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Abstract

In Sweden, spent nuclear fuel is planned to be placed in waste packages with an

external cylindrical OFP-copper canister according to the KBS-3 concept, devel-

oped by the SKB. The canisters will be exposed to an external pressure of about

15 MPa due to the hydrostatic pressure from a 500m water pillar and the swelling

pressure from the surrounding bentonite clay. Due to this pressure the canisters will

be subjected to creep under multiaxial stress state. For it is likely that the increase

in pressure will be slow and gradual, the ideal tool to simulate this type of loading

is slow strain rate tensile tests (SSRT).

In the present work circumferentially double nothced bars with a Bridgman notch

geometry were tested uniaxially with 10−61/s and 10−71/s strain rate, at 75℃ and

125℃. Three were the chosen notch acuity , namely 5, 2 and 0.5 and two smooth

specimens were tested to provide the uniaxial term of comparison. Both the yield

strength and maximum strength were found to be higher for specimens with higher

notch acuity. Not the temperature, nor the strain rate were found to have an appre-

ciable effect on material’s strength parameters. On the other hand, the material’s

lifetime was found to be notch acuity dependent: the sharper the notch, the shorter

the lifetime is.

The material’s ductility was evaluated: specimens with the sharper notches showed

the lower ductility. Different deformations on the two notches was observed and

together with the overall strain to rupture, also the radial and axial strain on the

notches were evaluated: not an evident relation between the parameters was found.

Just for the broken notch’s radial strain a linear, increasing trend with the notch

acuity was found.

Finally, some metallographic investigation were made: more elongated grains along

the stress direction were visible in the broken notches than in the unbroken ones.

The results are in good agreement with the expectations but more tests are needed

to be performed with different strain rates and different notches acuity.





1
Project Background: the disposal

of spent nuclear fuel

This chapter provides a brief overview of the present project framework, in order to

better understand its aim and objectives.

1.1 Nuclear Power Plants in Sweden

Nuclear power plants generate about 30% of the electricity produced in the EU.

As of August 2014 there is a total of 184 nuclear power plant units as showed in

Figure 1.1 which account for approximately 15% of total energy consumption. Some

reactors are being decommissioned, others are having their working lives extended,

and several new units are planned or under construction.
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Figure 1.1: Nuclear Power Plants in Europe

Thanks to its long term and sustainable policy, Sweden ranks between the highest

among EU countries in terms of share of carbon emissions: the average Swede infact,

releases 5.1 tons of carbon dioxide per year into the atmosphere, compared with the

EU average of 7.9 tons [6] One of the reason for this low emission rate is that about

40% of electricity in Sweden comes from nuclear power which generates a fairly

negligible amount of carbon emissions

Sweden has 10 nuclear power reactors spread in three operational power plants

as shown in Figure 1.2: three boiling water reactors (BWRs) are placed in Fors-

mark, three BWRs in Oskarshamn and one BWRs together with three power water

reactors (PWRs) are working in the nation’s largest power station, Ringhals Nu-

clear Power Plant which generates about 15 percent of Sweden’s annual electricity

consumption.

Sweden began its research into nuclear energy in 1947 with the establihment of

the Atomic Energy Company, which originated in the ongoing military research and

developement department at the Defence Institute.

In 1954 the first heavy water reactor was built in Ågesta, the second one in Marviken,

which was finished but never operated due to several safety issues. Both were heavy

water reactors so that the Swedish uranium could have been used without the need

of an isotope enrichment; later on in the 1968 Sweden signed the Non-Proliferation

Treaty, embracing the use of plutonium for its power reactor. The small implant in

Ågesta, have been working and delivering heat and a little electricity to Stockholm

for 20 years; it was shutted down in 1974.

The first boiling water reactor was designed and built up by thw OKG-Oskarshamns

Kraftgrupp company in Oskarshamns, while the other ones were commissioned to

Vattenfall, a Swedish state-owned power company which built up the nuclear im-
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plants in Ringhals and Barsebäck; they also cooperated with other utilities to build

the Forsmark nuclear plant, in the Uppland province.

As a result, six reactors entered commercial service in the 1970s and six in the 1980s;

the implant in Barsebäck definitely closed in 2005 due to political decisions.

Figure 1.2: Nuclear Reactor in Sweden: in green are showed the operating ones and in red the
implants which have been shutted down.

After the partial meltdown at the Three Mile Island Nuclear Generating Station

(United States) in 1979, Swedes were called for a national referendum about the

future of nuclear power there. As a result of this, it was decided in 1980 that no

further nuclear power plants should be built, and that a nuclear power phase-out

should be completed by 2010.

But it has not been all so simple as expected: the nuclear phase out policy has been

controversial and the Swedish government has to date not produced an effective, long

term energy policy with a view to dismantle its entire nuclear power program. In

2009 infact, it was banned to construct new nuclear reactors, although contruction

will only be at existing sites and to replace the actual ten units. The Alliance

government in a policy document can formally be said to have reversed Sweden’s

nuclear power phase-out policy. The document recognizes that Sweden, as noted

above, heavily relies on nuclear power for its supply of electricity and that in light of

climate change being a top national priority nuclear power will remain an important
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source of Swedish electricity production for the foreseeable future. [1]

In the light of what has being said, the nuclear waste management and disposal

constitutes an important issue in the frame of the future of the Swedish nuclear

programme. In the next section an overview of the Swedish methods for the disposal

of nuclear waste is presented.

