
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in ICT For Internet and Multimedia

Face Forgery Detection Using Conditional GAN

Supervisor Master Candidate
Simone Milani Gianmaria Rossi
Università di Padova

Co-supervisor
Marco Fontani
AMPED s.r.l.

16 December 2019 ACADEMIC YEAR 2018-2019

ii

Abstract

Face forgery, specifically in video sequences, is an increasing threat due to an easy access to
video manipulation tools and channels where to share those videos. The study of a face
forgery detection tools is new, and even if there are already some solutions to detect manip-
ulated videos, the techniques used to create the forgery keep evolving. This work propose
a Deep Learning approach to generate a mask showing the region of a tampered face. A
Conditional Generative Adversarial Network (cGAN) is used, and a total of 16 features are
extracted from the video and used as input of the neural network. This method is tested
on video downloaded from YouTube and a dataset provided by a collaboration by Google
and Jigsaw. The obtained results are extremely promising , although there is still room for
improvements.

iii

iv

Contents

Abstract iii

List of figures vi

List of tables ix

1 Introduction 1

2 Neural Networks 5
2.1 Backpropagation . 11
2.2 Convolutional Neural Networks . 14
2.3 Autoencoders . 22

3 Generative Adversarial Networks 25
3.1 Deep Convolutional Generative Adversarial Networks 30
3.2 Conditional Generative Adversarial Networks 31

4 Architecture 33

5 Dataset 45

6 Experiment 47

7 Conclusion 55

References 56

v

vi

Listing of figures

2.1 Simple model of a neuron . 6
2.2 Sigmoid activation function . 7
2.3 Activation functions. 8
2.4 Fully Connected Neural Network . 10
2.5 Convolutional Layer[1] . 15
2.6 Pooling Layer . 17
2.7 Convolutional Neural Network . 17
2.8 Plots of the loss over the training set and the validation set[2] 19
2.9 Dropout in a neural network . 20
2.10 Example of a pathological curvature[3] 22
2.11 Comparison of different optimizer . 23
2.12 Autoencoder architecture . 24

3.1 GAN architecture . 27
3.2 GAN . 28
3.3 Conditional GAN . 31

4.1 Codec features . 34
4.2 Quality features . 35
4.3 Frame difference . 35
4.4 Optical flow features . 36
4.5 Face mask . 37
4.6 Macroblock . 37
4.7 Benford’s Features . 39
4.8 Discriminator training . 41
4.9 Discriminator’s architecture . 42
4.10 Unet[4] . 43
4.11 Gnet . 44
4.12 Generator . 44

6.1 Network training . 49
6.2 Visual Results . 52
6.3 Plotting of the visual results. 52
6.4 Results on a forged video . 53
6.5 Results on a forged video . 53

vii

6.6 Results on a real video . 54
6.7 Results on a forged video . 54

viii

Listing of tables

4.1 Benford’s Law . 38

5.1 Train Dataset . 45
5.2 Test Dataset . 46

6.1 Results of the metrics for each video in the test dataset 51
6.2 Average results for real and forged videos 52

ix

x

1
Introduction

In today’s digital age the use of videos are widespread all around theworld thanks to Internet
and TVs. They are used to entertain, to express ideas, to share news, as legal evidence , for
educational purposes. Apart from many good things, videos are also used in a negative way
for example : blackmailing, political defamation, terrorism promotion.

The improvement of computers and cameras, together with video editing tools, allows
even anovice individual tomakeunauthorizedmodificationsof the content of a video, thereby
affecting its integrity and reliability [5].

In 2017 a new type of forged video has appeared in Internet, the deepfakes. The name
comes from the username of a Reddit user which has created a tool to superimpose the face
of an actress in a pornographic video using an autoencoder-decoder pairing structure: the au-
toencoder extract latent features of face images and the decoder is used to reconstruct the face
images [6]. In January 2018 a desktop application used to create deepfakes called FakeApp
has become available for download. Later in that year, several social media banned deep-
fakes and associated communities [7]. Since the diffusion of deepfake videos, multiple apps
to modified a persons face have been created such as: FaceApp, Zao, Snapchat’s filters.

Several corporations and companies have launched a deepfake detection challenge releas-
ing a dedicated dataset to incentivate a progress in this area by inviting participants to com-
pete to create new ways of detecting and preventing manipulated media[8] [9].

In June 2019 a hearing held by the House Intelligence Committee on national security
challenges of artificial intelligence, manipulated media, and deepfakes, discusses the dangers

1

of deepfakes[10].
Forged video detectors can be divided in two categories: active and passive detection. The

first approach actively modifies the data to be protected at the origin and pre-embeds some
information like watermark, fingerprint into digital images or digital signature, and identify
them with an integrity detection of the pre-embedded information [11]. These techniques
suffer from the following limitation [12]:

• A person can manipulate the video before applying the watermark.

• Several encryption techniques can be used to avoid unauthorized persons to modify
the video, however the file owner can modified it before the encryption.

• The need of a special hardware or software in post processing the digital video to insert
the watermark

The passive approaches rely on the unintentional fingerprint traces left during video ac-
quisition and editing to detect tampered region [13]. In [12], this approach is divided in
three categories: methods computing statistical correlation of video features, frame-based
solutions detecting statistical anomalies, and strategies revealing inconsistencies with respect
to the digital equipment.

In thisworkwehavedeveloped a conditionalGANthat, byusing a set of features extracted
from the video sequence, creates a binary mask showing the region where the video has been
modified. This neural network is trained specifically on face forgery detection.

Other works have proposed solution to the video forgery detection problem. In [14] two
convolutional neural networks are used to classify respectively the codec and quality of the
frames: by analyzing the differences in the outcomes it is possible to identify regions where
the video has been tampered. The work in [15] proposed a convolutional neural network
to estimate quantisation parameter, deblock settings and intra/inter model of pixel patches
from anH.264/AVC sequence. The author of [16] proposed a convolutional neural network
capable to automatically learn manipulation features directly from training data; to achieve
this a new type of convolutional layer has been designedwhich suppresses an image’s content.
By constraining the first layer of convolutional filters to learn only a set of prediction error
filters the CNN is allowed to adaptively learn a strong set of manipulation detection feature
extractors.

Due to the increasing risks of deepfake, several article propose their own solution. In [17] a
CNNisused to extract frame-level features that are used to train aRecurrentNeuralNetwork

2

(RNN) that learns to classify if a videohas beenmanipulated. The creationof deepfake leaves
some artifacts in the region of the modified face. The approach in [18] shows how a CNN
is able to capture these artifacts. The solution in [19] uses a deep learning approach focused
on the mesoscopic properties of images.

This thesis is structured as the following: Chapter 2 describes the key elements of a neural
network and some architectures used in the project. In Chapter 3 is described the Generative
Adversarial Network and some specific designs. Chapter 4 is dedicated to the architecture of
the neural networks. Chapter 5 describes the dataset used to train and test the neural network.
In Chapter 6 it is explained how the neural network is trained and the results achieved with
it. Chapter 7 is dedicated to the conclusions.

3

4

2
Neural Networks

Themain components of a neural networks are, as the name suggests, the neurons. The con-
cept of neural networks was created byWarrenMcCulloch andWalter Pitts in 1943,[20][21].
Their model was very simple, with two classes of neurons: the peripheral afferent neurons
(input and output neurons) and the inner neurons. The output of each neuron is either
excitatory or inhibitory, but not both. In the network each neuron is in the state of firing
or not firing. For the inner neurons this state depends on the state of the input neurons: if
the number of firing input neurons is greater than a threshold value and none of the input
neuron is an inhibitory one, then the neuron will fire.

In 1949, Donald Hebb, [22], a Canadian psychologist, revolutionized the way that artifi-
cial neurons were perceived. In The Organization of Behavior he affirms that if a neuron
continues to fire to another neuron, the connection between the two will strengthens; and
this is a fundamental activity for learning and memory. With these information a new tech-
niquewas applied to the artificial neuron ofMcCulloch and Pitts: a weight is applied to each
input.

Between 1950s and 1960s Frank Rosenblatt, using the model ofMcCulloch and Pitts, and
the information of Hebb, developed the perceptron. The perceptron takes in input a finite
number of binary values, x1, x2, x3,.., xn; each of them has a weight, w1, w2, w3,..., wn. The
output of the neuron is determined by the following expression:

5

{
0 if

∑n
i=1 wixi < b

1 if
∑n

i=1 wixi > b
.

where b is the threshold value. We can move b to the left part of the equation.

Figure 2.1:Simplemodelofaneuron

A limitation of the perceptron model is that both the input and output of the neurons
are 0 or 1, and this makes the learning process hard since intermediate or soft values are not
conceived. For this reason the output is processed by a different activation function: the
sigmoid. The perceptron model with sigmoid activation is similar to the perceptron one,
but it is possible to apply small changes to the weights to have small changes in the output.
Each input x1,x2,x3,..,xn of the sigmoid neuron has a value included between 0 and 1, and as
for the perceptron, each input has its weight w1,w2,w3,...,wn. The difference relies on the
way the output is computed. For the sigmoid model, the output of the neuron is defined as
σ((wx+ b)wherewx is the dot product between the weight vectorw and the input vector
x. The function σ is called sometimes logistic function and it is defined as :

σ(z) =
1

1 + e-z
.

We can rewrite it more explicitly usingw, x, and b as

σ(wb) =
1

1 + e
∑n

i=1 wixi−b
.

It is possible to see in Fig. 2.2 that the output of σ is bound between 0 and 1; for z very
negative e−z →∞ and σ ≈ 0, while for z very positive e−z → 0 and σ ≈ 1.

6

Figure 2.2:Sigmoidactivationfunction

For these cases the behaviour of the sigmoid neuron is similar to the perceptron neuron,
but enables real number output between 0 and 1; for this reason, it is commonly used to
predict probabilities. The sigmoid function is differentiable, this is very important since the
derivative is used for the learning process of the neural network.

Other popular activation functions a(z) are used in different neural networks such as the
step function, the hyperbolic tangent (tanh) function, theRectifiedLinearUnit (RelU) func-
tion, and the leakyRelU function.

The step function is the one used to obtain the perceptronmodel, in fact its output is 0 if
wx+ b ≤ 0, 1 otherwise.

