 seconds of
exposition time for the subject. We selected this value to enable direct comparison
with [3] on the IDRad dataset (see Section 5.2). Figure 4.3 shows the proposed
classifier structure on the right. The number of Doppler channels selected is
208 (see Chapter 5 for the evaluation setup detailed description), so the input
image has dimension 208 × 45. Four inception modules are stacked to extract
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Figure 4.3: Proposed CNN classifier and detail of the dimensionality reduction inception module.

the useful features from the spectrogram, with number of output channels equal
to 32, 64, 128, 128 respectively, each followed by a 2 × 2 max-pooling operation to
reduce the dimensionality. The convolutional layers inside each inception module
have all the same number of feature maps, that is 8, 16, 32, 32 respectively for layers
from 1 to 4. This includes also the 1× 1 convolutions for dimensionality reduction,
so the number of channels is reduced at the input of each layer in order to keep
the number of parameters acceptable. Before the output layer, we used a fully-
connected layer with 64 units, on which we apply dropout to reduce the overfitting
on the training data. The output layer applies a softmax function and all the nodes
use the ELU activation function. The complete classifier CNN of Figure 4.3 has
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560,181 parameters.

4.5.1 Pre-Training via Convolutional Denoising Auto-Encoders

In our case, input data is bi-dimensional, so for both encoder and decoder we need to
use CNNs, building a Denoising Convolutional Auto-encoder (DCAE): we take the
proposed classifier network up to the last convolutional layer as the encoder, then
the unsupervised pre-training can be carried out by connecting a decoder network
at the output of it, creating an auto-encoder structure that can be trained using
only the original data. After the training has converged to a low value of the loss
function, the decoder part can be removed and the final fine-tuning process can
be done in a supervised fashion adding a pooling operation and the last two fully-
connected layers. Figure 4.4 shows the complete architecture used for pre-training
and classification. The decoder network is implemented as four convolutional layers
with 32, 32, 16 and 1 3 × 3 filters respectively. The noisy input we used for the
training of the auto-encoder was obtained by applying salt and pepper noise to the
spectrogram portions. To effectively train the DCAE, given that the input images
have values in [0, 1], we use the binary cross-entropy loss function of Equation (3.62)
averaged over all pixels of the image.
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Figure 4.4: Proposed architecture for pre-training via DCAE.
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5
Experimental Results

In this chapter a detailed summary of the results obtained with the proposed pro-
cessing architecture is presented. The evaluation is carried out on the IDRad dataset
with respect to the accuracy of the classification provided by our method. Some fi-
nal considerations on the effectiveness of the proposed pre-processing and clustering
are taken on original data measured with an INRAS RadarLog∗ sensor working at
77 GHz. The metrics considered for the analysis are described in Section 5.1, while
a description of the dataset is given in Section 5.2. In Section 5.3, Section 5.3.1
and Section 5.4 the results of the phases of pre-processing, denoising and clustering
of the R-D maps are presented. Section 5.5 focuses on the data augmentation tech-
niques used to enlarge the training dataset for the classifier and on the pre-training
phase with the DCAE. In Section 5.6 the performances of the proposed method are
evaluated on the test set of the IDRad dataset†; comparisons with other classifiers,
both independently implemented and taken from the literature are provided. All
the implementations are done in Python, using the Numpy, Tensorflow and Keras
libraries. Finally, in Section 5.7 the applicability of this method on multi-person
data is investigated.

∗http://www.inras.at/en/products/new-radarlog.html
†https://www.imec-int.com/en/IDRad.
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5.1 Classification Metrics

In a classification problem the classifier produces labels for each input sample, that
have to be compared to the ground-truth labels in order to evaluate its performance
on the task. We define the following concepts:

1. True positives (TP): are the samples from class i whose label is correctly
predicted as i by the classifier.

2. False positives (FP): are the samples of a class j ̸= i that are wrongly classified
as belonging to i.

3. True negatives (TN): refer to the samples of a class j ̸= i that are correctly
not assigned to class i.

4. False negatives (FN): refer to the samples of class i that are instead assigned
to class j ̸= i.

In a classification problem the most intuitive and popular metric is the accuracy
of the classifier, i.e. the fraction of correctly classified data samples for class i over
the total available

accuracyi =
|TP|i + |TN|i

|TP|i + |TN|i + |FP|i + |FN|i
(5.1)

To this end we use the IDRad test set as a common evaluation ground for the pro-
posed classifier and the possible alternative methods. Given that 5 classes are
present in the dataset (see Section 5.2), the average of the accuracy per class
i ∈ {1, 2, . . . , 5} is used. In the case of an unbalanced dataset, where the num-
ber of testing samples from each class is quite different, some alternative metrics
can be considered, such a precision, recall and F1-score. In our case however the
dataset is almost perfectly balanced as it contains the same number of samples for
each class, with small differences, so the accuracy is considered to be a good metric
for the evaluation.

