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Abstract

Ultra-luminous X-ray sources, aka ULXs, are off-nuclear, extragalactic sources
that shine in the X-rays with luminosities of LX ≥ 1039erg s−1. The huge
energy output together with the X-ray variability suggest that ULXs are binary
systems with a donor star transferring mass onto a compact object. ULXs
luminosities far exceed the Eddington limit for a stellar-mass object, provided
that the emission is assumed to be isotropic. This led to believe that these
sources may host a black hole: either intermediate-mass black holes (IMBHs),
or, if some degree of anisotropy is present in the emitted radiation, stellar-mass
black holes (SMBHs). In 2014, observational evidences were found for pulsations
in an ULX, revealing the existence of a new class of objects, dubbed Pulsating
ULXs or PULXSs. Pulsations clearly point towards a the presence of a neutron
star. The discovery of PULXs made the issue of how a super-Eddington flux
may be produced even more irksome, since NS masses should not exceed ∼ 2
solar masses. While invoking anisotropic emission is still an option, a further
explanation may be provided by the presence of strong magnetic fields (B ∼
1014G). In this thesis we discuss an emission model for PULXs, based on the
effects of strong magnetic fields, which can account for their high luminosities.
We focus on the modeling of the accretion disk and the accretion column close
to the surface of the neutron star. The starting point is the commonly accepted
picture according to which the accretion disk is truncated far from the star, due
to the interaction between the disk itself and the magnetic field, and matter
is then transported inwards along the field lines towards the poles, where a
radiative shock and an accretion column are formed. Here the effects of the
strong magnetic field on the electron scattering cross section starts to become
important. In this thesis we built up on such a model, producing synthetic
spectra and pulse profiles. A preliminary comparison with the observations of
two PULXs show that indeed some observed features, like the increase of the
pulsed fraction with energy, are indeed reproduced by the model.
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INTRODUCTION

ULXs are ultra-luminous X-ray sources discovered for the first time in the 80s, by
the Einstein X-ray Observatory, in external galaxies. One of the most distinctive
features for these sources is the high X-ray luminosity, which can reach values
of L ∼ 1041erg s−1, far exceeding the Eddington limit for a solar mass object.

From an observational standpoint, ULXs are characterized by: an higher
occurrence in star-forming galaxies [Swartz et al.(2004)], a sort of cut-off in the
spectra for energies in the 2-10 keV range, suggesting a two-component spectral
model (blackbody emission from an accretion disk, and a power-law probably
due to a corona), and spectral variability at different epochs.

At the beginning the hypotheses on their nature were various [Kaaret et al.(2001)],
since their luminosities were such that they resulted to be too bright with respect
to some classes of X-ray sources, and too weak for others. However, the large
amount of energy emitted, and the variability in the X-rays luminosity, led to
believe that they are binary systems composed by an evolved star (donor star)
which transfers material onto a compact object. X-ray binaries fall into three
categories, according to the type of compact object they host: those containing
a white dwarf (WD), a neutron star (NS), and a black hole (BH). Assuming
isotropic emission, and hydrostatic equilibrium, the maximum luminosity of a
star (Eddington luminosity) depends on the mass, so white dwarfs and neutron
stars were excluded as possible powerhouse for these sources, since their mass
cannot exceed ∼ 1.4M⊙ for WDs and ∼ 2M⊙ for NSs.

For some time it was believed that ULXs are powered by black holes of inter-
mediate mass (IMBHs) with masses larger than 100M⊙ [Makishima et al.(2000)].
In fact, the maximum X-ray luminosity which is possible for this class of objects
exceeds by some orders of magnitude the observed one, and accretion proceeds
at a sub-Eddington rate. Besides, It was also proposed that ULXs may contain
a stellar mass BH (SMBH). If this would be the case, however, accretion should
proceed at a super-Eddington rate and emission has to be beamed to match
the observed luminosity ([Fabrika & Mescheryakov(2001)], [King et al.(2001)],
[Poutanen et al.(2007)]).

This picture was soon revolutionized when in 2014 pulsations were discovered
in the emission of an ULX in the M82 galaxy, M82 X-2 [Bachetti et al.(2014)].
Given this observation, the most reliable hypothesis in order to explain pulsa-
tions was that indeed ULXs could be powered by even neutron stars. The discov-
ery of the first pulsating ULX was soon followed by many others ([Fürst et al.(2016)],
[Israel et al.(2017)], [Castillo et al.(2020)], [Carpano et al.(2018)],
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[Sathyaprakash et al.(2019)]). It was then clear that ULXs with not negligible
pulsations should be part of a stand-alone sub-class of sources, that were dubbed
as pulsating ultra-luminous X-ray sources (PULXs).

Despite the fact the association of PULXs with neutron stars appears quite
straightforward, explaining how neutron stars can emit such a huge amount of
energy remains an open problem, given their low Eddington luminosity.

In 1976, even before the discovery of PULXs, Basko & Sunyaev presented
a model for accretion onto magnetized neutron stars, including for the first
time the formation of an accretion column on the magnetic poles of the star
[Basko & Sunyaev(1976)]. This model for the column was somewhat simplis-
tic, and did not take into account the effects of the magnetic field. Later on,
Lyubarskii & Sunyaev, in 1988, discussed again the same but better investigat-
ing the shape and properties of the column [Lyubarskii & Syunyaev(1988)]. Ac-
tually, the most updated model ([Mushtukov et al.(2015)], [Brice et al.(2021)],
includes the description of all the accretion processes around a neutron star,
starting from the formation of the disk, up to the formation of a radiative shock
and an accretion column above the star surface, considering also the effects of
the strong NS magnetic field on such a column. The model predicts that the
magnetic field is able to drastically reduce the opacities inside the accretion
column for photons polarized perpendicularly to the magnetic field direction,
increasing in this way the flux of radiation escaping from the sides of the col-
umn. Such a scenario could indeed justify the large observed luminosities from
these sources.

In the present work we illustrate a simplified model (based on those discussed
in the literature) to reproduce the X-ray emission in PULXs, in terms of thermal
emission from the accretion disk and the accretion envelope, which is shaped like
a torus limited by the magnetic field lines extending up to the magnetospheric
radius. To this aim, we set up two different numerical codes. This in order
to calculate the flux of photons arriving from the part in view of the system
as a function of both the photon energy and the star rotational phase, so that
to construct spectra and light curves in different energy bands. Finally, our
numerical results have been confronted with observational data for the PULXs,
to check the operation of the codes and probe if the model can be applied to
real cases.

We start by introducing the physics of the accretion process around compact
objects in chapter 1; then we present the observational properties of ULXs, with
particular attention to the discovery of the six PULXs in chapter 2; in chapter 3
we describe the basics theoretical concepts of the accretion onto neutron stars;
in chapter 4 we describe the codes; numerical results are presented in chapter
5; we finally present our conclusions in chapter 6.
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CHAPTER

ONE
BASICS OF ACCRETION ONTO COMPACT
OBJECTS

Some of the most interesting sources in the Universe are those which emit in the
X-rays. There are several types of X-ray sources, for example black holes in AGN
(active galactic nuclei), supernova remnants, galaxy clusters, compact objects
in binary systems: white dwarfs, neutron stars and black holes, and also isolated
compact objects (like some NSs and WDs). In particular, for binary systems
powered by compact objects, with luminosities higher than 1039 erg s−1, we
talk about ULXs, instead, for those which present a periodic emission PULXs
. Their common peculiarity is, in fact, the very high luminosity in the X-rays,
which can exceed values typical for a 10M⊙ black hole. This is possible thanks
to the accretion process around such sources. This thesis focuses primarily on
pulsating ULXs, those powered by neutron stars. Thus, we will start to discuss
accretion in binary systems, focusing then on accretion onto magnetized neutron
stars.

1.1 Accretion mechanism

As already mentioned, ULXs (and PULXs) are X-ray sources powered by ac-
cretion onto a compact object in a binary system, due to the transfer of matter
from an evolved massive companion, the donor star, towards the accretor, the
compact object itself.

There exist two circumstances in which there could be transfer of matter
between the two components at a certain evolutionary stage:

1. when the donor star may increase in radius to the point at which the
gravitational pull of the companion can remove the external layers of its
envelope. This first scenario is called Roche lobe overflow.

2. when the donor star starts to eject much of its mass in the form of a
stellar wind, and part of this material can be captured gravitationally by
the companion. This is the case of stellar wind accretion.
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Between the two scenarios, we will discuss better the first, since it is the
most efficient.

1.1.1 Roche lobe overflow in binary systems

Let us consider a test particle that moves in the gravitational field of a binary
system, composed by the donor star with mass M2, and the compact one with
mass M1 (the gas particle belongs to the donor star), both the masses rotate
around the center of mass. Since the distances inside the system are greater
than the dimensions of bodies, they can be treated as point-like masses.

This is basically a three body problem, known properly as Roche problem.
To solve it and understand the transfer mechanism, we start from the Euler
equation for the test mass; it is convenient to do so in a frame which is co-
rotating with the two stars and centered in the center of mass. The Euler
equation would be the following:

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ = −∇⃗P

ρ
− 2ω⃗ × v⃗ − ω⃗ × (ω⃗ × r⃗)− ∇⃗ϕG (1.1)

The left hand side term of the (1.1) is the total derivative of the velocity (dv/dt),
on the right hand side there are: the pressure gradient, the Coriolis term, the
Centrifugal term, and finally the gradient of the gravitational potential of the
system. The terms for the Coriolis and the Centrifugal force, which are fictitious
forces, are there since we are doing calculations in a frame that co-rotate with
the system.

Since the centrifugal force admits a potential, we can first define that, and
then a unique potential as follows:

ϕC = −1

2
(ω⃗ × r⃗)2 (1.2)

ϕR = ϕG + ϕC (1.3)

where ϕC and ϕG are the centrifugal and gravitational potentials, respectively.
ϕR is called Roche potential. The locus of points in which that potential is
constant is called equipotential surface, and it is the surface on which the
gravitational force excerted by the two masses (M1 and M2), on the test mass,
is balanced by the centrifugal force (see figure 1.1). The points in which holds

∇⃗ϕR = 0 are called Lagrange points.
In order to understand how the mass transfer is triggered, one can take a

star which is evolving slowly (M2), so that its surface can be seen to be at rest,
in first approximation. Let us now consider the Euler equation for a particle
on the star surface, taking into account that for the previous assumption the
Coriolis term is null:

0 = −1

ρ
∇⃗P − ∇⃗ϕR, (1.4)

then considering also the fact that the surface of the star is defined by the
condition

∇⃗P = 0, (1.5)

and substituting this last into the (1.4), the star surface turns out to be an
equipotential surface.
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(a)

(b)

Figure 1.1: Equipotential surfaces. The panel (a) represents the projections
of the equipotential surfaces of the Roche potential on the plane orthogonal
to ω (angular velocity of the test mass), for a binary system with mass ratio
q = M2/M1 = 0.25. Points L1, L2, L3, L4 and L5 are called the Lagrange

points, defined by ∇⃗ϕR = 0. The point L1 is known as the seddle point, it is
the intersection between the Roche lobes of the two stars and it is crossed by
matter in motion from the donor towards the accretor. In the (b) panel the
potential wells of the system. [Frank et al.(2002)]
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This means that until the surface of the donor star is smaller than its Roche
lobe, then there is no tendency for material to be pulled off from the star
because of the gravitational attraction of the other. The binary system is said
to be detached and mass transfer could proceed only via the wind mechanism.

Supposing that for some reason, possibly stellar evolution, the donor star
swells up so that its surface fills its Roche lobe. Since part of the envelope is in
contact with the inner Lagrange point (L1) (see figure 1.1), any perturbation
of this material will push it into the Roche lobe of the companion. Such per-
turbations are always present, due to, for instance, pressure forces. A system
like this is called semi-detached, and it will transfer mass from the donor to the
compact star very efficiently, as long as the Roche lobe of the massive star is
filled.

1.1.2 Accretion disk

Once matter has passed through the Lagrange point L1, in order to preserve its
initial orbital angular momentum, it orbits around the compact objects, forming
a disk, called accretion disk [Hartle(2003)]. Now, the velocity of gas particles
can be decomposed into two components: radial component (v∥), and tangential
component (v⊥).

Their values would be roughly:

v∥ ≈ cs =

√
∂P

∂ρ
=

√
kBT

µmp
≈ 10

√
T

104K
km/s (1.6)

v⊥ ∼ b1ω ≈ 100

(
M1

M⊙

)1/3

(1 + q)1/3
(
P

1d

)−1/3

km/s (1.7)

where µ is the mean molecular weight, ω is the angular velocity of the test
particles, and b1, in the equation (1.7), is given by b1 ≈ a(0.5 − 0.227 log q),
a is the semi-major axis of particles’ orbits, and q is the mass ratio M2/M1.
By orders of magnitudes we conclude that v⊥ ≫ v∥. Thus, the disk which is
forming, is composed by a collection of rings, on which particles move with
velocity v⊥ (neglecting the radial motion, so v∥).

Particles, orbiting around the central star, are efficiently heated, because of
dissipative mechanisms, up to a temperature of the order kTdiskn ∼ 0.5keV. As
a consequence, they start to radiate, losing energy. For a certain value of the
specific orbital angular momentum l (angular momentum per unit of mass), the
energy, ϵ, per unit of mass of a gas particle would depend only on the eccentric-
ity e:

ϵ = − (GM)2(1− e2)

2l2
(1.8)

where G is the gravitational constant, and M the mass of the compact object.
From equation (1.8) it can be seen that the minimum energy is the one with
zero eccentricity (e = 0), which means that the associated orbit is a circular one.
Thus, after having crossed the Lagrange point L1, particles lose energy orbiting
in the disk, up to reach the minimum energy required for a stable orbit, and so
becoming circular.
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While the circularization of the orbits is due to the emission of energy, the
reduction of their dimensions is due to the loss of angular momentum because of
viscous forces. These reduce the semi-major axis of the particles’ orbits, moving
them closer to the central star. The time needed to radiate energy and make the
orbit circular is called trad, and it is related to the azimuthal velocity (v⊥), while
the time needed by viscous forces to transport angular momentum, towards the
outer regions of the disk, is defined as tvisc, and it is related to the radial
velocity (v∥). Since tvisc ≪ trad, and since the time is inversely proportional to
the velocity, turns out that the azimuthal velocity is much higher then the radial
one (as already seen in equations (1.6) and (1.7)). This explains why the radial
motion (controlled by viscous forces) of gas particles is significantly slower than
the orbital one, and the disk, as mentioned earlier, instead of a visible spiral,
looks like an ensemble of rings. Particles’ orbit, in fact, after have been reduced,
because of angular momentum losses, become instantly circular.

The inward motion on nearly circular orbits continues up to a certain dis-
tance from the object, beyond which matter falls rapidly onto the compact
object. More precisely, in case of a black hole, the rapid fall of particles starts
after passing through the ISCO (innermost stable circular orbit), falling then
inside the horizon.

In the case of neutron stars, the inner region of the disk is destroyed by their
strong magnetic fields (∼ 1012 − 1013G), and the accretion flow is channeled
towards the magnetic poles, proceeding through column accretion. For black
holes, instead, column accretion of this kind cannot occur, bacause of the lack
of an intrinsic magnetic field [Frank et al.(2002)]. Another case, although less
frequent, is when the magnetic field of the neutron star is too weak to truncate
the disc, and the matter accretes towards the surface of the star, until it reaches
a boundary layer, of a certain radial extend “d” just outside the surface of the
accretor. Here it is decelerated from its keplerian angular velocity ΩK(R∗ + d)
to the angular velocity of the neutron star Ω∗(R∗) (where R∗ is the star radius).

1.2 Propeller effect

In the previous sections we have just introduced the accretion around a neutron
star, without specifying when and if accretion is possible. There are various
possible ways of interaction between neutron stars and matter. Let us consider
a NS of mass M , radius R, spin period P , magnetic field B, and moving with
velocity V relative to an ambient medium of number density n. In order to
understand when and how accretion is possible around the NS, let us introduce
three main characteristic lengths:

The accretion radius, racc, defines the region where the dynamics of the
gas particles are dominated by the gravitational field of the NS, and it is given
by

racc =
2GM

v2
∼ 3× 1014mv−2

10 cm (1.9)

where v10 = (V 2+C2
s )

1/2/(10kms−1), Cs is the sound speed of the gas particles
and it is ∼ 10kms−1 [Treves et al.(2000)], and m = M/M⊙. The equation
(1.9) is derived in the framework of the Hoyle-Bondi theory of accretion, and,
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although the estimate is an approximation, it is sufficient to understand the
point for the following calculations.

The Alfvén radius, rA, is the boundary within which the dynamics of the
infalling material is dominated by the NS magnetic field. In spherical symmetry
approximation:

rA =

(
B2R6

√
2GMṀ

)2/7

∼ 2× 1010B
4/7
12 Ṁ

−2/7
11 R

12/7
6 m−1/7cm (1.10)

where Ṁ is defined as the mass accretion rate (amount of mass which ac-
cretes per unit of time), Ṁ11 = Ṁ/(1011gs−1), R6 = R/(106cm), and B12 =
B/(1012G) [Treves et al.(2000)]. A more detailed derivation of the Alfvén radius
can be found in the next section.

The corotation radius, rcor, is the distance at which the Keplerian velocity
of gas particles equates the angular velocity of the NS:

rcor =

(
GMP 2

4π2

)1/3

∼ 2× 108m1/3P 2/3cm (1.11)

Studying accretion onto NSs, it should be taken into account that accretion
could be prevented due to the momentum outflow produced by the NS magne-
tosphere co-rotating with the star itself. It can be shown that accretion do not
occur if:

First, the Alfvén radius is larger than the accretion radius [Treves et al.(2000)],
rA > racc, in that case the system is in the so-called georotator stage.

Second, at the accretion radius the gravitational energy density of the in-
coming material

UG =
GMmpn

r
∼ 6.5× 10−13Ṁ11r

−5/2
14 ergs cm−3 (1.12)

must be greater than the energy density, UB , of the relativistic momentum
outflow, produced by the rotating magnetic field B. The expression for the
magnetic energy density, in the case of a dipolar field is

UB =

(
B2

8π

)(
R6

r6c

)(
r2c
r2

)
∼ 7.5× 10−9B2

12P
−4R6r

−2
14 ergs cm

−3 (1.13)

where r14 = r/(1014cm) and rc = cP/2π is the light cylinder radius (c is the
speed of light). This condition is met only if the period of the NS is larger than
a certain value, the critical period Pcrit, such that

P ≥ Pcrit ∼ 10B
1/2
12 Ṁ

−1/4
11 (rA)14R

3/2
6 m−1/8s. (1.14)

Thus, if P < Pcrit, no accretion occurs and the NS is in the ejector phase;
the duration of such phase could also exceed the NS lifetime (∼ 107yr). However,
since the neutron star should slow down at the magnetic dipole rate, its spin
period can increase and exceed the critical one, starting to accrete material.

After the increase of P , the material continues undisturbed until the Alfvén
radius, where the NS magnetic energy density is balanced by the matter bulk
kinetic energy density. Here, the corotating magnetosphere will prevent further

17



Figure 1.2: Different stages for an old neutron star as a function of the
star velocity (in units of 10km s−1), and magnetic field (in units of 1012G)
[Treves et al.(2000)].

accretion of matter, unless the gravitational acceleration is higher than the
centrifugal pull [Treves et al.(2000)]:

GM

r2A
≥
(
2π

P

)2

rA. (1.15)

Also this third condition can be translated into a constraint on the period:

P ≥ PA ∼ 103B
6/7
12 Ṁ

−1/2
11 m−1/2s. (1.16)

If the period is shorter than PA, then we would have an accumulation of
matter at the Alfvén radius and the system remains in the propeller phase.
The propeller effect, is a severe problem, since PA is quite large, and so difficult
to exceed. But there are two effects which can play an important role in the
spin-down of the NS, making possible the accretion: the decay of the B field,
and the torque exerted by the accreting material on the star itself.

Finally, if also the last condition is fulfilled, matter continues its motion
towards the NS surface, and this becomes an accretor. In the figure 1.2 all
these four possible stages are shown.

1.3 Accretion disk for magnetized NSs

Let us assume that the neutron star is in the accretor phase, and the magnetic
field is strong enough to truncate the accretion disk. Since the interaction
between the star magnetic field and the accretion disk is exceedingly complex
in general, for the sake of simplicity here we consider the simple case in which
the stellar magnetic field disrupts the accretion flow in the inner regions of the
disk.

