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Introduction

The unit conjecture concerns units in group rings. A group ring R[G] is a an
algebra over a commutative ring R freely generated as an R-module by a group
G and such that the ring product of R[G] restricted to G coincides with the
group operation of G. A trivial unit in a group ring R[G] is a unit that can be
represented as a scalar multiple of an element of the group G. The problem of
determining the existence of non-trivial units in the group ring was first posed
by Graham Higman in 1940 in his D.Phil thesis and, afterwards, it has been
revived by Kaplansky [5] in 1970 under the conjecture that nowadays is known
as the Kaplansky unit conjecture. This conjecture asserts that in every group
ring of torsion free groups over a field the units are all trivial. Kaplansky ac-
tually formulated three conjectures concerning group rings and related to each
other: alongside the unit conjecture there are the Kaplansky zero divisor con-
jecture (formulated by Kaplansky as an open problem in 1957 [6, Problem 6])
and the Kaplansky idempotent conjecture. The zero divisor conjecture and the
idempotent conjecture deal with the problems of determining the existence of
non-zero zero divisors and non-trivial idempotents (non-trivial under the usual
meaning), respectively. These conjectures are related to each other: the unit
conjecture is stronger than the zero divisor conjecture and the zero divisor con-
jecture is in turn stronger than the idempotent conjecture. The unit conjecture
has been proved for many classes of groups (for example, for torsion free abelian
groups and, more generally, for unique product groups). The search of a general
proof of the unit conjecture took a turn in 2021 (more than 80 years after the
first formulation by Higman), when Giles Gardam published an article [3] in
which he exhibited a counterexample to the Kaplansky unit conjecture. Shortly
afterwards, Alan G. Murray [9] and Donald S. Passman [11] extended Gar-
dam’s research to a larger class of group rings. To the best knowledge of the
author Gardam’s counterexample and its generalizations provided by Passman
and Murray are, currently, the only published counterexamples to the Kaplan-
sky unit conjecture.

The purposes of this Master Thesis are, briefly, to present the three Ka-
plansky conjectures concerning group rings and their relations, to prove the
conjectures for special and important classes of groups and to describe coun-
terexamples provided by Gardam, Murray and Passman in their articles of 2021.

In the first chapter we formally define group rings and trivial units in group
rings. We state and prove just one property of group rings: group rings over
fields are prime rings; this is the only property (inside the huge branch of math-
ematics of group rings theory) we will need in this thesis and we will use it to
prove one relation between the three Kaplansky conjectures. The second part
of the first chapter is dedicated to generally introduce Kaplansky conjectures:
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2 INTRODUCTION

we formally give their statements and we prove both that the unit conjecture is
stronger then the zero divisor conjecture and that the zero divisor conjecture,
in turn, is stronger then the idempotent conjecture.

In the second chapter we present important classes of group rings that satisfy
Kaplansky unit and zero divisors conjectures. For all the positive results on the
conjectures we discuss here, positivity only depends on the properties of the
group G that freely generates the group ring K[G] as a K-module, where K is
any field. First section of this chapter is devoted to group theory: we formally
define unique product groups and ordered groups; we characterize them through
properties equivalent to their definitions and we prove that ordered groups are
unique product groups. The main classes of ordered groups that we consider
here are abelian torsion free groups and some special virtually abelian groups.
In the second section of this chapter, the most important result that we prove
states that group rings of unique product groups satisfy both the zero divisor
and the unit conjecture. As a corollary, we get that all group rings of torsion
free abelian groups satisfy both the zero divisor and the unit conjecture.

The third chapter is devoted to the construction of the counterexamples
to the Kaplansky unit conjecture provided by Gardam, Murray and Passman:
every group ring of the Promislow group over a field of finite characteristic has
non-trivial units. The chapter is divided into three sections. The first one is once
again entirely of group theory: we define here the Promislow group as a finitely
presented group and we include the proofs of all the properties of the Promislow
group we need to develop second and third section of this chapter; in particular,
the Promislow group is torsion free, virtually abelian where it extends an abelian
group by a Z/2 × Z/2 group and the infinite dihedral group is a homomorphic
image of the Promislow group. The second section treats general group rings
K[P ] of the Promislow group P , where K is any field. Elements in K[P ] can
be uniquely represented as linear combinations of four suitable elements of P
with coefficients in a suitable subring of K[P ]. Thanks to this, we can develop
our argument to find out sufficient conditions for elements in K[P ] to be units
and necessary and sufficient conditions for units in K[P ] to be non-trivial units.
In the third section we start by proving that a certain fixed element (the one
exhibited by Gardam in his article) of Z/2Z[P ] is a non-trivial unit. Eventually,
following Murray’s idea and mixing this idea with additions of Passman, we find
out a triple (i.e., depending on three parameters) family of non-trivial units in
group rings of the Promislow group over any field of finite characteristic.

In this work, with the words Kaplansky conjectures we’ll always refer to unit,
idempotent and zero divisor conjectures (as formulated in Definition 1.2.2). In
this work, the modules will be always over commutative rings and module over
a commutative ring can be endowed of both a left-module and a right-module
structure; therefore, without lost of generality, we will always omit the words
“left” and “right”.



Chapter 1

Group Rings and the
Kaplansky Conjectures

1.1 Group Rings

A group ring is, briefly, an algebra over a commutative ring, freely generated
as a module by a group. More precisely, given a group G and a commutative
ring R, set theoretically G freely generates an R-module R(G) that is unique
up to isomorphism of R-modules (Proposition 1.1.2); G being a group, the
additive group R(G) can be endowed of a ring structure in such a way that
R(G) becomes an R-algebra (Proposition 1.1.3): this is the key proposition that
allows us to formally define group rings. Since the algebraic theory concerning
free modules is just a “large” setting in which develop the theory of group rings
(and it is probably already known by the reader), we enclose not here, but in
Appendix A.1 definitions and results we need about free modules. Anyway, in
order to make this subsection easily readable, we put even here the definition
of module freely generated by a subset and the proposition that guarantees the
existence and uniqueness (up to isomorphism) of free modules generated by
arbitrary sets.

Definition 1.1.1. Let R be a commutative ring and M be an R-module. We
say that M is freely generated by S ⊆ M (equivalently, that S freely generates
M or that S is a free set of generators for M) as an R-module if the submodule
generated by S coincides with M and if for every n ∈ N r { 0 } and for every
choice of x1, . . . , xn ∈ S pairwise distinct and r1, . . . , rn ∈ R, the equality

r1x1 + · · · + rnxn = 0M

implies that at least one coefficient between r1, . . . , rn is zero. We say that an
R-module is free if it has a free set of generators.

Proposition 1.1.2. Let S be a set and R be a commutative ring. There exists
an R-module R(S) such that S is a subset of R(S) and R(S) is freely generated
by S. Such a module is unique up to a unique isomorphism, that is: if M and
M ′ are R-modules freely generated by S, then there exists a unique R-module
isomorphism M → M ′ such that its restriction to S behaves like the identity.

3



4CHAPTER 1. GROUP RINGS AND THE KAPLANSKY CONJECTURES

Proof. This is Proposition A.1.5.

Proposition 1.1.3. Let G be a group, R be a commutative ring and M be
the free R-module generated by G. Then M can be endowed with a product
· : M × M → M such that

1. M together with the product · becomes both a ring and an R-algebra;

2. the product · restricted to G coincides with the product that defines the
group G.

3. the product over M that turns M into an R-algebra and that restricted to
G coincides with the product that defines the group G is unique.

Proof. We start defining how to multiply elements of M on the right by elements
of G. Let x ∈ G and rx : G → G be the multiplication on the right by x;
composing it with the canonical inclusion G →֒ M , we get a mapping ρx : G →
M . By the universal property of free modules1, this map induces a morphism
of R-modules ρ∗

x : M → M such that for every y ∈ G

ρ∗
x(y) = y ·G x

holds (where with the notation ·G we mean the product that gives to G the
group structure). Let α be a fixed element in M . We define a set theoretic map
as follows

λα : G −→ M

x Ô−→ λα(x) := ρ∗
x(α).

By the universal property of free modules, this map induces a morphism of R-
modules λ∗

α : M → M that extends λα. We’re now ready to define the product:
we set

· : M × M −→ M

(α, β) Ô−→ α · β := λ∗
α(β).

We have to prove that this product is associative, R-bilinear and that it has an
identity.

• Associativity. Proving associativity is equivalent to prove that for every
α and β in M , λ∗

α·β = λ∗
α ◦ λ∗

β holds, which in turn is equivalent to prove
that for every x ∈ G, λ∗

α·β(x) = λ∗
α ◦ λ∗

β(x) (by the universal property of
free modules). Now

λ∗
α·β(x) = ρ∗

x(α · β) = ρ∗
x(λ∗

α(β))

and
λ∗

α ◦ λ∗
β(x) = λ∗

α(ρ∗
x(β)).

Therefore we have to prove that for every x ∈ G, the mappings ρ∗
x and

λ∗
α commutes. Applying again the universal property of free modules, it

1In this proof we’ll use many times the universal property of free generated modules (Propo-
sition A.1.4); we won’t repeat the reference anymore so that the proof will be smoother to
read.
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suffices to prove that the commutativity of the maps holds over the set G.
After some computations, we get that the two maps commute if and only
if for every y ∈ G, ρ∗

yx = ρ∗
x ◦ ρ∗

y holds. Applying once again the universal
property of free modules, it suffices to prove that the equality holds over
the set G but this is quite immediate.

• Linearity on the right. Proving linearity on the right is equivalent to prove
that for every α ∈ M , the map λ∗

α is an R-module morphism but this is
true by construction.

• Linearity on the left. Proving linearity on the left means proving that
for every α, β ∈ M and for every r, s ∈ R, λ∗

rα+sβ = rλ∗
α + sλ∗

β holds
componentwise. By the universal property of free modules, we only have
to prove that for every x ∈ G, λ∗

rα+sβ(x) = rλ∗
α(x) + sλ∗

β(x) holds, i.e.
that

ρ∗
x(rα + sβ) = rρ∗

x(α) + sρ∗
x(β)

holds. Since ρ∗
x is an R-module morphism, we’re done.

• Identity. Let 1G be the identity of G and take α ∈ M , then

α · 1G = λ∗
α(1G) = λα(1G) = ρ∗

1G
(α)

and
1G · α = λ∗

1G
(α).

Therefore, we have to prove that both ρ∗
1G

and λ∗
1G

are the identity mor-
phism M → M . By the universal property of free generated modules, it
suffices to prove that for every x ∈ G

ρ∗
1G

(x) = x = λ∗
1G

(x)

holds. This follows immediately by the construction of the maps and by
the fact that 1G is the identity of G.

We have just proved that M endowed with the product · is both a ring and
an R-algebra. The fact that the product over M restricted to G yields the
same product we have over G is easy to show (and we leave it to the reader).
Eventually, it remains to prove third point of the statement. Let ·′ : M×M → M
be a product that turns M into an R-algebra and such that for every x, y ∈ G

x ·′ y = x ·G y

holds. For every α ∈ M we set the following maps:

φα : M −→ M

β Ô−→ α ·′ β

and

ψα : M −→ M

β Ô−→ β ·′ α.

All these maps are R-module morphisms. To conclude the proof, it suffices to
prove that for every α ∈ M , λ∗

α = φα holds. By the universal property of
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free modules, it suffices to prove that for every α ∈ M ad for every x ∈ G,
λ∗

α(x) = φα(x) holds, i.e. that

ρ∗
x(α) = ψx(α)

holds. Again by the universal property of free modules, it suffices to prove that
for every x, y ∈ G, ρ∗

x(y) = ψx(y) holds; this follows immediately from the
definitions of the maps.

Corollary 1.1.4. Let G be a group and R be a commutative ring. There exists
a unique (up to isomorphism) R-algebra such that it is freely generated by G
as an R-module and the ring product restricted to G coincides with the product
that gives G the group structure.

Proof. Existence. Let M be the free R-module generated by G; by Proposi-
tion 1.1.3 we can define an operation · : M × M → M which endows M with
an R-algebra structure and such that its restriction to G × G coincides with the
product constituting the group structure of G.

Uniqueness. Let M ′ be an other R-algebra freely generated by G as an R-
module and such that the ring product of M ′ restricted to G coincides with
the product that gives G the group structure. By uniqueness of free generated
modules, there exists an isomorphism φ : M → M ′ of R-modules such that for
every x ∈ G, φ(x) = x holds. To conclude the proof, we have to prove that
φ is an isomorphism of algebras, i.e. that φ preserves the inner product of M .
Because of the bijectivity of φ, this is equivalent to prove that for every α and
β in M

α ·M β = φ−1(φ(α) ·M ′ φ(β)).

Consider the operation

·′ : M × M −→ M

(α, β) Ô−→ φ−1(φ(α) ·M ′ φ(β)).

The set M together with its R-module structure and the operation ·′ is an R-
algebra (we leave to the reader the computations to prove this2) and for every
x, y ∈ G

x ·′ y = φ−1(φ(x) ·M ′ φ(y)) = φ−1(x ·G y) = x ·G y.

By Proposition 1.1.3, we conclude that the operation ·′ : M × M → M and the
inner product of M as a ring are actually the same, as desired.

Definition 1.1.5 (Group ring). Let G be a multiplicative group and R be a
commutative ring. The group ring of G over R, that we will always denote with
R[G], is the associative R-algebra freely generated as an R-module by the set
G and such that the ring product of R[G] restricted to G coincides with the
product of G (R[G] exists and is unique by Corollary 1.1.4).

Every group ring can be described more precisely. Let G be a multiplicative
group and R be a commutative ring. Since the set G is an R-basis of R[G],
every element α ∈ R[G] can be written as

α =
∑

x∈G

ax · x,

2It could be useful to know that φ−1 is an R-module morphism.
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where, for all x ∈ G, the element αx belongs to R (product and sum in the
equality above are meant as product and sum of the R-algebra R[G]), only
finitely many coefficients ax are non zero and the choice of the coefficients ax

is unique (by Lemma A.1.3). The ring operations in R[G] can be explicitly
described. Given α, β ∈ R[G], we may write

α =
∑

x∈G

ax · x, β =
∑

x∈G

bx · x

where ax, bx ∈ R for all x ∈ G; thanks to the properties that define an algebra
(commutativity of the sum and distributivity of the scalar product) sum and
product are, respectively,

α + β =
∑

x∈G

(ax + bx) · x,

α · β =
∑

x,y∈G

(ax · by) · xy =
∑

x∈G

(

∑

y∈G

axy−1 · by

)

· x.

Eventually, for every a ∈ R we must have

a · α =
∑

x∈G

(a · ax) · x.

Remark 1.1.6. Let’s remember that in a left (or right) module over a commu-
tative ring R, the zero element coincides with the product of the zero element
of R with any element of the module. Moreover, if the module is free generated
by a multiplicative group G, then it’s a ring with identity where the identity
is given by the product of the identity of R with the identity of G. Summing
up, denoting with 0R, 1R, 1G, respectively, the zero of R, the identity of R and
the identity of G, we have that the identity and the zero element of R[G] are,
respectively,

1R[G] = 1R · 1G,

0R[G] =
∑

x∈G

0R · x = 0R · 1G.

Notations. Until now, whenever a product appeared, we denoted it with a dot;
from now on, we’ll omit the dot whenever it will be clear that there’s a multipli-
cation. Second, until now, given a set X, if X was equipped with an operation
(i.e. if X was an algebraic structure) and in X there was an identity relative to
this operation, we denoted such identity with 1X (if the operation was a prod-
uct) or with 0X (if the operation was a sum). From now on, we’ll denote these
identities with 1 or 0, depending on whether the operation is a product or a
sum, omitting the subscript whenever it will be clear which algebraic structure
X the identity belongs to.

Definition 1.1.7 (Support in group rings). Let G be a group and R be a com-
mutative ring. Given an element α ∈ R[G], there exists a set { ax ∈ R | x ∈ G }
such that α =

∑

x∈G ax · x. The support of α is defined as the (finite) set

Supp(α) := { x | x ∈ G ∧ ax Ó= 0R }

(the support is-well defined since G is a basis for R[G]).



8CHAPTER 1. GROUP RINGS AND THE KAPLANSKY CONJECTURES

Definition 1.1.8 (Trivial units in group rings). Let G be a group and R be
a commutative ring. A non zero element α ∈ R[G] is said a trivial unit of the
group ring if it is a unit and its support contains exactly one element.

Remark 1.1.9 (Equivalent definition of trivial units). Let G be a group and
R be a commutative ring. The trivial units of R[G] are exactly the elements of
the form

α = a · x

with x ∈ G, a ∈ R and a unit. Indeed, for every choice of x ∈ G together with
a unit a ∈ R, the element a ·x is a unit of R[G], whose inverse is a−1 ·x−1, since

(a · x) · (a−1 · x−1) = (a · a−1) · (x · x−1) = 1G · 1R

(a−1 · x−1) · (a · x) = (a−1 · a) · (x−1 · x) = 1G · 1R.

Conversely, if α is a trivial unit then, according to the definition above, there
exist a ∈ R and x ∈ G such that α = a · x; we need to prove that a is a unit in
R. Thanks to previous lines, 1R · x−1 is a unit in R[G]; therefore

α · (1R · x−1) = a · 1G

is a unit in R[G] (products of units give units); let β ∈ R[G] be its inverse. We
may assume that

β =
n

∑

i=1

ai · xi

with n ∈ N and, for all i ∈ N, ai ∈ R and xi ∈ G. Hence,

(a · 1G) · β =

n
∑

i=1

(a · ai) · xi = 1R · 1G.

Without lost of generality, we may assume that the elements xi, i ∈ N, are
pairwise distinct. Therefore, being G a basis for R[G], last equality holds if and
only if, up to reordering,

a · a1 = 1R ∧ ∀1<i≤n a · ai = 0.

In particular, a1 is a right inverse of a in R. Moreover, since unit in a ring are
never zero divisors, we can conclude that for all i ∈ N with 1 < i ≤ n, ai = 0R

and therefore
β = a1 · 1G.

At this point, using that β is a left inverse of α, we deduce that a1 · a = 1R.
Summing up, a1 is both left and right inverse of a and so a is a unit in R.

Remark 1.1.10. Given a commutative ring R and a group G, we have the
following canonical embeddings:

R −→ R[G]

r Ô−→ r · 1G

G −→ R[G]

g Ô−→ 1R · g

These two maps are both injective ring homomorphisms, since R[G] is an R-
module with G as an R-basis. Therefore, from now on we will identify R and
G with their images through their respective canonical embeddings in R[G]. In
other words, for every r ∈ R and g ∈ G we can denote with r the element r · 1G

in R[G] and with g the element 1R · g in R[G].
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Remark 1.1.11. Given a commutative ring R, a subring S ⊆ R and a group
G, we have the following canonical embedding:

S[G] −→ R[G] (1.1)
∑

x∈G

sx · x Ô−→
∑

x∈G

sx · x (1.2)

This is an injective ring homomorphism, since S[G] is an S-module with G as
an S-basis.

Lemma 1.1.12. Let R be a commutative ring, G be a group and M be an R-
algebra. Let f : R[G] → M be an R-module morphism. If the restriction of f
to G preserves products, then f is an R-algebra homomorphism.

Proof. Let R be a commutative ring, G be a group and M be an R-algebra.
Let f : R[G] → M be an R-module morphism such that the restriction of f to
G preserves product. To prove that f is an R-algebra homomorphism, we only
have to prove that f preserves products. Take α and β in G, then for every
x ∈ G there exists ax, bx ∈ R such that

α =
∑

x∈G

ax · x, β =
∑

x∈G

bx · x,

where only finitely many coefficients ax and bx are non-zero. Therefore

f(α · β) = f

(

∑

x,y∈G

(axby) · (xy)

)

∗
=

∑

x,y∈G

(axby) · f(xy)

∗∗
=

∑

x,y∈G

(axby) · f(x)f(y)

=
∑

x,y∈G

ax · f(x) ·
∑

x,y∈G

by · f(y)
∗
= f(α) · f(β)

where equalities ∗ hold because f is an R-module morphism and equality ∗∗
holds because the restriction of f to G preserves products.

Lemma 1.1.13. Let f : G → H be a group homomorphism and R be an integral
domain. There exists a unique R-algebra homomorphism f∗ : R[G] → R[H]
such that the following diagram commutes (where the vertical arrows are the
canonical inclusions):

G H

R[G] R[H]

f

f∗

Therefore, we can defined the injective map

φ : HomGrp(G, H) −→ HomR−Alg(R[G], R[H])

f Ô−→ f∗
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where Grp and R − Alg are the categories of groups and R-algebras. Moreover,
if G = H, φ restricts to a monomorphism of groups

ψ : AutGrp(G) −→ AutR−Alg(R[G])

f Ô−→ f∗

Proof. Let f : G → H be a group homomorphism and R be an integral do-
main. We first prove the existence of f∗ : R[G] → R[H]. By definition, G
freely generates R[G] as a R-module therefore, by the universal property of
free modules (Proposition A.1.4), there exists a unique R-module morphism
f∗ : R[G] → R[H] making the diagram

G H

R[G] R[H]

f

f∗

commutative. Moreover, the restriction of f∗ to G preserves the product, be-
cause f is a group homomorphism and the canonical inclusion H → R[H] is a
ring homomorphism. Thanks to Lemma 1.1.12, f∗ is an R-algebra homomor-
phism.

The map φ constructed in the statement is well-defined since we just proved
that f∗ exists and is unique. Moreover, if f : G → H and g : G → H are
group homomorphism such that f∗ = g∗ holds then, naming i : H → R[H] the
canonical inclusion, we get that

i ◦ f = f∗
|G = g∗

|G = i ◦ g

holds but i is a monomorphism (i being injective) therefore last chain of equal-
ities implies that f = g, that is φ is injective.

Let G be a fixed group. It remains to prove that the image of the map ψ
defined in the statement actually lies in AutR−Alg(R[G]) and that ψ preserves
compositions. Let f : G → G and h : G → G be automorphisms, then the
following is a commutative diagram in the category of R-modules

G G G

R[G] K[G] R[G]

f h

f∗

h∗

Since, by definition, (h ◦ f)∗ is the unique R-module morphism such that

G G G

R[G] R[G]

f h

(h◦f)∗

commutes we deduce that
(h ◦ f)∗ = h∗ ◦ f∗ (1.3)
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holds. In particular,

idR[G] = (idG)∗ = (f ◦ f−1)∗ = f∗ ◦ (f−1)∗,

idR[G] = (idG)∗ = (f−1 ◦ f)∗ = (f−1)∗ ◦ f∗.

Thus f∗ is an automorphism, that is ψ is well-defined. Eventually, the equal-
ity 1.3 implies that ψ preserves products, as desired.

An important property of group rings is that all group rings of torsion free
groups over fields are prime rings (Definition 1.1.14 and Corollary 1.1.16). This
result was proved by Passman ([12], [13]); the proof provided by Passman needs
some non-trivial facts regarding group theory and that abelian group rings have
no non-trivial zero divisors (Theorem 2.2.5).

Definition 1.1.14 (Prime ring). A ring R is said to be prime if αRβ = 0 for
α, β ∈ R implies α = 0 or β = 0.

Proposition 1.1.15. Given a group G and a field K, the group ring K[G] is
prime if and only if G has no non-trivial finite normal subgroups.

Proof of “ ⇒”. Let K be a field and G be a group. Let’s prove that if G has
a non-trivial finite normal subgroup, then K[G] is not prime. Let us assume
that G has a non-trivial finite normal subgroup H. The idea is to find two non
zero elements in K[G] such that their product is zero and one of them is in the
center of K[G]; this would imply, denoting with α and β these elements, with
α in the center of K[G], that

αK[G]β = K[G]αβ = { 0K[G] } .

The non zero element α will be chosen such that Supp(α) = H (this is a non-
absurd request since H is assumed to be finite): the fact that H is a non-trivial
subgroup will be used to prove that α2 is a scalar multiple of α and through
this we will construct β; the fact that H is normal will be used to prove that α
is in the center of K[G]. Set

α :=
∑

h∈H

h.

This is a well-defined non zero element in K[G] (H being finite). Since H is a
subgroup, for every h ∈ H the map H → H given by the left multiplication by
h is well-defined and a bijection, thus

α2 =
∑

h∈H

(

∑

k∈H

hk

)

=
∑

h∈H

(

∑

g∈H

g

)

= |H|α.

Set β := α − |H| · 1G; then β isn’t zero because |Supp(α)| > 1 (H being non-
trivial), so Supp(β) contains at least two elements. Moreover αβ = 0K[G] holds.
On the other hand, H being a normal subgroup, we have that for every x ∈ G

x · α =
∑

h∈H

xh =
∑

k∈xH

k =
∑

k∈Hx

k =
∑

h∈H

hx = α · x.

Thus, α commutes with all the elements in a basis of K[G] as a K-module (G
being such a basis) and, therefore, α is in the center of K[G]. Summing up, we
have proved that

αK[G]β = K[G]αβ = { 0K[G] } .

Both α and β being non zero, we just proved that K[G] is not a prime ring.
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Proof of “ ⇐” (idea). Let K be a field and let G be a group such that the
identity group is its only finite normal subgroup. Assume for a contradiction
that K[G] is not a prime ring. Since K[G] is assumed not to be a prime ring,
there exist non-zero elements α, β ∈ K[G] such that αK[G]β is the zero ring.
The idea is to consider a suitable subgroup of G, to use the assumption over
G to prove that this subgroup is torsion free abelian and to use α and β to
construct a non-trivial zero divisor in the group ring of this subgroup over the
field K; this will contradict Theorem 2.2.5. Set

∆(G) := { x ∈ G | x has only finitely many conjugates in G } .

