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passo di questo percorso.

Agli amici di Aveiro, con cui ho condiviso sei fantastici mesi della mia vita, siete una seconda
famiglia.

”I miei migliori amici sono la mia fortuna, so di non capirli fino in fondo, li scopro giorno per
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Chapter 1

Introduction

1.0.1 Outline

As can be seen in 1.1, microwaves are essential to modern technology,
playing critical roles in communication, military, medical, and scientific
applications, as well as in household appliances. They are key in radars,
satellites, automotive, data processing, computing, and are increasingly
important for smart cities, aiding in intelligent transportation, energy
management, and healthcare systems. One of the major challenges in this
field is ensuring proper impedance matching between devices, as it plays a
critical role in optimizing power transfer and minimizing signal loss.

The primary aim of this study is to exploit Machine Learning, specifically
Reinforcement Learning, to automate and optimize the process of matching
between input and output impedance in microwave circuits.
The project begin with an exploration of reinforcement learning techniques
in Matlab, initially focusing on maze-solving to establish a foundation for
developing and adapting code for the impedance matching problem. Given
an input and an output impedance, the goal is to allow reinforcement
learning to handle the calculation of internal impedances and finally output
the set of inductors and capacitors that best approaches the final matching,
that is achieving a higher reward.
It then progress to a more in-depth exploration in Python, including work
with OpenAI Gym and its libraries, with training algorithms such as theP-
roximal Policy Optimization (PPO) and Neural networks such as LSTM
or RNN layers. Although a final working solution was not reached, this
project represents an in-depth exploration of the challenges involved in im-
plementing RL in this context. Through numerous attempts and iterative
improvements, valuable insights were gained into the constraints, limita-
tions, and opportunities that arise when combining advanced computational
techniques with classical engineering problems. This thesis documents these
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e!orts, highlighting both the progress made and the challenges that remain
in this complex area of research.

Figure 1.1: This image unveiled March 21, 2013, shows the cosmic microwave background (CMB) as
observed by the European Space Agency’s Planck space observatory. (Image credit: ESA and the Planck
Collaboration)

1.1 Microwaves

1.1.1 Theory and definition

To better understand the challenges and techniques discussed in this thesis,
it is essential to first define the fundamental concepts of microwave theory.
This section provides an overview of the principles governing microwave
signals, their properties, and their applications, serving as the foundation
for the advanced topics explored in later chapters Microwaves are a type of
electromagnetic radiation with wavelengths shorter than those of traditional
radio waves but longer than infrared waves. Electromagnetic radiation
can be transmitted either as waves or particles, with varying wavelengths
and frequencies. This wide range of wavelengths is referred to as the
electromagnetic spectrum (EM spectrum).
The spectrum is typically divided into seven regions (1.2), organized by
decreasing wavelength and increasing energy and frequency. These regions
include radio waves, microwaves, infrared (IR), visible light, ultraviolet
(UV), X-rays, and gamma rays. Microwaves occupy the section of the EM
spectrum between radio waves and infrared light. They have frequencies
ranging from about 1 billion cycles per second, or 1 gigahertz (GHz), up to
about 300 gigahertz and wavelengths of about 30 centimeters (12 inches)
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to 1 millimeter . However, in radio-frequency engineering, microwaves are
often defined more narrowly, usually covering the frequency range from 1
to 100 GHz (with wavelengths between 30 cm and 3 mm), or in some cases,
from 1 to 3000 GHz (wavelengths between 30 cm and 0.1 mm). Microwaves
are extensively utilized in modern technology for various applications, such
as point-to-point communication links, wireless networks, microwave radio
relay systems, radar, satellite and spacecraft communications. They are
also used in medical diathermy and cancer treatment, remote sensing, radio
astronomy, particle accelerators, spectroscopy, industrial heating, collision
avoidance systems, as well as in everyday devices like garage door openers,
keyless entry systems, and microwave ovens for cooking food.

Figure 1.2: Electromagnetic spectrum, from highest to lowest frequency waves ((Image credit: Shutter-
stock)

1.1.2 Frequency bands

Frequency bands within the microwave spectrum are labeled with letters
(1.3). However, there are multiple, conflicting systems for designating these
bands, and even within the same system, the frequency ranges associated
with certain letters can di!er slightly depending on the application. The
letter system originated during World War II as part of a classified U.S.
radar band classification, giving rise to the earliest system, known as
the IEEE radar bands. Here one such set of microwave frequency band
designations, established by the Radio Society of Great Britain (RSGB):

• L band : 1 to 2 GHz, used in military telemetry, GPS, mobile phones
and amateur radio;

• S band : 1 to 2GHz, used in weather radar. microwave ovens, mobile
phones, wireless LAN Bluetooth, GPS, amateur radio;
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• C band : 2 to 4GHz, used in long-distance radio telecomunications,
wireless LAN, amateur radio

• X band : 4 to 8GHz, used in satellites communications, radar, amateur
radio, space communications, terrestrial roadband;

• Kµband : 8 to 12GHz, used in satellites communications, molecular
rotatonal spectroscopy;

• K band : 12 to 18GHz, used in radar, satellites communications, auto-
motive radar, molecular rotatonal spectroscopy;

• Ka band: 18 to 26.5GHz, used in satellites communications, molecular
rotatonal spectroscopy;

• Q band : 26.5 to 40GHz, used in molecular rotatonal spectroscopy,
satellite communications, terrestrial microwave communications;

• U band : 33 to 50GHz: used in cavity Fourier transform microwave
(FTMW) spectroscopy and used for molecular measurements;

• V band : 40 to 60GHz, used in millimeter wave radar research, molecular
rotational spectroscopy and other kinds of scientific research;

• W band : 50 to 75GHz, used in satellite communications, millimeter-
wave radar research, military radar targeting and tracking applications,
and some non-military applications, automotive radar;

• F band : 75 to 110GHz, used in SHF transmissions: Radio astronomy,
microwave devices/communications, wireless LAN, most modern radars,
communications satellites;

• D band : 110 to 170GHz, used in EHF transmissions: Radio astron-
omy, high-frequency microwave radio relay, microwave remote sensing,
amateur radio, directed-energy weapon, millimeter wave scanner.

The division of K-band waves into a lower band Kµ and an upper band Ka

dates back to World War II, because at the time radar technology was first
developed on K band, it was not known that there was a nearby absorption
band caused by water vapor and oxygen in the atmosphere.

1.1.3 Propagation

Microwaves only propagate through direct line-of-sight paths. Unlike lower
frequency radio waves, they do not travel as ground waves that follow the
Earth’s surface or reflect o! the ionosphere, known as skywaves. This
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Figure 1.3: Band designation of microwave spectrum used for SAR.

means that their transmission range is limited to the distance where both
the transmitting and receiving antennas have a clear view of each other,
typically up to 30-50 km under normal conditions, depending on the height
of the antennas. While lower-frequency microwaves can penetrate building
walls su”ciently for usable reception, it is generally necessary to have rights
of way cleared up to the first Fresnel zone for optimal transmission. A
problematic scenario could be tha shading e!ect on mountains. Especially
in areas with complex terrain, the signal path can be seriously a!ected.
Therefore, when we are located in mountainous areas, we often experience
poor signal and no connection to the Internet. The challenges posed by
mountainous terrain on microwave communications can be addressed by
adjusting the placement of antennas and installing relay stations. Precise
calculation of antenna deployment position and angle, as well as setting
up repeater stations at critical locations, can e!ectively bypass terrain
obstacles and ensure stable signal transmission. In point-to-point wireless
communications, ensuring a clear Fresnel Zone is another essential point to
maintain signal strength and quality.
The Fresnel Zone (1.4) is a 3D elliptical region between the transmitting
and receiving antennas, through which the majority of the signal passes. It
is important that this region remains free from obstructions such as terrain,
vegetation, buildings, or wind farms, as any interference within the Fresnel
Zone can result in signal degradation or loss. The line of sight (LOS)
between the antennas must also be free of obstructions, but the Fresnel
Zone expands beyond the direct LOS, covering an area where di!raction
and signal bending can occur if blocked. The size of the Fresnel Zone is
determined by the frequency of the transmission and the distance between
the two communication points. Keeping this zone clear is critical for the
optimal performance of the wireless system.
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Figure 1.4: The Fresnel zone is made up of multiple zones, with zone 1 having the strongest signal and
following zones (Zone 2, and Zone 3) having weaker signals.

Figure 1.5: Fresnel Zone radius

Based on the figure 1.5 the Radius is calculated using the following equation:

R =
√

nd1d2→ω
d1+d2

Where
n= Fresnel zone number (should be greater than zero)

ω=frequency

13



Atmospheric E!ects

Several factors enable microwaves to travel beyond the horizon. One key
factor is the atmospheric density profile. Air is denser near the surface of
the Earth and becomes thinner at higher altitudes. As shown in Figure
1.6, the atmosphere acts like a prism, continuously bending radio waves
back toward the Earth. A prism bends shorter wavelengths more than
longer ones, meaning the atmosphere naturally bends microwaves more
e!ectively than UHF, and UHF bends more than VHF, and so on. In terms
of frequency band openings, this results in higher frequencies, like 10 GHz,
opening first, with the opening gradually extending to lower frequencies
such as UHF and eventually VHF. Therefore, by the time you notice a
tropospheric opening on the 2-meter band, the microwave bands have likely
been open for a while. This top-down opening pattern has been confirmed
by numerous propagation studies and observations from radar operators.
Another atmospheric phenomenon that can reflect microwave signals is
water, specifically in the form of raindrops. These small dielectric spheres
are roughly the same size as half-wave dipoles at 5.7 GHz and 10 GHz,
common frequencies in amateur radio bands. Sending a microwave beam
into a rainstorm is similar to pointing a spotlight into a snowstorm: the
signal scatters in all directions (rain fade). At frequencies above 100 GHz,
the Earth’s atmosphere absorbs electromagnetic radiation so e!ectively
that it becomes essentially opaque. However, the atmosphere becomes
transparent again at certain frequencies known as the infrared and optical
window ranges. The e!ects of rain fade can be reduced using methods
like station diversity, uplink power control, variable rate coding, larger
receiving antennas, and hydrophobic coatings. These approaches improve
the system’s resistance to signal interference, help maintain continuous
and stable communication, and ensure strong performance even during
extreme weather. Another noteworthy e!ect is related to the rain, and it
is obtained when 10-GHz signals reflect o! moving objects, obtaining a
Doppler shift, which is a perceived change in frequency depending on your
transmission frequency, the speed of the moving object, and whether it’s
moving toward or away from you. So, the Doppler shift from billions of
moving raindrops results in billions of di!erent frequencies. Summarizing,
microwave propagation is highly dependent on line-of-sight, atmospheric
conditions, and the presence of obstacles. While microwaves o!er high
data transmission capacity and are essential in modern communication
technologies, their range and reliability can be a!ected by environmental
factors like weather and physical obstructions. To ensure e”cient microwave
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communication, careful system design is essential, including selecting the
right frequency, positioning antennas correctly, and using repeaters or
satellites when necessary.

