
University of Padova

Department of Mathematics

Master Thesis in Data Science

Multiple Time Series Forecasting with Temporal

Fusion Transformers

Supervisor Master Candidate
Professor Mariangela Guidolin Gaia Ziraldo
University of Padova

Academic Year
2022-2023

ii

This thesis is dedicated to my grandparents, which support and words of en-
couragement have accompanied me for the entirety of this academic journey.
I hope this achievement can make them proud.

iv

Abstract

The goal of this thesis is to present the Temporal Fusion Transformer model and to evaluate
its forecasting capabilities across multiple time series. Its contribution to the field of multi-
horizon, multiple time series forecasting is explored, with great focus on the interpretability
feature offered by the model. It is observed how improvements to the model performances can
be achieved when paired with a form of clustering on the target entities, either by exploiting the
natural categorization of the time series considered or by associating similar entities by means
of a clustering algorithm on the target variable.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

2 State of the Art in Multiple Time Series Forecasting 3
2.1 Forecasting multiple time series . 4
2.2 Statistical approaches . 7
2.3 Cross-Learning approaches . 9

2.3.1 Hybrid approaches . 11
2.3.2 Clustering . 12

3 Temporal Fusion Transformers 15
3.1 Model Structure . 16

3.1.1 Different covariate types . 17
3.1.2 Variable selection . 18
3.1.3 Static variable encoders . 20
3.1.4 Sequence-to-sequence networks 21
3.1.5 Static Enrichment layer . 21
3.1.6 Temporal Self-Attention layer . 22
3.1.7 Position-wise feed-forward layer 23

3.2 Interpretability feature . 24
3.2.1 Variable importance . 26
3.2.2 Interpretable multi-head attention 27

4 Experiments and clustering approach 31
4.1 Dataset and Testing Framework . 32

4.1.1 Demand pattern classification . 33
4.1.2 Metrics . 34

4.2 Holt-Winters benchmark . 36
4.3 TFT on entire dataset . 37

vii

4.3.1 Interpretation . 38
4.4 TFT on product tree clustering . 41

4.4.1 Interpretation . 43
4.5 TFT on k-means clustering . 48

4.5.1 Interpretation . 52

5 Conclusion 57

References 59

Acknowledgements 65

viii

Listing of figures

2.1 Sample representation of the target variable in the retail dataset offered by the
internship organization. 6

2.2 Difference between traditional and cross-learning models in handling multi-
ple time series forecasting. 10

3.1 Architecture of the Temporal Fusion Transformer model. 16
3.2 Different covariate types handled by the Temporal Fusion Transformer model. 17
3.3 Long Short Term Memory network architecture. 22
3.4 In blue the 60 step-ahead forecasts for the sample time series from the retail

dataset. 25

4.1 Demand pattern classification according to Syntetos & Boylan. 34
4.2 Demand pattern distribution of the 1000 entities in the retail dataset. The

predominance of irregular demand can be observed. 35
4.3 Attention weights for one-step-ahead forecasts relative to the global TFT model. 39
4.4 Variable selection weights relative to static, encoder and decoder variables for

the global TFT model. 40
4.5 Attention weights for all 7 TFT models trained on product tree partition. . . 44
4.6 Decoder, encoder and static variable importance for the 7TFT models trained

on product tree partition. 46
4.7 Product tree categories distribution in clusters 0, 3 and 4. 49
4.8 Centroid plots for each cluster. 51
4.9 Attention weights for all 7 TFT models trained on k-means generated clusters. 53
4.10 Decoder, encoder and static variable importance for the 7TFT models trained

on k-means generated clusters. 55

ix

x

Listing of tables

4.1 Optimal TFT model summary and dataset informations. 37
4.2 Global TFT model evaluation vs. Moving Average baseline and Holt-Winters

benchmark. 38
4.3 Subset cardinality and entity distribution at 1st subdivision level. 42
4.4 Global TFT model evaluation vs. Moving Average baseline and Holt-Winters

benchmark. 42
4.5 Single TFT models evaluation on product tree partition 43
4.6 Cluster cardinality on 7-means partition. 49
4.7 K-means TFT model evaluation vs. Moving Average baseline and Holt-Winters

benchmark. 50
4.8 Single TFT models evaluation on k-means generated clusters. 52

xi

xii

Listing of acronyms

TFT Temporal Fusion Transformer

GLU Gated Linear Units

GRN Gated Residual Networks

LSTM Long Short Term Memory network

xiii

xiv

1
Introduction

Multiple time series forecasting, i.e. the task of performing forecasts over several time series
at once, is a problem which has been predominantly tackled by statistical forecasting models,
but has recently been taken into consideration in the machine learning field as well. In many
real-world cases it arises the need to provide multi step-ahead forecasts for an ensemble of time
series. A large-scale retail brand for example, may require monthly forecasts for the sales of all
its products, or an infrastructure company needs traffic flow predictions on a set of regional
driveways in order to plan maintenance interventions. The challenges posed by providing fore-
casts for a large set of time series data concern not only the accuracy of the predictions but also
the computational burden required to perform such a task.

Generally the majority of models, either machine learning based or not, are able to provide
forecasts for one time series at the time, thus limiting the scope of the prediction only to the
data of a single entity without taking into account the global context or the possible interactions
between similar time series. A recent addition to the forecasting scene however is designed to
bypass such problem. Cross-learning models represent a family of forecasting methods capable
to generate predictions for a set of time series simultaneously, and as such have been receiving
increasing interest in the multiple time series forecasting field.

Another challenge that arises when tasked with forecasting is represented by model explain-
ability. Most models function in a ”black-box” fashion, meaning that the computations within
their architectures are complex and involve a great number of parameters, thus limiting the ca-
pability of the user to understand how the predictions were carried out and which features of

1

the time series had the most weight in the forecast. Especially in real world applications is re-
quired a tradeoff between model accuracy and forecast interpretability, thus prediction models
capable of offering insights on the underlying relationships present in the data are extremely
valued.

This thesis examines the contribution of Temporal Fusion Transformers, a cross-learning
model introduced in 2020 by K. Bandara, C. Bergmeira and S. Smyl [1], to the multiple time
series forecasting scenario. In particular, after examining the state of the art of multiple time
series forecasting models in the first chapter, it focuses on its architecture and its interpretability
mechanism. The last chapter presents the results of a series of experiments carried out with the
support of the internship organization ACT Operations Research IT s.r.l., aiming to assess the
Temporal Fusion Transformer performance in forecasting a real world retail dataset, comparing
the results against two frequently employed statistical benchmarks. Moreover, given the cross-
learning nature of the model and its capability of generating predictions over a set of entities
requiring a single training pass, its performance was tested after combining it with two forms of
partitioning on the training set as well, with the goal of ascertaining whether the employment
of such approach could signify in an improvement of forecast accuracy and computational cost.
The insights offered by the interpretability feature of the model were taken into account as well,
and their value was weighted by the context in which the Temporal Fusion Transformer was
trained.

2

2
State of the Art in Multiple Time Series

Forecasting

Time series forecasting is a well-known task in the fields of statistics and machine learning, and
has been tackled in many different ways across the years. Several models for multi-horizon fore-
casting have been developed, compared and thoroughly tested, each catering to different needs
and situations. In real-world applications however it’s often required to perform forecasts over
a large number of time series, either homogeneous and chronologically aligned or widely un-
related to each other. Most importantly, in many occasions the number of time series to be
handled is so large to not allow a one-by-one approach. In this fields, not only prediction ac-
curacy is required, but also autonomy in model construction and computational complexity.
The latter are relevant factors due to time being an essential resource in realistic settings. This
chapter presents a literature overview of the state-of-the-art for multiple time series forecasting,
presenting different approaches to the problem and highlighting their advantages and disad-
vantages.

For clarity, in this thesis the term entity will be used to identify a single time series with its
relative regressors belonging to a set of N time series. A set of entities can be represented by
a chain of stores, a set of products in a supermarket or a group of patients in healthcare for
example.

This thesis originates from an internship activity carried out in 2022 at the company ACT
Operations Research IT s.r.l., where I was allowed access to a wide library of forecasting models

3

and real world datasets. During the internship period I collaborated in the implementation and
testing of the Temporal Fusion Transformer model, which results are presented in the following
chapters.

2.1 Forecasting multiple time series

Multiple time series forecasting identifies the problem of providing predictions for a batch of
time series. The definition is very general on the set of entities to be predicted: it can refer
to a dataset of contemporary series sharing the same frequency as well as a portfolio of series
widely different in nature. The considered entities can be univariate, thus presenting only one
response variable, or multivariate, featuring a number of explanatory variables (or covariates)
either fixed or time dependent in addition to the target.

There are many real-world scenarios in which multiple time series forecasting is applied. One
of the prime examples is represented by the retail sector: in this field demand forecasting is often
required for a very large set of products. Such predictions are necessary to manage the supply
chain, reduce warehouse costs and to formulate proper purchase plans in line with the needs of
the customers. In retail systems items are identified with a SKU, or Stock Keeping Unit, and
are often organized in product categories at various levels of granularity. Time series are usually
multivariate, with the demand variable being combined to information regarding promotions,
holidays or store location for instance. Wagner et al. [2] developed a hybrid forecasting system
currently used in a large-scale food distribution company, while [3] compared several statistical
and Machine Learning models on the task of SKU demand forecasting. Another example of
system which employs multiple time series forecasting is the manufacturing industry. Manage-
ment systems in this sector feature thousands of articles distributed across one or more ware-
houses, thus making demand estimation for each finite product a necessity to plan purchases of
components, workforce scheduling and inventory management. In this sector, depending on
the industry, product time series are available in a wider granularity, usually weekly or monthly
and are mostly univariate.

Energy management and planning in various types of buildings (residential, entertainment,
business, industrial and more) has become a crucial problem requiring the support of electricity
consumption forecasting. Energy load predictions at building level represent a form of multiple
time series forecasting as well. Such scenario features data collected at high frequencies, mostly
hourly or daily, and dependent from a wide variety of exogenous variables such as holidays,
building use and destination, weather, energetic efficiency level of the structure, number and

4

behaviour of occupants, electricity price fluctuations and many others. The insights provided
by energy forecasts at household/factory level can be used to optimize heating and ventilation
systems, as well as to improve network stability. Another field in which forecasting multiple
time series can support the decision making process is represented by the healthcare system. Sev-
eral problems such as capacity planning for different wards in hospitals and predictive screening
on high-risk patients require forecasting models able to identify extreme events, which can help
the system improve its robustness under critical conditions. Additionally, healthcare systems
can benefit from price or demand predictions on a set of frequently prescribed medications to
better manage pharmaceutical supply chain, as suggested by [4]. Healthcare data can consist
in both univariate and multivariate time series, in the second case possible covariates can repre-
sent weather conditions, genetic features of a patient, average occupancy and more. Traffic flow
data on a set of roads and highways, either hourly aggregated occupancy rates or flow data at 5-
minute intervals [5], represent another application for multiple time series forecasting. Traffic
data are gathered through road sensors and are dependent on a wide variety of covariates such
as geographical location, holidays, atmospheric conditions, accidents or planned road works.
Forecasting traffic flow for a set of roads in a region can aid in planning maintenance opera-
tions and infrastructure management, while real-time forecasting gives drivers the opportunity
to select better routes.

Multiple time series forecasting received high interest in the academic field as well: the Makri-
dakis Competitions, M-Competitions for short, are a series of open forecasting competitions in
which the participants are tasked with a multiple time series forecasting problem, having to pro-
vide predictions for a large number of time series, all belonging to different application domains
and featuring different frequencies and forecasting horizons. The goal of such challenges was
to empirically ascertain which method or family of methods was the most suited in forecasting
a large and diverse dataset, testing the best practices for time series prediction and comparing
the results on standard benchmark approaches. In particular, the M4 Competition [6] held in
2018 featured a dataset of 100.000 entities, the largest to date, and received 61 submissions.

In order to provide a concrete example of the variety of entities that can possibly constitute
a multiple time series forecasting problem, in Figure 2.1 are illustrated the target variables of 7
time series present in a dataset offered by the internship organization, reporting daily demands
for 15593 products of a retail chain. For reasons of corporate confidentiality it is offered a
sample representation of the retail dataset by showing only few series which can however suf-
ficiently convey the complexity and high variability between entities present in many multiple
time series forecasting problems. It is possible to observe the pattern dissimilarity in the sam-

5

Figure 2.1: Sample representation of the target variable in the retail dataset offered by the internship organization.