The tanh function, is defined as

a(z) =
sinh(x)

cosh(x)
=

ez − e−z

ez + e−z
.

The range of this activation function is (-1,1) and like the sigmoid function it is differentiable
and monotonic, but its derivative is not monotonic. Typically it is used in problems where
the binary classification is needed.

7

The ReLU function, is defined as

a(x) =

{
0 if x < 0

x otherwise
.

ReLU is a piecewise linear function which prunes the negative values and retain the positive
ones [23]. Since it is a simple operation it is much faster to compute than the sigmoid or the
tanh activation function. The problem of using a ReLU activation function is the disconti-
nuity “of the derivative” at 0.
LeakyRelU changes from RelU as

a(x) =

{
αx if x < 0

x otherwise

whereα is a constant in the range (0,1). Insteadof setting to zero thenegative values, leakyReLU
multiplies them with a constant value, thus avoiding the discontinuity at 0. This activation
function is the one that will be used in the neural network used for the deepfake detection
task: reasons are explained later.

(a)Stepactivationfunction.
(b)tanhactivationfunction.

(c)ReLUactivationfunction. (d) leakyReLUactivationfunction.
Figure 2.3:Activationfunctions.

8

Different activation functions are used because each one has its own derivative, and as
we have introduced before, the derivative is used to modify the value of the weight of the
neurons’ inputs. If we focus on a single neuron, a slight change of weights∆wi and bias∆b

will produce a small change to the output,∆output, that can be approximated as

∆output ≈
∑
i

∂output

∂wi

∆wi +
∂output

∂b
∆b ,

where ∂output
∂wi

and ∂output
∂b

are the partial derivatives of the output with respect of wi and b

respectively. The previous expression shows that ∆output is a linear function of ∆w and
∆b. Since each activation function has its own derivative,∆output change in different way
depending on the activation chosen.

To understand how a neural network works and learns in the next figure it is shown a
simple architecture.

Each neural network is made of different layers: the first one is called input layer, and the
last layer is called the output layer. Between these two layer we can have one or more layers,
each one called hidden layer. Typically the input of each node, with exception of the neu-
rons of the input layer, are the output of all the neurons of the previous layer. This type
of network is called feedforward neural network, there are several architectures such as Con-
volutional Neural Network (CNN), which will be used in this work and will be explained
later, and Recurrent Neural Network (RNN), where the input of some layers can be made
of output of the same layers at previous instant (i.e., there are loops in the network). To bet-
ter understand future expressions, we introduce the following notation: wl

jk is the weight
between node k of the lth layer and node j of the (l − 1)th layer.

Given an input set X = x1, x2, .., xn and a label set T = t1, t2, .., tn associated to the
input, the goal of a neural network is to have the output y(xi) equal to ti. To measure the
accuracy of the neural network a cost function C is associated to y, for example we can use
the mean squared error (MSE):C(w, b) = 1

2N

∑N
i=1 ||y(x)− t||2,

wherew and b represent all the weights and biases of the network. We can notice this cost
function is non-negative and when it is close to 0, the output is almost equal to the label. To
minimize the cost function, the gradient descent is used, if we consider the cost function C

a function of n variables,C(w1, w2, ..., wn), a change∆C ofC is caused by∆w ,

∆C ≈ ∇C∆w.

9

Figure 2.4:FullyConnectedNeuralNetwork

where∇C is the gradient of the cost function∇C = (∂C
∂w1

).
We can make∆C negative by choosing an appropriate value of∆w, for example we can

have
∆w = −η∇C,

where η is a small positive value that wewill call learning rate. Wewant a small value to avoid
changing too much∆C and risking to never reach a minimum point.

If we substitute∆w in the equation for∆C we obtain

∆C ≈ −η∇C∇C = η||∇C||2.

Since ||∇C||2 is always positive we are sure that∆C is always negative. Now, let us consider
C(w, b),∇C is function of ∂C

∂wj
and ∂C

∂b
, more precisely

∇C = (
∂C

∂w1

,
∂C

∂w2

, ...,
∂C

∂wn

,
∂C

∂b
).

The weights and bias are updated according to:

wj ← wj − η ∂C
∂wk

b← b− η ∂C
∂b
.

One problem arises from these operation, since the cost function computes theMSE over
all the training samples. When we are training our neural network with a lot of samples, the

10

time needed for a single update of each weight increases rapidly; to overcome this problem,
the stochastic gradient descent (SGD) method is used. The SGD works by computing the
gradient descent over a small subset of training samples of sizem taken randomly from the
whole set.

More precisely, suppose we have a set x1,x2, ...,xm of input value of size m called mini-
batch taken randomly from a the input set of size n, withm big enough to obtain the follow-
ing approximation: ∑m

i=1∇Cxi

m
≈

∑
x∇Cx

n
= ∇C.

We can then update the vector of weightswj and the vector of bias bj as shown in the follow-
ing

wj ← wj − η
m

∑m
i=1

∂Cxi

∂wk

bj ← b− η
m

∑m
i=1

∂Cxi

∂bj
.

2.1 Backpropagation

In order to minimize the cost function, the backpropagation is used.
The first implementation to runona computerwasdonebySeppoLinnainmaa in 1970[24],

but the first theoretical models were made during the 1960s. The work referenced by [24],
dating back to 1986, describes the back-propagation as a new learning procedure for net-
works of neuron-like units to change theweights in order tominimize the cost function. The
change of weights is done in parallel for nodes in the same layer, while for nodes in different
layers the change is made sequentially.

To continue the explanation of the back-propagation two consideration need to bemade:
the first one is that the cost functionC(w, b) can bewritten as an average of the cost function
of each sample; the second is that the cost function can bewritten as a function of the output
of the neural network. The reason for the first consideration is that in the backpropagation
we calculate the partial derivative ∂Cx

∂w
and ∂Cx

∂b
of each sample individually, then we obtain

∂C
∂w

and ∂C
∂b

by averaging over all the training sample.
If we remember the input of a neuron of layer l is:

zlk = wl−1a(zl−1) + bl−1 ,

wherewl−1is the vector of weights between the neuron of the previous layers and node k of

11

layer l, a is the activation function, zl−1 is the vector of output of the previous layer, and b
is the bias. In a neural network with L layers and m output neurons we can define δlk =

∂C
∂zlk

as the error of neuron k in layer l. For the error of each neuron of the last layer we obtain

∂L
k =

∂C

∂aLm
a′(zLk) =

∑
k

(tk − a(zLk))⊙ a′(zL),

while for a general layer we have

δl = ((wl−1)T δl+1)⊙ a′(zl),

then it is possible to backpropagate the derivative to

∂C

∂wl
jk

= δlka
l−1
k

∂C

∂bml
= δlm.

Nowthatwehave these equationswe can apply the backpropagationmethod to thewhole
network. The first operation we do is the forward pass, for each layer l=2,3,...,L we compute
zl = wlal−1 + bl and al = σzl.

The error vector of the last layer is computed, δL = ∇aC ⊙ σ′(zL).

From this value we backpropagate the error to layers l=L-1,L-2,...2 and we obtain

δl = ((wl−1)T δl+1)⊙ a′(zl).

Lastly we calculate the gradient of the cost function as

∂C

∂wl
jk

= al−1
k δlj and

∂C

∂blj
= δlj,

and update the value of the weights and bias with the following expression:

wjk ← wjk − η ∂C
∂wjk

bj ← bj − η ∂C
∂bj

,

and if we are using a stochastic gradient descend with mini-batch of size m we have

wjk ← wjk − η
m

∑
x δ

x,l(ax,l−1)T

bj ← bj − η
m

∑
x δ

x,l.

12

A problem we can encounter during the training of a neural network is that an artifi-
cial neuron has a poor learning performance whenever the estimation error is high[25]. To
understand why it learns very slowly we have to analyze the partial derivatives of the cost
function,∂C

∂w
and ∂C

∂b
, with the quadratic cost function we have

C =
(y − o)

2
,

where o is the output of the neuronwhen its input is x = 1, and the desired output is y = 0.
Whenever the neuron is learning slowly, the value of the partial derivatives are small. If we
write the output in terms of the weight and bias we have o = a(z) = a(wx + b), and by
using the chain rule to differentiate with respect to the weight and bias we obtain

∂C
∂w

= (o− y)a′(z)x = oa′(z)
∂C
∂b

= (o− y)a′(z) = oa′(z).

If we look at the plot of the sigmoid activation function, when the neuron’s output is very
close to 1, the curve is flat, hence a′(z) gets very small. This is the cause of the slow learning.

A solution to this problem is achieved by substituting the quadratic cost function with
the cross-entropy cost function. Given a neuron with input x1, x2, ..., xn, corresponding
weights w1, w2, ..., wn, and bias b; its output is given by o = a(z) = a(

∑n
i=1 wixi + b).

The cross-entropy cost function is defined as

C = − 1

m

∑
x

[y ln o+ (1− y)ln(1− o)],

where m is the number of sample and y is the desired output.
The previous equation can be used as a cost function since it has the following properties.

• It is non-negative (C > 0) since the argument of the logarithms are between 0 and
1: the sum of logarithms are always negative, and there is a minus sign that make it
positive.

• If the desired output is 0 or 1, then when the output of the neuron is close to the
desired output then cross-entropy is close to zero.

To see that the cross-entropy does not have the problem of slow learning we compute the
partial derivatives of the cost function with respect to the weight as before. If we apply two

13

times the chain rule we obtain

∂C

∂wi

= − 1

m

∑
x

(
y

a(z)
− 1− y

1− a(z)
)
∂o

∂wi

.

∂C
∂wi

= − 1
m

∑
x(

y
a(z)
− 1−y

1−a(z)
) ∂o
∂wi

= − 1
m

∑
x(

y
a(z)
− 1−y

1−a(z)
)a′(z)xj.

By putting everything in a common denominator and after simplifying it we have

∂C

∂wi

=
1

m

∑
x

(
a′(z)xj

a(z)(1− a(z))
)(a(z)− y).

With the sigmoid activation function, a(z) = 1
1+e−z , its derivative is a′(z) = a(z)(1 −

a(z)), so in the previous expression we can remove the fraction, and we obtain

∂C

∂wi

=
1

m

∑
x

xi(a(z)− y).