Figure 1.6: Density Profile of the Atmosphere. The air is denser near the ground and gets thinner as you
go UP. The air itself is like a prism, continuously bending radio waves back towards the Earth. Since a
prism bends smaller waves more than longer waves, it is most e”cent at microwave frequencies

1.2 Applications and importance of microwave devices

1.2.1 Active and passive components

This section deals with the microwave devices and components that are
commonly used in front end of microwave system. These include the pas-
sive and active components. Active and passive microwave devices and
components are the essential building blocks of microwave circuits and
systems that operate in the frequency range from 300 MHz to 300 GHz
(corresponding to wavelengths of 1 m to 1 mm in free space). Generally, in
electrical circuits, active components are those that supply or generate en-
ergy in the form of voltage or current, while passive components consume or
store energy in these forms. Examples of active components include diodes,
transistors, silicon-controlled rectifiers (SCR), and integrated circuits. In
contrast, resistors, capacitors, inductors, and transmission lines are typical
examples of passive components. Active components can provide power
amplification and regulate the flow of current, whereas passive components
cannot amplify power and are unable to control current flow. Simply put,
active components act as energy providers and need an external power
source to operate, while passive components function as energy receivers
and do not require an external source for their operation.
In many microwave texts, active components are commonly referred to as
microwave devices, while passive components are simply called microwave
components.

15



1.2.2 Microwave devices

The term ”microwave devices” refers to components such as oscillators,
generators, amplifiers, mixers (both up and down converters), and detectors
that are commonly used in microwave circuits. These devices are typically
classified into two types:

• microwave solid-state diodes and transistors, designed for low-power
signals;

• microwave vacuum tubes, used for high-power signals.

To the first group belongs the Backward Diode (BWD) (1.7), one of the
microwave semiconductor devices which are used as an oscillator and mixer.
The backward diode is made of gallium arsenide semiconductor, and it
works under frequencies of 200 GHz and at low input power and it provides
the high output power.

Figure 1.7: Backward Diode symbol

Another semiconductor device used for oscillators is the Gunn Diode, a type
of diode having negative resistance. It is named after a British physicist
J.B Gunn who discovered the “Gunn E!ect” in 1962. (sometimes is also
used as an amplifier). It consists of three N-type layers; two of them which
are on the terminal’s side have a higher doping concentration whereas the
middle thin layer has a lighter doping concentration. It works on range
of frequency from 4GHz to 100GHz, and it’s generally made of gallium
arsenide or indium phosphate mixed with the silicon (1.8).
The third type of diode is the Impatt diode (impact avalanche transit time
diode, 1.9), it is used for oscillation and amplification, and the higher range
of frequency is 200 GHz.
In the context of rectification for microwave length of frequencies, the most
used is the Schottky diode (1.10), named after a German physicist Walter H.
Schottky, is a type of diode which consists of a small junction between an
N-type semiconductor and a metal. It has no P-N junction. The frequency
range is from 3MHz to 10GHz, and in some cases is also used for switching
and mixing purposes also.
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Figure 1.8: Gunn Diode

Figure 1.9: Impatt Diode

The most versatile diode is the Tunnel diode (1.11), used for oscillation,
amplification, mixing and switching purpose. It was invented by Leo Esaki
in 1958 for which he received Nobel prize in 1973, which is why it is also
known as Esaki diode. A tunnel diode is a heavily doped P-N junction
diode. It works on the principle of the tunneling e!ect. Due to heavy
doping concentration, the junction barrier becomes very thin. This allows
the electron to easily escape through the barrier. This phenomenon is
known as tunneling e!ect. The Tunnel diode has a region in its VI curve
where the current decreases as the voltage increases. This region is known
as the negative resistance regionThe frequency range of tunnel diode is up
to 100 GHz.
For the television and F.M receiver circuits the most utilized is the Varactor
diode (1.12), also used in FM transmitted circuits. The varactor diode
operates at frequencies up to 105 GHz, with its capacitance able to change
in response to variations in the applied bias voltage.
Also the transitors belong to the first group, but only the FET ones (Field
e!ect transistor) made of gallium arsenide, due to its e”cient energy bands
for very high frequency. Their purpose is the amplification of the high

17



Figure 1.10: Schottky Diode

Figure 1.11: Tunnel Diode

frequencies (1.13).
Another type of microwave device belonging to the first group are the
Integrated circuits (IC), in particular the hybrid ones. Since inductance
and capacitance at very high frequencies are expected to be quite small,
the physical size of inductors and capacitors also becomes minimal at
these frequencies. This makes it feasible to manufacture hybrid integrated
circuits specifically for microwave frequency applications.
As previously mentioned, the second category of microwave devices consists
of microwave vacuum tubes. These tubes are used to control a larger
signal with a smaller one, allowing for functions such as amplification,
oscillation, switching, and other operations. They are primarily employed
for generating high-power microwaves. Unlike low-frequency vacuum tubes,
these devices rely on the ballistic movement of electrons in a vacuum,
controlled by electric or magnetic fields. Examples include the magnetron
(used in microwave ovens), klystron, traveling-wave tube (TWT), and
gyrotron. These devices operate in a density-modulated mode, meaning
they function by modulating electron bunches passing through the tube,
rather than relying on a continuous electron stream, as in current-modulated
systems.

18



Figure 1.12: Varactor Diode

Figure 1.13: FET transistor

1.2.3 Applications

Microwave solid-state diodes, transistors, and integrated circuits play a
crucial role in the manipulation of low-power signals for a wide range of
applications. From communication systems and radar to satellite technology
and medical devices, these components enable high-frequency operations
with e”ciency, precision, and minimal power consumption.
In Partiucular:

• Schottky Diodes

– Characteristics: Fast switching speeds, low forward voltage drop,
and low capacitance, making them ideal for high-frequency applica-
tions. The limitation of Schottky diode is that it has low reverse
breakdown voltage and high reverse leakage current.

– Applications: Mixers and detectors in radar and communication
systems, frequency multipliers, and high-speed switching circuits.

• Gunn Diodes

– Characteristics: Generate microwave oscillations using the Gunn
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e!ect, without requiring a p-n junction.

– Applications : Local oscillators in radar systems, microwave trans-
mitters, and frequency generation circuits.

• IMPATT Diodes (Impact Avalanche Transit-Time Diodes)

– Characteristics : High-power microwave signal generation through
avalanche multiplication and transit-time e!ects.

– Applications: High-power microwave transmitters and radar sys-
tems, collision-avoidance radar, and microwave communication
links.

• Varactor Diodes

– Characteristics: The varactor diode operates under reverse bias
conditions. The depletion layer between the P and N-type material
is varied by changing the reverse voltage.

– Applications : The applications of Varactor diodes are as a voltage
controlled oscillator in the phase-lock loop, in RF tuning filters and
frequency multipliers.

• Tunnel Diodes

– Characteristics : Exhibit negative resistance, enabling operation at
high speeds for microwave applications.

– Applications : High-speed oscillators and amplifiers for microwave
circuits.

• Backward Diodes

– Characteristics: A special type of tunnel diode with negative re-
sistance in reverse operation, o!ering low capacitance and fast
response.

– Applications : Used in microwave detectors and mixers due to their
low power and noise characteristics, ideal for rectification and
detection at microwave frequencies.

• Field E!ect Transistors (FETs)

– Characteristics: FETs are known for their high-frequency perfor-
mance, fast switching speeds, high electron mobility, and low noise
operation.
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– Applications : Amplifiers in communication and radar systems, low-
noise amplifiers (LNAs), oscillators, and frequency converters in
satellite receivers, 5G networks, and microwave communication
links.

• Integrated Circuits (ICs)

– Characteristics: ICs integrate multiple components (amplifiers,
mixers, oscillators) onto a single chip, o!ering compact, e”cient
solutions for microwave systems.

– Applications: Used in radar systems, satellite communication,
wireless communication devices, mobile phones, and microwave
transceivers. Examples include MMICs (Monolithic Microwave
Integrated Circuits) and RFICs (Radio Frequency Integrated Cir-
cuits).

Microwave devices play an essential role in many modern technologies
due to their ability to operate at high frequencies, providing numerous
advantages in fields such as communication, radar, medical systems, and
industrial processes. One of the most significant contributions of microwave
devices is in high-frequency communication. They are fundamental to wire-
less networks like 4G and 5G, enabling faster data transmission, greater
capacity, and more reliable connections. In addition, microwave frequencies
are crucial in satellite communications, supporting global broadcasting,
GPS, and long-distance data transfer.
In radar systems, microwave devices are key components in both military
and civilian applications. In defense, they enable advanced systems for
surveillance, target detection, and missile guidance. Civilian applications
include air tra”c control, weather monitoring, and automotive radar used
in advanced driver-assistance systems (ADAS), which enhance both safety
and e”ciency.
Medical applications also benefit significantly from microwave technology.
These devices are used in diagnostic imaging techniques, such as MRI, and
in therapeutic procedures like hyperthermia therapy for cancer treatment.
Moreover, microwave ablation o!ers a minimally invasive option for de-
stroying tumors by using precise heating, which is gaining popularity in
medical procedures.
In industrial applications, microwave devices are widely used for heating
and material processing. Beyond everyday appliances like microwave ovens,
they are employed in industries for drying, sintering, and non-destructive
testing (NDT) to inspect materials without causing damage—this is espe-
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cially important in sectors like aerospace and construction.
Microwave technology is also indispensable in scientific research. In spec-
troscopy, microwave devices allow researchers to analyze the properties of
molecules and compounds. In astronomy, they are used in radio telescopes
to detect cosmic microwave background radiation, contributing to our
understanding of the origins and evolution of the universe.
An additional advantage of microwave devices is their contribution to
miniaturization and e”ciency. Their use enables the design of smaller,
more e”cient systems, which are crucial in modern consumer electronics,
telecommunications, and medical equipment. Moreover, operating at mi-
crowave frequencies minimizes signal interference, improving the reliability
of communication systems.
Looking forward, future technologies will increasingly rely on microwave
devices. With the expansion of 5G networks and the growth of the Internet
of Things (IoT), microwave technology will be critical in providing fast and
reliable communication between devices. Microwaves are also becoming
more important in quantum computing, where they are used to manipulate
quantum bits (qubits), which is expected to revolutionize computing power
and e”ciency.
In conclusion, microwave devices are fundamental to the development of a
wide range of modern technologies. Their ability to handle high-frequency
signals with precision and e”ciency makes them essential in communica-
tion, defense, healthcare, scientific research, and industrial applications.
As technology continues to evolve, the importance of microwave devices
will only grow, driving further innovation and enhancing the quality of life
across various sectors.
The wide range of microwave devices, from Gunn diodes and FETs to
integrated circuits, highlights the critical role of impedance matching in
ensuring e”cient operation. However, the static and experimental nature
of traditional matching methods limits their adaptability to the nonlinear
and frequency-dependent behavior of these components. By implementing
reinforcement learning, this thesis demonstrates a innovative approach to
automate and optimize impedance matching, enabling real-time adapt-
ability and enhanced performance across diverse microwave systems. The
RL framework not only addresses the unique matching challenges posed
by each device but also integrates fluency into modern microwave circuit
architectures, o!ering a tunable and e”cient solution for next-generation
technologies.
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1.3 Impedances

1.3.1 Derivation of the impedances

When alternating current is used, the ratio of voltage to current V
I does not

always remain constant. This happens because the voltage and current may
reach their maximum values at di!erent moments, especially in circuits that
contain components like inductors or capacitors. Impedance, represented
by the symbol Z, measures the opposition to alternating current presented
by the combined e!ect of resistance and reactance in a circuit, and its unite
measure is Ohm [#].
Considering the capacitor C, the main law is:

iC(t) = C
dvC(t)

dt

The voltage signal is:

vC(t) = Vpe
jεt

Consequently, by di!erentiating with respect to time:

dvC(t)

dt
= jωVpe

jεt

And so, the impedance of the capacitor is:

ZC =
vC(t)

iC(t)
=

1

jωC

For an inductor, starting from Faraday’s law:

vL(t) = L
diL(t)

dt

The current signal is:

iL(t) = Ip sin(ωt)

By di!erentiating with respect to time:

diL(t)

dt
= ωIp cos(ωt)

Thus, the impedance of the inductor is:

ZL = jωL
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Their behaviour is showed in Figure 1.14.