6

ple, which comprises both series presenting large and frequent periods of zero demand and
entities showing a smoother behaviour. In some entities the spikes are more regular in magni-
tude, while in other a strong dissimilarity can be noticed, seasonal behaviours are not consistent
as well. In such cases tackling the task of forecasting a dataset as diverse as the one illustrated
should involve a flexible approach, not relying on specific time series regimes.

The biggest challenges when forecasting multiple time series arise when the number of enti-
ties is very large, making manual model selection and construction infeasible in terms of time.
When faced with a prediction task involving a huge quantity of targets, autonomy in model
construction is highly valued. For this reason simple statistical models or global cross-learning
models, which will be expanded upon in the following sections, are the most suited approaches
to such task since they require less computational resources and are able to provide reliable
results in terms of forecast accuracy. Another issue regarding the task of providing forecasts
for multiple entities lies in possible relationships between considered time series. In the case
in which the portfolio presents targets influencing each other, models performing predictions
over one series at a time fail to capture such connections, possibly overlooking some temporal
patterns shared between the entities. The following sections will present an overview of the
forecasting approaches more suited to tackle the problem of multiple time series forecasting.

2.2 Statistical approaches

Statistical forecasting models for time series represent the first developed approaches for the task
of providing predictions for historical data before the advent of Machine Learning techniques.
This family includes a wide variety of methods and algorithmic procedures, from simple mod-
els such as Exponential Smoothing or Moving Averages, to more complex tools, all having in
common the fact of relying on a sample of the available data to infer future values. More specif-
ically, statistical models aim to represent the entire data population on the basis of a sample of
variable size, performing algorithmic manipulations to reconstruct the underlying data process
which is assumed to generate the distribution. Due to their nature, models belonging to this
class utilize only a part of all historical data available, either by setting a sample size or lookback
window or by assigning decreasing weights to older observations.

Exponential smoothing defines the one step-ahead forecast as the weighted average of all past
observations, where the weights decrease exponentially the older the observations get. Different
variations of Exponential Smoothing models have been formulated from Simple Exponential
Smoothing (SES), where forecast at time t+1 is defined as a convex combination between the

7

previous forecast ft and the previous observation of the series yt:

ft+1 = αyt + (1− α)ft (2.1)

In presence of time series presenting a trend, Holt’s Exponential Smoothing was introduced,
while when dealing with data having both a trend and a seasonal pattern (either additive or
multiplicative) Holt-Winters model was formulated to capture such features. These are some
of the many variants of the Exponential Smoothing method, each designed to deal with differ-
ent types of situations. Despite its simplicity this class of models represents a reliable forecasting
benchmark to this day.

ARIMA models are a class of statistical forecasting methods born from the combination of
Autoregressive models (AR) with Moving Average models (MA) together with an integration
feature. The basic concept behind these methods relies on representing a forecast as a linear
combination of past observations of the differentiated time series and past forecast errors. More
specifically, an ARIMA(p, d, q) model is defined as follows:

(1− ϕ1B − ...− ϕpB
p)(1− B)dyt = c+ (1− θ1B − ...− θpB

p)εt (2.2)

where p indicates the level of the autoregressive part, q indicates the level of the moving average
part andd represents the degree of integration. The lag operatorB is defined asBdyt = yt−d. A
number of variants has been developed for this family as well, from SARIMA which is designed
to model seasonal components of the time series as well, to ARIMAX, a multivariate version of
the ARIMA model, capable to include explanatory variables in the forecast. ARIMA models
represent a class of extremely versatile forecasting methods, having the feature to adapt to a
wide variety of time series. Due to its adaptability and performances this family is still one
of the most used in the field of single and multiple time series forecasting, either on its own,
combined with other techniques or used as base forecast and further refined.

A large number of other forecasting models belong to the class of statistical approaches, each
one catering to a specific case: the Croston method [7] for example is designed to model sparse
and intermittent time series. The Vector Autoregression method [8], VAR for short, is a mul-
tivariate forecasting model used mostly in econometric scenarios and is able to provide predic-
tions for multiple time series at once. The Theta model [9] on the other hand is a recently
developed method based on curvature decomposition and known for its simplicity, flexibility
and reliable performances. In particular it achieved remarkable results in the M3 and M4 com-

8

petitions, outperforming most of the pure Machine Learning models submitted.
Most statistical forecasting approaches such as ARIMA and Exponential Smoothing are uni-

variate, i.e. they require as input only the target variable in order to perform the predictions.
This feature leaves such methods at disadvantage with respect to multivariate models, since
by considering only the target variable they do not exploit the information provided by other
regressors. In general however, univariate statistical models compensate their neglect for exoge-
nous variables with relatively accurate forecasts. Moreover, statistical forecasting methods are
known for having considerably faster training times and lighter computational costs with re-
spect to Machine Learning models, which in multiple time series scenarios represents a major
advantage, especially when the number of entities is very large. In such cases, training a set of
Machine Learning models and performing hyperparameter optimization on them becomes in-
feasible in terms of time and computational resources. Statistical models represent a valid and
reliable alternative, having proven empirically on several occasions [10] to be a valid tradeoff
between forecast quality and training complexity.

2.3 Cross-Learning approaches

Another approach to forecasting multiple time series is represented by cross-learning methods
[11]. Traditional forecasting methods are trained and perform predictions in a series-by-series
fashion, meaning that N independently trained models are required to forecast N different time
series. Most statistical methods such as Exponential Smoothing, ARIMA models and Theta
methods, as well as Machine Learning based methods like recurrent neural networks belong to
this category. Cross-learning methods on the other hand can be used to forecast N time series
simultaneously by training one single model on the entire dataset as illustrated in Figure 2.2.

Both approaches have their advantages and disadvantages. Pure machine learning models
such as DNNs or sequence-to-sequence networks have proved extremely effective in specific
tasks such as image classification (with the Resnet [12] architecture representing a solid bench-
mark for this task), Natural Language Processing (NLP), object detection and many others.
Their performances when applied to time series forecasting however are often poor when com-
pared to pure statistical models, which is surprising given the big difference in computational
complexity between the two categories. The core difference between the two families of meth-
ods is that, unlike statistical models which assume an underlying data generating process, ma-
chine learning based models approximate said distribution by capturing non-linear relation-
ships in the data [11]. For this reason they require a large amount of training samples in order

9

Figure 2.2: Difference between traditional and cross-learningmodels in handlingmultiple time series forecasting.

to properly infer their distribution and capture trend and seasonality. Since traditional ma-
chine learning models for forecasting are trained on one time series at a time, this translates in
the necessity of long or high-frequency time series for training. Depending on the application,
this requirement is often not satisfied, thus resulting in an unsatisfactory performance even
when compared to forecasts provided by simpler and faster statistical models. Moreover as ob-
served by [13], even if the considered time series are long and present a large number of data, in
forecasting frameworks often occurs that the distant past has a considerably lower predictive
relevance as temporal patterns and relationships will change after long periods. It follows that
machine learning models trained in a series-by-series fashion are usually not able to outperform
their statistical counterparts unless provided with very long and stable time series, due to their
inability to distinguish between signal and noise when provided with scarce training samples.

One possible solution to improve this behaviour is to train machine learning models in a
cross-learning fashion, allowing the methods access to a wider variety of time series and giving
them the possibility to better capture global patterns. Another advantage gained from this
implementation is a reduction in running times and computational complexity due to the fact
that only one model needs to be fitted to the data instead of many. In general, especially when
the available time series are short and/or present low frequency (monthly or yearly), which is
a common occurrence in many real-world applications, machine learning models can greatly
benefit from a cross-learning approach.

At the same time, while pure statistical methods applied in a series-by-series fashion consti-
tute a solid and reliable choice for many forecasting tasks, they too can benefit from a cross-

10

learning approach. If combined with some machine learning component it can allow them
to enrich their high-performance single-entity forecasts with global context from the whole
dataset.

On the downside, cross-learning implementations also present the following limitations:

1. They require datasets populated with numerous time series in order to allow the model
to capture meaningful relationships. Providing individual forecasts necessitates a large
and possibly diverse set of series so that the method can be able to learn different patterns
and take advantage of the similarity between previously observed inputs.

2. Machine learning methods trained with a cross-learning approach usually perform better
when paired with different pre-processing techniques on the input data as highlighted by
[11]. These techniques include but are not limited to: normalization, de-seasonalization,
de-trending (which can be obtained by differencing) and feature extraction. Depending
on the implementation, different pre-processing operations may be required and fore-
casting accuracy varies according to which of these techniques have been adopted. Thus
the choice of optimal pre-processing methods gains more weight and adds complexity
to the task of building a reliable cross learning model.

In conclusion, as remarked by [11], cross-learning is a technique that in determinate situa-
tions can greatly benefit the performances of machine learning models with respect to their
series-by-series trained counterparts. Additional approaches such as enriching the inputs with
feature extraction or the combination in a meta-learning fashion with traditional models can
further improve the accuracy of such models. Another improvement strategy suggested by the
article consists in balancing the training sample and/or applying some form of clustering on
the data based on their particular characteristics.

2.3.1 Hybrid approaches

Another solution is the use of hybrid approaches, namely models that combine cross-learning
methods with traditional forecasting methods. Both first and second place in the M4 competi-
tion [6] belong to this category. The first classified [14] is a model that combines exponential
smoothing with Long Short Term Memory networks by means of a dynamic graph neural net-
work trained globally on all time series. Different data pre-processing techniques including nor-
malization and de-seasonalization are also applied prior to training. The second submission to
the competition [15] proposes the FFORMA framework (Feature-based FORecast Model Av-
eraging), which features a meta-learner model trained across the entire time series dataset. The

11

output of this model is a vector of weights that are used to combine the forecasts of a pool of
traditional models (ARIMA, exponential smoothing, random walk, naive etc...). Both cited
methods are also hybrid in the sense that they combine machine learning models and statistical
models to provide forecasts, thus exploiting the advantages of both approaches while dampen-
ing their drawbacks.

According to [11] there are multiple ways to combine cross-learning models with traditional
ones to produce a reliable hybrid method:

• Averaging forecasts from a cross-learning model and a traditional model;

• Integrating the training inputs of a cluster learning model with features obtained from
traditional models;

• Using information on the entire time series set extracted by means of a cross-learning
method to combine the forecasts produced from different traditional models;

The biggest advantage of hybrid models is that they combine cross-learning, allowing them
to capture informations at a global level for the forecasting of single entities, with traditional
methods, which emphasize the individual characteristics of the time series. The results of the
M4 competition highlight the potential of cross-learning approaches for forecasting, and in par-
ticular of hybrid methods. Many methods of this nature also happen to be a combination of
machine learning and statistical models, which also distinguished themselves in the M4 compe-
tition for their improved performances, thus suggesting further research in this field of multiple
time series forecasting.

2.3.2 Clustering

The opportunity of training a model globally over multiple entities opens the possibility in ac-
curacy deterioration due to wide differences between single time series, in particular when the
entities present a highly nonlinear or volatile behaviour. To overcome this issue a clustering
methodology can be applied. This approach suggests to subdivide the original entity set into
smaller subsets containing entities sharing similar patterns. Then a forecasting model is trained
on each subset of time series. The goal of such approach consists in allowing the model to take
advantage of similarities between time series during training phase. The outcomes of this pro-
cess are strongly dependent on the similarity criterion that is adopted when grouping entities
together, which opens up a variety of solutions according to the application. An improvement

12

in forecasting accuracy from adopting a clustering methodology over training a model globally
was reported by [16] and [17].

In some applications, time series data are already provided with a form of natural grouping
or categorization. Examples of this occurrence can be found in retail data, where items are
often organized in a product tree, or in the manufacturing field, in which articles present a
hierarchical structure in the database. This form of partition does not provide a measure of
similarity between entities but exploits the domain knowledge of the case in exam and relies on
natural characteristics intrinsic to the data.

When a natural categorization is not present or it’s not sufficiently representative of similar-
ity between entities, algorithmic clustering methods can be adopted to provide an appropriate
partition. T. Warren Liao [18] classified clustering approaches for time series data in three cate-
gories:

• Distance-based clustering: also called raw-data-based approaches, this family includes al-
gorithms that group time series based solely on the distance between raw data points.
Their results are strongly dependent on the chosen distance metric and the time series
often require a form of preprocessing if their lengths are different. The clustering algo-
rithm applied can range from k-means, k-medioids, fuzzy c-means, agglomerative hier-
archical clustering and so on.