The confusion matrix of the classification labels will be provided, that is a matrix
whose rows represent the true classes and whose columns refer to the predicted
classes. Each row is then normalized and the result can be expressed in percentage
(%). In row i and column j we will then find the percentage of samples from class i
that has been assigned to class j by the classifier. High values on the diagonal mean
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a good classification, giving more insight than just the average accuracy between
all the classes.

5.2 IDRad Dataset

The IDRad dataset was made available by researchers from the University of Ghent,
that proposed and published a classifier that we use as benchmark in the following
[3]. The dataset is also used in some later works that improve over the baseline and
provide further analysis [9, 10].

Measurements are taken with 5 different subjects, all male, with weight ranging
from 60 kg to 99 kg and height ranging from 178 to 185 cm. Three sets with
training, validation and test data are provided to allow a deterministic comparison
on the test set, with respectively 100, 25 and 25 minutes of measurements. In
addition, training data is recorded in different time moments to reduce the influence
of non-discriminating factors such as the clothes wore by the subjects. The radar
configuration parameters are listed in Table 5.1, where the ranging and resolution
capabilities are computed as in Section 2.3.1.

Measurement parameters

Center frequency fc 77 GHz
Chirp bandwidth (B) 1.5 GHz
Chirp duration (T ) 256 µs
Sampling frequency 2 GHz
Range resolution (∆R) 10 cm
Velocity resolution (∆v) 2 cm/s

Table 5.1: Summary of the radar parameters in the IDRad dataset.

The classification is made more challenging by the fact that the measurements are
taken in two different rooms for training set and validation/test sets, with respective
dimensions equal to 9×6 m and 8×5 m. This fact causes the radar clutter to change
significantly in the two cases, making the classifier struggle in non overfitting the
training data.
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Figure 5.1: Details of the two rooms used to record training and validation/test data. Figure from
[3].

The subject is let walk freely in the room in all recordings, simulating a real sit-
uation. The dataset provides raw R-D maps and pre-computed µ-D spectrograms
obtained from the raw data by applying a threshold at -45 dB to eliminate noise.
This approach is motivated by a statistical analysis of the power distribution of the
R-D points in the case of an empty room and a room with a person walking. The
authors decided to consider as noise all points below the aforementioned threshold,
as shown in Figure 5.2. Thresholding works well in the IDRad dataset environ-
ment and improves significantly the accuracy of the classifier with respect to the
unthresholded case [3].

µ-D spectrograms are obtained by summing the thresholded R-D maps over all
range bins and cut into sequences of 45 frames, corresponding roughly to 3 seconds
of measurement. The resulting matrices can be interpreted as grayscale images and
are fed to the classifier.
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Figure 5.2: Histogram of the power distribution of 1000 R-D maps in an empty room (left) or in a
room where a person is walking (right). It can be seen that all points below -45 dB can be consid-
ered to be noise. Figure from [3].

In the following, the approach of estimating the noise level adaptively from the
data rather than using an offline approach will require the usage of the raw R-D
maps rather than the µ-D spectrograms.

5.3 Range-Doppler Pre-Processing

The raw data of the IDRad dataset is passed through a bi-dimensional FFT as
described in Section 2.3 to extract the R-D image. The number of channels in the
Doppler domain is 256, while the number of range bins is 380, so the overall image
dimension is 380×256. The result appears very noisy and presents unwanted peaks
due to random reflections of the signal, as shown in Figure 5.3. The pre-processing
step is aimed at removing background noise and to discard useless information. This
phase is divided into two steps:

1. Removal of the reflections from static objects: as shown in Figure 5.3, static
objects are located in the R-D image as an high power peak along the vertical
line at 0 m/s velocity. As in indoor environments walls are static and always
present, we can remove their unwanted contribution by eliminating the 4
central columns of each R-D map.