This is a subgroup of G and the assumption that the only finite normal subgroup
of G is the identity group implies that ∆(G) is an abelian torsion free group
(this is an immediate consequence of [10, Lemma 19.3]).
Without lost of generality, we may assume that 1G belongs to both the supports
of α and β; indeed, taking x ∈ Supp(α) and y ∈ Supp(β) (these supports are
both non-empty since α and β are both non zero), one can replace α and β
with, respectively, x−1α and βy−1 because, certainly, (x−1α)K[G](βy−1) = 0.
The elements α and β can be written as

α = α0 + α1 with Supp(α0) ⊆ ∆(G) and Supp(α1) ⊆ (G r ∆(G));

β = β0 + β1 with Supp(β0) ⊆ ∆(G) and Supp(β1) ⊆ (G r ∆(G)).

First, α0 and β0 are both non zero since 1G belongs to ∆(G)∩Supp(α)∩Supp(β).
Second, α0β0 = 0K[∆(G)] and this can be proved using that αK[G]β is the zero
ring (the proof is not easy and requires some algebra facts; details can be found
in the proof of [13, Theorem 1]). Summing up, α0 is a zero divisor in K[∆(G)].
This gives the contradiction: since ∆(G) is torsion free abelian, K[∆(G)] has
no zero divisors different from zero (Theorem 2.2.5).

Corollary 1.1.16. If G is a torsion free group and K is a field, the group ring
K[G] is a prime ring.

Proof. Since G is a torsion free group, no element in G different from the identity
has finite order thus G cannot contain finite nontrivial subgroups. Hence, it
follows from Proposition 1.1.15 that K[G] is a prime ring.

1.2 Kaplansky Conjectures and Their Relations

If K is a field and G is a torsion free group, exhibiting (or just proving the
existence of) non-trivial units, non-zero zero divisors and non-trivial (under
the usual meaning) idempotents in K[G] becomes a very difficult problem, so
difficult to think that in K[G] (A) the only units are trivial, that (B) the zero
is the only zero divisor and that (C) the identity and the zero are the only
idempotents. These claims (A), (B) and (C) have been for many years just
conjectures commonly known as, respectively, the Kaplansky unit, zero divisor
and idempotent conjectures. Historically, the unit conjecture was first stated by
Graham Higman in 1940 in his D.Phil thesis and then has been been revived by
Kaplansky [5] in 1970. In the meanwhile, Kaplansky formulated the zero divisor
conjecture as an open problem in 1957 [6, Problem 6]. The purpose of this
section, is to formally formulate the Kaplansky conjectures (Definition 1.2.2)
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and to prove that the unit conjecture is stronger then the zero divisor conjecture
(Theorem 1.2.9) and that the zero divisor conjecture, in turn, is stronger then
the idempotent conjecture (Theorem 1.2.7).

1.2.1 Statements of the Kaplansky Conjectures

Remark 1.2.1. Let G be torsion free group and let K be a field. Let α ∈ K[G]
be a trivial unit; the element α is idempotent if and only if α = 1K[G] holds:
being it a trivial unit, α = a · x with a ∈ K× (where K× denotes the group of
units of K) and x ∈ G (Remark 1.1.9); thus α2 = a2 · x2. Since G is a basis of
K[G] as a K-module, α is an idempotent if and only if both a2 = a and x2 = x
hold, that is if and only if both a and x are idempotents3. This happens if and
only if a is the identity of K (a can’t be 0K since α is non-zero) and x is the
identity of G (the group G being torsion free). Summing up, α is idempotent if
and only if α = 1K · 1G.

Definition 1.2.2 (Kaplansky conjectures). Let G be a torsion free group and let
K be a field. Under these assumptions, the statements of the three Kaplansky
conjectures about group rings are the following.

Idempotent conjecture. The group ring K[G] has no non-trivial idempotents.
Equivalently, the idempotents of K[G] are exactly 0K[G] and 1K[G].

Zero-divisor conjecture. The group ring K[G] has no non-trivial zero divisors.
Equivalently, the unique zero divisor of K[G] is zero.

Unit conjecture. The group ring K[G] has no non-trivial units.

Remark 1.2.3. The equivalence inside the formulation of first conjecture is
proved in Remark 1.2.1.

Remark 1.2.4. The three Kaplansky conjectures are formulated for group rings
over fields; this assumption is not too restrictive, according to what follows.
Consider any of the three Kaplansky conjectures written above, then we claim
that:

Claim. Given a group G, the thesis of the Kaplansky conjecture is true for every
group ring K[G], where K is a field, if and only if the same thesis is true for
every group ring R[G], where R is an integral domain.

Obviously, if for every ring R the group ring R[G] satisfies a property, then for
every field K the group ring K[G] satisfies the same property. Conversely, if for
every field K the group ring K[G] realizes the thesis of a Kaplansky conjecture
then for every integral domain R the group ring R[G] realizes the same thesis
because, given an integral domain R, the group ring R[G] can be embedded in a
group ring K[G] over a field K (by Remark 1.1.11, because every integral domain
embeds in a field) and every property stated in the Kaplansky conjectures is
preserved when passing to subrings.

Remark 1.2.5. In the formulation of the zero divisor conjecture over a group
ring R[G], the assumptions that G is a torsion free group and R is an integral

3Remember that a field never contains idempotents different from zero and the identity
(Theorem 1.2.7)
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domain or the zero ring are necessary; equivalently, if G is a group with torsion
or if R is a commutative ring with zero divisors different from 0R, then the
group ring R[G] has at least one non-trivial zero divisor.

(i) Let R be a non-zero commutative ring but not a domain; let a, b ∈ R be
such that ab = 0R and let A, B be finite non-empty subsets of G. Set
α :=

∑

x∈A a · x and β :=
∑

x∈B b · x; then α · β = 0R[G] holds. Thus, if
a and b are non-zero, then α and β are non-trivial zero divisors for every
choice of the finite non-empty subsets A, B ⊆ G.

(ii) Let G be a group with torsion; let x ∈ G be a torsion element different
from the identity of G. Let n ∈ N be a non zero number such that xn is
the identity of G. In R[G] take

α := x − 1G, β := 1 + x + x2 + · · · + xn−1.

Then α · β = 0R[G] holds and α is non-trivial.

Remark 1.2.6. A last remark regarding the assumptions that G is a torsion
free group and K is a field in the formulations of the Kaplansky conjectures:
these assumptions are both used in the proofs of the connections between the
three conjectures. More precisely, in the proof of Theorem 1.2.7 one uses that
K is a field; in the proof of Theorem 1.2.9 one uses both that K is a field (when
using Lemma 1.2.8 and Remark 1.2.1) and that G is torsion free. Anyway, both
Theorems 1.2.7 and 1.2.9 are still true under the weaker assumption that K is
a domain, since also Proposition 1.1.15, Corollary 1.1.16 and Lemma 1.2.8 are
still true under this weaker assumption (and these three results are, explicitly
or implicitly, used to prove Theorems 1.2.7 and 1.2.9).

1.2.2 Connections between the Kaplansky Conjectures

The three Kaplansky conjectures are closely connected to each other: given a
group ring K[G] where K is a field and G is a torsion free group, if K[G] satisfies
the unit conjecture then it satisfies the zero divisor conjecture (Theorem 1.2.9)
and if it satisfies the zero divisor conjecture then it satisfies the idempotent
conjecture (Theorem 1.2.7). These connections are briefly summarized by the
following diagram:

Unit conjecture =⇒ Zero divisor conjecture =⇒ Idempotent conjecture.

Our aim in this subsection is to state and prove both these implications. The
proof of the second implication is well-known; the idea is to prove that, in every
ring, idempotent elements different from the identity are always zero divisors.
The proof of the first implication is a bit more complicated; the idea is taken
from Passman ([12, Lemma 1.2]) and uses the fact that a group ring over a field
of a torsion free group is always a prime ring (Theorem 1.1.16).

Theorem 1.2.7. In a ring with no non-zero zero divisors there are no idem-
potent elements different from the identity and zero. In particular, if a group
ring over a field satisfies the zero divisor conjecture, then it also satisfies the
idempotent conjecture.
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Proof. The second part of the statement follows immediately from the first part.
To prove the first part, let R be a ring such that zero is the only zero divisor
and let a ∈ R be an idempotent element, that is a2 = a holds. Thus a satisfies
a(a−1R) = 0R. Therefore, since the only zero divisor in R is 0R by assumption,
it follows that a can only be zero or the identity.

Lemma 1.2.8. Let G be a torsion free group and K be a field. The group
ring K[G] has a proper zero divisor (i.e., a zero divisor different from 0K[G]) if
and only if it has a non-zero element of square zero.

Proof. Let K[G] be a group ring with a proper zero divisor α Ó= 0K[G]. Hence,
there exists a non-zero element β ∈ K[G] such that αβ = 0K[G]. This implies
that (βK[G]α)(βK[G]α) is the zero ring, hence the ring βK[G]α is formed only
by elements of square zero. To conclude, it suffices to prove that βK[G]α is
different from the zero ring. This follows directly from the fact that K[G] is a
prime ring (Corollary 1.1.16), G being torsion free by assumption.
Conversely, if α ∈ K[G] is a non-zero element of square zero then α is a zero
divisor.

Theorem 1.2.9. Let G be a torsion free group and K be a field. If the group
ring K[G] has a proper zero divisor (i.e., a zero divisor different from 0K[G]),
then it also has a non-trivial unit. Equivalently, if K[G] satisfies the unit con-
jecture, then it also satisfies the zero divisor conjecture.

Proof. Let G be a torsion free group, let K be a field and suppose that K[G]
has a proper zero divisor. By the previous lemma (Lemma 1.2.8), in the group
ring K[G] there exists a non zero element α of square zero. Therefore,

(1 + α)(1 − α) = 1,

(1 − α)(1 + α) = 1.

hold. These equalities imply that β := 1 + α is a unit; to conclude it suffices
to prove that β is a non-trivial unit. By contradiction, assume that there exist
r ∈ K and g ∈ G such that β = r · g; in particular, r is non-zero because β is
non-zero (β being a unit). We have that

r2 · g2 = β2 = (1 + α)2 = 1 + 2 · α

= 1 + 2 · (β − 1) = 1 + 2 · (r · g − 1) = 2r · g − 1.

Summing up,
1 − 2r · g + r2 · g2 = 0.

The coefficients 2r and r2 are not zero, because we’re assuming r to be non-zero.
It follows that at least one of the following equalities must be true:

g = 1G, g = g2, g2 = 1G.

The third one is possible if and only if g = 1G (since G is torsion free by
assumption); the second one implies the first one; so, let us assume that g = 1G.
This implies that

α = β − 1 = r · g − 1 = r · 1G − 1 = (r − 1R) · 1G.

This means, in particular, that α is a trivial unit (by Remark 1.1.9, α being
non-zero by assumption). This is impossible because α is a zero divisor (since,
by assumption, α2 = 0 holds) and a zero divisor can’t be a unit.





Chapter 2

Positive Results on the
Kaplansky Conjectures

The search of proofs of the Kaplansky conjectures has been very intense in the
world of mathematics in last half a century. Literature is full of articles which
prove that a group ring K[G] satisfies a certain Kaplansky conjecture under more
or less restrictive assumptions on the group G or the field K. We present in this
chapter some of these results: the basic ones that, in our opinion, everyone who
approaches to the study of the Kaplansky conjectures should know. The classes
of group rings K[G] we’re referring to are distinguished only by the properties
satisfied by the group G, more precisely we will consider group rings K[G] where
K is any field and G is a unique product group, ordered group or an abelian
group.

2.1 Preliminary Results of Group Theory

2.1.1 Unique Product Property

This subsection is dedicate to define and characterize unique product groups.
Alongside the unique product property, we will define the two unique products
property which, a priory, seems to be stronger than the unique product property.
In 1980 Andrzej Strojnwski proved that these properties are actually equivalent;
we provide here statement and proof by Strojnwski [16] (Proposition 2.1.3). The
equivalence between the unique product property and the two unique products
property is very useful to prove a central result in next section: every group
ring of a unique product group has no non-trivial units (Theorem 2.2.2).

Definition 2.1.1 (U.p. group and t.u.p. group). Let G be a multiplica-
tive group. The group G satisfies the unique product property (briefly, G is
a u.p. group) if for every pair of finite non empty subsets A, B of G there
exists at least one element in AB = { ab | a ∈ A, b ∈ B } that can be uniquely
represented as ab with a ∈ A and b ∈ B. The group G satisfies the two unique
products property (briefly, G is a t.u.p. group) if for every pair of finite non
empty subsets A, B of G with |A| + |B| > 2 there exist in AB at least two
elements such that each one of them can be uniquely represented as ab with
(a, b) ∈ A × B.

17
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Lemma 2.1.2 (Unique product groups are torsion free). Let G be a unique
product group; then G is torsion free.

Proof. Let G be a unique product group. By contradiction, assume that x ∈ G
is a torsion element and let n ∈ N be a positive integer such that xn = 1G holds.
Set A := { 1G, xn−1 } and B := { 1G, x }. Then 1G = 1G · 1G = x · xn−1 where
the pairs (1G, 1G) and (xn.1, x) are distinct and both belong to A × B but this
contradicts the assumption that G is a u.p. group.

Proposition 2.1.3. Let G be a group. The following conditions are equivalent:

(i) G is a t.u.p. group;

(ii) For any nonempty finite subset A of the group G there exists at least one
element in AA = { xy : x, y ∈ A } which has a unique representation in the
form xy with (x, y) ∈ A × A;

(iii) G is a u.p. group.

Proof. “(i) =⇒ (ii)”. Let G be a t.u.p group and A ⊆ G be non-empty finite
subset. If |A| = 1 then A obviously realizes condition (ii). If |A| > 1 then A
realizes condition (ii) thanks to the two unique products property.

“(ii) =⇒ (iii)”. Let G be a group but not a unique product group; we’ll prove
that G doesn’t satisfy condition (ii). Since the group G is not a u.p. group,
there exists two finite non-empty subsets A, B of G such that any element in
AB has at least two different representations as ab with (a, b) ∈ A × B. Set
C := BA; our aim is to prove that C is a subset of G thanks to which G can’t
satisfy condition (ii). The set C is non-empty and finite (both A and B being
non-empty and finite). Let x ∈ CC be arbitrary; this element can be written as
x = b1a1b2a2 with a1, a2 ∈ A and b1, b2 ∈ B. Consider the element a1b2 ∈ AB:
our assumption over A and B implies that there exists a pair (a3, b3) ∈ A × B
distinct from (a1, b2) such that a1b2 = a3b3 holds. Thus

x = (b1a1)(b2a2) = b1(a1b2)a2 = b1(a3b3)a2 = (b1a3)(b3a2)

holds and the inequality (a1, b2) Ó= (a3, b3) implies that

(b1a1, b2a2) Ó= (b1a3, b3a2).

Therefore x ∈ CC has two representations as c1c2 with c1, c2 ∈ C. Since x ∈ C
was arbitrary, it follows that the existence of the non-empty finite subset C of
G denies the possibility that G satisfies condition (ii).

“(iii) =⇒ (i)”. Let G be a group but not a two unique products group;
we’ll prove that G is not a unique product group. Since the group G is not
a two unique products group, there exists two finite subsets A, B of G with
|A| + |B| > 2 such that in AB there exists exactly one element that admits
a unique representation as product of an element in A and an element in B;
let ab be such an element, where (a, b) ∈ A × B. The idea is to construct two
non-empty finite subsets E and F of G that deny the possibility that G satisfies
the unique product property. We set C := a−1A and D := Bb−1. Inside CD
the element 1G = a−1abb−1 = 1G1G is the only element that admits a unique
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representation as a product of an element in C and an element in D. Indeed,
in A × B and in C × D we can define the following equivalence relations:

∀(x,y),(x′,y′)∈A×B (x, y) ∼A,B (x′, y′) if xy = x′y′;

∀(x,y),(x′,y′)∈C×D (x, y) ∼C,D (x′, y′) if xy = x′y′.

The fact that these are equivalence relations is easy to show. Moreover, the
bijection

f : A × B −→ C × D

(x, y) Ô−→ (a−1x, yb−1)

translates the equivalence relation defined in A × B in the equivalence relation
defined in C × D, i.e.

∀(x,y),(x′,y′)∈A×B (x, y) ∼A,B (x′, y′)

⇐⇒ (a−1x, yb−1) ∼C,D (a−1x′, y′b−1)

⇐⇒ f(x, y) ∼C,D f(x′, y′).

(2.1)

In particular, thanks to our assumption over the subsets A and B, exactly one
equivalence class of the equivalence relation ∼A,B has cardinality equal to 1;
therefore, since f is a bijection that satisfies the equivalences in 2.1, exactly one
equivalence class of the equivalence relation ∼C,D has cardinality equal to 1 and
this is the equivalence class containing

f(a, b) = a−1abb−1 = 1G.

We set E := D−1C and F := DC−1; let (x, y) ∈ E ×F be an arbitrary element.
We will prove that there exists an element (x′, y′) ∈ E × F distinct from (x, y)
such that xy = x′y′. First, by definition of E and F , there exist c1, c2 ∈ C and
d1, d2 ∈ D such that x = d−1

1 c1 and y = d2c−1
2 . We distinguish three cases.

(a) If (c1, d2) Ó= (1G, 1G), then, there exists a pair (c, d) ∈ C × D distinct from
(c1, d2) such that c1d2 = cd holds. Thus, the pair (x′, y′) := (d−1

1 c, dc−1
2 ) ∈

E × F is distinct from (x, y) and xy = x′y′.

(b) If (c1, d2) = (1G, 1G) and (c2, d1) Ó= (1G, 1G), then, there exists a pair
(c, d) ∈ C × D distinct from (c2, d1) such that c2d1 = cd holds true; equiv-
alently, we have the equality d−1

1 c−1
2 = d−1c−1. Thus, the pair (x′, y′) :=

(d−11G, 1Gc−1) is distinct from (x, y) and xy = x′y′.

(c) In the last case, (c1, c2, d1, d2) = (1G, 1G, 1G, 1G) holds. By assumption, one
set between A and B contains at least two distinct elements; up to rename
the subsets, we may assume that A has at least two elements. Therefore,
C has at least one element distinct from 1G ∈ C; let c be such an element
and set (x′, y′) := (1Gc, 1Gc−1) ∈ E × F . The pair (x′, y′) is distinct from
(x, y) and xy = x′y′.

In each case, we exhibited an element (x′, y′) ∈ E × F distinct from (x, y) and
such that xy = x′y′ holds. Thus, being the pair (x, y) arbitrary in E × F , it
follows that the two non empty finite subsets E and F of G defined above are
such that any element in EF admits at least two representations as a product
of an element in E and an element in F . We conclude that G can’t satisfy the
unique product property.
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Remark 2.1.4. An important question is if there exists an explicit example of
a torsion free non-unique product group. Answering this question has been a
non-trivial problem in the history of mathematics. The first example of a torsion
free, non-unique product group was published in 1987 by Rips and Segev [15]
and one year later Promislow [14] proved that the Promislow group is a torsion
free non-unique product group. The problem of finding one example of a torsion
free non-unique product group could be posed alongside the problem of finding
a counterexample to the Kaplansky unit conjecture: indeed, every group ring
over a unique product group always satisfies the Kaplansky unit conjecture
(Theorem 2.2.2).

2.1.2 Ordered Groups

Definition 2.1.5. A group G is said to be a right-ordered group (left-ordered
group) or, briefly, a RO-group (LO-group) if there exists a relation ≺ on G such
that for all x, y, z ∈ G the following properties are satisfied:

(i) Transitivity. If x ≺ y and y ≺ z, then x ≺ z holds.

(ii) Totality. If x Ó= y, then either x ≺ y or y ≺ x holds, but not both.

(iii) Right (left) multiplication preserves order. If x ≺ y then xz ≺ yz (xz ≺ yz)
holds.

Definition 2.1.6. A group G is said to be an ordered group if there exists
a relation ≺ on G such that for all x, y, z ∈ G the following properties are
satisfied:

(i) Transitivity. If x ≺ y and y ≺ z, then x ≺ z holds

(ii) Totality. If x Ó= y, then either x ≺ y or y ≺ x holds, but not both.

(iii) Left and right multiplications preserve order. If x ≺ y then both zx ≺ zy
and xz ≺ yz hold.

Remark 2.1.7. Let (G, ≺) be a right-ordered group or a left-ordered group.
There could be an element x ∈ G such that x ≺ x holds. In particular, this
fact together with property (iii) in the definition 2.1.5 applied to z = x−1

and y = x implies that 1G ≺ 1G and so, thanks to the same property, for
all y ∈ G, y ≺ y holds. As an example of this, consider the additive group
(Z, ≺) where, describing the relation ≺ as a subset R of Z × Z, we set R :=
{ (a, b) ∈ Z × Z | a ≤ b }. It’s easy to check that this relation satisfies all the
conditions in the definition 2.1.6, thus (Z, ≺) is an ordered group (in particular,
a right-ordered and left-ordered group) and, for all z ∈ Z, (z, z) belongs to R,
that is z ≺ z holds.

Remark 2.1.8. Let (G, ≺) be a right-ordered (left-ordered) group. As observed
in remark 2.1.7, there could be x ∈ G such that x ≺ x holds. However, one
can construct a new order relation ≺′ over the same group G such that (G, ≺′)
is a right-ordered (left-ordered) group and for all x ∈ G it never happens that
x ≺′ x holds. Indeed, let ≺′ be the order relation on G defined as follows: for
all x, y ∈ G,

x ≺′ y ⇐⇒ x ≺ y ∧ x Ó= y.

We prove that (G, ≺′) is a right-ordered (left-ordered) group.
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(i) Transitivity. Let x, y, z ∈ G be such that x ≺′ y ≺′ z; this means that

x ≺ y ≺ z ∧ x Ó= y ∧ y Ó= z.

By the transitivity of ≺ we have that x ≺ z holds true; to prove that
x ≺′ z it remains to prove that x and z are distinct. By contradiction,
assume that x = z. Then

x ≺ y ∧ y ≺ z = x.

Therefore, x and y need to be the same element, otherwise, if they were
different to each other, last relations would contradict the fact that ≺
satisfies property (ii) in the definition 2.1.5. But we assumed x and y to
be distinct, contradiction.

(ii) Totality. Immediate.

(iii) Left and right multiplications preserve order. Let x, y ∈ G be such that
x ≺′ y; this means that x ≺ y and x Ó= y. Let z ∈ G, we have to prove
that xz ≺′ yz (zx ≺′ zy). This is quite easy to show; indeed, thanks to
the fact that ≺ satisfies property (iii) in the definition 2.1.5, we have that

x ≺ y ∧ x Ó= y =⇒ xz ≺ yz ∧ xz Ó= yz.

(analogously, if (G, ≺′) is a left-ordered group, then x ≺′ y implies zx ≺ zy
and zx Ó= zy).

Lemma 2.1.9. Let (G, ≺′) be a left-ordered group (right-ordered group). Then
there exists a relation ≺ in G such that (G, ≺) is a right-ordered group (left-
ordered group). Explicitly, ≺ is defined as follows: for every x, y ∈ G we set
x ≺ y if y−1 ≺′ x−1 holds.

Proof. We prove just that a left-order relation generates a right-order relation;
the other case is analogous. Let (G, ≺) be a left-ordered group and let “≺′” be
a new relation over G defined as in the statement. We prove that “≺′” satisfies
the three condition defining a right-order relation. Let x, y, z ∈ G.

(i) Transitivity. If x ≺′ y ≺′ z, this means that z−1 ≺ y−1 ≺ x−1 holds.
Hence, by the transitivity of “≺” it follows that z−1 ≺ x−1 holds, that is
x ≺′ z.

(ii) Totality. Immediate, because “≺” is a total relation.

(iii) (Right multiplication preserves order. If x ≺′ y, this means that y−1 ≺
x−1 holds. Since “≺” is preserved by left multiplication, we obtain that
(yz)−1 = z−1y−1 ≺ z−1x−1 = (xz)−1. Therefore, xz ≺′ yz holds.

Through next lemmas, we will formulate some important properties regard-
ing right-ordered and left-ordered groups, up to arrive to the most important
result of this subsection: all right-ordered groups and all left-ordered groups are
unique product groups. The reference for lemma 2.1.11 is [12, Lemma 13.1.4].
First, we need to define the positive cone associated to a right-order relation
(left-order relation).
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Definition 2.1.10. Let (G, ≺) be a right-ordered (left-ordered) group. The
positive cone of G is denoted with P (G) (or with P (G, ≺) if we need to specify
the order relation that we’re considering) and is defined as

P (G) := { x ∈ G | 1G ≺ x ∧ x Ó= 1G } .

The positive cone characterizes the order relation, as expressed in next
lemma.

Lemma 2.1.11. Let (G, ≺) be a right-ordered (left-ordered) group with positive
cone P = P (G), then

(i) P is multiplicatively closed (that is, P is a subsemigroup of G);

(ii) G = P ∪ P −1 ∪ { 1G } is a disjoint union.

Conversely, let G be a group and let P ⊆ G be a subset satisfying conditions (i)
and (ii), then G becomes both a right-ordered group and a left-ordered group:

• for every x, y ∈ G we set x ≺ y if yx−1 ∈ P , then (G, ≺) is a RO-group;

• for every x, y ∈ G we set x ≺′ y if x−1y ∈ P , then (G, ≺′) is a LO-group.

Moreover, both “≺” and “≺′” have P as positive cone.

Proof. We prove the first part of the statement just in the case of a right-ordered
group; the case of a left-ordered group is analogous. Let G be a right-ordered
group with positive cone P = P (G). The set P is multiplicatively closed, indeed:
let x, y ∈ P , then both 1 ≺ x and 1 ≺ y hold; from property (iii) in the definition
of right-ordered group we get

1 ≺ y = 1 · y ≺ x · y;

hence xy belongs to P . About point (ii), by condition (ii) in the definition of
right-ordered group we get that for every x ∈ G with x Ó= 1G then exactly
one between 1G ≺ x and x ≺ 1G holds. By property (iii) in the definition of
right-ordered group we have that

x ≺ 1G ⇐⇒ x · x−1 ≺ 1G · x−1 ⇐⇒ 1 ≺ x−1.