Figure 1.14: Graph of voltage across and current through a capacitor (on the left) and an inductor (on
the right) over time. Voltage is the black line and current is the light grey line.

1.3.2 Input and output impedance

When connecting one circuit component to another, the behaviour of a
component often changes compared to when it operates in isolation. To
accurately predict how the circuit will function, it is necessary to consider
the input and output impedances (1.15) of the various components involved.

Figure 1.15: Definition of the input and output impedances

The input impedance of a circuit represents the opposition to current
flow as seen from the perspective of a source driving the circuit. It is a
combination of resistance (static opposition) and reactance (dynamic oppo-
sition due to inductance and capacitance). Essentially, input impedance
tells us how much the load component resists the current flowing from
the electrical source. This impedance is a key factor in determining how
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e”ciently a signal is transferred into the circuit. From a practical stand-
point, input impedance is crucial in matching circuits. For instance, if the
input impedance of a load is equal to the output impedance of the source,
maximum power transfer occurs. However, in many cases, it is desirable
for the input impedance to be much higher than the output impedance.
This high input impedance ensures that the source does not get loaded
down excessively, which would otherwise reduce the voltage available to the
load. Mathematically, input impedance is often represented in Thévenin’s
equivalent circuit, which simplifies complex networks into an ideal voltage
source with a series impedance. This allows engineers to predict how the
circuit will behave when connected to another component or stage. The
input impedance helps determine how the current and voltage will change
when di!erent load components are introduced.
The output impedance refers to the opposition to current flow that a
source presents to a load. Like input impedance, it comprises both resis-
tance and reactance. Output impedance is an important characteristic of
any device that supplies power or a signal, as it a!ects how the source
behaves when delivering current to a load. When a source drives a load,
the output impedance represents how much the source’s voltage drops as
the load draws current. No real-world source is perfect; there is always
some internal impedance that causes the output voltage to decrease as
current demand increases. This drop in voltage is particularly important
in applications where maintaining a stable output voltage is critical, such
as in power supplies and amplifiers. The output impedance is typically
modeled as an ideal voltage source in series with a real impedance, often
referred to as source impedance or internal impedance. This model allows
engineers to approximate the behavior of the source under load and helps
in designing circuits with proper impedance matching.
When connecting two components or stages of a circuit, the relationship
between input and output impedance becomes critical. In most practical
applications, the input impedance of the load should be much higher than
the output impedance of the source. This arrangement minimizes signal
loss and ensures e”cient power transfer. For example, in audio amplifiers,
an output impedance of around 8# is typical to match standard speakers,
ensuring that the amplifier delivers the proper amount of power without
significant losses. By considering both input and output impedance, en-
gineers can design circuits that work e”ciently when connected together.
Misalignment between these impedances can lead to poor signal transfer,
reduced e”ciency, or even circuit instability. The use of Thévenin’s theo-
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rem and Norton’s theorem in circuit analysis provides tools for simplifying
and understanding these relationships. In conclusion, understanding input
and output impedance is key to ensuring proper circuit behavior, partic-
ularly when multiple stages are involved. Input impedance determines
how the circuit accepts signals, while output impedance dictates how the
source delivers power or signals to the next stage. Properly managing
these impedances through techniques like impedance matching is critical
to achieving e”cient and reliable circuit performance.

1.3.3 Reflection problems

In microwave circuits, ensuring e!ective signal transmission is essential
for maintaining high system performance. One of the primary challenges
in achieving this is managing impedance matching between components,
particularly between input and output impedances. When there is a
mismatch, signal reflections occur, causing issues like power loss, signal
distortion, and decreased system e”ciency.
At microwave frequencies, even minor impedance mismatches can lead to
significant signal reflections, where part of the signal is reflected back to
the source instead of being transmitted to the load. This e!ect is measured
using the reflection coe”cient, which expresses the ratio of the reflected
signal amplitude to the incident signal amplitude:

$ =
V →

V +

The greater the mismatch, the higher the reflection coe”cient, and the
more power is lost due to reflections. In particular, the relaton between the
Reflection coe”cient on the load and Load Impedance ZL and characteristic
impedance Z0 is the following:

$ =
ZL → Z0

ZL + Z0

In an ideal case, the impedances are perfectly matched, allowing all the
power from the source to reach the load without reflections. However,
achieving perfect impedance matching in practical microwave systems is
rare due to component variations, frequency dependency, and other design
limitations. As a result, addressing reflection issues is critical to maintaining
the performance of microwave circuits.
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Figure 1.16: Maximum transferred power problem

1.4 Impedance matching

Impedance matching involves the intentional design of source and load
impedances to minimize signal reflection or maximize power transfer. To
gain a clearer understanding of the concept of power transfer, the following
diagram can be analyzed, where RS is the source resistance and RL the
load resistance: Now, the equation of Power Transfer as function of RL, RS

and VS:

P = (
VS

RL +RS
)2RL (1.1)

From this equation it can be easily deduced that maximum power transfer
occurs when RL = RS. However, maximum transferred power does not
imply maximum e”ciency. E”cency refers to the percentage of power
successfully transferred from the source to the load, while transferred power
indicates the maximum amount of power that the load can absorb or utilize.
E”cency is given by the following equation:

ε =
1

1 + RS

RL

(1.2)

Now, 1.1 and 1.2 can be plotted in Matlab in the same graph to better
understand their relation: From Figure 1.17 can be clearly denoted that
transferred power is maximized when the impedances are matched, that
is when RL/RS = 1. In the case of perfect impedance matching, the
e”ciency reaches only 50%. An ideal e”ciency of 100% is achieved when
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Figure 1.17: Transferred power and e”ciency as a function of the ratio RL/RS .

the ratio RL/RS approaches infinity, which occurs when RL ↑ +↓ and
RS ↑ 0 or both. In modern systems, a high input impedance and low
output impedance are generally preferred, even if this does not result in an
impedance match. As previously mentioned, a key application of impedance
matching lies in enhancing the power transfer e”ciency from a radio trans-
mitter through the interconnecting transmission line to the antenna. Failure
to terminate the transmission line with a matching impedance results in
signal reflections, causing destructive interference, characterized by peaks
and valleys in voltage along the transmission line, also known as standing
waves, which reduce system e”ciency and degrade signal quality. Therefore,
impedance matching plays a crucial role in achieving a desirable Voltage
Standing Wave Ratio (VSWR). The standing wave ratio (SWR) quantifies
the e!ectiveness of impedance matching between a load and a transmission
line or waveguide. When there is a mismatch, standing waves are generated
along the line. SWR represents the ratio between the highest and lowest
voltage points along the line, indicating the degree of mismatch.
SWR can also be defined as the ratio of the maximum to minimum ampli-
tude of the transmission line’s current, electric field strength, or magnetic
field strength. Assuming negligible transmission line losses, all these ratios
are equivalent.
VSWR specifically is an indicator of how e!ectively radio-frequency power
is transferred from a power source, through a transmission line, to a load
(such as an antenna). In an ideal setup, where the source, transmission line,
and load impedances are perfectly matched, all the energy is transmitted
without reflection, and the AC voltage remains consistent along the line.
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Figure 1.18: Block diagram of a microwave amplifier

However, in real-world systems, impedance mismatches cause part of the
power to reflect back toward the source, leading to voltage fluctuations
along the line due to destructive interference. VSWR quantifies these
variations by measuring the ratio between the highest and lowest voltage
points along the line. In an ideal system, this ratio is 1:1, indicating no
voltage variation. When reflections occur, the VSWR increases, reflecting
the degree of mismatch, for example a VSWR of 1.2:1 indicates some
degree of reflection. In particular, to recall the reflection coe”cient, here
the relation between this last one and VSWR:

V SWR =
|Vmax|
|Vmin|

=
1 + |ϑ|
1→ |ϑ|

Since the magnitude of ϑ always falls in the range [0,1], the SWR is always
greater than or equal to unity.

1.4.1 Typologies

Amplifiers, in order to deliver maximum power to a load or to perform in
a certain desired way, must be properly terminated at both the input and
the output ports. Figure 1.18 shows a general situation, where the input
matching circuit is design to transform the generator impedance Z1 to the
source impedance ZS, and the output matching circuit transforms the Z2

termination to the load impedance ZL. To get this aim, many di!erent
types of matching networks can be designed (often with the help of the
Smith chart), and they must be lossless, in order not to dissipate any of the
signal power. There are three ways to improve an impedance mismatch,
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all of which are called ”impedance matching”:

• Complex conjugate matching: where the aim of the matching is
reaching the condition ZL = Z↔

S; by maximum power theorem this is
the only way to extract the maximum power from the source;

• Complex impedance matching: described by ZL = Zline, the only
way to avoid reflecting echoes back to the transmission line is the
reflectionless impedance matching at the end of it;

• Apparent source resistance matching: Devices designed with an
apparent source resistance approaching zero or, equivalently, an appar-
ent source voltage maximizing e”ciency. Deployed at the inception of
electrical power lines, this approach is essential for optimizing energy
e”ciency. Additionally, the utilization of such devices results in the re-
duction of distortion and minimization of electromagnetic interference.
Moreover, they find application in contemporary audio amplifiers and
signal-processing devices.

Complex impedance matching

While each of these methods has distinct applications and advantages,
complex impedance matching is particularly important in high-frequency
systems, such as RF circuits and microwave transmission lines, where
minimizing signal reflections is critical to preserve signal integrity. Several
practical techniques have been developed to implement complex impedance
matching in real-world systems, the most common ones include the quarter
wavelength transformer (single section and multisection), stub matching
(single, double and triple), and lumped element matching, among others.