For a dipole magnetic field, the intensity of B is roughly

B ∼ µ

r3
, (1.17)
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where r is the radial distance from the star with radius R∗, µ = B∗R
3
∗ is the

magnetic moment, which is constant once specified the surface field strength
B∗. We can define the magnetic pressure:

Pmag =

[
4π

µ0

]
B2

8π
=

[
4π

µ0

]
µ2

8πr6
(1.18)

as the matter approaches the stellar surface, the effects of such pressure increase,
due to the dependence on r−6. This magnetic pressure starts to control the
matter flow truncating the infall at a radius rA, thus exceeding the ram pressure
of the matter. The ram pressure term is given by ρv2, where ρ is the density, v
is close to the free-fall value vff = (2GM/r)1/2, giving |ρv| in term of the mass

accretion rate Ṁ :

Ṁ = 4πr2|ρv| → |ρv| = Ṁ

4πr2
. (1.19)

Setting Pmag(rA) = ρv2|rA we find:[
4π

µ0

]
µ2

8πr6A
=

(2GM)1/2Ṁ

4πr
5/2
A

, (1.20)

from equation (1.20) we can express rA as

rA = 5.1× 108Ṁ
−2/7
16 m

−1/7
1 µ

4/7
30 cm, (1.21)

or, if we replace Ṁ in terms of the accretion luminosity (Lacc = GMṀ/R),
since it is more directly related to observational quantities

rA = 2.9× 108m
1/7
1 R

−2/7
6 L

−2/7
37 µ

4/7
30 cm, (1.22)

with the parameters in units of typical values for a neutron star.
Both estimates, (1.21) and (1.22), are kind of rough, but, since Pmag is a

step function of radius (∼ r−6), they can be accepted as a first-order approx-
imation. As already mentioned, the distance rA is called Alfvén radius, and
within it we expect that the magnetic pressure dominates the dynamics of gas
particles, which start to move along magnetic field lines, towards the magnetic
poles of the star (figure 1.3).

When accretion is controlled by the magnetic field of the source, it gives rise
to a simple and recognizable observational signature, due to the fact that the
accretion flow is funneled only onto a small fraction of the total stellar surface
(figure 1.3).

In figure 1.3, at the point A, particles leaves the disk following the field lines.
In polar coordinates, using a system whose origin is at the center of the star,
with the z axis directed along the magnetic one, and having assumed a dipole
magnetic field, the equation for the field lines is approximately: r = C sin θ2,
where C is a constant, and θ the magnetic colatitude. At A, r = rA (RM in the
figure) and θ = α (where α is the magnetic colatitude at the Alfvèn radius), so
C = rA/ sinα

2. The same field line will then cross the stellar surface at r = R∗
at a magnetic colatitude β given by

sin2 β =
R∗

C
=

(
R∗

rA

)
sin2 α. (1.23)
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Figure 1.3: Schematic illustration of accretion onto a NS from a surrounding
accretion disk. The curved lines are the magnetic field lines, and the disk is
truncated at the Alvén radius (point A), where particles are then funneled onto
the magnetic poles.[Frank et al.(2002)]

Neglecting possible effects due to plasma instabilities, accretion cannot take
place for colatitudes larger than β, since the field lines that will cross the disk
plane for distances lower than the Alfvén radius, would collect a little amount
of matter. Thus the accretion will be concentrated only within the region with
angular amplitude β.

The area of an accreting polecup is a fraction

fdisk ∼ πR2
∗ sin

2 β

4πR2
∗

∼=
R∗ sin

2 α

4rA
(1.24)

of the total stellar surface, with accretion that can take place also on the opposite
pole. The estimate of fdisk is subjected to many uncertainties because of the
complicated role of plasma instabilities.Nevertheless, its value would be always
smaller than unity.

We can conclude saying that, in case of interaction between the accretion
disk and the magnetic field of the NS, matter do not accrete all over the surface
of the star, but instead, just inside a small region, of area fdisk, where an
accretion column can be formed (as we will see in Chapter 3).

1.4 Efficiency of accretion onto compact objects

The extraction of gravitational potential energy from material which is accret-
ing onto a massive object is known to be the main source of electromagnetic
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emission in several types of binary systems, e.g. it is believed to provide the
power supply in active galactic nuclei (AGN) and quasars. Thus, accretion onto
compact objects is a natural and powerful mechanism for producing high-energy
radiation.

1.4.1 Energy emitted through accretion

Let us consider a body of mass M and radius R, the gravitational potential
energy released by the accretion of a mass m, initially very far from the object,
and arriving on on its surface would be:

∆Eacc =
GMm

R
(1.25)

Taking typical values of R and M for neutron stars, R ∼ 10km and M ∼ M⊙,
then ∆Eacc will be about 1020ergs per accreted gram. This energy is supposed
to be emitted mainly in the form of electromagnetic radiation (in fact, the rest
of the energy can be also transformed into kinetic energy, in relativistic jets of
particles). The amount of energy released can be then compared to the energy
extracted from a mass m by nuclear fusion reactions (the highest energy release
is obtained for hydrogen burning) in stellar nucleosynthesis. The latter gives an
amount of energy which is around 1/20 of the accretion one [Frank et al.(2002)].

From equation (1.25) it is clear that, the energy emitted through accretion
is strongly dependent on the compactness of the accreting object, i.e. on the
ratio M/R: the higher the ratio, the larger the efficiency. Hence, for black holes
and neutron stars accretion can be much more efficient than nuclear burning.

A consequence of equation (1.25) is that fixing the value of the compactness,
luminosity will depend only on the mass accretion rate Ṁ . In particular, when
the luminosity becomes quite high, it can halt the accretion itself, since the
radiation pressure, exerted on accreting particles, would be so strong that their
accretion onto the surface of the object is inhibited. This leads to the definition
of a maximum luminosity, given a certain M/R ratio.

1.4.2 Eddington luminosity

For the sake of simplicity, let us consider a steady, spherically symmetric config-
uration with mainly fully ionized hydrogen accreting onto a compact object. Un-
der these circumstances the radiation will exert a force onto particles (electrons
and protons) and we can fairly assume it is generated by Thomson scattering.
In addition, since Thomson differential cross-section is inversely proportional to
the square of the mass of the particle, scattering onto protons can be neglected
with respect to free electrons (since the mass of the proton is about ∼ 2000
times that of the electron).

Defining as S the radiant energy flux L/4πr2 ergs−1cm−2, the outward radial
force exerted on each electron equals the rate at which it absorbs momentum,
σTS/c (where σT = 6.7×10−25cm2 is the Thomson scattering cross section). As
the electrons move outward, they drag with them protons, because of Coulomb
interaction. So radiation pushes out electron-proton pairs against the total
gravitational force, which acts on each pair at a radial distance r from the
centre:

GM(mp +me)

r2
∼=

GMmp

r2
. (1.26)
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The net inward force on an electron-proton pair is:(
GMmp −

LσT

4πc

)
1

r2
(1.27)

and we call Eddington luminosity that value of L at which the force (1.27)
vanishes:

LEdd =
4πGMmpc

σT

∼= 1.3× 1038
(

M

M⊙

)
erg s−1. (1.28)

This value for L is the maximum one to avoid the inhibition of the accretion due
to radiation pressure. In fact, as stated before, at high values of the luminosity
the outward radiation pressure would exceed the inward gravitational attraction
and accretion will be halted.
It is important to stress that this value for LEdd has been derived making some
assumptions:

1. steady and spherically symmetric accretion flow (Bondi flow), if
the accretion occurs only over a fraction f of the entire surface of the object
the accretion luminosity associated would be fLEdd. If the geometry is
even more complicated, the equation (1.28) gives a crude estimate;

2. accreting material made mainly by hydrogen, which is almost al-
ways a good approximation, in a great number of cases;

3. fully ionized hydrogen;

4. Thomson scattering limit, it is quite always a good hypothesis.

Despite these technicalities, the Eddington limit is of great practical importance
and for accretion-powered objects it implies a limit on the steady accretion rate
Ṁ .

Maximum accretion rate

The value of this maximum luminosity over which accretion is halted puts con-
straints on the mass accretion rate Ṁ , and we can obtain this maximum value
for Ṁ (ṀEdd). Starting from equation (1.31), dividing and multiplying by c2

on the right hand side, one can rewrite:

Lacc = ηṀc2, (1.29)

where the parameter η = GM/Rc2 is called the efficiency of the accretion pro-
cess. Equating this to the Eddington luminosity (1.28), we derive an expression
for the limiting value of Ṁ :

ηṀc2 =
4πGMmpc

σT
−→ ṀEdd =

LEdd

ηc2
. (1.30)

Taking now the example in which all the kinetic energy of inafalling matter is
transformed into radiation at the stellar surface, then from equation (1.25) the
accretion luminosity is:

Lacc =
GMṀ

R
(1.31)
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Lacc = 1.3× 1036Ṁ16

(
M

M⊙

)(
R

10km

)−1

erg s−1 (1.32)

where Lacc in the (1.32) has been expressed in terms of typical values for neutron
stars. If we compare this equation with equation (1.28), we obtain that the mass
accretion rate, Ṁ16 (where Ṁ16 means that is normalized with respect to the
value 1016 gs−1), is limited by a value of ∼ 102gs−1.

Thus, if the previous assumptions made to compute the Eddington lumi-
nosity hold, the mass accretion rate must be less than 1018gs−1, for a neutron
star.

Efficiency of the accretion process

At this point it is useful to estimate the efficiency of the accretion process,
starting from the specific energy of the gas at the inner radius of the disk, Rin.
This is the star radius in the case of a neutron star and the ISCO in the case of
a black hole.
The specific energy at Rin is:

ϵ(Rin) = −GM

Rin
+

1

2
v2K = −1

2

GM

Rin
(1.33)

where vK =
√
GM/Rin is the Keplerian velocity. The variation of ϵ in the

accretion process can be computed assuming that matter starts accreting from
an infinite distance from the object, since the external radius of the disk is much
longer than the inner one, Rex ≫ Rin. Thus:

∆ϵ = ϵinf − ϵ(Rin) =
1

2

GM

Rin
. (1.34)

Therefore the luminosity of the disk will be:

Ldisc =
1

2

GM

Rin
Ṁc2 (1.35)

which is exactly half of the accretion luminosity:

Lacc =
GM

R
Ṁc2. (1.36)
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CHAPTER

TWO
ULTRA-LUMINOUS X-RAY SOURCES

Ultra-luminous X-ray sources (ULXs) are among the most peculiar extragalactic
objects, with X-ray luminosities LX ≥ 1039 erg s−1 (as stated above). They
often dominate the total X-ray emission of their host galaxy. They are generally
too bright to be low-mass X-ray binaries (LMXBs), for which LX ≤ 1037 erg s−1,
and too dim when compared to active galactic nuclei (AGNs), for which LX ≥
1041 erg s−1, with their position being off-centre in their host galaxy. Their
properties have been largely explored, their spectra are well described by a two
component model (disk plus a corona), and show a characteristic cut-off between
2 and 10 keV. Some ULXs also present spectral time variability, while others
exhibit coherent pulsations in their signals, leading to the discovery of pulsating
ULXs (PULXs).

2.1 The discovery of ULXs

The first observation of ULXs dates back to the 80s, when the Einstein X-ray
Observatory revealed the existence of 16 of these objects ([Long et al.(1983)];
[Helfand(1984)]; [Fabbiano(1989)]). Soon, the ROSAT satellite extended their
number to nearly 100 ([Roberts & Warwick(2000)]; [Colbert & Ptak(2002)]).
Yet these object are rare, with an occurrence of only 1-2 per galaxy from pointed
X-ray observations ([Colbert et al.(2004)]; [Kilgard et al.(2002)];[Colbert & Ptak(2002)];
[Foschini et al.(2002)];[Humphrey et al.(2003)]; [Irwin et al.(2003)]), and per-
haps occurring much less frequently in the local Universe as a whole. At the
time of the first detection there were several uncertainties about the nature of
such objects: it was thought that ULXs could represent the high-luminosity
end of a continuous distribution of conventional X-ray sources such as super-
novae and X-ray binaries ([Grimm et al.(2003)Grimm, Gilfanov, & Sunyaev]),
or that they could involve new types of objects such as intermediate mass
black holes (IMBHs) ([Colbert & Mushotzky(1999)]; [Makishima et al.(2000)];
[Colbert & Ptak(2002)]; [Van Der Marel(2004)]), beamed sources ([King et al.(2001)];
[Georganopoulos et al.(2002)]; [Körding et al.(2002)]) and hypernovae ([Wang(1999)]).
Part of the reason why ULXs were, as a class, poorly understood is that past X-
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ray observatories lack of the combination of high angular resolution and moder-
ate spectral resolution, needed to adequately characterize discrete X-ray sources
in nearby galaxies [Swartz et al.(2004)]. One of the main consequences was that
ULXs were difficult to distinguish from other nearby X-ray sources and from
diffuse emission in the field. Subsequently, thanks to the remarkable advance-
ments in the field of high-energy instrumentation, through missions like Chandra
X-ray Observatory and XMM-Newton (X-ray Multi-Mirror Mission-Newton), it
was possible to reveal many more details on ULXs, such as their location, X-
ray luminosities, spectral and timing properties. In the case of Chandra, for
instance, we have both a moderate spectral resolution and the best spatial res-
olution achieved as yet in X-ray telescopes available. For this reason it was also
possible to further extend the list of ULXs up to 154, in 82 galaxies.

2.2 ULXs phenomenology

2.2.1 Principal evidences

ULXs are non-nuclear objects found in external galaxies that seem very luminous
assuming isotropic emission [Kaaret et al.(2001)]. They are thought to be X-ray
binaries powered by accretion onto a compact object, with a luminosity which
exceeds the Eddington one for stellar mass black holes (SMBHs).

X-ray binary systems are classified as ultraluminous one according to whether
their luminosity exceeds some threshold value. This can be: 1039 erg s−1, which
is convenient in centimeter-gram-second units and it tends to be used for pop-
ulation studies as it produces larger samples, or 3× 1039 erg s−1, which closely
corresponds to the Eddington luminosity for a 20M⊙ black hole.

2.2.2 X-ray luminosity functions

The number of X-ray binaries in external galaxies has been investigated through
the X-ray luminosity function (XLF), for both star-forming galaxies and old
elliptical ones. As it can be seen in Figure 2.1, the XLF for star-forming
galaxies has a break at luminosities of ∼ 1040 erg s−1 ([Swartz et al.(2011)],
[Mineo et al.(2012)]), while for elliptical galaxies the break is at ∼ 1038 erg s−1

([Gilfanov(2004)], [Kim & Fabbiano(2010)]). These XLFs have been plotted as-
suming isotropic luminosity; if we take into account also the beaming, then
the breaks would occur at values higher than the physical luminosity expected.
Thus, the break showed in the elliptical XLF could correspond to the Edding-
ton luminosity for neutron stars, suggesting, in those galaxies, the presence of
few black hole binaries (BHBs). However, the break in the star-forming XLF
corresponds to objects 20 times more massive than NSs, and since neutron star
binaries are estimated to be 10–50 times more numerous than BHBs, the lack
of the break at NS Eddington luminosity in the star-forming XLF puts doubts
on whether the break is related to the Eddington luminosity.

For sources with luminosity above LX > 2× 1040 erg s−1 (above the break)
may be defined a new class of objects: hyperluminous X-ray source (HLX)
[Matsumoto et al. (2003)]. These could be the best candidate for intermediate
mass black holes (IMBHs). From XLFs predictions, there should be at most
one HLX within 100Mpc [Swartz et al.(2011)].
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Figure 2.1: X-ray luminosity functions for star-forming galaxies (cyan), i.e. with
a star formation rate (SFR) of 10M⊙ year−1, and for old elliptical galaxies (red)
with stellar masses of 1010M⊙.

From XLFs was also possible to see that the X-ray binary population of a
galaxy is correlated with: its star-formation rate (SFR), if it is a star-forming
galaxy, and stellar mass, if it is an elliptical one [Colbert et al.(2004)]. Dom-
inance of the former suggests that their ULX population is young, with ages
around tens of Myr, instead, dominance of the latter suggests that their ULX
population is old with ages of Gyr.

2.2.3 Galactic X-ray Binaries

The main X-ray binary population that was examined to understand ULXs
characteristics was the Galactic black hole X-ray binaries population (GBHBs).
But what came out from that study was that ULXs show several differences
with respect to GBHBs. First of all, GBHBs exhibit significant variability, with
the X-ray flux that, in some cases, can vary up to factors greater than 107

[Remillard & McClintock(2006)]; most of them have low-mass companion stars
and are transient objects, usually in a quiescent state; and flare to high lumi-
nosities, sometimes close to the Eddington limit for weeks to months. Diversely,
most ULXs are persistent for years or decades, and the variability of ULXs is
much lower than that of GBHBs. In fact, in elliptical galaxies, ULXs typically
show low levels of variability [Feng & Kaaret(2006)], while those in star-forming
galaxies are variable by factors that at most reach 10 [Feng & Kaaret(2009)].
Variability by large factors, above 100, is uncommon, but seen in some ULXs
(e.g. [Bachetti et al.(2014)]).

Moving on the spectra, GBHBs spectra in the X-rays are widely modeled as
the sum of two components: a multicolor disk blackbody (DBB), which probably
arise from the accretion disk, and a power law or Comptonization component,
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which is probably due to a corona. In addition, if the disk component fairly
represents a standard thin accretion disk, which extends towards the innermost
stable circular orbit (ISCO) of the black hole, then the inner radius of the disk
should be constant, and exists a particular relation between the bolometric disk
luminosity, Ld, and the disk inner temperature, Tin: Ld ∝ T 4

in. This is accu-
rately demonstrated in the thermal state of GBHBs [Gierliński & Done(2004)].

Although the spectra of ULXs are often compared with those of GBHBs, it
should be noted that observational data for GBHBs has mainly been obtained
by instrument designed for Galactic science. These present a limited sensitivity
below 3 keV, while a large collecting area at energies up to ∼ 25 keV. For
ULXs, instead, spectra have generally been obtained by observatories more
specifically designed for extragalactic science, with CCD detectors and focusing
optics, operating in the ∼ 0.5–10 keV regime.

2.2.4 X-ray spectra

The first view of ULX spectra emerged from the Advanced Satellite for Cos-
mology and Astrophysics (ASCA), in the 1990s [Colbert & Mushotzky(1999)].
From those data came out that several ULX spectra seem to be dominated by
a single spectral component convex in shape, and well represented by accretion
disk models. These disks turn out to be both hotter (kTin ≈ 1.1 − 1.8 keV)
and more luminous than those for GBHBs. To explain such properties, it was
suggested [Makishima et al.(2000)] that this was a consequence of the fact that
ULXs host large stellar-mass black holes, with masses up to ∼ 100M⊙, and
with a such fast rotation that the disk is forced to move close to the black hole,
being heated up. Some ULXs also show in their spectra a power-law compo-
nent, and from this it was noted that a strongly Comptonized disk spectrum
provides a good physical explanation [Kubota et al.(2002)]. But from deeper
observations with a better resolution (Chandra and XMM-Newton), soon it be-
came clear that single-component models, power laws or simple accretion disk
models (standard multicolor DBB), are not sufficient to fit the spectra. In fact,
the spectra required the inclusion of a second component or of a more complex
single-component models.

More importantly, high quality XMM-Newton data revealed that the hard
emission is not properly a power law; it shows a knee-like feature in the 2–10 keV
band ([Feng & Kaaret(2005)], [Roberts et al.(2005)]). This feature has been
highlighted by NuSTAR (Nuclear Spectroscopic Telescope Array) observations,
and, thanks to its extended hard bandpass, it was showed that such curvature
extends above 10 keV (figure 2.2) [Bachetti et al.(2013)]. This knee-like feature
is well described by a break at energies of 2–7 keV [Gladstone et al.(2009)],
while in GBHBs the same break is at energies typically ∼ 60 keV or above
[McClintock & Remillard(2006)]. Thus, the classical GBHB X-ray spectral model
cannot be applied to ULXs, and the cool component seems not to be interpreted
as a disk for IMBHs, accreting at a sub-Eddington rate.