Summing up, we just proved that for every x ∈ G with x Ó= 1G, then exactly
one element between x and x−1 belongs to P , that is x belongs to either P or
P −1 but not both. Therefore, since by definition of positive cone 1G doesn’t
belong to P , we get that G = P ∪ P −1 ∪ { 1G } is a disjoint union.

Conversely, let G be a group, let P ⊆ G be a subset satisfying conditions (i)
and (ii) in the statement and let ≺ and ≺′ be relations over G defined as in the
statement. To prove that both ≺ and ≺′ are transitive, let x, y, z ∈ G, then

x ≺ y ≺ z =⇒ (yx−1 ∈ P ∧ zy−1 ∈ P )
∗

=⇒ zx−1 = zy−1yx−1 ∈ P =⇒ x ≺ z

and

x ≺′ y ≺′ z =⇒ (x−1y ∈ P ∧ y−1z ∈ P )
∗

=⇒ x−1z = x−1yy−1z ∈ P =⇒ x ≺′ z,
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where in the implication ∗ we used that P is multiplicatively closed. Now we
prove that ≺ is a total relation. Let x, y ∈ G be distinct elements, then by
definition x ≺ y if yx−1 ∈ P and

y ≺ x ⇐⇒ xy−1 ∈ P ⇐⇒ yx−1 ∈ P −1.

Since yx−1 Ó= 1G holds (x and y being distinct) and since G = P ∪P −1 ∪{ 1G } is
a disjoint union by assumption, it follows that yx−1 belongs to either P or P −1

but not both, that is at least one between x ≺ y or y ≺ x holds, but not both.
The proof that ≺′ is total is analogous. Eventually, we prove that right-product
and left-product preserve, respectively, the relation ≺ and the relation ≺′. Let
x, y, z ∈ G, then

x ≺ y =⇒ yx−1 ∈ P
∗

=⇒ (yz)(xz)−1 = yx−1 ∈ P =⇒ xz ≺ yz

and

x ≺′ y =⇒ x−1y ∈ P
∗

=⇒ (zx)−1(zy) = x−1y ∈ P =⇒ zx ≺′ zy,

where in the implication ∗ we used that P is multiplicatively closed. The last
sentence of the statement of the lemma is immediate.

Lemma 2.1.12. Let (G, ≺) be a right-ordered group and let P be the associated
positive cone. Then (G, ≺) is an ordered group if and only if P satisfies the
following condition:

∀x∈G xPx−1 ⊆ P.

Proof. Let (G, ≺) be a right-ordered group and let P be its positive cone. Then
(G, ≺) is an ordered group if and only if left multiplication preserves the order.
Let x, y, z ∈ G; by the fact that right product preserves order, we have that
x ≺ y holds if and only if 1 ≺ yx−1 holds and zx ≺ zy holds if and only if
1 ≺ zy(zx)−1 holds. Therefore, by the definition of positive cone, the condition

∀x,y,z∈G x ≺ y =⇒ zx ≺ zy

is equivalent to

∀x,y,z∈G yx−1 ∈ P =⇒ zyx−1z−1 ∈ P. (2.2)

Last condition is equivalent to require that for all z ∈ G, zPz−1 ⊆ P holds.
Indeed:

• if P satisfies condition 2.2, applying it to x = 1G we get that for all z ∈ G
and y ∈ P , the element zyz−1 belongs to P , that is: for all z ∈ G, zPz−1

is a subset of P ;

• conversely, if for all z ∈ G, zPz−1 ⊆ P holds then it immediately follows
that condition 2.2 holds.

Next lemma gives two useful properties of finite non-empty subsets of right-
ordered (left-ordered) groups.

Lemma 2.1.13. Let (G, ≺) be a right-ordered (left-ordered) group. Let A be a
finite non-empty subset of G and let n ∈ N be the cardinality of A.
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1. There exists xA ∈ A such that

∀y∈Ar{ xA } y ≺ xA.

2. There exists a bijection f : { i ∈ N | 1 ≤ i ≤ n } −→ A such that

∀i,j∈N, 1≤i,j≤n i < j =⇒ f(i) ≺ f(j).

Proof. 1. Let (G, ≺) be a right-ordered (left-ordered) group and A ⊆ G be a
finite non-empty subset. If |A| = 1 the claim is trivial. For the case |A| = 2
we prove the claim by contradiction. Assume that the claim is false; this means
that for every x ∈ A there exists y ∈ A r { x } such that x ≺ y holds. We
fix x ∈ A (it exists since A is non-empty). We inductively define a sequence
of elements in A as follows: we set x1 := x and, for every n ≥ 2, n ∈ N, we
fix xn ∈ A r { xn−1 } such that xn−1 ≺ xn holds (xn is well-defined by our
assumption over A). Being A finite, there exists two distinct indices i, j ∈ N

such that xi = xj ; we may assume i < j. More precisely, i+1 < j holds because,
by construction, xi and xi+1 are distinct. We have the chain

xi ≺ xi+1 ≺ · · · ≺ xj

and so, thanks to transitivity property,

xi ≺ xi+1 ∧ xi+1 ≺ xj = xi.

It follows that xi = xi+1 holds because of property (ii) in the definition of
right-ordered group, but this is impossible since xi+1 belongs to A r { xi }.

2. Let (G, ≺) be a right-ordered (left-ordered) group and A ⊆ G be a finite
non-empty subset. We prove the claim by induction on n = |A| ∈ N>0. If
|A| = 1 the claim is trivial. We now assume that n ≥ 2 and that the claim holds
for all finite non-empty subsets B ⊆ G with |B| < n. By the first claim of the
Lemma we’re proving, there exists xA ∈ A such that

∀y∈Ar{ xA } y ≺ xA

holds. We set B := A r { xA }. The set B is non-empty since |A| ≥ 2 by
assumption; in particular, |B| = n − 1. Thus, by induction, there exists a
bijection f : { i ∈ N | 1 ≤ i ≤ n − 1 } −→ B such that

∀i,j∈N, 1≤i,j≤n−1 i < j =⇒ f(i) ≺ f(j).

Now we set

f ′ : { i ∈ N | 1 ≤ i ≤ n } −→ A

i Ô−→

{

f(i) if i < n

xA if i = n.

The map f ′ is bijective (easy to show) and for every i, j ∈ N with 1 ≤ i < j ≤ n,

• if j Ó= n then f ′(i) = f(i) ≺ f(j) = f ′(j), by assumption over f ;

• if j = n then f ′(i) = f(i) ≺ xA = f ′(j), by assumption over xA.
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Theorem 2.1.14. Let (G, ≺) be a right-ordered (left-ordered) group. Then G
is a unique product group.

Proof. It suffices to give the proof for right-ordered groups; indeed, if G is a
group endowed with a left-order relation then, by Lemma 2.1.9, it can also be
endowed with a right-order relation; hence, if all right-ordered groups are u.p.
groups, G is a u.p. group. Let (G, ≺) be a right-ordered group and let A and
B be finite non-empty subsets of G. Without lost of generality, we may assume
that the following condition holds:

∀x,y∈G x ≺ y =⇒ x Ó= y. (2.3)

Indeed, if this condition is not satisfied, by Remark 2.1.8 we can replace the
order relation in G with a new order relation that satisfies this condition. Our
aim is to find (a∗, b∗) ∈ A × B such that for every (a, b) ∈ A × B r { (a∗, b∗) },
the relation a∗b∗ ≺ ab holds. The conclusion will follow from condition 2.3. Let
n = |A| and m = |B|; by point 2 of Lemma 2.1.13 we can write

A = { xi | i ∈ N ∧ 1 ≤ i ≤ n } with x1 ≺ x2 ≺ · · · ≺ xn (2.4)

and

B = { yj | j ∈ N ∧ 1 ≤ j ≤ m } with y1 ≺ y2 ≺ · · · ≺ ym.

To figure out how to exhibit the element (a∗, b∗), we consider an n × m matrix
where the entry indexed by (i, j) ∈ { 1, . . . , n } × { 1, . . . , m } is given by xiyj :









x1y1 x1y2 . . . x1ym

x2y1 x2y2 . . . x2ym

. . . . . . . . . . . .
xny1 xny2 . . . xnym









.

For every j ∈ N with 1 ≤ j ≤ m, the elements in the j-th column are related as
follows:

x1yj ≺ x2yj ≺ · · · ≺ xnyj (2.5)

(because of property (iii) in the definition of right-ordered group applied to the
chain of relations in 2.4). Hence, the idea is to search a∗b∗ between the elements
in the first line of the matrix. We set

C := { x1yj | j ∈ N ∧ 1 ≤ j ≤ m } ⊆ AB.

From point 2 of Lemma 2.1.13, it follows that there exists j∗ ∈ N with 1 ≤ j∗ ≤
m such that

∀j∈N∧1≤j≤m j Ó= j∗ =⇒ x1yj∗ ≺ x1yj . (2.6)

Our aim now is to prove that for every pair (xi, yj) ∈ A × B distinct from
(x1, yj∗), x1yj∗ ≺ xiyj holds. Let (xi, xj) ∈ (A × B) r { (x1, yj∗) }.

• If i = 1 then j Ó= j∗ holds. Hence, by the implication in 2.6, the relation
x1yj∗ ≺ x1yj = xiyj holds.

• If j = j∗ then i Ó= 1. Applying the transitivity property to the chain of
relations in 2.5, we get xiyj∗ = x1yj ≺ xiyj .
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• If i Ó= 1 and j Ó= j∗ then x1yj∗ ≺ x1yj ≺ xiyj , where the first relation
follows from the first point and the second relation follows from the transi-
tivity property applied to the chain of relations in 2.5. Hence, x1yj∗ ≺ xiyj

holds.

In conclusion, we can set (a∗, b∗) := (x1, xj∗). We just showed that for every
(a, b) ∈ A × B r { (a, b) }, a∗b∗ ≺ ab holds and, by condition 2.3, this implies
that a∗b∗ Ó= ab holds, as desired.

Corollary 2.1.15. Let G be a right-ordered (left-ordered) group. Then G is
torsion free.

Proof. Let G be a right-ordered (left-ordered) group. By Theorem 2.1.14, G is
a unique product group thus, by Lemma 2.1.2, G is torsion free.

Last two results we are going to present in this subsection will be applied,
respectively, in the next section and in the first section of next chapter. Pre-
cisely, Lemma 2.1.16 will be used to prove that the central group inside a suit-
able short exact sequence of groups is a right ordered group (Theorem 2.1.25);
Lemma 2.1.17 will be used to prove that the Promislow group (a group we will
present in next chapter) is not a right-ordered group (Lemma 3.1.7). These two
facts together will allow us to deduce that the Promislow group is, in some sense
(as we will explain), the “smallest” group that gives a counterexample to the
unit conjecture.

Lemma 2.1.16. Let G be a group and N ⊳ G be a normal subgroup. If N and
G/N are both right-ordered groups, then so is G.

Proof. Let G be a group and N ⊳ G be a normal subgroup such that both N
and G/N are right-ordered groups. Our aim is to prove that G is right-ordered
applying second part of Lemma 2.1.11: we will construct a positive cone for G
using the positive cones of N and G/N . Let P (N) and P (G/N) be the positive
cones associated to the right-order relations over, respectively, N and G/N .
Let π : G → G/N be the canonical projection and Q ⊆ G be a family of coset
representatives of the elements in P (G/N) ⊆ G/N ; that is, π restricted to Q is
injective and π(Q) = P (G/N). Applying condition (ii) in Lemma 2.1.11 we get
the disjoint union

G/N = P (G/N) ∪ P (G/N)−1 ∪ { 1G/N } = π(Q) ∪ π(Q−1) ∪ π({ 1G }).

Hence Q ∪ Q−1 ∪ { 1G } is a disjoint union (the union above being disjoint) and,
since π|Q is injective, Q ∪ Q−1 ∪ { 1G } is a transversal for N in G. Therefore,
we get the following disjoint union

G =
(

⋃

x∈Q

xN
)

∪
(

⋃

x∈Q−1

xN
)

∪ 1GN. (2.7)

By definition of Q and by point (ii) in Lemma 2.1.11 applied to P (N) we get
⋃

x∈Q

xN = { x ∈ G | π(x) ∈ P (G/N) } ,

⋃

x∈Q−1

xN = { x ∈ G | π(x) ∈ P (G/N)−1 } = { x ∈ G | π(x) ∈ P (G/N) }
−1

,

N = P (N) ∪ P (N)−1 ∪ { 1G } .
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We define

P := { x ∈ G | π(x) ∈ P (G/N) } ∪ P (N).

Summing up, the disjoint union in 2.7 becomes

G = P ∪ P −1 ∪ { 1G }

Since this last union is disjoint, thanks to Lemma 2.1.11 to prove that G is a
right-ordered group it suffices to prove that P is multiplicatively closed. Re-
membering that P (N) and P (G/N) are both multiplicatively closed, we can
deduce that P is union of multiplicatively closed sets. Moreover, let y ∈ P (N)
and x ∈ { x ∈ G | π(x) ∈ P (G/N) }; we have that (because of y belongs to N)

π(xy) = π(x)π(y) = π(x) ∈ P (G/N)

π(yx) = π(y)π(x) = π(x) ∈ P (G/N),

where we used that x belongs to { x ∈ G | π(x) ∈ P (G/N) }. It follows that
both xy and yx belongs to { x ∈ G | π(x) ∈ P (G/N) } ⊆ P and this concludes
the proof that P is multiplicatively closed.

Lemma 2.1.17. Let G be a right-ordered group. Let A be a finite non-empty
subset of G such that the identity of G doesn’t belong to it. Then, for every
x ∈ A there exists ǫx ∈ { 1, −1 } such that the identity of G doesn’t belong to the
subsemigroup of G generated1 by { xǫx | x ∈ G }.

Proof. Let G be a right-ordered group and A ⊆ G be a finite non-empty subset
such that the identity of G doesn’t belong to it. Let “≺” be a right-order
relation over G and let P ⊂ G be the positive cone associated to the fixed
order relation. We know that P is multiplicatively closed (Lemma 2.1.11) and
that 1G /∈ P (by definition of positive cone) hence every subsemigorup of G
generated by elements belonging P is contained in P and, therefore, is such
that the identity of G doesn’t belong to it. Knowing this, to conclude the proof
it suffices to prove that for every x ∈ A there exists one element inside { x, x−1 }
that belongs to P . Let x ∈ A because. Then, by definition of right-order
relation, one between the following relations holds:

1 ≺ x or x ≺ 1

(x is not the identity by assumption over A). Again by definition of right-order
relation, x ≺ 1 is equivalent to 1 ≺ x−1. We can deduce that one element in
{ x, x−1 } belongs to P , as desired.

Remark 2.1.18. The converse of Lemma 2.1.17 is also true, that is: if G
is a group such that for every finite non-empty subset A ⊆ G the claim of
Lemma 2.1.17 is satisfied, then G is a right-ordered group. We don’t formally
formulate and prove here this implication because it’s not necessary for our
purposes; a reference for it is [12, Lemma 13.2.1].

1The subsemigroup S(X) of a group G generated by a subset X ⊆ G is, set-theoretically,
the subset of G that contains, for every n ∈ Nr{ 0 }, all the products of n elements belonging
to A. Then S(X) is a semigroup where the product is inherited from the product in G.
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2.1.3 Examples of Unique Product Groups

In this subsection we will see classes of groups that are RO-groups, O-groups
and u.p. groups. We will start constructing explicitly an order relation over Zn

for every n ∈ N (Example 2.1.19). Next, we’ll prove that all torsion free abelian
groups are ordered groups and so unique product groups (Proposition 2.1.20);
about this result, the proof we will provide is taken from Passmann’s proof
of [12, Lemma 13.1.6], which uses Zorn’s Lemma. As a consequence, we’ll
deduce that special solvable groups are RO-groups and so unique product groups
(Proposition 2.1.22, whose reference is [12, Lemma 13.1.6]). Eventually, we will
prove that every group extension of an abelian group by a finite cyclic group is
a poly-infinite-cyclic group (Definition 2.1.23) and so both a right-ordered group
and a u.p. group (Theorem 2.1.25, whose reference is [12, Lemma 13.3.1]).

Example 2.1.19. , The additive group Zn is an ordered group for every n ∈ N.
Let n ∈ N fixed. We define a relation “≺” on Zn as follows: given two distinct
elements (a1, . . . , an), (b1, . . . , bn) ∈ Zn we set

(a1, . . . , an) ≺ (b1, . . . , bn) if as < bs for s := min { i ∈ N : 1 ≤ i ≤ n ∧ ai Ó= bi } .

We want to prove that this relation is an order relations satisfying the three
conditions in the Definition 2.1.6.

(i) Transitivity. Let (a1, . . . , an), (b1, . . . , bn), (c1, . . . , cn) ∈ Zn be such that

(a1, . . . , an) ≺ (b1, . . . , bn) ≺ (c1, . . . , cn).

By definition, there exist h, k ∈ N such that

∀i∈N with 1≤i<h ai = bi ∧ ah < bh,

∀i∈N with 1≤i<k bi = ci ∧ bk < ck.

Set s := min { h, k }. For every i ∈ N with 1 ≤ i < s we have that
ai = bi = ci holds true. Moreover the inequality as < cs holds because

• if s = h ≤ k then as < bs ≤ cs;

• if s = k ≤ h then as ≤ bs < cs.

We can conclude that (a1, . . . , an) ≺ (c1, . . . , cn), as desired.

(ii) Totality. Immediate.

(iii) Sum preserves the order. Let (a1, . . . , an), (b1, . . . , bn), (c1, . . . , cn) ∈ Zn

be such that
(a1, . . . , an) ≺ (b1, . . . , bn).

By definition, there exists h ∈ N such that

∀i∈N with 1≤i<h ai = bi ∧ ah < bh.

Thus, for every i ∈ N with 1 ≤ i < h we have that ai + ci = bi + ci and
ah + ch < bh + ch hold. We can conclude that

(a1 + c1, . . . , an + cn) ≺ (b1 + c1, . . . , bn + cn).
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Proposition 2.1.20. Let G be a group. If G is abelian torsion free, then G is
an ordered group and so a unique product group.

Proof. The claim is immediate when the group is the trivial group. Therefore,
we consider the case of non-trivial groups. Let G be a non-trivial abelian torsion
free group. If G is a right-ordered group then G an ordered group because left
and right multiplication in G are actually the same, G being abelian; moreover,
G is a unique product group by theorem 2.1.14. Hence, we only have to prove
that G is a right-ordered group. The proof we provide here uses Zorn’s Lemma.
The idea is to prove that G admits a multiplicatively closed subset P maximal
with respect to the “inclusion relation” and that doesn’t contain 1G; then we
want to apply Lemma 2.1.11 to prove that P is a positive cone associated to a
right-order relation “≺”. Set

P = { A ⊆ G | A is multiplicatively closed, non-empty and 1G /∈ A } .

The set P is non-empty because we can take x ∈ G with x Ó= 1G (G not being
the trivial group) and the set

X = { xn | n ∈ N ∧ n Ó= 0 }

is multiplicatively closed, non-empty and 1G doesn’t belong to X because G is
torsion free; hence X belongs to P. We endow P with the order relation given
by the inclusion between sets:

∀A,B∈P A ≤ B if A ⊆ B.

Given an ascendant chain (An)n∈N in P, it has a majority element given by

A :=
⋃

n∈N

An.

Indeed, A is non-empty and 1G /∈ A because A is union of non-empty sets not
containing 1G; A is multiplicatively closed because given a pair of elements in
A, there exists n ∈ N such that both the elements are in An (the chain being
ascendant) and An is multiplicatively closed. Hence, A belongs to P and, for
every n ∈ N, An ≤ A holds. We can apply Zorn’s Lemma: P has a maximal
element; let P be such a maximal element. To conclude it remains to prove that
P satisfies both conditions (i) and (ii) in Lemma 2.1.11.

• P is multiplicatively closed because P belongs to P.

• P ∪P −1∪{ 1G } is a disjoint union because 1G /∈ P and if, by contradiction,
there exists x ∈ P ∩ P −1 then, since x ∈ P −1, there exists y ∈ P such
that y = x−1 holds and so, since x ∈ P and P is multiplicatively closed,
1G = xy ∈ P but this is impossible, P belonging to P.

• G = P ∪ P −1 ∪ { 1G } holds. Assume, by contradiction, that there exists
x ∈ G with x /∈ P ∪ P −1 ∪ { 1G } and set

M := P ∪ { xn · p | n ∈ N ∧ n Ó= 0 ∧ p ∈ P } ,

M ′ := P ∪ { x−n · p | n ∈ N ∧ n Ó= 0 ∧ p ∈ P } ,
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Both M and M ′ are non-empty and multiplicatively closed because G is
abelian and P is multiplicatively closed. Since P is a subset of both M
and M ′ and P is maximal in P, then necessarily M and M ′ don’t belong
to P and this means that 1G ∈ M ∩ M ′. Since P doesn’t contain 1G we
get that

∃n ∈ N>0, ∃p ∈ P such that xnp = 1G

and
∃m ∈ N>0, ∃q ∈ P such that x−mq = 1G.

Therefore
1G = (xn)m · (x−m)−n = p−m · qn

and last product belongs to P because P is multiplicatively closed (we
used that m Ó= 0 Ó= n). Thus 1G ∈ P but this contradicts that P ∈ P.

Remark 2.1.21. A special case of Proposition 2.1.20 is given by torsion free
finitely generated abelian groups. In this case, proving that these groups are
ordered groups (so, unique product groups) is easier. Indeed, let G be a finitely
generated torsion free abelian group. By the fundamental theorem of finitely
generated abelian groups, there exists n ∈ N such that G is isomorphic to Zn

(because G is torsion free). In Example 2.1.19 we proved that Zn is an ordered
group and this property is stable under isomorphism (easy to check), hence G
is an ordered group.

Proposition 2.1.22. Let G be a group. If G has a finite subnormal series

〈1G〉 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G

with, for all i = 1, . . . , n, quotient Gi/Gi−1 which is a torsion free abelian group,
then G is a right-ordered group and a unique product group.

Proof. Let G be a group and let 〈1G〉 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G as in the
statement. If G is a right-ordered group then G is a unique product group by
Theorem 2.1.14. Thus, we only have to prove that G is a right-ordered group.
We prove it by induction over the length n ∈ N of the subnormal series.

• If n = 0 then G is the trivial group, hence it’s a right-ordered group.

• We now suppose that n ≥ 1 and that the claim holds for every group
that admits a subnormal series that satisfies the assumptions in the state-
ment and whose length is n − 1. In particular, this inductive assump-
tion implies that Gn−1 is a right-ordered group. On the other hand,
G/Gn−1 = Gn/Gn−1 is torsion free abelian by assumption, hence G/Gn−1

is a right-ordered group by Proposition 2.1.20. Therefore, since both Gn−1

and Gn−1 are RO-groups, by Lemma 2.1.16 we can conclude that G is a
right-ordered group.

Definition 2.1.23 (Poly-infinite-cyclic groups). A group G is said to be a poly-
infinite-cyclic group if it admits a finite subnormal series

〈1G〉 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G

with, for all i = 1, . . . , n, quotients Gi/Gi−1 infinite cyclic groups.
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Remark 2.1.24. Every poly-infinite-cyclic group is a right-ordered group and
a unique product group because a poly-infinite-cyclic group always satisfies as-
sumptions of proposition 2.1.22. To prove this just use that a cyclic group is
always abelian and that every infinite cyclic group is necessarily torsion free.

Theorem 2.1.25. Let G be a finitely generated torsion free group. Suppose that
G has a normal abelian subgroup A such that G/A is finite and cyclic. Then G
is a poly-infinite-cyclic group and hence it is both a right-ordered group and a
unique product group.

Proof. Let G be a finitely generated torsion free group. Let A be a normal
abelian subgroup of G and suppose that G/A is finite and cyclic. If G is poly-
infinite-cyclic, then G is both a right-ordered group and a unique product group
by Remark 2.1.24. Therefore, to prove the theorem we only have to prove that G
is poly-infinite-cyclic. This proof needs the concept of rank of finitely generated
abelian groups together with two lemmas; we report here everything we need
(some details can be found in the Appendix A.2)

Definition A (Definition A.2.1 in the Appendix). Let G be a finitely generated
abelian group. The rank of G is the dimension of G ⊗Z Q as a Q-vector space
and is denoted with rank(G).

Lemma B (from [12, Lemma 4.1.7]). Let G be a finitely generated group and
let H be a subgroup of finite index. Then H is finitely generated.

Lemma C (Lemma A.2.2 in the Appendix). Let 0 −→ X −→ Y −→ Z −→ 0 be
a short exact sequence of groups. Suppose that X is a finitely generated abelian
group. Then the following equality holds:

rank(Y ) = rank(X) + rank(Z).

The proof proceeds by induction over n = rank(A) ∈ N; indeed, A is a
subgroup of finite index of a finitely generated group hence, by Lemma B, the
group A is finitely generated abelian and, therefore, its rank is a well-defined
natural number. If n = 0, then A is the trivial group; this implies that G ∼= G/A
is torsion free, finite and cyclic by assumption. Thus, we must have G = 〈1G〉
and so G is poly-infinite-cyclic. Suppose now that n ≥ 1. The idea is to prove
that there exists a normal subgroup H ⊳ G such that, setting B := A ∩ H,

1. G/H is infinite cyclic;

2. rank(B) < rank(A) holds;

3. H/B is finite cyclic.

Suppose we have proved the existence of the subgroup H satisfying these three
points. Points 2 and 3 allow us to apply the inductive hypothesis to the short
exact sequence 0 → B → H → H/B → 0 and deduce that the group H is
poly-infinite-cyclic. This fact together with point 1 implies that G is poly-
infinite-cyclic. We prove now the existence of the group H that satisfies points
1, 2 and 3 above.
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Existence of H satisfying condition 1. We introduce here a new notation:

∀a,x∈G ax := x−1ax.

The group G/A is cyclic by assumption hence we can fix x ∈ G such that the
projection of x in G/A generates G/A. In particular, G = 〈A, x〉 holds. We
define a group homomorphism:

f : A −→ A

a Ô−→ a−1ax.