2. Denoising by means of KDE as explained in Section 4.2, or by thresholding
at -45 dB as done in [3].
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The dimension of the image after step 1 is 380 × 252 because 4 columns are
removed, as shown in Figure 5.3.
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Figure 5.3: Example of raw R-D map (left) and the same map after the removal of static reflections
(right).

5.3.1 Noise pdf Estimation

The procedure to estimate and remove the noise from the background of an R-D
image is fundamental in the proposed pipeline to allow efficient and meaningful
clustering in the following step, in addition to significantly reduce the complexity of
the classification as shown in [3, 10]. Here we visually show and compare the results
of using the proposed KDE estimation method with the static threshold applied in
the cited works.
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Figure 5.4: Noise pdf obtained from KDE in 6 subsequent range-Doppler frames.

Figure 5.4 presents an example of how the adaptive estimation is able to follow
small changes in the noise distribution. The black curve is the PDF estimated from
a random selection of N points classified as noise based on the previous timestep
PDF. In particular, at timestep t a point x is classified as noise if it has a probability
p(t−1)(x) greater than p∗ to be noise according to the pdf at time t− 1, as stated in
algorithm 4.1.
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Figure 5.5: Log-likelihood obtained from 5-fold cross-validation on the selected points for KDE, as
a function of the bandwidth σ, for the current model.

71



The reference value represented by the histogram is instead the distribution of
noise according to the threshold at -45 dB using all the image noisy points: we can
see than the adaptive estimation matches correctly the underlying noise PDF in all
six frames. This fact is interesting for two reasons:

1. We are not using all the noisy pixels available at each frame but only N
randomly selected. This greatly enhances the computational speed of the
algorithm but in general could provide a bad estimate of the real PDF. The
fact that a small selection of points is enough to approximate the PDF means
that the noise has poor correlation in the range-Doppler space.

2. We are not setting a fixed threshold on the received power, that could change
if a different room is used for tests or even in the same room during time. This
allows more flexibility in the denoising procedure increasing the generality of
the approach to other datasets than IDRad. The chosen threshold on the
probability of belonging to the background is general and motivated by the
desired false alarm probability rather than from empirical considerations as
the fixed threshold is.

Adaptivity however comes with the drawback of being subject to an unlucky
choice of the N samples or to brief modifications of the noise PDF that have an
effect on subsequent frames. Figure 5.6 shows the result of denoising with KDE
in a critical case where the noise distribution is not estimated precisely and many
noisy points from the background are retained in the final image (the sparse light-
blue dots on the background). However, even in these cases, we will show that the
combination of KDE with clustering can mitigate the problem and lead to results
almost identical to the ones of the threshold method. The parameters to chose in
this pre-processing steps are the probabilistic threshold p∗, the number of samples
N and the bandwidth of the Gaussian KDE kernel function σ. The latter was
chosen using 5-fold cross-validation considering the log-likelihood of the available
data under several possible choices, obtaining a best value of σ = 2.71 dB (see
Figure 5.5), while the procedure showed an high robustness to any value of N over
50-100 points. The probabilistic threshold is instead set to p∗ = 5× 10−3, but any
value in the same order of magnitude has shown to yield the same performance.
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Figure 5.6: Example results of the denoising procedure with KDE.

5.4 Clustering Results

Clustering is performed in the R-D space to remove the additional noisy power
peaks whose intensity is unusually strong with respect to the noise distribution.
In indoor environments this kind of unwanted reflections are frequent and need
to be filtered out from the image. The set of range-Doppler coordinates of the
foreground points is therefore fed to the HDBSCAN algorithm in order to identify
a partition of such points. Partitioning on the based of density is crucial for the
purpose of removing this kind of residual noise: points from the background that
have not been removed by KDE are sparse, so HDBSCAN easily identifies them
as noise (i.e. they are not part of any selected cluster), moreover, high power
peaks are densely grouped in specific positions so they are also easily separable
from the main cluster most of the times. The only parameter that needs to be set
is the minimum number of points that can make a cluster, nmpts. Assuming that
the biggest cluster is made by the reflection from the subject, a trade-off has to
be considered between excluding as many small noisy peaks as possible and not
missing the main cluster when it is small due to disturbances in the received signal.
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Figure 5.7: Denoised R-D map (left) and the same map after clustering and cluster selection is
applied (right).