The luminosity at which the two-component spectra are seen, the majority
of times, is above 3 × 1039 erg s−1. This could represent a super-Eddington
ultraluminous (UL) state.

From the physics of such sources, the best two-component model was that
with DBB and a Comptonized corona. The disk temperature is cool, kTin

∼ 0.1–0.3keV, and the corona appear cool and thick with kTe ∼ 1–2keV and
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Figure 2.2: EPIC-pn and NuSTAR unfolded spectrum of NGC 1313 X-1 during
two observations. Black and red points are EPIC-pn data, and blue and cyan
FPMA data. Circles indicate the first observation, crosses indicate the second.
The spectrum shows a soft excess and a cutoff, as observed in this source when
in its low-flux state [Bachetti et al.(2013)].

τ > 6. This in contrast with GBHBs spectra, where, instead, the corona is
hot and thin, and with electron temperature kTe ∼ 100 keV, and optical depth
τ ≤ 1. From these fits arose the suggestion that the inner accretion disks of
ULXs are surrounded by an optically thick corona, which leaves visible, as the
soft excess, only the outer regions of the disk. This scenario was exploited in
a model used by [Gladstone et al.(2009)] to recover temperatures of the, just
mentioned, accretion disk of ∼ 1keV in most cases, consistent with stellar-mass
black holes.

2.2.5 Spectral variability

Another important characteristic emerged from analysis on ULXs’ spectra, is
that some ULXs show different specrtra in different epochs [Kubota et al.(2001)].
The best way to analyse that time variability is through X-ray color analyses.
The study of this variability showed contrasting results in the relation of disk
X-ray luminosity to temperature. For instance, for ULXs that could be fitted
with single-component disk-like spectra holds a positive disk luminosity versus
temperature evolution [Kajava & Poutanen(2009)], as seen from GBHBs, while
an opposite trend (disk luminosity decreases with temperature) holds in models
used to fit the NGC 1313 X-2 specrum (see figure 2.3) [Feng & Kaaret(2007a)].
This trend was obtained from studies on the evolution of disk luminosity and
temperature in the (cool) DBB, plus power-law model. The fact that the disk
luminosity decreases with temperature is in strong contrast to the L ∝ T 4 re-
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Figure 2.3: XMM-Newton unfolded spectra of NGC 1313 X-2 during two obser-
vations. Black points are EPIC-pn data and red points are EPIC-MOS1 data
[Bachetti et al.(2013)].

lation expected for an accretion disk with a fixed inner radius. From a more
detailed study [Kajava & Poutanen(2009)], on a large sample of ULXs, that
relation turned out to be L ∝ T−3.5. However, this result was contested by
[Miller et al.(2013)], since in some ULXs was found a luminosity-temperature
relation, for disks in soft component, close to the predicted one (for stan-
dard disks): L ∝ T 4. At the same time, the cooling of the soft component
with increased luminosity is strongly confirmed in supersoft ULXs (SSULXs)
[Urquhart & Soria(2016)], in which the soft component is much more clearly
visible, due to the weakness of the hard one.

2.3 ULXs powered by IMBHs and SMBHs

As previously mentioned, since ULX luminosities are typically higher than the
Eddington limit for SMBHs (∼ 1039ergs−1), one of the first hypothesis was that
ULXs are powered by IMBHs, black holes with masses larger than 100 M⊙ and
up to 103M⊙. In fact, taking into account that the Eddington luminosity de-
pends directly on the mass of the source, values of the order of 0.1-0.01LEdd can
be easily reached for this class of objects. In that case accretion proceeds at a
sub-Eddington rate. This accretion regime is typical for Galactic black hole bi-
naries (GBHBs), as seen above, so the IMBH model might implies that ULXs are
massive GBHBs. But after the first high-quality observations from Chandra and
XMM-Newton it became clear that spectra of ULXs differ from those observed
in GBHBs ([Stobbart et al.(2006)],[Gladstone et al.(2009)],[Atapin(2018)]).

Furthermore, different observational evidences have been obtained against
the IMBHs hypothesis. According to Makishima et al. (2000)[Makishima et al.(2000)],
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the IMBH X-ray spectrum should consists of a bright soft thermal component
(blackbody) with a characteristic temperature of 1 keV and a hard tail. From
analysis on a sample of 154 ULXs candidates [Swartz et al.(2004)] no match was
found. Moreover, IMBHs can also display soft/hard spectral transitions, as pre-
dicted by Kalogera et al. (2004) [Kalogera et al.(2004)], this is a consequence of
a thermal-viscous disk instability. None of these transitions were found in the
observations of the same ULXs sample.

Moreover, it is believed that IMBHs form from individual population III stars
(the first stellar population, the massive one), thus their distribution should be
all across the host galaxy, and in all galaxy types ([Madau & Rees(2001)]). In
particular, an higher occurrence is expected in elliptical galaxies, in which are
present numerous globular clusters, thus dense stellar environments in which
such sources could have been formed. In addition, the ULXs spatial distri-
bution should be that of the halo stars, contrary to the distribution of weaker
sources, which are mainly distributed across the disk and the bulge of the galax-
ies (such as spirals) ([Swartz et al.(2004)]). From the same previous sample of
154 sources, ULXs, instead, show the same distribution of the weaker sources,
and the occurrence of ULXs in cluster-rich elliptical galaxies is no greater than
that for spirals.

Although the SMBHs have masses too small, compared to those of IMBHs,
in order to explain such high X-ray luminosities, they still remain a valid
hypothesis if (with or without beaming) the accretion of material proceeds
at super-Eddington rate ([Fabrika & Mescheryakov(2001)],[King et al.(2001)],
[Poutanen et al.(2007)]). In this case, ULXs can be compared to the Galac-
tic superaccretor SS 433 ([Fabrika(1997)], [Fabrika(2006)]). In such system the
compact object accretes material from an evolved A-type supergiant, through
the Roche-lobe mechanism (see subsection 1.1.1). Showing also strong optically-
thick outflow and semi-relativistic baryonic jets [Fabrika(2006)]. Its apparent
X-ray luminosity is about 1036erg s−1, but probably this is due to its high incli-
nation, if visible in a face-on configuration the luminosity may be even higher,
and it might look like as an ULX [Fabrika & Mescheryakov(2001)].

2.4 Discovery of ULXs powered by Neutron Stars

Through the X-ray timing it was possible to identify neutron star accretors.
Although X-ray timing is a powerful technique, it also requires a large number
of photons, and extensive monitoring campaigns. As a consequence, it has been
possible to obtain an high signal-to-noise power spectra, and to do extensive
monitoring campaigns only for few ULXs.

2.4.1 NuSTAR J095551+6940.8

In 2014 the NuSTAR high energy X-ray mission observed the galaxy M82
[Harrison et al.(2013)], located at 3.6 Mpc from the Milky Way, between Jan-
uary 23 and March 26, due to a follow-up campaign of the supernova SN2014J.
In the galaxy disk can be found several ULXs, the most luminous are: M82
X-1 [Kaaret et al.(2001)], with a maximum luminosity LX(0.3 − 10keV ) ∼
1041ergs−1, and M82 X-2 (figure 2.4), a transient source, with maximum lumi-
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nosity LX(0.3− 10keV ) ∼ 1.8× 1040 erg s−1. Since the separation between the
two is of 5”, they could only be distinguished by Chandra [Bachetti et al.(2014)].

In the region in which are located these two sources, were found for the
first time, through NuSTAR observations, coherent pulsations. These showed
an average period of 1.37 s, and a 2.5 day sinusoidal modulation. Such signal
was identified as NuSTAR J095551+6940.8. In the same epoch, thus during
the detection of such pulsations, Chandra observed M82, and only two sources
in the Chandra image, the previously mentioned M82 X-1 and M82 X-2, were
sufficiently luminous to be the counterpart of NuSTAR J095551+6940.8, and
then, after further investigations, the centroid of the pulsed emission turn out
to be consistent with the location of M82 X-2. Soon after, M82 X-2 was identi-
fied as a neutron star (NS), accreting from a stellar companion via Roche lobe
overflow (subsection 1.1.1). The last intuition is a consequence of the highly
circular orbit, which suggests the action of strong tidal torques, combined with
the high luminosity.

NuSTAR J095551+6940.8 exhibited a luminosity LX(0.5−30keV ) ∼ 1040 erg s−1.
From a theoretical point of view, such X-ray luminosity can be achieved with
the presence of strong magnetic fields and for the particular geometry of the
accretion channel. A deeper discussion of the emission model will be addressed
in the central part of this thesis.

Figure 2.4: Chandra image of the central region of M82. The yellow circle shows
the 70” radius region used to extract NuSTAR fluxes. Within this region 24
discrete X-ray point sources were identified [Bachetti et al.(2014)].

After the discovery of this PULX, several other sources were revealed by
other surveys.

2.4.2 NGC 7793 P13

Fürst et al. (2016) [Fürst et al.(2016)] reported on the detection of coherent
pulsations from the ultraluminous X-ray source NGC 7793 P13. XMM-Newton
and NuSTAR were the first, in 2016 in broadband X-ray observations, to detect
NGC 7793 P13 sinusoidal pulsations, with a period of ∼0.42 s. They also found
pulsations in archival XMM-Newton data taken in 2013 and 2014. From this
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discovery turned out that the compact object (NGC 7793 P13) is a neutron star,
showing a maximum luminosity of ∼ 1040 erg s−1, this once one has assumed
isotropy emission. Such luminosity is well above the Eddington limit for an
accretor with mass of 1.4M⊙, as a consequence NGC 7793 P13 became the
second ULX known to be powered by an accreting neutron star.

2.4.3 NGC 5907 ULX1

Israel et al. (2017) [Israel et al.(2017)] carried out a search for new X-ray pul-
sating sources, taking data from the archival of the European Photon Imaging
Camera (EPIC) ([Strüder et al.(2001)], [Turner et al.(2001)]). This search was
made thanks to the project “Exploring the X-ray Transient and variable Sky”,
which had as goal that of characterizing the variability of X-ray sources observed
with the XMM–Newton satellite.

A coherent signal in the X-rays was found, between July 9 and 10 in 2014,
in the spiral galaxy NGC 5907, which is located at 17.1 Mpc from the Milky
Way ([Tully et al.(2013)]). From the Fourier power spectrum of the 0.2–12 keV
light curve of the source, they detect a peak in the emission at the frequency of
∼0.88 Hz, and with a period of ∼ 1.137s.

Through a more complete search, they managed to detect the same sig-
nal also in earlier observations, made with XMM–Newton in February 2003
(measuring a period of ∼ 1.428s), and with NuSTAR ([Harrison et al.(2013)])
in July 2014 (with a period of ∼ 1.136s). Leading to the confirmation of the
presence of a PULX, NGC 5907 ULX. The luminosity measured with Swift,
Chandra, XMM–Newton, and NuSTAR exhibits a pronounced variability, its
bolometric luminosity ranging between (2.6 ± 0.3)×1040erg s−1 and (2.2 ±
0.3)×1041erg s−1.

2.4.4 NGC 300 ULX1

Carpano et al. (2018) [Carpano et al.(2018)] discovered an intense periodic
signal in the X-rays, which presented a period of 31.6 s and a rapid spin up,
confirming in this way that the object was a neutron star.

The observation targeted the galaxy NGC 300, it is located in the group of
the Sculptor, at a distance of 1.88 Mpc [Gieren et al.(2005)], and it is seen in
a face-on configuration. The X-ray sources which populate that galaxy have
been already studied with missions like ROSAT [Read & Pietsch(2001)], and
XMM-Newton [Carpano et al.(2005)].

Before the discovery of NGC 300 ULX1, the brightest X-ray source detected
was the Wolf–Rayet/black hole X-ray binary NGC 300 X-1, which showed a
luminosity of ∼ 2 × 1038erg s−1 [Carpano et al.(2007)]. But in May 2010, in
the optical energy band, appeared a new brighter source, which was, at the
beginning, classified as a supernova (SN 2010da) [Monard(2010)]. The unab-
sorbed luminosity of the source was obtained by Swift XRT, with the values of
6×1038erg s−1 [Immler et al.(2010)], and later on also by Chandra ACIS-I, with
a value of∼ 2×1037 erg s−1 in the 0.3–10 keV energy range [Binder et al.(2011)].

It was concluded that the system was a high-mass X-ray binary (HMXB)
system in outburst, additional observations were made by Chandra in 2014
[Binder et al.(2016)], highlighting the variation of the luminosity by a factor of
∼ 10, going from ∼ 4×1036 ergs−1 to ∼ 4×1037erg s−1. A better interpretation
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of the nature of the source was done using spectroscopic and photometric data,
in the ultraviolet to infrared energy range. This allowed to say that the source
is, in reality, a supergiant B[e] HMXB ([Lau et al.(2016)], [Villar et al.(2016)]).

2.4.5 NGC 1313 X-2

Sathyaprakash et al. (2019) [Sathyaprakash et al.(2019)] revealed a weak pul-
sation from the archetypal ultra-luminous X-ray source NGC 1313 X-2, such
pulsations showed a period of ∼1.5 s and a pulsed fraction of ∼ 5%. The PULX
is located in the outer regions of the barred spiral galaxy NGC 1313, and it is
one of the historical, best-studied ULXs in terms of both its X-ray properties
([Feng & Kaaret(2007b)], [Pintore & Zampieri(2012)]) and its optical counter-
part and environment [Grisé et al.(2008)]. The source is probably seen with a
low inclination angle ([Sutton et al.(2013)], [Middleton et al.(2015)]), and this
is suggested by the lack of radial velocity variations in the optical spectrum
[Roberts et al.(2011)], and of flux variability. Although this view does not allow
to record intense pulsations, it provides, however, to have a direct view of the
central areas of the accretion flow.

2.4.6 M51 ULX-7

Rodŕıguez Castillo et al. (2020) [Castillo et al.(2020)] discovered an ultra-
luminous X-ray source in the suburb of the M51 galaxy, at a distance of 8.6
Mpc: M51 ULX-7, which presented 2.8 s pulsations in the X-ray emission, with
a pulse sinusoidal shape. That discovery was done during an observation of
78ks, within the XMM-Newton Large Program UNSEeN. M51 ULX-7 is gen-
erally observed with an X-ray luminosity between 1039 and 1040erg s−1 (in the
energy range of 0.3–10 keV). The X-ray source presents an orbit of 2 days, a
NS mass of 1.4M⊙, and a lower limit for the companion mass of 8M⊙, which
classify the system of this PULX as an high-mass X-ray binary.
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CHAPTER

THREE
ACCRETION ONTO MAGNETIZED
NEUTRON STARS

The main purpose of this thesis is to present the current scenarios for accretion
onto magnetized NSs with the main goal to understand if and under which
circumstances a super-Eddington luminosity can be produced. Indeed, as it will
be seen later on, the luminosity overcomes the Eddington one.

The very first investigation of whether a strongly magnetized neutron star
could be capable of emitting above its Eddington limit, was presented by Basko
& Sunyaev (1976) [Basko & Sunyaev(1976)]. Their model, however, was primar-
ily focused on the effects of the presence of an accretion column and a radiative
shock, neglecting the contribution of the strong magnetic field (e.g. in the re-
duction of plasma opacities). Thus the maximum luminosity that they found
was increased only by a factor of few above the limit.

After this first attempt, Lyubarskii & Syunyaev (1988) [Lyubarskii & Syunyaev(1988)]
extended the last model calculating the structure of the region below the shock
in two dimensions, providing the basis for the more recent models.

As anticipated in the previous chapters, the accretion in this case is far from
being spherical, due to the presence of a strong magnetic field, thus matter
accretes only onto a small fraction of the total star surface.

3.1 Accretion onto NS magnetic poles

Defining the accretion column structure of a neutron star is not an easy task,
because the basic physical processes involved are not well understood. In par-
ticular, in this case, we have to deal with very extreme physical conditions on
the stellar surface, such as: supersonic free-fall velocities ∼ c/2, magnetic field
of the order ∼ 1013G, and luminosities ∼ LEdd.

In early times, for instance, it was unclear if the accretion column was an
“hollow” or a “filled” cylinder. Moreover, it is far from established when or if a
shock occurs, what kind it is and what is the exact process which forms it. The
main reason for such doubts is that the deflection mean free path λd of plasma
particles coming from the disk (i.e. the distance traveled by particles before
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being deflected through interactions with particles on the neutron star surface)
is very large, even larger than the star radius:

λd ≥ 5× 109cm ≫ R∗ ∼= 106cm, (3.1)

for protons with free-fall energies. Thus a collisional shock is not possible.
However, this does not mean that another kind of shock cannot form. For
example, a region of discontinuity, with thickness much smaller than deflection
mean free path might form, producing a collisionless shock.

The collisionless shock physics is not well understood, and because of our
ignorance of how such shocks work, we do not know the conditions for their
formation. So, in general, for accretion onto neutron stars, one should take into
account both types of accretion: with and without shock. An additional compli-
cation is given by the fact that for modest accretion rates the radiation pressure
due to the accretion luminosity will become important Furthermore, problems
come out also from the fact that accretion takes place in a highly magnetized
environment, so each physical process must be described accordingly.

It does not come as a surprise that a detailed treatment of the radiative
transfer problem has been given only for simple geometries, while models for
the column structure simplify it. The main purpose is to combine all these
effects, in order to predict the observational data.

3.2 Basko & Sunyaev model

As originally introduced, the first model for accretion onto a magneticed NS
was that of Basko & Sunyaev (1976)[Basko & Sunyaev(1976)], it is based on the
assumption that, outside the Alfvén surface (where we can neglect the influence
of the stellar magnetic field on the accreting material) accretion can proceed
in two cases: spherically-symmetric radial infall, and disk accretion. The best
choice would be the second, since it is the results of the Roche lobe overflow
(chapter 1), a scenario needed in order to have large mass transfer rates in
binary systems.

At the Alfvén radius (rA) the pressure of magnetic field (a dipole field)
destroys the disk. It is assumed that at this distance the plasma continues
to accrete following the magnetic field lines of the star, falling towards the
magnetic poles. Because of the low resistivity, the depth to which the plasma
penetrates into the dipole field is small compared to the Alfvén radius and, as
a consequence, the accretion flow near the surface of the compact object will be
similar to a thin wall of a funnel.

At the stellar surface the cross-section of the accretion channel is a thin an-
nular arc having the radius a0 ∼ 0.1R, where R is the star radius, the length
l0 ∼ a0, and the thickness d0 ≪ a0. Numerically speaking l0 ≈ 2 × 105cm,
d0 = 5 × 103cm, which corresponds to a penetration depth ≈ 0.1rA at the
Alfvén radius.

If, instead, we consider a spherically-symmetric infall, then matter will oc-
cupy the whole cavity of the funnel. This case, despite the different accretion
column geometry, can be described by the same solution of the previous one
(thin accretion wall), changing only the values of some parameters (see figure
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3.1).

(a) (b)

Figure 3.1: Accretion flow geometries. Panel (a) shows the case in which mate-
rial accretes inside narrow walls of magnetic funnel, d0 ≪ a0. Panel (b) shows
the second possibility, in which material fills the whole cavity of the funnel. The
basic case adopted is that described in panel (a) [Basko & Sunyaev(1976)].

The hypothesis that the accreting plasma is frozen in the magnetic field can
be invalid, and one can imagine a situation where the plasma falls into a narrow
axisymmetric funnel and does not contain any external magnetic field, which
would be the case with the already discussed solid accretion funnel. However,
an external magnetic field should always be present in a column of sinking gas,
as the sinking gas locally releases its gravitational energy. This energy is then
carried by radiative diffusion towards the side walls of the column. At this point
the resultant transversal radiation pressure gradient is balanced by the opposing
magnetic pressure gradient:

Pm =
B2

8π
. (3.2)

Thus, considering the above argument, from now on the hollow axisymmetric
channel scenario is assumed. The interior of the funnel contains only radiation
with a constant energy density, without any matter or magnetic field. In any
case, this is just a particular case of the one depicted in the figure 3.1a.

The model distinguish two main cases for the accretion process above the
neutron star surface. The one with low accretion rates and the other with high
accretion rates.