If we prove that f(A) is a normal subgroup of G and that G/f(A) is finitely
generated, infinite and abelian, then this would imply that we can choose a
normal subgroup H ⊆ G such that G/H is infinite cyclic.

• Since G = 〈A, x〉, to prove that f(A) is a normal subgroup of G it suffices
to prove that f(A) is normalized by both A and x. First, f(A) is normal-
ized by A because f(A) ⊆ A and A is abelian by assumption. Second,
f(A) is normalized by x because for every a ∈ A

x−1f(a)x = x−1a−1x−1axx = (x−1ax)−1(x−1ax)x = f(x−1ax) ∈ f(A)

and this implies that x−1f(A)x ⊆ f(A). For the other inclusion, we
observe that for every a ∈ A

xf(a)x−1 = xa−1x−1axx−1 = (xax−1)−1(xax−1)x = f(xax−1) ∈ f(A).

Hence, xf(A)x−1 ⊆ f(A), which means that f(A) ⊆ x−1f(A)x.

• Since G is finitely generated, then G/f(A) is finitely generated.

• Since G = 〈A, x〉, to prove that G/f(A) is abelian it suffices to prove that
for every a ∈ A, the element (xa)−1(ax) belongs to f(A). Let a ∈ A, then
(xa)−1(ax) = a−1ax = f(a) ∈ f(A), as desired.

• To prove that G/f(A) is infinite, we want to prove that its subgroup
A/f(A) is infinite. To prove this, it suffices to prove that its rank is at
least 1 (it makes sense to compute the rank, A/f(A) being abelian and
finitely generated). In order to compute the rank, consider the following
short exact sequences

0 −→ ker(f) −→A
f

−→ f(A) −→ 0

0 −→ f(A) −→A −→ A/f(A) −→ 0.

Applying Lemma C on the previous page, we can estimate the rank of all
the groups involved in these shorts exact sequences. Before of this, we
need to get some information concerning ker(f). We have that

ker(f) = { a ∈ A | ax = xa } = CA(x)

is the centralizer of x in A. This subgroup of G is non-trivial, indeed the
projection of x in G/A generates G/A (by the choice of x) but G/A is
finite by assumption, thus there exists n ∈ N such that xn belongs to A
Hence xn belongs to ker(f) = CA(x) and xn Ó= 1G because G is torsion
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free. The fact that ker(f) is non-trivial implies that rank(ker(f)) is at
least 1, because ker(f) is torsion free (subgroup of a torsion free group).
Considering now the first short exact sequence above, we get that

rank(A) = n ∧ rank(ker(f)) ≥ 1 =⇒ rank(f(A)) ≤ n − 1.

Applying this to the second short exact sequence we get

rank(A) = n ∧ rank(f(A)) ≤ n − 1 =⇒ rank(A/f(A)) ≥ 1.

Proof that condition 2 is satisfied. Let H be a normal subgroup of G such that
G/H is infinite cyclic (we just proved that H exists) and set B := A ∩ H. To
estimate the rank of B, we consider the following short exact sequence:

0 −→ B −→ A −→ A/B −→ 0.

Applying Lemma C, we get that

rank(B) = rank(A) − rank(A/B).

Therefore, to prove that rank(B) < rank(A) holds it suffices to prove that
rank(A/B) is at least 1. First, A/B is non-trivial, otherwise A would be fully
contained in H and so G/H would be a subgroup of G/A but G/H is infinite
by the choice of H and G/A is finite by assumption, contradiction. Second,

A/B = A/(A ∩ H) ∼= AH/H ≤ G/H.

Summing up, A/B is a non trivial subgroup of G/H which is an infinite cyclic
group; this implies that A/B is infinite cyclic, hence rank(A/B) = 1 holds.

Proof that condition 3 is satisfied. Let H an B as above. We have that

H/B = H/(H ∩ A) ∼= AH/A ≤ G/A.

This means that H/B is isomorphic to a subgroup of G/A and so H/B is finite
cyclic because G/A is finite cyclic by assumption.

2.2 Group Rings Satisfying Kaplansky Conjec-
tures

In this section, we will prove that group rings over unique product groups,
(right- or left-)ordered groups and abelian torsion free groups satisfy both the
Kaplansky zero divisor conjecture and the Kaplansky unit conjecture. A small
remark: we already proved that the unit conjecture is stronger than the zero
divisor conjecture (Theorem 1.2.9) but the proof we gave uses (in the last sen-
tence) that group rings over torsion free abelian groups satisfy the zero divisor
conjecture. This causes the necessity of writing a direct proof of the fact that
group rings over torsion free abelian groups satisfy the zero divisor conjecture
(as we will do). There are different methods to develop this direct proof; the
one we choose is just to apply the analogous result for group rings over unique
product group (since in this thesis we studied unique product groups and we
proved that torsion free abelian groups are unique product groups); this moti-
vates the choice of proving directly also that group rings over unique product
groups satisfy the zero divisor conjecture.



34 CHAPTER 2. POSITIVE RESULTS ON THE KAPLANSKY CONJ.

2.2.1 Group Rings of Unique Product Groups

Lemma 2.2.1. Let G be a unique product group and let R be a an integral
domain. Let α ∈ R[G] be such that |Supp(α)| > 1 holds and let β ∈ R[G] be
non-zero. Then Supp(αβ) contains at least two distinct elements.

Proof. Let G be a unique product group and R be an integral domain. Let
α, β ∈ R[G] be such that |Supp(α)| > 1 and β is non-zero. In particular,
Supp(β) is non-empty (the unique element in R[G] with empty support is 0R[G]).
Hence |Supp(α)| + |Supp(β)| > 2 holds. The group G is a u.p. group by
assumption and so it satisfies the two unique products property (Lemma 2.1.3).
Applying this property to Supp(α) and Supp(β), it follows that there exists two
distinct elements x and y in Supp(α)Supp(β) ⊆ G such that

∃!(a, b) ∈ Supp(α) × Supp(β) with x = ab

and
∃!(a′, b′) ∈ Supp(α) × Supp(β) with y = a′b′.

Thus, writing α and β as

α =
∑

g∈Supp(α)

rg · g

and
β =

∑

g∈Supp(β)

sg · g,

we get that

αβ = (rasb)x + (ra′sb′)y +
∑

g∈Gr{ x,y }

tg · g

for some coefficients tg ∈ R. Since R is assumed to be an integral domain, we
get that Supp(αβ) contains two distinct elements, x and y being distinct; thus
αβ can’t be the identity.

Theorem 2.2.2. Let G be a unique product group and let R be a an integral
domain. The group ring R[G] has neither non-trivial units nor non-trivial zero
divisors. In particular, if K is a field, the group ring K[G] satisfies both the
unit conjecture and the zero divisor conjecture.

Proof. By Lemma 2.1.2, a unique product group is always torsion free; therefore,
the second part of the claim to prove follows directly from the first part. We
now prove the first part. Let G be a unique product group and R be an integral
domain. To prove the claim it suffices to prove that for every pair of elements
α, β ∈ R[G] with β non-zero, if αβ ∈ { 1R[G], 0R[G] } then α is zero or a trivial
unit. This in turn is equivalent to prove that for every pair of elements α, β ∈
R[G] with β non-zero the following implication holds:

|Supp(α)| > 1 =⇒ αβ /∈ { 1R[G], 0R[G] } .

This is a direct application of Lemma 2.2.1.

Corollary 2.2.3. Let G be an ordered group or, more generally, a right-ordered
group and let R be a an integral domain. The group ring R[G] has neither non-
trivial units nor non-trivial zero divisors. In particular, if K is a field, the group
ring K[G] satisfies both the unit conjecture and the zero divisor conjecture.
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Proof. Every ordered group is a right-ordered group and every right-ordered
group is a unique product group (Theorem 2.1.14). Thanks to this, the claim
follows directly from Theorem 2.2.2 on the facing page.

2.2.2 Abelian Group Rings

The aim of this subsection is to prove that the unit conjecture and the zero
divisor conjecture hold when the group ring is abelian (equivalently, when the
group ring is constructed taking an abelian group, by Lemma 2.2.4). There
are several ways to prove this result; the proof we provide here uses that a
group ring of an ordered group over an integral domain have neither non-trivial
zero-divisors nor non-trivial units (Corollary 2.2.3).

Lemma 2.2.4. Let G be a group and R be a commutative ring. The group ring
R[G] is abelian if and only if G is an abelian group.

Proof. One direction follows from the fact that given a group ring R[G], the
group G is isomorphic to a subgroup of the multiplicative group of R[G] (Re-
mark 1.1.11), hence if R[G] is abelian, so is G. The other direction follows
directly from the definition of group ring: given a group ring R[G], the group G
is a basis of R[G] as an R-module and the product in R[G] is defined distribu-
tively.

Theorem 2.2.5. Let G be a torsion free abelian group and let R be an integral
domain. The group ring R[G] has neither non-trivial units nor non-trivial zero
divisors. In particular, if K is a field, the group ring K[G] satisfies both the
unit conjecture and the zero divisor conjecture.

Proof. Every torsion free abelian group is an ordered group (Proposition 2.1.20).
Thanks to this, the claim follows directly from Corollary 2.2.3.

To conclude this section, we propose an alternative proof of the fact that
group rings R[G] over torsion free abelian groups with R integral domain have
no non-trivial zero divisors. The alternative proof we provide is taken from [13]
and doesn’t use theory of unique product groups; the key idea is that, if G
is finitely generated, then R[G] can be embedded in the field of fractions of a
suitable polynomial ring.

Different proof of the part of Theorem 2.2.5 concerning zero divisors. Let G be
a torsion free abelian group and R be an integral domain. We first suppose
that G is finitely generated. The idea is to embed R[G] in a field. From the
classification theorem of abelian finitely generated groups it follows that there
exists n ∈ N such that G is isomorphic to the additive group Zn (since G is
torsion free), thus the group ring R[G] is isomorphic to R[Zn]. Consider the
polynomial ring R[x1, . . . , xn] and its field of fractions K(x1, . . . , xn) (where K
is the field of fractions of R). We can construct a ring homomorphism that
behaves as follows:

f : R[Zn] −→ K(x1, . . . , xn)

(m1, . . . , mn) Ô−→ xm1

1 · · · · · xmn

n

Indeed, the definition above is given just for the basis of R[Zn] and this definition
induces an R-module morphism f : R[Zn] → K(x1, . . . , xn) because of the
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universal property of free R-modules (Proposition A.1.4). To check that f is a
ring homomorphism it suffices to check that it preserves the identity and the
product. For this purpose, it’s useful to remember that we’re looking at Zn as an
additive group, that is for every r, s ∈ R and for every (a1, . . . , an), (b1, . . . , bn) ∈
Zn the product in R[Zn] is defined with

(r(a1, . . . , an)) · (s(b1, . . . , bn)) := rs(a1 + b1, . . . , an + bn).

Eventually, the ring homomorphism f is an injection and this can be proved
directly checking that the image of any non-zero element in R[Zn] is a non-zero
polynomial. Summing up, we just proved that R[Zn] is a subring of a field,
hence R[Zn] is a domain.

We now consider the general case: let G be a torsion free abelian group
(finitely generated or not) and R be an integral domain. Let α, β ∈ R[G] be such
that αβ = 0R[G]. Let H be the subgroup of G generated by Supp(α) ∪ Supp(β);
thus H is finitely generated. Moreover, H is abelian and torsion free, because
G is abelian and torsion free by assumption. Thus, we can apply to R[H] what
we just proved for finitely generated abelian group: the group ring R[H] has
no non-trivial zero divisors. In particular, since α is a zero divisor in R[H], it
follows that α is zero.



Chapter 3

Counterexamples to the
Unit Conjecture

The purpose of this chapter is to prove that every group ring K[P ], where K is
a field of finite characteristic and P is the Promislow group, doesn’t satisfy the
Kaplansky unit conjecture. We will reach our purpose by explicitly exhibiting
non-trivial units in the group rings Fd[P ] where d is a prime number and Fd

denotes the finite field with d-elements (Lemma 3.3.1 and Theorem 3.3.9). The
non-trivial units we will exhibit have been recently found out by Gardam [3],
Murray [9] and Passman [11] (details are in the second and third section).

The reader may be wondering why searching a proof or a disproof of the unit
conjecture for group rings over the Promislow group. The motivation could be
the following. We already know that group rings of torsion free abelian groups
satisfy the Kaplansky conjecture (Theorem 2.2.5); thus, the next step in the
study of Kaplansky conjectures may be focusing on group rings of torsion free
virtually abelian groups, that is torsion free groups G for which there exists a
short exact sequence

0 −→ H −→ G −→ L −→ 0

of groups where H is abelian and L is finite. We already know that given
such a short exact sequence, if G is finitely generated torsion free and L is
cyclic and finite, then G is a unique product group (Theorem 2.1.25) and this
implies that, for every field K, the group ring K[G] satisfies the unit conjecture
(Theorem 2.2.2). We conclude that, given a field K and a torsion free finitely
generated group G for which there exists a short exact sequence as above, the
minimal case (minimal with respect to the cardinality of L) in which we don’t
know yet if K[G] satisfies the unit conjecture is when L is non-cyclic and contains
exactly 4 elements1. At this point, the Promislow group P comes into play: P
is finitely generated, torsion free and has an abelian subgroup H such that P/H
has cardinality 4 and is not cyclic.

Eventually, it’s interesting to know that the Promislow group is, histori-
cally, one of the first examples of torsion free non-unique product group: in
1988 Promislow [14] proved that the group that takes his name is not a unique
product group (the first example of a torsion free, non-unique product group
was constructed on year before by Rips and Segev [15]).

1Groups that are formed by exactly 1, 2 or 3 elements are cyclic.

37
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Notations. Let G be a group and let a, b ∈ G; with the words conjugation of a
by b we mean the element b−1ab and we set the following notation:

ab := b−1ab.

3.1 The Promislow Group

The Promislow group P is a finitely presented group whose main properties are
being torsion free and virtually abelian where it has an abelian subgroup H
such that H is isomorphic to Z3 and P/H is a non-cyclic finite abelian group
of 4 elements. In other words, there exists a short exact sequence that looks as
follows:

0 −→ Z3 −→ P −→ Z/2Z × Z/2Z −→ 0.

In the literature is also known as the Fibonacci group F (2, 6) and one motivation
to its importance is that it is an example of torsion free, non-unique product
group (proved by Promislow in 1988 [14]).

The only properties of the Promislow group P that we need to build the
counterexamples to the unit conjecture are that P is torsion free and can be
insert in a shorts exact sequence that looks like the short exact sequence written
above. To prove these properties, we will need some intermediate results con-
cerning the Promislow group; we will motivate step by step these intermediate
results, explaining in which direction we’re moving.

Definition 3.1.1. The Promislow group P is the group defined via the following
presentation:

P := 〈a, b | (a2)b = a−2, (b2)a = b−2〉.

Notations. In this chapter, when saying Promislow group we always refer to
the presentation given in Definition 3.1.1 and, unless otherwise specified, with
a ∈ P and b ∈ P we’ll always denote the generators of P that appears in the
presentation given in Definition 3.1.1.

Lemma 3.1.2. Let P be the Promislow group and let N be the subgroup of P
generated by a2 and b2; then N is normal in P .

Proof. Let P and N be as in the statement. To prove that N i normal is suffices
to prove that the conjugates of the generators of N by the generators of P belong
to N . The presentation of P forces (a2)b and (b2)a to coincide, respectively, with
a−2 and b−2 and both of these elements belong to N , as desired.

The subgroup N of the Promislow group P introduced in previous lemma
turns out to be important because, as we will prove, the quotient P/N is iso-
morphic to the infinite dihedral group (Definition A.5.1) and this fact will allow
us to exhibit a normal subgroup H of P such that H is abelian and P/H is
isomorphic to Z/2 × Z/2. The idea to proceed in this direction to find the
subgroup H comes from Gardam’s article [3].

Lemma 3.1.3. Let P be the Promislow group. Set x := a2 and y := b2 and
denote with A, B and N the subgroups of P generated by, respectively, { a, y },
{ b, x } and { x, y } (in particular, N is a subgroup of both A and B). Then P
is the amalgamated free product A ∗N B of A and B over N .
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Proof. Let P , A, B and N as in the statement. To prove the claim we have to
prove that the following diagram is a pushout diagram, where all the arrows are
canonical inclusions.

N A

B P

The commutativity of the diagram is trivial, all the arrows being canonical
inclusions. Let now G be a group and f : A → G and g : B → G be a pair
of group homomorphism such that f|N = g|N holds. To conclude the proof, we
need to prove that there exists a unique group homomorphism h : P → G such
that both h|A = f and h|B = g hold.

[Uniqueness] Let h : P → G and k : P → G be group homomorphisms such
that h|A = f = k|A and h|B = g = k|A hold. Then, since a and b belong,
respectively, to A and B, we get that both h(a) = k(a) ans h(b) = k(b) holds.
This implies that h and k are necessarily the same group homomorphism because
the set { a, b } generates P .

[Existence] We prove the existence applying the universal property of finitely
presented groups. First, we observe that, if there exists a group homomorphism
h : P → G satisfying both h|A = f and h|B = g, then both h(a) = f(a) and
h(b) = g(b) holds. Let F2 be the free (non-abelian) group of rank 2 generated by
{ a, b } and let h∗ : F2 → G be the group homomorphism such that h∗(a) = f(a)
and h∗(b) = g(b) (h∗ exists by definition of free group). The homomorphism h∗

preserves the relations of P indeed, applying the equality f|N = g|N , we get

h∗((a2)b) = h∗(b)−1h∗(a)2h∗(b) = g(b)−1f(a)2g(b) = g(b)−1f(x)g(b)

= g(b)−1g(x)g(b) = g(b−1xb) = g(x−1) = f(x−1) = f(a−2)

= f(a)−2 = h∗(a−2);

h∗((b2)a) = h∗(a)−1h∗(b)2h∗(a) = f(a)−1g(b)2f(a) = f(a)−1g(y)f(a)

= f(a)−1f(y)f(a) = f(a−1ya) = f(y−1) = g(y−1) = g(b−2)

= g(b)−2 = h∗(b−2).

Therefore, by the universal property of finitely presented groups, there exists
a group homomorphism h : P → G such that both h(a) = f(a) and h(b) =
g(b) hold. It remains to prove that h satisfies both h|A = f and h|B = g.
Remembering that A is generated by { a, y } and B is generated by { b, x }, it
suffices to prove that h and f coincides if applied to the generators of A and,
analogously, that h and g coincides if applied to the generators of B. First,
h(a) = f(a) and h(b) = g(b) hold by definition. Second,

h(y) = h(b2) = h(b)2 = g(b)2 = g(y) = f(y),

h(x) = h(a2) = h(a)2 = f(a)2 = f(x) = g(x)

and this concludes the proof.

Corollary 3.1.4. Let P be the Promislow group and let N be the subgroup of P
generated by a2 and b2; then P/N is isomorphic to the infinite dihedral group.
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Explicitly, there exists an isomorphism behaving in the following way:

P/N −→ D∞ = 〈s, t | t2, st = s−1〉

[a] Ô−→ t

[b] Ô−→ ts

[ab] Ô−→ s.

Proof. Let P be the Promislow group. Set x := a2 and y := b2 and denote with
A, B and N the subgroups of P generated by, respectively, { a, y }, { b, x } and
{ x, y }. Lemma 3.1.3 tells us that the following is a pushout diagram, where all
the arrows are the canonical inclusions.

N A

B P
p

Since N is a normal subgroup of A, B and P (because N is normal in P by
Lemma 3.1.2), we can pass to the quotient over N obtaining a new pushout
diagram (in Appendix A.3 is explained how to prove this), that appears as
follows.

1 A/N

B/N P/N
p

Observe that both A/N and B/N are isomorphic to the group Z/2, indeed

• the subgroup A is generated by { a, y } and both a2 and y belong to N ;

• the subgroup B is generated by { b, x } and both b2 and x belong to N .

Summing up, we just proved that P/N is isomorphic to Z/2 ∗ Z/2 (the free
product being unique up to isomorphism). Hence by Remark A.5.3 P/N is
isomorphic to the finitely presented group G := 〈a, b | a2, b2〉 where the equiva-
lence class [a] ∈ P/N corresponds to a ∈ G and the equivalence class [b] ∈ P/N
corresponds to b ∈ G (because [a], [b] ∈ P/N generate, respectively, A/N and
B/N). Eventually, applying Remarmk A.5.2 we can conclude that P/N is iso-
morphic to the infinite dihedral group; the same Remark gives us the desired
correspondence.

Remark 3.1.5. Let P be the Promislow group. Set x := a2, y := b2 and
z := (ab)2 in P . Since it will be very useful in many parts of this chapter, we
list the images of x, y and z through the conjugation homomorphisms by a, b
and ab. First, observe that the conjugation by ab can be obtained conjugating
first by a and then by b (easy to check). Second, we compute the conjugates of
z. We have

zaz = a−1(abab)a(abab) = bab2(b−1a2b)ab = b(ab2a−1)b = bb−2b = 1.
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Hence za = z−1 holds. On the other hand

z = zab = (za)b = (z−1)b = (zb)−1,

so zb = z−1 holds. Now, we can record all the conjugates of x, y and z by a, b
and ab in the following list.

xa = x ya = y−1 za = z−1

xb = x−1 yb = y zb = z−1

xab = x−1 yab = y−1 zab = z

Eventually, we could deduce that the conjugation by a or b or ab gives an
automorphism of H whose square is the identity automorphism (i.e., it is its
own inverse). Therefore, for every w ∈ { a, b, ab }, the automorphisms of H
given by conjugating by w and by w−1 coincide to each other.

Lemma 3.1.6. Let P be the Promislow group. Set x := a2, y := b2 and
z := (ab)2 in P and let H be the subgroup of P generated by { x, y, z }. Then

1. H is abelian;

2. H is normal in P ;

3. P/H is isomorphic to the product of two groups of order 2 and the equiv-
alence classes of a, b and ab are the non-identity elements of P/H.

4. H is isomorphic to the additive group Z3, in particular, H is torsion free.

Proof. Let P be the Promislow group and let H and x, y, z ∈ P as in the
statement. Proving points 1 and 2 is immediate thanks to Remark 3.1.5. Indeed
we have that

xy = yx ⇐⇒ y−1xy = x ⇐⇒ (xb)b = x;

xz = zx ⇐⇒ z−1xz = x ⇐⇒ (xab)ab = x;

zy = yz ⇐⇒ y−1zy = z ⇐⇒ (zb)b = z.

Last equality in each line holds by Remark 3.1.5, hence H is an abelian group
because its generators commute. On the other hand, Remark 3.1.5 shows us that
when we conjugate the generators of H by the generators of P , the elements we
obtain are contained in H and this proves that H is a normal subgroup.

We now prove the third point. The idea is to use the isomorphism between
P and the infinite dihedral group stated in Corollary 3.1.4 and to use that the
quotient of the infinite dihedral D∞ group over a suitable subgroup is isomor-
phic to a product of two cyclic groups of order 2 (Lemma A.5.4). First, by
Corollary 3.1.4 there exists an isomorphism P/N → D∞ such that φ([ab]) = s
where D∞ = 〈s, t | t2, st = s−1〉. In particular, since [ab]2 is a generator of H/N ,
the subgroup H/N corresponds through φ to the subgroup of D∞ generated by
s2 (we denote it with 〈s2〉D∞

). Therefore,

P/H ∼=
P/N

H/N
∼=

D∞

〈s2〉D∞

∼= Z/2 × Z/2
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where last congruence holds by Lemma A.5.4. Eventually, the equivalence
classes [1], [a], [b] and [ab] in P/H are pairwise distinct. Indeed, since P is
generated by { a, b }, then { [a], [b] } ⊆ P/N is a generating set for P/N ; the fact
that P/N is not cyclic implies that [1], [a], [b] are pairwise distinct; therefore,
P/N being isomorphic to a product of two cyclic groups, the fourth element of
P/N is given by the product [a][b] = [ab] ∈ P/N .

The proof of the fourth point we provide here comes from the one given by
Passman inside its proof of [12, Lemma 13.3.3]. The idea is to construct two
group homomorphisms

Z3 φ
−→ P

ψ
−→ GL4(Q),

where GL4(Q) denotes the multiplicative group consisting of all 4 × 4 invertible
matrices with coefficients in Q, such that

(a) the image of φ is exactly the subgroup H of P ;

(b) the composition ψ ◦ φ is injective.

The existence of such group homomorphisms allows us to conclude, because the
group homomorphism Z3 → H obtained restricting the target set of φ is well-
defined and surjective by point (a) and it is injective by point (b); hence, it is
an isomorphism. It remains to prove the existence of φ and ψ satisfying points
(a) and (b). We set

φ : Z3 −→ P

(i, j, k) Ô−→ xiyjzk.

This map φ is a group homomorphism because H is abelian by point 1. More-
over, since Z3 is generated by { (1, 0, 0), (0, 1, 0), (0, 0, 1) }, the image of φ is the
group generated by φ({ (1, 0, 0), (0, 1, 0), (0, 0, 1) }) = { x, y, z } and this group is
H, by definition. We just exhibited a group homomorphism satisfying (a). Now
we prove that there exists a group homomorphism

ψ : P −→ GL4(Q)

a Ô−→ A

b Ô−→ B.

where

A :=









0 1 0 0
2 0 0 0
0 0 0 1/2
0 0 1 0









and B :=









0 0 1 0
0 0 0 1
2 0 0 0
0 1/2 0 0









.

The existence of ψ can be proved applying the universal property of finitely
presented group, since the following relations hold:

A−1B2A = B−1 and B−1A2B = A−2.

It remains to prove that the composition ψ ◦ φ is injective; we do this proving
that the kernel of this composition is trivial. Let (i, j, k) ∈ ker(ψ ◦ φ); then

1GL4(Q) = ψ(φ(i, j, k)) = ψ(xiyjzk) = A2iB2j(AB)2k.
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We have that

A2 = diag(2, 2, 1/2, 1/2),

B2 = diag(2, 1/2, 2, 1/2),

(AB)2 = diag(2, 1/2, 1/2, 2).