• Feature-based clustering: algorithms belonging to this category perform grouping indi-
rectly, by applying a standard clustering procedure to a static vector of features extracted
from each time series. Global features usually describe relevant information of an entity
such as mean, variance, autocorrelation at a specific order, strength of trend/seasonality
and many others. Such methods offer more flexibility since they are more robust to noisy
and missing data, can work on time series of differing lengths and usually perform clus-
tering on lower-dimensional vectors. Furthermore, feature-based clustering approaches
are also more interpretable with respect to the other categories since they perform group-
ing on a set of application dependent features encoding specific information on the time
series.

• Model-based clustering: this class of grouping algorithms performs clustering on the ba-
sis of parameters of a model that has been fitted to the data. In this family of approaches
each time series is assumed to be generated by a model or an underlying probability distri-
bution. Entities are then grouped according to a similarity measure between the model
parameters or the parameters themselves can be used to identify the clusters. The inter-
pretability of these methods is strongly dependent on the model chosen to represent the
data. One example of this approach was the one introduced by Piccolo [19], where clus-
tering was performed on the Euclidean distance between the autoregressive expansion
vectors obtained by fitting ARIMA models to the time series.

13

In general, most clustering approaches necessitate the number of subsets to be specified be-
forehand. Such hyperparameter requires tuning by trial and error to identify the best value.
However some algorithms such as the Snob clustering method proposed by [20] can autonomously
identify the most optimal number of clusters, thus reducing the user’s workload.

This approach extends cross-learning methods by allowing them to take account of similarity
between time series, thus improving prediction accuracy since globally trained cross-learning
model can experience a deterioration in accuracy from the high variability of entities.

14

3
Temporal Fusion Transformers

The Transformer architecture, proposed in 2017 by a team of researchers at Google Brain [21],
represented an evolution in sequence-to-sequence deep neural networks and opened the way
to more advanced machine learning based models for sequence processing. Transformers em-
ploy an encoder-decoder structure paired with an attention mechanism which is able to capture
relationships between different positions in the input sequences. Such architecture gained con-
siderable success, and is frequently utilized in many fields such as Natural Language Processing,
Machine Translation, Computer Vision and time series forecasting.

In 2020 Lim, Arik, Loeff and Pfister proposed the Temporal Fusion Transformer [1], an
attention-based architecture for multi-horizon time series forecasting which represented an evo-
lution of the original Transformer architecture and introduced numerous new features and
functionalities. One of the most important additions consisted in its ability to forecast multi-
ple time series simultaneously, thus employing what in Section 2.3 Chapter 2 has been defined
as a cross-learning approach. Moreover, it introduced an interpretability mechanism, which
allows the user access to informations relative to the fitting process, enhancing model explain-
ability and enhancing the understanding of the data.

In this chapter the structure of the Temporal Fusion Transformer model is presented. Tem-
poral Fusion Transformers can be classified as a pure machine learning model for multi-horizon
forecasting, trained in a cross-learning fashion. It can provide predictions for homogeneous,
chronologically aligned time series sharing the same set of covariates, together with performing
variable selection on the regressors and employing an attention-based mechanism to capture

15

Figure 3.1: Architecture of the Temporal Fusion Transformermodel.

long-term dependencies present in the entities.

3.1 Model Structure

The Temporal Fusion Transformer model presents different components, each serving a spe-
cific function for the task of multi-horizon forecasting across multiple time series:

1. Variable selection networks

2. Gating mechanisms

3. Static variable encoders

4. Sequence-to-sequence networks

5. Interpretable multi-head attention

In this section the architecture of the TFT model is presented in detail, with particular at-
tention to each component’s function.

16

Figure 3.2: Different covariate types handled by the Temporal Fusion Transformermodel.

3.1.1 Different covariate types

In many real-world applications the types of available data are often heterogeneous and very
different in nature. The TFT model deals with covariates by subdividing them in the following
categories:

• Static covariates: time independent variables, unchanging throughout the time series,
although they can be different between entities. They usually represent global, static
characteristics of the entity in question (unique item identifiers, store location, genetic
information etc...);

• Known future covariates: time dependent variables which values are known in the future
(holidays, days of the week etc...);

• Unknown future covariates: time dependent variables which future values are unknown,
also called observed variables (product demand, price, weather etc...).

Many machine learning models for time series forecasting neglect this input heterogeneity
by either ignoring static metadata altogether or by assuming all covariates known into the fu-
ture [1]. The Temporal Fusion Transformer on the other hand reserves each covariate type a
different treatment and at several points in its architecture allows static information to flow in
the model state and enrich the forecasts.

Figure 3.2 portrays the different input types handled by a multi-horizon forecasting model.
Remaining consistent with the original article’s notation [1], the inputs are represented as such:

17

Let I = {1, ..., N} be the set of entities in the dataset, then to each item i ∈ I and timestep
t ∈ [0, Ti] are associated the following:

• A set si ∈ Rms of static covariates;

• a scalar target variable yi,t ∈ R;

• a set of input features χi,t =
�
zTi,t, x

T
i,t

�T , where zi,t ∈ Rmz represents the observed
inputs and xi,t ∈ Rmx the known inputs.

The Temporal Fusion Transformer model is able to produce both point forecasts and quan-
tile forecasts for the target variable. Being a cross-learning multi-horizon forecasting method, it
will simultaneously generate predictions for every entity i ∈ I and every step-ahead timestep
τ ∈ {1, ..., τmax}, where τmax indicates the maximum prediction length. The point forecast
at time t for the i-th entity, ŷi(t, τ), generated by the TFT model, can then be expressed as:

ŷi(t, τ) = f(τ, yi,t−k:t, zi,t−k:t, xi,t−k:t+τ , si) (3.1)

yi,t−k:t = {yi,t−k, ..., yi,t−k}
xi,t−k:t+τ = {xi,t−k, ..., xi,t, ..., xi,t+τ}

where k represents the length of the lookback window applied by the model. Through this
window, only inputs dating back at most k steps are being utilized for the forecast. It is impor-
tant to observe that target and observed values are considered up until the forecast start time t,
while known future inputs range from the lookback to the prediction window.

3.1.2 Variable selection

It can be observed from Figure 3.1, that in the encoder section of the model at each time step
both static metadata as well as past and known future covariates are fed through variable selec-
tion networks. This preliminary operation benefits the model by allowing it to consider the
most salient variables and give smaller weights to the ones with lest predictive content.

Static, observed and future covariates get processed through different variable selection net-
works, which structure is illustrated in Figure INS. First, for each timestep all inputs relative
to all entities are encoded in a dmodel-dimensional vector ξjt . This dimension, which will also
be referred to hidden size, is one of the most important hyperparameters in the model and
represents the size at which inputs will be processed throughout the architecture.

18

Before expanding on the structure of variable selection networks however, is important to
define two gating modules that will be employed in different sections throughout the Temporal
Fusion Transformer’s architecture: Gated Linear Units and Gated Residual Networks.

1. Gated Linear Units (GLU): this element allows the model to completely suppress an
input if necessary.

GLUω(γ) = σ(W1,ωγ + b1,ω)⊙ (W2,ωγ + b2,ω) (3.2)

It achieves this by performing an Hadamard element-wise product between the sigmoid
of a linear transformation of the input γ and another linearly transformed input vector.
Since the sigmoid function can assume values in the range]0, 1[, a Gated Linear Unit in-
troduces the possibility of negating the input if necessary, thus enabling the TFT model
to control the flow of informations in its architecture.

2. Gated ResidualNetworks (GRN): in order to introduce optional nonlinear processing in
the TFT model, GRNs were introduced. This gating module employs a Gated Linear
Unit controlling the flow of a nonlinear transformation of the input a. An optional
context vector c can be integrated in the component:

GRNω(a, c) = LayerNorm(a+GLUω(η1)) (3.3)
η1 = W3,ωη2 + b3,ω (3.4)
η2 = ELU(W4,ωa+W5,ωc+ b4,ω) (3.5)

By modifying the parameters ω, it is possible to entirely skip the nonlinear transforma-
tion applied by the Exponential Linear Unit funtion (ELU), and to only consider the
original input a.

At every timestep input embeddings for each variable j are linearly concatenated in a vector
Ξt. This flattened input is fed through a GRN and a Softmax layer, together with a static con-
text vector cs obtained from embedding the static covariates s, to generate variable selection
weights. All input embeddings are then further processed through a GRN, which weights are
shared across all timesteps. Lastly, the processed inputs are weighted and combined by means
of the previously generated weights vector vχt ∈ Rmχ . The output of every variable selec-
tion network, for each timestep and variable category (static, observed and future), is a vector
ξ̃t ∈ Rdmodel .

19

Ξt =
�
ξ1t , ..., ξ

mχ

t

�
vχt = Softmax (GRN(Ξt, cs))

ξ̃t =

mχX
j=1

vχt ∗ ξ
j
t

This variable selection features makes the Temporal Fusion Transformer model particularly
effective when applied to datasets with a large number of correlated covariates, as it makes it
able to utilize only the most relevant regressors. Furthermore, as it will be detailed in Section
3.2, the variable selection weights can be used to determine the significance and the predictive
content of each covariate.

3.1.3 Static variable encoders

Unlike observed and future covariates, which are directed towards temporal processing after
being fed through variable selection networks, static variables undergo another level of manip-
ulation. The TFT employs static covariate encoders to extract context information from static
inputs. The purpose of this operation is to integrate global metadata at various locations in the
architecture to further refine the predictions.

This model components outputs four context vectors cs, cc, ch and ce of dimension dmodel
generated from four separate GRN encoders. Each of this vectors serves as an additional input
to different components of the TFT model, their respective purposes are reported below:

1. cs : context vector for variable selection;

2. cc : context vector for local processing of temporal features, used to initialize the cell state
of first LSTM encoder;

3. ch : context vector for local processing of temporal features, used to initialize the hidden
state of first LSTM encoder;

4. ce : context vector for the enrichment of temporal features with static information.

Static metadata contain valuable informations, especially in cross-learning contexts where
multiple time series are being considered. In this settings time-independent covariates assume
further relevance with respect to single-series frameworks, as they can be employed by the

20

model to distinguish and assign forecasts to different entities. A Deep Learning model for
wildfire danger forecasting [22] applied an approach similar to the one employed in the TFT
architecture, separating dynamic and static variables and reserving an ad-hoc processing for the
latter.

3.1.4 Sequence-to-sequence networks

The time-dependent outputs of variable selection networks ξ̃t are then subject to temporal pro-
cessing in a sequence-to-sequence layer. This model component employs Long Short Term
Memory networks (LSTMs) to capture local patterns in the data and serves as positional en-
coding to provide uniform temporal features to the decoder.

LSTM networks [23] are a sequence-to-sequence architecture considered to be an evolution
of Recurrent Neural Networks (RNNs). Unlike the latter, LSTMs are not subject to vanishing
gradient issues and are capable to learn dependencies between timesteps several lags apart. They
are able to capture both long and short-term temporal dependencies thanks to a gate-controlled
cell state. As can be seen in Figure INS, the gate regulates the information flowing inside the
cell state, allowing it to stay unchanged for a large number of lags and determines which inputs
are relevant to update it.

In the current application in the TFT architecture, an hyperparameter regulates the number
of stacked LSTM layers (with 1 layer being the default option). Furthermore, the cell state c1
and hidden state h1 at the beginning of the sequence are initialized by means of the context
vectors cc and ch (defined in Subsection 3.1.3) respectively.

3.1.5 Static Enrichment layer

For every time step t the sequence-to-sequence layer outputs a set of uniform temporal features
ϕ(t, n) ∈ Rdmodel , where n ∈ {−k, ..., τmax} is a positional index. The distinction between
the indices t andn lies in the fact that t represents the forecast time, whilen indicates the offset in
time steps from the forecast time. Afterwards, a gated skip connection is employed to enhance
the outputs with the weighted embeddings ξ̃t:

ϕ̃(t, n) = LayerNorm(ξ̃t +GLU(ϕ(t, n))) (3.6)

Subsequently, the processed temporal features enter a static enrichment layer, where they are

21

Figure 3.3: Long Short TermMemory network architecture.

further enhanced with the static context vector ce by means of a Gated Recurrent Network:

θ(t, n) = GRNθ(ϕ̃(t, n), ce) (3.7)

This operation is carried out for every positional index n. The weights of the GRN employed
in this model component are shared across the layer.

3.1.6 Temporal Self-Attention layer

Finally, the static-enriched temporal features enter the Temporal Self-Attention layer, the core
part of the TFT’s architecture. The purpose of this model component is to capture long-term
dependencies in the data. It achieves this by processing the static-enriched temporal features
θ(t, n) through an Interpretable Multi-Head Attention module. The finer details of this com-
ponent will be explained in Section 3.2, but its operation is similar to classic multi-head atten-
tion modules.