3.2.1 Low accretion rates

First, Basko & Sunyaev define the quantity:

Lt ≡ Ṁ
GM

R
(3.3)
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which is equivalent to the mass accretion rate Ṁ .
If Lt is smaller than L∗, defined as

L∗ = 2
l0cGM

R2κ
= 4 · 1036

(
σT

σs

)(
l0

2 · 105cm

)(
R

106cm

)−1(
M

M⊙

)
ergs−1,

(3.4)
where σs is the scattering cross-section, one can distinguish two zones in the
accretion column:

(i) free-fall zone, which extends almost down to the neutron star surface. Here
the radiation density is u = 0 and the gas velocity v(r) = −(2GM/r)1/2.

(ii) shock zone, has a height of the same order of magnitude as d0 (if in the
case of a solid axisymmentric channel, of the same order of a0), much lower
than R; this region contains a radiation field of density u ∼ ρ(R)v2(R).

Basically what happens is that the infalling material loses part of its kinetic
energy while crossing the shock zone: the escaping photons slow down the in-
falling electrons through scattering, and electrons, in turn, slow down protons
through Coulomb interaction. When radiation pressure dominates an extended
shock structure develops, and this recalls the structure already discussed.

The fraction of the lost kinetic energy in the shock decreases with decreasing
Lt, in other words the velocity v0 of the gas at the bottom of the accretion
column vanishes at Lt = L∗.

The luminosity L∗ has a precise physical meaning; when Lt equals L∗ a
radiative shock arises above the neutron star surface, at a height of the order
of d0 (or a0 for a solid accretion funnel), and this is the distance at which the
infalling matter is stopped by the emergent radiation.

In other words, in the case of a low accretion rate, the total energy flux
vanishes at the stellar surface, as the kinetic energy flux of the infalling material
is completely balanced by the energy flux of the emerging radiation.

3.2.2 High accretion rates

If Lt ≫ L∗, all the kinetic energy of the infalling gas is lost in the radiative
shock, being converted into radiation. Simultaneously, when Lt ≫ L∗, the
transverse optical depth τt becomes much greater than unity, and consequently
just a small fraction of the accretion energy can be radiated by the shock zone
side walls. From this, Basko & Sunyaev concluded that the shock rises above
the stellar surface as Lt increases, and below the shock a large sinking zone
appears. Here, the gas velocity is small while the radiative energy density is
high; the gas slowly decelerates releasing its gravitational energy and emitting
it laterally. Nevertheless, in this case there is no force other than gravity that
could balance the radiative pressure gradient, so the luminosity LX could not
exceed the Eddington one.

The total amount of energy LX radiated per unit time by the sides of the
gas column increases with Lt. However, can be achieved a sort of saturation
condition when Lt ∼ L∗∗ (where L∗∗ is the maximum X-ray luminosity). At
this point the rise of the shock stops, and the X-ray luminosity LX reaches its
peak value: ∼ (2− 4)L∗∗. The maximum luminosity turns out to be

L∗∗ = 2
l0cGM

d0κ
=

l0
2πd0

LEdd = 3 · 1038
(
l0/d0
40

)(
σT

σs

)(
M

M⊙

)
ergs−1. (3.5)
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It is clear from the equation (3.4) that L∗∗ is sensitive to the geometry of the ac-
cretion column. In the case of a solid axisymmetric funnel L∗∗ = 1/4LEdd. Thus
one can see how the maximum luminosity, in the model of Basko & Sunyaev,
exceeds the Eddington limit just by a factor of a few.

3.2.3 Reduction of opacity

Still from equation (3.4), it is clear that the limiting luminosity L∗∗ is inversely
proportional to the opacity κ = σs/mp. This means that any mechanism that al-
lows for a reduction of the scattering cross-section, with respect to the Thomson
one, will increase the maximum luminosity achievable by an accreting neutron
star. Two possibilities have been proposed in this respect.

In case of a strong magnetic field, the scattering cross-section for X-mode
photon decreases at frequencies ν ≪ νB = eB/2πmec, since σs ≈ (ν/νB)

2σT . In
any case, this effect becomes important only in case of a magnetic field strength
of B ≥ 1014G. In fact, the main part of the X-ray flux is emitted from the
base of the accretion column, where the internal temperature for LX ∼ L∗∗ is
Tin ∼ (3B2/8πa)1/4 (a = 7.56× 10−15erg cm−3 K−4) and so:(

ν

νB

)2

≃
(
kTin

hνB

)2

≃ 2× 1014G

B
. (3.6)

We can note that if B > 2 × 1013G the ratio (ν/νB)
2 starts to decrease as a

consequence of the fact that the internal temperature does not increase anymore,
due to neutrino losses.

At the same time if the magnetic field strength is higher than 1013G, then
the temperature in the accretion column becomes kTin ≥ mec

2, and the Klein-
Nishina scattering cross-section should be taken into account. As a consequence
of this, the decrease of the scattering cross-section let to a significant increase
of the maximum luminosity L∗∗.

3.3 Lyubarskii & Syunyaev model

Lyubarskii & Sunyaev (1988) [Lyubarskii & Syunyaev(1988)] extended the model
of Basko & Sunyaev, computing the shape of the column in two dimensions, so
analysing the trend of the radiation pressure gradient not only along the column
but also across it. Finding, indeed, not a column with a cylindrical wall, but a
column with a triangular vertical cross-section.

3.3.1 Formation of the accretion column

For both models (Basko & Syunyaev (1976) and Lyubarskii & Syunyaev (1988))
the starting point is the accretion of plasma particles towards the magnetic poles
of the star, moving along the surface of a cylindrical segment formed by the field
lines. Defining the critical accretion rate:

Ṁ∗ = 2
lc

κ
, (3.7)

where l is the cylinder base length and κ the opacity, if the accretion rate is
greater than the one in the equation (3.7), then the radiation produced would
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be such intense that its pressure could halt the infall of material: when Ṁ ∼
Ṁ∗ the plasma flow will be braked by a radiative shock that forms above the
stellar surface, and that shock could rise above the star surface if the rate
Ṁ ≫ Ṁ∗. For such conditions, the gas decelerated by the shock will gradually
settle downwards in an accretion column, radiating its stored energy by the
sides of the latter. The transverse radiative flux emitted by the column largely
exceeds the vertical one, this because along the radial direction, the gravitational
force inside the column is completely balanced by the radiation pressure, so the
vertical radiative flux is given by the Eddington value

Q∥ =
GM

R2

c

κ
, (3.8)

where M and R are the mass and radius of the neutron star. Instead, since the
column thickness d is much smaller than its height H, the transverse component
of the radiative flux is

Q⊥ =
H

d
Q∥ =

H

d

GM

R2

c

κ
. (3.9)

thus, higher than the vertical component. Supposing that the height of the
column could reach values comparable to the neutron star radius H ∼ R, the
corresponding X-ray maximum luminosity that they found is of the order:

L∗∗ = 2
l

d
GM

c

κ
= 1039

(
l/d

50

)(
M

M⊙

)
erg/s. (3.10)

Also in this case, from the equation (3.10), it can be seen that the maximum
luminosity highly depends on the accretion column geometry, since if the ratio
l/d is higher enough, the luminosity can exceed the Eddington limit.

3.3.2 Shape of the accretion column

Lyubarskii & Syunyaev (1988) showed that the shape of the column is dif-
ferent from the one predicted by Basko & Syunyaev (1976), since its height
depends on the distance from the column axis. As a consequence, the infalling
particles are decelerated by the shock at different heights along the horizontal
column cross-section, and the radiation pressure which supports the column
will fall sharply towards the edges of the emitting layer. The resulting shape
of the vertical column section is a sort of triangle, instead of a rectangle, as in
[Basko & Sunyaev(1976)] (see figure 3.2).

The radiation seen by the observer is not that directly emitted by the column:
plasma is opaque to scattering, so it will intercept the radiation coming from
the column, re-emitting it towards the neutron star surface. Thus, the observer
will see the radiation reflected by the surface of the star, heated by the radiation
re-emitted by the plasma.

For simplicity, in their model, Lyubarskii & Syunyaev adopted, as scattering
cross-section, the Thomson one with an associated opacity: κ = σT /mp.

The proof for that shape for the accretion channel was given starting from
the equation (3.9), which indicates that at optical depth τ the radiative energy
density is

ε =
3Q⊥τ

c
=

3H

κd

GM

R2
τ. (3.11)

41



Figure 3.2: Cross-section of the accretion column: 1) free-falling plasma; 2) the
deceleration zone; 3) gradual settling [Lyubarskii & Syunyaev(1988)].

Then one has to consider that the radiation pressure needs to balance the weight
of the material above the accretion column:

3H

κd

GM

R2
τ =

GM

R2
ρh, (3.12)

where ρ is the matter density and h is the column height corresponding to the
optical depth τ , measured from the lateral surface. From equations (3.11) and
(3.12) we obtain

h =
Hτ

κρd
(3.13)

remembering that H is the column height along the central axis. Let us define
a dimensionless mass accretion rate ṁ:

ṁ =
GM

R

Ṁ

L∗∗ =
κṀd

2Rlc
, (3.14)

from this equation and the continuity one:

Ṁ = 2ρvdl, (3.15)

we can express the density in terms of ṁ and the speed v, from which

h =
1

ṁ

H

R

v

c
τd. (3.16)

Since at the column boundary (τ ∼ 1) H ∼ ṁR, one has:

h ∼ d ≪ H. (3.17)

The radiative energy density decreases sharply toward the edges of the col-
umn, so the peripheral height is negligible, and this proves that the shock height
is not constant along the base of the column. Essentially, what happens is that
particle infalling along the column central plane will be decelerated by the shock
at height H, settling then gradually, and radiating their energy by the sides. Is
then this radiation that decelerates particles coming in along the column’s edge.
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3.4 More recent developments

From the models of Basko & Sunyaev (1976), and Lyubarskii & Syunyaev (1988),
it can be seen that the configuration of the emitting region highly depends on
the mass accretion rate Ṁ . When the luminosity is low, the X-ray emission is
produced by the hot spots at the stellar surface, and as the luminosity exceeds
the critical value (which is ∼ 1037erg/s), a radiative shock starts to rise above
the star surface, leading to the formation of an accretion column, and providing
the possibility to exceed the Eddington luminosity.

Mushtukov et al. (2015) [Mushtukov et al.(2015)] reexamined the problem
by taking into account the possible consequences of the presence of a strong mag-
netic field. It has been considered for the first time the exact Compton scattering
cross-section in strong magnetic fields. They computed the structure of the ac-
cretion column, and an upper limit for the neutron star luminosity, which turns
out to be close to 1040erg/s. That value coincides with the location of a cut-off
in the luminosity function of high mass X-ray binaries [Mineo et al.(2012)], in-
dicating that a large fraction of those sources are probably accreting magnetized
neutron stars. They also found that high mass accretion rates require a very
high magnetic field strengths.

3.4.1 Multipolar magnetic field

Mushtukov et al. (2015) model does not take into account problems with the
propeller effect in using pure dipole strong magnetic fields. In fact, for sources
with a small spin period, such fields would place them in the propeller regime,
halting the accretion of material onto the magnetic poles of the star, because
of the transfer of angular momentum at the magnetospheric radius (as seen in
chapter 1).

To overcome this problem it was proposed [Israel et al.(2017)] that the topol-
ogy of the magnetic field should be changed from a pure dipole to a multipolar
configuration, in which, a part from the dipole component, were taken into
account also higher order multipole moments of the magnetic field. The prac-
ticality of such hypothesis was in the fact that higher order multipole moments
decay with the radial distance from the NS more rapidly than the dipole compo-
nent (which scales as ∼ 1/r3). As a consequence of this, the very high strength
of the magnetic field is just local, on the stellar surface, because moving towards
the magnetospheric radius it is only given by the dipole component, since other
moments are zero.

In support of this hypothesis there are observational data from the magnetar
SGR 0418+5729 [Tiengo et al.(2013)], the isolated neutron stars RX J0720.4-
3125 and J1308.6+2127 ([Borghese et al.(2015)], [Borghese et al.(2017)]), and
from the millisecond pulsar PSR J0030+0451 [Bilous et al.(2019)].

Based on this requirement, the previous model [Mushtukov et al.(2015)] was
revised in the work of Brice et al. (2021) [Brice et al.(2021)], in which is used
a multipolar magnetic field, more precisely they used the octupole moment. In
this way the problem due to the propeller effect is avoided, and the strength of
the magnetic field on the surface is high enough to allow for a sufficient opacity
reduction, which in turn leads to the release of a substantial amount of energy.
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3.4.2 Accretion column

We start considering the model of Basko & Sunyaev (1976)[Basko & Sunyaev(1976)],
in which free plasma particles are efficiently decelerated by a radiative shock
above the NS surface, and below it particles slowly sinks towards the surface,
releasing their gravitational potential energy in the form of X-ray radiation.
This region is identify as the sinking region.

Basic equations

(a) (b)

Figure 3.3: Accretion column structure. Panel (a) shows the base of the column,
i.e. an annular arc with thickness d0 and length l0, the height of the radiation-
dominated shock is not constant, but varies across the base, and the maximum
height achieved by the column (i.e. the settling flow) is in the center (x = 0)
[Mushtukov et al.(2015)]. Panel (b) illustrates a vertical cross section of the
column [Brice et al.(2021)].

In order to describe the structure and geometry of the accretion column, we
adopt an orthonormal coordinate system (x,h), where h is along the magnetic
field lines, which have been approximated as straight lines (since near the mag-
netic poles the curvature is negligible), while x is orthogonal to h. The center
of the accretion column is defined at x = 0, while h = 0 corresponds to the
neutron star surface.

The column (or radiative shock) maximum height is indicated by H, its
footprint is an annulus with arc length l0 and width d0 (see figure 3.3). More
generally speaking Hx is the height of the shock corresponding to the width x
on the base, and dh is the width of the sinking region corresponding to a certain
h above the surface; the area of the column base is given by SD = l0d0.

In the following we will introduce a number of simplifying assumptions which
are required to make the problem tractable. Let us consider that inside the
sinking region there is a steady state flow, with velocity directed along the
magnetic field lines. We assume further that the radiation pressure, Prad, dom-
inates over the gas pressure, Pgas, and that, according to Mushtukov et al.
(2015)[Mushtukov et al.(2015)], the density and velocity profiles are indepen-
dent on x, coinciding with the center column profiles.
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It is, finally, assumed that the energy flux is dominated by the radiative one,
which is the sum of a component directed vertically along the field lines, F∥,
and another one perpendicular to them, F⊥.

According to such assumptions one can introduce the equations of continuity,
momentum and energy as follows:

ρv =
Ṁ

2SD
, (3.18)

v
∂v

∂h
+

1

ρ

∂Prad

∂h
+

GM

(R+ h)2
= 0, (3.19)

∂F∥

∂h
+

∂F⊥

∂x
= 0, (3.20)

where ρ is the plasma density, v is the velocity of plasma particles, Ṁ is the mass
accretion rate, M and R are the mass and the radius of the NS, respectively.
The parallel and orthogonal component of the flux are expressed as

F∥ = − c

κ∥ρ

∂Prad

∂h
+ Pradv + uv + ρv

(
v2

2
− GM

R+ h

)
, (3.21)

F⊥ = − c

κ⊥ρ

∂Prad

∂x
, (3.22)

where u is the radiation energy density, and κ∥ and κ⊥ are the angle and energy
averaged Rosseland mean opacities, the first parallel to the magnetic field lines
and the second orthogonal to them. Since in the sinking region (under the
shock) the flow is decelerated up to a velocity which is much lower than the
free-fall one,

∂

∂h

(
v2

2

)
≪ − GM

(R+ h)2
, (3.23)

in the vertical direction the hydrostatic equilibrium can be assumed, and equa-
tion (3.19) simply becomes:

∂Prad

∂h
= −ρ

GM

(R+ h)2
. (3.24)

Considering that the energy flux is dominated by the radiative one, equations
(3.21) and (3.22) can be written as

∂Prad

∂h
= −ρκ∥

F∥

c
(3.25)

∂Prad

∂x
= −ρκ⊥

F⊥

c
. (3.26)

These last equations, upon integration, give the radiation pressure distribution
within the sinking region, and hence its total structure. Recalling equation
(3.24), we obtain:

F∥(x, h) =
c

κ∥

GM

(R+ h)2
, (3.27)
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which is the local Eddington flux, FEdd(x, h). The perpendicular flux, in-
stead, can be obtained integrating the equation (3.20) along x, assuming that
∂F∥/∂h ≈ constant in x. In this way we obtain:

F⊥ = F⊥,esc(h)
2x

dh
, (3.28)

where F⊥,esc(h) is the perpendicular flux, corresponding to the height h, escap-
ing from the sinking region. To obtain the previous expression we have taken
into account the boundary conditions:

F⊥(x = 0, h) = 0, F⊥(x = dh/2, h) = F⊥,esc(x, h). (3.29)

Now, we can integrate (3.25) and (3.26), along h the first, and along x the
second:

Prad,∥(x, h) =

∫ Hx

h

ρ
GM

(R+ y)2
dy +

2

3

FEdd(Hx)

c
, (3.30)

Prad,⊥(x, h) =
F⊥,esc(x,h)

c

[
2

dh

∫ dh/2

x

ρκ⊥zdz +
2

3

]
, (3.31)

where Prad,∥ and Prad,⊥ are the radiation pressure obtained from the previous
integration, in which we used the following boundary conditions:

Prad,∥(x, h = Hx) =
2

3

F∥(x,Hx)

c
=

2

3

FEdd(Hx)

c
, (3.32)

Prad,⊥(x = dh/2, h) =
2

3

F⊥,esc(h)

c
. (3.33)

Density profile

Looking at the equations (3.30) and (3.31), it is clear that both depend on the
density ρ. To obtain the density profile we can use the continuity equation
(3.18), but only if the velocity profile is known. According to Mushtukov et al.
(2015)[Mushtukov et al.(2015)], the velocity profile can be approximated as a
power-law v ∝ hξ, taking ξ = 1.

As mentioned above, it is assumed that the velocity profile does not change
along x, so v(x, h) = v(h), in addition, the plasma particles are greatly decel-
erated so that their velocity goes from the free-fall value (vff ) above the shock
(at height H) to a value ∼ vff/7 below it (loosing everything except ∼ 1/50 of
their kinetic energy). Another additional condition is that the velocity vanishes
at the surface of the neutron star. Thus, at an height h above the star surface,
the velocity can be expressed as

v(h) =
vff
7

(
h

H

)ξ

(3.34)

where vff =
√
2GM/(R+H) above the shock. Now, we can derive the density

profile, combining the continuity equation (3.18) and the velocity profile (3.34):

ρ(h) =
Lacc

2SD

(
GM

R

)−3/2(
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)ξ (
h

R

)−ξ

, (3.35)
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where Lacc was introduced before in equation (1.31). From eq. (3.35) we see
that when h = 0 the density diverges, and the previous assumptions become
unsuitable close to the stellar surface. Furthermore, the gas pressure, at some
point, will start to dominate over the radiation one. To avoid this, the numerical
calculations are truncated just above the surface, where Prad ≈ Pgas.

Geometrical parameters

Equations (3.30) and (3.31) present as extremes of integration Hx and dh, while
the expression for the density profile depends on SD (SD = l0d0). All these pa-
rameters depend on the accretion column base geometry, that in turn depends
on the details of the disk-magnetosphere interaction. One of the simplest models
that describes such interaction is that of Ghosh & Lamb (1978)[Ghosh & Lamb(1978)],
in which the disk is not definitely truncated at the magnetospheric radius, but
matter can penetrate up to a certain distance, and the width of that boundary
region is much smaller than the magnetospheric radius.

The crucial parameters entering in this disk-magnetosphere interaction model
are two: the magnetospheric radius Rm, and the penetration depth Pm. The
first is given by

Rm ≈ 7× 107ΛM1/7R
10/7
6 B

4/7
d,12L

−2/7
39 cm, (3.36)

where Λ is a dimensionless, which depends on the accretion mode, and its canon-
ical value in this model is: Λ = 0.5. Then, R6 is the radius of the NS expressed
in units of 106cm, L39 the accretion luminosity expressed in units of 1039erg s−1,
and Bd,12 the strength of the dipole component of the magnetic field on the stel-
lar surface, expressed in units of 1012G. We take into account just the dipole
component, since at the distance at where the interaction between the disk and
the magnetosphere occurs, the effects of higher order multipole components are
negligible (it is Rm = 100R).