Hence, 1GL4(Q) = A2iB2j(AB)2k holds if and only if the three-uple (i, j, k)
satisfies the following system



















2i2j2k = 1

2i2−j2−k = 1

2−i2j2−k = 1

2−i2−j2k = 1,

that is if and only if (i, j, k) = (0, 0, 0) holds and this proves that the kernel of
ψ ◦ φ is trivial.

The goal of the remaining part of this section is to prove that the Promislow
group P is torsion free and not a right-ordered group. Once again, the proof
we provide here comes from the one given by Passman inside its proof of [12,
Lemma 13.3.3]

Lemma 3.1.7. Let P be the Promislow group. Then P is torsion free and not
right-orderable.

Proof. Let P be the Promislow group and let H be the subgroup of P generated
by { x, y, z } where x := a2, y := b2 and z := (ab)2. We prove that P is torsion
free and we prove this by contradiction. Let g ∈ P be a torsion element and
assume that g is a non-identity element. The proof consists of the following two
steps:

• proving that g has order 2;

• proving that one element in { x, y, z } has finite order.

The second point gives the contradiction. Indeed, { x, y, z } is a generating set of
H and H is isomorphic to Z3 by Lemma 3.1.6, hence the generating set { x, y, z }
of H must consists of elements of infinite order, against the second point above.
We prove now the two points above.

Proof of the first point. The equivalence class of g in P/H is a torsion element
of P/H. The group P/H is, by Lemma 3.1.6, a product of two cyclic groups
of order 2 hence all the elements in P/H has order at most 2; this implies that
[g]2 = 1P/H holds, that is g2 belongs to H. On the other hand, the group H is
torsion free because by Lemma 3.1.6 it is isomorphic to Z3, and g2 is a torsion
element inside H. Therefore, the following equality holds

g2 = 1P .

Proof of the second point. By Lemma 3.1.6 the group P can be written as the
following disjoint union

P = H ∪ aH ∪ bH ∪ abH.
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Hence, remembering that H is abelian, there exist c ∈ { a, b, ab } and (i, j, k) ∈
Z3 such that

g = cxiyjzk

(the element g can’t belong to H because H is torsion free). Summing up, we
have that

1P = g2 = cxiyjzkcxiyjzk = c2(xiyjzk)cxiyjzk.

Now, applying Remark 3.1.5, we can observe that

(xiyjzk)cxiyjzk = (c2)2n

for some n ∈ { i, j, k }, because the conjugation by c ∈ { a, b, ab } fixes c2 and
inverts the elements of { x, y, z } distinct from c2. Therefore we have that

1P = c2(c2)2n = (c2)2n+1.

This means that c2 is a torsion element and this proves the second point,
because c2 belongs to { a2, b2, (ab)2 }.

We now prove that P is not a right-ordered group. The idea is to apply
Lemma 2.1.17 considering the subset { a, b } ⊆ P . First, we need to list some
relations holding in P . The presentation of P has as relations a−1b2a = b−2

and b−1a2b = b−2, hence all the equalities in the following chain of equivalences
hold:

a−1b2a = b−2 ⇐⇒ b2 = ab−2a−1

⇐⇒ b−2 = ab2a−1 ⇐⇒ a−1b−2a = b2

and

b−1a2b = b−2 ⇐⇒ a2 = ba−2b−1

⇐⇒ a−2 = ba2b−1 ⇐⇒ b−1a−2b = a2.

All these relations are summarized by

∀ǫ,δ∈{ −1,1 } aǫb2δa−ǫ = b−2δ,

∀ǫ,δ∈{ −1,1 } bδa2ǫb−δ = a−2ǫ.

Let ǫ, δ ∈ { −1, 1 }. Then

1P = aǫb2δa−ǫb2δ = aǫb2δa−2ǫaǫb2δ = aǫbδ(bδa−2ǫb−δ)bδaǫb2δ = aǫbδa2ǫbδaǫb2δ.

This means that for every ǫ, δ ∈ { −1, 1 } the semigroup generated by { aǫ, bδ }
contains the identity of P ; therefore, by Lemma 2.1.17, the group P is not a
right-ordered group.

Insights on the Promislow Group

We present here some results concerning the Promislow group that are not
essential to build our counterexamples to the unit conjecture we will describe
(main purpose of this chapter) but that can be useful to understand more deeply
the Promislow group.
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Lemma 3.1.8. Let P be the Promislow group and let σ be a permutation of
the set { a, b, ab }. Then there exists an automorphism φσ of P that behaves as
follows:

φσ : P −→ P

a Ô−→ σ(a)

b Ô−→ σ(b)

Proof. Let P be the Promislow group and let σ be a permutation of the set
{ a, b, ab }. We first prove the existence of the group homorphism φσ : P → P
such that φσ(a) = σ(a) and φσ(b) = σ(b); second we prove that for every σ in the
group of permutations of { a, b, ab }, the homomorphism φσ is an isomorphism.

[Existence] We prove the existence applying the universal property of finitely
presented group. Let f : { a, b } → P the map such that f(a) = σ(a) and f(b) =
σ(b). This map induces a group homomorphism f∗ : F ({ a, b }) → P , where with
F ({ a, b }) we denote the free group generated by { a, b }: the homomorphism f∗

preserves the relation that generates P , indeed:

f∗(ab) = σ(b)−1(σ(a))2σ(b) = (σ(a))−2 = (f∗(a))−2 = f∗(a−2),

f∗(ba) = σ(a)−1(σ(b))2σ(a) = (σ(b))−2 = (f∗(b))−2 = f∗(b−2)

where the central equality in both lines holds by Remark 3.1.5. Therefore, by
the universal property of finitely presented group, there exists a group homo-
morphism φσ : P → P such that φσ(a) = f(a) and φσ(b) = f(b), as desired.

[Invertibility] To prove that for every permutation σ in the symmetric group
Sym({ a, b, ab }), the group homomorphism φσ is an isomorphimsm, it suffices
to prove that φσ is an isomorphism if σ is a transposition2. Indeed, given
a permutation σ ∈ Sym({ a, b, ab }), there exists a transposition ρ such that
σ = ρ ◦ (b a) holds3, hence

φσ(a) = σ(a) = ρ(b) = φρ(b) = φρ ◦ φ(a b)(a),

φσ(b) = σ(b) = ρ(a) = φρ(a) = φρ ◦ φ(a b)(b),

Therefore, since every group homomorphism whose domain is P is uniquely
identified by the images of a and b, we get that φσ = φρ ◦ φ(a b) and it follows
that, if both φρ and φ(a b) are isomorphisms, also φσ is an isomorphism. It
remain to prove that, if σ is a transposition, then φσ is an isomorphism. The
idea is to exhibit an inverse. There are exactly three transposition and we
consider them separately.

• First case: σ = (a b) holds. It follows immediately that φσ ◦ φσ is the
identity morphism of P , that is φσ is invertible and it is its own inverse.

• Second case: σ = (b ab) holds. Hence, φσ(a) = a and φσ(b) = ab. From
this we deduce that the inverse homomorphism ψ : P → P (if it exists)
needs to fix a and send b to a−1b. This group homomorphism ψ : P → P
exists by the universal property of finitely presented group. Indeed, let

2A transposition is a permutation that exchanges just 2 elements and keeps all others fixed
3The notation (a b) indicates the transposition which exchanges a and b; more in general,

if X is a non-empty set and n ∈ Nr0, given x1, x2, . . . , xn ∈ X we denote with (x1 x2 . . . xn)
the permutation of X that, for every 1 ≤ i < n, sends xi to xi+1 and xn to x1.
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f : { a, b } → P be the map such that f(a) = a and f(b) = a−1b and let
f∗ : F ({ a, b }) → P be the group homomorphism that f induces, then

f∗(ab) = f(b)−1f(a)2f(b) = (a−1b)−1a2a−1b = a−2 = f∗(a−2),

f∗(ba) = f(a)−1f(b)2f(a) = a−1a−1ba−1ba

= b(b−1a−2b)a−1ba

= baba
∗
= (a−1b)−2 = f∗(b−2)

where the equality ∗ holds because

babaa−1ba−1b = bab2a−1b = bb−2b = 1P .

We conclude that we can apply the universal property of finitely presented
group to the map f , hence the desired group homomorphism ψ : P → P
exists.

• Third case: σ = (a ab) holds. Hence, φσ(a) = ab and φσ(b) = b. From
this we deduce that the inverse homomorphism ψ : P → P (if it exists)
needs to fix b and send a to ab−1. This group homomorphism ψ : P → P
exists by the universal property of finitely presented group. Indeed, let
f : { a, b } → P be the map such that f(a) = ab−1 and f(b) = b and let
f∗ : F ({ a, b }) → P be the group homomorphism that f induces, then

f∗(ba) = f(a)−1f(b)2f(a) = (ab−1)−1b2ab−1 = b−2 = f∗(b−2)

f∗(ab) = f(b)−1f(a)2f(b) = b−1ab−1ab−1b =

= b−1ab−1a
∗
= (ab−1)−2 = f∗(a−2)

where the equality ∗ holds because

b−1ab−1aab−1ab−1 = b−1ab−1a2bb−2ab−1

= b−1a−1b−2ab−1 = b−1b2b−1 = 1P .

We conclude that we can apply the universal property of finitely presented
group to the map f , hence the desired group homomorphism ψ : P → P
exists.

Remark 3.1.9. Let P be the Promislow group and let σ be a permutation of
the set { a, b, ab } distinct from the identity permutation. Then

σ(a)σ(b) Ó= σ(ab)

holds. For each of the five possible non-identity permutations σ, this can be
checked by contradiction: the equality σ(a)σ(b) = σ(ab) would imply the exis-
tence of a non-identity torsion element, but P is torsion free by Lemma 3.1.7
(the details to exhibit the non-identity torsion element are left to the reader).
In particular, if φσ denotes the automorphism of P constructed in Lemma 3.1.8,
then φσ(ab) Ó= σ(ab) holds. It follows that

φσ−1 Ó= (φσ)−1
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holds, except when σ = (a b); indeed, if σ Ó= (a b), let x ∈ { a, b } be such that
σ(ab) = x, then

φσ(φσ−1(x))
∗
= φσ(σ−1(x)) = φσ(ab) Ó= σ(ab) = x,

where in ∗ we used that x belongs to { a, b }. Explicit examples of the inverse
automorphisms are described inside the proof of Lemma 3.1.8.

Lemma 3.1.10. Let P be the Promislow group. Set x := a2 and y := b2 and
denote with A and B the subgroups of P generated by, respectively, { a, y } and
{ b, x }. Then the following isomorphisms of groups hold:

A ∼= 〈s, t | st = s−1〉 ∼= B

where the middle group 〈s, t | st = s−1〉 is called Klein bottle group4.

Proof. It suffices to prove the existence of the first isomorphism; indeed, B is
isomorphic to B where the isomorphism is given by a restriction of a suitable au-
tomorphism among those constructed in Lemma 3.1.8. The idea is to construct
a monomorphism φ from the Klein bottle group to the Promislow group whose
image is exactly A. The Klein bottle group being a finitely presented group,
we construct φ applying the universal property of finitely presented groups.
Consider the following set-theoretic map

{ s, t } −→ P

t Ô−→ a

s Ô−→ b2.

This maps induces a group homomorphism f∗ : F ({ s, t }) → P , where with
F ({ s, t }) we denote the free group generated by { s, t }; the homomorphism f∗

preserves the relation that generates the Klein bottle group, indeed:

f∗(st) = f∗(t)−1f∗(s)f∗(t) = f(t)−1f(s)f(t)

= a−1b2a = b−2 = f(s)−1 = f∗(s−1).

Therefore, by the universal property of finitely presented group, f induces a
group homomorphism φ : 〈s, t | st = s−1〉 → P such that, set-theoretically,
φ|{ s,t } = f holds. It remains to prove that φ induces an isomorphism between
the Klein bottle group and the subgroup A of P , that is both Im(φ) = A and
ker(φ) = { 1P } hold.

The image of φ is A because the image is generated by the images of the
generators of the domain, that this Im(φ) is generated by φ({ s, t }) = { a, b2 };
this set generates A, by definition.

It remains to prove that ker(φ) = { 1P } holds. In order to do this, it’s useful
to find a compact way to represent the elements in the Klein bottle group. We
claim that for every element w in the Klein bottle group 〈s, t | st = s−1〉,
there exist i, n ∈ Z such that w = tisn holds (we will prove this claim after we
finish the proof of the injectivity of φ). Let w ∈ 〈s, t | st = s−1〉 be such that
φ(w) = 1P holds. By the claim, there exist i, n ∈ Z such z = tisn holds; to
conclude, we prove that i = 0 = j. Since w belongs to ker(φ), we have

1P = φ(w) = φ(tisn) = aib2n.

4The Klein bottle group is the fundamental group of the Klein bottle.
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Hence a−i = b2n holds and this implies that

ai = b−2n = a−1b2na = a−1a−ia = a−i.

As a consequence, a2i = 1P holds but a2 is not a torsion element, because the
subgroup of P generated by { a2, b2, (ab)2 } is isomorphic to Z3 by Lemma 3.1.6
(if a2 were the identity, then { a2, b2, (ab)2 } couldn’t generate a free abelian
group of rank 3), hence i = 0 holds5. Since, as written some lines above,
a−i = b2n, we get that b2n holds but b2 is not a torsion element (for the same
reason that a2 is not a torsion element), hence n = 0 holds. We conclude that
w = t0s0 = 1, as desired.

Proof of the claim. The set { s, t } is a generating set for the Klein bottle group
thus every element in this group is of the form

tj0sk0tj1sk1 · · · tjmskm with m ∈ N, j0, . . . , jm, k0, . . . , km ∈ Z, (3.1)

We prove that every such an element can be written as tisn for some i, n ∈ Z

by induction on m ∈ N (where m is the parameter appearing in 3.1)

• If m = 0, the claim is immediate.

• Suppose m ≥ 1 and that the claim is true for m − 1. Fix an element
tj0sk0tj1sk1 · · · tjmskm , with j0, . . . , jm, k0, . . . , km ∈ Z. By the inductive
hypothesis there exist j, k ∈ Z such that tj0sk0tj1sk1 · · · tjm−1skm−1 = tjsk

holds. Thus

tj0sk0tj1sk1 · · · tjmskm = tjsktjmskm

= tj+jmt−jmsktjmskm

(∗)
= tj+jmshskm = tj+jmsh+km

where equality (∗) is true for a suitable h ∈ { k, −k } and it is obtained
iterating |jm|-times one relation among t−1st = s−1 and tst−1 = s−1.

Remark 3.1.11. Let P be the Promislow group. Then, by Lemma 3.1.3 to-
gether with Lemma 3.1.10, the Promislow group P is the amalgamated free
product of two Klein bottle groups.

Remark 3.1.12. An alternative solution to the problem of proving that the
Promislow group is torsion free is suggested by Gardam [3]. Gardam’s approach
requires the following (non-trivial) results:

• the Klein bottle group is torsion free;

• the amalgamated free product of torsion free groups is torsion free.

If these claims are true (as they are), we can deduce directly from Remark 3.1.11
that the Promislow group is torsion free. We suggest here an idea to prove that
the Klein bottle group is torsion free.

5Even if we already proved that P is torsion free (Lemma 3.1.7), we prefer not to apply
this result here. Indeed, we will see in Remark 3.1.12 that the property that P is torsion free
can also be seen as a consequence of the Lemma we’re proving now.
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Idea to prove that the Klein bottle group is torsion free. The Klein bottle
group is the fundamental group of the Klein bottle. The universal covering of
the Klein bottle is R2, therefore the Klein bottle is a K(G, 1) (according to
definition at page 87 in [4]). On the other hand, the Klein bottle is also a finite
dimensional CW complex. Eventually, one can conclude using that if a finite
dimensional CW complex X is a K(G, 1) then the group G = π1(X) is torsion
free [4, Proposition 2.45].

3.2 Units in Group Rings of the Promislow Group

Let K be a field and P be the Promislow group. The search of units in the group
ring K[P ] starts from the search for sufficient conditions for units in K[P ] (that
is, conditions such that if they’re satisfied by an element in K[P ], then the
element is a unit in K[P ]). This is what we’re going to do in this section: we
will reason deductively to exhibit some of these sufficient conditions and we will
find different ways to transform units into new elements that are still units.

If not differently specified, all the results we provide here haven’t been taken
from the literature. For example, Gardam proposes sufficient conditions for
units in K[P ] ([3, Lemma 1]) different from the conditions we propose here
(Lemma 3.2.8); it is possible to prove that Gardam’s conditions are stronger
then the one we provide here (this motivate our choice not to insert in this work
sufficient condition proved by Gardam in [3, Lemma 1]).

3.2.1 Properties of Group Rings of the Promislow Group

Lemma 3.2.1. Let P be the Promislow group and K be a field. The group ring
K[P ] satisfies the zero divisor conjecture, that is the only zero divisor in K[P ]
is zero.

Proof. The lemma we have to prove is a direct consequence of the following
more general result.

Lemma D. Let K be a field and G be a torsion free group. If G has a normal
subgroup H such that H is abelian, H is finitely generated and G/H is finite,
then K[G] satisfies the zero divisor conjecture.

Suppose this lemma true. Let P be the Promislow group and K be a field.
By Lemma 3.1.7 and Lemma 3.1.6, the group P satisfies all assumptions of
Lemma D and this implies that K[P ] satisfies the zero divisor conjecture.

Proof of Lemma D. Bartosz Malman in [8, Theorem 3.28] proved that given a
group G, the zero divisor conjecture is satisfied by every group ring K[G], where
K is any field, if and only if it is satisfied by every group ring K[G], where K
is a finite field. Therefore, it suffices to prove Lemma D under the assumption
that K is a finite field. Let K be a finite field and G be a torsion free group such
that G has a normal abelian finitely generated subgroup H with G/H finite.
These assumptions over G imply that G is a polycyclic-by-finite group6, indeed

6A polycyclic-by-finite group is a virtually polycyclic group. A polycyclic group is a group
that admits a subnormal series with cyclic factors.
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H is a polycyclic group7. At this point, the conclusion follows from the more
general result stating that every group ring over a field of prime characteristic
and of a tosion free polycyclic-by-finite group satisfies the Kaplansky zero divisor
conjecture ([1, Theorem 2]).

Corollary 3.2.2. Let P be the Promislow group and K be a field. Let α, α′ ∈
K[P ] be elements such that α′α = 1K[P ]. Then αα′ = 1K[P ] holds and, in
particular, α is a unit in K[P ].

Proof. Let P be the Promislow group and K be a field. Let α, α′ ∈ K[P ] be
elements such that α′α = 1K[P ]. Then

αα′ = α(α′α)α′

holds and this implies
αα′(1 − αα′) = 0K[P ].

By Lemma 3.2.1, the group ring K[P ] has no non-zero zero-divisors; hence,
either αα′ = 0 or αα′ = 1 holds. First possibility can’t happen, because by
assumption α′α = 1 (and K[P ] is not the trivial ring). We conclude that
αα′ = 1 holds.

Notations. At the beginning of the previous section, we established that with
a and b we always denote the two generators of the Promislow group P that
appear in the presentation given to define it. Set

x := a2, y := b2, z := (ab)2.

From now on, when talking about x, y or z we will always refer to this setting.

Remark 3.2.3. Let K be a field, P be the Promislow group and H be its normal
subgroup generated by { x, y, z }. The group P acts over H by conjugation, that
is there exists the group homomorphism

P −→ Aut(H)

w Ô−→ φ∗
w : p Ô→ φ∗

w(p) := wpw−1.

On the other hand, there exists a monomorphism Aut(H) → Aut(K[H]) in
the category of groups (Lemma 1.1.13, where Aut(K[H]) denotes the group of
automorphisms of the group ring K[H] as a K-algebra). Therefore, we get an
action of G over K[H] (in the category of K-algebras):

φ : P −→ Aut(K[H])

w Ô−→ φw : p Ô→ φw(p) := wpw−1.

Let w ∈ P . According to the notation introduced at the beginning of this
chapter, we have (−)w = φ∗

w−1(−) : H → H. We extend this notation to all
K[H], setting for every p ∈ K[H]

pw := φw−1(p).

7An abelian finitely generated group is always a polycyclic group. Indeed, let A be a finitely
generated abelian group. By the fundamental theorem of finitely generated abelian groups, A

is isomorphic to a finite product of cyclic groups C1 × · · · × Cn. Up to isomorphism, A admits
the following normal subseries: 1 E C1 E C1 × C2 E · · · E C1 × · · · × Cn and the quotient of
each group in such a series with the previous one in the series is a cyclic group.
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Suppose now w, w′ ∈ { 1, a, b, ab } and let p ∈ K[H]. Then following formulas
hold:

pww′

= (pw)w′

= (pw′

)w, (3.2)

pw2

= p, (3.3)

pw−1

= pw. (3.4)

First equality follows from the fact that φ is a group homomorphism:

(−)ww′

= φ((ww′)−1)(−) = φ(w′−1) ◦ φ(w−1)(−)

= φ(w′−1)((−)w) = ((−)w)w′

.

To check second equality it suffices to check that the (−)w, (−)w′

: K[H] →
K[H] commute if restricted to H (H being a basis of K[H] as a K-module),
equivalently that they commute when restricted to { x, y, z }, because { x, y, z }
is a generating set of H as a group and the restrictions of (−)w and (−)w′

are group homomorphisms. By Remark 3.1.5, both (−)w and (−)w′

send each
element in { x, y, z } to a power of the element itself and all maps behaving
in such a way always commute. By the same argument used for the second
equality, to check third and fourth equality we may suppose, without lost of
generality, that p belongs to { x, y, z }. Let p ∈ { x, y, z }, then:

• pw2

= (pw)w = p because of formulas in Remark 3.1.5;

• pw−1

= pw thanks to last sentence of Remark 3.1.5.

Lemma 3.2.4. Let K be a field and P be the Promislow group. Let H be
the subgroup of P generated by { x, y, z }. Then K[P ] is a free K[H]-module
generated by { 1, a, b, ab }.

Proof. Let K be a field, P be the Promislow group and H be the subgroup of
P generated by { x, y, z }. The group ring K[H] is abelian, H being abelian
(Lemma 3.1.6). We first prove that

K[P ] = { p + qa + rb + sab | p, q, r, s ∈ K[H] } .

Indeed, let α ∈ K[P ] be any element, then we can write

α = a0x0 + a2x2 + · · · + anxn ∈ K[P ],

where n ∈ N and, for every 0 ≤ i ≤ n, the coefficient ai belongs to K and the
element xi belongs to P . The subgroup H has index 4 in P and the projections
of 1P , a, b and ab in the quotient P/H are pairwise distinct (Lemma 3.1.6).
Therefore, the group P can be decomposed as a disjoint union:

P = H ∪ Ha ∪ Hb ∪ Hab. (3.5)

We deduce that for every 0 ≤ i ≤ n there exists pi, qi, ri, si ∈ H such that

xi = pi + qia + rib + siab.
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So, the sum in K[P ] being commutative,

α =

( n
∑

i=1

aipi

)

+

( n
∑

i=1

aiqi

)

a +

( n
∑

i=1

airi

)

b +

( n
∑

i=1

aisi

)

ab

and
n

∑

i=1

aipi,
n

∑

i=1

aiqi,
n

∑

i=1

airi,
n

∑

i=1

aisi ∈ K[H].

Eventually, since the union in 3.5 is disjoint, it follows that all the elements
p + qa + rb + sab, with p, q, r, s ∈ K[H] are pairwise distinct.

Remark 3.2.5. Previous lemma can be generalised to any group ring K[G]
over a group G that admits a finite index subgroup H. That is, if H is a finite
index subgroup of a group G, then K[G] is freely-generated as a K[H]-module
by a set of representatives in G of the right cosets of H in G.

Notations. Let P be the Promislow group and H be the abelian subgroup of P
generated by { x, y, z }. Let w ∈ { 1, a, b, ab }. We set this notation: for every
α ∈ K[P ],

αw := coefficient of w when writing α as a

K[H]-linear combination of 1, a, b, ab.

The element αw is well-defined by Lemma 3.2.4 and belongs to K[H].

Remember that the main purpose of this subsection is to exhibit sufficient
conditions for elements in K[P ] to be units, where K is any field and P is the
Promislow group. We will do this trying to determine conditions that make
the product α · β be the identity, where α, β ∈ K[P ]. In order to do this, we
need to easily compute the product of elements in K[P ] and this motivates next
Remark.

Remark 3.2.6. Let P be the Promislow group and H be the abelian subgroup
of P generated by { x, y, z }. By Lemma 3.2.4, the group ring K[P ] is a free
module over K[H] generated by { 1, a, b, ab } ∈ K[P ]. Therefore, to study how
the product between elements of K[P ] behaves, it suffices to compute the prod-
ucts of scalar multiples with coefficients in K[H] of the elements in the basis
{ 1, a, b, ab }. Let p, p′ ∈ K[H] and w, w′ ∈ { 1, a, b, ab }. Then

pwp′w′ = pwp′w−1ww′ = pp′w(ww′). (3.6)

We want to write pwp′w′ as a K[H]-linear combination of 1, a, b, ab hence
we need to rewrite ww′ as a product of an element in H and an element in
{ 1, a, b, ab }. The following table summarizes these factorizations (the 4 × 4
inner sub-matrix is the product of the first column with the first row, in this
order).

· 1 a b ab
1 1 a b ab
a a x ab xb
b b x−1yz−1ab y x−1z−1a
ab ab zy−1b y−1a z

(3.7)
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Some entries of this table are immediate to compute; for the others, we did
these computations (applying formulas in Remark 3.1.5, last sentence in the
same Remark and that H is abelian by Lemma 3.1.6):

ba = a−1(abab)aa−1b−1 = z−1a−1b−2aa−1b = z−1ya−2ab = x−1yz−1ab;

bab = a−1(abab)aa−1 = z−1a−2a = x−1z−1a;

aba = ababb−1 = zb−2b = zy−1b;

abb = aya−1a = y−1a.