For every time step t, the k+1+τmax temporal features θ(t, n) are concatenated in a matrix

22

Θ(t), which serves as input for the Interpretable Multi-Head Attention.

Θ(t) = [θ(t,−k), ..., θ(t, τ), ..., θ(t, τmax)]T ∈ Rdmodel×(k+1+τmax) (3.8)

The matrix obtained this way is used simultaneously as query, key and value for the attention
block and outputs are generated only for future horizons {1, ..., τmax}:

B(t) = InterpretableMultiHead(Θ(t),Θ(t),Θ(t)) (3.9)

B(t) = [β(t, 1), ..., β(t, τmax)]
T ∈ Rτmax×dmodel (3.10)

In the formula above the τmax output vectors are grouped in a single matrixB(t). The number
of attention heads employed in this component is an hyperparameter chosen by the user.

Following this component, a gating layer featuring a skip connection is used to preserve the
information from the static-enriched temporal features. For each time step t this operation is
applied at every positional index n.

δ(t, n) = LayerNorm(θ(t, n) + GLUδ(β(t, n))) (3.11)

3.1.7 Position-wise feed-forward layer

Before generating the forecasts, the outputs of the temporal self-attention layer are subject to a
last instance of non-linear processing in a position-wise feed-forward layer. In this component
for every positional index n ∈ {1, ..., τmax} another Gated Recurrent Network is used.

Lastly, to preserve context from the processed temporal features ϕ̃(t, n) another gated skip
connection is employed:

ψ̃(t, n) = LayerNorm(ϕ̃(t, n) + GLUψ(ψ(t, n))) (3.12)

The advantage of the numerous skip connections utilized in different sections of the TFT
architecture consists in providing further unprocessed inputs to the deepest sections of the net-
work, thus enabling feature reusability. Many established complex machine learning architec-
tures such as ResNet [12] or DenseNet [24] make frequent use of shortcut connections. The
advantage of deep architectures lies in their ability to learn extremely complex relationships
directly from the data. On the downside, however, they often fail to represent simple interac-
tions and after a certain depth their training and optimization becomes flawed and is subject to

23

failure. The use of skip connections allows the following benefits:

• Feature reusability : Allowing a model to utilize in deeper layers features learned in earlier
layers is beneficial to training. In [25] is suggested that reusing features from previous
layers can be more advantageous than adding new features in every layer, when tasked
with learning a mapping. Thus feature reuse makes possible to lower the amount of
model parameters required to represent a family of functions.

• Increased generalization : Skip connections, integrated with gating mechanisms, allow
a deep architecture to entirely skip or limit the influence of some sections of the net-
work. Machine Learning models with a large number of layers not employing shortcut
connections are not guaranteed to represent even an identity function over the data, as
proven in [25]. This follows from the fact that in deep neural networks small changes to
the training data translate into large changes in the forecast. Thus being able to cut off
sections of the network and reducing depth allows DNNs to represent a wider range of
relations.

• Improved optimization : Deep neural networks training relies on the gradient descent
algorithm. If the gradient is ill-conditioned it causes optimization to fail. As highlighted
by [25], for deep architectures depth growth translates into asymptotically singular error
gradients, which causes an accumulation of precision errors in the backpropagation algo-
rithm. The result is an erratic weights update and optimization failure. The integration
of skip connections in the model architecture avoids the singularity of error gradients,
thus ensuring a successful optimization with consistent weight updates.

The Temporal Fusion Transformer can either output τmax-step-ahead punctual forecasts
ŷ(t, τ) for every prediction time t, or quantile forecasts ŷ(q, t, τ) for a set of user-specified
percentiles identified by q. Both results are obtained by means of a simple linear transformation
on ψ̃(t, τ). Figure 3.4 offers a representation of the 60-step-ahead punctual forecasts (in blue)
for the 7 sample time series presented in Chapter 2 provided by a Temporal Fusion Transformer
model.

3.2 Interpretability feature

One of the most important advantages offered by the Temporal Fusion Transformer model is
its ability to provide insights on how the predictive process was carried out, highlighting the
subsets of inputs which brought the most value to the forecast as well as suggesting the un-
derlying temporal relationships present in the data. Additionally the TFT can identify which

24

Figure 3.4: In blue the 60 step-ahead forecasts for the sample time series from the retail dataset.

25

temporal pattern present in the entities was useful to infer future forecasts and recognize to a
certain extent variations in the regime of the considered time series.

Aside from prediction accuracy, a model offering such interpretable results is extremely valu-
able with respect to other models which carry out their forecasts in a ”black-box” fashion. The
latter category, which includes the majority of machine learning based models, outputs predic-
tions on the data without providing additional context on the process through which this was
achieved. Not only that, but in general the computations such methods employ in their archi-
tectures are complex and do not carry much informative content to a user. A recurrent neural
network, for example, utilizes a large number of parameters tied with nonlinear activation func-
tions in a way that is hard to understand how variables are combined to generate a forecast. In
this sense the TFT is no different, however in certain components of its architecture the learned
parameters can be traced back to original features of the data, such as input variables or time
steps, and thus be exploited to gain additional knowledge.

The value these informations bring to the user is procedural. Knowledge regarding variable
importance can be exploited in order to influence future targets, while context concerning tem-
poral patterns can be utilized to improve the forecast of the model by applying additional pro-
cessing to the input data. For example, a model can be retrained after excluding the variables
which achieved the lowest importance, or after applying a form of feature engineering incorpo-
rating the learned seasonal information. If the model recognized valuable temporal patterns in
early time steps it might prove useful to retrain it with a larger input window.

For practical implementations, especially when the user has the capability to influence some
of the quantities related to the model inputs or when forecast results have a role in a decision-
making process, model explainability can be considered more valuable than high accuracy [26].
A manufacturing firm can serve itself of information about variable relevance to modify its
business strategy, focusing on the aspects which more conditioned the final forecast.

The current chapter focuses on how the Temporal Fusion Transformer model is able to ex-
tract valuable information from its architecture, and how the provided knowledge can be inter-
preted to further understand the underlying aspects present in the data.

3.2.1 Variable importance

The variable selection networks weights can be used to assess the predictive relevance of each co-
variate in the dataset. For every time-varying regressor j, included the auxiliary regressors built
by the model itself, the variable importance vj is obtained by averaging the variable selection

26

weights vjt across all their relative time steps:

vj =

s
(max)
jX
t=s

(0)
j

vjt (3.13)

In the formula above s(0)j and s(max)j indicate the ranges of past inputs for encoder variables
and future inputs for decoder variables. Static variable weights vs on the other hand do not
require averaging over time steps, and are returned without additional processing.

It is important to observe that for time-dependent known future variables, which are pro-
cessed both in the encoder variable selection networks and in the decoder variable selection
networks, the encoder weights and decoder weights are different. This is due to the fact that
the GRN present in these components share their weights separately across the encoder and
the decoder.

These parameters represent the learned relevance each input had for the purposes of provid-
ing a forecast. The highest the parameter value, the more significant that specific covariate’s con-
tribution was for the model. In a finer sense, they represent the influence each regressor bears
over the target variable. To mitigate overfitting, a subset of covariates can be determined by
setting a cutoff threshold and by selecting only the regressors which variable selection weights
resulted higher than the threshold value. Then the TFT or another forecasting model can be
trained on the input data considering only the covariates present in the subset. Alternatively,
the features can be ranked according to their selection weights to determine where to direct
resources for the purpose of conditioning the target variable.

3.2.2 Interpretable multi-head attention

The Interpretable Multi-Head Attention mechanism, employed in the decoder of the TFT
model and introduced in Section 3.1, represents the central component of its architecture. Its
function is to capture long-term dependencies and to learn patterns in the input data. However,
the main feature that distinguishes it from other attention-based decoders is the information it
provides along the processed inputs.

Regular Multi-Head Attention linearly combines the concatenation of the outputs of each

27

head by means of a weight matrixWH ∈ R(mH ·dv)×dmodel :

MultiHeadAttention(Q,K, V) = [H1, ..., HmH
]WH (3.14)

Hi = Attention(QW
(h)
Q , KW

(h)
K , V W

(h)
V) ∀i ∈ {1, ...,mH} (3.15)

wheremH indicates the number of heads used in the attention block.

Interpretable Multi-Head Attention on the other hand, averages the outputs of the atten-
tion heads and applies a linear transformationWH on the average (not the concatenation). An-
other notable difference is that the value matrix weightsWV are shared across all heads:

InterpretableMultiHead(Q,K, V) = H̃WH (3.16)

H̃ =
1

mh

mhX
h=1

Attention(QW
(h)
Q , KW

(h)
K , V WV) (3.17)

=

(
1

mh

mhX
h=1

Softmax(QW
(h)
Q W

(h)T
K KT/

p
dattn)

)
VWV (3.18)

= Ã(Q,K) · VWV (3.19)

In this variant the weight matrixWH ∈ Rdattn×dmodel is used to ensemble the additive outputs
of the heads, where dattn indicates the dimension of the attention weights. Moreover temporal
masking is applied to the every attention head, such that only past features can be used to predict
future ones. All the time steps in the decoder can attend to all positions in the decoder up to
and including themselves.

This way, the shared weights can be exploited to extract the temporal patterns captured by
the component. This operation was not feasible with regular Multi-Head Attention, due to
the fact that attention weights are unique to each head and their behaviour is related to a sin-
gle temporal pattern instead of the global temporal relationships in the data. As can be seen
in Equation 3.9 in the Temporal Fusion Transformer use case, for every time step t the Inter-
pretable Multi-Head Attention is used on a concatenated matrix of temporal features, so for
every forecast horizon τ the outputs of this model component can be represented in the follow-

28

ing way:

β(t, τ) = eTτ · Ã (Θ(t),Θ(t)) ·Θ(t) ·WVWH (3.20)

= eTτ · Ã (Θ(t),Θ(t)) · Θ̃(t) (3.21)

=
τmaxX
n=−k

a(t, τ, n) · θ̃(t, n) (3.22)

where Θ̃(t) = Θ(t) · WVWH and a(t, τ, n) represents the (τ, n)-th entry of the matrix
Ã (Θ(t),Θ(t)). This way, attention outputs can be seen as linear combinations of weighted,
uniform temporal features. The distribution of attention weights for a fixed forecast horizon
τ across all time steps can then be exploited to determine the importance of each previous time
step n.

This new approach introduces a tradeoff between model performances and explainability:
inhibiting pattern-recognition capabilities of the attention block by reducing the number of
head-specific parameters, but at the same time enabling model interpretability by providing a
uniform set of weights across all heads, relating to the importance of the input temporal features
θ(t, n). The attention weights obtained this way can be exploited in the following ways:

1. Temporal pattern recognition: Global seasonal patterns can be identified by means of
studying the attention weights. For time series, trend and seasonal analysis is often car-
ried out entity-wise by observing the autocorrelation function (ACF) or partial autocor-
relation function (PACF). This process however is unfeasible when the number of time
series to study is large. Average attention weights across all time steps t for fixed fore-
cast horizons τ can highlight, if present, a global common pattern across all considered
entities thus providing a powerful instrument to further understand the nature of the
data.

1

T

TX
t=1

a(t, τ, n) for n ∈ {−k, ...,−1} (3.23)

2. Regime change identification: The advantage of Multi-Head-Attention architectures con-
sists in their ability to capture different patterns present in the data. Interpretable-Multi-
Head-Attention is no different, with the additional feature of being able to visualize the
extracted information. For a fixed time step t, the average distance across all forecast hori-
zons τ between attention vectors and the mean attention pattern is a metric that, when
achieving significance over a threshold, can highlight global regime shifts of the target
series.

dist(t) =
1

τmax

τmaxX
τ=1

dist(a(τ), a(t, τ)) (3.24)

29

Being able to identify events that alter the regime of an ensemble of entities is extremely
valuable, and as such the attention weights offer the user an additional tool to further
understand the target series.

In conclusion, the data provided by the Temporal Fusion Transformer along its predictions
not only bring value to the user by shedding light on the forecasting process, but also provide
valuable informations relative to the dataset itself. Usually a tradeoff is present between model
accuracy and explainability, and especially machine learning models are lacking in the latter
category. The goal of TFT models consists in offering reliable forecasts paired with a form of
interpretability which, especially when dealing with extremely large sets of entities, is a most ap-
preciated feature. Global information relative to time series belonging to the same distribution
is extremely valuable in cases when it is not feasible to deal with each time series singularly.