The penetration depth, Pm, should be of the order of the disk height for a
geometrically thin disk [Ghosh & Lamb(1978)]. However in some cases the thin
disk approximation could not be valid and a geometrically thick disk seems to
work better. In this case, however, taking Pm ≈ the disc height implies that
the former can be even greater than Rm, which is not physically possible. To
avoid this issue, we introduce a dimensionless parameter, ζ ≡ Pm/Rm, which
must be lower than a maximum value ζmax. In the actual calculations we took
ζmax = 0.2.

Once the penetration depth is set, the accretion flow is constrained by the
shape of the magnetic field lines, which determines the accretion base width
d0, and length l0. The equation of the magnetic field lines cannot be expressed
analytically for a general topology of the field, so it is computed numerically
(see figure 3.4 for the result). The footprint of the magnetic field lines (passing
through the disk-magnetosphere boundary region), on the NS surface,is given
by an annulus with width d0, centered on the magnetic axis, and length l0.

The sinking region geometry, also, depends on the shape on the magnetic
field lines in the region 0 ≤ h ≤ R. It is important, especially when we want to
compute the sinking region width dh, and the accretion column area above the
NS surface SD.

To compute SD, we start from the expressions of l and d, which are the length
and the width of the accretion column above the surface at a given height h. In
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Figure 3.4: A 2D plot of the magnetic field lines, computed numerically. The
blue lines cross the disk at the magnetospheric radius, while purple ones in the
inner radius of the boundary region. The red segments show the part of the
disk that penetrates the magnetosphere [Brice et al.(2021)].

case of dipole magnetic field:

d = d0

(
1 +

h

R

)3/2

, l = l0

(
1 +

h

R

)3/2

. (3.37)

In the case of a multipolar magnetic field a numerical computation is needed,
but we can still rely on this parametric formulas:

d = d0

(
1 +

h

R

)α

, l = l0

(
1 +

h

R

)β

, (3.38)

where α and β are two parameters which depends on the topology of the mag-
netic field, and differs considerably with respect to those in (3.37). At this point
the area is given by

SD = l0d0

(
1 +

h

R

)α+β

. (3.39)

Opacity

Another important dependence in the equations (3.30) and (3.31), is that on the
Rosseland mean opacities: κ∥, and κ⊥. These are angle and frequency averaged
opacities, the first parallel to the direction of the magnetic field lines, and the
second perpendicular to it. Since we are dealing with a strongly magnetized
plasma, we have to take into account that radiation is polarized in two different
normal modes: the extraordinary (X) mode, and the ordinary (O) one, which
present different polarization and opacity properties [Harding & Lai(2006)].

Let us consider a pure scattering medium, and compute the electron scat-
tering opacities in the limit of strong magnetic fields and in the Thomson ap-
proximation. First, we assume that the plasma in the sinking region is cold
(kBT ≪ mc2, where m is the mass and T the temperature of the electrons).
Second, we refer to a fully ionized solar mix plasma, with a mean molecular
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weight µe = 1.17, using the expressions for the frequency and angle depen-
dent electron scattering opacities of the two modes ([Kaminker et al.(1982)],
[Zane et al.(2000)]).

The Rosseland mean opacities parallel and perpendicular are:

1

κ1
∥
=

∫∞
0

∂BE(T )
∂T dE

∫ 1

0
dµ3µ2 1

ki(E,µ)∫∞
0

∂BE(T )
∂T dE

, (3.40)

1

κ1
⊥

=

∫∞
0

∂BE(T )
∂T dE

∫ π

0
dϕ
∫ 1

0
dµ⊥

3
πµ

2
⊥

1
ki(E,µ)∫∞

0
∂BE(T )

∂T dE
. (3.41)

ki(E,µ) is the electron scattering opacity integrated all over the possible direc-
tions of outgoing photons (index i indicates the polarization mode, i = 1 for
the X-mode, i = 2 for the O-mode), BE(T ) is the Planck function, E is the
energy of the photon, µ is the cosine of the angle between the photon propa-
gation direction and the magnetic field lines, and µ⊥ is the cosine of the angle
between the photon propagation direction and the direction perpendicular to
the magnetic field lines.

For mixed polarization modes the effective opacity is

1

κ
=

f

κ1
+

1− f

κ2
, (3.42)

where f is the fraction of X-mode photons, and in the following we assume only
X-mode photons (f = 1).

It is important to note that both opacities (3.40) and (3.41) are dependent
on the plasma temperature. To obtain the latter, since the sinking region is
optically thick, we can first assume that the plasma is in thermal equilibrium
with the radiation field, and then using the Eddington approximation and the
blackbody approximation we can link the temperature with the radiation pres-
sure:

Prad ≈ aT 4

3
(3.43)

where a is the blackbody constant. So we can compute the Rosseland mean
opacities only if the radiation pressure is known.

These calculations, for the Rosseland mean opacity, hold until the approxi-
mation of cold plasma works (i.e. the thermal motions of electrons is negligible
with respect to the phase velocity of the wave).

Final estimates

Taking a constant density profile ρ(h) = ρ, and a constant parallel and per-
pendicular opacities, we can obtain an analytical expression of the radiation
pressure:

Prad,∥(x, h) = ρ
GM

R

[
Hx/R− h/R

(1 + h/R)(1 +Hx/R)
+

2

3

1

ρRκ∥

1

(1 +Hx/R)2

]
(3.44)

Prad,⊥(x, h) =
F⊥,esc(h)

c

[
ρκ⊥dh/4(1− (2x/dh)

2) + 2/3
]
, (3.45)
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where only Hx and dh are to be determined. The quantity ρκ∥R is approxi-
mately the vertical optical depth in the sinking region, instead ρκ⊥dh/2 is the
horizontal one at a certain height h. From equations (3.44) and (3.45), we com-
pute their values at x = 0 and h = 0, and equating them the expression for the
normalized escaping flux can be derived:

F⊥,esc(h = 0)

c
= ρ

GM

R

 H/R
(1+H/R) +

2
3

1
ρRκ∥

1
(1+H/R)2

ρκ⊥dh/4 + 2/3

 (3.46)

For the shape, once we have obtained the radiation pressure (parallel and
perpendicular), we use Prad,∥(x, h = 0) = Prad,⊥(x, h = 0), assuming that
Hx/R ≪ 1, to obtain

Hx

R
∝ −x2. (3.47)

In this simplified case, the shape of the shock results to be nearly quadratic
close to the NS surface, becoming less quadratic close to the top.

Integrating the escaping flux we obtain, finally, the luminosity of the column,
which is

L = 4l0

∫ H

0

(
1 +

h

R

)β

F⊥,esc(h)dh, (3.48)

because of the presence of dh in F⊥,esc(h), which depends on h, the integral
is not solvable analytically, but it is possible to derive a lower limit, imposing
dh ≈ d, i.e. approximating the accretion column horizontal optical depth with
its maximum value. Recalling that the column is optically thick (ρκ∥R ≫ 1 and
ρκ⊥dh ≫ 1) the lower limit turns out to be:

L ≥ 4

π

(
l0
d0

)(
κT

κ⊥

)
f

(
H

R

)
LEdd, (3.49)

where the function f(H/R) is

f

(
H

R

)
=

1

1 +H/R
[(1 +H/R) log(1 +H/R)−H/R]. (3.50)

The function f grows logarithmically for large H/R ratios, and quadratically
if H ≪ R; this means that the luminosity of the column increases slowly for
higher H [Mushtukov et al.(2015)].

It is important to stress that equation (3.49) resembles that of Basko &
Sunyaev (1976) (3.4), in which we found a dependence on the geometrical pa-
rameters l0 and d0, and on the ratio between the Thomson scattering cross-
section and the real scattering cross-section in the column. In this case (3.49),
instead of the cross-sections, the dependence is on the ratio between the Thom-
son scattering opacity and the orthogonal opacity κT /κ⊥, and because of the
strong magnetic field, the opacity inside the accretion column is significantly
reduced, so the ratio increases, allowing the luminosity to exceed by many or-
ders of magnitude the Eddington value. Exceeding the value found by Basko &
Sunyaev.

As stated before, the radiation pressure equations (3.30) and (3.31) depends
on the opacities κ∥ and κ⊥, that in turn depend on the temperature, which
depends (see equation (3.43)) on the radiation pressure. Hence, for the non-
linearity of the radiation pressure equations, the only way to compute Prad is
through an iterative method.
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3.4.3 Results: effects of the magnetic field strength and
topology

The aim of the model is to be able to explain the higher luminosities of PULXs.
After having derived a lower limit for the luminosity, let us now focus on the
dependencies of this on the column geometry (length and width), the opacity,
and the column height. In particular, let us now explore how variations in the
magnetic filed strength and topology can affect such quantities.

Variations in the column base variables

As mentioned above, the magnetic field used in this model is not a pure dipole
field but it presents also a multiple moment, the octupole one. In order to sep-
arate the changes in opacity from those in the column geometry, the octupolar
component strength has been made to vary, keeping fixed the value of l0 and
d0 to those computed for a pure dipole field, and neglecting the curvature of
magnetic field lines.

(a) (b)

Figure 3.5: Vertical cross section variation. In the two panels we can see how
varies the shape of the vertical cross section of the sinking region (it is showed
only a half for symmetry). In the left panel it is used a L39 = 1, and column base
variables of: l0 = 7.6 × 105cm, and d0 = 1.4 × 104cm. Values that correspond
to a dipole field strength of 3× 1012G. In the right panel, L39 = 10.0, and the
values for the column base variables are: d0 = 4.5×104cm, and l0 = 4.7×105cm.
Corresponding to a dipole field with strength 5× 1013G [Brice et al.(2021)].

Numerical results for models with fixed values for l0 and d0 are shown in
the figure 3.5 in black, for a particular accretion luminosity and a power-law
index ξ = 1 for the velocity profile. Numerical results for models in which l0
and d0 varies (in which also the curvature of the magnetic field lines have been
taken into account), as a consequence of multipolar magnetic fileds, are instead
showed in red. As we can see, the shape seems to coincide in the panel (a),
for a dipolar field Bdip = 3 × 1012G, for both red and black results, while in
the panel (b), Bdip = 5 × 1013G, we can see more discrepancy. In particular,
red results predict a lower column height than black ones. In general, in case
of a multipolar magnetic field, the length and width of the column base can
be reduced by several factors, this will affects the plasma density, the internal
temperature, the escaping flux and the maximum shock height.
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Comparing the two models (with fixed base geometry in black, and variable
base geometry in red), it is not easy to understand the cause for the variations
between black and red results. This because the change in the base geometry
(it decreases with increasing the magnetic field strength) causes the squeezing
of the accretion column area, while the curvature of the field lines results in the
opposite effect. Despite these effects, the accretion column properties remain
quite the same.

Still in figure 3.5, the shape of the shock is clearly not quadratic in x, instead,
the accretion column is narrowner than the shape predicted, and the height of
the shock drops to zero at a width x̃ ≤ d0/2, where x̃ is the width at which the
radiation pressure, at the base of the column, equates the the Eddington flux
one. Thus, for x > x̃, the radiation pressure at the base is smaller than the
Eddington one, so no shock can be sustained.

Maximum height

In the figure 3.5 it is shown how the maximum column height H varies. The
higher is the strength of the magnetic field, the lower is the maximum height
of the shock. This is a consequence of the strong reduction of the opacity for
X-mode photons, because in this way the escaping flux increases, so radiation
easily escapes from the sides of the column, making the radiation pressure no
longer be able to sustain an high column.

Internal and effective temperature

Since the shock height H decreases if the magnetic field strength increases,
particles are dramatically decelerated at a point near to the NS surface. Mass
conservation implies that the density in the sinking region is lower, and in the
same way as the internal radiation temperature. So the internal temperature,
like the opacity, shows an anti-correlation with the strength of the magnetic
field (see figure 3.6).

(a) (b)

Figure 3.6: Internal radiation temperature variations. Panels (a) and (b)
correspond to the models shown in figue 3.5. The trend shows how the in-
ternal radiation temperature decreases increasing the magnetic field strength.
[Brice et al.(2021)].

For what concerns the effective temperature, however, shows a completely
opposite behavior with respect to the one of the internal temperature. The
effective temperature is obtained from the escaping flux using F⊥,esc = σT 4

eff .
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In figure 3.7 it can be seen that Teff increases increasing the height above the

(a) (b)

Figure 3.7: Panels (a) and (b) correspond to the models shown in figure 3.5.
The trend shows that the effective temperature increases with the increase of
the magnetic field strength [Brice et al.(2021)].

neutron star surface, dropping then to zero at the top of the column. This is
due to the fact that, at the bottom of the accretion column, both the density
ρ and the geometrical thickness dh are quite large, and translates into a large
horizontal optical depth, which prevents radiation from escaping in that direc-
tion. Moving towards the top of the column, the optical depth decreases, so the
escaping flux increases, and so does the effective temperature. In particular,
the peak in the effective temperature profile indicates the altitude at which the
outgoing flux is maximum. This, in addition, depends on the adopted density
profile: for a velocity index ξ = 1, the effective temperature peak is close to the
maximum column height, while for ξ < 1 the peak is at a lower height.

From the two plots, it is also clear that, the internal temperature (red lines
fig. 3.6), is higher for a given column height with respect to that for models
with a fixed base geometry. This is because, as said before, the same amount of
energy is produced in a smaller area of the column. Still for the reduction of the
column area, also the density in the sinking region increases, so for the radiation
is more difficult to escape, and this results into a lower effective temperature.

Reduction of opacities

The Rosseland mean opacity, κ⊥, is calculated in the central plane of the sink-
ing region (x = 0), depending on both the total magnetic field strength, and
temperature, in the column. Generally, a lower temperature, and a higher mag-
netic filed strength, reduce the perpendicular Rosseland mean opacity. In the
figure 3.8 the trend of the normalized scattering opacity is shown. Thus, the
ratio κT /κ⊥ decreases slowly towards the top of the column, and when the top
is reached, the ratio drops sharply to zero.

Results with different velocity indexes

Another important aspects to examine is the variation of the shock shape, vary-
ing the velocity index ξ. In the figure 3.9 the results obtained in different models
with different ξ values are reported [Brice et al.(2021)]. It can be seen that in-
creasing the velocity index ξ, the shape of the sinking region becomes narrower
and lower, because particles are efficiently decelerated in the lower layers of the

53



(a) (b)

Figure 3.8: Opacity trend. Panels (a) and (b) correspond to the models shown
in figue 3.5. The trend shows that increasing the magnetic field strength the
ratio κ⊥/κT decreases. Moreover the sattering opacity drops practically to zero
at the top of the accretion column [Brice et al.(2021)].

Figure 3.9: Variation of the column shape varying the velocity index. Half
vertical cross section of the sinking region for models with L39 = 1.0, Bdip =
3× 1012G, and Boct = 0. The black solid line correspond to a power-law index
ξ = 1, the blue dotted line to a ξ = 0.2, and the orange dot-dashed line to a
ξ = 2 [Brice et al.(2021)].

column, concentrating in that region the radiation energy released, decreasing
the column height.

3.4.4 Results for mixed polarization

In the model it has been assumed that the radiation is made by X-mode photons,
imposing a polarization fraction f = 1. Nevertheless, a more detailed and
realistic description of the radiation field requires also the presence of O-mode
photons, and scattering that can convert X into O mode photons and vice
versa. In order to understand if the emission of a super-Eddington luminosity
is possible; also considering O-mode photons, solutions with different f values
have been built up [Brice et al.(2021)].
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Figure 3.10: Vertical cross-section for various f values. In the figure is illustrated
half of the column vertical cross-section, for a magnetic field Bdip = 3× 1012G,
Boct = 3 × 1013G, and L = 1039erg s−1. The colored curves correspond to
different values of f [Brice et al.(2021)].

Since a strong magnetic field affects the scattering cross-section of the X-
mode photons, reducing the opacity, when we include in the radiation field also
O-mode ones, the total opacity increases, since for the latter the scattering
cross-section is not affected. Looking at the results predicted by the model,
as expected, including O-mode photons, in an accretion column with a certain
magnetic field strength and accretion luminosity, the total opacity increases,
but the value of the scattering cross-section remains well below the Thomson
one. This increase in the opacity results then into an increase of the column
height, because the amount of radiation that can escape from the column side
is decreased, so the radiation pressure is able to sustain an higher accretion
column. In particular, to understand better the effects in changing the X-mode
polarization fraction, three values were used: f = 1, 0.7, 0.3 (see figure 3.10).
Another consequence of this, is the increase of the internal temperature and the
decrease of the effective one (see figure 3.11), for the reasons already mentioned.

3.4.5 Results: disk-magnetosphere interaction

In the previous section, we stressed that the base geometrical variables (l0 and
d0) depends on the disk-interaction model, which in turn is based on two princi-
pal parameters: the magnetospheric radius Rm, and the penetration depth Pm.
But, as it can be seen from equation (3.36), the estimate of Rm requires the
knowledge of the input parameter Λ, while for Pm it is required a prescription
for ζ. Both the exact values of Λ and ζ are poorly known. Thus, analogously
for the case of the X-mode polarization fraction, we can investigate the solidity
of the model changing the values of this two parameters, comparing at the end
the results.

55



Figure 3.11: The accretion column properties for the same set of models as in
figure 3.10. From top to bottom, the plots show the central internal temperature
profile, the effective temperature profile, and the perpendicular mean opacity
[Brice et al.(2021)].
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As regards the parameter Λ, we used the canonical value of 0.5
[Ghosh & Lamb(1978)], but its exact value depends on how much is extended
the region on which the NS magnetic field crosses the accretion disk; it was
suggested that Λ should vary between 0.3 − 1 [Dall’Osso et al.(2016)], and re-
peating calculations for l0, varying Λ in that range, it turns out that there is
no significant variation of the column base length, thus the global properties of
the accretion column are not as sensitive to variations in Λ.

The parameter ζ, which was defined as the ratio Pm/Rm, is related to the
variation of the column base width, and we assumed that the penetration depth
was proportional to the disk height at Rm [Mushtukov et al.(2015)]. According
to this, ζ can be given by

ζ =
κT

c

3

8π

Ṁ

Rm
≈ 0.2L

9/7
39 B

−4/7
d,12 . (3.51)

But from this equation it becomes clear that the value of ζ is close or in
excess of 1, having to deal with higher accretion luminosity and low dipole field
(L39 ∼ 10erg s−1, Bd,12 ∼ 1). From those values, we end up with the disk that
penetrates through the entire magnetosphere, and this is unphysical. For this
reason it was introduced by hand a maximum value for ζ. Another way to find
the correct value for ζ is to use another type of prescription for Pm, based on
a given set of physical principles. But this would then require an extension
of the disk-magnetosphere interaction considering a geometrically thick disk.
Alternatively, as already done for Λ, we can vary the value of ζ and see how d0
is sensitive to its changes, without specify any particular disk-magnetosphere
configuration. Varying ζ in the rage (0 − 1), fixing the accretion luminosity
L = 1039erg s−1, the dipole magnetic component Bdip = 3 × 1012G, and using
different magnetic field strengths for the octupole component, it can be seen
that d0, differently from l0, changes by one or more orders of magnitude (see
figure 3.12). Since F⊥,esc ∝ d−1

0 , this time the luminosity is sensitive to variation
in ζ.

3.4.6 Results for the maximum luminosity

Besides the results already showed, the main one is the value of the maximum
luminosity (Lmax). As stated at the beginning, we want to understand which
is achievable maximum luminosity that a highly magnetized neutron star can
reach, in order to compare it with the observed ones.

To compute the maximum luminosity, we have first to compute the maximum
Lacc for each given set of model parameters, fixing the maximum shock height
at H = R. We chose R as maximum height, because for higher values the
luminosity grows slowly, and the curvature of the magnetic field lines has to
be considered, since, affecting equation (3.19) for the vertical pressure balance,
would make our approximations invalid. After having fixed ξ = 1, f = 1, ζ = 0.2,
the maximum luminosity is calculated for different magnetic field configurations:
pure dipole field, a field with the octupolar component Boct = 3Bdip, and then
with the octupole Boct = 10Bdip.

Results (see figure 3.13) show that, the value for the maximum luminosity
is mostly fixed by the accretion column geometry when B < 1013G. Since in
this case the reduction of the opacities does not play an important role, and in
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Figure 3.12: Changes of the column base width d0, in units of 104cm, for a given
ζ. All the profiles correspond to a L39 = 1.0, M = 1.4M⊙, and R = 106cm
[Brice et al.(2021)].