nmpts = 25 was chosen as a good value, considering that the main reflection has
on average from 300 to 1000 points, while the unwanted peaks carry much smaller
values around 10-50. Figure 5.7 and Figure 5.8 show the effect of changing the
value for this parameter on the clusters detected by HDBSCAN. The first image
represents the denoised R-D map, to which clustering is applied, and the resulting
output after the removal of unwanted clusters is performed. The following images
show the output of HDBSCAN with nmpts = 10, 25, 50, 100, 200 respectively, where
different colors correspond to different clusters: we can see how increasing the value
of the parameter leads to detecting fewer and bigger clusters, in some cases even
when the resulting partition is not very meaningful from a visual point of view.

Figure 5.9 shows the result of applying the denoising and clustering steps one
after the other. The final result is clean and contains only the interesting reflection
from the subject, without any additional peaks or clutter. This is achieved by
combining the clutter removal capabilities of foreground estimation with density
based clustering that covers the weakness of KDE in removing sparse peaks.

After clustering is performed, summation over the columns of each R-D map gives
the µ-D vector for each frame. The additional Doppler channels from 1 to 24 and
from 228 to 252 were removed as non-informative: they showed not to contain any
signal component in all of the images. The resulting number of Doppler channels
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Figure 5.8: Effect of varying the parameter nmpts on the HDBSCAN clustering results.
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Figure 5.9: Results of the pre-processing steps: raw data, effect of denoising, effect of clustering.

considered from here on is 204. Figure 5.10 shows examples of the spectrograms
for each user obtained by stacking the µ-D vectors along time. The distinction
between the different users is very difficult or impossible to do for a human being,
as the features that characterize the subject are complex and hidden in the signal.
At this step the data to be fed to the classifier is cut into windows of 45 samples,
corresponding to about 3 seconds of measurement, resulting in input images of
shape 204× 45.

5.5 Data Augmentation and Training

The scarceness of training data is a severe problem in deep learning. Complex
neural network architectures with hundreds of thousands of tunable parameters
need large amounts of training samples to converge to good results. The method of
pre-training via unsupervised learning is used here to simplify the initialization of
the network parameters. To this end two different training phases are needed:

1. Unsupervised pre-training of the inception modules with the DCAE described
in Section 4.5.

2. Training of the fully connected layer and fine-tuning of the inception modules
on the labeled data.
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Figure 5.10: Examples of the µ-D signature of each user after the clustering step, data is taken
from the test set.
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IM classifier final parameters
Optimizer Adadelta
Loss function Cross-entropy
Regularization param. λ 3× 10−3

Dropout 0.5
Conv. filter sizes 1× 1, 3× 3, 9× 9
Number of Inc. Modules 4
Pooling size 2× 2

Table 5.2: Summary of the parameters used in the fine-tuning of the classifier.

DCAE final parameters
Optimizer Adadelta
Loss function Binary cross-entropy
IM conv. filter sizes 1× 1, 3× 3, 9× 9
Encoder number of Inc. Modules 4
Pooling size 2× 2
Decoder number of layers 4
Decoder filter sizes 3× 3
Decoder feature maps 8, 16, 32, 32

Table 5.3: Summary of the parameters used in the pre-training of the classifier via DCAE.

5.5.1 Unsupervised Pre-Training

For the first step, a noisy version of the training set data has to be generated,
in order to provide it as input to the denoising auto-encoder, while the ground-
truth labels are the original training data. Salt and pepper noise is used, setting
a probability of pSP = 0.2 of corrupting a pixel that will be set to 0 or to 1 with
equal probability. Figure 5.12 shows the effect of this procedure on a clean training
image. The unsupervised learning aimed at the reconstruction of the original data
involves the architecture of Figure 4.4, with the parameters listed in the following
tables.

The choice of the loss-function was dictated by considerations on the quality of the
training convergence and on the final result. We performed training under the two
alternatives of MSE and binary cross-entropy, described in Section 3.4.1, discovering
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that MSE leads to an uncertain outcome depending on the initial configuration of
the weights. In most cases, training under MSE minimization led to the optimizer
getting stuck after 1-2 epochs without any further decrease of the loss. Only in a
few cases the training ended with a good convergence of the loss, meaning that the
combination of the Adadelta optimizer with MSE in this case is not enough robust
to the initial choice of the weights. On the other hand, binary cross-entropy led to
much better training results, converging always to a minimum under any starting
point for the weights. For this reason in the final pre-training of the classifier we
trained the DCAE with the the binary cross-entropy loss. The behavior of the
training and validation loss in this case is shown in Figure 5.11: overfitting is not
an issue as proved by the fact that the validation loss continues decreasing along
with the training loss, and a good convergence is achieved after 200-250 epochs.
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Figure 5.11: Training and validation loss curve during training of the DCAE.