We can observe that we no longer use a′(z) to change the value of the weight, so we do not
have a slow training caused by a strong error of the neuron; moreover the rate at which the
weight learns is controlled by a(z)− y, that is the error on the output, so a big error means
that the neuron will train faster.

2.2 Convolutional Neural Networks

Theprevious sectionsdescribedhowadeepneural networkworks. Unfortunately thismodel
has a problem, the number of parameters that need to be trained. The number of parame-
ters for a neural network with L layers is given by

∑N
l=2(nl ∗ n(l − 1)) + nl. Suppose we

have a deep neural network with four layers, the first layer has 5 nodes, the two hidden layers
have 8 nodes each, and the output layers has 2 nodes, all the layer are fully connected. Using
the previous formula we obtain 138 parameters. In this project each training sample is made
of a matrix 88 x 160 x 16, which means that the input layer used has 225280 nodes. Since the
architecture of the network is made of several layers, a fully-connected neural network need
to train a number of parameters on the order of hundreds of millions. Another deficiency
of using a FNN on images is that it has no built-in invariance with respect to translation, or
local distortion of the input[26]

14

To solve this problem, the Convolutional Neural Network (CNN) model is employed.
These models are typically used on images, and more in general multi-channel images. The
CNNarchitecture aremade of combination of three types of layers: the convolutional layers,
the pooling layers, and the fully connected layers.

Figure 2.5:ConvolutionalLayer[1]

From the figure it is possible to see that instead of connecting each neuron of a layer to
each neuron of the next layer,in the convolutional layer only a portion of the input is used.
The key component is the kernel, i.e. a matrix of weights with size m xm x d, where m is the
length of convolution and d is the number of filters. Typically the size of the kernel is small,
but it spreads along the depth of the input. Starting from the top left corner of the input we
compute the convolution between the kernel and the image for each filter in the kernel, thus
we obtain as output a 1 x 1 x d vector.

The kernel is then moved along the image and another convolution is computed: this
process is repeated for the whole image. The output of all the convolutions of a single filter
is called feature map. The feature map of all the filter are then stacked together to create the
input of the next layer. The value zlj,k,f where (j,k) is the location of the feature on the f-th
feature map of the l-th layer is equal to

zlj,k,f = (wl
f)

Txl
j,k + blf ,

where (wl
f)

T and blf are the weights vector and the bias of the f-th filter of the l-th layer.
An important aspect is that for a feature map the same kernel and biases are used for the
convolutions. Withmultiple feature maps, we have the opportunity to detect multiple local
feature regardless of their position on the image [27]. Kernels permit reducing the number

15

of parameters that must be trained, i.e. we have only m x m x d weights and d bias to train.
Some parameters that are used in the convolutional layer are:

• Receptive field m: the size of the kernel used in the convolution, typically it is an odd
number.

• Depth d: number of filters of the kernel, it determines the number of feature maps
that will become the input of the next layer

• Stride s: it indicates by howmany pixels the kernel move after the convolution. If the
value is less thanm then we are overlapping the convolution, if it is greater or equal to
m there is no overlapping.

• Zero-padding p: how many pixels are padded in to the input. Since the combination
of receptive field and stride reduce the size of the output, the padding is used tomodify
the output size.

We can compute the output size of a convolution of a single filter with applied to an image
of size n x n:

(n− (m− 1) + 1) + 2 ∗ p)/s+ 1.

The number of parameters we have to train with receptive field of size m x m and depth
(m ∗m+ 1) ∗ d.

Like for FNN, the output of each convolution is then processed by an activation func-
tion. It can be one of the previously described, but the most used is ReLU..Next we ap-
ply the pooling-layer, this layer aims at reducing the dimensionality of the output, In this
way we further reduce the number of parameters and the computational complexity of the
architecture[28]. Another advantage is that whenever we find a feature, its precise position is
irrelevant for identifying the pattern, sometimes it can be harmful because the position can
change for different samples. If the network learns to find a feature in a very specific position,
it may be unable to find it when it is in a slightly different position [26], by downsampling
the output with the pooling layer we avoid this problem.

Two common pooling layer are the max pooling-layer and the mean pooling-layer. Just
like the convolutional layer we are using a kernel to compute the operation: the receptive
field size is 2x2 and it has a stride of value 2: this mean that we do not have any overlapping
and at the end the size of the feature map will be halved. In a max pooling-layer we keep the
maximum value inside the receptive field, while for the mean pooling layer we average the
values.

16

Figure 2.6:PoolingLayer

Figure 2.7:ConvolutionalNeuralNetwork

Before the output layer we have one or more fully-connected layers.

There are several techniques that are used to improve the performance of a CNN; one
of these is the batch normalization. The training of a neural network is very difficult, the
inputs of each layer are affected by the parameters of the preceding layers; this means that
small changes to the network parameters amplifies as the network becomes deeper[29]. The
changes of the distribution of layers’ input is a problem, and when it happens it is called co-
variate shift of the layer[30]. Ioffe and Szegedy in[29] propose the batch normalization as a
solution for the covariate shift of the layers. It accomplishes it with a normalization of the
layer inputs where the mean and the variance of the input are fixed. This affects the gradi-
ent flow through the network since it reduces the influence of the gradients on the scale of
parameters. Using this it is possible to use a higher learning rate thus increasing the learning
speed. Let x be the input of a layer, andX the set of these input, the normalization can be
written as

x̂ = norm(x,X).

The normalization depends not only on the single input x but also on all examplesX . The

17

backpropagation requires the computation of the Jacobians:

∂norm(x,X)

∂x
,

∂norm(x,X)

∂X
.

If our training set contains a lot of samples it is computationally expensive to compute the
covariance matrix Cov[x] = Ex∈X [xx

T] − E[x]E[xT], its inverse square root, and all the
derivatives of these transformation used for the backpropagation. To simplify the computa-
tion, authors of [29] propose two strategies.

The first , instead of normalizing the features in layer inputs and outputs jointly, normal-
izes each scalar feature independently. For a layer with input x = (x(1), x(2), ..., x(d)) each
dimension is normalized as:

x̂(k) =
x(k) − E[x(k)]√

V ar[x(k)]
,

where the expectation and variance are computed over the training samples. This poses a
problem: changing each input layer may change what the layer can represent. To avoid this,
a transformation is inserted in the network that can represent the identity function. For each
x(k) a pair of parameters, γ(k), β(k), is associated which scale and shift the normalized value.

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned during the training phase of the network, it is possible to re-
cover the original input by setting γ(k) =

√
V ar[x(k)] and β(k) = E[x(k)]

Since the gradient descent algorithm uses mini-batches of samples, each mini-batch pro-
duces an estimate of the variance and the mean of the input instead of the whole training
set. The normalization of the input using mini-batches is an efficient way to improve the
training phase, but it is not desirable during the inference phase[29]. For this reason, once
we have trained our model, we use the following normalization:

x̂ =
x− E[x]√
V ar[x] + ϵ

,

where we compute the mean and variance of the whole input set,ϵ is parameter set close to 0
to avoid having 0 at the denominator.

While we are training our model, it is possible to fall in two conditions: underfitting or
overfitting. In the former case our model fails at learning from the training set and it per-

18

form poorly on a test dataset. A possible solution is to increase the capacity of the model by
increasing the number of layers and/or increasing the number of nodes for each layer.

In the second case ourmodel learns to well the training set and does not generalize. There
are several approaches to mitigate this problem: we can train the model using more training
samples or change the architecture reducing its capacity.

Comparing the error over the training set with the error of the validationmakes is possible
to recognize an overfitting.

(a)Underfitting.TheValidationlossis
greaterthanthetrainingloss,butitis
decreasing.Itneedsmoreiterationto
reachtheoptimum.

(b)Goodfitting.Thetraininglossis
veryclosetothevalidationloss,ifwe
keeptrainingtheneuralnetworkitis
possibletooverfitthemodel.

(c)Overfitting.Thevalidationlossgets
closetothetrainingloss,butthenit
increases

Figure 2.8:Plotsofthelossoverthetrainingsetandthevalidationset[2]

Sometimes the minimization of free parameters is not wanted or not needed, for this rea-
son regularization techniques are used.[31][23]

Two regularization techniques that will be used in themodel for the face forgery detection
are the lp norm regularization and the dropout.

The lp norm regularization works by changing the cost function with the addition of
the regularization term that penalizes the model complexity. If our initial cost function is
C(w,b), the regularized function becomes L(w,b) = C(w,b) + λR(w,b) withR(w)

our regularization term and λ our regularization strength. Typically lp norm regularization
useR(w,b) =

∑
j ||wj||pp with p=2: the l2 norm regularizer is commonly called weight de-

cay. This regularization tries to force the network to use smaller weights rather than big ones,
this compromise is regulated by the value of λ. It is possible to choose a l1 norm regularizer,
where we compute the absolute value of the weights. It still penalizes the large weights, but
by using it the weight shrinks by a constant amount toward 0, while for the l2 it is propor-
tional to |w|.

Another type of regularization is the dropout. The term refers to dropping out unit in

19

a neural network [32]. We do not remove permanently the neuron from the network, but
temporarily strip it and all the related connections off from the network. The choice for a
neuron to be dropped is random, typically with a probability p independent from the other
neuron.

Figure 2.9:Dropoutinaneuralnetwork

Since at each iteration of the training different nodes are dropped out, we are practically
training different architectures. One motivation on why dropout improves the training is
that each neuron in a network trained with dropout must learn to work with a random set
of neuron. This should make the model more robust and able to create useful features.

An important decision must be made about the initial value of the weights at the begin-
ning of the training. The first type of initialization set the value of the weights following a
Gaussian distribution with zero mean and variance equal to 0.01; the bias was set to one for
some layer[33]. There can be some issues regarding the activation and/or gradient magni-
tude of the final layer. If the layers are not properly initialized, their input is rescaled by k: if
we have a network with L layers, at the last layer the input is scaled by kL [23][33]. Values
of k>1 lead to extremely large value of output layer while k<1 leads to diminishing signal and
gradient. Additionally, large initial values for the weights lead to divergence due to large up-
dates; on the contrary, with small initial weights, the network is not able to learn since the
updates are in the order of 0.0001% [33].