Figure 3.13: Variations in the maximum luminosity profile as function of the
surface dipole field strength. The red shaded region are those in which the lu-
minosity exceeds the neutron star Eddington one at the magnetospheric bound-
ary (thus when the accretion flow is super-Eddington). The different markers
(circles, triangles, and diamond) show the maximum luminosity computed for
a pure dipole, an octupole Boct = 3Bdip, and a Boct = 10Bdip, respectively
[Brice et al.(2021)].
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Figure 3.14: Same plot of fig. 3.13, using models with different f . The markers
(circles, triangles, and diamonds) are computed using f = 0.7, and assuming a
pure dipole, an octupole Boct = 3Bdip, and a Boct = 10Bdip , respectively. The
lines (solid, dashed, and dot-dashed) shows the same configurations but with
f = 1 [Brice et al.(2021)].

addition the photons energies are above the cyclotron energy, E > Ecycl, due
to the typical internal temperature of the accretion column. Instead, in case of
high magnetic field strengths, B > 1013G, the scattering opacity of the X-mode
photons is dramatically reduced with respect to the Thomson one κT , and this
translates into a constraint on the maximum luminosity.

From figure 3.13 it can be seen that for a pure dipole field, the maximum lu-
minosity profile shows a decrease up to a magnetic field strength of 1013G. This
can be explained taking into account that, as stated above, the accretion col-
umn becomes thinner as the magnetic field strengths increase, thus the internal
temperature increases, and also the overall scattering opacity, so the radiation
escapes from the column with more difficoulty. The variation of Lmax tends to
rapidly increase in case of a multipolar magnetic field, and the slope of such
trend matches that obtained for a simple dipole field only when the magnetic
strength is the same.

The previous profiles have been obtained considering only X-mode photons,
but for a more realistic treatment we should take into account also O-mode ones.
In figure 3.14 it can be seen the comparison between the profiles of the previous
case, and those obtained with the same magnetic field configurations but taking
a polarization fraction f = 0.7. Including also O-mode photons, the maximum
shock height is increased, and for magnetic fields up to ∼ 1013G the maximum
luminosity is lower than the case with f = 1. This trend is reversed for lower
values of the magnetic field strength, when a fraction of O-mode photons is
considered, since the average Rosseland mean opacity is decreased. This occurs
when a large portion of the photons have energy of the order or higher than the
electron cyclotron energy Ecycl ∼ 11.6B12 keV.
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In addition, looking to the plots in the figure 3.14, the trends obtained with
the model with f = 0.7; have a shallower slope with respect to those obtained
with f = 1, but the deviation is not significant. This is a consequence of the fact
that most of the photons which supports the column are X-mode photons, so
the effective opacity, computed in the Rosseland approximation, is dominated
by X-mode one. Hence, at the end the difference in the overall opacity is small.

3.4.7 Comparison with previous model results

Taking the maximum luminosity from the model of Mushtukov et al. (2015)
[Mushtukov et al.(2015)], we can compare it with that obtaind by Brice et al.
(2021) [Brice et al.(2021)], in which are used a different method to calculate the
scattering opacity, and a different model for the disk-magnetosphere interaction.
In figure 3.15, the curves that represents the maximum luminosity obtained
using this two models are shown. The difference in the maximum luminosities
is only a few factors, which is an indication of proper agreement between the
two codes.

Figure 3.15: Same plot as in figure 3.13, but for models adopting a different
disk model. The orange circles show the maximum luminosity for a pure dipole
magnetic field strength on the surface, and with ζmax ∼ 1. The black line shows
the maximum luminosity according to the relation of Mushtukov et al. (2015)
[Brice et al.(2021)].
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CHAPTER

FOUR
NUMERICAL CODES

In this chapter we describe in some detail the two numerical codes which we
used to derive the results presented in the next chapter. These are based on the
accretion process around a NS described in the previous model. The first is for
the visibility of the source, made by the torus (the region of the source limited
by the magnetic field lines, of a dipolar field, that reach a certain maximum
distance, Rmax, from the star) and the disk, basically, determines what is the
part in view of the object, for a certain configuration (thus for certain values
of the parameters: Rmax, Rdisk, angles χ and ξ), giving the area of the regions
which emit towards the observer. The second computes the flux as a function of
the phase and of the energy, and it is implemented with the script of the visibility
code, in order to consider only the part in view. the ray-tracer outputs are then
exploited to produce the light curve and the spectrum of the source.

4.1 Visibility code

The first code establishes the region in view of the source (torus and disk), once
fixed the inclinations of the magnetic axis, and the LOS with respect to the spin
axis, and of the disc with respect to the direction of the magnetic one. The star
will be considered totally hidden by the matter which is accreting along the field
lines, towards the magnetic poles. To compute the part in view, the code takes
into account the self-shadowing of the torus, given the particular non spherical
shape of the torus itself, the shadow of the torus on the disk, and the shadow
of the disk on the torus.

Let us now see how the code works. The code requires a number of input
parameters:

1. Rmax, the maximum distance from the star that the field lines which delin-
eate the torus area can reach. Basically the radius of the magnetosphere;

2. χ, the angle between the rotational axis of the neutron star and the ob-
server’s line-of-sight (LOS);

3. ξ, the angle between the rotational axis and the star magnetic axis;
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4. γ, the rotational phase angle.

The code calculates the part in view at each value of the phase rotation angle
γ (counted from the projection of the LOS on the plane perpendicular to the
spin axis). It is possible to produce several snapshots of the source at different
stages (between 0 and 2π) or limit the output to only one phase value at a time.

4.1.1 Visibility of the torus

The first step is to determine the part in view of the torus. The code starts to
compute the cartesian coordinates of the LOS unit vector, l, in the reference
frame of the star magnetic axis (bdip), in which the vertical axis coincides with
the magnetic one. Still in the same reference frame, the code computes the
cartesian coordinates of each point of the field lines, and the components of the
unit normal vector n to the torus surface at each point.

The first condition to be fulfilled, in order to consider a point as in view, is:

l · n ≥ 0. (4.1)

Given the complicated shape of the torus, the condition (4.1), alone, does not
allow to distinguish if a given point on its surface is actually in view or covered
by a region of the torus itself, interposed with respect to the observer (see figure
4.1).

Figure 4.1: Part in view of the torus with Rmax = 70RNS , ξ = 1◦, and χ = 80◦.
The objects is seen in the LOS reference frame.

In order to exclude these points, and consider the self-shadow of the torus,
the code proceeds as follows:

1. for each point selected by the previous condition (4.1) (characterized by
the polar angles θ̄ and ϕ̄ in the bdip frame), the code computes the in-
tersections between the straight line parallel to the LOS, which passes
through the point itself, and the torus surface;

2. between these intersections, there is again the point through which passes
the straight line; with coordinates (θ̄, ϕ̄), this will not be taken into ac-
count for the next step;
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3. for all the other intersections, defined by (θsol, ϕsol) in the bdip frame, the
scalar product l · n is again evaluated;

4. then the code removes the intersections with l · n < 0, already excluded
by the condition (4.1);

5. for the remaining roots, the code computes the z cartesian coordinate in
the LOS reference frame; then this z is compared with z̄, still computed
in the LOS frame, of the point with (θ̄, ϕ̄);

6. if z̄ is greater than all the z of the other intersections, then the point (θ̄,
ϕ̄) is not hidden by any other points, and it is in view;

7. if, instead, there is at least one of the intersection points which has z > z̄,
then the point (θ̄, ϕ̄) will be marked as not in view.

At the beginning we have assumed that the star surface is totally covered by
the material accreting along the field lines, so we can neglect the star shadow
on the torus. In first approximation, this assumption works when we are deal-
ing with strong magnetic fields, which present very large magnetospheres (thus
large values of Rmax) that covers the star surface. Since in the model already
described (chapter 3), the magnetic field is very strong, this assumption is rea-
sonable. In the case of weak magnetic fields, instead, one should take into
account also that the torus can be covered by the star shadow. As I said, this
is what it can be assumed in first approximation, since, even with strong mag-
netic fields, there would be visible points of the stellar surface, for example if
we look exactly along the direction of the magnetic axis. But the emission from
these points could be difficult to treat, principally because it is unlikely that the
emission that one would see from the magnetic poles is that from the surface
of the star, there will be effects of acceleration at the poles, so, at the end, one
would not know how to treat them anyway.

It is important to mention that, in the method already described, for the
sake of simplicity the effects due to the General Relativity (GR) are neglected.
Indeed, it is used a straight line to find the intersections. This method holds as
long as we do not consider torus points close to the magnetic axis, where the
gravitational field of the star is more intense, and such effects are stronger. In
that case, we expect there could be a minimum correction for GR effects. But
for the moment we are interested in the emission of points far from the star
surface. Maybe such GR corrections could be introduced in a future work.

4.1.2 Analytical expressions

As stated above, the code first compute the scalar product, for each point of the
torus, between the normal n to the torus surface, and the unit vector l, parallel
to the LOS.

Hence, one has to obtain the expression for the unit vector n. We do this
in the bdip reference frame since it is easier. The starting point is defining the
position vector f(θ, ϕ), which gives the position of the points on the surface of
interest, in this case the torus surface. In polar coordinates it can be written as

f(θ, ϕ) = r

sin θ cosϕ
sin θ sinϕ

cos θ

 , (4.2)
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where θ and ϕ are the magnetic colatitude and azimuth, computed in the bdip
reference frame, while r is given by the parametric equation of the magnetic
field lines (for a dipolar field, as we assumed):

r = Rmax sin θ
2, (4.3)

where Rmax was defined above. Since only the part of the field lines outside
the star is considered, because we can only receive the emission from the points
outside, we have to take into account that the magnetic colatitude θ has a lower
and an upper limit, thus it ranges in [θmin, θmax]. These two limiting values
are given by the condition:

Rmax sin
2 θ = RNS −→ θ = arcsin

(√
RNS

Rmax

)
, (4.4)

from this one obtain:

θmin = arcsin

(√
RNS

Rmax

)
, θmax = π − θmin. (4.5)

Once the equation (4.3) have been substituted into the (4.2), one can derive the
two partial derivatives of f(θ, ϕ): fθ and fϕ, with respect to the colatitude θ,
and the azimuth ϕ, respectively. n is then given by

n =
fθ × fϕ
|fθ × fϕ|

. (4.6)

In the case of interest we obtain

n =
1√

1 + 3 cos θ3

(1− 3 cos θ2) cosϕ
(1− 3 cos θ2) sinϕ

3 sin θ cos θ

 . (4.7)

To impose the condition (4.1), it is needed also the unit vector l, the components
of which should be computed into the bdip reference frame, as the components
of n, in order to calculate their scalar product. Its expression is

l =

sin η cos δ
sin η sin δ
cos η

 (4.8)

where we can indicate the three components as (l,m, n), η is the colatitude of
the LOS with respect to bdip, its cosine is given by the expression

cos η = cosχ cos ξ + sinχ sin ξ cos γ, (4.9)

in which γ is the phase angle. The angle δ is the azimuth of the LOS with
respect to bdip, and its cosine can be calculated as the scalar product between
the projection l⊥ of l perpendicular to bdip, and the unit vector along the x-axis
in the bdip frame (which is called p, see figure 4.2). To compute the components
of l are also needed sin η and sin δ, since η is a colatitude ranging in [0,π], once

we have the cos η the sin η is simply
√
1− cos2 η, since it is always positive
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Figure 4.2: The line-of-sight in the bdip reference frame.

between 0 and π. Instead, δ is an azimuth, which ranges in [0,2π], so knowing
the cos δ is not enough. One possibility is to evaluate the sin δ taking the scalar
product between l∥ and p, exploiting the complementary angle to delta. Thus,
to compute cos δ, one has to compute the scalar product l⊥ ·p. Since this scalar
product is rotation-invariant (so it can be computed in any reference frame), and
since we can easily obtain the expression of the unit vectors in the LOS frame,
what one can do is to evaluate such product in the LOS reference frame, instead
of the bdip frame, expressing in it all the vectors. Hence, the components of the
bdip unit vector, in the LOS frame, are:

bdip =

sinχ cos ξ − cosχ sin ξ cos γ
sin ξ sin γ

cosχ cos ξ + sinχ sin ξ cos γ

 . (4.10)

For the unit vector along the x-axis of the bdip frame, p, in order to express
it in the reference frame of the LOS, the code follows the conventions used in
[Taverna et al.(2015)], in which the expression for the unit vector is

p =

− sinχ sin ξ − cosχ cos ξ cos γ
cos ξ sin γ

sinχ cos ξ cos γ − cosχ sin ξ

 . (4.11)

Now, one can compute the unit vector l⊥, to obtain cos δ (cos δ = l⊥ · p). To
determine the sign of δ, as said above, it is needed the scalar product between
p and l∥. Which can be obtained by

l∥ = bdip × l⊥. (4.12)

If the scalar product l∥ · p is positive, sin δ is negative, this because the scalar
product gives the cosine of the angle between l∥ and the positive direction of p,
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so the angle π/2 + δ. Thus if the scalar product is positive, then the sign of δ
is negative (and vice versa).

At this point, we have all the quantities, cos δ and sin δ, and cos η and sin η.
These can be substituted into (4.8), to obtain the unit vector l, and the scalar
product between l and n can be evaluated. This allows one for a first selection
of the torus points in view.

Deleting the part of the torus surface covered by the torus itself

We mentioned that it has to be considered the self-shadowing of the torus, since
closer to the magnetic poles of the star, the torus can cover part of its own
surface.

To delete the self-covered points of the torus, as stated above, one can make
use of a straight line parallel to the LOS, and passing, each time, through each
point “in view” selected by (4.1). What is needed is to find the intersections
between this line, and the torus. Then one has to evaluate for each intersection
the scalar product l · n, select the points for which the latter is positive, and
compare the z coordinates, in the LOS frame, of those points to select which of
them are really in view.

The simplest way to do this, is starting doing calculations in the bdip refer-
ence frame, using spherical coordinates. Let us start from a point of the torus
for which l · n ≥ 0. It is characterized by the angles (θ̄, ϕ̄), in the bdip frame,
and its corresponding cartesian coordinates are given by equation (4.2):x̄

ȳ
z̄

 = Rmax

sin θ̄3 cos ϕ̄
sin θ̄3 sin ϕ̄
sin θ̄2 cos θ

 , (4.13)

while the LOS unit vector, in the bdip frame, is still given by the equation (4.8).
To find the intersections between the torus and the straight line (parallel to
the LOS, and passing through this point) its equation is needed. In the three
dimensional space, the equation of of a line passing through (x̄, ȳ, z̄) and parallel
to (l,m, n), in the bdip frame is

x− x̄

l
=

y − ȳ

m
y − ȳ

m
=

z − z̄

n

, (4.14)

where (l,m, n) are the coordinates of the unit vector l in the bdip frame. This
form holds in the case l,m, n ̸= 0. However, the components of the LOS, in the
bdip frame, depend on the angle η and δ, which in turn depend on χ, ξ and γ.
Thus, any variation in these parameters can change the components of the LOS
unit vector. Hence a complete overview of all the possible cases isx = x̄

y − ȳ

m
=

z − z̄

n

(l = 0;m,n ̸= 0); (4.15)


x− x̄

l
=

z − z̄

n
y = ȳ

(m = 0; l, n ̸= 0); (4.16)
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
x− x̄

l
=

y − ȳ

m
z = z̄

(n = 0; l,m ̸= 0); (4.17)

{
x = x̄

y = ȳ
(l,m = 0;n ̸= 0); (4.18)

{
x = x̄

z = z̄
(l, n = 0;m ̸= 0); (4.19)

{
y = ȳ

z = z̄
(m,n = 0; l ̸= 0). (4.20)

The intersections between the line, given by the previous systems, and the torus
can be obtained by assuming that x, y, z coordinates are given by the equation of
the torus (4.2), with polar angle θsol and ϕsol, at variance with the coordinates
of the point (x̄, ȳ, z̄) where the polar angle are θ̄ and ϕ̄. The resulting solution
will be different depending on the values of the components of the LOS, and so
also the expression for the straight line.

Let us analyse the solution in the case: l,m, n ̸= 0. To solve the system
(4.14) let us write it using polar coordinates (we will indicate θsol and ϕsol just
with θ and ϕ, for the ease of notation):{

sin3 θ cosϕ−sin3 θ̄ cos ϕ̄
l = sin2 θ cos θ−sin2 θ̄ cos θ̄

n
sin3 θ sinϕ−sin3 θ̄ sin ϕ̄

m = sin2 θ cos θ−sin2 θ̄ cos θ̄
n .

(4.21)

The first equation can be solved for cosϕ, obtaining the following solution

cosϕ =
α sin2 θ cos θ +A

sin3 θ
, (4.22)

where α ≡ l/n and A ≡ sin3 θ̄ cos ϕ̄−α sin2 θ̄ cos θ̄. In the same way, the second
equation can be solved for sinϕ, obtaining

sinϕ =
β sin2 θ cos θ +B

sin3 θ
, (4.23)

where β ≡ m/n, and B ≡ sin3 θ̄ sin ϕ̄−β sin2 θ̄ cos θ̄. Imposing cos2 ϕ+sin2 ϕ =
1, and writing the resulting equation in terms of t ≡ tan θ/2, one gets the final
equation

C + 2(3C + 4ε)t2 + (15C + 16γ + 16ε)t4 + 4(5C − 8γ − 16)t6

+(15C + 16γ − 16ε)t8 + 2(3C − 4ε)t10 + Ct12 = 0
(4.24)

where the quantities C, γ and ε are defined as

C ≡ A2 +B2

γ ≡ α2 + β2

ε ≡ αA+ βB.

(4.25)

The solution of equation (4.24) can be found numerically using the routine
FZ ROOT in IDL, choosing only the real roots, since θ ∈ [0, π], only the roots

68



with positive real part are good solutions. In fact, one has (θ/2) = arctan(t) ∈
[0, π/2], so θ = 2arctan(t) ∈ [0, π]. Eventually the coordinates of the points can
be expressed in cartesian coordinates using again the equation (4.2).

If one of both between l and m are zero, but n ̸= 0 the situation does not
change much. The step to follow are the same of the generic case l,m, n ̸= 0,
but this time turns out that:

• for l = 0 and m,n ̸= 0, then α = 0;

• for m = 0 and l, n ̸= 0, then β = 0;

• for l,m = 0 and n ̸= 0, then α, β = 0.

Case in which l,m ̸= 0 and n = 0. The situation is a bit different than
the previous ones. The system to use is the (4.17); substituting the cartesian
coordinates with the polar ones, from the second equation results:

sin2 θ cos θ = sin2 θ̄ cos θ̄. (4.26)

This can be easily written as an equation for cos θ only

cos3 θ − cos θ + sin2 θ̄ cos θ̄ = 0. (4.27)

The solutions are:
cos θ = cos θ̄

cos θ =
− cos θ̄ ±

√
1 + 3 sin2 θ

2

(4.28)

and since θ can assume values only in the first and second quadrants, cos θ is
sufficient to fully determine θ. For the azimuth, instead, let us take the first
equation (4.17), written in polar coordinates, and defining:

ζ ≡ l

m

D ≡ sin3 θ̄ cos ϕ̄− ζ sin3 θ̄ sin ϕ̄
(4.29)

we get

cosϕ− ζ sinϕ =
D

sin3 θ
. (4.30)

Finally, the solutions are given by

ϕ = 2arctan

−ζ ±
√
ζ2 − (D2/ sin6 θ) + 1

(D/ sin3 θ) + 1

 (4.31)

What remains is the case: n = 0 and one between l and m equal to 0. In
this case the systems are (4.20) and (4.19). The steps for the θ solution are the
same of the previous case, but this time, from the first equations in both the
systems, the relations that came out for cosϕ and sinϕ are simpler to solve.

• if l, n = 0 and m ̸= 0, it turns out that:

sin3 θ cosϕ = sin3 θ̄ cos ϕ̄, (4.32)

and the solution is

cosϕ =
sin3 ϕ̄ cos ϕ̄

sin3 θ
=

A

sin3 θ
(4.33)
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• if m,n = 0 and l ̸= 0:

sin3 θ sinϕ = sin3 θ̄ sin ϕ̄, (4.34)

the solution this time is

sinϕ =
sin3 ϕ̄ sin ϕ̄

sin3 θ
=

B

sin3 θ
(4.35)

Attention must be taken in using the correct values of cosϕ and sinϕ in
the coordinates of equation (4.2). This is due to the fact that, giving the value

of cosϕ (sinϕ) the sinϕ (cosϕ) is expressed as
√
1− cos2 ϕ (

√
1− sin2 ϕ), and

since ϕ ranges in [0, 2π], it is important to take into account the sign of both

the solutions (i.e. sinϕ = ±
√
1− cos2 ϕ, in the case l, n = 0 and m ̸= 0, while

cosϕ = ±
√
1− sin2 ϕ, in the case m,n = 0 and l ̸= 0).