For our scope, however, training speed is preferred over a low value of the loss
function, as the auto-encoder only serves as an initializer for the weights of the
classifier. For this reason we experimented by training the classifier with a different
number of epochs in the pre-training phase and discovered that after epoch 20 the
performance remained approximately the same, showing that the full training of
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the DCAE is not needed to perform in order to obtain a good initialization of the
classifier parameters. In the final training phase we chose 30 pre-training epochs
for the above reason.
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Figure 5.12: Results of the trained DCAE on the test set. The network is able to reconstruct an im-
age (on the right) similar to the original one (on the left) from a corrupted version (in the middle).

Figure 5.12 shows the results of the DCAE training. We feed a test image that
was not used for training to the network, after adding salt and pepper noise, and
the output appears very similar to the original image. In addition the result is also
much smoother and regular than the original version, that carries some residual
noise from the pre-processing phase, meaning that the network can reconstruct
the shape of the waveform and has learned important features of the input to do
so. The shape of the input images to the auto-encoder is 208 × 48 after applying
zero-padding to match the network required dimensions.

5.5.2 Fine Tuning

After unsupervised pre-training, the weights of the convolutional layers of the clas-
sifier are initialized in a meaningful manner, so fine tuning on the labeled data for
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classification can be performed. As described in Section 4.5, two fully connected lay-
ers are applied to the output of the last inception module. To reduce the overfitting
problem, we apply dropout with probability 0.5 to the first of such layers, and an
overall L2 regularization with parameter λ = 3×10−3. Due to the non-homogeneity
of the dataset, overfitting was a severe problem in the network training. For this
reason also data augmentation had to be applied in order to reduce it. We used
the addition of Gaussian noise to each pixel of the µ-D signal and random sampling
along the time dimension:

1. Random sampling in time is applied by selecting randomly a set of images
from the long spectrogram sequence for each user obtained after clustering
and summation along the range dimension. This allows to pick an arbitrary
number of images from a finite spectrogram, however extracting too many
samples from the same sequence may end up in repeating the same data.

2. Gaussian noise is added creating a noisy version of each training image, hence
doubling the dataset. The chosen value for the artificial noise standard devi-
ation is σ = 0.05, acting on normalized images with values in [0, 1].

The training data after augmentation is made of 20000 204 × 45 samples, 4000
per user.

Training was carried out for 50 epochs (see Figure 5.13), noticing two important
facts: convergence is rapid, thanks to the pre-training procedure, but overfitting
still appears to be present even after the above mentioned technique were applied,
as testified by the gap between the training and validation losses. However, com-
paring our work to [3, 9] it seems to be less intense as our network retains better
general information about the input even without seeing data gathered from the
validation/test room.

The cause of overfitting is confirmed to be the fact that training and validation
sets are taken in different rooms, as training on the union of the two sets caused
the network not to overfit anymore as shown in the training/validation loss plot
of Figure 5.13 on the right. The hyperparameters such as the regularization rate
λ, the dropout probability, the choice of the optimizer and the filter sizes were
chosen with a simple grid search approach of which we do not report the full results
for conciseness. Grid search consists in selecting a uni-dimensional grid of values
for each parameter, then training a separate network for each combination of the
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possible values on a multi-dimensional grid obtained by combining the grids of
each parameter. It is a computationally demanding procedure when the number
of hyperparameters is high, however it was affordable in our case due to the fast
convergence of the network training.
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Figure 5.13: Loss and accuracy behavior in the standard case (left) and when the training and vali-
dation sets are mixed before training (right).

The final selection of the best parameter values is done by comparing the results
of grid search on the validation set. The number of inception modules and layers of
the decoder in the DCAE were instead selected separately choosing the value that
led to the best performance on validation, without considering the relation with
other parameters.