Two popular weight initialization are the Xavier initialization and the He initialization.
The former is proposed by Glorot and Bengio in [34], the weightwi,j of each layer is initial-

20

ized with the following distribution

wi,j ∼ U [−
√
6√

ni + no

;

√
6√

ni + no

],

whereU is the uniformdistribution,ni is the number of neuron of the previous layer, andno

thenumber ofneuronof the layerwe are at themoment. We can initialize theweight bydraw-
ing the values from a Gaussian distribution with zero mean and variance var =

√
2

ni+no
.

Its derivation is based on the assumption that the activation are linear, this assumption is
invalid if we use the ReLU activation. The work in [35] proposes a weight initialization that
address non linearities, the He initializer, that allows for extremely deep model to converge,
while the Xavier method cannot. With this initialization, we select the value for the weight
from a Gaussian distribution with variance 2

ni
.

The last improvement to increase the efficiency of a neural network is about the optimiza-
tion of the gradient descend. It is known[36] that gradient descend is not suitable for opti-
mizing objectives that present pathological curvature. The 2nd-order optimization method
has been demonstrated to be quite successful on such objectives. For this reason it is possible
that deep learning problem could be resolved using those techniques. An example of patho-
logical curvature is shown in Fig 2.10. The problem of this graph is not the presence of low
or high curvature directions, but the mixture of both together.

One method to overcome the pathological curvature is the Adam optimization. Its name
derived from Adaptive Moment Estimation (Adam); it only requires first-order gradient
with little memory requirement and it computes individual adaptive learning rates for dif-
ferent parameters from estimates of first and second moment of the gradients.[37] It is a
combination of two previous optimization methods, the RMSProp and Adagard. The ad-
vantage of Adam are that themagnitude of the parameters’ update is invariant to rescaling of
the gradient, the stepsizes are approximately bounded by the stepsizes of hyper-parameters,
a stationary objective is not required, the training works with sparse gradient, and a form of
step size annealing is naturally performed.

Given an objective function f(θ)with parameters θ, the sequence of operation of Adam
to minimize the expected valueE[f(θ)] are

Compute the gradient at timestamp t gt ← ∇θft(θt−1)

Update biased first moment estimatemt ← B1 ·mt−1 + (1− B) · gt
Update biased second raw moment estimate vt ← B2 · vt−1 + (1− B2) · g2t
Compute bias-correct first moment estimate m̂t ← mt

1−Bt
1

21

Figure 2.10:Exampleofapathologicalcurvature[3]

Compute bias-correct second raw moment estimate v̂t ← vt
1−Bt

2

Update parameters θt ← θt−1 − α · m̂t√
v̂t+ϵ

Fig. 2.11 shows that Adam, Adagard, and RMSProp, with dropout converge faster than
the SGDM using the Nastarov momentum; moreover the Adam algorithm is the fastest.

2.3 Autoencoders

Another type of neural network that is useful for ourwork is the autoencoder. Autoencoders
are simple learning circuits which aim to transform inputs into outputs with the minimum
amount of distortion[38]; in other words it is a neural networks that is trained to attempt to
copy its input to its output[25].

The first idea of an autoencoder was done by Hinton and the PDP group to address the
problem of the backpropagation without a teacher.

Typically, an autoencoder will learn from the data without the use of human labeling; for
this reason they can be classified as unsupervised learning algorithm.

Themodel can be seen as the combination of two parts, the encoder and the decoder. The
encoder maps the input to a code represented by a hidden layer h = f(x), and the decoder

22

Figure 2.11:LogisticregressiontrainingnegativeloglikelihoodonIMDBmoviereviewswith10,000bag-of-words
(BoW)featurevectors.[37]

maps the code to the output x̂ = g(h) = g(f(x)).
If the autoencoder learns to setg(f(x)) = x everywhere is notuseful since it simply copies

the input to the output. What we want is to extract from the input useful properties of the
data. We achieve that with some constraint applied to the architecture, one way is to have h
with a smaller dimension of x, in this case the autoencoder is called undercomplete[25].

A loss function that can be used to measure the difference between the input x and the
output recovered from the input x,x̂, is the MSE.

L(x, x̂) =
1

m

m∑
i=1

(xi − x̂i),

wherem is the size of the output.
If the dimension of the hidden layer is greater than the input size, it is possible for the

autoencoder to simply learn the identity function. To obtain some useful results we need
to add some constraints. These can be in the form of regularization, for instance to ensure
sparsity of the hidden layer representation, or restriction on the classes of function of the

23

Figure 2.12:Autoencoderarchitecture

encoder and the decoder, or noise in the hidden layer. These constraints force the hidden
layer to assume k different value, when k < m the autoencoder tries to implement some
form of compression or feature extraction[38].

24

3
Generative Adversarial Networks

The architecture used for the face forgery detection is based on the Generative Adversarial
Network (GAN) architecture.

In deep learning discriminative models have been widely employed in many classification
and estimation problems. The success of these solutions is primarily based on the computing
and estimation efficiencies of the previously mentioned solutions, such as the backpropaga-
tion and the dropout.[39]Deep generativemodels are less fortunate, due to the difficulties in
approximating maximum likelihood estimation and related strategies. Despite these results,
there are several reason to study them[40]:

• Training and sampling from generative models is an excellent test of our ability to
represent and manipulate high-dimensionality probability distributions.

• They can be incorporated into reinforcement learning in several ways. Reinforcement
learning algorithms can be divided in model-based and model-free algorithm; the for-
mer one contains the generative models. Generative models of time-series data can be
used to simulate possible future data. A generative model enables learning in a simu-
lated environment, where mistaken action does not cause harm to the agent.

• Generativemodels canbe trainedwithmissing data and canprovide predictionswhen-
ever some data are missing. One example of these is the semi-supervised learning,
where the labels are not available.

• They also enable classification with multi-modal outputs. Sometimes a single input
may have different correct answers, each of them acceptable. With a traditional ma-

25

chine learning algorithms, which uses, for example, the mean squared error between
themodel’s output and the desired onewe are unable to trainmodels that can produce
multiple different correct outputs.

GANs, andother generativemodels, performamaximum likelihood estimation[40]. The
core idea of maximum likelihood is to define a model that provides an estimate of a prob-
ability distribution, parametrized with parameter θ. The likelihood is then the probability
that themodel assigns to the training data:

∏m
i=1 pmodel(x

(i); θ), givenm samplesX(i). The
maximum likelihoodwants to find the parameter of themodel thatmaximizes it. To simplify
the computation of the derivatives and reduce computational load, wewill do themaximum
likelihood in the log space, where the products turn into sums.

θ∗ = argmaxθ

m∏
i=1

pmodel(x
(i); θ)

= argmaxθ log
m∏
i=1

pmodel(x
(i); θ)

= argmaxθ
∑m

i=1 logpmodel(x
(i); θ).

Themaximum likelihood estimation can be seen as theminimization of theKullback Leibler
(KL) divergence between the data generating distribution and the model.

θ∗ = argmin
θ

DKL(pdata(x)||pmodel(x; θ).

Unfortunately we do not have pdata but only a training set of m samples taken from pdata.
These values are used to define an empirical distribution, p̂data. The action of minimizing
the KL divergence between p̂data and pmodel is the same of maximizing the log-likelihood of
the training set[40].

In [39] it is proposed an adversarial network where two models are trained one against
the other. More precisely, a generative model is trained to fool a discriminator, which learns
to determine if the sample in input is from the generator or the data distribution. Competi-
tion in this game forces both models to improve their method until the generator output is
indistinguishable from the true data sample.

It is possible to train bothmodels using backpropagation anddropout algorithm,without
the need of using Markov chain. Moreover a variety of factors and interaction can easily be
incorporated in the model[41].

26

From [41], we want to learn the generator’s distribution pg over data x. An input noise
variable pz(z) is defined, along with a mapping to data space asG(z; θg), where G is multi-
layer perceptron with parameters θg that represents a differentiable function. Another mul-
tilayer perceptron is defined,D(x, θd) that outputs a single scalar. D(x) represent the prob-
ability that x belongs to the data rather than to pg.

Figure 3.1:GANarchitecture

The goal is to trainD(x) tomaximize the probability of correctly labeling the data sample
and the samples generated byG.G on the contrary wants tominimize log(1−D(G(z)). In
other words,[39] D andG play the following two-player minimax game with value function

min
G

max
D

(V (D,G)) = Ex∼pdata(x)[logD(x)] + Ez[log(1− (D(G(z))].

Unfortunately, the training of GANs can be difficult when G and D are represented by
neural networks andmaxD V (D,G) is not convex. Simultaneous gradient descent on two
players’ costs is not guaranteed to reach an equilibrium. If we consider the following ex-
ample where the value function v(a, b) = ab with player 1 controlling a having payoff ab,
and player 2 controlling b and having payoff−ab. If each player make infinitesimally small
gradient steps, each player reduce their own payoff at the expense of the other player. Thus,
parameters a and b go into a stable circular orbit rather than arriving at the equilibriumpoint
at the origin.

The equilibria point for a minimax game are not local minima of v; they are points that
are simultaneously minima for both players’ costs. They are saddle point of v that are local
minima with respect to player 1’s parameters and local maxima with respect to player 2’s pa-
rameters. It can happen that the two players take turns increasing and decreasing the value

27

Figure 3.2:Generativeadversarialnetsaretrainedbysimultaneouslyupdatingthediscriminativedistribution(D,blue,
dashedline)sothatitdiscriminatesbetweensamplesfromthedatageneratingdistribution(black,dottedline)px
fromthoseofthegenerativedistributionpg (G)(green,solidline).Thelowerhorizontallineisthedomainfromwhich
zissampled,inthiscaseuniformly.Thehorizontallineaboveispartofthedomainofx.Theupwardarrowsshow
howthemappingx=G(z)imposesthenon-uniformdistributionpg ontransformedsamples.Gcontractsinregions
ofhighdensityandexpandsinregionsoflowdensityofpg.(a)Consideranadversarialpairnearconvergence:pg is
similartopdata andDisapartiallyaccurateclassifier.(b)IntheinnerloopofthealgorithmDistrainedtodiscrimi-
natesamplesfromdata,convergingtoD∗(x) = pdata

pdata+pg
.(c)AfteranupdatetoG,gradientofDhasguidedG(z)to

flowtoregionsthataremorelikelytobeclassifiedasdata.(d)Afterseveralstepsoftraining,ifGandDhaveenough
capacity,theywillreachapointatwhichbothcannotimprovebecausepg = pdata.Thediscriminatorisunableto
differentiatebetweenthetwodistributions,i.e.D(x)=1/2[39]

function forever, instead of landing exactly on the saddle point where neither player is capa-
ble of reducing its cost [42].