4.1.3 Visibility of the torus adding a thin disk

In the previous section we have described the steps through which the code
determines the points of the torus that are really in view, given certain values
for the input parameters. Now we consider also a thin disc in addition, perfectly
planar, with vanishing thickness.

The procedure consists of two steps:

1. find the equation of the disk plane

2. determine which points of the disk are in view, taking into account the
presence of the torus.

The equation of the disk plane can be obtained once defined the normal to
the plane itself. The calculations are made in the bdip frame, and once θp and
ϕp are defined, which are the angles identifying the normal in the bdip frame,
the vector is given by:

np =

sin θp cosϕp

sin θp sinϕp

cos θp

 . (4.36)

To find the equation of the disk plane, we take a generic vector belonging to the
plane, and then, recalling that the plane is orthogonal to np, we require that
the scalar product between the normal np and the plane vector is zero. Since
the disk should pass through the center of the star O, which is also the center of
the bdip frame, we can take as plane vector OP , where P = (x, y, z) is a generic
point in the disk plane.

Imposing the following condition:

OP · np = 0 (4.37)

we end up with

x sin θp cosϕp + y sin θp sinϕp + z cos θp = 0, (4.38)

which is the disk plane equation.
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Now, in order to understand which part of the torus remains in view once
the disk is added, let us distinguish two cases: if the disk is infinitely extended,
and if instead it is limited. If the disk is an infinite plane, then the visibility
of the torus would depend on what side of the disk is visible, given a certain
direction of the LOS. In particular:

• the disk is seen from above if l · np > 0;

• the disk is seen from below if l · np < 0.

The terms “above” and “below” are defined with respect to direction of the
magnetic axis, so if we are looking at the disk from “above”, we will see the
northern part of the torus, if we are looking at the disk from “below”, we will
see the southern part of the torus. For this distinction, the normal np is chosen
in such a way that θp ranges in [0,π/2]. Taking a generic field line of the torus,
characterized by the azimuthal angle ϕ̄ in the bdip frame, the intersection with
the disk will be in a point at θintersect. To find this angle we solve the system
made by the equation of the disk plane (4.38) and the coordinate of a generic
torus point: x

y
z

 = Rmax

sin3 θ cosϕ
sin3 θ sinϕ
sin2 θ cos θ

 (4.39)

Substituting equation (4.39) into (4.38) we obtain:

sin3 θ cosϕ sin θp cosϕp+sin3 θ sinϕ sin θp sinϕp+sin2 θ cos θ cos θp = 0. (4.40)

Once ϕ̄ is fixed, from this equation we can get θ. The two solutions are:

t1,2 =
cos ϕ̄nx

p + sin ϕ̄ny
p ±

√
(cos ϕ̄nx

p + sin ϕ̄ny
p)2 + n2z

p

nz
p

(4.41)

The solution with the minus sign can be rejected, because, as said before, θ
can assume values only in the first and second quadrant, so the only possible
solution is the positive one. At the end, the solution for θintersect is

θintersect = 2arctan

cos ϕ̄nx
p + sin ϕ̄ny

p ±
√
(cos ϕ̄nx

p + sin ϕ̄ny
p)2 + n2z

p

nz
p


(4.42)

Once we have the value for θintersect for each ϕ̄, the visibility condition for
the torus will be:

• if the plane is seen from above, l ·np > 0, the points in view will be those
with θ ∈ [θmin, θintersect];

• if the plane is seen from below, l ·np < 0, the points in view will be those
with θ ∈ [θintersect, θmax].

One has to remember that these conditions hold in the hypothesis of infinite
disk, where the only part of the torus that can be seen is that in the side in
view of the disk plane. If, as said before, the disk, instead, has a finite extent,
and we select certain values for the angles ξ and χ, we would see also a little
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part of the torus in the side not in view of the disk plane. Hence, the conditions
above can be used if the radius of the disk is extremely large.

In order to take into account also the emerging part of the torus from the
side not in view of the disk, we should understand which points of that part of
the torus are covered by the shadow of the disk, and to do so we project the
latter on the torus. Important to stress is the the fact that we assume circular
the disk. A simple way to do it is to use a straight line parallel to the LOS,
intersecting the disk, and passing through the torus surface, which emerges from
the side not in view of the disk plane. Thus, the straight line passes through
those points with, once ϕ̄ is fixed, the angle θ ∈ [θintersect, θmax] if the side in
view is that with l · np > 0, or θ ∈ [θmin, θintersect] if the part in view is that
with l · np < 0.

To find the intersection between the straight line, passing through the torus,
and the disk, we have to solve different systems of equations, depending on the
coordinates of the LOS unit vector l. This is analogous to the previous case,
when we have searched for the intersections between the torus and the straight
line. Again, the easiest way is performing calculations in the bdip reference
frame, and we will distinguish different cases, depending on the coordinates of
l in this reference frame. We start, as bafore, with the case: l,m, n ̸= 0. Now
the system to be solved, in order to find the intersections is

x−x̄
l = y−ȳ

m
y−ȳ
m = z−z̄

n

xnx
p + yny

p + znz
p = 0

, (4.43)

where the coordinates x̄
ȳ
z̄

 = Rmax

sin3 θ̄ cos ϕ̄
sin3 θ̄ sin ϕ̄
sin2 θ̄ cos θ̄

 (4.44)

are those of the selected point of the torus, with θ ∈ [θintersect, θmax] ([θmin, θintersect])
for l · np > 0 (l · np < 0), and ϕ̄ ∈ [0, 2π]. In the system (4.43) the coordinates
(x, y, z) are those of the intersection point between the straight line parallel to
the LOS, passing through the torus point (x̄, ȳ, z̄), and the disk plane. In the
calculations we are still assuming that the disk has an infinite extent.

To solve the system, we can first rewrite the first two equations, explicitating
x and z as functions of y:

x =
l

m
(y − ȳ) + x̄

z =
n

m
(y − ȳ) + z̄

(4.45)

then, substituting them into the third equation of the system we can find the
solution for y:

y =
(l/m)nx

p ȳ − nx
p x̄+ (n/m)nz

pȳ − nz
pz̄

(l/m)nx
p + ny

p + (n/m)nz
p

. (4.46)

At this point, to understand if the intersection on the disk plane belongs to the
disk, covering the torus, it can be imposed the following condition: x2+y2+z2 ≤
r, where r is the radius of the disk. If the point belongs to the disk, the torus
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point (x̄, ȳ, z̄) is covered by it, otherwise no intersection is found, and the torus
point is in view.

Following the same reasoning, the solutions for the other cases are:

• m ̸= 0, and one or both l and/or n are zero. If l = 0

y =
(n/m)nz

pȳ − nx
p x̄+ nz

pz̄

ny
p + (n/m)nz

p

, (4.47)

if n = 0

y =
(n/m)nx

p ȳ − nx
p x̄− nz

pz̄

(l/m)nx
p + ny

p
, (4.48)

if l, n = 0

y =
−nx

p x̄− nz
pz̄

ny
p

(4.49)

• m = 0. If l, n ̸= 0, solving this time for z

z =
(l/m)nx

p z̄ − nx
p x̄− ny

pȳ

(l/m)nx
p + nz

p

, (4.50)

if m, l = 0 and n ̸= 0

z =
(−nx

p x̄− ny
pȳ)

nz
p

, (4.51)

if m,n = 0, but l ̸= 0, solving for x

x =
−ny

pȳ − nz
pz̄

nx
p

. (4.52)

Deleting the part of the disk hidden by the torus

Much as the disk may shadow a part of the torus, the torus may be hidden
by the disk. In order to see how this works, first of all we have to define the
disk points, in the bdip reference frame, using a grid of radial distance ρ and
azimuthal angles ϕ. For convenience it is better if the azimuthal grid of the disk
is the same used for the torus field lines (with ϕ ∈ [0, 2π]). Since, once we have
computed the intersection points between the torus and the disk, for each field
lines characterized by the azimuth ϕ, then we have the colatitude θintersect for
each point of the disk with azimuth ϕ ∈ [0, 2π]. So each of those points would
be associated to the colatitude θintersect(ϕ).

Thus, the disk points will have the following coordinatesxd

yd
zd

 = ρ

sin θintersect(ϕ) cosϕ
sin θintersect(ϕ) sinϕ

cos θintersect(ϕ)

 , (4.53)

where the radial distance ρ ranges in principle between 0 (center of the star)
and r (radius of the disk). The points of the disk close to the star are not in
view because the torus hides them, and in particular for each azimuth ϕ there
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is a minimum radius below which the disk points are not in view. Knowing the
intersection points, it is easy to find this minimum radius, given by

rmin(ϕ) = Rmax sin(θintersect(ϕ))
2, (4.54)

which is the equation for the magnetic field lines (those that reach the maximum
distance Rmax). Hence, the correct range in which the radial distance, ρ, can
vary, in the bdip frame, is [rmin(ϕ), r]. Now, one has to understand how those
points hidden by the torus can be deleted. The procedure is the following:

1. start selecting one by one all the disk points;

2. write down the equation of the straight line parallel to the LOS and passing
through each point of the disk;

3. find the intersections between the straight line and the field lines of the
torus

4. if there are intersections, thus field lines between the disk points and the
observer, then disk points are not in view, because covered by the torus,
and they have to be removed from the points in view;

5. if there are no intersections, then the disk points are not hidden by any
field lines, so they can be considered in view.

Trying to simplify the calculations, one can think to implement the procedure
taking only the points of the disk with a negative z coordinate, as measured
in the LOS frame. This is because all the disk points ahead of the torus are
expected to have positive z coordinate in the LOS frame. However, there could
exist cases in which, due to the particular geometry, there are points of the disk
with positive z coordinate but still covered by the torus. This means that for a
better treatment we should take into account all the disk points.

Analogously to the previous case, computations for the intersections between
the torus and the straight line are different depending on the components of the
LOS in the bdip frame.

If all the cartesian components of the LOS are different from zero, l,m, n ̸= 0,
then the straight line parallel to the LOS and passing through the disk point
(xd, yd, zd) is {

x−xd

l = y−yd

m
y−yd

m = z−zd
n

(4.55)

The intersection point between the torus and the straight line can be written
in terms of θ and ϕ, through equation (4.39), and then, following a procedure
similar to the one seen before (expliciting x and y as functions of z), we obtain
the following expressions for θ and ϕ of the intersection point:

cosϕ =
Rmax(l/n) sin θ

2 cos θ − (l/n)zd + xd

Rmax sin θ3

sinϕ =
Rmax(m/n) sin θ2 cos θ − (m/n)zd + yd

Rmax sin θ3
.

(4.56)

Defining:

αd ≡ l

m
, βd ≡ m

n
, Ad ≡ xd − αdzd

Rmax
, Bd ≡ yd − βdzd

Rmax
(4.57)
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the equations (4.56) can be rewritten in terms of these quantities:

cosϕ =
αd sin

2 θ cos θ +Ad

sin3 θ

sinϕ =
βd sin

2 θ cos θ +Bd

sin3 θ
.

(4.58)

The solution can be expressed once we define also:

Cd ≡ A2
d +B2

d

γd ≡ α2
d + β2

d

ϵd ≡ αdAd + βdBd

(4.59)

The solution is found numerically. If l = 0,m ̸= 0, the solution can be obtained
putting αd = 0, if, instead, we are in the case l ̸= 0,m = 0, we get the solution
putting βd = 0. Finally, if both l,m = 0, to find the solution αd, βd = 0.

In the case in which n = 0, the system (4.55) will be rewritten, and as before
we substitute (x, y, z) using (4.39). Then, once we have the two expressions for
θ and ϕ, they would be solved numerically through the IDL procedure, FZ ROOT,
the same used for the previous cases.

Once the intersections between the straight line parallel to the LOS, passing
through the disk points, and the torus have been determined, we have to select
the points of the disk that are in view from those that are not. Let us follow
these steps:

1. looking at the equations for θ, if there are no real solutions, or (if l,m, n ̸=
0) the real ones are such that tan(θ/2) < 0, then there will be no inter-
section, thus the point of the disk is no hidden by any field line, so it is in
view;

2. if, instead, there are real solutions for θ ∈ [0, π], then the disk point is
covered by the torus;

3. if there are no good solutions for ϕ (e.g. sinϕ, cosϕ > 1 or < −1), then
there are no intersections, and the disk point is in view;

4. if, on the contrary, there is at least one good solution for ϕ, there is at
least an intersection, so the point is covered by the torus.

Particular cases exist, with particular geometries, in which the intersection
between the straight line and the disk is behind the disk point itself, instead to
be between the disk and the observer. When this happen, the disk point is in
view, thus the code must exclude these intersections. To do this it is necessary
to compute, in the LOS frame, the z coordinates, of the intersection points
(zLOS), and compare them with the z coordinate of the disk point (zLOS,d),
still computed in the same frame:

• if for all the intersections holds zLOS < zLOS,d, then the intersections are
behind the point, with respect to the observer. Thus, the disk point is in
view;

• if, instead, there is at least one intersection for which holds zLOS > zLOS,d,
then the disk point is covered.
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(a) (b)

Figure 4.3: 3D Plot of the part in view of the system. Panel (a): the source seen
along the LOS, thus it can be seen only the part in view of the source, composed
by the torus (in red), and the disk (in orange). Panel (b): the source seen along
a direction different from that of the LOS. There are both the part in view and
that not in view of the source. The part not in view is that transparent. Both
the images have been obtained for a Rmax = 100RNS , Rdisk = 300RNS , χ =
80◦, ξ = 1◦, and γ = 45◦.

Figure 4.3 shows the output of the code for a typical input configuration.

The source is seen from two different points of view. To be more precise,
looking at it from the observer point of view (panel (a), along the LOS), the
source is seen nearly edge-on (χ = 80◦, ξ = 1◦), and what is shown is only the
part in view. To better visualize the parts which are in view or are hidden,
the same configuration is shown again in panel (b), this time as seen from a
different direction. In this case the southern hemisphere of the torus is totally
hidden, because of the disk, the part of the torus near the magnetic pole is
hidden because of the self-shadowing of the torus itself, and the missing part of
the disk, instead, is due to the torus shadow.

4.2 Ray-tracer code

The second code is the ray-tracer, it has already been used in other works
([Taverna et al.(2015)], [Zane & Turolla(2006)]), but the version used in this
thesis has been implemented (as mentioned) with the visibility code script.
This code gives the flux, integrated all over the part in view, at each phase
and energy. From this output can be obtained subsequently the spectrum and
the light curve of the source (torus and disk), given a particular configuration
(angles ξ, χ, and values for Rmax and Rdisk).

4.2.1 Functionality

To understand how the ray-tracer works, let us start considering the source
surface as a collection of emitting points. The code, first, selects which of these
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are visible, depending on the choice of the angles χ and ξ (working in the LOS
frame), and on the orientation of the disk with respect to the spin axis.

Once the points in view have been selected, the code assigns to each of
them a blackbody emission, which clearly depends on the temperature. Such
temperatures, for the torus, are read from an external file, which is in turn
the output of the code of Brice et al. (2021)[Brice et al.(2021)], based on the
previous work of Mushtukov et al. (2017)[Mushtukov et al.(2017)]. As regards
the disk, the emission (if required) is still that of a blackbody, but for the
temperature at which the disk points emit we have two possible choices. The
code can describe the disk emission using or a constant temperature profile, or a
different one as the Shakura-Sunyaev temperature profile. The last should be the
most reliable. In this thesis, however, the code exploits a constant temperature
profile, which is easier and a good approximation. The reason why is that, in
using a Shakura-Sunyaev temperature profile, it should be created a file with a
certain number of radii (distances between the center of the star and the disk
points) and the corresponding temperatures; then the ray-tracer should read
also this file, and once it selects a point on the disk, maybe at a distance that
could not match the grid points in radius of the file just created, it should
interpolate between the nearest radii to give at the end the total emission from
the disk. Thus the constant profile avoids such interpolation. Moreover, the
Shakura-Sunyaev temperature profile requires parameters that the code for the
temperature outputs does not give.

Important to stress is that, as in the visibility code, the GR effects are
switched off. The code is defined in order to take into account GR effects like
those on the magnetic field, and the ray-bending. But we will not take them
into account, since we want the emission from points on the torus which are, in
general, quite far away from the star, where such effects should not be relevant.
Moreover, in this code we do not consider the emission from the column, thus
from points near to the magnetic axis, since the calculations for those points
would be too difficult. But maybe in future works these corrections will be
taken into account.

Once at each point (torus and eventually disk) has been assigned a blackbody
emission with a certain temperature, the code computes the flux, all across the
part in view, as a function of the energy and of the phase. Basically what we
have is a matrix with the flux values for each energy and phase, and then one
can decide how to use such outputs. In this case, as it will be discussed later,
we will use them to reproduce the light curves and the spectra of the source.

4.2.2 Inputs

As regards the inputs to give to the code, the first are

1. the polar magnetic field strength B; we explored the range 1012G - 1013G;

2. the maximum radius Rmax, expressed in units of RNS ;

3. the angle ξ, expressed in degrees.

Then mass of the neutron star, the star radius, and the minimum and maxi-
mum magnetic colatitude (θmin and θmax, see the previous section), are already
defined in the code script. The code requires also the insertion of a value for
the angle χ.
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Other inputs are those for the disk:

• if it is orthogonal to the spin axis;

• its radius.

We chose always the disk orthogonal to the spin axis of the star. Then are re-
quired the values of the temperatures on the torus surface, and such values have
been determined, as said before, by the code of [Brice et al.(2021)]. Since these
temperatures are computed for a given choice of the first three parameters: B,
Rmax and ξ, the file with those temperatures cannot be chosen randomly, since
at the beginning we gave certain values for the magnetic field strength, maxi-
mum radius, and ξ angle, thus those temperatures must be chosen consistently
with that choice.

Finally the code asks for the disk emission, since it provides that the disk
emits or not. If the disk emits, it has to be assumed again a blackbody emission
(as said above), choosing then or for a constant temperature profile, or for a
non constant one (e.g. Shakura-Sunyaev profile).

In the code are also defined parameters aimed to calculate also the polariza-
tion fraction and polarization angle for the emitted radiation, but we will neglect
that part of the code, since in this thesis we are not interested in the polarization
properties, and we will sum the flux of O-mode and X-mode photons.

4.2.3 Main program

It is initiated a big do loop, in which, for each phase angle γ, the code computes
all the quantity needed to compute the outputs (the flux).

First, different unit vectors and angles are defined and computed, required
for further calculations:

1. the spin axis unit vector in the LOS frame, which does not depend on the
phase angle, and lies, for assumption, on the xz plane (in the sense that
we define the x-axis of the LOS frame in order to have the star spin axis
on the xz plane),

Ω =

sinχ
0

cosχ

 ;

2. the bdip unit vector, directed along the magnetic field axis, in the LOS
frame

bdip =

sinχ cos ξ − cosχ sin ξ cos γ
sin ξ sin γ

cosχ cos ξ + sinχ sin ξ cos γ

 ;

and also the x-axis p, and y-axis q of the bdip frame in the LOS one
[Taverna et al.(2015)].

Then, two other loops are opened on the colatitude Θ, and the azimuth Φ.
These are the colatitude and azimuth, respectively, of the emitting point in the
LOS reference frame. Since we want the emission of the part in view of the
source, the code is implemented with the script of the visibility one. All these
steps, are repeated for each phase angle, in order to compute all the required
quantities as function of the phase. Hence, all this part is inserted in a big do

loop.
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Light curves and spectra

At the end, the code, for each phase angle and energy, computes the flux inte-
grated all over the part in view of the object. Indeed, we have alreay mentioned
the fact that the outputs of the ray-tracer are the values of the flux as functions
of the energy and of the phase.