5.6 Performance Analysis

The results of the proposed architecture on the classification task are evaluated on
the IDRad test set. We implemented several other models as a comparison, the
models from the literature are indicated with the corresponding paper citation:

1. A baseline simple CNN to evaluate the effect of the clustering phase on ac-
curacy. The network is made of 4 convolutional layers separated by 2 × 2
max pooling. The filter size is 3 × 3 for all layers and we have 8, 16, 32, 64
feature maps at each layer respectively. The final layers are fully connected
and dropout with probability 0.5 is applied on the first one.

2. A Recurrent Neural Network (RNN) based on bidirectional Gated Recurrent
Units (GRU) layers used as comparison. We do not discuss the theory of
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GRU layers or RNNs here and refer to the original paper [43]. This model is
denoted by GRU in the following.
The structure of the network is a two GRU layer architecture with 128 units
each. Both layers are bi-directional, meaning that the input is processed both
in the forward time direction and in the backward direction. The images of
45 frames with the µ-D spectrograms are split into the single frames vector
and fed to the RNN sequentially as a time series. Figure 5.14 shows the just
described structure as a block diagram.

Figure 5.14: RNN structure used as comparison. The diagram shows the time-unfolded architec-
ture, where input vectors from 1 to 45 are sequentially processed in a bi-directional fashion.

3. The base version of the IM-based classifier presented in Section 4.5, without
pre-training with the auto-encoder, called IM.

4. The final pre-trained IM model, denoted by pre-IM.

In Table 5.4 and Table 5.5 we present the results, in terms of accuracy on the
validation and test sets of the IDRad dataset, of the above models, compared with
the results from the literature. In the first table we compare the performance of our
models when the denoising phase is performed with the thresholding at -45 dB on
the R-D map, so no KDE is applied, to allow a direct comparison of the combination
of clustering and the proposed classifier with [3, 10]. The pre-trained IM models
outperforms all the other ones, including the combination of the generative model
and RNN from [10] thanks to its ability to extract very complex features from the
data. The idea of considering different filter sizes to extract information at different
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Accuracy on IDRad [%]
Classifier Validation Test
RCN [9] (raw data) 73.54 75.65
CNN 73.02 70.46
GRU 73.15 75.83
pre-IM 83.43 84.30

Table 5.5: Accuracy obtained on IDRad validation and test set when KDE is used for denoising.

scales has proven to be of key importance, bringing a large improvement over the
baseline CNN that makes use of 3 × 3 filters only. The result of the CNN is also
important to highlight that the clustering phase has an impact on the accuracy in
that it removes noisy contributions from the image that can mislead the classifier.
This is shown by the improvement of our CNN model with respect to the one in [3].

Accuracy on IDRad [%]

Classifier Validation Test

CNN [3] 75.30 78.46
RNN [10] 88.08 89.56
CNN 77.37 82.26
GRU 79.46 82.25
IM 90.06 88.44
pre-IM 87.65 90.05

Table 5.4: Accuracy values obtained on IDRad validation and test sets by algorithms from the litera-
ture and the ones proposed here when thresholding is used as denoising.

The GRU model instead does not lead to good results, especially compared to the
other RNN-based approach in [10]. This can be due to the fact that the GRU layers
are implemented using fully-connected layers. This means that the spatial structure
of the single µ-D vector is not considered as a characteristic of the input, only the
temporal relation is accounted for. This issue is solved when a generative model
that provides hidden states for the gait process as input to the classifier is used,
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as spatial information may not be important is such states. In Table 5.5 instead
the denoising with KDE is applied to all the implemented models instead of the
threshold. The comparison is made directly with those models in the literature that
operate on the raw data [9], as our denoising procedure does not require any setup
or pre-processing. The overall results appear to be worse than in the thresholded
case, but still significant considering that no information on the background noise
has to be provided to the algorithm and that the estimation is adaptive. The RCN
implementation in [9] can handle the raw data but its overall accuracy is worse than
the proposed model. However, in terms of training speed the RCN is significantly
faster as it does not require an iterative backpropagation algorithm but only a
matrix inversion.

In order to gain better insight on how the classifier operates on the 5 subjects,
confusion matrices are computed for each model (Figure 5.15). Again, KDE has
an evident negative impact on the accuracy. In practical applications, however, it
may still be preferable due to its adaptability, depending on how much information
about the noise distribution is available or on how much the noise level is supposed
to change during time.