30

4
Experiments and clustering approach

In order to ascertain the performances of the Temporal Fusion Transformer model, its multi-
step forecast capabilities, the insights provided by its interpretability feature and the advantages
of performing simultaneous predictions over multiple time series, an experiment framework
was set.

After choosing an appropriate dataset for the task, a simple Moving Average baseline was
established. Then the Temporal Fusion Transformer model was trained on all the entities of
the selected dataset, to test its behaviour in forecasting many time series largely different in na-
ture. Afterwards, an hypothesis was formulated: whether the performance of the model could
improve if paired with a form of grouping on the entities. The goal was to ascertain if training
several TFT models on a partition of the entity set could yield better forecasts than a single
model trained on the whole set. The partition should be based on a similarity criterion, thus
allowing the transformer to take advantage of time series with analogous features in order to
achieve better performances. The first selected partition method consists in an intuitive group-
ing based on the product tree categories of the entities, while the second method associates
similar time series by means of a clustering algorithm run before training.

31

4.1 Dataset and Testing Framework

For the experiments the retail dataset mentioned in Chapter 2 was made available by the intern-
ship organization. This dataset compiles historical daily data from01/01/2017 to28/02/2022
for 15593 products. Each product time series is multivariate and presents the following fea-
tures:

• qty: the target variable, representing the sales of the product;

• qty_promo: regressor indicating the quantity of the product subject to promotion;

• sales_promo: binary value indicating the sales subject to promotion;

• id: code number identifying uniquely each product;

• date: datetime index;

• holiday: binary value indicating whether the shop is closed or not.

To the previous features a sixth regressor time_idx was manually added. This is an incre-
mental integer for each step of the time series and was required by the TFT model.

For testing purposes 1000 time series were randomly selected among the 15593 products.
Due to the high computational cost required to train and validate a Temporal Fusion trans-
former model on a large number of entities, a blocked cross-validation approach [27] was adopted
since it involves only one training and evaluation step. Such approach is consistent with the
one employed in [1]. The training set was defined from 01/01/2017 to 01/11/2019 for a
total of 3225 time steps, while the validation set was selected as the 60 days following the train-
ing set, namely between 02/11/2019 and 31/12/2019. Lastly, the test set was chosen from
01/01/2020 to 29/02/2020 for a total of 60 time steps following the validation set.

After running the Augmented-Dickey-Fuller test on every time series it resulted that most
entities presented a stationary behaviour and thus did not require detrending or differencing
as suggested by [28] and [29]. Input normalization was not applied either due to the fact that
the Temporal Fusion Model handles this operation internally. A check of the ACF however
revealed that a large number of entities presented a form of seasonality (mostly weekly). No de-
seasonalization was performed to test the pattern capturing capabilities of the Temporal Fusion
Transformer model.

Training of all models was performed on a notebook instance with one GPU, all training
times have been recorded for comparison.

32

4.1.1 Demand pattern classification

It is important to note that most of the time series considered, in particular the response vari-
able qty, present long streaks of zero values sporadically interrupted by nonzero demand. As
observed by [3], this is a common occurrence when dealing with daily SKU demand forecast-
ing. This type of regime has been classified by [30] as irregular or sparse demand. This does
not apply to all entities, however many products present this characteristic and thus it is neces-
sary to address properly this issue [31]. Irregular demand data are different from common time
series and more difficult to predict.

Following Syntetos & Boylan categorization scheme, demand patterns are characterized ac-
cording to two parameters:

• The squared coefficient of variation (CV 2): measures the variability in demand magni-
tude for the time series, is computed by squaring the standardized standard deviation on
nonzero demands.

CV 2 =

�
nonzero demand standard deviation

nonzero demand average

�2
(4.1)

• The average inter-demand interval (ADI): represents the average interval in time peri-
ods between two consecutive nonzero demands.

ADI =

PN
i=1 ti
N

(4.2)

where ti indicates the length in time periods between two consecutive demand periods
andN represents the number of all periods [32].

The corresponding demand categories derived from thresholding theCV 2 andADI param-
eters as represented in Figure 4.1 are the following:

1. Smooth demand: CV 2 ≤ 0.49 andADI ≤ 1.32

2. Erratic demand: CV 2 > 0.49 andADI ≤ 1.32

3. Intermittent demand: CV 2 ≤ 0.49 andADI > 1.32

4. Lumpy demand: CV 2 > 0.49 andADI > 1.32

Regimes presenting regular demand occurrence, such as smooth and erratic, are often ad-
dressed as regular demand, while irregular or sparse demand indicates infrequent demand
regimes such as lumpy and intermittent.

33

Figure 4.1: Demand pattern classification according to Syntetos & Boylan.

In order to classify the time series in the retail dataset with the aim of selecting an appropriate
benchmark and evaluation metrics, theCV 2 andADI parameters were computed for all 1000
entities. The classification results revealed a predominance of lumpy time series (686), followed
by 156 entities with intermittent demand, 121 erratic and only 36 smooth. The majority of
the considered entities thus presents an irregular demand regime, portrayed in Figure 4.2.

According to [33], the most suited models to forecast lumpy and intermittent time series are
ad-hoc or iterative methods such as Simple Exponential Smoothing or the Croston method [7].
Further research [34] however has shown that Recurrent Neural Networks proved extremely
reliable, achieving similar if not superior performances with respect to SES and Croston models.
Temporal Fusion Transformers feature an attention-based architecture, different from RNNs,
but still machine learning based, thus promising acceptable results in terms of forecasting ac-
curacy for the current application. Thus the following experiments also aim to assess the TFT
performance in this particular field.

4.1.2 Metrics

The lumpy/intermittent nature of the target variable has an impact towards metric selection.
To evaluate forecasting accuracy Mean Absolute Percentage Error (MAPE) cannot be used due
to the occurrences of zero periods of demand [35]. The metrics considered for model selection
and evaluation were therefore Mean Absolute Error (MAE), Mean Squared Error (MSE), Root

34

Figure 4.2: Demand pattern distribution of the 1000 entities in the retail dataset. The predominance of irregular demand
can be observed.

Mean Squared Error (RMSE) and Mean Absolute Scaled Error (MASE). The selected metrics
are defined as follows:

MAE =
1

N

NX
i=1

|ŷt+i − yt+i| (4.3)

MSE =
1

N

NX
i=1

(ŷt+i − yt+i)
2 (4.4)

RMSE =

vuut 1

N

NX
i=1

(ŷt+i − yt+i)2 (4.5)

MASE =
MAE

1
t−1

Pt
i=2 |yi − yi−1|

(4.6)

Where yi indicates the actual value of the target variable, while ŷi is the forecast produced by
the model, both at the i-th timestep.

The last metric, MASE, has the feature of being scale independent, and thus is better suited

35

to evaluate forecast accuracy across multiple time series. For this reason it was chosen as the
model selection metric. To evaluate the global performances of a model performing forecasts
over multiple time series, the selected metric was computed on each entity, then the average of
said metric across all entities was considered.

4.2 Holt-Winters benchmark

After settling for a Moving Average model MA(1) as baseline, another statistical model was cho-
sen as benchmark. For this task, due to the presence of some trend in a few time series and sea-
sonality in almost all of them, Holt-Winters exponential smoothing model was selected. The
choice of this method was dictated by the necessity of comparing the Temporal Fusion Trans-
former with a deeply different forecasting model. According to [36] is highly recommended
to compare machine-learning models with simpler statistical benchmarks. Holt-Winters expo-
nential smoothing is a traditional forecasting method (opposed to the cross-learning nature of
TFT), featuring a much lower complexity than its attention-based counterpart but retaining a
high reliability and good performances.

Holt-Winters model, also referred to as triple exponential smoothing [37], is designed to fore-
cast time series that exhibit both a trend and a seasonal pattern. It is available in two versions:
one designed to model additive seasonalities and the other to model multiplicative seasonali-
ties. The first version is more suited when the seasonal patterns are roughly constant in scale
throughout the time series. Due to the features of the considered dataset, the additive Holt-
Winters model was selected, which formula in reported below. The forecast at time (t + i) is
expressed as:

F(t+k) = (Li + k ∗Bi) + S(i+k−m) (4.7)

The formula features a level component Li, a trend component Bi and a seasonality compo-
nentSi, wherem represents the seasonal period length and yi the value of the time series at the
i-th timestep. Each component is defined as follows:

• Li = α ∗ (yi − S(i−m)) + (1− α) ∗
�
L(i−1) +B(i−1)

�
• Bi = β ∗

�
Li − L(i−1)

�
+ (1− β) ∗B(i−1)

• Si = γ ∗ [yi − L(i−1) − B(i−1)] + (1− γ) ∗ S(i−m)

In the current application the Holt-Winters model was applied with a 7-lag seasonality, as
inferred by the autocorrelation plots.

36

Number of entities 1000 Dropout rate 0.1

Number of samples 3000 k Hidden size 32

Lookback window 180 Attention heads 2

Prediction length 60 Minibatch size 32

Trainable model parameters 105 k Learning rate 0.05

Model parameters size 0.421 MB Number of epochs 50

Table 4.1: Optimal TFTmodel summary and dataset informations.

4.3 TFT on entire dataset

First the Temporal Fusion Transformer model was trained on the entire set of 1000 entities.
The dataset presented different types of covariates, their respective input types are reported
below:

• Static categoricals: id

• Time varying unknown reals: qty, qty_promo

• Time varying unknown categoricals: holiday, sales_promo

• Time varying known reals: time_idx

• Datetime: date

Hyperparameter optimization was conducted via grid search over 50 epochs, listed below are
the search ranges:

• Learning rate: 0.01, 0.05, 0.1

• Hidden size: 32, 64, 128

• Attention head size: 2, 4

The hidden continuous size was arbitrarily fixed as half of the hidden size, while all other
hyperparameters were fixed as the recommended values. Table 4.1 presents an overview of the
final model.

As can be seen in Table 4.2 the TFT model outperformed both the Moving Average baseline
(30.5% of MASE) and the Holt-Winters benchmark (21.7% of MASE), requiring however a

37

Model MASE MAE MSE RMSE Running Time

TFT Global 0.754 1.482 26.653 2.093 2319 min

Holt-Winters 0.963 1.522 29.909 1.979 235 sec

MA baseline 1.085 1.787 30.995 2.272 24 sec

Table 4.2: Global TFTmodel evaluation vs. Moving Average baseline andHolt-Winters benchmark.

much longer training time as expected from its deep-learning nature. The average performance
may be due to the intermittent nature of the time series in the dataset, and the wide difference
between each entity. Many products present wide periods of zero sales while others present
frequent fluctuations of the response variable in the same period.

4.3.1 Interpretation

By means of the interpretability feature of the Temporal Fusion Transformer model, informa-
tions such as variable selection weights for encoder covariates, decoder covariates and static co-
variates were extracted. Moreover, also the interpretable multi-head attention weights were
recovered and are shown in Figure 4.3.

The plot shows the attention weights for one-step-ahead forecasts across each time step in
the lookback window (180 time steps in total). As explained in chapter 3 section 3.2, attention
weights can be used to determine global patterns in the data and to identify which past time
steps were the most relevant to the model in order to generate forecasts. The plot in Figure
4.3 presents an erratic behaviour for the first 20-25 lags, which can be partially attributed to
the weights still stabilizing during training phase. A way to solve this problem is to increase
the training epochs. Another possible cause for the spike at lag 180 can be attributed to the
necessity of a wider lookback window Apart from the first lags, the graph clearly presents a
logaritmic increase in attention weights towards more recent time steps. A seasonal pattern
can also be observed, which becomes more evident at lower lags. In particular the global model
learned a weekly pattern in the attention weights, which translated in an increased forecasting
relevance for the 7 previous time lags in the data.

By extracting the information from the variable selection modules in the Temporal Fusion
Transformer architecture, it was also possible to visualize the encoder, decoder and static vari-
able weights and their importance for the prediction. Figure 4.4 shows each variable impor-
tance, divided by input type. It can be noticed that the TFT model generates and adds au-

38

Figure 4.3: Attention weights for one-step-ahead forecasts relative to the global TFTmodel.

tonomously the following variables:

• qty_center: static covariate, average of the target variable;

• encoder_length: static covariate, length of the lookback window;

• qty_scale: static covariate, scale of the target variable;

• relative_time_idx: the distance in time steps from the considered lag and the lag to
be predicted.