Training GANs consists on finding a Nash equilibrium to a two player non-cooperative
game [43]. Each player want to minimize its own cost function, for the discriminator we
have CD(θG, θD), and it can control only θD, while for the generator we have CG(θG, θD),
with control over θG.

The Nash equilibrium is a tuple (θG, θD) that is a local minimum of CD with respect to
θD and a local minimum ofCG with respect to θG[40]

The cost function used for the discriminator is:

CD(θG, θD) = −
1

2
Ex∼pdata(x)[logD(x)] + Ez[log(1− (D(G(z))].

where we used a cross-entropy cost that is minimized when training a standard binary clas-
sifier with a sigmoid output. To consider also the generator we can represent in different
ways the game. In the first version it is represented as the simultaneous train of a two player
min-max game where the sum of the two players’ costs is always 0.

CG = −CD.

28

Since CG can be written as the negative of CD we can summarize the entire game using a
value function V(G,D) specifying the discriminator’s payoff:

V (G,D) = −CD(θG, θD).

In the value function we have omitted the parameters θG and θD for simplicity, we know
that they are parameters only of the generator and discriminator respectively. The solution
of the minimax game involves a maximization in the inner loop and a minimization in the
outer loop

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].

To achieve the optimal results we need to implement the game with an iterative approach.
If we try to completely optimizeD in the inner loop, we could obtain an overfitting. For this
reason we compute k iterations of optimization of D and then one step of iteration of G. If
we do so, D is maintained near its optimal solution as long as G changes slowly.

The generator G implicitly defines a probability distribution pg as the distribution of the
samples G(z) obtained when z ≈ pz[39]. Our goal is to model G in order to have a good
estimation of pdata.

If we have a fixed generator G, then our optimal discriminator D is:

D∗
G =

pdata(x)

pdata(x) + pg(x)
.

The minimax game is not very effective, since the generator wants to minimize a cross-
entropy and the generator wants to maximize it, if the discriminator successfully rejects gen-
erator samples with high confidence, then the gradient of the generator vanishes,[40][39]
and it is unable to learn and therefore it cannot fool the discriminator. To avoid this problem,
instead of flipping the sign on the discriminator’s cost function to obtain the cost function of
the generator, we flip the target used to construct the cross-entropy cost of the generator[40]:

CG = −1

2
Ezlog(D(G(z))).

As we can see, now the generator wants to maximize the probability of the discriminator
being mistaken. With this variation of the game both player have a strong gradient when
they are losing the game. Since we are no more in a minimax game we cannot describe it

29

with a single value function.
Some disadvantages of an adversarial network are[40][44]: there is no explicit representa-

tion of pg(x), the generator and discriminator may oscillate rather then converging, and D
must be synchronized well with G during the training, otherwise we fall into the Helvetica
Scenario.

3.1 Deep Convolutional Generative Adversarial Networks

For the GAN used in this project we want our generator to output an image, [45], shows
how to build good image representation using GANs. It is possible to separate in two cate-
gories generative image models: non-parametric and parametric. In the former category we
find models that do matching from a database of existing images. They are used in super-
resolution problems, in-painting, and texture synthesis.

Parametricmodels for generating images has been studied extensively, however generating
images of the real world have had not much success.

To create aGANable to generate good image representation the following approaches are
used.

• Replace the deterministic spatial pooling functions, like themaxpooling, with strided
convolutions; this allow the network to learn its own spatial downsampling.

• Eliminate the fully connected layer on top of convolutional features.[45] found that
global average pooling increases model stability at the expense of convergence speed.

• Lastly is the use of batch normalization, which stabilizes learning by normalizing the
input to each unit to have zero mean and unit variance. The batch normalization
helps the gradient flow in deeper models and also improve the training in the case of
poor initialization.

The batch normalization is not applied in each layer, otherwise we could have sample os-
cillations and model instability. It is applied to each layer but the generator output and the
discriminator input. As for the activation function,the ReLU activation is used in all the lay-
ers of the generator expect the last one,where in our case a sigmoid activation function is used.
For the discriminator, a leakyReLU activation function is used, this function is preferred to
a normal ReLU since it does not have discontinuity.

30

3.2 Conditional Generative Adversarial Networks

The last topic relevant to our model that we are going to elaborate on is the conditional
GAN [41]. A cGAN is an extension of a traditional GAN where both the generator and
discriminator are conditioned on some extra information y[41]. The extra information y is
an embedding space used to condition the generative model on some external information
taken from the training sample; with this it is possible to define a density model py(y).

Figure 3.3:ConditionalGAN

The generator implicitly defines a conditional densitymodel pg(x|y); it is possible to com-
bine it with the existing conditional density py(y) yielding the joint model pg(x, y)[46].

The objective function would be

min
G

max
D

(Ex,y∼pdata(x,y)[logD(x, y)] + Ey∼py ,z∼pz(z)[log(1− (D(G(z, y)), y)].

We can notice that both terms involves some conditional data y sampled from an inde-
pendent distribution or the training sample, additionally the second term is an expectation
over two independent random variables: z and y.

If we have a batch ofn training samplesxi pairedwith conditional data yi, and zi ∼ pz(z)

is a noise data taken from the noise distribution pz , we can write the cost function of the

31

discriminator using the logistic cost expression as:

CD = − 1

2n
(

n∑
i=1

logD(xi, yi) +
n∑

i=1

log(1−D(G(zi, yi), yi))),

where the discriminator assigns a positive label to true pair (xi, yi), and negative label to
generated pairG(zi, yi)

For the cost function of the generator we have:

CG = − 1

n

n∑
i=1

log(D(G(zi, yy), yi)).

32

4
Architecture

In this chapter we will present the architecture used to detect and localize face forgeries in
video sequences.

Before using the dataset for the training, a pre-processing has been used to extract different
features from the frames of the video sequence that is analyzed in order to detect whether it
contains deepfake face or not. Each feature is computed on overlapping or non-overlapping
pixel blocks of size 64 x 64 or 16 x 16, depending on the feature, leading to sequences of 88
x 160 values. Since the algorithm computes 16 features for each frame, the neural network
processes samples of size 88 x 160 x 16. The frames in the dataset have a resolution of 1280 x
720 or 1920 x 1080 pixels(with 3 channels for the colour component).

Feature computation is performed using an ad-hoc MATLAB script. On each image
block, the script computes some feature values, whichwill be described in the following. The
different features are stacked together and will create the input feature sequence that will be
processed by the following conditional GAN.

• The first 8 features are the result of two neural networks described in [14] to extract
information about the video codec and coding quality used on video. A discrepancy
in the output of these two networks over the duration of the video permits detecting
the presence of a temporal splicing. Among these initial features, the first 4 represent
the probability for each pixel to have been compressed with one of the codecs* in a

*A codec (combination of the words coder and decoder), is a computer program used to encode or decode
a digital data stream or signal.

33

Figure 4.1:Codecfeatures

training set. To create these features, a pre-trained neural network has been used: this
takes in input a frame and a value for the patch stride, and works on patches of size 64
x 64 pixels. With a patch stride of 8 pixels, we obtain as output a frame of size 83 x 153
x 4 if the frame is of size 720 x 1280; the output has size 128 x 233 x 4 if the frame has a
resolution of 1080 x 1920 pixels. The codecs this neural network is able to distinguish
are H264, H265, MPEG2, MPEG4. Since each output value represent a probability,
it is in the interval [0,1].

The other 4 features represent the probability for each pixel with respect to a particu-
lar compression quality: low, mid-low, mid-high, high. A similar pre-trained network
has been used to extract these features. As before the output values are in the inter-
val [0,1] since they are probabilities. To train this network, five uncompressed videos
are encoded using the FFmpeg library to obtain 60 versions combining the aforemen-
tioned codecs and quality. The quality level is identified by the quantization step ∆.
However, in the majority of the codecs it is not possible to control directly the quan-
tization step, instead a high-level quality parameter q is used, and the relationship be-
tween q and∆ depends on the codec used.

∆H264 =
5
8
· 2 q

6

∆MPEG =

8 1 ≤ q ≤ 4
2q 5 ≤ q ≤ 8
q + 8 9 ≤ q ≤ 24
2q − 16 25 ≤ q ≤ 31

.

The original paper used these features as a solution to the video splicing detection
problem. That is to detecting if video sequence is a composition of at least two videos,
or it is a single original video, based only on pixel level analysis.

34

Figure 4.2:Qualityfeatures

• Feature 9 depends on the difference between the current frame and the next one. The
MSE computed from the pixel wise difference is calculated for patches of size 8x8 on
each channel separately (withnooverlapping). Sincewehave 3 channels for each frame
the results is combined in a singlematrix. The choice to useMSEover a simplemean is
to avoid to obtain zero as result due to cancellation of the noise. This feature is useful
to find if a region of the frame has been reused in the next frame. Since the same value
are used in two consecutive frame in a specific region, we expect that the result of the
MSE for that region to be close to 0. To scale the values of the resulting matrix in
the interval [0,1], we compute the square root of the matrix, then we divide it by the
square root of the maximum achievable value, considering that we are working on
pixels in the range [0,255] we have

√
2552 ∗ 3.

Figure 4.3:Framedifference

• Features 10 and 11 are obtained by applying the optical flow on two consecutive frames.
The optical flow is the distribution of apparent pixel velocities of brightness pattern
in an image. The optical flow can arise from relative motion of objects with respect

35

to the viewer [47]. It can give information about the spatial position of the object
viewed and the rate of change of this position. The optical flow is extracted using the
Matlab function opticalflowLK . This function uses the Lucas-Kanade method to
estimate the optical flow. The outputs of the optical flow are two matrices: the first
one contains the magnitude of the optical flow flow with respect to the x axis; the
second matrix is the same but with respect to the y axis. The values are scaled to be in
the interval [0,1].

Figure 4.4:Opticalflowfeatures

The study of optical flow was already used to detect deepfake videos in [48]. In that
paper, the optical flow is extracted using a CNN model and given as input to a semi-
trainable network based on some pre-trained network, the VGG16 and the ResNet50.