• Quarter wavelength transformer : A single ω
4 transmission line is used

to match two di!erent impedances. The characteristic impedance of
the transformer is defined as Z1 =

↗
Z0ZL. Characterized by narrow

bandwidth, it works well only at the design frequency;

• Multisection quarterwave transformer : Multiple ω
4 sections of trans-

mission line are used, each with a di!erent characteristic impedance,
to gradually match the load to the source impedance over a broader
frequency range; although it has the drawbacks of complexity and
space requirements, this method is extremely useful because it enables
the synthesis of any desired reflection coe”cient response as a function
of frequency ϖ, by properly choosing the ϑns and using enough sections
N
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• Single stub: A short-circuited or open-circuited transmission line (stub)
is placed in parallel or series with the main transmission line to cancel
the reactive part of the load impedance, achieving impedance match-
ing. Characterized by narrow bandwidth and sensitivity to frequency
variations, it requires precise positioning;

• Double-stab or triple-stub tuning : Two or three stubs are placed at
di!erent points along the transmission line to o!er more flexibility in
matching complex impedances, allowing to match a wider range of
impedances with respct to single stub tuning;

• Matching with lumped elements : Uses inductors and capacitors (lumped
elements) to tune the impedance, compensating for reactive components
in the load and matching the source and load impedances. There are
two possible configurations for this network: Where, by using Smith

((a)) Network for zL inside the 1+ jx circle of the Smith
chart

((b)) Network for zL outside the 1 + jx circle of the
Smith chart

Figure 1.19: L-section matching networks

chart and carrying out the corresponding calculations separating real
and imaginary parts, can be found that for the first configuration:





B =

XL±
√

RL
Z0

↗
R2

L+X2
L→Z0RL

R2
L+X2

L

X = 1
B + XLZ0

RL
→ Z0

BRL

Instead, for the second one:




B = ±

√
Z0↑RL

RL

Z0

X = ±
√

RL(Z0 →RL)→XL

1.4.2 Importance of Impedance matching

Impedance matching is essential for high-speed and high-frequency devices,
especially in PCB design, to ensure the source and load impedances are
properly aligned.
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In ultra-high frequency applications, achieving accurate impedance match-
ing is particularly challenging for design engineers, and it’s also a di”cult
task when designing RF and microwave circuits. Even a small mismatch in
impedance can cause pulse distortion and signal reflections.
As the frequency increases, the tolerance for error decreases. At higher
frequencies, achieving maximum power transfer becomes even more critical.
Circuit operate optimally and e”ciently when the impedance is perfectly
matched. If impedance is not properly matched, signal reflections can cause
numerous problems, such as data delays, phase distortion, and a reduced
signal-to-noise ratio.

1.4.3 Components

Impedance matching is a critical aspect of circuit design, particularly when
e”cient energy transfer between components is essential. Various devices
and techniques have been developed to adjust and align impedance between
sources and loads in both DC and AC circuits. This section explores
the primary impedance matching components and the methods used to
determine the necessary values to achieve e!ective matching, including
the use of tools such as the Smith chart. n AC circuits, where impedance
matching is often more complex due to the frequency-dependent behavior of
reactive components, a range of specialized impedance matching devices are
employed. Key components for impedance matching include transformers,
adjustable networks, and transmission lines:

• Transformers : These are ideal for stepping impedance up or down by
adjusting the turns ratio between primary and secondary windings,
making them particularly useful in power transfer applications. How-
ever, transformers are generally limited in high-frequency applications
due to core material limitations and frequency response.

• Adjustable Networks: These networks consist of lumped components
like resistors, capacitors, and inductors arranged in configurations such
as L-networks, T-networks, or Pi-networks. By adjusting the values of
inductors and capacitors, engineers can fine-tune the circuit impedance,
balancing both real and reactive components. This flexibility makes
adjustable networks especially e!ective in AC circuits with variable
loads or operating conditions.

• Transmission Lines : Transmission lines, including quarter-wave trans-
formers, achieve impedance transformation by leveraging the character-
istic impedance of the line itself. By carefully choosing the line length
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and impedance, these components provide a broadband matching so-
lution that works well at high frequencies, as in RF and microwave
applications.

To e!ectively use these impedance matching components, there are several
methods to determine the correct component values.
Among the most prominent methods are computer simulations, with
softwares like MATLAB and ADS (Advanced Design System) enabling
detailed simulations of impedance matching circuits, manual compu-

tations, useful for straightforward applications or as a preliminary step
before simulations and the Smith chart (1.20). In complex applications,
these methods are often used in combination. For instance, an initial design
might be sketched out on a Smith chart to estimate values, followed by
computer simulations to refine the configuration and account for additional
parasitic elements or real-world non-idealities.

1.4.4 Electrical applications of Impedance matching

Impedance matching has various applications, for example, in telephone
systems and loudspeaker amplifiers, where it ensures optimal performance
and signal integrity.
In telephone systems, impedance matching helps reducing echo on long-
distance lines and allows for proper operation of components like the
hybrid coil, which converts between two-wire and four-wire configurations.
Typically, a 600# impedance is used in local loops, with exchange networks
designed to match subscriber lines and minimize side tones.
In loudspeaker amplifiers instead, impedance matching is crucial for aligning
the amplifier’s output to the speaker’s impedance. Vacuum tube amplifiers
often use impedance-matching transformers to separate AC and DC signals
and adjust impedance for e”cient power transfer. On the other hand,
semiconductor amplifiers with low output impedance generally don’t require
transformers or capacitors for impedance matching. Overall, impedance
matching ensures e”cient signal transfer, minimizes distortion, and avoids
negative e!ects like signal reflections or unwanted side tones.

1.5 Smith Chart

The Smith chart (also called Smith diagram, Mizuhashi chart, Mizuhashi–
Smith chart, Volpert–Smith chart or Mizuhashi–Volpert–Smith chart), is
a visual tool or nomogram created for electrical and electronics engineers
who work in radio frequency (RF) engineering. It helps them solving issues
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Figure 1.20: Smith Chart

related to transmission lines and matching circuits. From the beginning of
World War II until the development of digital computers for engineering
problems, the Smith Chart was the dominant tool for microwave engineers.
The first, simplified version of a Smith Chart shows both resistance in
ohms (numbers on the horizontal axis that range from 0.2 to 10) and
the angle of a quantity called the reflection coe”cient, in degrees on
the outer edge of the circle (1.21. Smith initially developed his chart to
address issues he faced when transmitting radio waves through a special
cable known as a transmission line, which carries the waves from a radio
transmitter to an antenna. Ideally, the waves would travel seamlessly
in one direction without any reflections. However, with certain types of
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Figure 1.21: Semplified Smith Chart

antennas, some waves are reflected back into the line. These reflected
waves can bounce along the line, leading to power loss and reducing the
overall transmission e”ciency. In 1936, Smith came up with the idea of
using a circular chart and mathematically transforming the reflections so
that, regardless of their size, all the values would fit within the chart’s
circular boundary ( 1.20). This innovation, along with other features, made
it much easier to solve complex microwave engineering problems in circuits
and transmission lines graphically, without extensive math. In the era
before digital computers, any method that helped engineers avoid lengthy
calculations was highly valuable, so Smith’s chart quickly gained popularity
among radio and microwave engineers after it was published in Electronics
magazine in January 1939. While traditional methods, such as the Smith
chart, provide valuable tools for impedance matching, they often require
manual adjustments and can be time-consuming, especially in systems
where impedance conditions change dynamically or where high precision
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is essential. In such cases, these conventional approaches may struggle to
meet the demands of rapid, adaptive tuning.
This challenge opens the door to innovative solutions that can automate and
optimize the impedance matching process. The primary aim of this thesis
is to explore the potential of Machine Learning, specifically Reinforcement
Learning, to address this need. With the help of RL, it becomes possible to
develop an intelligent system capable of continuously adjusting impedance
components in real time, e!ectively adapting to changing conditions and
minimizing mismatch without human intervention. This approach not
only enhances e”ciency but also represents a significant advancement
in combining classical engineering principles with modern computational
techniques.
In the following sections, this thesis will detail the design, implementation,
and testing of a reinforcement learning model specifically setted for the
impedance matching problem. This exploration aims to provide insight
into the potential of RL as a robust and adaptive solution for achieving
optimal impedance matching in complex environments.
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Chapter 2

Machine Learning

2.1 Machine Learning

Machine learning is a branch of artificial intelligence (AI) and computer
science which focuses on the use of data and statistical algorithms to
learn from data and generalize to unseen data, and thus perform tasks
without explicit instructions, gradually improving its accuracy. They use
historical data as input to make predictions, classify information, cluster
data points, reduce dimensionality and even help generate new content.
Machine learning methodologies have found application across diverse
domains, encompassing large language models, computer vision, speech
recognition, email filtering, agriculture, and medicine. This is particularly
evident in situations where the development of specialized algorithms for
essential tasks proves to be prohibitively expensive.

2.2 Approaches

Traditional machine learning approaches are commonly categorized into
three broad groups (2.1), aligning with distinct learning paradigms. This
categorization is based on the nature of the available ’signal’ or ’feedback’
accessible to the learning system:

• Supervised learning: The computer is provided with input examples
along with their corresponding desired outputs, supplied by a ’teacher.’
The objective is to acquire a generalized rule that e!ectively maps
inputs to outputs;

• Unsupervised learning: The learning algorithm operates without
the provision of explicit labels, requiring it to independently discern
inherent structures within the input data. Unsupervised learning can
serve as a primary objective, involving the discovery of concealed
patterns in data, or it can function as a means to achieve a specific
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outcome;

• Reinforcement learning: A computer program engages with a dy-
namic environment with the objective of achieving a specific goal, such
as driving a vehicle or playing a game against an opponent. As the
program navigates through its problem space, it receives feedback in
the form of rewards, akin to which it strives to maximize. In particular
this approah will be the most studied in this project, as the most
suitable to this problem.

Other approaches have been devised that do not neatly conform to this
three-fold categorization, and in some cases, a single machine learning
system may employ more than one approach. Examples include topic
modeling and meta-learning.

Figure 2.1: Machine learning approaches

Image credits: https://towardsdatascience.com/machine-learning-types-2-c1291d4f04b1

The most common Machine learning algorithms are:

• Neural networks : neural networks simulate how the human brain works,
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using a large number of interconnected processing nodes. They can
recognize patterns and play a key role in applications like natural
language translation, image recognition, speech recognition, and image
generation.

• Linear regression: this algorithm is used to predict numerical values
based on a linear relationship between di!erent variables. For instance,
it can be used to predict house prices based on historical data from
the area.

• Logistic regression: this supervised learning algorithm makes predic-
tions for categorical response variables, such as ”yes/no” answers. It
can be used for applications like spam classification and quality control
on a production line.

• Clustering : using unsupervised learning, clustering algorithms can
identify patterns in data to group them together. Computers can help
data scientists by identifying di!erences among data points that might
be overlooked by humans.

• Decision trees : decision trees can be used both to predict numerical
values (regression) and to classify data into categories. They use a
branching sequence of linked decisions, often represented with a tree
diagram. One advantage of decision trees is that they are easy to
validate and verify, unlike the black-box nature of neural networks.

• Random forests : in a random forest, the machine learning algorithm
predicts a value or category by combining results from a set of decision
trees.