This operation can be considered a form of input enrichment with feature extraction, al-
though very limited to simple quantities, which in many use cases proved to greatly improve
forecasting accuracy, especially in cross-learning models [11].

By observing the graphs it can be gathered that among static covariates the target variable
average qty_center was the most relevant by achieving a weight of 996.767, more than a
1000 times larger than the time series identifier variableid. This result appears surprising, since
empirical experience suggests that variables uniquely identifying the entities usually achieve the
highest importance. The reason might be attributed to the wide diversity present in the time

39

Figure 4.4: Variable selection weights relative to static, encoder and decoder variables for the global TFTmodel.

40

series dataset, forcing the model to focus on each series’ average as a base to constructing more
accurate forecasts.

Among the decoder variables, namely the known future inputs, due to the nature of the
dataset only the manually added covariatetime_idx and its counterpartrelative_time_idx
were featured. Nonetheless it appeared that the lag gap covariate resulted more relevant than
the absolute time coordinate, further confirming the ability of the model in identifying a form
of seasonal behaviour in the time series.

Lastly, for past regressors the target variable qtywas critical as expected, with an importance
weight of 322.732, surpassed only by sales_promowith 498.997 importance. This evidence
suggests that, for the global TFT model, information about the presence of promotions re-
sulted more valuable for forecasting than information about past sales.

4.4 TFT on product tree clustering

One possible solution to the problem of high variability between each entity is to train a higher
number of Temporal Fusion Transformer models on a partition of the original training set,
where analogous time series belong to the same subset. The expected outcome is an improve-
ment in forecast accuracy due to the models taking advantage of entities similar in nature. Such
approach consisting in clustering the series based on their characteristics was suggested by [11]
as a technique to improve the performances of cross-learning models. First however it is nec-
essary to establish a similarity criterion to subdivide the original entity set. The more intuitive
solution is to exploit the natural categorization of entities, based on the hypothesis that enti-
ties belonging to the same product category present (to a certain degree) similar values in the
response variable.

In the use case considered the dataset is provided with a product tree subdividing the entity
set in product categories for 7 levels of refinement. Reported below is the number of categories
for each subdivision level:

• Level 1: 11 categories;

• Level 2: 18 categories;

• Level 3: 53 categories;

• Level 4: 341 categories;

• Level 5: 1037 categories;

41

Grocery Chemicals Fresh Very Fresh

353 128 173 307

Personal Hygiene Home Seasonal & hardware TOTAL

6 10 23 1000

Table 4.3: Subset cardinality and entity distribution at 1st subdivision level.

Model MASE MAE MSE RMSE Running Time

TFT ProdTree 0.706 1.356 21.126 1.943 1910 min

TFT Global 0.754 1.482 26.653 2.093 2319 min

Holt-Winters 0.963 1.522 29.909 1.979 235 sec

MA baseline 1.085 1.787 30.995 2.272 24 sec

Table 4.4: Global TFTmodel evaluation vs. Moving Average baseline andHolt-Winters benchmark.

• Level 6: 1957 categories;

• Level 7: 2610 categories;

The level of subdivision is an important hyperparameter to be determined. Given that the
selected training set features only 1000 entities, in order to avoid empty and single-entity sub-
sets the subdivision levels 5, 6 and 7 were discarded a priori. Due to computational limitations
the final selected subdivision level was the 1st (11 categories), although it may be interesting to
research the model performances at finer levels of partition.

Of the selected categories in the partition, 4 of them resulted empty as no entity belonged to
those subsets, thus the 1000 time series were subdivided between categories as shown in Table
4.3. All the7Temporal Fusion Transformers models created on the partition were trained using
the same number of epochs and hyperparameters than the global model.

The evaluation metrics were computed both at a global level on the entire set of1000 entities,
combining the predictions of each model, and separately on the forecasts of the single models
on the partition. The global performances of the product tree approach, with respect to the
baselines and the model trained on the whole set, are reported in Table 4.4.

The main result that can be observed is that the TFT model trained on the product tree par-
tition not only outperformed both statistical benchmarks, but proved to be more accurate than
its globally trained counterpart. Another important observation can be made on the running

42

Category MASE MAE MSE RMSE N. of entities

Grocery 0.690 0.954 5.666 1.503 353

Chemicals 0.644 0.755 5.559 1.142 128

Fresh 0.704 1.344 20.473 1.899 173

Very Fresh 0.784 2.229 48.408 3.011 307

Pers. Hygiene 0.456 0.180 0.392 0.432 6

Home 0.358 0.050 0.073 0.155 10

Seas. & hardware 0.510 0.180 0.363 0.406 23

Table 4.5: Single TFTmodels evaluation on product tree partition

time of the partition models, which resulted lower than the one of the TFT on the whole en-
tity set. Computational efficiency is an important topic in Machine Learning, and is especially
sought after in practical applications on par with forecasting accuracy. The test results proved
that subdividing the original entity set in partitions, prior to training a cross-learning model
such as the Temporal Fusion Transformer, is particularly advantageous not only in terms of
predictive performances, but also in regard of learning times. The partitions should be based
on a similarity criterion, providing the model with the intuition that similar time series belong
to the same subset. In the current case even an intuitive partition based on natural entity cate-
gorization proved effective in improving forecasting accuracy.

Performances of the single models on each category are reported in Table 4.5. It can be ob-
served that, on average, the TFT models trained on fewer entities achieved better results than
the ones trained on a larger number of time series. This evidence suggests that in terms of
forecast accuracy is more advantageous to train on smaller subsets, so it might prove useful to
employ a finer subdivision on the entity set.

4.4.1 Interpretation

As was done for the global model, the attention weight plots and variable importance weights
were extracted for the TFT models on product tree partition as well. In this case it is worth not-
ing that weights attend only to a smaller set of entities and represent the relevance of covariates
or past time steps to the specific model trained on that subset.

In Figure 4.5 are displayed attention weights for each category. It appears a great variability

43

Figure 4.5: Attention weights for all 7 TFTmodels trained on product tree partition.

44

in attention patterns between products, with plots being fundamentally different from each
other. For the model trained on Grocery subset (353 entities), the graph shows no particular
trend but 3 significant attention spikes can be observed at lags 7, 140 and 178. Seasonal be-
haviour is still present but less prominent than the one observed in the global TFT model. The
attention graphs for the categories Chemicals (128 entities), Fresh (173 entities) and Very Fresh
(307 entities) are similar and show no strong persistent patterns, exception made for the spike
at lag 180 suggesting an increase in the lookback horizon. Personal Hygiene (6 entities) plot
showed significant spikes at lags 1, 93, 151 and 158 with no relevant seasonal patterns. One of
the most different behaviours is observed in the model trained on the Home product subset (10
entities): the plot shows an increasing trend on smaller lags with a sudden decrease in attention
weights for lags larger than 165. A very faint weekly seasonal pattern can also be noticed. Lastly,
the plot relative to the Seasonal & hardware category (23 entities) portrays a slight increasing
trend paired with a weekly pattern and a significant spike at lags 179-180.

In a similar fashion, Figure portrays variable importance weights for all models on each prod-
uct category. Consistently with attention patterns, these plots also turned out widely different
from subset to subset, thus suggesting that the partition resulted in fundamentally diverse mod-
els, which relied on entirely different parameters to forecast the assigned entities.

• Decoder variables importance: for the categories Grocery, Fresh and Very Fresh the vari-
able relative_time_idx appeared the most significant for the prediction, meaning
that the TFT models in order to forecast products belonging to those subsets relied more
on the notion of relative time steps from current forecast time, instead of global time in-
dicators. This result is consistent with intuition, since the categories in question include
items that, due to their nature and limited shelf life, are purchased more frequently with
respect to the other subsets.

• Encoder variables importance: regarding past regressors, TFT models trained on most
subsets assigned the largest weight to the target variableqty, consistently with the model
trained on the entire entity set. In particular, for subsets Chemicals, Very Fresh and
Home, the models assigned weights close to 0 to all covariates different from qty, thus
structuring the prediction around the target variable alone.

Two exceptions were represented by the Temporal Fusion Transformers trained on Per-
sonal Hygiene and Seasonal & Hardware categories. In the first, the most relevant vari-
able resulted qty_promo, followed by holiday and qty with similar weights. This
deviation in behaviour from the global TFT model can be explained by the nature of
the entities belonging to the set. Intuitively, products with longer shelf life are more
likely to be purchased when subject to promotions. Regarding importance weights for

45

Figure 4.6: Decoder, encoder and static variable importance for the 7 TFTmodels trained on product tree partition.

46

the Seasonal & Hardware category, it appeared that holiday represented the most in-
fluential variable to determine the prediction. The subset includes time series relative to
products that are often sold around festivities, thus justifying this particular behaviour.

• Static variables importance: finally, concerning static variable importance, no model
acted consistently with the global TFT, which identified qty_center as the most rel-
evant regressor. Four models relative to the categories Chemicals, Very Fresh, Personal
Hygiene and Home relied the most on the unique item identifier id, suggesting high
variability between entities and thus requiring additional context to correctly assign the
forecast to the proper time series. The subset Grocery appeared more correlated to the
encoder_length, which was fixed as 180 time steps for all models. Lastly, the models
relative to the categories Fresh and Seasonal & Hardware presented increased importance
in the variable qty_scale.

Both previous sections highlighted substantial differences between the Temporal Fusion
Transformers used for forecasting over a product tree partition. In many cases their behaviour
also diverged from the global model relative to the entity set in its entirety. Overall it appeared
that training several models on subset of similar items allowed the architectures to capture more
specific informations. Each transformer adapted to the features of the relative entity group,
learning relationships on the data that the global method missed. As previously observed in
Chapter 2 Section 2.3, the advantage of a cross-learning approach consists in enabling a ma-
chine learning model access to a wider variety of time series, thus allowing it to better infer the
underlying distribution in the data. The increase in forecasting accuracy for the models trained
with a product tree partition approach suggests that subdividing the original time series set in
groups consistent with sub-distributions present in the data allows such mechanisms to better
understand the dynamics present in each partition. This results in a more specific representa-
tion of target variables, combined with a lighter computational load.

Additionally, partitioning on an intuitive categorization based on natural features of the con-
sidered entities, results beneficial especially in light of the interpretability feature offered by the
Temporal Fusion Transformer. The insights obtained on variable importance and the extracted
temporal patterns are model-specific, thus by definition category-specific. In many real-world
applications, informations relative to user-defined subsets in the data can result even more valu-
able than global explainability due to the fact that they allow a specific understanding of the
dynamics inside each category. Moreover, subset-level interpretations present an important re-
source also in a procedural sense, since they can enable aimed and ad-hoc interventions on sets
of items the user is familiar with.

47

4.5 TFT on k-means clustering

As observed in Section 4.4, the clustering approach proved successful in improving model per-
formances. Natural item categorization however, may not be representative enough of the
underlying sub-distributions present in the data. Entities belonging to the same category can
present very different behaviours and at the same time it can occur a high similarity between
apparently unrelated time series. To provide an example consistent with the considered dataset,
products such as milk and biscuits are often purchased together despite being part of different
branches at various levels of the product tree. Moreover, as it was observed in Chapter 2 Sec-
tion 2.3, a natural partitioning of the entities may not always be available, thus enabling the
use of a clustering approach as an option to avoid accuracy deterioration in the forecasts. The
aim of the current section is to ascertain whether performing clustering based on a correlation
criterion between time series, instead of exploiting their natural categorization, can bring an
improvement in forecasting accuracy. Can this form of partitioning allow the TFT model to
represent more accurately the dataset distribution or will it hinder the process by not providing
enough input variety?

For the grouping criterion, k-means clustering was selected. k-means is a centroid-based
partitioning algorithm often used for vector quantization, feature learning and cluster analy-
sis, but has been employed in time series categorization as well [38]. The metric to be mini-
mized is the squared Euclidean distance between vectors, which can serve as a similarity mea-
sure between entities. Other more sophisticated distance-based time series clustering methods
have been formulated, such as Dynamic Time Warping (DTW) [39], Longest Common Sub-
sequence models (LCSS) [40] and Spatial Assembling Distance method (SpADe) [41] which
can match temporal patterns also when subject to deformations, shifting and scaling or can deal
with series of varying length. Given the nature of the retail dataset, which provides uniform,
same-length entities, simple k-means clustering was chosen instead of more complex partition-
ing methods. Another reason for settling on this simpler model can be justified by the necessity
of a fast preprocessing algorithm, which purpose is to prepare and subdivide the data prior to
training several Temporal Fusion Transformers. It is important to observe that the k-means
clustering algorithm tends to produce local optimal solutions dependent on the centroids ini-
tialization. This is not a big issue in the current application, since it has been already proven
in Section 4.4 that the TFT model can provide good forecasts even when trained on subsets
of highly variable entities. The aim is to obtain a good enough time series partition based on a
closeness criterion, hence k-means is a good method for the task at hand.