• Feature 12 is a mask of 0 and 1 that shows the region where a forgery of a face has been
applied. This feature is extracted by using the Viola-Jones algorithm of Matlab to
detect faces in a frame. The result of this algorithm on frames where the face is not
modified are ignored. The mask obtained using Viola-Jones is rectangular, to avoid
the neural network from learning this shape a chain of erosion and dilation are used.
More precisely we alternate an erosion with a dilation three times to obtain the new
mask. The structuring element of the erosion is a square whose width is 8 pixel; for
the dilation we use as structuring element a disk with radius of 4 pixels.

Obviously this feature is only used during the training phase of the neural network: it
is the conditional information of our cGAN.

• Feature 13 represents the macroblock type used to encode the frame, it is obtained
by using ffmpeg with the option -debug vis_mb_type. The decoding of macroblock
types isMPEG-specific, so it is not possible to apply it to all videos. Itworks onpatches
of size 16 x 16 and for each of them a symbol is assigned depending on a macroblock
type condition. The symbol is then converted in an integer value between 0 and 5
with a Matlab script. The meaning of each value is the following:

– 0, A video that is not compatible with the ffmpeg command has a matrix of 0
as feature.

36

(a)Beforeerosion/dilation (b)Aftererosion/dilation
Figure 4.5:Facemask

– 1, a macroblock with this value correspond to skipped macroblock, either of P
type or B type.

– 2, this value indicates an intra macroblock.

– 3, the macroblock predicted is P.

– 4, the macroblock predicted is B, with reference to a future frame.

– 5, the macroblock predicted is B, this time with a reference to a previous frame
and a future frame.

The values are divided by 5 in order to have them in the interval [0,1]. Since the extrac-
tion of themacroblock works on patches 16x16 the resultingmatrix has size 80 x 45; to
bring it to the size required for the neural network an interpolation where the closest
value is copied has been applied.

Figure 4.6:Macroblock

• The last three feature maps are based on the Benford’s Law applied to the DCT com-
ponent of the frame. To compute these features, each frame is saved as a JPEG and

37

leading digit 1 2 3 4 5 6 7 8 9
probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Table 4.1: ProbabilitydistributionoftheleadingdigitsaccordingtotheBenford’sLaw

using a MATLAB script the images’ coefficients are read. The JPEG image compres-
sion standard follows a block diagram which partition the image in 8x8 pixel blockX
and compute the Discrete Cosine Transform (DCT) of each block to obtain Y[49].
The transformed coefficient are then quantized into integer-value Yq1.

Yq1(i, j) = sign(Y (i, j))round

(
|Y (i, j)|
q1(i, j)

)
,

where i,j are the indexes of the element in the block. The value Yq1(i, j) are then
ordered following zig-zag scan starting from the top-left value increasing the spatial
frequency. The quantization step q1(i, j) changes accordingly to the index (i,j) of the
DCT coefficient and is typically defined by a quantization matrix. The quantization
matrix adjusts the quantization step according to the spatial frequency in order to rep-
resentwith a higher precision the low frequency components and quantize to zero the
components at the highest frequencies. In our case we selected the maximum value,
i.e. we haven’t applied anyquantization. If an image has been forged in a localized area
and then saved again, unmodified regions will present double quantization artifacts
due to the double compression of the image, while the modified region will present
DCT coefficients resulting from a single compression; in fact, traces of possible previ-
ous compression are disrupted by editing or by the disalignment of the compression
grid. It is possible to detect difference on the compression by using the Benford’ Law.

Benford Law’s, or the first digit law, is an empirical law. It states that the probability
distribution of the first digit in a set of natural numbers is logarithmic; more precisely
we have that the significant digits of a data set satisfies the Benford’s Law if they follow
the distribution[50]:

p(x) = log10

(
1 +

1

x

)
, x = 1, 2, .., 9 .

In our case we first read the syntax elements of the image, then we select a macroblock
of 64x64 pixel, in this macroblock we have 8-by-8 blocks generated by the DCT. This
macroblock is converted in 64 x 64 matrix where in each column we have the values
of a single block. After that, for each index of frequency coefficient to be analyzed
(which means, for each row of the matrix) we compute the statistic of the first digit
and compare it with the fitted statistic (ideal) according to the Benford’s Law, 4.1.

We compare these two statistics by computing the divergence between two arrays us-

38

ing the Jensen-Shannon(JS) divergence, the Renyi divergence, and the Tsallis diver-
gence; the mean of each divergence is the respective feature for that macroblock. We
continue the extraction of the feature by moving the window of the macroblock by 8
pixel each time until we analyze the whole frame. At the end for each divergence we
have a matrix of size 83 x 153.

(a)ResultusingtheJSdivergence. (b)ResultusingtheRenyidivergence. (c)ResultusingtheTsallisdivergence.
Figure 4.7:Benford’sFeatures

The size of the above features are not the same, for features 1 to 8, and 14 to 16, with frame
of resolution of 1280 x 720, we have a size of 83 x 153, for the other features the size is 88 x 160.
The reason for this difference is that since the first features are computed using a stride the
last few results of each dimension are not possible to obtain, because, due to the stride, we
should operate outside the frame. Because of this, we first crop all the features to the size 83
x 153 by ignoring the last value of the features of size 88 x 160; then we copy the value of the
border of the featuremap to reach the size 88 x 160. Weopted for a copy of the border andnot
using a padding to avoid creating a region of discontinuity on the feature map, which could
have been interpreted wrongly by the neural network. Moreover we decided to increase the
size of the feature from 83 x 153 to 88 x 160 to maintain an even value of the size through the
downscaling of the network.

For a video of size 1920 x 1080 the output of the pre-processing is 233 x 128, we simply
crop the frame to include the face, since we are focusing on face forgery detection, to obtain
a feature map of 88 x 160.

Noticeably, feature 9 is the difference of a frame with the next one, which mean that on a
video of n frames we will obtain n-1 matrices, while for the other features we have the result
for all the frames. For each video we discard the features obtained from the last frame except
from feature 9 to have the same number of frame for each feature.

The extraction of the features is done with aMATLAB script, with a GeForce GTX 1070
graphic card a video sequence of 100 frames requires almost 50 minutes.

39

The model is inspired on the neural network used in [51]. The authors of the paper used
a cGAN to detect if a shadow was removed from an image.

In our case, the goal is to detect amodification of a face in a video. As said before the frame
is pre-processed into a matrix of size 88 x 160 x 16, for this we define a face forgery mask M
of size 88 x 160, this is the feature 12 we have extracted during the pre- processing. For each
coordinate (i,j) of this matrix we have that:

M(i, j) =

{
1, if (i, j) is forged
0, otherwise

.

We wish to create a mask M̂ as an estimate of M. If M̂ ≈ 0 we conclude that there was
no modification and the frame is real. On the opposite if M̂ ̸≈ 0 somewhere, then we can
conclude that the frame has been forged and the mask visualize the region of the image that
contain the forgery. The mask M̂ is obtained through the generator of the cGAN.

The output of a discriminator is binary, 0 the input come from the real samples dataset,
1 the input come from the generator. GANs are intended to work when the discriminator
estimates a ratio between two densities, but deep neural networks typically produce confi-
dent outputs that identify the correct class with a very high probability. To encourage the
discriminator to estimate soft probabilities instead of extrapolating extremely confident clas-
sifications, the one-sided label smoothing technique is applied [43][40].

The idea of one-sided label smoothing is to replace the value used to identify the real input
with a value slightly less than 1, for example 0.9. With this change if the discriminator learns
to assign an extremely high logits corresponding to a probability approaching 1, it tries to
bring the logits back to a smaller value.

We have to smooth only the labels for the real samples. If we use a label of α for the real
samples and β for the fake samples, then the optimal discriminator function is:

D∗(x) =
(1− α)pdata(x) + βpmodel(x)

pdata(x) + pmodel(x)

.

If β is zero, then smoothing by α simply scales down the optimal value of the discrimina-
tor. When β is nonzero, the shape of the optimal discriminator function changes. Precisely,
in a region where pdata(x) is very small and pmodel(x) is larger,D∗(x)will have a peak near
the spurious mode of pmodel(x). Because of this the discriminator will reinforce incorrect
behaviour of the generator that will be trained to create samples that resemble the data or

40

Figure 4.8: Inthetrainingofthediscriminatorwefeedtwominibatches,thefirstonecontainingthetruemask,inthe
secondthemaskgeneratedbythegenerator.Ideallytheoutputofthediscriminatoris0ifthetheframeisforged;0.9
iftheframeisreal

samples it alreadymakes. For the training of the discriminator we need twominibatches, the
first one contains all the features obtained during the pre processing; to obtain the second
minibatch we remove from the features the face forgery mask and use it as the input of the
generator. The generator creates a mask, which is going to be concatenated to the second
minibatch. These twominibatches are fed to the input of the discriminator that need to dis-
tinguish in whichminibatch there is the true face forgerymask and themask generated from
the generator. At the same time, the generator wants to output amask that the discriminator
is not able to distinguish from the true face forgery mask, Fig. 4.8.

41

Figure 4.9:Discriminator’sarchitecture

Our generator works as an autoencoder and it based on the U-net from[4]. A characteris-
tic of this type of autoencoder is its use of skip layers as Figure 4.3 shows.

The left contracting part is followed by layers where pooling operators are replaced by
upsampling operators; these layers increase the resolution of the output. Moreover high
resolution features from the contracting part are concatenated to the upsampled output. In
this architecture there is a large number of feature channels in the upsampling which allow
the network to propagate context information to higher resolution layer. For this reason
the right expansive path is almost symmetric to the contracting path, thus giving the net its
u-shape.

The contracting part of our generator consists of the repeated application of two convo-
lutional layers with receptive field of size 3 x 3 with a padding of 1 pixel to maintain the size
of the input. Each repetition is followed by a ReLU activation function, and a max pooling
layer with receptive field of size 2 x 2 and stride 2. At each downsampling step we halve the
size of the input but we double the number of feature channels to maintain a constant num-
ber of neurons through the architecture. In the expansive part we have the same architecture
of the contracting part but instead of using the max pooling layer we use a 2 x 2 convolution
to upsample the input and at the same timewe halve the feature channels. The final convolu-
tion layer is madewith a receptive field of size 1 x 1 with a single feature channel and a sigmoid

42

Figure 4.10:Unet[4]

activation function. The network does not contain any fully connected layers and only uses
the valid part of the convolution; this mean that the segmentation map only contains the
pixels for which the full context is available in the input image.