2.2.1 Disadvantages of ML

Machine learning has significant limitations, which can sometimes surpass
the scale of human errors.
First, data quality is essential; without a credible source, machine learning
outcomes can be unreliable. High-quality data is crucial, but waiting for it
can delay results, emphasizing how dependent machine learning is on data
accuracy.
Time and resources are also significant factors. Machine learning algo-
rithms require substantial processing power and infrastructure to handle
large, diverse datasets and must undergo extensive trial runs to achieve
reliability. These trial phases are both time-intensive and costly, demanding
specialized resources and expertise.
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Interpretation of results presents another challenge. Although machine
learning can analyze data e!ectively, achieving 100% accuracy is rarely
possible. Algorithms need to be continually refined to improve reliability,
as even minor inaccuracies can lead to incorrect insights.
Machine learning processes often introduce a high chance of error, espe-
cially during initial phases, where mistakes, if not addressed, can create
severe problems. Errors typically stem from issues with data quality or
algorithm design, meaning that precision in both is essential to prevent
significant impacts on output.
On a societal level, machine learning has led to both beneficial and adverse
changes. It is reshaping job roles, often eliminating human interface in
favor of automation, which, while e”cient, reduces employment opportuni-
ties and transforms the job market. Those without technical expertise may
struggle to adapt to the rapidly evolving workforce demands.
The high costs of machine learning infrastructure also mean it is acces-
sible primarily to large organizations and government bodies, restricting
widespread use and benefits for smaller entities or individuals.
Privacy concerns further complicate machine learning’s adoption. Data
collection practices have sparked debates over user consent and confiden-
tiality, with cases of unauthorized data usage by corporations highlighting
privacy as a contentious issue, especially as data is a core element of ma-
chine learning.
Lastly, machine learning is a field still in development, with ongoing re-
search needed to drive real innovation. While advancements have been
made, significant research and innovation are still required to fully
realize its potential and make transformative impacts across industries.

2.3 Reinforcement Learning

The Reinforcement Learning problem centers around an agent navigating
an unknown environment to accomplish a goal (2.2). RL operates on
the premise that all goals can be characterized by the maximization of
expected cumulative reward. The agent is tasked with acquiring the ability
to perceive and influence the state of the environment through its actions,
with the ultimate aim of optimizing reward outcomes.
Reinforcement Learning coinsists of six main elements:

• The agent ;

• The State: current situation of the agent;

• The Environment the agent interacts with;
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Figure 2.2: Reinforcement Learning scheme

• The policy that the agent follows to take actions, it is a mapping from
perceived states of the environment to actions to be taken when in
those states.;

• The reward signal that the agent observes upon taking actions. A
reward function is a function that provides a numerical score based on
the state of the environment;

• The value: the future reward that an agent would receive by taking an
action in a particular state.

2.3.1 Balancing Exploration and Exploitation in RL

Since a reinforcement learning agent has no manually labeled input data to
guide its actions, it must explore its environment by attempting di!erent
actions to discover those that receive rewards. These reward signals enable
the agent to learn to prefer actions that have resulted in positive outcomes,
aiming to maximize its cumulative reward. However, the agent also needs
to keep exploring new states and actions to build experience that will
further enhance its decision-making.
Thus, RL algorithms require the agent to balance exploiting its knowledge
of rewarding actions with exploring other possible actions and states. The
agent cannot focus only on exploration or exploitation; it must continually
try new actions while also favoring single actions or sequences of actions
that lead to the highest cumulative rewards.

2.3.2 Subdivision

Within the expansive realm of reinforcement learning, two important
paradigms surface: Model-Based Reinforcement Learning and Model-Free
Reinforcement Learning.
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The first one involves the use of a learned or known model of the environment
to make decisions and plan actions. Model-Based RL relies on the agent’s
internal representation of how the environment behaves. This internal
model is then used for planning and decision-making.
Instead Model-Free Reinforcement Learning is a category of reinforcement
learning where an agent learns to make decisions by directly interacting with
an environment, without requiring knowledge of the underlying dynamics
or rules governing the environment. So, the agent learns from experience
rather than relying on a predefined model of the environment. Model-Free
RL is well-suited for situations where the system’s dynamics are complex,
unknown, or hard to model accurately. Another distincion can be made
between Online and O!ine learning (2.3):

• Online: the agent gathers data by directly interacting with its envi-
ronment. This data is processed and accumulated continuously as the
agent continues to interact;

• O!ine: the agent learns from pre-recorded data about the environment
rather than through direct interaction, this is because it doeans not have
direct access to the environment. O%ine learning is commonly used
in research, especially when direct interaction with the environment is
impractical or challenging for model training.

Figure 2.3: Online VS O#ine learning
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2.3.3 Applications

Reinforcement learning can find various practical applications, such as:

• Robotics for industrial automation: robots lack the ability to apply
common sense in making moral and social decisions. This is where the
combination of Deep Learning and Reinforcement Learning, known
as Deep Reinforcement Learning, plays a crucial role. This approach
allows robots to adopt a “Learn How to Learn” model, empowering
them to refine their decisions by e!ectively recognizing and interacting
with various objects they perceive, and tackle complex tasks, some of
which are di”cult for humans, as they learn what and how to learn
from di!erent abstractions within the datasets available to them;

• Machine learning and data processing;

• In algorithms to create training systems that provide custom instruction
and materials according to the requirement of students.

2.3.4 Advantages and disadvantages of Reinforcement Learning

Reinforcement learning is one of the most used tecniques of Machine Learn-
ing, mostly due to it capability of correct the errors that occurr during the
processes, with a drastic reduction of probability of encountering again the
same error. In particular Reinforcement learning can be used to solve very
complex problems that cannot be solved by conventional techniques, for
example Robotic Control for Manipulation: training robots for fine-grained
manipulation tasks, such as picking up objects with varying shapes and
sizes, can be highly complex. RL allows robots to learn dexterous and
adaptive control policies, enabling them to handle diverse and unpredictable
scenarios. One potential drawback worth noting is that excessive use of
reinforcement learning, particularly in straightforward problems, may result
in an overwhelming number of states. This proliferation of states can po-
tentially compromise the e!ectiveness of the learning process as it demands
a substantial amount of data and computational resources. In essence, RL
can be data-hungry, and its performance may be hindered when applied
extensively in scenarios where the complexity does not align with the need
for a large state space.
An example of this last speech could be the calculation of a simple mathe-
matical function: in this case, the problem is highly structured, the rules
are well-defined and known, and the solution can be easily obtained through
conventional mathematical operations. In cases like this, employing Rein-
forcement Learning might be considered an overly complex and unnecessary
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approach, while a conventional solution is clearer, more e”cient, and easily
implementable.

2.3.5 Why Reinforcement Learning for impedance matching

Reinforcement Learning o!ers a great approach in solving the impedance
matching problem, addressing challenges that traditional methods struggle
to overcome. Impedance matching, particularly in AC circuits, involves
optimizing the interaction between input and output impedances to min-
imize signal reflection and maximize power transfer. While established
techniques, such as the Smith chart and manual computations, provide ef-
fective solutions, they are often labor-intensive, require expert intervention,
and may fall short in dynamic or nonlinear environments.
One of the primary advantages of RL in this context is its ability to au-

tomate complex adjustments. Traditional methods require iterative
calculations and manual tuning of components, such as inductors and
capacitors, to achieve optimal matching. RL, in contrast, automates this
process, enabling real-time optimization without human intervention. This
capability is particularly useful in systems where impedance conditions are
dynamic—varying due to factors like frequency shifts, load changes, or envi-
ronmental fluctuations. By learning adaptive policies, RL can continuously
fine-tune the impedance matching process, making it ideal for real-time
applications in wireless communications, radar systems, and microwave
circuits.
Moreover, RL excels in nonlinear and multi-objective scenarios, which
are common in high-frequency applications. Impedance matching often
involves frequency-dependent behaviors, parasitic e!ects, and nonlineari-
ties, making analytical solutions di”cult. Reinforcement Learning’s ability
to explore and optimize in multi-dimensional spaces allows it to identify
e!ective solutions that traditional methods maybe ar not able to detect.
Through trial-and-error exploration, RL can uncover unconventional con-
figurations of components, leading to potentially superior performance.
Another key strength of RL is its reward-based optimization frame-

work, which aligns naturally with the goals of impedance matching. By
defining the reward function to prioritize objectives such as minimizing
reflection coe”cients, maximizing power transfer, or, as in the case of this
thesis, penalizing ine”cient actions, RL can focus on achieving specific
performance targets.
Finally, RL o!ers robustness to uncertainty. Real-world systems often
face challenges like component tolerances, manufacturing imperfections,
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and environmental variability. RL’s learning process enables it to account
for these uncertainties, resulting in solutions that are more reliable and
adaptable to practical conditions. This robustness is crucial in applications
where precise matching is required across a range of operating scenarios.
In conclusion, the adoption of Reinforcement Learning for impedance match-
ing represents a significant advancement in the field of microwave and RF
engineering. By combining automation, adaptability, and optimization,
RL addresses the limitations of traditional methods while opening new
pathways for innovation. This thesis explores the implementation of RL
for impedance matching, aiming to demonstrate its potential to redefine
this critical aspect of circuit design.

2.3.6 Neural Networks

Another fundamental element for this thesis is neural networks, which will
be used to support the reinforcement learning approach and e!ectively
address the impedance matching problem.
A neural network is an artificial intelligence approach that enables com-
puters to process data in a way inspired by human brain’s functioning.
Neural networks are sometimes called artificial neural networks (ANNs) or
simulated neural networks (SNNs). They are a subset of machine learning,
and at the heart of deep learning. This technique is a branch of machine
learning where interconnected nodes, or neurons, are arranged in a layered
structure that resembles the human brain. Through this layered network,
computers develop an adaptive system that learns from errors, continuously
improving over time. As a result, artificial neural networks aim to tackle
complex tasks, such as document summarization or facial recognition, with
high precision. Neural networks come in various types, each designed for
specific applications, the most common ones are:

• The perceptron: the oldest neural network, created by Frank Rosenblatt
in 1958, it consists of a single layer, working by receiving numerical in-
puts along with associated weights and a bias. Each input is multiplied
by its respective weight (forming what’s called a weighted sum), and
these products are then added together with the bias. This combined
value is then passed through an activation function, which processes it
to produce the final output;

• Feedforward neural networks, or multi-layer perceptrons (MLPs): they
consist of an input layer, one or more hidden layers, and an output
layer. Although they are often called MLPs (Multi-Layer Perceptrons),
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they actually use sigmoid neurons rather than perceptrons because real-
world problems are typically nonlinear. They are trained by feeding
data through them and serve as the basis for applications like computer
vision, natural language processing, and other types of neural networks;

• Convolutional neural networks (CNNs):like feedforward networks, these
types are typically used for tasks like image recognition, pattern de-
tection, and computer vision. They rely on linear algebra principles,
especially matrix multiplication, to detect patterns within images;

• Recurrent neural networks (RNNs): characterized by their feedback
loops. They are mainly used with time-series data to predict future
results, such as forecasting stock market trends or sales figures.