48

Cluster 0 Cluster 1 Cluster 2 Cluster 3

857 1 6 28

Cluster 4 Cluster 5 Cluster 6 TOTAL

105 2 1 1000

Table 4.6: Cluster cardinality on 7-means partition.

Figure 4.7: Product tree categories distribution in clusters 0, 3 and 4.

To better compare training approaches the number of clusters k was set to 7, as the subsets
derived from partitioning the entity set by means of the first product tree level. The set of en-
tities provided as input to the k-means algorithm featured only the target variable qty. The
reason for this choice was to limit the size of the input vectors, since k-means is a model that
greatly suffers from the curse of dimensionality. Table 4.6 presents the cardinality of each clus-
ter generated from the algorithm, while Figure displays the distribution of first-level product
tree categories between the most numerous clusters.

It can be observed that the clusters identified by the algorithm are highly different in size.
The vast majority of the entities was grouped in cluster 0, while the remaining time series were
subdivided between smaller subsets. Of particular interest are the clusters 1, 2, 5 and 6 contain-
ing respectively 1, 6, 2 and 1 entities, all belonging to the Very Fresh product tree category. This
result suggests that entities belonging to such clusters presented a widely different behaviour
from the majority of the other time series. Since the similarity metric for the algorithm is repre-
sented by the squared euclidean distance, it is possible that many time series were grouped to-
gether despite presenting different temporal patterns due to the global distance resulting small

49

Model MASE MAE MSE RMSE Running Time

TFT k-means 0.713 1.395 22.708 1.961 1912 min

TFT ProdTree 0.706 1.356 21.126 1.943 1910 min

TFT Global 0.754 1.482 26.653 2.093 2319 min

Holt-Winters 0.963 1.522 29.909 1.979 235 sec

MA baseline 1.085 1.787 30.995 2.272 24 sec

Table 4.7: K-means TFTmodel evaluation vs. Moving Average baseline andHolt-Winters benchmark.

enough. Figure 4.8 represents the cluster centroids, namely the points in each cluster minimiz-
ing the total squared euclidean distance between them and the vectors belonging to that subset.
Exception made for the singleton clusters 1 and 6, in which the centroids coincide with the con-
tained entity, in all other cases the centroids do not represent a time series present in the dataset
but an average of the points in the cluster if the problem was solved by means of Lloyd’s algo-
rithm CITA. Clear weekly seasonal patterns are noticeable in the centroids relative to clusters
0, 2, 3 and 4, while the 6th centroid presented a similar pattern as well but paired with an ad-
ditional yearly oscillation as well. A yearly seasonal behaviour featuring spikes interrupted by
a period of zero demand is noticeable in the centroids of clusters 1 and 5.

Following the approach adopted when testing the Temporal Fusion Transformer on the
product tree partition, all models were trained with the same epochs and hyperparameters as
the global model in Section 4.3. Error metrics were computed both globally and at cluster level
as well. Table 4.7 reports the global performances with respect to the statistical baselines and the
two previous training approaches for the TFT. It can be observed that applying the k-means
clustering approach to the training process of the model improved its performances with re-
spect to the global framework, both in terms of error metrics and running time. In particular
regarding the computational costs of the two grouping approaches they appeared almost iden-
tical, both methods training 17.59% faster with respect to the TFT on the entire entity set.
Product tree partitioning however, provided better results in terms of error metrics than k-
means partitioning: the first performed 6.37% better than the global model against the 5.44%
improvement brought by the second approach. One reason may be the wider disparity in car-
dinality between the subsets.

Table 4.8 illustrates the model performances at cluster level, displaying the error metrics of
each TFT model on its assigned partition. A large disparity in forecasting accuracy is evident

50

Figure 4.8: Centroid plots for each cluster.

51

Cluster MASE MAE MSE RMSE N. of entities

Cluster 0 0.654 0.594 2.463 0.936 857

Cluster 1 0.0002 0.007 0.003 0.053 1

Cluster 2 1.247 20.786 878.777 26.483 6

Cluster 3 1.187 9.662 206.154 12.620 28

Cluster 4 1.045 4.175 45.801 5.494 105

Cluster 5 0.001 0.015 0.017 0.092 2

Cluster 6 2.380 52.279 4743.187 68.870 1

Table 4.8: Single TFTmodels evaluation on k-means generated clusters.

between subsets, however this occurrence does not appear to be related to cardinality. Clus-
ter 0, the one including the largest number of time series, achieved one of the best results in
terms of error metrics, outperformed only by clusters 1 and 5 containing respectively 1 and 2

entities. At the same time, the worst performing TFT model was the one trained on cluster 6,
a singleton as well. This result proves that Temporal Fusion Transformers do not necessarily
benefit from an excessive fragmentation of the entity set. As highlighted by [11], the biggest
advantage of cross-learning models consists in their ability to exploit multiple time series to
predict single ones, learning the underlying data-generating process. It follows that global per-
formances are dependent on the chosen partition, which should be representative enough of
the sub-distributions present in the data while at the same time provide enough variability in
each subset, so that the model can effectively learn to represent effectively each process.

4.5.1 Interpretation

Similarly to the previous two sections, the interpretability feature of the TFT model was ex-
ploited to extract information regarding attention patterns and variable importance for each
cluster. As remarked by [13] and in Section 4.4 distance-based clustering approaches may yield
unintuitive results and limited explainability, but can provide knowledge on the composition
of entities subsets nonetheless.

In Figure 4.9 are represented the attention patterns for every TFT model trained on the parti-
tion generated by the k-means algorithm. It clearly appears that the 7 model exhibited a widely
different behaviour between each other, even more so than in the product tree approach. Clus-

52

Figure 4.9: Attention weights for all 7 TFTmodels trained on k-means generated clusters.

53

ter 0, the largest subset in cardinality, presented an increasing attention towards the 30 most
recent time steps, thus relying its forecast on data from the past month. The two best perform-
ing models, trained on clusters 1 and 5, appear to share similar attention patterns as it can be
observed in the plots. Both models present an increased relevance in time steps greater than
85, almost ignoring earlier data. This behaviour can be explained by observing their relative
centroids plots in Figure 4.8, where a strong yearly seasonality is present, thus justifying the de-
creased relevance in recent time steps. The second and third largest subsets, respectively cluster
3 and 4, exhibited a more extreme behaviour showing no persistent temporal patterns except
for a spike on the oldest lag. On the other hand, one of the models presenting the most erratic
attention behaviour appeared to be the one trained on cluster 2, the second-to-last in terms of
forecasting accuracy. Temporal importance shows no trend or seasonal pattern and increases
in variance towards older lags, overall revealing a very noisy behaviour?. Lastly, the TFT which
achieved the worst results in terms of error metrics, namely the one relative to the 6th subset, re-
ported high attention peaks at earlier time steps with no apparent regularity. A significant spike
can also be noticed at the 180th lag, which can be interpreted as signal of a lookback window
too short. This result may suggest the inability of the TFT model in capturing the yearly oscil-
lations visible in the cluster centroid, as lags greater than 120 received little to none attention
weight.

Similarly, Figure 4.10 displays the variable selection weights for the TFT models on each clus-
ter. As expected from the previous results, in the current approach covariate relevance between
models is not consistent as well. It is possible to observe that, for all types of covariates, the clus-
ters with the highest cardinality (number 0 and 4) presented the widest disparity in variable
selection weights with one variable achieving almost 100% importance while all remaining co-
variates featured weights close to 0. This behaviour was not observed in the TFT adopting
the product tree approach and can be attributed to the fact that in the k-means clustering ap-
proach each model is allowed to perform predictions from a pool of more similar time series,
thus relying on a smaller number of possibly noisy covariates.

• Decoder variables importance: models trained on clusters 0, 2, 3, 5 and 6 appeared to
be the ones which relied more strongly on the global time indicator time_idx. Subsets
number 1 and 4 on the other hand featured models that prioritized the offset in lags
from the forecast time, namely relative_time_idx. This result shows a deviation
from the product tree approach, in which the vast majority of the entities belonged to
subsets favouring the known future covariate relative_time_idx, consistently with
the behaviour of the globally trained TFT. Due to the heterogeneity of the entities in
each cluster it is hard to formulate a qualitative interpretation of this behaviour.

54

Figure 4.10: Decoder, encoder and static variable importance for the7TFTmodels trained on k-means generated clusters.

55

• Encoder variables importance: As previously observed, clusters 0 and 4 focused almost
entirely on the target variable qty, assigning negligible importance to the other past
covariates. Another possible reason of this behaviour is that in the retail field promo-
tions patterns are often dependent on the item category, and such information can be
lost when training a model on a widely heterogeneous subset of entities. Consistently
with the global and product tree training approaches, clusters 2, 3 and 6 featured qty
as the most relevant covariate as well, albeit not as predominantly as in the previous
cases. The model trained on subset 5 on the other hand relied more strongly on the
relative_time_idx covariate than on the target qty, while the TFT relative to sub-
set 1 presented comparable weights for both variables. It is important to observe that
in both cases the time series presented evident yearly spikes inbetweened by periods of
zero demand, which explains the increased importance of the relative time indicator with
respect to previous training approaches.

• Static variables importance: regarding static covariates, only cluster 0 behaved consis-
tently with the global TFT model, assigning the highest weight to qty_center. This
notion, combined with the fact that cluster 0 contains the 85.7% of the total entities, can
indicate that due to the wide variety of time series belonging to the subset, considering
their average value proved more effective in providing accurate forecasts. For all remain-
ing models the variable encoder_length achieved the highest importance, with the
exception of clusters 2 and 5which relied the most on the entity identifier id. These last
two subsets, having respectively cardinality 6 and 2, are expected to contain highly sim-
ilar time series, thus causing the models trained on them to require more entity-specific
information to better distinguish the forecasts.

In conclusion, in this specific application employing a k-means clustering approach to the
Temporal Fusion Transformer training did not yield particular improvements in performance
over partitioning the entity set on its product tree. Such choice, although providing a consider-
able increase in forecasting accuracy over the global model, sacrifices part of the information of-
fered by the combination of the TFT’s interpretability feature with the contextual knowledge
provided by the natural partition of the dataset. Time series clustering represents however a
valid option, especially in cases in which the data does not present any form of categorization,
moreover grouping time series on the basis of their pattern similarity can offer additional in-
sights towards the nature of the considered entities. Such knowledge, combined with the do-
main information relative to the specific application field, is a valuable addition to the forecast
results. Finally, as remarked by [16] and [17], employing a clustering technique to the training
of a cross-learning method over training it globally on the entire set of entities can signify not
only an improvement in forecast quality, but also a lowering of the computational cost and
time required, a much valued feature in real-world applications.

56

5
Conclusion

As highlighted by the results of the M4 competition [6] [11], cross-learning models represent
a novel and promising approach to multiple time series forecasting. Temporal Fusion Trans-
formers are a recent pure machine learning model belonging to this category and as such have
both its merits and limitations. In many occurrences it has been observed that pure Machine
Learning methods provided poor performance when compared to hybrid or pure statistical
methods, even naive ones, as highlighted in [6] and [36]. The experiments however revealed
that Temporal Fusion Transformers were able to provide good predictions in terms of accuracy
on a family of entities noticeably harder to forecast, namely lumpy and intermittent time series.
In this task the TFT model outperformed a simple moving average baseline and Holt-Winters
exponential smoothing, a reliable statistical method for forecasting entities presenting large pe-
riods of zero demand. Another disadvantage attributed to machine learning models for time
series forecasting is represented by the high computational resources required for training, dis-
advantage that becomes critical when faced with the task of forecasting hundreds of thousands
of entities and is not mitigated by the evolution in speed and cost of high-level computers. In
practical cases computational cost bears consistent weight in the choice of a forecasting model,
as speed is often required together with prediction accuracy. Temporal Fusion Transformers are
no different, presenting high computational complexity that can however be mitigated by ap-
plying a clustering approach on the original set. The experiments showed that applying a form
partitioning during training phase not only helped in reducing the computational burden, but
also resulted in an improvement in forecasting accuracy. Both tested partitioning approaches,

57

namely exploiting the natural categorization present in the dataset and k-means clustering for
time series, yielded promising results and featured similar running times.