Let α = p + qa + rb + sab and α′ = p′ + q′a + r′b + s′ab be elements in K[P ]
with p, q, r, s, p′, q′, r′, s′ ∈ K[H]. Thanks to equation 3.6 considered together
with last table, we get that

(α′α)1 = p′p + q′qax + r′rby + s′sabz

(α′α)a = p′q + q′pa + r′sbx−1z−1 + s′raby−1

(α′α)b = p′r + q′sax + r′pb + s′qaby−1z

(α′α)ab = p′s + q′ra + r′qbx−1yz−1 + s′pab.

We conclude this subsection giving a family of ring endomorphisms of K[P ]
where P is the Promislow group and K is any field. The knowledge of endo-
morphisms of a ring can be useful when studying the group of units of the ring
itself, since the endomorphisms of a ring transform units into units. We will use
the family of ring endomorphisms of K[P ] we’re going to present at the end of
next section (Remark 3.3.13).

Lemma 3.2.7. Let P be the Promislow group and K be a field. For every pair
of integers i, j ∈ Z there exists an homomorphism of R-algebras σi,j : K[P ] →
K[P ] such that

σi,j : K[P ] −→ K[P ]

a Ô−→ zia

b Ô−→ zjb

Moreover

1. σi,j fixes x = a2 and y = b2 and on z = abab we have σi,j(z) = z2i−2j+1.

2. for every i, j ∈ Z, the equality σi+j,j = σj,j ◦ σi,0 holds.

Proof. Let P be the Promislow group and K be a field. Fix i, j ∈ Z. We
prove the existence of the homomorphism σi,j by applying Lemma 1.1.13: we
define a group homomorphism f : P → P that extends to an isomorphism of
K[P ]. Since P is a finitely presented group, we define the desired isomorphism f
applying the universal property of finitely presented group. Precisely, consider
the set theoretic map

h : { a, b } −→ P

a Ô−→ zia

b Ô−→ zjb.
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This map preserves the relations that define P as a presented group, that is

h(a)−2 = h(b)−1h(a)2h(b),

h(b)−2 = h(a)−1h(b)2h(a)

hold (it’s a straightforward computation that can be done applying the formulas
for the conjugates of z written in Remark 3.1.5). Therefore, h induces a group
homomorphism f : P → P which in turn induces a homomorphism of R-algebras
σi,j : K[P ] → K[P ] by Lemma 1.1.13, as desired.

We prove points 1 and 2. We have

σi,j(x) = σi,j(a2) = ziazia = a(a−1zia)zia = az−izia = x,

σi,j(y) = σi,j(b2) = zjbzjb = b(b−1zjb)zjb = bz−jzjb = y,

σi,j(z) = σi,j(abab) = ziazjbziazjb = a(a−1zia)zjbziazjb = az−i+jbziazjb

= ab(b−1z−i+jb)ziazjb = abzi−j+iazjb = aba(a−1zi−j+ia)zjb

= abaz−2i+j+jb = abab(b−1z−2i+j+jb) = zz2i−2j = z2i−2j+1

and this proves point 1. To prove point 2 it suffices to check that σi,j and
σj,j ◦ σi,0 behave in the same way over a and b, indeed this implies that their
restrictions to P coincides, hence by Lemma 1.1.13, σi,j and σj,j ◦ σi,0 must be
equal to each other. Computing the images of a and b through σi,j and σj,j ◦σi,0

is not difficult, since by point 1 we already know that σj,j(z) = z.

3.2.2 Sufficient Conditions for (non-trivial) Units

Let K be a field and P be the Promislow group. An element α ∈ K[P ] is a
unit if and only if there exists α′ ∈ K[P ] such that α′α = 1K[P ] holds; indeed,
if such an element α′ exist, then αα′ = 1K[P ] also holds (Corollary 3.2.2).

Remember that K[P ] is a K[H]-free module generated by { 1, a, b, ab }, where
H is the subgroup of P generated by { x, y, z } (Lemma 3.2.4). Let α = p+qa+
rb + sab ∈ K[P ] with p, q, r, s ∈ K[H]. The goals of following discussion are:

• finding conditions over p, q, r, s such that there exist p′, q′, r′, s′ ∈ K[H]
such that (p′ + q′a + r′b + s′ab)(p + qa + rb + sab) = 1K[P ] holds;

• if there exist p′, q′, r′, s′ ∈ K[H] such that (p′ + q′a + r′b + s′ab)(p + qa +
rb + sab) = 1K[P ] holds, determining p′, q′, r′, s′ ∈ K[H] as functions of
p, q, r, s.

By Remark 3.2.6, given p′, q′, r′, s′ ∈ K[H], the equality (p′ + q′a + r′b +
s′ab)(p + qa + rb + sab) = 1K[P ] holds if and only if following system is satisfied:



















p′p + q′qax + r′rby + s′sabz = 1

p′q + q′pa + r′sbx−1z−1 + s′raby−1 = 0

p′r + q′sax + r′pb + s′qaby−1z = 0

p′s + q′ra + r′qbx−1yz−1 + s′pab = 0.

(3.8)

We focus on second and third equations: we split summaries in the first sides
so that second and third equations of system 3.8 are satisfied if the following
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system is satisfied:


















p′q + q′pa = 0

r′sbx−1z−1 + s′raby−1 = 0

p′r + r′pb = 0

q′sax + s′qaby−1z = 0.

(3.9)

This new system is a linear system in the unknowns p′, q′, r′ s′ and coefficient
in the domain K[H], whose associated matrix is









q pa 0 0
0 0 ysb xzrab

r 0 pb 0
0 yxsa 0 zqab









.

System 3.9 admits a non-trivial solution (p′, q′, r′, s′) ∈ K[H]4 if and only if the
determinant of last matrix is zero8, that is if and only if

qpbrabsax2 − paqabrsb = 0

(we multiplied the determinant by y−1z−1 ∈ K[H]). Last equation is satisfied
if following system is satisfied:

{

paqab = xqpb

sarab = x−1rsb.
(3.10)

We now suppose that p, q, r, s satisfies system 3.10 and we look for a non-
trivial solution (p′, q′, r′, s′) ∈ K[H]4 of system 3.9. We are going to determine
p′ as a function of only p, q′ as a function of only q, r′ as a function of only r
and s′ as a function of only s. We start setting

s′ := z−1sa .

With such a definition, fourth equation of system 3.9 becomes q′xy + qab = 0
and it is satisfied setting q′ as follows:

q′ := −x−1y−1qab .

With such a definition, first equation of system 3.9 becomes equivalent to xyp′q+
qabpa = 0 and, since system 3.10 is satisfied,

xyp′q − qabpa = 0 ⇐⇒ yp′q − qpb = 0.

8Pay attention that in linear algebra theory is stated that, given a square matrix A with
coefficients in a field F , the linear homogeneous system with associated matrix A admits a
non-trivial solution with coefficient in F if and only if det A is zero. This result generalizes
to matrices with coefficients in any domain. Indeed, let R be a domain, F be the field of
fractions of R and A be a square matrix with coefficients in R. If the linear homogeneous
system with associated matrix A admits a non-trivial solution with coefficient in R, then this
is also a solution when we work inside the field F , hence det A is zero. Conversely, if det A

is zero, then the linear homogeneous system with associated matrix A admits a non-trivial
solution x with coefficient in F . All the scalar multiples of x are solutions of the system; in
particular, being F the field of fractions of R, it’s possible to find λ ∈ F such that all the
coefficients λx belong to R and λx solves the system.
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Thus, we set

p′ := y−1pb

so that first equation is also satisfied. With these settings, third equation of
system 3.9 becomes equivalent to pbr + yr′pb = 0 and it is satisfied setting r′ as
follows:

r′ := −y−1r .

It remains to check that our setting for (p′, q′, r′, s′) solves the second equation
of system 3.9: replacing p′ , q′, r′, s′ with their definitions just given, we get

r′sbx−1z−1 + s′raby−1 = 0 ⇐⇒ −y−1rsbx−1z−1 + z−1saraby−1 = 0

⇐⇒ rsbx−1 − sarab = 0

and this last equation is satisfied since r and s are assumed to satisfy system 3.10.
We summarize what we did until now: we were looking for sufficient conditions
over p, q, r, s such that there exist p′, q′, r′, s′ ∈ K[H] that satisfy system 3.8;
we proved that if p, q, r, s satisfy system 3.10 and if p′, q′, r′, s′ are as set in the
boxes, then second and third equations of system 3.8 are satisfied. Eventually,
if p, q, r, s satisfy system 3.10 and if p′, q′, r′, s′ are as set in the boxes, first
and fourth equations of system 3.8 can be reformulated:

p′p + q′qax + r′rby + s′sabz = 1

⇐⇒ y−1pbp − y−1qabqa − y−1rrby + sasab = 1

⇐⇒ pbp − qaqab − rrby + ysasab = y

and

p′s + q′ra + r′qbx−1yz−1 + s′pab = 0

⇐⇒ y−1pbs − x−1y−1qabra − y−1rqbx−1yz−1 + z−1sapab = 0

⇐⇒ xzpbs − zqabra − yrqb + xysapab = 0.

We can summarize what has been deduced so far in the following lemma,
which therefore turns out to be proved.

Lemma 3.2.8. Let P be the Promislow group, let H ⊆ P be the subgroup
generated by { x, y, z } and let K be a field. Let α = p + qa + rb + sab ∈ K[P ],
with p, q, r, s ∈ K[H]. If the system



















paqab = xqpb

sarab = x−1rsb

xzpbs − zqabra − yrqb + xysapab = 0

pbp − qaqab − rrby + ysasab = y

(3.11)

is satisfied, then α is a unit and its inverse is α′ = p′ + q′a + r′b + s′ab with

p′ = y−1pb

q′ = −x−1y−1qab

r′ = −y−1r

s′ = z−1sa.
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From last sufficient conditions for units, we can exhibit new conditions: on
one hand, new ones are more restrictive (that is, if a unit satisfies new condi-
tions then it also satisfies old conditions); on the other hand, it could be easier
to control that the candidate unit satisfies new conditions then controlling that
it verifies old conditions. The way to produce these new condition is suggested
by Murray in [9]: the idea is, starting from the first two equations in the sys-
tem 3.11, to construct four equations, where one depends only by p, one depends
only by q, one depends only by r and one depends only by s.

Corollary 3.2.9. Let P be the Promislow group, let H ⊆ P be the subgroup
generated by { x, y, z } and let K be a field. Let α = p + qa + rb + sab ∈ K[P ],
with p, q, r, s ∈ K[H]. If the following system is satisfied, then α is a unit.







































pab = x−1y−1p

qab = yq

rab = x−1r

sab = s

zypas + sap = zyqra + rqa

pap + xsas = x + xqqa + rra

(3.12)

Proof. Let P be the Promislow group, let H ⊆ P be the subgroup generated by
{ x, y, z } and let K be a field. Let α = p + qa+ rb +sab ∈ K[P ], with p, q, r, s ∈
K[H] and suppose that p, q, r, s satisfy system 3.12. By Lemma 3.2.8, to prove
that α is a unit it suffices to prove that p, q, r, s satisfy system 3.11. Inside
next computations, we will indicate with (A) equalities for which we apply our
assumptions over p, q, r, s and with (B) equalities for which we apply formulas
stated in Remark 3.2.3 together with formulas stated in Remark 3.1.5. We have

paqab (B)
= (pab)bqab (A)

= (x−1y−1p)byq = xpbq;

sarab (B)
= (sab)brab (A)

= x−1rsb;

xzpbs + xysapab (B)
= xz(pab)as + xysapab (A)

= yzpas + sap
(A)
= zyqra + rqa

(B)
= zy(qab)abra + r(qab)b (A)

= zqra + yrqb;

pbp + ysasab (B)
= (pab)ap + ysasab (A)

= x−1ypap + ysas = x−1y(pap + xsas)

(A)
= x−1y(x + xqqa + rra) = y + yqqa + x−1yrra

(B)
= y + yqqa + x−1yr(rab)b (A)

= y + qabqa + yrrb.

Corollary 3.2.10. Let P be the Promislow group, let H ⊆ P be the subgroup
generated by { x, y, z } and let K be a field. Let α = p + qa + rb + sab, with
p, q, r, s ∈ K[H], be a unit of K[P ] such that (p, q, r, s) satisfies system 3.11.
Then α′ := p′ + q′a + r′b + s′ab is a unit for all the nine tuples (p′, q′, r′, s′)
constructed matching any of the following possibilities for (p′, s′) with any of the
following possibilities for (q′, r′).

(p′, s′) : (p, s), (zp, zs), (z−1p, z−1s)

(q′, r′) : (q, r), (zq, zr), (z−1q, z−1r)
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Proof. Let P be the Promislow group, let H ⊆ P be the subgroup generated by
{ x, y, z } and let K be a field. Let α = p + qa + rb + sab, with p, q, r, s ∈ K[H],
be a unit of K[P ] such that (p, q, r, s) satisfies system 3.11. We prove that
α′ := p + zqa + zrb + sab and α′′ := zp + qa + rb + zsab are units. Proof
for all the other possibilities are analogous. By Lemma 3.2.8, it suffices to
prove that both (α′

1, α′
a, α′

b, α′
ab) and (α′′

1 , α′′
a, α′′

b , α′′
ab) solve system 3.11. In

the following lines, chains of equalities in [1.1], [2.1], [3.1], [4.1] imply that
(zp, q, r, zs) satisfies system 3.11 and chains of equalities in [1.2], [2.2], [3.2],
[4.2] imply that (p, zq, zr, s) is a unit. Inside the computations, we denote with

(A) equalities for which we apply that (p, q, r, s) satisfies system 3.11;

(B) equalities for which we use Remark 3.1.5.

We have:

[1.1] (zp)aqab (B)
= z−1paqab (A)

= z−1xqpb (B)
= xq(zp)b;

[1.2] pa(zq)ab (B)
= zpaqab (A)

= zxqpb = x(zq)pb;

[2.1] (zs)arab (B)
= z−1sarab (A)

= z−1x−1rsb (B)
= x−1r(zs)b;

[2.2] sa(zr)ab (B)
= zsarab (A)

= zx−1rsb = x−1(zr)sb;

[3.1] xz(zp)bzs − zqabra − yrqb + xy(zs)a(zp)ab

(B)
= xzpbs − zqabra − yrqb + xysapab (A)

= 0

[3.2] xpbs − z(zq)ab(zr)a − y(zr)(zq)b + xysapab

(B)
= xzpbs − zqabra − yrqb + xysapab (A)

= 0

[4.1] (zp)bzp − qaqab − rrby + y(zs)a(zs)ab

(B)
= pbp − qqaab − rrby + ysasab (A)

= y

[4.2] pbp − (zq)a(zq)ab − (zr)(zr)by + ysasab

(B)
= pbp − qqaab − rrby + ysasab (A)

= y.

Lemma 3.2.11. Let P be the Promislow group, let H ⊆ P be the subgroup
generated by { x, y, z } and let K be a field. Let α ∈ K[H]. If α is a unit in
K[P ], then α is a unit in K[H] and, in particular, it’s a trivial unit.

Proof. Let P be the Promislow group, let H ⊆ P be the subgroup generated
by { x, y, z } and let K be a field. Let α be a unit of K[P ] such that α belongs
to K[H]. We first prove that α is also a unit in K[H], i.e. that the inverse
of α in K[P ] actually belongs to K[H]. Let β be the inverse of α in K[P ]; by
Lemma 3.2.4, there exist p, q, r, s ∈ K[H] such that β = p + qa + rb + sab. Since
β is the inverse of α, we have

1 = αβ = αp + αqa + αrb + αsab.

The supports Supp(αp), Supp(αqa), Supp(αrb) and Supp(αsab) are pairwise
disjoint because, α belonging to H, following inclusions hold

Supp(αp) ⊆ H,

Supp(αrb) ⊆ Hb,

Supp(αqa) ⊆ Ha

Supp(αsab) ⊆ Hab
(3.13)



3.2. UNITS IN GROUP RINGS OF THE PROMISLOW GROUP 59

and H ∪ Ha ∪ Hb ∪ Hab is a disjoint union (consequence of third point of
Lemma 3.1.6). Therefore, Supp(αβ) can be written as a disjoint union:

Supp(αβ) = Supp(αp) ∪ Supp(αqa) ∪ Supp(αrb) ∪ Supp(αsab).

Remembering that 1 = αβ holds, we get the disjoint union

{ 1 } = Supp(αp) ∪ Supp(αqa) ∪ Supp(αrb) ∪ Supp(αsab).

This last equality of sets together with inclusions in 3.13 implies that Supp(αqa),
Supp(αrb) and Supp(αsab) are all empty, that is αqa = αrb = αsab = 0 holds;
since α, a and b are units, this is equivalent to

q = r = s = 0.

We just proved that
β = p ∈ K[H]

holds, as desired.
On the other hand, H is an abelian torsion free group by Lemma 3.1.6, thus

K[H] satisfies the unit conjecture by Theorem 2.2.5. Thus, α must be a trivial
unit in K[H] and, by definition of trivial units, this means that α is a trivial
unit even in K[P ].

Lemma 3.2.12. Let P be the Promislow group, let H ⊆ P be the subgroup
generated by { x, y, z } and let K be a field. Let α = p + qa + rb + sab be a unit
of K[P ] with p, q, r, s ∈ K[H].

(a) If exactly one element between p, q, r and s is non-zero, then this element
is a trivial unit in K[H] and α is a trivial unit in K[P ].

(b) If at least two elements between p, q, r and s are non-zero, then α is a
non-trivial unit in K[P ].

Proof. Let P be the Promislow group, let H ⊆ P be the subgroup generated by
{ x, y, z } and let K be a field. Let α = p + qa + rb + sab be a unit of K[P ] with
p, q, r, s ∈ K[H]. We first prove point (a): suppose that exactly one element
between p, q, r and s is non-zero and let w ∈ { 1, a, b, ab } be such that αw is
non-zero. By assumption, α = αww is a unit, hence

αw = αw · w · w−1 = α · w−1

is also a unit in K[P ]. By Lemma 3.2.11, this implies that αw is both a trivial
unit in K[H] and in K[P ]. By definition of trivial units, this means that there
exists v ∈ H such that Supp(αw) = { v } holds. Therefore

Supp(α) = Supp(αww) = { vw }

which is a singleton, i.e. α is a trivial unit.
We now prove point (b): suppose that at least two elements between p, q, r

and s are non-zero. We have that Supp(p), Supp(qa), Supp(rb) and Supp(sab)
are pairwise disjoint, because following inclusions hold

Supp(p) ⊆ H, Supp(qa) ⊆ Ha, Supp(rb) ⊆ Hb, Supp(sab) ⊆ Hab
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and H ∪ Ha ∪ Hb ∪ Hab is a disjoint union (consequence of third point of
Lemma 3.1.6). Therefore, Supp(α) can be written as a disjoint union:

Supp(α) = Supp(p) ∪ Supp(qa) ∪ Supp(rb) ∪ Supp(sab). (3.14)

On the other hand, if w ∈ { 1, a, b, ab } is such that αw is non-zero then αww
is also non-zero, (w is a unit, thus it can’t be a zero divisor). Therefore, our
assumption that at least two of the elements p, q, r and s are non-zero implies
that at least two of the sets Supp(p), Supp(qa), Supp(rb) and Supp(sab) are
non-empty. This last fact together with the fact that union in 3.14 is disjoint
implies that α is a non-trivial unit.

3.3 Explicit Counterexamples to the Unit Con-
jecture

The purpose of this section is to prove that every group ring K[P ] of the Promis-
low group P over a field K of prime characteristic doesn’t satisfy the Kaplansky
unit conjecture. We will reach this result as a corollary of the fact that every
group ring K[P ] of the Promislow group P over a finite field K has a non-trivial
unit. To do this, we will explicitly provide non-trivial units in such group rings;
precisely, we will provide explicit solutions of the system in Corollary 3.2.9.

The non-trivial unit in F2[P ], where F2 is the finite field with only two
elements, we are going to exhibit is the one provided by Gardam [3, Theo-
rem A]. It seems far to be an intuitive example of solution of the system 3.12.
The only information that Gardam gave on how he found the long-sought-after
counterexample is that it involved a computer search9.

The family of non-trivial units in Fp[P ], where p is a prime number and Fp

is the finite field with p elements, we are going to exhibit is an extension of the
family provided by Murray [9, Theorem 3], where the additional units extending
Murray’s family of units have been provided by Passman [11].

Notations. Let p ∈ N be a prime number. We denote with Fp the finite field
with p elements.

3.3.1 Non-trivial Units over Fields of Characteristic 2

Lemma 3.3.1. Let P be the Promislow group and F2 be the field with two
elements. In the group ring F2[P ] set10

p := (1 + x)(1 + y)(1 + z−1),

q := x−1y−1 + x + y−1z + z,

r := 1 + x + y−1z + xyz,

s := 1 + (x + x−1 + y + y−1)z−1.

Then (p, q, r, s) satisfies system 3.12, hence α := p+qa+rb+sab is a non-trivial
unit in the group ring F2[P ].

9Even if this is not written in his article [3], Gardam communicated it during the online
talk he gave on February 22, 2021.

10These choices arises from a computer search.
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Proof. Let P be the Promislow group and α ∈ F2[P ] defined as in the statement.
Let H be the subgroup of P generated by { x, y, z }. We first suppose that α is
a unit. The property of α to be a non-trivial unit (referring to Definition 1.1.7)
follows from Lemma 3.2.12. We now prove that α satisfies system 3.12; suppos-
ing this true then, by Corollary 3.2.9, α is a unit. Equations from first to fourth
in the system are easily verified, indeed:

pab = (1 + x−1)(1 + y−1)(1 + z−1) = x−1y−1p

qab = xy + x−1 + yz + z = y(x + x−1y−1 + z + y−1z) = yq

rab = 1 + x−1 + yz + x−1y−1z = x−1(x + 1 + xyz + y−1z) = x−1r

sab = 1 + (x−1 + x + y−1 + y)z−1 = s

For fifth equation in the system we first compute the products involved. On one
side we have:

sap = (1 + x)(1 + y)(1 + z−1)[1 + (x + x−1 + y + y−1)z]

= (1 + x)(1 + y)(1 + z)[z−1 + x + x−1 + y + y−1]

and

zypas = zy(psa)a

= (1 + x)(1 + y)(1 + z)[z + x + x−1 + y + y−1].

To compute the right hand side the idea is: since zyqra = zy(rqa)a holds, we
write rqa “separating” the elements that are fixed for the map zy(−)a, so that
these elements will disappear in the sum rqa + zy(rqa)a because we’re working
over a field of characteristic 2. We have:

rqa =(1 + x + y−1z + xyz)(x−1y + x + yz−1 + z−1)

= x−1y + x + yz−1 + z−1 + y + x2 + xyz−1 + xz−1

+ x−1z + x + 1 + y−1 + y2z + x2yz + xy2 + xy

= (1 + x)(1 + y)(1 + z−1)

+ x−1(y + z) + x(y−1z + y2) + x2(1 + yz) + (y2z + y−1)

and

zyqra = zy(qar)a

= (1 + x)(1 + y)(1 + z)z

+ x−1(y + z) + x(y−1z + y2) + x2(1 + yz) + (y2z + y−1).

Since the group ring we’re working in is over a field of characteristic 2, we get

sap + zypas = (1 + x)(1 + y)(1 + z)(z + z−1);

rqa + zyqra = (1 + x)(1 + y)(1 + z−1) + (1 + x)(1 + y)(1 + z)z

= (1 + x)(1 + y)(1 + z)(z−1 + z).

Hence fifth equation is verified. For sixth equation in the system we first com-
pute the products involved. We’ll try to “separate” the terms that are multiples
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of z or z−1 with coefficients in the ring of Laurent polynomials F2[x±1, y±1]
from all the other terms. On one side we have:

pap = (1 + x)2(1 + y)(1 + y−1)(1 + z)(1 + z−1)

= (1 + x2)(1 + y)(1 + y−1)(1 + z)(1 + z−1)

= (1 + x2)(y + y−1)(z + z−1)

and

xsas = x[1 + (x + x−1 + y + y−1)z][1 + (x + x−1 + y + y−1)z−1]

= x + (x2 + 1 + xy + xy−1)(z + z−1) + x(x + x−1 + y + y−1)2

= x + (x2 + 1 + xy + xy−1)(z + z−1) + x(x2 + x−2 + y2 + y−2).

On the other side we have:

xqqa = x(x−1y−1 + x + y−1z + z)(x−1y + x + yz−1 + z−1)

= x(x−1y−1 + x)(x−1y + x) + x(y−1z + z)(x−1y + x)

+ x(x−1y−1 + x)(yz−1 + z−1) + x(y−1z + z)(yz−1 + z−1)

= x(x−2 + y−1 + y + x2) + z(1 + y + x2y−1 + x2)

+ z−1(1 + y−1 + x2y + x2) + x(y−1 + y)

= x(x−2 + x2) + z(1 + y + x2y−1 + x2) + z−1(1 + y−1 + x2y + x2)

and

rra = (1 + x + y−1z + xyz)(1 + x + yz−1 + xy−1z−1)

= (1 + x)2 + z−1(1 + x)(y + xy−1)

+ z(y−1 + xy)(1 + x) + (y−1 + xy)(y + xy−1)

= 1 + x2 + z−1(y + xy + xy−1 + x2y−1)

+ z(y−1 + xy + xy−1 + x2y) + (1 + xy2 + xy−2 + x2)

= x(y2 + y−2) + z(y−1 + xy + xy−1 + x2y) + z−1(y + xy + xy−1 + x2y−1)

Putting together these computations, we get:

pap + xsas − x = (z + z−1)(y + y−1 + x2y + x2y−1 + x2 + 1 + xy + xy−1)

+ x(x2 + x−2 + y2 + y−2);

xqqa + rra = x(x2 + x−2 + y2 + y−2)

+ (z + z−1)(1 + x2) + zy + x2y−1z + y−1z−1 + x2yz−1

+ (z + z−1)(xy + xy−1) + y−1z + x2yz + yz−1 + x2y−1z−1

= x(x2 + x−2 + y2 + y−2)

+ (z + z−1)(1 + x2) + (z + z−1)(xy + xy−1)

+ (z + z−1)y + (z + z−1)x2y−1 + (z + z−1)y−1 + (z + z−1)x2y

= x(x2 + x−2 + y2 + y−2)

+ (z + z−1)(y + y−1 + x2y + x2y−1 + x2 + 1 + xy + xy−1).