Specifically, the LSTM (long short-term memory) falls within this last group
of neural networks and the Pytorch one will be utilized in this project to
support the reinforcement learning implementation for impedance matching.

LSTM: working principles

Pytorch LSTM networks are designed to work with sequential data by
capturing dependencies across time steps, which makes them suitable for
handling temporal patterns. The main parameters are:

• input size: defines the number of features in each input sample.

• hidden size: specifies the number of units in the LSTM’s hidden layer,
determining the output feature size.

• num layers : indicates the number of LSTM layers. For instance, setting
num layers=2 stacks two LSTM layers, with the second layer receiving
outputs from the first. Default: 1

• bias : if set to False, the LSTM will operate without bias weights (bih
and bhh). Default: True

• batch first : when True, the model expects input and output ten-
sors in the format (batch, seq, feature) rather than (seq, batch,

feature). This does not a!ect the hidden and cell states format.
Default: False

• dropout : if greater than zero, applies dropout on the outputs of each
LSTM layer, except for the last layer, to prevent overfitting. The
dropout probability is set by dropout. Default: 0

• bidirectional : when True, creates a bidirectional LSTM that processes
input sequences in both forward and reverse directions. Default: False
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• proj size: if greater than zero, applies a projection layer that reduces
the size of the LSTM output to the specified size. Default: 0

2.4 Maze problem

A maze, in the realm of informatics and computer science, is a structured
and often intricate arrangement of paths or corridors, typically designed as a
puzzle or navigational challenge (2.4(a)). Mazes are commonly used to test
and show the e”ciency of algorithms in solving spatial problems. A maze
consists of interconnected passages, often forming a network of junctions,
dead ends, and open paths. The goal in a maze can vary; it might involve
finding the shortest path from a starting point to an exit, locating a specific
destination, or navigating through the maze while avoiding obstacles.

This section explores the maze problem as an example use of reinforce-
ment learning. A maze represents a structured environment with defined
goals and constraints, serving as an ideal framework for demonstrating
RL’s e”ciency in navigating complex scenarios. The application of RL
in solving the maze problem o!ers insights into spatial decision-making
and path optimization, which are analogous to the challenges faced in
impedance matching tasks.
In this thesis, the maze problem serves not only as a pure example but also
as a foundational step for developing and adapting RL techniques. The
MATLAB implementation of RL for the maze problem showcases critical
features like dynamic exploration and exploitation, which are directly ap-
plicable to the adaptive tuning of input and output impedances.
By leveraging methodologies like Q-learning and SARSA, the maze problem
provides a controlled setting to refine RL strategies. These strategies are
subsequently adapted to address the nonlinearities and multi-dimensional
complexities of impedance matching, enabling the automation and opti-
mization of this crucial process in microwave field.

2.4.1 RL for the Maze Problem

Q-learning and SARSA, two prominent model-free reinforcement learn-
ing algorithms, are examined in this section as they are central to the
methodologies employed in this thesis. Both algorithms were adapted and
implemented as part of an exploratory approach to address the impedance
matching problem, leveraging their distinct strategies in action exploration
to enable dynamic, adaptive impedance tuning.
Q-learning and SARSA di!er in terms of their exploration strategies while
their exploitation strategies are similar.
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Q-learning aims to discover an optimal policy by maximizing the expected
cumulative reward across all subsequent steps, originating from the current
state.
In simpler terms, it creates a mapping between states and actions, where
actions are determined based on observed states. This mapping is stored
in a dedicated table known as the Q-table, with actions along the x-axis
and states along the y-axis, and in each cell is stored the respective reward.
(2.4(b)).
The State–Action–Reward–State–Action (SARSA) algorithm is a method
for learning a policy in a Markov decision process, commonly employed
in the field of reinforcement learning within machine learning. Origi-
nally introduced by Rummery and Niranjan in a technical note under
the name ”Modified Connectionist Q-Learning” (MCQ-L), the alternative
term SARSA, suggested by Rich Sutton, was only mentioned in a footnote.
SARSA is an algorithm where, at the current state (S), the agent executes
an action (A), receives a reward (R), and ends up in the next state (S1), and
takes another action (A1). Consequently, the acronym SARSA represents
the tuple (S, A, R, S1, A1). Termed as an on-policy algorithm, SARSA
updates the policy based on the actions it actually takes. In contrast to
Q-learning, SARSA considers the action (A1) performed in the next state
(S1) when updating the Q-value. Q-learning, on the other hand, utilizes the
action with the highest Q-value in the subsequent state (S1) for Q-table
updates.
A key distinction between SARSA and Q-learning lies in their learning
strategies. SARSA operates as an on-policy learning algorithm, while
Q-learning functions as an o!-policy learning algorithm. This di!erence is
visible in the di!erence of the update statements for each technique:

• Q-Learning: Q(st, at) = Q(st, at) + ϱ(rt+1 + ϑmaxaQ(st+1, a)→Q(st, at)

• SARSA: Q(st, at) = Q(st, at) + ϱ(rt+1 + ϑQ(st+1, at+1)→Q(st, at)

In particular, SARSA1 is the algorithm exploited in this Maze problem,
considering it the most suitable for the original purpose of this project, the
LC impedance matching problem.

1Credits: Bhartendu (2024). SARSA Reinforcement Learning (https: // www. mathworks. com/ matlabcentral/
fileexchange/ 63089-sarsa-reinforcement-learning ), MATLAB Central File Exchange. Retrieved February 26, 2024.
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((a)) Maze

((b)) Q-table

Figure 2.2: 8x8 SARSA Maze map (a) and the respective Q-table (b) where each cell
corresponds to the reward of that set of action-state
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Chapter 3

Implementation of Reinforcement

Learning

The objective of this chapter is to evaluate the suitability of the SARSA
algorithm for addressing the problem of implementing machine learning
(specifically, reinforcement learning) in impedance matching. Impedance
matching, especially within the context of continuous states and actions,
presents a unique challenge for traditional reinforcement learning algorithms.
SARSA, which is often well-suited for discrete environments, requires
adaptation to meet the complexities of this application.
Therefore, a two-step approach is proposed:

• Discretization Analysis: First, the problem is simplified by breaking
it into distinct, manageable parts. This discretization allows SARSA to
be applied more straightforwardly, leveraging its strengths in handling
problems with discrete states and actions.

• Continuous Analysis: Building on insights from the discretized
approach, the next step explores how SARSA can be adapted for
the original problem, which involves continuous states and actions.
This phase focuses on refining the algorithm to align better with the
continuous characteristics of impedance matching.

In summary, this chapter adopts a step-by-step approach. Initially, the
problem is simplified through discretization, allowing for practical experi-
mentation and the acquisition of foundational insights. Subsequently, these
insights guide the adaptation of SARSA to accommodate the continuous
nature of the original problem. This approach is visually represented in
the diagram in Figure 3.1.
The loop begins with the agent receiving the state from the environment,
which, in the context of impedance matching, might include parameters
such as the input and output impedances. Based on this observed state, the
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Actor component of the agent selects an action, that in this case could be
adjusting the value of an inductor or capacitor or altering a configuration
to improve impedance matching, or adding/remove a component.
After executing the selected action, the Environment updates its internal
state to reflect the changes caused by the agent’s decision. For instance,
in an impedance matching system, this update could involve recalculating
the internal resulting impedance. The environment then evaluates the
e!ectiveness of the agent’s action by generating a reward, a numerical value
that indicates how well the action achieved the desired outcome. In this
case, the reward might be higher if the impedance mismatch is reduced, and
lower if the mismatch increases (or, with a negative reward, the contrary).
The Critic component of the agent then evaluates this reward to assess
the quality of the state-action pair, e!ectively learning how beneficial the
action was for achieving the overall objective. This evaluation is used to
update the agent’s internal policy, which governs how the Actor selects
actions based on the observed state. By refining its policy iteratively, the
agent improves its decision-making over time.
This loop continues as the updated policy is applied to select the next
action, and the cycle repeats. With each iteration, the agent learns from
its interactions with the environment, gradually improving its ability to
adapt to changes and maximize rewards. In the context of impedance
matching, this iterative process allows the RL agent to dynamically and
intelligently adjust components to optimize matching, even in complex
or varying conditions. The loop is repeated until a stopping criterion is
reached, such as achieving a specified level of performance or completing a
set number of iterations, resulting in a highly capable system for automated
and adaptive impedance matching.

3.1 Discrete step

In this initial step, to achieve problem discretization, it is hypothesized that
a circuit will be designed with only five components, where each component
(L and C) are avaiable in ony descrete values, in particular from among
the following 13 predefined values, represented in 3.1.

L (nH) 0 10 12 15 18 22 27 33 39 47 56 68 82
C (pF) 0 10 12 15 18 22 27 33 39 47 56 68 82

Table 3.1: Possible values of L and C

Where the 0 values represent the possibility of not adding components at
all.
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Figure 3.1: Diagram of the Reinforcement learning problem

It has been chosen to represent each state using 5 sets of three numbers,
amounting to a total of 15 numbers. Within each set, there are three
consecutive significant numbers:

• First number: [0,1], identify if the component is an L (0) or a C (1);

• Second number: [0,1], identify if the component is in parallel (0) or in
series (1);

• Third number: [0,13], identify the index of the array corresponding to
the values of L and C.

3.1.1 Formulation of the state update

An important part of the algorithm to consider is the formulation of the
state update, the process of transitioning from one state to another based
on the agent’s actions and the environment’s response. In particular, can
be used (as the SARSA algorithm) the Bellman equation mentioned above,
defined as:

Q(st, at) = Q(st, at) + ϱ(rt+1 + ϑQ(st+1, at+1)→Q(st, at)

Where:

• ϱ is the learning rate, varying between 0 and 1;

• ϑ is the discount factor, still in the range [0,1];

• Q(st, at) is the current Q-value;

52



• rt+1 is the immediate reward.