To train the generator, we concatenate the model of the generator with the model of the
discriminator; during the backpropagation phase of the training we block the weights of the
discriminator, and update only the weights of the generator. The goal of the generator is to
output a mask M̂ that given in input together with the other features to the discriminator
is classified with the value 0.9, the value associated with samples from the dataset containing
real data.

The loss function used for the training of the discriminator is the binary cross-entropy loss
function; for the generator we have used the sum of the binary cross-entropy loss function
of the discriminator and the binary cross-entropy loss function between the output of the
generator and the true mask. This last loss is multiplied by a factor λ used as a regularizer
between the two losses. This means that the generator not only needs to create a mask M̂
that fools the discriminator, but it need also to be similar to the real mask.

After the training, the discriminator network is discarded and the generator is used for the
testing.

43

Figure 4.11:Gnet

Figure 4.12:Architectureofthegenerator

44

5
Dataset

A dataset has been created to train the neural network to detect the frames where a face has
been modified and to localize that face.

The videos used in the dataset are taken from YouTube, and a database published by
Google in collaboration with Jigsaw [17]. One problem of YouTube’s videos is that the algo-
rithm used to upload them on the platform compresses the frames and we lose a significant
amount of information.

The dataset is divided in 3 subset: Training set, Validation set, andTest set. More precisely
in the Training set we have 5300 frames, in the validation set 1626 frames, and in the test
set 2280 frames. The frames of the Training and validation set come from the same group of
videos: 12 videos are downloaded fromYouTube, 8 are deepfakes, the other are real; 16 videos
are taken from the Google dataset, 6 of these are deepfake and the other are real.

Youtube Google
YouTube Original

Real Fake Real Fake Real Fake
Videos 8 4 3 5 3 5
Frames 2569 1799 447 832 447 832

Table 5.1: TrainDataset

For the Test set a completely different set of videos is used. We have a total of 15 videos,
5 taken from YouTube, 10 from the Google dataset, of which the first 5 are from YouTube,

45

the other 5 are original. In order to train efficiently the model we need to feed to the input a
dataset that contains in equal part both real videos and forged videos. In this dataset we have
3463 real frames and 3463 forged frames.

Youtube Google
YouTube Original

Real Fake Real Fake Real Fake
Videos 3 2 3 2 3 2
Frames 450 300 450 300 450 300

Table 5.2: TestDataset

46

6
Experiment

The code of the neural network was written in Python 3.6 using Tensorflow and Keras.
Tensorflow is an end-to-end open source platform for machine learning. It has a compre-

hensive, flexible ecosystem of tools, libraries and community resources that lets researchers
push the state-of-the-art in ML and developers easily build and deploy ML powered appli-
cations [52].

Keras is a high-level neural networks API, written in Python and capable of running on
top of TensorFlow. It was developed with a focus on enabling fast experimentation[53].

As said before, training a neural network is a difficult task since each problem requires an
ad hoc architecture. Even for a single architecture it is possible to use a lot of combinations
of different parameters, such as the optimizer, the batch size given in input of the neural
network, the learning rate, the loss function, the number of epochs, the decreasing of the
learning rate after a certain amount of epochs.

Some of these parameters were chosen by taking inspiration from the state of the art. For
example we have chosen the Adam optimizer, and the binary cross-entropy loss function.

For the other parameters, a brute force approach was used. Given a number of epochs
used for training, two for-loops are used, one inside the other, the first that cycles through
four values of initial learning rates: 0.0001, 0.0002, 0.0003, 0.0004, the second cycles on
three values of batch size: 16,32,64. Additionally, the value of the learning rate is reduced by
a factor of 1/5 every 5 epochs.

From Fig 6.1a we can see that the loss of the discriminator is a little higher than 0.5. In an

47

optimalGANarchitecture it is supposed to have a discriminator that is unable to distinguish
the real samples from the generated samples resulting in a loss of 0.69 using the cross-entropy
loss function. Since we have changed the value of the label from 1 to 0.9 for the real samples,
our optimal result is 0.62, close towhatweobtain. Fig 6.1c shows the loss of the discriminator
with only the generated samples. We can see that it is close to 0.1, meaning that the generator
is able to create mask able to fool the discriminator. At the end it was chosen themodel with
the lowest loss on the generator, this model was trained with learning rate 0.0001 and batch
size of 32 frames for 30 epochs; the training lasted for 32 minutes.
The generatedmask is a matrix of values between 0 and 1, in order to compute how good the
mask is we need to apply a threshold t such that each value greater than t will become 1, the
other 0. To measure the quality of the generated mask M̂ , four classes of pixels are used. If
the pixel in the realmask has value 1,M(i, j) = 1, and M̂ = 1, then that pixel belong to class
TP, True Positive; if M̂ = 0, it belongs to class FN, False Negative. If the pixel in the real
mask has value 0, M(i, j) = 0, and M̂ = 0, the pixel belongs to class TN, True Negative;
otherwise if M̂ = 1, the pixel belongs to class FP, False Positive. In the next operations we
consider TP, TN, FP, and FN as the number of pixels in each class.

48

Iterations

(a)Discriminatorloss.

(b)Discriminatoraccuracy.

Iterations

(c)Generatorloss.

Iterations

(d)Generatoraccuracy.

Figure 6.1:Networktraining

49

The metrics used are several, each of them tells us some information on the quality of the
result.

Accuracy, it is the proportion of the true results among the total number of results:

accuracy =
TP + TN

TP + TN + FP + FN
.

Precision is defined as the fraction of true positive results among the positive results, both
true and false.

precision =
TP

TP + FP
.

Recall, is the number of correct positive results divided by the number of all samples that
should have been identified as positive, it is also called True Positive Rate

recall =
TP

TP + FN
.

Specificity, or True Negative Rate, it measures the proportion of actual negatives that are
correctly identified as such.

Specificity =
TN

TN + FP
.

False Positive Rate, is the fraction of negative results wrongly classified as positive

FPR =
FP

FP + TN
.

F1 score, it is a measure of accuracy that consider both the precision and the recall; more
precisely is the harmonic mean of the two values.

F1 = 2 · precision · recall
precision+ recall

.

The Matthew Correlation Coefficient takes in to account the cardinality of all the classes,
and can be used even if the classes are of very different size. The score has value [-1,1], with 1
representing perfect prediction, 0 random prediction, -1 all wrong prediction.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

The reason we use multiple accuracy measures is the following: as explained in [54], all

50

the previous metrics, except for the MCC, can be misleading, since they do not consider the
size of the four classes in their computation.

Suppose we have a dataset with 100 samples, 95 are positive and 5 are negative; the tested
model always predicts positive. In this situation the value of accuracy and F1 are respectively
95% and 97.44%, while the MCC value is undefined since the denominator is 0. Instead if
themodel gives the following result: TP=90, FP=5, TN=1, FN=4, we have again a high value
for the accuracy and F1, 91% 95.24% respectively, and MCC=0.14.

However the first 6metrics are still useful as we can see on the results’ tables, because some
videos have M(i, j) = 0 ∀i, j thus TP and FN are always 0, hence MCC is undefined for
these videos, so we have to use the other metrics to evaluate the accuracy.

The results on the test dataset is the following, the values in the table are the mean of the
respective metrics of each video sequence.

Video Accuracy Precision Recall TNR FPR F1 MCC
DeepfakeYT 1* 0.99438 0.00000 0.00000 0.99974 0.00026 0.00000 -0.00039
DeepfakeYT 2 0.95284 0.00000 0.00000 1.00000 0.00000 0.00000 -0.00005
DeepfakeYT 3 0.80921 0.16298 0.29001 0.85877 0.14123 0.20690 0.11516

TrueYT 1 0.98115 0.00000 0.00000 0.98115 0.01885 0.00000 undefined
TrueYT 2 0.93650 0.00000 0.00000 0.93650 0.06350 0.00000 undefined

DeepfakeYT 4 0.95166 0.73266 0.47162 0.99260 0.00740 0.53297 0.54693
DeepfakeYT 5 0.91371 0.10630 0.04211 0.98760 0.01240 0.05781 0.03510
DeepfakeYT 6 0.81503 0.00679 0.04261 0.84038 0.15962 0.01169 -0.05638

TrueYT 3 0.99783 0.00000 0.00000 0.99783 0.00217 0.00000 undefined
TrueYT 4 1.00000 0.00000 0.00000 1.00000 0.00000 0.00000 undefined
Deepfake 1 0.90210 0.34608 0.45842 0.93641 0.06359 0.38317 0.34211
Deepfake 2 0.96060 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000
Deepfake 3 0.92810 0.45765 0.13959 0.99094 0.00906 0.19550 0.21320

True 1 0.99004 0.00000 0.00000 0.99004 0.00996 0.00000 undefined
True 2 0.98187 0.00000 0.00000 0.98187 0.01813 0.00000 undefined

Table 6.1: Resultsofthemetricsforeachvideointhetestdataset.*Thefirst101framesofthisvideoareoriginal,the
remainingframeareforged.TheMCCvalueisconsideredonlyforthislastpart.

It is also possible to have a visual result. Unfortunately the output of the generator is
not very precise, but we can use the Viola-Jones algorithm to cross-check the result. More
precisely, we can analyze the pixels that fall inside the region determined by the Viola-Jones
algorithm to detect faces with the pixels outside the region.

51

Accuracy Precision Recall TNR FPR F1 MCC
Forged 0.90934 0.21330 0.16932 0.95387 0.04625 0.16272 0.14013
Real 0.98311 0.00000 0.00000 0.98311 0.01689 0.00000 undefined

Table 6.2: Averageresultsforrealandforgedvideos

(a)PixelsinsidethemaskcreatedusingtheViola-Jones
algorithm

(b)PixelsoutsidethemaskcreatedusingtheViola-Jones
algorithm

Figure 6.2:VisualResults

If themajority of the pixels are inside the region thenwe conclude that the frame is forged,
if the image has no white pixels then the image is real; finally if the image presents regions
of white pixels we are not sure of the results, but since the neural network detected some
inconsistencies other techniques to detect forgery should be applied. If we sum the value of
the pixel inside and outside of the region detected using Viola-Jones and plot the result we
obtain the graph in Fig. 6.3

Figure 6.3:Plottingofthevisualresultforeachframeofavideo

52

If we upscale the map and overlap it with the frames of the video sequence we obtain the
following results.