We can conclude that last equation of system 3.12 is also satisfied.
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Corollary 3.3.2. Let P be the Promislow group and K be a field with charac-
teristic 2. The group ring K[P ] doesn’t satisfy the Kaplansky unit conjecture.

Proof. Let P be the Promislow group and K be a field with characteristic 2.
The field K contains a subfield, named prime subfield11, isomorphic to the
field with two elements F2, therefore F2[P ] is isomorphic to a subring of K[P ]
(Remark 1.1.11). On the other hand, isomorphisms of group rings preserve the
cardinality of the supports, that is: if φ : M → N is an isomorphism of group
rings, then for every α ∈ M we have

|Supp(φ(α))| = |Supp(α)|.

Indeed, the injectivity of φ implies both the following equalities:

|Supp(φ(α))| = |φ(Supp(α))| = |Supp(α)|.

Since F2[P ] has a non-trivial unit (Lemma 3.3.1) and since isomorphisms of
group rings preserve the cardinality of the supports, we obtain that K[P ] has
a subring that admits a non-trivial units. Eventually, since non-trivial units in
a subring stay non-trivial units in the whole ring K[P ], we conclude that K[P ]
doesn’t satisfy the unit conjecture.

Remark 3.3.3. Let P be the Promislow group and K be a field. Let H be the
subgroup of P generated by { x, y, z } and fix w ∈ { x, y, z }. Since H is a free
abelian group (Lemma 3.1.6), the set theoretic map { x, y, z } → { x, y, z } that
maps w to w−1 and fixes the other elements induces a group homomorphism
H → H and, by Lemma 1.1.13 this group homomorphism extends to a ring
homomrphism (−)w : K[H] → K[H] that behaves as follows:

(−)w : K[H] −→ K[H]

w Ô−→ ww := w−1

({ x, y, z } r { w }) ∋ v Ô−→ vw := v.

Our notation coincides with the one introduced by Murray in [9]. Ring ho-
momorphism just defined satisfies the following properties: for every w, w′ ∈
{ x, y, z }, v ∈ { a, b, ab } and p ∈ K[H],

(pw)w′ = (pw′)w, (3.15)

(pw)v = (pv)w. (3.16)

To check both the equalities it suffices to check that the maps (−)w, (−)w′ , (−)v :
K[H] → K[H] commute if restricted to H (H being a basis of K[H] as a K-
module); equivalently, that they commute when restricted to { x, y, z }, because
{ x, y, z } is a generating set of H as a group and the restrictions of (−)w, (−)w′

and (−)v are group homomorphisms. By definition, (−)w, (−)w′ and (−)v send
each element in { x, y, z } to a power of the element itself and all maps behaving
in such a way always commute.

11 The prime subfield of a field is the field generated by the identity of the field itself. The
prime field of a field F is isomorphic to Q if the characteristic of F is infinite, otherwise it is
isomorphic to the field with p elements, where p is the characteristic of F .
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Remark 3.3.4. Let P be the Promislow group, let F2 be the field with two el-
ements and let α = p+qa+rb+sab be the non-trivial unit of F2[P ] constructed
in the statement of Lemma 3.3.1. There exists new non-trivial units of F2[P ] of
the form α′ = p′ + q′a + r′b + s′ab where p′, q′, r′ and s′ are obtained trans-
forming, respectively, the elements p, q, r and s that form the fixed α. To find
which transformations generate units, we look for transformations that create
solutions of system 3.12, because a solution (p′, q′, r′, s′) of that system gener-
ates a unit in F2[P ] (Corollary 3.2.9). We restrict the search to transformations
belonging to the set A defined as the union of

{ (−)w, z(−)w, z−1(−)w, (−)v, z(−)v, z−1(−)v }

for all the possible w ∈ { x, y, z } and v { 1, a, b, ab } and we proceed by steps.

• We first focus on the equations from one to four in the system. We indi-
viduate which transformations ψ ∈ A realizes following implication:

p solves first equation in system 3.12

=⇒ p′ := ψ(p) solves first equation in system 3.12.

We proceed in an analogous way for q, r and s, trying to create elements
q′, r′, s′ that solve, respectively, second, third and fourth equation in the
system 3.12 (under the assumption that q, r and s solve the system).

• Second, we focus on last two equations of the system. Left sides only
depend on p and s and right sides only depend on q and r. The idea is to
create (p′, q′, s′, r′) such that

{

zypas + sap = zyp′as′ + s′ap′

zyqra + rqa = zyq′r′a + r′q′a
(3.17)

holds and
{

pap + xsas = p′ap′ + xs′as′

x + xqqa + rra = x + xq′q′a + r′r′a
(3.18)

holds. Therefore, we get that

– if (p, q, r, s) satisfies fifth condition to be a unit, then, by system 3.17,
(p′, q′, r′, s′) also satisfies fifth equation of system 3.12;

– if (p, q, r, s) satisfies sixth condition to be a unit, then, by system 3.18,
(p′, q′, r′, s′) also satisfies sixth equation of system 3.12.

It’s clear that this procedure can create new units when starting from a unit
that satisfies system 3.12. Although in the first step to produce (p′, q′, r′, s′) we
can start to any tuple (p, q, r, s) that solves system 3.12, second step actually
depends on the explicit form of the elements p, q, r and s appearing in the
statement of Lemma 3.3.1. Eventually, we can affirm that units produced with
such a procedure are all non-trivial unit, as a consequence of Lemma 3.2.12.

Example 3.3.5. Murray in [9] suggests some examples of non-trivial units
α′ = p′ + q′a + r′b + s′ab where the tuples (p′, q′, r′, s′) are produced through
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the method explained in Remark 3.3.4. He proposes twelve tuples12 that arise
matching any of the following possibilities for (p′, s′) with any of the following
possibilities for (q′, r′):

(p′, s′) : (p, s), (pz, zs), (pz, z−1sz)

(q′, r′) : (q, r), (q, zrx), (qx, ry), (qx, zryz)

We will not prove for each possible choice of (p′, q′, r′, s′) that it generates a
unit, since the proof just consists of computations of Laurent polynomials in
F2[x±1, y±1, z±1] and such computations can be done by a calculator. We will
only prove in Example 3.3.6 that the tuple (p′, q′, r′, s′) = (p, qx, ry, z) generates
a unit because on one hand we want to give an explicit example of the reasoning
methods explained in Remark 3.3.4, on the other hand we will need this tuple,
in some way, to produce counterexamples to the unit conjecture in Fp[P ] for
every prime number p ∈ N.

Example 3.3.6. We give here an explicit example of a unit produced through
the method explained in Remark 3.3.4. Let α = p + qa + rb + sab be the
non-trivial unit exhibited by Gardam (Lemma 3.3.1); explicitly we have

p := (1 + x)(1 + y)(1 + z−1),

q := x−1y−1 + x + y−1z + z,

r := 1 + x + y−1z + xyz,

s := 1 + (x + x−1 + y + y−1)z−1.

We now prove that

α′ := p + qxa + ryb + sab

is a non-trivial unit. Suppose that α′ is a unit; then it’s a non-trivial unit by
Lemma 3.2.12. We now prove that α′ is a unit. By Corollary 3.2.9, it suffices to
prove that (p, qx, ry, s) satisfies system 3.12. By Lemma 3.3.1, (p, q, r, s) satisfies
system 3.12. Therefore (p, qx, ry, s) obviously satisfies first and fourth equation
of the system. Inside following computations, we denote with

(A) equalities for which we apply that (p, q, r, s) satisfies system 3.12;

(B) equalities for which we use computations that have already been written
inside the proof of Lemma 3.3.1;

(C) equalities for which we use formulas stated in Remark 3.3.3.

Second and third equations are easily verified, indeed

(qx)ab (C)
= (qab)x

(A)
= (yq)x = yqx,

(ry)ab (C)
= (rab)y

(A)
= (x−1r)y = x−1ry.

12More precisely, Murray proposes eighteen tuples, exhibiting two more possibilities for the
pair (q′, r′). The possibilities we omitted here can be obtained just applying Corollary 3.2.10.
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For fifth equation, we compute right sides on the pair (qx, ry):

ryqa
x = (1 + x + yz + xy−1z)(xy + x−1 + yz−1 + z−1)

= xy + x−1 + yz−1 + z−1 + x2y + 1 + xyz−1 + xz−1

+ xy2z + x−1yz + y2 + y + x2z + y−1z + x + xy−1

= (1 + x)(1 + y)(1 + z−1)

+ x2(y + z) + (y−1z + y2) + x−1(1 + yz) + x(y2z + y−1);

zyqxra
y = zy(ryqa

x)a

= (1 + x)(1 + y)(1 + z)z

+ x2(y + z) + (y−1z + y2) + x−1(1 + yz) + x(y2z + y−1).

Remembering that we’re working in F2[P ] and comparing these computations
with ones in the proof of Lemma 3.3.1, we get

ryqa
x + zyqxra

y = (1 + x)(1 + y)(1 + z)(z−1 + z)

(B)
= rqa + zyqra (A)

= sap + zypsa

and this proves that (p.qx, ry, s) satisfies fifth equation of the system 3.12. Even-
tually, for sixth equation, we compute right side on the pair (qx, ry):

xqxqa
x

(C)
= x(qqa)x = x2(xqqa)x

= x2[x(x−2 + x2) + z(1 + y + x2y−1 + x2) + z−1(1 + y−1 + x2y + x2)]x

= x(x−2 + x2) + z(x2 + x2y + y−1 + 1) + z−1(x2 + x2y−1 + y + 1);

ryra
y

(C)
= (rra)y

= [x(y2 + y−2) + z(y−1 + xy + xy−1 + x2y)

+ z−1(y + xy + xy−1 + x2y−1)]y

= x(y2 + y−2) + z(y + xy−1 + xy + x2y−1)

+ z−1(y−1 + xy−1 + xy + x2y).

Comparing these computations with ones in the proof of Lemma 3.3.1, we get

xqxqa
x + ryra

y

(B)
= xqqa + rra (A)

= pap + xsas − x

and this proves that (p.qx, ry, s) satisfies sixth equation of the system 3.12.

3.3.2 Non-trivial Units over Fields of Prime Characteris-
tic

To find out non-trivial units in Fd[P ] for every prime number d ∈ N, where P
is the Promislow group and Fd is the field with d elements, we will mix Murray
and Passman’s ideas. Murray’s argumentation in [9] arises from an analogy
between a fixed non-trivial unit in F2[P ] and a fixed non-trivial unit in F3[P ].
The first one is the non-trivial unit showed in Example 3.3.6. The second one
is the non-trivial unit stated in Lemma 3.3.7 (taken from [9, Theorem 2]). The
analogy between these units is explained in Remark 3.3.8. Ingeniously exploiting
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this analogy, Murray comes to a double (that is, depending on two parameters)
family of units in Fd[P ] for every prime d ∈ N. Passman [11] goes deeper into
the research introduced by Murray, extending the family found by Murray to a
triple family of non-trivial units.

Lemma 3.3.7. Let P be the Promislow group and F3 be the field with two
elements. In the group ring F3[P ] set

p := (1 + x)(1 + y)(z−1 − z),

q := (1 + x)(x−1 + y−1)(1 − z−1) + (1 + y−1)(z − z−1),

r := (1 + y−1)(x + y)(z − 1) + (1 + x)(z − z−1),

s := −z + (1 + x + x−1 + y + y−1)(z−1 − 1).

Then α := p + qa + rb + sab is a non-trivial unit in the group ring F3[P ].

Proof. The tuple (p, q, r, s) in the statement satisfies system 3.12 in the group
ring F3[P ], therefore α is a unit (it’s a straightforward computation). Eventually,
α is a non-trivial unit by Lemma 3.2.12.

Remark 3.3.8. Let P be the Promislow group and F2 and F3 be, respectively,
the fields with two and three elements. The unit of F2[P ] stated in Example 3.3.6
and the unit of F3[P ] stated in Lemma 3.3.7 are similar to each other. Precisely,
if α = p + qa + rb + sab is one between these units in Fd[P ], where d ∈ { 2, 3 },
then there exist seven Laurent polynomials f1, f2, f3, f4, f5, f6, f7 ∈ Fp[z±1] such
that following equalities hold:

p = (1 + x)(1 + y)f1,

q = (1 + x)(x−1 + y−1)f2 + (1 + y−1)f3,

r = (1 + y−1)(x + y)f4 + (1 + x)f5,

s = (x + x−1 + y + y−1 + 4)f6 + f7.

For the unit exhibited in the statement of Lemma 3.3.7, it’s quite immediate
to individuate these seven Laurent polynomials in F3[z±1]. We prove now that
the seven Laurent polynomials f1, . . . , f7 exist also for the unit exhibited in
Example 3.3.6. This unit is α = p + qa + rb + sab with

p := (1 + x)(1 + y)(1 + z−1),

q := xy−1 + x−1 + y−1z + z = (x−1 + y−1 + 1 + xy−1) + (1 + y−1)(z − 1),

r := 1 + x + yz + xy−1z = (x + xy−1 + y + 1)z + (1 + x)(1 − z),

s := 1 + (x + x−1 + y + y−1)z−1.

Hence, in this case,

f1 = 1 + z−1, f2 = 1 = f7, f3 = z − 1

f4 = z, f5 = 1 − z, f6 = z−1

(to determine f6 remember that the group ring we are working in is over a field
of characteristic 2).
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We now follow Murray and Passman’s ideas in [9] and [11] to find units in
every group ring of the Promislow group over finite fields.

Let P be the Promislow group, d ∈ N be a prime number and f1, . . . , f7 ∈
Fp[z±1] be Laurent polynomials. In Fd[H], where H is the subgroup of P
generated by { x, y, z }, we set

p := (1 + x)(1 + y)f1,

q := (1 + x)(x−1 + y−1)f2 + (1 + y−1)f3,

r := (1 + y−1)(x + y)f4 + (1 + x)f5,

s := (x + x−1 + y + y−1 + 4)f6 + f7.

(3.19)

We look for f1, . . . , f7 such that α := p + qa + rb + sab is a unit of Fd[P ].
By Corollary 3.2.9, a sufficient condition for α to be a unit is that α satisfies
system 3.12; therefore, we look for f1, . . . , f7 such that α satisfies this system.
First, for every Laurent polynomial f ∈ Fp[P ], we set

f∗ := f(z−1) = fa = f b.

Equations from one to four in the system 3.12 are verified for any choice of
f1, . . . , f7. Indeed, inserting in first equation our definitions of p, q, r, s we get

x−1y−1p = (1 + x−1)(1 + y−1)f1 = pab.

Inserting in second equation our definitions of p, q, r, s we get

yq = (1 + x)(yx−1 + 1)f2 + (1 + y)f3

= (1 + x−1)(y + x)f2 + (1 + y)f3 = qab.

Inserting in third equation our definitions of p, q, r, s we get

x−1r = (1 + y−1)(1 + x−1y)f4 + (1 + x−1)f5

= (1 + y)(y−1 + x−1)f4 + (1 + x−1)f5 = rab.

The fact that fourth equation is verified is immediate. Therefore, we can restrict
to consider just fifth and sixth equations of the system 3.12. When we insert
our definitions of p, q, r and s, each side of these equations becomes a “long”
Laurent polynomial in Fd[z±1][x±1, y±1]. An equality of Laurent polynomials
in Fd[z±1][x±1, y±1] is verified if and only if for every i, j ∈ Z the coefficient
of xiyj of the Laurent polynomial on the left side coincides with the coefficient
of xiyj of the Laurent polynomial on the right side. Because of this, fifth and
sixth equations of the system 3.12 are satisfied by the elements p, q, r, s that
we defined above if and only if the following system is satisfied in Fd[z±1]:







































f∗
7 f7 = 1

f∗
3 f3 = f∗

5 f5 = f∗
7 f6 + f∗

6 f7 + 4f∗
6 f6

f∗
2 f2 = f∗

4 f4 = f∗
6 f6

f∗
1 f1 = f∗

2 f3 + f∗
4 f5

f∗
2 f5 = zf∗

5 f2 = f∗
3 f4 = zf∗

4 f3 = f∗
6 f1 + zf∗

1 f6 − f∗
2 f4 − zf∗

4 f2

f∗
3 f5 + zf∗

5 f3 = f∗
7 f1 + zf∗

1 f7 + 4(f∗
2 f4 + zf∗

4 f2)

(3.20)

First of all, we prove the following claim.
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Claim. If (f1, . . . , f7) solves system 3.20 and there exists i = 1, . . . , 6 such that
fi = 0 then for all i = 1, . . . , 6, fi = 0.

Proof of the claim. Suppose that (f1, . . . , f7) solves system 3.20. First, observe
that for every Laurent polynomial in Fd[z±1] we have that

f = 0 ⇔ f∗ = 0.

We get the following chains of implications (tags “n.m” over implications denote
that to get the implication we’re using m-th equality inside n-th equation in the
system 3.20) and all these chains of implication turn out to prove the claim:

f3 = 0
2.1

⇐=⇒ f5 = 0,

f3 = 0 ∧ f5 = 0
4.1

===⇒ f1 = 0,

f1 = 0
∗

==⇒ f3 = 0 ∨ (f2 = 0 ∧ f4 = 0),

f1 = 0 ∧ f3 = 0
∗ ∗

===⇒ f2 = 0 ∧ f4 = 0,

f2 = 0
3.1

⇐=⇒ f4 = 0
3.2

⇐=⇒ f6 = 0
2.1+2.2
=====⇒ f3 = 0.

It remains to check implication “∗” and “∗ ∗”. For the first one, suppose f1 = 0
holds. From fourth and fifth lines in the system 3.20 we get

{

f∗
2 f3 = −f∗

4 f5

f∗
2 f5 = zf∗

4 f3.

Hence
(f∗

2 )2f3 = −f∗
2 f5f∗

4 = −z(f∗
4 )2f3

holds. Therefore, since the ring Fd[z±1] is an integral domain, we get that at
least one between f3 = 0 and (f∗

2 )2 = −z(f∗
4 )2 holds. This last equality is

equivalent to f2 = 0 = f4. Indeed, if f2 and f4 were not zero, then the module
of the degree of (f∗

2 )2 would be even and the module of the degree of −z(f∗
4 )2

would be odd, thus they couldn’t be the same.
Suppose now that both f1 = 0 and f3 = 0 hold. From third and sixth lines

in the system 3.20 we get

{

f∗
2 f2 = f∗

4 f4

f∗
2 f4 = −zf∗

4 f2.

Hence
f∗

4 (f4)2 = f2f∗
2 f4 = −zf∗

4 (f2)2

holds. Arguing in the same way as done to prove ∗, we get that at least one
between f2 = 0 and f4 = 0 holds but, by third line of the system, f2 = 0 holds
if and only if f4 = 0 holds.

If f1 = f2 = · · · = f6 = 0 holds, then, by our definitions of p, q, r and s we
have p + qa + rb + sab = f7ab; by Lemma 3.2.12, such an element is a unit if
and only if it is a trivial unit. Since we’re interested in non-trivial units, from
now on we will suppose that for every i = 1, 2 . . . , 6, the Laurent polynomial fi
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is non-zero. Our purpose is to find at least one tuple (f1, . . . , f7) which solves
system 3.20. As above, we will use the tag “n.m”, for appropriate n, m ∈ N>0,
to label the m-th equality within the n-th equation.

First, we focus on equalities 2.1, 3.1 and 5.2:











f3f∗
3 = f5f∗

5 (2.1)

f2f∗
2 = f4f∗

4 (3.1)

zf∗
5 f2 = f∗

3 f4 (5.2)

Let t ∈ Z. We start setting

f4 := ztf2 .

Under this setting, equation 3.1 is verified and equation (5.2) becomes

zf∗
5 f2 = ztf∗

3 f2.

By assumption, f2 is non-zero hence, the ring Fd[z±1] being an integral domain,
this last equation is satisfied if and only if we set13

f5 := z1−tf3 .

Under this setting, system 3.20 becomes















































f∗
7 f7 = 1

f∗
3 f3 = f∗

7 f6 + f∗
6 f7 + 4f∗

6 f6

f∗
2 f2 = f∗

6 f6

f∗
1 f1 = (1 + z1−2t)f∗

2 f3

z1−tf∗
2 f3 = ztf∗

3 f2

z1−tf∗
2 f3 = f∗

6 f1 + zf∗
1 f6 − (zt + z1−t)f∗

2 f2

(z1−t + zt)f∗
3 f3 = f∗

7 f1 + zf∗
1 f7 + 4(zt + z1−t)f∗

2 f2.

(3.21)

We now proceed with the following steps.

• We first try to solve the subsystem of system 3.21 given by











f∗
6 f1 + zf∗

1 f6 − (zt + z1−t)f∗
6 f6 = z1−tf∗

2 f3 (A)

f∗
1 f1 = (1 + z1−2t)f∗

2 f3 (B)

z1−tf∗
2 f3 = ztf∗

3 f2 (C)

.

We will determine f1 and f3 as multiples of f6.

• Second, we replace, within first, second and seventh equation of sys-
tem 3.21, f1 and f3 with the definitions set in previous step and we try
to find at least one solution (it will depend only by f2, f6, f7). We will
determine Laurent polynomials f6 and f7 that satisfy this system. In this
step the finite characteristic of the field Fd is needed.

• Third, we choice f2 depending on f6 in such a way to satisfy third equation
of the system (the only equation not yet solved).

13Equivalently, we might have started by setting f5 := z1−tf3; indeed it implies f4 = ztf2.
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[Step 1]. We focus on fourth (B), fifth (C) and sixth (A) equations of
system 3.21. Replacing f2f∗

2 with f6f∗
6 (by third equation) and combining

equations A and B, we can obtain an equation that only depends on f1 and f6.
More precisely, the equation “B − (1 + z1−2t)zt−1A” turns out to be

f∗
1 f1 − (zt−1 + z−t)f∗

6 f1 − (zt + z1−t)f∗
1 f6 + (zt + z1−t)(zt−1 + z−t)f∗

6 f6 = 0.

This last equation is equivalent to

(

f1 − (zt + z1−t)f6

)(

f1 − (zt + z1−t
)∗

= 0.

Since the ring Fd[z±1] is an integral domain, last equation is satisfied by f1 and
f6 if and only if we set

f1 := (zt + z1−t)f6 .

The system consisting only of equations A, B ad C is equivalent to the system











f∗
6 f1 + zf∗

1 f6 − (zt + z1−t)f∗
6 f6 = z1−tf∗

2 f3 (A)

B − (1 + z1−2t)zt−1A

z1−tf∗
2 f3 = ztf∗

3 f2 (C)

(one can check that combining equations of the second system one can get the
equations of the first one). In this last system, second equation is satisfied by our
definition of f1. We now focus on equation A: we replace f1 with the definition
we just set:

(zt + z1−t)f∗
6 f6 + (z1−t + zt−1)f∗

6 f6 − (zt + z1−t)f∗
6 f6 = z1−tf∗

2 f3.

Simplifying and replacing f6f∗
6 by f2f∗

2 (third equation of system 3.21), we get

(z1−t + zt)f∗
2 f2 = z1−tf∗

2 f3.

Equivalently,
(

(1 + z2t−1)f2 − f3

)

f∗
2 = 0.

By assumption, f∗
2 is non-zero and the ring of Laurent polynomial Fd[z±1] is an

integral domain, therefore last equation is satisfied if and only if we set

f3 := (1 + z2t−1)f2 .

With such a definition of f3, equation C is also verified, indeed replacing f3 in
it with the definition we just set, we get:

z1−t(1 + z2t−1)f∗
2 f2 = zt(1 + z1−2t)f∗

2 f2

which holds for every choice of f2 ∈ Fd[z±1].
[Step 2]. Our new settings solve fourth, fifth and sixth equation of sys-

tem 3.21; we now try to solve first, second and seventh equation of this system.
Second equation becomes

(1 + z2t−1)(1 + z1−2t)f∗
2 f2 = f∗

7 f6 + f∗
6 f7 + 4f∗

6 f6
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Which is equivalent to

z2t−1(1 − z1−2t)2f∗
2 f2 = f∗

7 f6 + f∗
6 f7. (3.22)

Last equation of system 3.21 becomes

(z1−t + zt)(1 + z2t−1)(1 + z1−2t)f∗
2 f2 − 4(zt + z1−t)f∗

2 f2 =

= (z1−t + zt)f∗
7 f6 + z(zt−1 + z−t)f∗

6 f7.

Which is equivalent to

(z1−t + zt)
(

z2t−1(1 − z1−2t)2
)

f∗
2 f2 = (z1−t + zt)(f∗

7 f6 + f∗
6 f7).

This last equation is a multiple of equation 3.22, thus we can ignore it. There-
fore, by our computations and under our settings, the subsystem of 3.21 con-
sisting of first, second and seventh equation turns out to be equivalent to

{

f∗
7 f7 = 1 (D)

z2t−1(1 − z1−2t)2f∗
6 f6 = f∗

7 f6 + f∗
6 f7 (E).