Having these outputs, through the use of an IDL script, we can, for instance,
compute the average flux for each phase, or for each energy. This in order to
have the light curves and the spectra of the emitting object. In particular, for
the light curve, the flux is first computed at each phase angle γ, and then it
is averaged all over the energies. For the spectrum, instead, the total phase
interval is first decomposed into several phase bins, and for each of them is
computed the averaged phase flux, after is also computed the total averaged
flux, all over the phase interval, remaining only a function of the energy.

79





CHAPTER

FIVE
RESULTS

In chapter 4, we presented two codes: the visibility code, and the ray-tracer.
Now we present some preliminary results, mainly concerning the pulse profiles
and the (phase-resolved) spectra which are derived from the model.

First of all, we focused on the shape of the light curve and on the spectrum,
as the geometry in view changes, that is, the angle between the spin axis and
the LOS.

As said above, to obtain our results a number of input parameters have to be
fixed in advance: the magnetic field strength B, the maximum radius Rmax, and
the angle ξ, that between the spin and magnetic axes. In this case we consider a
neutron star with a mass of 1.4M⊙, a radius of 10km, and let us show different
light curves and spectra, for different χ angles, as computed for: B = 1012G,
Rmax = 26.8RNS , Rdisk = 100RNS , and ξ = 3◦.

For the sake of clarity, we report in figure 5.1 an illustration of the part in
view of the source at different viewing inclinations χ, frozen at a phase angle
γ = 45◦. As it can be seen , the change in the inclination allows the observer
to see different regions of the torus and of the disk.

In the following we present three cases, taking into account both the spec-
trum and the light curve.

As a testbed of our calculation, we start considering the case shown in figure
5.1 (a), in which the LOS is nearly parallel to both the spin axis and magnetic
axis (χ = 2◦, ξ = 3◦), so the object is a nearly aligned rotator seen from above.
This means that during a complete rotation of the NS, the part in view will not
change so much, and we expect to see an almost flat pulsed profile (no change in
the flux with phase), and roughly the same spectral shape at each phase. This
is, in fact, what we see in figure 5.2. The light curve remains almost flat, and
there is little variation between the light curves in the different energy bands.
Because the part in view of the source is more or less always the same as the
phase changes, so we can expect the flux, in different energy bands, to be more
or less the same as the phase changes. The same reasoning can be applied to
the spectrum. The colored lines refer to the spectrum obtained for different
phase bins: the total phase interval is divided into several bins, and in each of
them is calculated the spectrum, averaged on the phases of the single bin. As
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(a)

(b) (c)

Figure 5.1: Different geometries of view of the source, made by the torus (red)
and the disk (orange). In all the three panel the object is seen along the LOS
direction. In panel (a) the source is seen with χ = 2◦, thus in a face-on configu-
ration. In panel (b) χ = 44◦; and in panel (c) χ = 89◦, the source is nearly along
the edge of the disk. All the three plots have been obtained for B = 1012G,
Rmax = 26RNS , ξ = 3◦, Rdisk = 100RNS , and γ = 45◦.

expected by the light curve, the spectra at the various phases appear mostly
superimposed. Defining the pulsed fraction (PF)

PF =
max(F (E))−min(F (E))

max(F (E) +min(F (E))
(5.1)

where max(F (E)) and min(F (E)) are the maximum and minimum value of
F (E), which is the flux, integrated in a given energy band, all over the phase
interval, its value for this specific configuration ranges between ∼ 0.09% and
∼ 0.7%, for the different bands considered (see Figure 5.2a). Not surprisingly,
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(a)

(b)

Figure 5.2: Light curve and spectrum for the configuration with χ = 2◦, and
ξ = 3◦. Panel (a): the pulse profile of the source, different colors are related
to different energy bands: 0.1-10 keV black,, 0.3-0.8 keV violet, 0.3-1 keV blue,
1-3 keV red, 3-5 keV cyan, 5-8 keV purple. Panel (b): the spectrum, the dashed
thick black line is the total phase averaged flux, while the colored lines are the
spectra obtained in different phase bins. For the disk component we adopted
a constant temperature profile, with a temperature Td = 0.2 keV. Here it is
B = 1012G, and Rmax = 26RNS .

there is no difference between the spectra at different phases, the pulsed fraction
being very small.

Moving to the second configuration (panel (b) in figure 5.1), the only differ-
ence is the angle χ = 44◦, while the other parameters were being unchanged.
This time, the LOS is not aligned with the spin axis, and so during a complete
rotation the part in view changes, and the emitting regions are different at each
phase. Hence, what we expect to see is a more pronounced pulsed profile, and
a more evident variation also in the spectra for each phase bin.
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(a)

(b)

Figure 5.3: Light curve and spectrum for the configuration with χ = 44◦. The
pulse profiles are shown in panel (a), while the spectra in panel (b). The color
code and the value of the parameters are the same for fig. 5.2.

In fact, at variance with the case shown in fig. 5.2, now the pulsation is
more pronounced (fig. 5.3), since the regions in view of the torus and the disk
are different for different phase angles. In particular are clearly visible sharp
peaks at low energies (blue and violet fig. 5.3(a)).

In order to understand why it is so, let us consider that in the simulations
taken into account, the temperature of the disk is typically lower than the
temperature of the various regions of the torus. One can therefore expect that
the emission of the disk is localized at lower energies, while that of the torus
to higher energies. In the figure 5.3(a), the light curves in the lower energy
bands are those in the 0.3-1 keV band (blue), and 0.3-0.8 keV band (violet).
From those light curves we see that, at a certain phase, the flux decreases a
lot, and this can be a consequence of the torus shadow on the disk. In that
geometrical configuration both the torus and the disk are quite well visible,
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but during the rotation the torus covers part of the inner region of the disk,
decreasing its emission. As further evidence of this, we produced another plot,
with the pulse profile and the spectrum for the same configuration (χ = 44◦,
ξ = 3◦), but without the disk emission (see figure 5.4). In this way, the disk
does not emit but it is still present, covering the parts of the torus which covered
before. In the figure 5.4, the net peaks at lower energies disappeared, all the

(a)

(b)

Figure 5.4: Light curve and spectrum for the configuration with χ = 44◦, with-
out the disk emission.

light curves follow nearly the same trend, and in the spectrum all the lines are
quite superimposed, proving that the emitting area of the torus does not change
much. This proves that the previous sharp variations in the flux were due to
the disk, and not maybe to the self-shadowing of the torus.

Moreover, the pulsed fraction corresponding to the situation in figure 5.3
varies between ∼ 7% and ∼ 20%, the highest occurring in the lower energy
band (violet curve), without the disk emission (fig. 5.4) the PF varies between
∼ 0.7% (at lower energies) and ∼ 0.9%, as expected.
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Now we focus on the spectra, returning to the configuration with the disk
emission. As a consequence of the LOS inclination, the spectra show more
variability, since the area of the emitting regions changes more at each phase
bin. This variation in the spectral shape is more evident for the disk (as for
the light curves), since, again, such evident displacement between the colored
spectra are visible at lower energies (for reasons mentioned above). Still focusing
on the disk spectral component, this is more visible in the configuration with
χ = 2◦, since in that case one can see a larger emitting area of the disk.

The third and last configuration shown in the figure 5.1, is that with χ = 89◦.
The LOS is nearly orthogonal to the spin and magnetic axis, and, as in the first
case, the part in view remains the same at each phase, so we should not expect
a peaked light curve, or a noticeable variation in the spectrum. In fact, in the

(a)

(b)

Figure 5.5: Light curve and spectrum for the configuration with χ = 89◦. The
light curve is shown in panel (a) and the spectrum in panel (b). The color code
and the values of the parameters are the same as in fig.5.2.

figure 5.5, the light curve is again nearly flat, with a very small variation in the
flux for all the energy bands, and the spectrum is only due to the torus emission,
since, for χ = 89◦, the thin disk is virtually invisible. To be more precise, in the
light curve, at a phase of 2π, is visible a sharp decrease of the flux, in the lower
energy bands. This could be due to two possible reasons: at that phase we see
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the disk completely edge-on, thus its emission suddenly vanishes, or there are
numerical irregularities in the code of Brice et al. (2021) [Brice et al.(2021)].

The PF ranges between ∼ 0.6% and ∼ 1.2%. The higher values are still
those in the lower energy bands, and referring to the panel (c) of figure 5.1, the
disk plane is not exactly parallel to the LOS, so (linking us to what was just
said) the only little variation in the emission should be from that component.

Comparison with observations

The purpose of the model discussed in this thesis is to reproduce the data
obtained from observations, for the spectrum, and the pulsed profiles (especially
the PF). In chapter 2, we have presented six PULXs. Here we present such
comparison making reference with the light curves and pulsed fractions of NGC
7793 P13 [Fürst et al.(2016)], the second PULX that has been discovered.

Figure 5.6: The light curve and the pulsed fraction variation for the PULX
NGC 7793 P13. The top left panel displays the light curve in different energy
bands, 0.3–1.0, 1–3, 3–5, and 5–8 keV obtained from XMM-Newton data, and
8-20 keV obtained with NuSTAR data. On the right there is the variation of
the pulsed fraction as a function of energy, blu data are those from NuSTAR,
red data are from XMM-Newton. The bottom left panel reports the hardness
ratio. See [Fürst et al.(2016)].

In the right panel of figure 5.6, we see how the pulsed fraction changes with
energy, in the data obtained with XMM-Newton (red), and NuSTAR (blu).
While the XMM-Newton data describe a rapidly growing trend with a pulsed
fraction ranging from the ≈8% to just above the ≈30%, between 0.3 and 8 keV,
the NuSTAR data lie all between the ∼25% and ∼35%, in the energy range 5-15
keV.

Another example, in which the increase of the PF with the energy is quite
evident, is that of the PULX NGC 300 ULX1 [Carpano et al.(2018)] (see figure
5.7). In addition, the pulse profile of NGC 300 ULX1 shows narrower and higher
peaks with respect to the profile of NGC 7793 P13. Moreover the pulsed fraction
is higher, if we look at the EPIC-pn data (0.2-10 keV), which cover almost the
same total energy band (0.3-8 keV) as for NGC 7793 P13. The PF of NGC 300
ULX1 goes from ∼ 40% to just above ∼ 75%.

On a qualitative ground, we can compare these data with those we get from
our code. From the spin up of the PULX NGC 7793 P13 [Fürst et al.(2016)],

87



Figure 5.7: Light curve and energy-dependent pulsed fraction of NGC 300
ULX1. The pulse profile is obtained from the 0.2–10 keV EPIC-pn data (red),
and the 3–20 keV NuSTAR data (blue). In both the profiles the background
has been subtracted, and are corrected for the pulsar spin-up. The inset shows
the pulsed fraction as function of energy, with colours as in the light curve plot.
See [Carpano et al.(2018)].

it has been inferred a magnetic field strength of B ∼ 1.5× 1012G. Assuming as
input parameters: B = 1012G, Rmax = 26NNS , Rdisk = 150RNS , ξ = 10◦, and
χ = 43◦, we obtain the following output (see figure 5.8). The pulsed fraction

Figure 5.8: Light curves for values compatible for NGC 7793 P13. The color
code is the same as in figure 5.2. The input parameters are: B = 1012G,
Rmax = 26NNS , Rdisk = 150RNS , ξ = 10◦, and χ = 43◦.

predicted by the code for this configuration goes from a minimum of ∼ 11% in
the energy range 0.3-1 keV (blue dashed line), to a maximum of ∼ 32% in the
range 5-8 keV (purple solid line). Which is compatible with the variations in
the XMM-Newton data in the energy band 0.2-8 keV.

For what concerns the second PULX mentioned before, NGC 300 ULX1
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[Carpano et al.(2018)], its magnetic field has been derived using two different
approaches: with the standard disc accretion model of [Ghosh & Lamb(1979)],
and knowing that the equilibrium spin period is between 8.5s and 14s. The first
method provides a value of B ∼ 3 × 1012G, while the second one gives B in
between B ∼ 1× 1013G and B ∼ 2× 1013G. Hence, we run the code choosing
as input parameters: B = 1013G, Rmax = 71NNS , Rdisk = 200RNS , ξ = 10◦,
and χ = 47◦, obtaining the output in figure 5.9. The pulsed fraction predicted

Figure 5.9: Light curves for values compatible for NGC 300 ULX1. The color
code is the same as in Figure 5.2. The input parameters are:B = 1013G, Rmax =
71NNS , Rdisk = 200RNS , ξ = 10◦, and χ = 47◦.

in this case by the code goes from a minimum of ∼ 18% in the energy range
0.3-1 keV (blue dashed line), to a maximum of ∼ 34% in the range 5-8 keV
(purple solid line). The results in the figures 5.8 and 5.9 are quite closer to each
other, and to the PF variation shown in figure 5.6, although, both show lower
PFs with respect to those reported by [Carpano et al.(2018)]. One possible
explanation for this discrepancy could be the fact that, in the current code,
the model is very simplified, being a blackbody emission for both the torus and
the disk. In fact, for the spectrum, we cannot make a complete comparison
with the observations. Let us consider again the PULX NGC 300 X1, and its
spectra obtained with XMM-Newton and NuSTAR observations (figure 5.10).
Neglecting the variation of the spectral shape in the observations of 2010 and
2016, the spectrum seems to be described by a two-component model, a power-
law with photon index ∼ 1.6, which dominates at higher energies (non-thermal
component), and a softer blackbody emission for temperatures kT ∼ 0.18 keV.
The code, however, is written to be able to reproduce a thermal spectrum, albeit
at a different temperature distribution between the torus and the disk. Focusing
only on the thermal component of the spectra in figure 5.10, one can see that
the emission is peaked in the energy range 0.5-1 keV, which may be compatible
with that produced by an accretion disk with a temperature of about ∼ 0.2−0.3
keV. To prove this, we reproduced the spectrum in figure 5.11, obtained with
B = 4 × 1012G, Rmax = 26RNS , Rdisk = 100, ξ = 10◦, and χ = 30◦ (this
configurations produces the same values of the PF as the last configuration
used). In figure 5.11, one can see the contribution of the disk between the
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(a) (b)

Figure 5.10: XMM-Newton and NuSTAR spectra of NGC 300 X1. On the top of
both panels the broad-band spectral fit of NGC 300 ULX1 is shown, exploiting
the XMM–Newton and NuSTAR spectra. XMM-Newton data: EPIC-pn in
black and blue, MOS in red, green, magenta and cyan. NuSTAR: FPMA and
FPMB in yellow and orange. The panels on the bottom display the residuals
for the best-fitting model [Carpano et al.(2018)].

Figure 5.11: Simulated spectrum with a thermal disk component compatible
with that of NGC 300 X1. The different colors show the phase averaged spec-
trum in different phase bins. The total averaged phase spectrum is represented
by the dashed thick black line. The vertical colored dashed lines highlight the
different energy bands used for the light curves. Here it is with B = 4× 1012G,
Rmax = 26RNS , Rdisk = 100, ξ = 10◦, and χ = 30◦.

energies 0.3-1 keV, in the image are inserted six vertical colored dashed lines
that are related with the colors used for the different energy bands of the light
curves: 0.3-0.8 keV violet, 0.3-1 keV blue, 1-3 keV red, 3-5 keV cian, and 5-8
keV purple.
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CHAPTER

SIX
CONCLUSIONS

In this thesis we presented a model to account for the observed properties of pul-
sating ULXs, based on the accretion process onto a highly magnetized NS.The
model provides a description of the thermal emission from the envelope, which
forms around the accreting NS, made by the accretion disc and a torus shaped
by the field lines that reach the magnetospheric radius. The model also pro-
vides the description of the accretion column and its main characteristics as the
magnetic field strength varies. The variation in the magnetic field strength has
direct consequences on the reduction of the scattering cross-section of X-mode
photons, and hence the opacity associated to this mode is drastically reduced.
This reduction has, in turn, consequences on the column height, on the internal
and effective temperature, but principally, on the amount of flux that can es-
cape from the sides of the column. As already mentioned, if the magnetic field
strength is high enough, then the amount of flux which escapes can explain the
high luminosity, in the X-rays, observed for the PULXs. Such luminosities, as
said at the beginning, can reach values up to L ∼ 1040erg s−1.

The codes developed for the numerical simulations are focused on the ac-
cretion processes around the star, so on the formation and the emission of an
accretion thin disk, which is truncated at the Alfvén radius, where matter start
to accrete along the magnetic field lines leading to the formation of a torus.
For the sake of simplicity, the torus is modeled by the lines of a purely dipolar
magnetic field, and the disk is assumed as a thin disk.

The first code solves the problem of the visibility of the source, that is
determines the part in view of the torus and of the disk at a given phase, once
the values of the parameters have been fixed, which are the radius of the disk
and its inclination with respect to the spin axis, the magnetospheric radius,
and the inclinations of the LOS and the magnetic axis with respect to the spin
axis. Exploiting the results of the visibility code, the ray-tracing code computes
the total flux coming from the source summing over the part in view at each
rotational phase.

The complexity of the emitting region (formed by the torus and the disk)
and the selection of the part in view distinguish the version of the ray-tracing
code used in this work from those used in previous ones ([Zane & Turolla(2006)],
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[Taverna et al.(2015)], and [Taverna & Turolla(2017)]). Moreover, in this ver-
sion, the temperature profile of the disk is constant, while that of the torus
derives from the code of Brice et al.(2021) [Brice et al.(2021)]. From the ray-
tracer outputs we could we could extract the light curve of the source and its
spectrum (using an post-production IDL script to plot these results).

We then first compared the numerical results obtained for three different
geometries of view of the source, obtained for fixed values of B, Rmax, ξ, and
γ, and changing only the LOS inclination with respect to the spin axis of the
NS (χ). This allowed us to check that the code works correctly. In fact, as
seen in figures 5.2, 5.3, and 5.5, there are no big variations in the light curves
of different energy bands, and in the spectra, when the part in view is always
the same at each phase, thus in the face-on and edge-on cases. This is because
the emission which arrives to the observer comes always from the same emitting
area. Hence, the light curve is nearly flat, and the spectra obtained for different
phase bins are quite overlapped each other, as well as with the total phase
averaged spectrum. The only different case is that with χ = 44◦, where the
part in view changes with the rotation of the source, thus at each phase the
emission from the part in view is not the same, and so observing in different
energy bands, the emitting area changes. This time the light curve presents
two evident peaks, and the spectra at each phase bin are more displaced among
themselves. Thus, as expected, when the source is seen in such a geometrical
view, we have evident changes in the emission both at each phase and in each
energy band.

We have then compared the code light curves with those collected in two
past observations, NGC 7793 P13 [Fürst et al.(2016)], and NGC 300 ULX1
[Carpano et al.(2018)]. Using two different sets of input parameters (B =
1012G, Rmax = 26NNS , Rdisk = 150RNS , ξ = 10◦, χ = 43◦, and B = 1013G,
Rmax = 71NNS , Rdisk = 200RNS , ξ = 10◦, χ = 47◦) we obtained two dif-
ferent light curve profiles to be compared with those observed. It turns out
that our numerical simulations are indeed able to reproduce pulsations, with
also the observed increasing trend of the pulsed fraction, as a function of en-
ergy. But while the PFs of the first configuration (B = 1012G, Rmax = 26NNS ,
Rdisk = 150RNS , ξ = 10◦, χ = 43◦), are quite in agreement with the observed
data of NGC 7793 P13, those of the second (B = 1013G, Rmax = 71NNS ,
Rdisk = 200RNS , ξ = 10◦, χ = 47◦) are systematically lower than what ob-
served in NGC 300 ULX1. Maybe an explanation could be the presence of a
more extended magnetosphere and disk, or the fact that the model used in our
code is very simplified, since takes into account only a blackbody emission for
both the torus and the disk. In fact, in the spectra only the disk thermal com-
ponent at low energy is compatible with the soft thermal emission of observed
ones.

For what concerns the spectrum, taking into account that observed for NGC
300 ULX1, we comcluded that a proper comparison cannot be done, since the
observed spectra seem to be described by a two-component model, one ther-
mal at lower energies kT ∼ 0.18keV (blackbody emission), and the other non
thermal (power-law) at higher energies. Since the code simulate only a thermal
emission, we considered just the thermal component, seeing that the spectrum
results compatible with that of the code for energies between 0.3-1 keV, which
is produced by the blackbody emission of the disk at a temperature of 0.2keV.

In conclusion, the broad agreement we found between the results of our code
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and the observation can be satisfactory, taking into account all the simplified
assumption we made in this first work.
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