Figure 6.4:Resultsonaforgedvideo.Theneuralnetworkisabletolocalizethetampering

Figure 6.5:Resultsonaforgedvideo.Theneuralnetworkwronglylocalizeforgedregionoftheimage.

53

Figure 6.6:Resultsonarealvideo.Theneuralnetworkcorrectlyoutputamaskofzeros

Figure 6.7:Resultsonaforgedvideo.Theneuralnetworkisabletolocalizethetampering

54

7
Conclusion

The objective of this thesis was to develop a tool to localize face forgery in a video sequence.
In fact, the constant increasing quality of forged videos makes them a serious threat in the
near future where it will be almost impossible to distinguish a real content from a fake one.

The proposed solution relies on a cGAN, a deep learning framework where two neural
networks play one against the other. To maximize the information retrieved from a video
sequence, a total of 16 features are extracted for each frame: 4 for the codec used, 4 for the
quality of the compression, 1 for the pixel-wise difference between two consecutive frames, 2
for the optical flow, 1 for the mask showing the region of the forgery (used as the conditional
element of the network), 1 for the macroblock type, 3 for the Benford’s Law applied to the
DCT component of the frame. The combination of these features allows the neural network
to recognize regions where there are discrepancies with respect to the rest of the frame. The
dataset used to train and test the architecture is made of videos downloaded from YouTube
and a dataset provided by a collaboration between Google and Jigsaw.

This solution is still in its prime, and several modifications can be applied to increase its
accuracy. First of all it is possible to increase the dataset used for the training; we can also
modify some layers of the neural network or introduce some techniques to improve it such as
themini-batch discrimination or by using an unrolled GAN to avoid falling in theHelvetica
scenario. Additionallywe can addormodified someof the feature used, or use a combination
of features depending on the scene, but this require a dedicated network for each case.

55

56

References

[1] The ultimate guide to convolutional neural networks (cnn).
[Online]. Available: https://www.superdatascience.com/blogs/
the-ultimate-guide-to-convolutional-neural-networks-cnn

[2] https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-
models/. [Online]. Available: https://machinelearningmastery.com/
diagnose-overfitting-underfitting-lstm-models/

[3] Intro to optimization in deep learning: Momentum, rm-
sprop and adam. [Online]. Available: https://blog.paperspace.com/
intro-to-optimization-momentum-rmsprop-adam/

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,”ArXiv, vol. abs/1505.04597, 2015.

[5] S. Rohini and S. Manoj, “A review of video forgery and its detection,” IOSR Journal
of Computer Engineering, vol. 20, 2018.

[6] T.T.Nguyen, C.M.Nguyen,D.T.Nguyen,D.T.Nguyen, and S.Nahavandi, “Deep
learning for deepfakes creation and detection,” 09 2019.

[7] deepfakes, explained the rise of fake realistic videos on-
line. [Online]. Available: https://www.businessinsider.com/
deepfakes-explained-the-rise-of-fake-realistic-videos-online-2019-6?IR=T

[8] Google ai blog: Contributing data to deepfake detection research. [Online]. Avail-
able: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.
html

[9] Creating a data set and a challenge for deepfakes. [Online]. Available: https:
//ai.facebook.com/blog/deepfake-detection-challenge/

57

https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-networks-cnn
https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-networks-cnn
https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/
https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
https://www.businessinsider.com/deepfakes-explained-the-rise-of-fake-realistic-videos-online-2019-6?IR=T
https://www.businessinsider.com/deepfakes-explained-the-rise-of-fake-realistic-videos-online-2019-6?IR=T
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
https://ai.facebook.com/blog/deepfake-detection-challenge/
https://ai.facebook.com/blog/deepfake-detection-challenge/

[10] National security challenges of artificial intelligence, manipulated media, and
deepfakes. [Online]. Available: https://intelligence.house.gov/calendar/eventsingle.
aspx?EventID=653

[11] O. Al-Sanjary and G. Sulong, “Detection of video forgery: A review of literature,”
Journal of Theoretical and Applied Information Technolo , vol. 74, pp. 207–220, 01
2015.

[12] A. W. A. Wahab, M. A. Bagiwa, M. Y. I. Idris, S. Khan, Z. Razak, and M. R. K. Ar-
iffin, “Passive video forgery detection techniques: A survey,” 2014 10th International
Conference on Information Assurance and Security, pp. 29–34, 11 2014.

[13] C.-C. Hsu, T.-Y. Hung, C.-W. Lin, and C.-T. Hsu, “Video forgery detection using
correlation of noise residue,” 10 2008, pp. 170–174.

[14] S. Verde, L. Bondi, P. Bestagini, S.Milani, G. Calvagno, and S. Tubaro, “Video codec
forensics based on convolutional neural networks,” 2018 25th IEEE International
Conference on Image Processing (ICIP), 2018.

[15] J. Pamela, E. Eyad, and C. Jayne, “Video tampering localisation using features learned
from authentic content,”Neural Computing and Applications, 2019.

[16] B. Bayar andM. Stamm, “A deep learning approach to universal image manipulation
detection using a new convolutional layer,” 06 2016, pp. 5–10.

[17] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner, “Face-
Forensics++: Learning to detect manipulated facial images,” in International Confer-
ence on Computer Vision (ICCV), 2019.

[18] Y. Li and S. Lyu, “Exposing deepfake videos by detecting face warping artifacts,” 11
2018.

[19] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact facial video
forgery detection network,” 09 2018.

[20] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.

58

https://intelligence.house.gov/calendar/eventsingle.aspx?EventID=653
https://intelligence.house.gov/calendar/eventsingle.aspx?EventID=653

[21] S. C. Kleene, “Representation of events in nerve nets and finite automata,” Project
Rand, Research Memorandum, pp. 1–98, 1951.

[22] History of the perceptron. [Online]. Available: https://web.csulb.edu/~cwallis/
artificialn/History.htm

[23] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang,
G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural networks,”
2017.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,”Nature, vol. 323, pp. 533–536, 1986.

[25] M. A. Nielsen,Neural Networks and Deep Learning. Determination Press, 2015.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceeding of the IEEE, vol. 86, pp. 2278–2324, 1998.

[27] S. Albawi, T. AbedMohammed, and S. Al-Zawi, “Understanding of a convolutional
neural network,” 08 2017.

[28] K.O’Shea andR.Nash, “An introduction to convolutional neural networks,”ArXiv
e-prints, 11 2015.

[29] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by
reducing internal covariate shift,”Proceedings of the 32nd International Conference on
International Conference on Machine Learning, vol. 37, pp. 448–456.

[30] H. Shimodaira, “Improving predictive inference under covariate shift by weighting
the log-likelihood function,” Journal of Statistical Planning and Inference, vol. 90,
pp. 227–244, 10 2000.

[31] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,”
NIPS’91 Proceedings of the 4th International Conference on Neural Information Pro-
cessing Systems, pp. 950–957, 1991.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 06 2014.

59

https://web.csulb.edu/~cwallis/artificialn/History.htm
https://web.csulb.edu/~cwallis/artificialn/History.htm

[33] D. Mishkin and J. Matas, “All you need is a good init,” 05 2016.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” Journal of Machine Learning Research - Proceedings Track, vol. 9,
pp. 249–256, 01 2010.

[35] K. He, X. Zhang, S. Ren, and J. Su, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 1026–1034, 2015.

[36] J. Martens, “Deep learning via hessian-free optimization,” Proceedings of the 27th In-
ternational Conference on Machine Learning, pp. 735–742, 2010.

[37] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” Interna-
tional Conference on Learning Representations, 12 2014.

[38] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” UTLW’11
Proceedings of the 2011 International Conference on Unsupervised and Transfer Learn-
ing workshop, vol. 27, pp. 37–50, 2012.

[39] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Proceedings of the 27th
International Conference on Neural Information Processing Systems, vol. 2, pp. 2672–
2680.

[40] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” 12 2016.

[41] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” ArXiv, vol.
abs/1411.1784, 2014.

[42] I. Goodfellow, Y. Bengio, and A. Courville,Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[43] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans,” NIPS’16 Proceedings of the 30th International
Conference on Neural Information Processing Systems, pp. 2234–2242, 2016.

[44] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial
networks,”ArXiv, vol. abs/1611.02163, 2016.

60

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[45] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” 11 2015.

[46] J. Gauthier, “Conditional generative adversarial nets for convolutional face genera-
tion,” 2015.

[47] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence,
vol. 17, pp. 185–203, 08 1981.

[48] I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo, “Deepfake video detection
through optical flowbased cnn,” inThe IEEE International Conference on Computer
Vision (ICCV) Workshops, Oct 2019.

[49] S.Milani,M.Tagliasacchi, and S.Tubaro, “Discriminatingmultiple jpeg compression
using first digit features,” 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2253–2256, 2012.

[50] D. Fu, Y. Q. Shi, and W. Su, “A generalized benford’s law for jpeg coefficients and its
applications in image forensics,” Proc SPIE, vol. 6505, 02 2007.

[51] S. K. Yarlagadda, D. Guera, D. M. Montserrat, F. M. Zhu, E. J. Delp, P. Bestagini,
and S. Tubaro, “Shadow removal detection and localization for forensics analysis,”
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2677–2681, 2019.

[52] Tensorflow. [Online]. Available: https://www.tensorflow.org/

[53] Keras. [Online]. Available: https://keras.io/

[54] D. Chicco, “Ten quick tips for machine learning in computational biology,” BioData
Mining, vol. 1, 2017.

61

https://www.tensorflow.org/
https://keras.io/

62

	Abstract
	List of figures
	List of tables
	Introduction
	Neural Networks
	Backpropagation
	Convolutional Neural Networks
	Autoencoders

	Generative Adversarial Networks
	Deep Convolutional Generative Adversarial Networks
	Conditional Generative Adversarial Networks

	Architecture
	Dataset
	Experiment
	Conclusion
	References