(3.23)

We can notice that combining these two equations, we can get an equation such
that, “moving” almost everything to the left side, the left side becomes factor-
izable: renaming with k the factor that multiplies of f6f∗

6 in second equation,
the equation “kE + D” turns out to be

k2f6f∗
6 − kf6f∗

7 − kf∗
6 f7 + f7f∗

7 = 1

and the left side factorizes into (kf6 −f7)(kf∗
6 −f∗

7 ). We focus on the coefficient
k: the equality k = k∗ holds, indeed

k∗ = z1−2t(1 − z2t−1)2 = z1−2t
(

z2t−1(z1−2t − 1)
)2

= z2t−1(1 − z1−2t)2 = k

Last system is equivalent to the system consisting of equations “kE + D” and
“E”, i.e. it is equivalent to

{

kf∗
6 f6 = f∗

7 f6 + f∗
6 f7 (E)

(kf6 − f7)(kf6 − f7)∗ = 1 (F )

Easiest Laurent polynomials f ∈ Fd[z±1] satisfying ff∗ = 1 are all powers
(with coefficients ±1) of z ∈ Fd[z±1] with integer exponents; we therefore try
to fix f7 and f6 such that kf6 − f7 = ±zn holds for some n ∈ Z and this
assures that equation “F” is satisfied. Here Passman’s idea [11] gets in the
game (deepening the search started by Murray [9]). Keeping in mind that
k = z2t−1(1 − z1−2t)2 holds (by definition) and that f6 multiplies k, we set
w := z1−2t and we do following computations in the field of fractions of the ring
of Laurent polynomials Fd[z±1]. Let n ∈ N be a non-zero natural number, then:

(1 − w)2 1 − wnd

(1 − w)2
= 1 − wnd
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and

1 − wnd

(1 − w)2
=

(1 − wd)(1 + wd + w2d + · · · + w(n−1)d)

(1 − w)2

∗
=

(1 − w)d

(1 − w)2
(1 + wd + w2d + · · · + w(n−1)d)

= (1 − w)d−2(1 + wd + w2d + · · · + w(n−1)d) ∈ Fd[z±1]

where in ∗ we used that d is the characteristic of the ring14 we’re working in.
Therefore, we set

f6 :=
1 − wnd

(1 − w)2
,

which belongs to Fd[z±1] thanks to last computations. Applying such a defini-
tion, we get that

kf6 − f7 = w−1(1 − w)2 1 − wnd

(1 − w)2
− f7

= w−1(1 − wnd) − f7 = w−1 − wnd−1 − f7.

Therefore, we set

f7 := w−1 = z2t−1

and this assures us that kf6 −f7 = −wnd−1 = −z(1−2t)(nd−1), as desired to have
equation “F” satisfied. It remains to check that our definitions of f6 and f7 give
a solution of equation “E”. Replacing f6 and f7 with Laurent polynomials we
assigned them, equation “E” becomes

w−1(1 − w)2 1 − wnd

(1 − w)2

1 − w−nd

(1 − w−1)2
= w

1 − wnd

(1 − w)2
+ w−1 1 − w−nd

(1 − w−1)2
.

We first simplify right side (applying computation rules of field of fractions of
Fd[z±1]):

w
1 − wnd

(1 − w)2
+ w−1 1 − w−nd

(1 − w−1)2
=

w

w2

1 − wnd

(1 − w−1)2
+ w−1 1 − w−nd

(1 − w−1)2

=
w−1(1 − wnd + 1 − w−nd)

(1 − w−1)2

=
w−1(1 − wnd)(1 − w−nd)

(1 − w−1)2

and this is exactly the left side, as desired.
[Step 3]. It remains to solve equation f2f∗

2 = f6f∗
6 . If f2 = zmf6, for any

s ∈ Z, then the equation is satisfied. Let m ∈ Z, we can set

f2 := zmf6 .

14If d ∈ N is a prime characteristic of a ring R, for every r ∈ R we have that (1+r)d = 1+rd.
Thus, (1 − r)d = 1 + (−r)d = 1 − rd holds, because

• if d = 2 then (−r)d = rd = −rd since R has characteristic d = 2;

• if d Ó= 2 then d is odd (d being prime), hence (−r)d = −rd holds.
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Backsolving, choices we set for the seven polynomials f1, . . . , f7 becomes

f1 := (zt + z1−t)f6

f2 := zmf6

f3 := zm(1 + z2t−1)f6

f4 := zt+mf6

f5 := zm+1−t(1 + z2t−1)f6

f6 :=
1 − znd(1−2t)

(1 − z1−2t)2

f7 := z2t−1.

Next theorem summarizes what we discussed until now.

Theorem 3.3.9. Let P be the Promislow group. Let d ∈ N be a prime number,
let t, m ∈ Z and n ∈ N>0. Set

h = (1 − z1−2t)d−2(1 + zd(1−2t) + z2d(1−2t) + · · · + z(n−1)d(1−2t))

p = (1 + x)(1 + y)(zt + z1−t)h

q = zm[(1 + x)(x−1 + y−1) + (1 + y−1)(1 + z2t−1)]h

r = zm[(1 + y−1)(x + y)zt + (1 + x)(zt + z1−t)]h

s = z2t−1 + (4 + x + x−1 + y + y−1)h.

Then p+qa+rb+sab is a non-trivial unit in the group ring Fd[P ] (in particular,
(p, q, r, s) satisfies system 3.12).

Proof. Let everything as in the statement. Our previous discussion is a proof of
the fact that p + qa + rb + sab is a unit and that (p, q, r, s) satisfies system 3.12.
Eventually, this is a non-trivial unit by Lemma 3.2.12.

Corollary 3.3.10. Let P be the Promislow group and K be a field with finite
characteristic. The group ring K[P ] doesn’t satisfy the Kaplansky unit conjec-
ture.

Proof. Let P be the Promislow group and K be a field with finite characteris-
tic; let p be its characteristic. The field K contains a subfield, named the prime
subfield15 isomorphic to the field with p elements Fp, therefore Fp[P ] is isomor-
phic to a subring of K[P ] (Remark 1.1.11). Since Fp[P ] has non-trivial units
(Theorem 3.3.9) and since isomorphisms of group rings preserve the cardinality
of the supports (as proved in the proof of Corollary 3.3.2), we obtain that K[P ]
has a subring that admits a non-trivial units. Eventually, since non-trivial units
in a subring stay non-trivial units in the whole ring K[P ], we conclude that
K[P ] doesn’t satisfy the unit conjecture.

Remark 3.3.11. One might ask if is it possible to and how recover from The-
orem 3.3.9 the non-trivial units of F2[P ] and F3[P ] from which the argument to
construct Theorem 3.3.9 arose (we’re referring to Remark 3.3.8). The answer is
that these units cannot be recovered directly from Theorem 3.3.9.

15See footnote 11 on page 63.
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• The unit α of F2[P ] considered in Remark 3.3.8 can’t be obtained directly
from the theorem since it has f7 = 1 but the units constructed in the
theorem have f7 = z2t−1 for some t ∈ Z. Anyway, let α̃ be the unit given
by the theorem associated to the parameters t = m = n = 1. Through a
straightforward computation it’s possible to check that

α = z−1α̃

holds.

• The unit α of F3[P ] considered in Remark 3.3.8 can’t be obtained directly
from the theorem since it has f7 = −z but the units constructed in the
theorem have f7 = z2t−1 for some t ∈ Z. Anyway, let α̃ be the unit
given by the theorem associated to the parameters t = n = 1 and m = 0.
Through a straightforward computation it’s possible to check that

α1 = −α̃1, αa = α̃a, αb = α̃b, αab = −α̃ab

hold.

We conclude that to recover the units considered in Remark 3.3.8 we need to
change a bit our choices for the polynomials f1, . . . , f7: for the unit in F2[P ]
we need to multiply all the Laurent polynomials f1, . . . , f7 for z−1; for the unit
in F3[P ] we need to replace f1, f6 and f7 by their respective opposite. In both
cases, we still get a solution of system 3.20, independently on the explicit form
of the Laurent polynomials f1, . . . , f7. In other words, we need to enlarge the
family A of units in Theorem 3.3.9 to the family of units

A ∪ { ziα̃ | i ∈ Z, α̃ ∈ A } ∪ { −α̃1 + α̃aa + α̃bb + −α̃abab | α̃ ∈ A } .

Remark 3.3.12. In Theorem 3.3.9. it is exhibited a triple family of non-
trivial units of Fd[P ], where P is the Promislow group and d is a prime number,
where the family depends on parameters t, m, n ∈ Z. However, by varying the
parameter m ∈ Z, we get new solutions that we were already able to construct.
Precisely, suppose t and n fixed and let p0+q0a+r0b+s0ab be the non-trivial unit
constructed in the statement of Theorem 3.3.9 and associated to the parameters
t, n and m = 0. If pm + qma + rmb + smab is the non-trivial unit constructed
in the statement of Theorem 3.3.9 and associated to the parameters t, n and
m ∈ Z, then

pm = p0 qm = zmq0 rm = zmr0 sm = s0

hold. Therefore, the fact that, for every m ∈ Z, pm + qma + rmb + smab is a
non trivial unit can be deduced by the fact p0 + q0a + r0b + s0ab is a non-trivial
unit, by Corollary 3.2.10.

Remark 3.3.13. Let everything as in the statement of Theorem 3.3.9. The
truly interesting parameter definying the family of non-trivial units is n (the
parameter introduced by Passman [11]), in the sense that varying the other
parameters m and t the units we get are just transformations of other units in
the family via maps that always send units into units. We anticipated this fact
in previous remark for the parameter m ∈ Z; we now generalize it to the pair of
parameters m, t ∈ Z. For every choice of parameters m, t ∈ Z consider the ring
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homomorphism σm−t,m : K[P ] → K[P ] defined in Lemma 3.2.7; it behaves as
follows

σm−t,m : K[P ] −→ K[P ]

a Ô−→ zm−ta

b Ô−→ ztb.

Fix n ∈ Nr { 0 }. For every choice of the parameters m, t ∈ Z let

hm,t, pm,t, qm,t, rm,t, sm.t

be the Laurent polynomials h, p, q, r, s defined in Theorem 3.3.9 and associ-
ated to the parameters m, t, n. Set

αm,t := pm,t + qm,ta + rm,tb + sm.tab

Then
αm,t = ztσm−t,m(α0,0).

This equality can be computed looking at the explicit form of each Laurent
polynomial involved, as defined in the statement of Theorem 3.3.9, and using
that σm−t,m fixes x and y and σm−t,m(z) = z1−2t (asserted in Lemma 3.2.7).
The map σm−t,m transforms units into units (it is a ring homomorphism) and
the multiplication by any power of z also transforms units into units (any power
of z is a unit and the product of units is still a unit), therefore we could have
constructed the unit αm,t only knowing that α0,0 is a unit.
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A.1 Free Modules

We first recall the definition of submodule generated by a subset (second part
of this definition requires a proof and we leave it to the reader)

Definition A.1.1. Sub-module generated by a subset Let R be a commutative
ring and M be an R-module. If S ⊆ M is a non-empty subset, the sub-module
of M generated by S is the smallest submodule of M that contains S. In
particular, if S is empty, the submodule generated by S is the zero module; if
S is non-empty, for every non-zero element x in the submodule generated by S,
there exist n ∈ Nr { 0 }, r1, . . . , rn ∈ R and x1, . . . , xn ∈ S such that

x = r1x1 + · · · + rnxn

holds.

Definition A.1.2. Let R be a commutative ring and M be an R-module. We
say that M is freely generated by S ⊆ M (equivalently, that S freely generates
M or that S is a free set of generators for M) as an R-module if the submodule
generated by S coincides with M and if for every n ∈ N r { 0 } and for every
choice of x1, . . . , xn ∈ S pairwise distinct and r1, . . . , rn ∈ R, the equality

r1x1 + · · · + rnxn = 0M

implies that at least one coefficient between r1, . . . , rn is zero. We say that an
R-module is free if it has a free set of generators.

Lemma A.1.3. Let R be a commutative ring and M be an R-module freely
generated by a subset S ⊆ M . If x ∈ M is a non zero element, then there exists
n ∈ Nr { 0 }, x1, . . . , xn ∈ S pairwise distinct and r1, . . . , rn ∈ R such that

x = r1x1 + · · · + rnxn

holds and the choice of n, r1, . . . , rn, x1, . . . , xn is unique (up to reordering).

Proof (idea). First part of the statement follows by the definition of generat-
ing set. Uniqueness can be proved applying the definition of free set of gen-
erators. Suppose there exist n, m ∈ N r { 0 }, r1, . . . , rn, s1, . . . , sm ∈ R and
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x1, . . . , xn, y1, . . . , ym ∈ S with x1, . . . , xn pairwise distinct and y1, . . . , ym pair-
wise distinct such that

r1x1 + · · · + rnxn = s1y1 + · · · + smym.

Without lost of generalities (up to adding elements with coefficient 0 ∈ R and
up to reordering), we may assume that m = n and that for every 1 ≤ i ≤ n,
xi = yi holds. Applying iteratively the definition of free set of generators, we
deduce that for every 1 ≤ i ≤ n, ri = si holds.

Proposition A.1.4 (Universal property of free modules). Let R be a commuta-
tive ring and M be an R-module freely generated by a non-empty subset S ⊆ M .
For every module N and every map φ : S → N there is a unique R-module
morphism φ∗ : M → N extending φ.

Proof. A reference for the proof is [2, Proposition 12.5] (the idea is to apply
A.1.3 to prove the existence).

Proposition A.1.5. Let S be a set and R be a commutative ring. There exists
an R-module R(S) such that S is a subset of R(S) and R(S) is freely generated
by S. Such a module is unique up to a unique isomorphism, that is: if M and
M ′ are R-modules freely generated by S, then there exists a unique R-module
isomorphism M → M ′ such that its restriction to S behaves like the identity.

Proof (idea). Existence. Let M be the set of all maps S → R whose support
(i.e., the set of elements with non-zero image) is a finite set. R being a ring, we
can endow M with a sum and a scalar product by element of M defining these
operations component-wise. The set M together with these operations becomes
an R-module. For every x ∈ S, we denote with δx ∈ M the map such that
δx(x) = 1R and for every y ∈ S r { x }, δx(y) = 0R. We set ∆ := { δx | x ∈ S }.
It’s possible to prove that ∆ is a free set of generators for M .

Uniqueness. The proof of uniqueness of an algebraic set endowed with a
universal property is standard. Let M and M ′ be R-modules freely generated by
S. The canonical inclusions S →֒ M and S →֒ M ′ can be extended, respectively,
by R-modules homomorphisms φ′ : M ′ → M and φ : M → M ′ by the universal
property and these extensions are unique. The compositions φ◦φ′ and φ′◦φ have
to coincide with the identities over, respectively, M ′ and M , as a consequence
of uniqueness stated in the universal property.

A.2 Rank of Finitely Generated Abelian Groups

Let G be an abelian group; in particular G is a Z-module, thus we can construct
the tensor product G ⊗Z Q in the category of Z-modules. This tensor product
can be endowed with a Q-module structure, that is G ⊗Z Q can be seen an a
Q-vector space. If G is also finitely generated and S is a finite set of generators
of G, then the subset { s ⊗ 1Q | s ∈ S } of G⊗ZQ generates G⊗ZQ as a Q vector
space. Therefore, the dimension of G ⊗ZQ as a Q vector space is finite and this
motivates following definition.

Definition A.2.1. Let G be a finitely generated abelian group. The rank of G
is the dimension of G ⊗Z Q as a Q-vector space and it’s denoted with rank(G).
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Lemma A.2.2. Let 0 −→ X −→ Y −→ Z −→ 0 be a short exact sequence of
groups. Suppose that X is a finitely generated abelian group. Then the following
equality holds1:

rank(Y ) = rank(X) + rank(Z).

Proof. Let X, Y , Z as in the statement. The Z-module Q is a flat Z-module,
therefore the sequence

0 −→ X ⊗Z Q −→ Y ⊗Z Q −→ Z ⊗Z Q −→ 0

is exact in the category of Z-modules; in particular, it is also exact in the
category of Q-vector spaces. A well-known result of linear algebra asserts that
if φ : V → W is a morphism of vector spaces over a field K, then

dimK(V ) = dimK(Im(φ)) + dimK(ker(φ)).

Applying this formula to the short exact sequence above, we get that

dimQ(Y ⊗Z Q) = dimQ(X ⊗Z Q) + dimQ(Z ⊗Z Q),

as desired.

A.3 Pushouts and Quotients of Groups

Lemma A.3.1. Let f : X → Y be a morphism of groups and let N be a normal
subgroup of X such that f(N) is normal in Y . Then the following diagram is a
pushout diagram in the cateogry of groups:

X X/N

Y Y/f(N)

f

π

f ′

π′

p

where the arrow X/N → Y/f(N) is induced by the composition of f : X → Y
with the projection Y → Y/f(N) (N belonging to the kernel of this composition).

Proof. Let everything as in the statement. We prove that the diagram verifies
the universal property of pushouts. Let Z be a group and k : Y → Z and
h : X/N → Z be group homomorphisms such that

k ◦ f = h ◦ π

holds. This implies that

k(f(N)) = h(φ(N)) = { 1Z } .

This means that f(N) is contained in the kernel of k, therefore there exists a
unique group homomorphism k′ : Y/f(N) → Z such that

k′ ◦ π′ = k
1It makes sense to compute the rank of both X and Z, indeed: Z is a homomorphic image

of Y , hence Z is a finitely generated abelian group; X is a subgroup of a finitely generated
abelian group hence, by the fundamental theorem of finitely generated abelian groups applied
to Y , the group X is finitely generated abelian.
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It remains to check that k′ ◦ f ′ = h. The morphism π is an epimorphism (with
respect to the categorical definition of epimorphism) because it is surjective
(every surjective group homomorphism is always an epimorphism), it suffices to
prove that k′ ◦ f ′ ◦ π = h ◦ π holds; this can be easily verified, indeed

k′ ◦ f ′ ◦ π = k′ ◦ π′ ◦ f = k ◦ f = h ◦ π,

as desired.

Let i : N → A and j : N → B be group monomorphisms; without lost of
generaity we may assume that N is a subgroup of both A and B and that i and
j are the canonical inclusions. Suppose that N is a normal subgroup of both A
and B and set P := A ∗N B be the amalgamated free product of A and B over
N , that is the following is a pushout diagram in the category of groups:

N A

B P

f

f ′ p

Such a pushout diagram always exists and is unique up to canonical isomorphism
([7, Theorem 2.3.9]). Under this setting, we formulate the following lemma,
whose proof can be seen as an exercise and can be developed in many different
ways. For example, one can prove the second point of the lemma by directly
verifying that the diagram satisfies the universal property of pushouts; however,
in the proof we provide here we propose an alternative idea.

Lemma A.3.2. Let N , A, B and P be groups as in last settings. Then

1. f(N) is a normal subgroup of P ;

2. the following diagram is a pushout diagram in the category of groups:

1 A/N

B/N P/f(N)
p

where the group homomorphisms A/N → P/f(N) and B/N → P/f(N)
have been induced by, respectively, the compositions A → P → P/f(N)
and B → P → P/f(N) (since N belongs to the kernel of both of them).

Proof (idea). Let everything as in the statement. The fact that f(N) is a normal
subgroup of P can be proved through the explicit construction of the amalga-
mated free product P (for details, see the proof of [7, Theorem 2.3.9]). The group
P is constructed as the presented group generated by the set { xg | g ∈ A ⊔ B }
and whose relations are those that arise from the group relations of A, those
that arise from the group relations of B and those that constitute the set

{ xa = xb | a ∈ A ∩ N, b ∈ B ∩ N, a = b } .
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To not overloading the notation, for every g ∈ A ⊔ B, we denote with xg also
the equivalence class of xg in P . Under such a construction, the map f : A → P
becomes

f : A −→ P

a Ô−→ xa

and f ′ is defined analogously (by the symmetry of the diagram). One can prove
that for every g ∈ A ⊔ B, (xg)−1 = xg−1 holds. Therefore, for every a ∈ A and
b ∈ B we get

xaf(N)(xa)−1 = xaf(N)xa−1 = f(aNa−1) = f(N),

xbf(N)(ba)−1 = xbf ′(N)xb−1 = f ′(bNb−1) = f ′(N) = f(N),

Since we proved that for every x in a generating set of P the equality xf(N)x−1

holds, we deduce that f(N) is a normal subgroup of P .
We now prove the second point. Consider the following diagram.

N A

1 A/N

B P

B/N P/f(N)

(A.1)

Every face of this diagram is commutative (easy to verify). Each square in the
sub-diagram

N A A/N

B P P/f(N)

is a pushout: the left square is a pushut by assumption, the right square is a
pushout by Lemma A.3.1. Therefore the outer square is also a pushout. By the
commutativity of the full diagram A.1, this implies that the outer square of the
diagram

N 1 A/N

B B/N P/f(N)

is a pushout diagram. The left square in this last diagram is also a pushout (by
Lemma A.3.1) therefore, by a property of pushouts2, we obtain that also the
right square in last diagram is a pushout, as desired.

2In a diagram composed by two squares with a common arrow, as the diagram represented
above, if the outer square and the left square are both pushouts, then the right square is also
a pushout.
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A.4 Commutator Subgroup

Definition A.4.1. Let G be a group. Let g, h ∈ G, the commutator of g and h
is defined as [g, h] := ghg−1h−1. The commutator subgroup of G, denoted with
[G, G], is the subgroup of G generated by all the commutators of elements of G.

Lemma A.4.2. Let G be a group. The commutator subgroup of G is a normal
subgroup of G and it is the smallest normal subgroup such that the quotient
group of G over this subgroup is abelian.

Proof. Let G be a group and [G, G] be its commutator subgroup. First we
prove that [G, G] is a normal subgroup. The conjugation being a group homo-
morphism, it suffices to prove that the conjugate of every generator of [G, G] by
any element of G belongs to [G, G]. Let x, y, z ∈ G, then

x[y, z]x−1 = xyzy−1z−1x−1

= (xyx−1)(xzx−1)(xy−1x−1)(xz−1x−1)

= (xyx−1)(xzx−1)(xyx−1)−1(xzx−1)−1 ∈ [G, G].

Second we prove that the quotient group G/[G, G] is abelian. Let x, y ∈ G,
then xyx−1y−1 belongs to [G, G]. This means that the projection of xyx−1y−1 in
G/[G, G] is the identity element, that is the projections of xy and yx in G/[G, G]
coincide and this proves that the product in G/[G, G] is commutative. We prove
now the remaining part of the statement. Let N be a normal subgroup of G such
that G/N is abelian; to conclude it suffices to prove that all the commutators
of G belong to N , because the commutators of G generate [G, G]. Let x, y ∈ G.
The projection of [x, y] = xyx−1y−1 in G/N is the identity element, since G/N
is abelian. This means that [x.y] belongs to N , as desired.

A.5 The Infinite Dihedral Group

Definition A.5.1. The infinite dihedral group is defined as the group

D∞ := 〈s, t | t2, t−1st = s−1〉.

Remark A.5.2. The infinite dihedral group is isomorphic to the finitely pre-
sented group 〈a, b | a2, b2〉. Possible isomorphisms, one the inverse of the other,
between these groups behaves as follows

f : D∞ = 〈s, t | t2, t−1st = s−1〉 −→ 〈a, b | a2, b2〉

t Ô−→ a

s Ô−→ ab

g : 〈a, b | a2, b2〉 −→ D∞ = 〈s, t | t2, t−1st = s−1〉

a Ô−→ t

b Ô−→ ts.

The existence of group homomorphisms that behaves in this way can be proved
thanks to the universal property of finitely presented groups. Moreover, these
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group homomorphism are inverse to each other because their compositions be-
haves as the identity homomorphism when applied to the generators of the
domain (thanks to the relations in the presentations of each group)

g(f(t)) = g(a) = t

g(f(s)) = g(ab) = g(a)g(b) = t2s = s

f(g(a)) = f(t) = a

f(g(b)) = f(ts) = a2b = b.

Remark A.5.3. The finitely presented group 〈a, b | a2, b2〉 is isomorphic to the
free product Z/2 ∗Z/2 (the free product being unique up to isomorphism), that
is the following diagram is a pushout diagram

1 Z/2

Z/2 〈a, b | a2, b2〉
p

where the vertical and horizontal arrows Z/2 → 〈a, b | a2, b2〉 send [1] ∈ Z/2 to,
respectively, a and b in 〈a, b | a2, b2〉.

Lemma A.5.4. The commutator subgroup of the infinite dihedral group D∞ =
〈s, t | t2, t−1st = s−1〉 is the subgroup generated by s2 ∈ D∞. Moreover, the
quotient D∞/[D∞, D∞] is isomorphic to the finite abelian group C2 × C2 of
four elements, where C2 denotes the group of order 2.

Proof. Let D∞ = 〈s, t | t2, t−1st = s−1〉 be the infinite dihedral group. Let
N be the subgroup of D∞ generated by s2; by Lemma A.4.2, to prove that N
is the commutator subgroup of D∞ it suffices to prove that N is the smallest
normal subgroup such that the quotient of D∞ by N is abelian. First, N is
normal in D∞. Indeed, the conjugate of the generator of N by any generator
of D∞ belongs to N , because

t−1s2t = (t−1st)2 = s−2 ∈ N,

and this is sufficient to prove that N is a normal subgroup. Second, let H be
a normal subgroup of D∞ such that D∞/H is normal; we prove that N is a
subgroup of H. To prove this, it suffices to prove that the element s2 that
generates N belongs to H. Let π : D∞ → D∞/N be the canonical projection.
Since D∞/N is abelian we get

π(s)−1 = π(s−1) = π(t−1st) = π(s)

and this implies π(s2) = 1, which means that s2 belongs to N . Eventually,
since D∞/N is finitely generated (D∞ being finitely generated) and abelian (by
Lemma A.4.2), we deduce, by the classification theorem of finitely generated
abelian groups, that D∞/N is isomorphic to a product of cyclic groups. In
detail, consider the projections of s and t in D∞/N as generators of this quo-
tient; these projections have order 2 thus every element in D∞/N has order
2, this quotient being abelian. We can deduce that D∞/N is isomorphic to a
product of cyclic groups of order 2 but D∞/N can’t be cyclic of order 2 because
its generators considered above are distinct. We can conclude that D∞/N is
isomorphic to a product of two cyclic groups of order 2.
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