Another thing that separates the Temporal Fusion Transformer from other Machine Learn-
ing based models, and from most statistical methods is the interpretability feature it provides.
Depending on the application it might be useful to access data on the relationships learned by
the model, as it can offer important insights on how to intervene to influence a trend in the
target variable. In many real-world forecasting scenarios it is often required a tradeoff between
prediction accuracy and interpretability and Temporal Fusion Transformers can, to a certain
degree, satisfy these requirements thanks to its architecture. Both information on variable im-
portance and global temporal patterns can be extracted by such feature, which gains even more
value when combined with a form of natural partitioning based on domain knowledge on the
dataset.

In conclusion, Temporal Fusion Transformers represent a novel and flexible approach for
tackling multiple time series forecasting problems. Its cross-learning nature combined with
the possibility of adopting a partitioning technique during training allow the model to achieve
satisfactory results in terms of forecast quality, by capturing global relations present in the data
and reducing the computational load with respect to other Machine Learning models trained
in a series-by-series fashion. Moreover, the additional information they offer together with
the forecast can allow them to be preferred to other higher performing methods lacking such
feature.

58

https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.frontiersin.org/articles/10.3389/fdata.2020.00004
https://doi.org/10.1016%2Fj.trc.2017.02.024
https://www.sciencedirect.com/science/article/pii/S0169207019301128
https://www.sciencedirect.com/science/article/pii/S0169207019301128
http://www.jstor.org/stable/3007885

[8] C. A. Sims, “Macroeconomics and reality,” Econometrica, vol. 48, no. 1, pp. 1–48, 1980.
[Online]. Available: http://www.jstor.org/stable/1912017

[9] V. Assimakopoulos and K. Nikolopoulos, “The theta model: a decomposition
approach to forecasting,” International Journal of Forecasting, vol. 16, no. 4, pp.
521–530, 2000, the M3- Competition. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0169207000000662

[10] F. Petropoulos, D. Apiletti, V. Assimakopoulos, M. Z. Babai, D. K. Barrow, S. Ben
Taieb, C. Bergmeir, R. J. Bessa, J. Bijak, J. E. Boylan, J. Browell, C. Carnevale,
J. L. Castle, P. Cirillo, M. P. Clements, C. Cordeiro, F. L. Cyrino Oliveira,
S. De Baets, A. Dokumentov, J. Ellison, P. Fiszeder, P. H. Franses, D. T. Frazier,
M. Gilliland, M. S. Gönül, P. Goodwin, L. Grossi, Y. Grushka-Cockayne, M. Guidolin,
M. Guidolin, U. Gunter, X. Guo, R. Guseo, N. Harvey, D. F. Hendry, R. Hollyman,
T. Januschowski, J. Jeon, V. R. R. Jose, Y. Kang, A. B. Koehler, S. Kolassa,
N. Kourentzes, S. Leva, F. Li, K. Litsiou, S. Makridakis, G. M. Martin, A. B. Martinez,
S. Meeran, T. Modis, K. Nikolopoulos, D. Önkal, A. Paccagnini, A. Panagiotelis,
I. Panapakidis, J. M. Pavía, M. Pedio, D. J. Pedregal, P. Pinson, P. Ramos,
D. E. Rapach, J. J. Reade, B. Rostami-Tabar, M. Rubaszek, G. Sermpinis, H. L.
Shang, E. Spiliotis, A. A. Syntetos, P. D. Talagala, T. S. Talagala, L. Tashman,
D. Thomakos, T. Thorarinsdottir, E. Todini, J. R. Trapero Arenas, X. Wang,
R. L. Winkler, A. Yusupova, and F. Ziel, “Forecasting: theory and practice,”
International Journal of Forecasting, vol. 38, no. 3, pp. 705–871, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0169207021001758

[11] A.-A. Semenoglou, E. Spiliotis, S. Makridakis, and V. Assimakopoulos, “Investigating
the accuracy of cross-learning time series forecasting methods,” International Journal
of Forecasting, vol. 37, no. 3, pp. 1072–1084, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0169207020301850

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
770–778.

[13] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series databases using
recurrent neural networks on groups of similar series: A clustering approach,” 2017.
[Online]. Available: https://arxiv.org/abs/1710.03222

60

http://www.jstor.org/stable/1912017
https://www.sciencedirect.com/science/article/pii/S0169207000000662
https://www.sciencedirect.com/science/article/pii/S0169207000000662
https://www.sciencedirect.com/science/article/pii/S0169207021001758
https://www.sciencedirect.com/science/article/pii/S0169207020301850
https://www.sciencedirect.com/science/article/pii/S0169207020301850
https://arxiv.org/abs/1710.03222

[14] S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting,” International Journal of Forecasting, vol. 36, no. 1, pp. 75–85,
2020, m4 Competition. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0169207019301153

[15] P. Montero-Manso, G. Athanasopoulos, R. J. Hyndman, and T. S. Talagala,
“Fforma: Feature-based forecast model averaging,” International Journal of Forecasting,
vol. 36, no. 1, pp. 86–92, 2020, m4 Competition. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0169207019300895

[16] S. Fan, C. Non-member, and L. Chen, “Electricity peak load forecasting with
self‐organizing map and support vector regression,” IEEJ Transactions on Electrical and
Electronic Engineering, vol. 1, pp. 330 – 336, 09 2006.

[17] H. Mori and A. Yuihara, “Deterministic annealing clustering for ann-based short-term
load forecasting,” IEEE Transactions on Power Systems, vol. 16, no. 3, pp. 545–551, 2001.

[18] T. Warren Liao, “Clustering of time series data—a survey,” Pattern Recognition, vol. 38,
no. 11, pp. 1857–1874, 2005.

[19] D. Piccolo, “A distance measure for classifying arima models,” Journal of Time
Series Analysis, vol. 11, no. 2, pp. 153–164, 1990. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1990.tb00048.x

[20] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series databases using
recurrent neural networks on groups of similar series: A clustering approach,” 2018.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” 2017.

[22] M. H. S. Eddin, R. Roscher, and J. Gall, “Location-aware adaptive denormalization: A
deep learning approach for wildfire danger forecasting,” 2022.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, pp. 1735–80, 12 1997.

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected con-
volutional networks,” 2018.

61

https://www.sciencedirect.com/science/article/pii/S0169207019301153
https://www.sciencedirect.com/science/article/pii/S0169207019301153
https://www.sciencedirect.com/science/article/pii/S0169207019300895
https://www.sciencedirect.com/science/article/pii/S0169207019300895
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1990.tb00048.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1990.tb00048.x

[25] O. K. Oyedotun, K. A. Ismaeil, and D. Aouada, “Why is everyone training very deep
neural network with skip connections?” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–15, 2022.

[26] C. Rudin and J. Radin, “Why Are We Using Black Box Models in AI When We Don’t
Need To? A Lesson From an Explainable AI Competition,” Harvard Data Science Re-
view, vol. 1, no. 2, nov 22 2019, https://hdsr.mitpress.mit.edu/pub/f9kuryi8.

[27] C. Bergmeir and J. M. Benítez, “On the use of cross-validation for time series predictor
evaluation,” Information Sciences, vol. 191, pp. 192–213, 2012, data Mining for Software
Trustworthiness. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0020025511006773

[28] M. Nelson, T. Hill, W. Remus, and M. O’Connor, “Time series forecasting using neural
networks: Should the data be deseasonalized first?” Journal of forecasting, vol. 18, no. 5,
pp. 359–367, 1999.

[29] G. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time
series,” European Journal of Operational Research, vol. 160, no. 2, pp. 501–514,
2005, decision Support Systems in the Internet Age. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0377221703005484

[30] J. M. Rožanec and D. Mladenić, “Reframing demand forecasting: a two-fold
approach for lumpy and intermittent demand,” 2021. [Online]. Available: https:
//arxiv.org/abs/2103.13812

[31] A. C. Türkmen, T. Januschowski, Y. Wang, and A. T. Cemgil, “Forecasting
intermittent and sparse time series: A unified probabilistic framework via deep
renewal processes,” PLOS ONE, vol. 16, pp. 1–26, 11 2021. [Online]. Available:
https://doi.org/10.1371/journal.pone.0259764

[32] G. O. Kaya, M. Sahin, and O. F. Demirel, “Intermittent demand forecasting: A guide-
line for method selection,” Sādhanā, vol. 45, pp. 1–7, 2020.

[33] K. R, K. Kayathwal, G. Dhama, and A. Arora, “A survey on classical and deep learning
based intermittent time series forecasting methods,” in 2021 International Joint Confer-
ence on Neural Networks (IJCNN), 2021, pp. 1–7.

62

https://www.sciencedirect.com/science/article/pii/S0020025511006773
https://www.sciencedirect.com/science/article/pii/S0020025511006773
https://www.sciencedirect.com/science/article/pii/S0377221703005484
https://www.sciencedirect.com/science/article/pii/S0377221703005484
https://arxiv.org/abs/2103.13812
https://arxiv.org/abs/2103.13812
https://doi.org/10.1371/journal.pone.0259764

[34] A. Muhaimin, D. D. Prastyo, and H. Horng-Shing Lu, “Forecasting with recurrent
neural network in intermittent demand data,” in 2021 11th International Conference on
Cloud Computing, Data Science & Engineering (Confluence), 2021, pp. 802–809.

[35] R. Hyndman, “Another look at forecast accuracy metrics for intermittent demand,”
Foresight: The International Journal of Applied Forecasting, vol. 4, pp. 43–46, 2006.

[36] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine learning
forecasting methods: Concerns and ways forward,” PLOS ONE, vol. 13, no. 3, pp. 1–26,
03 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0194889

[37] P. S. Kalekar et al., “Time series forecasting using holt-winters exponential smoothing,”
Kanwal Rekhi school of information Technology, vol. 4329008, no. 13, pp. 1–13, 2004.

[38] X. Huang, Y. Ye, L. Xiong, R. Y. Lau, N. Jiang, and S. Wang, “Time series k-means:
A new k-means type smooth subspace clustering for time series data,” Information
Sciences, vol. 367-368, pp. 1–13, 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0020025516303796

[39] V. Niennattrakul and C. A. Ratanamahatana, “On clustering multimedia time series
data using k-means and dynamic time warping,” in 2007 International Conference on
Multimedia and Ubiquitous Engineering (MUE’07), 2007, pp. 733–738.

[40] G. Soleimani and M. Abessi, “Dlcss: A new similarity measure for time se-
ries data mining,” Engineering Applications of Artificial Intelligence, vol. 92, p.
103664, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S095219762030110X

[41] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. H. Tung, “Spade: On shape-based
pattern detection in streaming time series,” in 2007 IEEE 23rd International Conference
on Data Engineering, 2007, pp. 786–795.

63

https://doi.org/10.1371/journal.pone.0194889
https://www.sciencedirect.com/science/article/pii/S0020025516303796
https://www.sciencedirect.com/science/article/pii/S0020025516303796
https://www.sciencedirect.com/science/article/pii/S095219762030110X
https://www.sciencedirect.com/science/article/pii/S095219762030110X

64

Acknowledgments

I would like to express my sincere gratitude to my thesis advisor, professor Mariangela Guidolin,
for her precious feedback and her valuable insights. My appreciation also goes to my intern-
ship tutors at ACT Operation Research IT, Ruben Manganiello and Giuliano Squarcina, who
shared with me their knowledge and expertise, and with whom I had the pleasure of working.

Many thanks should also go to my family for their continuous understanding and for their
precious words of encouragement. Their support is what motivated me the most during the
compilation of this thesis.

Lastly, I would like to mention the staff of San Daniele del Friuli Municipal Library for point-
ing me towards some useful references and for hosting my writing sessions.

65

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	State of the Art in Multiple Time Series Forecasting
	Forecasting multiple time series
	Statistical approaches
	Cross-Learning approaches
	Hybrid approaches
	Clustering

	Temporal Fusion Transformers
	Model Structure
	Different covariate types
	Variable selection
	Static variable encoders
	Sequence-to-sequence networks
	Static Enrichment layer
	Temporal Self-Attention layer
	Position-wise feed-forward layer

	Interpretability feature
	Variable importance
	Interpretable multi-head attention

	Experiments and clustering approach
	Dataset and Testing Framework
	Demand pattern classification
	Metrics

	Holt-Winters benchmark
	TFT on entire dataset
	Interpretation

	TFT on product tree clustering
	Interpretation

	TFT on k-means clustering
	Interpretation

	Conclusion
	References
	Acknowledgements