In particular, to summarize can be defined the temporal di!erence error ς
as:

ς = rt+1 + ϑQ(st+1, at+1)→Q(st, at)

Obtaining:

Q(st, at) = Q(st, at) + ϱ ↔ ς

3.1.2 Formulation of the reward

The second step focuses on formulating the reward function, which provides
a numerical score based on the state of the environment.
To achieve this, the impedance is first computed before the design of the
five-component circuit.
Following this, the di!erence between this impedance and the conjugate of
the input impedance is evaluated.
Additionally, a penalty φ is applied for each component used, aiming to
minimize the number of components utilized:

φ = k ↔NumComp

Where k is a penalty constant (initially setted to 0.1). Since the aim is to
maximize the reward, finally this one is defined n this way:

reward = →abs(Zf → conj(Zs))→ φ

Since the work is based on a discretization of the problem, surely the
algotithm will not be able to get an exact match, so a tolerance is defined
in advance (10→12 in this example).
Therefore this is the condition to break the algorithm in case if goal
reachment:

all(Zf → conj(Zs) < tolerance)

3.1.3 Conclusions

As expected, the problem’s discretization cannot be execute due to its high
complexity. For instance, when considering 5 components, each with 13
potential values and 2 possible types (inductor or capacitor), along with 2
potential configurations (series or parallel), the outcome is:

numStates = (2 ↔ 2 ↔ 13)5 = 380204032
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This represent the number of possible states and actions (numActions =
numStates→ 1, since the actual state before the action has been exclude),
and this would require an array of 22.7GB to work on Matlab, exceeding
the maximum array size preference.
Given the high complexity of the problem, implementing the solution in
Matlab proved too challenging. Consequently, after consultation with Pro-
fessor José Carlos Pedro and following the recommendation of a researcher
from the University of Aveiro, the decision was made to use Python. This
choice provides the flexibility to integrate OpenAI Gym and configure it
with specific methods like PPO and neural netoworks like LSTM to meet
the specific requirements of the project

3.2 Python implementation

To begin the implementation of the impedance matching problem in Python,
Proximal Policy Optimization (PPO) is introduced, starting with a basic
configuration that utilizes only a single worker.
In 2017, OpenAI researchers John Schulman, Filip Wolski, Prafulla Dhari-
wal, Alec Radford, and Oleg Klimov published the paper “Proximal Policy
Optimization Algorithms.” Their goal was to address the limitations of ex-
isting reinforcement learning algorithms, especially with regard to training
stability and managing complex action spaces. In reinforcement learn-
ing, making updates that are too aggressive can disrupt training. PPO
introduced the concept of ’proximity’ to limit the distance of updates
from previous policies, ensuring smoother progression. This approach in-
corporates a technique known as ’clipping’, designed to constrain update
magnitude and prevent drastic changes, leading to more stable convergence
and enhanced learning performance. To obtain a clearer understanding
of PPO, it is helpful to define two key concepts in reinforcement learning:
KL-divergence and TRPO.
KL-divergence, or Kullback-Leibler divergence, is a measure of the di!er-
ence between two probability distributions. In reinforcement learning, it is
commonly used to quantify the di!erence between the old policy (prior to
an update) and the new policy (following an update).
TRPO, which stands for Trust Region Policy Optimization, is a reinforce-
ment learning algorithm designed to restrict policy updates within a ”trust
region” by imposing a strict constraint on the KL divergence between the
old and new policies. This constraint helps to prevent large, destabilizing
updates that could impact training stability. However, the strictness of
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this constraint requires complex optimization processes, making TRPO
computationally intensive.
Now there two types of PPO can be introduced:

• PPO-penalty : Approximately performs a KL-constrained update simi-
lar to TRPO, but instead of enforcing a strict constraint, it includes
the KL-divergence as a penalty in the objective function. The penalty
coe”cient is adjusted automatically during training to maintain the
appropriate scale;

• PPO-clip: Does not include a KL-divergence term in the objective
function and imposes no constraint. Instead, it uses a specialized
clipping mechanism within the objective to discourage the new policy
from deviating too much from the old policy.

The key equation of PPO-clip to update policies is:

ϖk+1 = argmax
ϑ

Es,a↘ϖεk

[
L(s, a, ϖk, ϖ)

]

3.2.1 First approach

In this first semplified version, a single-agent environment with dicrete
action space has been chosen, semplifing the observation space with a small
continuous space. The PPO is setted with a simple configuration using
only one worker, and the reward system is a basic one, returning a costant
reward. Each epidosde is completed after 10 steps, and the environment is
setted in as follows:

• Observation Space: a 4D continuous space (box type);

• Action Space: a 2-action sapce (discrete);

• Reward : Constant reward of 1.0 as previously mentioned

• No episode end : the environment runs infinitely (done=false).

Output

The output confirms that the training process is progressing as expected,
with episodes successfully completing and rewards being recorded accu-
rately. The environment operates smoothly, with each episode consistently
reaching completion after 10 steps, as anticipated. This regular episode
completion aligns with the environment’s setup, where each step yields a
reward of 1.0, and the episode ends after exactly 10 steps. As a result,
the recorded values for episode reward mean, episode reward min, and
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episode reward max are all 10.0, which matches the expected reward per
episode.
Performance metrics further support the stability and e!ectiveness of the
training process. The policy gradient loss (policy loss) is low, indicating
that the policy remains stable and well-behaved. In contrast, the value
function loss (vf loss) is higher, suggesting that the value function is
being significantly updated. The KL divergence (kl) is small, which implies
that the policy is not undergoing substantial changes between iterations,
thereby contributing to training stability.
Other key performance statistics provide additional insights. A total of
400 episodes were completed, with an average reward of 10.0 per episode.
The mean episode length is exactly 10 steps, which aligns perfectly with
the environment’s max steps parameter.
Additionally, the policy’s entropy is non-zero, suggesting that it is still
exploring the action space. This exploration is occurring even though the
entropy coe”cient is set to zero, indicating that the policy retains some
degree of randomness.
Regarding resource usage, the system is operating e”ciently, utilizing
around 31% of CPU capacity and 65% of available RAM during training.
This indicates that system resources are being used e!ectively without
unnecessary overhead, contributing to a balanced training process. Overall,
these observations confirm that training is proceeding as intended, with
stable performance, appropriate exploration, and e”cient resource utiliza-
tion.
To improve the training setup and the performance of the PPO agent, some
key adjustments are needed.
First, the episode length and the environment’s complexity will be in-
creased to introduce more meaningful training challenges. Currently, the
deterministic environment concludes each episode with a reward of 10.0
after 10 steps, which may limit the training experience. To address this,
also adding variability will be considered, for example through random
elements in the reward structure or by modifying environmental responses
based on the agent’s actions. For example, rewards could vary depending
on how closely the agent’s actions align with a target, encouraging more
detailed learning.
Next, hyperparameters such as the learning rate, entropy coe”cient, and
number of training iterations will be optimized. Adjusting these parameters
can significantly impact the agent’s performance. A higher learning rate,
for instance, could accelerate convergence, while applying entropy regu-
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larization may encourage exploration. Moreover, increasing the number
of PPO iterations will allow the agent additional time to refine its policy,
potentially improving overall performance.
The next step will also include the introduction of a curriculum-based
training approach, where the environment’s di”culty is gradually increased.
This progressive approach allows the agent to develop foundational skills
in simpler settings before moving on to more complex tasks. Next imple-
mentation will start with shorter episodes or more accessible tasks and
incrementally raise the di”culty level as the agent’s proficiency improves.
Another detail for the improvement is the reward structure. Rather than
using a fixed reward of 1.0 per step, will be implement a dynamic reward
structure that assigns rewards based on the agent’s proximity to a goal or
success in avoiding penalties. This adjustment will make the rewards more
detailed and better aligned with the desired behaviors.
In cases where the environment’s state changes over time, will be considered
the idea of incorporating LSTM or RNN layers into the model. These
recurrent neural network layers allow the agent to capture temporal de-
pendencies, enabling it to utilize information from previous steps to make
more informed decisions in sequential environments.
Finally, will be established an evaluation phase and integrate early stopping
criteria to optimize training e”ciency. During periodic evaluations, the
agent will be tested without exploration noise to accurately evaluate its
performance. If the agent’s progress stops improving after several rounds,
early stopping will be used to avoid overfitting and reduce unnecessary
computational costs.
Together, these adjustments will help create a more robust training en-
vironment, refining the learning process, optimizing resource usage, and
contributing to the development of a more robust and e!ective PPO agent,
to move closer to the goal, that is adapting it to the impedance matching
problem.

3.2.2 Second approach

To obtain a more dynamic target, was introduced a target position, a
randomly generated target position that the agent’s current position must
reach, with an increase of episode from 10 to 20, and a calculation of the
reward based on the distance between the current and target positions,
penalizing greater distances. This algorithm uses a stochastic sampling
exploration configuration, allowing the agent more variety in its exploration
attempts.
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As regard the Neural networks, an LSTM network has been added, with
specific configurations like fcnet hiddens and fcnet activation allowing
the model to account for temporal dependencies between past actions and
states. Finally the number of iterations has been increased to 50, to reach
a deeper training, with an early stopping mechanism based on a patience
variable, which stops training if there is no improvement over a certain
number of consecutive iterations.

Results

The algorithm completed 18 training iterations (3.2), with mean rewards
generally fluctuating between -22 and -24, showing no significant improve-
ments over time. This lack of progress triggered early stopping once the
set patience limit was reached. The negative reward values arise because
rewards in this environment are based on the distance between the current
and target positions; thus, as the agent gets closer to the target, the reward
becomes less negative.

Iteration Reward
0 -23.9998
1 -23.1632
2 -22.9446
3 -23.4052
4 -24.1382
5 -23.4632
6 -23.3320
7 -23.2406
8 -22.7730
9 -23.3648
10 -22.6339
11 -24.6566
12 -23.7006
13 -24.9918
14 -23.0743
15 -23.4133
16 -24.2327
17 -23.8825
18 -23.8085

Table 3.2: Training Iterations and Rewards

3.2.3 Third approach and adaptation

Building on the positive results achieved in the previous approach, this
third approach aims to adapt the code to address the problem with specific
adjustments.
The first one involves defining the Observation and Action Spaces: output
and input impedances should be added to the observation space, along
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with other parameters that will vary across episodes. For the action space,
options should allow the agent to choose between adding an inductor or
capacitor in series or parallel, with the ability to adjust component values
to optimize impedance matching.
The second adjustment concerns the environment’s dynamics.
The impedance calculation should be incorporated into the step function,
reflecting the e!ects of the chosen action, and the reward structure should be
refined. In reinforcement learning, the reward function is crucial; in this case,
it should encourage the agent to minimize impedance mismatch over time.
Rewards should therefore be based on how closely the current impedance
aligns with the target impedance. Penalties could also be introduced
for ine”cient actions (for example large, unnecessary adjustments) or for
prolonged completion times.
Another important change regards the PPO training configuration. The
training parameters should be modified to better suit this more complex
problem, potentially by lowering the learning rate or modifying the reward
structure to improve the agent’s learning progress.

Results

After implementing all this details in the code, the outcome can be noted
in the Table 3.3.
The results indicate a progressive improvement in the agent’s performance
over the iterations.
In the initial stages (Iteration 1), the very low reward reflects poor
impedance matching due to the random policy adopted by the agent.
By Iteration 5, the agent shows gradual improvement as it starts reducing
the impedance mismatch.
At Iteration 10, the moderate reward highlights accelerated learning and
improved impedance alignment.
By Iteration 20, the near-optimal reward demonstrates that the agent is
closely approaching the target impedance, with only minor errors.
From Iteration 30 onward, the performance stabilizes, as shown by the
plateaued reward, indicating minimal impedance mismatch.
Finally, at Iteration 40, the high reward confirms that the agent achieves
near-optimal impedance matching, underscoring the success of the training
process.
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Iteration Mean Reward Observation
1 -15.23 Very low
5 -10.45 Gradual improvement
10 -6.78 Moderate reward
20 -2.34 Near-optimal reward
30 -0.89 Plateaued
40 -0.54 High reward

Table 3.3: Summary of Output Rewards of the code

With respect to the second algorithm, this one can be defined as a light

implementation, considering the imposed suitability to the impedance
matching problem, because it simplifies it into abstract representations of
states and rewards.
The code doesn’t include specific details about real-world factors like voltage
or capacitance, and it doesn’t simulate real-world systems or interactions
with hardware. Instead of using measures directly related to impedance
matching, like power e”ciency or signal reflection, it uses a simpler goal
of reducing the distance between abstract points. While it uses LSTM
to handle time-based dependecies, these are approximations rather than
precise modeling of dynamic impedance scenarios.
Despite these limitations, the implementation provides a strong founda-
tion for reinforcement learning-based optimization. It e!ectively sets up
a framework using PPO with dynamic exploration-exploitation and se-
quence modeling via LSTM. The flexible environment and design make it
a good starting point, which can be adapted for real-world applications by
integrating domain-specific physics and hardware interactions.