From an analysis of the confusion matrices one can notice the following problems
of the model proposed in [3]: class 1 has a low accuracy, and many samples form
this class are wrongly assigned to classes 4 and 5, class 4 is quite often confused with
class 5. Both these problems are solved by our pre-IM model, that presents a much
more robust accuracy over all classes in case thresholding is used as denoising. With
KDE instead class 1 remains the hardest to classify correctly, as 10% of its samples
are labeled as class 5. The GRU models instead have interesting capabilities but
still are not able to provide the performances obtained by inception modules and
especially in the case with KDE give insufficient accuracy values for classes 4 and
5.
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Figure 5.15: Confusion matrices for different classifiers: the rows correspond to the true labels,
while the columns are the predicted labels.
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5.7 Considerations on Multi-Person Identification

The clustering phase of the proposed processing pipeline allows not only to separate
high-power noisy reflections from the contribution of the subject, but also to handle
the case where multiple subjects are walking in the room at the same time.
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Figure 5.16: µ-D signature obtained from a scenario where 2 subjects are present in the room at
the same time.

Measurement parameters

Center frequency (fc) 77 GHz
Chirp bandwidth (B) 2 GHz
Chirp duration (T ) 320 µs
Sampling frequency 2 GHz
PRI (TREP ) 500 µs
Chirps per sequence 256
Sequence rep. interval 130 ms

Table 5.6: Summary of the radar parameters used for the multi-subject measurements.

Figure 5.16 shows the µ-D spectrum of the measurement when 2 targets are
present, obtained from measurements done with an INRAS RadarLog device work-
ing at center frequency 77 GHz. In the simulation, K = 2 subjects are let walking
randomly in a room, which is not completely empty from furniture, increasing the
complexity of the task. The radar parameters used are listed in Table 5.6. Clearly,
to distinguish the different subjects contribution in the µ-D space is difficult, there-
fore we need to perform the separation in the R-D map. In this case, following the
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description of Section 4.3, we need to select the K biggest clusters from the R-D
map and interpret them as the reflections from K different subjects. The single R-D
image then can be split into K different images and integrated along the rage di-
mension to obtain µ-D signatures for each subject. At this point the µ-D sequences
can be fed to the classifier as in the single-target case with no modifications. To
prove that such a separation in the R-D space is possible we tested it with the
HDBSCAN algorithm on the new measurements.
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Figure 5.17: Clustering with HDBSCAN in the case of K = 2 subjects. The original R-D map (left)
shows the two contributions of the subjects, while the separated clusters (center and right) contain
only the information about the specific target.

As we focus on a proof-of-concept that the clustering phase can separate multiple
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targets we do not apply KDE denoising here, instead a threshold at -45 dB is chosen.
HDBSCAN is applied with nmpts = 25, selecting the two biggest obtained clusters,
discarding the rest. The results for a few different frames are shown in Figure 5.17:
each row represents a different time frame (we chose three consecutive frames) and
the first row contains the measured R-D map with the two reflections from the
two targets. The second and third rows respectively show the result of selecting
separately the two biggest clusters after applying HDBSCAN. The algorithm is
clearly able to extract the two contributions of the subjects allowing the creation
of two separate streams of µ-D data. The obtained sequences are specific of each
subject and can be used for classification, enabling the not yet explored multi-person
identification, as shown in Figure 5.18; the signature of Figure 5.16 is correctly
split into the contributions of each subject by operating on the R-D map before
integration along the range dimension.

To manage the correct labeling of the different clusters during time, i.e. assigning
the same label to a specific cluster in different time frames, some level of tracking
of the subject has to be performed: this task is left as a future work.
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Figure 5.18: Results of the separation in the R-D space. The obtained µ-D signatures belong to the
two different subjects.
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6
Conclusions and Future Works

In this work we tackled the problem of human subject identification from the micro-
Doppler signature of gait, measured with a mm-wave radar sensor. We proposed a
novel signal processing framework in order to extract from the radar range-Doppler
raw data the useful reflection from the target, separating it from the noise contribu-
tion and from unwanted reflections. This was achieved with a combination of a de-
noising and a clustering steps that allowed an effective separation and management
of the different contributions in the range-Doppler space, bringing an improvement
over the pre-processing methods used in the literature and paving the way for the
not yet studied multi-person identification problem. In addition, the proposed pro-
cessing is adaptive with respect to the background noise level and variations in time,
allowing a possible online implementation of the system with little preliminar setup.
To perform the final identification, we designed a classifier based on the inception
modules architecture for Convolutional Neural Networks, that allows feature ex-
traction at different scales, improving the state of the art results on the publicly
available IDRad dataset. We presented an analysis of the results and the effects of
every processing phase, motivating the trade-offs and the choice of the parameters
in each case. The obtained results are promising for the following reasons:

1. The pre-processing and clustering in the R-D space allows a fast and easy
management of the different received reflections. This is of key importance
when multiple targets or noisy peaks from secondary reflections are present
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in the environment, and no other attempt to isolate the single contributions
in the R-D map has been studied in the literature, preventing multi-subject
identification.

2. Adaptivity may be fundamental in real scenarios where a system of this kind
can not be re-programmed at each variation of the background noise level or
when moving to different rooms.

3. The proposed classifier demonstrates that CNNs and the IM architecture are
very effective in this case thanks to their ability to extract complex features
from bi-dimensional input data, outperforming the other methods with an ac-
curacy of 90% and 84% on the IDRad test set when thresholding and adaptive
denoising are used respectively.

6.1 Future Improvements

We investigated several improvements of this work, in order to extend the identi-
fication to multiple targets and to improve the adaptive denosing phase. Here we
briefly describe some possible developments:

1. Improve the KDE denoising.

2. Perform multi-subject identification, including subject tracking in the process-
ing pipeline.

3. Optimize the system to enable online identification.

6.2 Denoising Phase Improvement

The KDE of the background noise PDF has shown to allow adaptive denoising at
the cost of reducing the accuracy of the classifier. Further investigation of this fact
needs to be made, in order to asses if the trade-off between accuracy and adaptivity
can bring some benefits in real situations. For this reason more data, not belonging
to the same IDRad dataset used in this work, is needed. The application of the
proposed workflow to measurements taken in different rooms and various conditions
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can verify the effectiveness of the algorithms used and their generality. In addition,
in the computer vision field several algorithms have been designed other than KDE
to perform foreground detection, such as Gaussian Mixture Models (GMM), Self
Organizing Maps (SOM) and deep CNNs [44, 45], all of which can be applied and
tested as an alternative to KDE in our problem.

6.3 Multi-target Identification and Tracking

As described in Section 5.7, the proposed clustering in the R-D space allows separa-
tion of different targets contributions and the consequent independent classification
of each of them. In order to be able to keep labeling correctly the different clusters
among subsequent frames, however, some level of tracking of the subject has to be
performed. Tracking is a widely studied topic in the radar research community, but
few works focus on tracking in the range-Doppler space while the more useful (in
general) tracking in the Cartesian space (or polar coordinates) is preferred due to
its immediate physical meaning.

Two possible approaches are therefore proposed:

1. Tracking in the R-D frames is viable, using for example Kalman filtering [46]
or novel machine learning techniques such as RNNs.

2. The information from multiple channels of the MIMO radar can be exploited,
allowing the computation of the angular position of the targets as shown in
Section 2.4. Tracking can then be performed in this range-angle dimension
and then projected into the R-D map by selecting the Doppler channels cor-
responding to the range and angle bins occupied by the detected target.

6.4 Online Identification

Online processing would be the final step in the development of the human identi-
fication system from µ-D signatures. To this end the pipeline has to be optimized
in order to handle the latency requirements of real-time processing. Moreover, this
phase may require moving beyond the proposed approach of classifying images of
the same size based on a uniform time duration of 3 s: the aim would be an adaptive
system that can operate with time windows of different lengths and provide more

93



confident classifications by continuing the measurements. Therefore a possible im-
provement could be the transition from a time window classification approach to
a more meaningful walking cycle-based classification, where a walking cycle is the
full sequence of movements that compose a step of the walk, after which the cycle
is repeated. As shown in [47], the statistical features of different walking cycles can
be considered independent, and the typical duration of a human walking cycle is of
about 1 second. This kind of approach can be handled with sequential hypothesis-
testing algorithms derived by Wald’s theory of Sequential Probability Ratio Test
(SPRT), in which the classifier keeps accumulating data until the decision it can
make satisfies some pre-defined level of confidence [48], achieving the level of adap-
tivity and versatility expected from a real monitoring and security system.
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