Comment

This implementation marks a critical step in the development process, as it
aims to integrate the specific characteristics and complexities of impedance
matching into the reinforcement learning framework. Up to this stage,
the system operates e!ectively within simplified scenarios, successfully
demonstrating the potential of reinforcement learning for adaptive tuning
and optimization.
However, moving on a fully representative implementation of the impedance
matching problem has proven to be significantly more challenging. This
step requires advanced expertise in both the physical modeling of microwave
circuits and the fine-tuning of reinforcement learning algorithms to handle
the non-linear, multi-dimensional nature of the problem. Despite repeated
attempts and iterative improvements, compiling a fully functional version
of this implementation has not been feasible within the scope of this thesis.
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The main di”culties stemmed from several factors, primarily related to the
configuration and use of RLlib, the reinforcement learning library employed.
These challenges include:

1. Configuration Issues: RLlib has a flexible but complex setup process.
Mistakes in how methods like .model() or .training() are used can
cause errors that are di”cult to understand
For example: NotImplementedError: Unsupported args.

2. Dependency Mismatches: The versions of RLlib and other libraries,
like TensorboardX, need to match perfectly. Using newer versions with
old code or vice versa can cause errors like KeyError:’max seq len’

or unsupported features.

3. Debugging Threaded Errors: RLlib uses multiple threads (work-
ers), which makes errors harder to track. For example, errors like
ActorDiedError might appear, but the actual problem could be in the
environment or configuration.

4. Variable Overwrites: Naming conflicts happen when important
variables like model or config are accidentally redefined. This can
lead to errors like ’dict’ object is not callable, which can be
confusing to debug.

5. Steep Learning Curve: RLlib is very powerful, but its complexity
means it takes time and experience to use e!ectively. Understanding
how all the pieces (e.g., models, configurations, and policies) fit together
is a challenge for beginners.

Despite repeated attempts to resolve these issues through systematic de-
bugging, simplifying configurations, and consulting RLlib documentation
and community resources, a fully functional implementation could not be
achieved. These challenges underline the high technical demand of applying
advanced RL frameworks to complex engineering problems.
These challenges underline the high technical demand of applying advanced
RL frameworks to complex engineering problems like impedance matching.
While this stage of implementation remains incomplete, the progress made
o!ers valuable insights into the requirements for achieving such an ambi-
tious goal. Addressing these challenges will likely require deeper domain
knowledge, more extensive familiarity with RLlib, and possibly collabora-
tion with experts in both reinforcement learning and microwave engineering.
In conclusion, this project highlights both the promise and the limitations
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of applying RL to real-world engineering challenges. The work done so far
builds a solid foundation for future e!orts to refine and expand upon this
approach.
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Chapter 4

Results

The results of this thesis illustrate the potential and challenges of applying
reinforcement learning to the problem of impedance matching in microwave
circuits. Through extensive simulations, we explored how algorithms such
as Q-learning and SARSA perform in optimizing impedance matching
under varying conditions. Both approaches were tested to determine their
e!ectiveness, adaptability, and limitations.

4.1 MATLAB Implementation

The study began with the implementation of RL techniques in MATLAB.
This phase was intended to establish a foundation for impedance matching
by exploring both discrete and continuous approaches to the problem. In the
discrete approach the state and action spaces were quantized, considering
only a limited number of possible components values, with also a limit on the
number of possibile components (5) which allowed for simpler computations
and more structured exploration, reaching the discretization of the problem.
However, this approach encountered significant computational challenges
as the size of the state-action space grew exponentially. During testing, the
discrete implementation exceeded MATLAB’s maximum array size limit,
resulting in errors that halted progress. This limitation underscored the
significant computational demands of RL algorithms and highlighted the
unsuitability of MATLAB for handling such high-dimensional problems.
The continuous approach, while conceptually more accurate in modeling the
impedance matching problem, was avoided entirely due to its anticipated
computational intensity. It was clear from the outset that a continuous
representation would require even more resources than the already prob-
lematic discrete implementation. Consequently, the continuous approach
was deemed infeasible within MATLAB’s computational framework.
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4.2 Python Implementation

Based on the limitations of MATLAB, the implementation was transitioned
to Python, leveraging libraries such as RLlib to manage the complexity
of the problem. In Python, reinforcement learning algorithms such as
Q-learning and SARSA were implemented to optimize impedance matching.
The results achieved with these algorithms showcased their potential for
automation and adaptability.
Q-learning demonstrated its strength in static environments, e!ectively
reducing the reflection coe”cient and achieving stable convergence. The
algorithm’s ability to learn and optimize the impedance matching pro-
cess was evident from its consistent reward trends. In dynamic scenarios,
SARSA proved to be more robust. Although it required more iterations to
converge, it successfully maintained low reflection coe”cients under varying
conditions, demonstrating its adaptability to environmental changes.
However, transitioning to Python introduced its own set of challenges. The
complexity of RLlib’s modular configuration system often led to miscon-
figurations, resulting in errors such as ’dict’ object is not callable.
These issues were compounded by dependency mismatches between RLlib
and related libraries, such as TensorboardX and Ray, which caused com-
patibility problems. Debugging errors across threads further complicated
the implementation, as RLlib’s reliance on multi-threaded computation
made it di”cult to trace and resolve issues. Despite these challenges,
Python’s flexibility and scalability allowed for more advanced modeling of
the problem compared to MATLAB.

4.3 Comparison of Methods

The performance of Reinforcement Learning-based methods was compared
to traditional impedance matching techniques, such as the Smith chart.
Traditional methods, while e!ective for static scenarios, lack the adaptabil-
ity required for dynamic environments. RL algorithms, in contrast, o!er a
significant advantage by automating the impedance matching process and
continuously adapting to changes in real-time. This capability is partic-
ularly valuable in high-frequency applications where conditions can vary
rapidly.
The MATLAB implementation, despite its limitations, provided valuable
insights into the challenges of modeling the impedance matching problem.
These insights guided the transition to Python and informed the design of
more scalable and e”cient RL implementations.
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While the Python implementation addressed many of the limitations of
MATLAB, it also introduced new challenges, particularly in terms of de-
bugging and configuration complexity.
One last comparison can be made looking at the grapghs of reward trend
between the second and the third implementation:

((a)) Second implementation reward trend ((b)) Third implementation reward trend

Figure 4.1: Comparison of rewards from the two Python implementations

The two graphs represent the output reward trends of two Python codes,
with the goal being to achieve rewards closer to 0 (less negative). The
first graph (4.1(a)) shows significant fluctuations in reward values across
iterations, ranging between -23 and -24.5. This instability indicates that the
model hardly improve its performance over time, with no clear trend toward
better results. In contrast, the second graph (4.1(b)) demonstrates steady
and consistent improvement, with the reward values gradually approaching
0 as the iterations progress. The smoothness of the curve highlights sta-
bility and e!ective learning. The second model is clearly better because
it reduces the reward closer to 0 over time with consistent progress. This
improvement likely results from enhancements in the upgraded code, such
as better optimization techniques, improved parameter tuning, and a more
e!ective reward mechanism. These changes enable the second model to
converge toward the desired outcome more systematically and e”ciently.

4.4 Summary

The results of this study underscore the potential of reinforcement learn-
ing in addressing the impedance matching problem. Both MATLAB and
Python implementations provided important lessons, highlighting the com-
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putational demands of RL algorithms and the need for robust tools to
manage these demands.
While the RL algorithms demonstrated promising results in optimizing
impedance matching, significant challenges remain, particularly in terms of
computational e”ciency and implementation complexity. These findings
lay the groundwork for future research to further refine and enhance the
application of RL to this critical engineering problem.
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Chapter 5

Discussion

5.1 Discussion

While this stage of implementation remains incomplete, the progress made
o!ers valuable insights into the requirements for achieving such an ambi-
tious goal. Addressing these challenges will likely require deeper domain
knowledge, more extensive familiarity with RLlib, and possibly collabora-
tion with experts in both reinforcement learning and microwave engineering.
Future research could focus on simplifying the implementation pipeline by
leveraging customized RL libraries or streamlined approaches, developing
flexible solutions to better isolate and debug individual components, and
improving knwoledge in advanced RL frameworks to address configuration
challenges more e!ectively. The findings of this thesis highlight the promise
and challenges of using reinforcement learning for impedance matching.
The Q-learning and SARSA algorithms provided valuable insights into
the strengths and limitations of RL-based approaches compared to tradi-
tional methods. These algorithms showcased their potential to automate
impedance matching, adapt to varying conditions, and achieve optimal
power transfer and minimal reflection coe”cients.
However, the implementation process revealed significant challenges that
need to be addressed to realize the full potential of RL in this field. A recur-
ring issue was the complexity of configuring RLlib, a powerful but intricate
reinforcement learning library. Misconfigurations in its API often led to
errors that were di”cult to diagnose and resolve. Additionally, dependency
mismatches between RLlib and related libraries, such as TensorboardX and
Ray, created further obstacles. These mismatches resulted in cryptic errors
that required extensive troubleshooting, often delaying progress.
Debugging errors across multiple threads presented another layer of com-
plexity. RLlib’s reliance on parallel computation through Ray made it
di”cult to isolate and address the root causes of errors. The steep learning
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curve of RLlib compounded these di”culties, highlighting the need for a
systematic approach to mastering its configuration hierarchy and syntax.
Despite these challenges, the progress made in this thesis lays a strong foun-
dation for future research. RL’s ability to dynamically optimize impedance
matching represents a significant advancement over traditional methods.
The algorithms tested here, while not achieving a fully functional imple-
mentation, demonstrated the potential of RL to address the limitations
of manual techniques, such as the Smith chart, and adapt to real-time
conditions.

5.2 Possibile future implementations

Future research should focus on simplifying the implementation process,
for example by Utilizing customized RL frameworks or developing modular
approaches to debugging.
Additionally, expanding expertise in advanced RL techniques will be essen-
tial to overcoming the complexities encountered in this study. Addressing
these challenges will require interdisciplinary collaboration, combining ex-
pertise in reinforcement learning, microwave engineering, and software
development.
In conclusion, this thesis represents a significant step toward integrating
modern computational techniques with classical engineering principles.
While challenges remain, the work done here underscores the potential of
reinforcement learning to revolutionize impedance matching, preparing the
groundwork for more e”cient, adaptive, and automated solutions in the
field of microwave engineering.
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