1.2 Swedish Concepts for High Level Waste and

Spent Fuel Disposal

Even if the the nuclear phase out policy was not successful as it was meant to be,

Sweden has its nuclear waste management well in hand.

In the Nuclear Stipulation Act of 1977 the politician stated that nuclear generators

are responsible for the costs of managing and disposing of spent fuel, and must pro-

vide for those costs as they go. In addition to that, utilities would not be allowed

to load fuel into a new reactor before it had been shown it was possible to arrange

a final storage of the waste in an absolutely safe way. Also, the law offered two

alternatives for the spent nuclear fuel: reprocessing and their final disposal and final

disposal of the fuel without reprocessing.

In the very same year the Swedish Nuclear Fuel and Waste Management Company

(Svensk Kärnbränslehantering AB, SKB) was set up by the nuclear utilities to de-

velop a comprehensive concept for the management and disposal of used fuel and

other radioactive wastes. [5]. Since its establishment, SKB has been conducting

advanced research in the area, trying to find a safe method for the three main kind

of Swedes nuclear waste, which asks for different management method:

• operational waste

• decommissioning waste

• spent nuclear fuel

A schematic representation of the volumes of nuclear waste SKB will be dealing

with is shown in Figure 1.3 where the estimation is made upon 40 years operation

of the nuclear power plants:
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Figure 1.3: Waste volumes compared to the size of the Globen stadium in Stockholm

Operational waste constitutes the 85% of all nuclear waste. Most is low and

intermediate-level waste, which requires isolation for at least 500 years: the low-

level waste needs no radiation shielding and can be stored in ordinary steel-plate

containers. The intermediate-level waste instead must be radiation shielded and

poured into concrete or steel containers at the nuclear power plants. The decom-

missioning waste is constituted by scrap metal and concrete generated when nuclear

power plants are dismantled. Most of this waste is low and intermediate-level, ex-

ception making for reactor rods and other core components that are classified as

long-lived and must be isolated for thousands of years.

The smallest but most hazardous part of the total quantity of waste is spent nuclear

fuel which must be radiation-shielded and cooled throughout handling, transporta-

tion and storage and finally isolated for 100000 years.

An overview on the method adopted in Sweden for the disposal of this kind of

nuclear waste is presented in the next section.

1.2.1 SKB Concept for Spent Nuclear Fuel Disposal

Several decades of research and developement has led SKB to put forward the KBS-

3 method for the final stage of spent nuclear fuel management. In this method ,

copper canisters with a cast iron insert containing spent nuclear fuel are sourrounded

by bentonite clay and deposited at approximately 500m in groundwater saturated

granitic rock as shown in Figure1.4.
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Figure 1.4: KBS-3 method for final disposal of spent nuclear fuel

Thus a multiple barrier principle is applied: the canisters isolates, the buffer seals

and the rock protects. According to this, the canisters provides a corrosion and a

mechanical barrier from the surroundings; the layer of bentonite clay protects the

canisters against small movements in the rock, absorb water while swelling and acts

as a filter trapping radionuclides. Finally, the rock protects the canisters and the

buffer from mechanical damage, offers a stable chemical environment and it delays

the transport of radionuclides.

This SKB’s choice for the materials is based on the idea that the repository should

imitate nature as closely as possible, thus the engineered barriers shall be made

of naturally occurred materials that are stable in the long term in the repository

environment. [7] For that purpose several studies have shown that all of the chosen

materials lasted and existed for many millions of years under proper conditions. [3]

The selection of the site is the result of close to 20 years of work during which

SKB has conducted surveys throughout Sweden and feasibility studies in eight mu-

nicipalities. These were followed by site investigations in Forsmark and Oskarshamn

between 2002 to 2007. In 2009 Forsmark was selected as the site for the final reposi-

tory for Sweden’s spent nuclear fuel and two years later an application was submitted

to the Swedish Radiation Safety Authority and the Environmental Court. In the

application they simultaneously asked for permits for the interim storage facility and

an encapsulation facility which are meant to be build in Oskarshamn. A deposition

permit is expected to be received in 2017 and it is believed that the mission will be

completed by 2060, although recently some years of delay are forecasted.

While waiting for the authorities response, the ten reactors cited before are still in

operation and SKB can count on its already existing waste handling facilities [4]:

• a Central interim storage facility is situated in Clab where the spent nuclear
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fuel lies in underground storage pools for 30 years (Figure 1.5 ); in this period

its radioactivity declines by 90% so it become easier to dispose of.

Figure 1.5: A storage pool at CLAB, the Swedish interim storage facility for spent nuclear fuel

There are actually more than 4000 tonnes of spent nuclear fuel in Clab, waiting

for a final disposal site.

• a specially built ship, ship m/s Sigyn, which transports spent nuclear fuel to

and from the various nuclear facilities.

• a final repository for radioactive operational waste which handles short-lived,

low- and intermediate-level waste. It is an underground rock facility located

at Forsmark about 50m beneath the seabed and it has been in operation since

1988.

What remain to be built are a canister factory, an encapsulation plant and -

as stated above- a final repository where the spent nuclear fuel can be stored for

100 000 years, time requested for most of the radionuclides formed in the fuel to

disappear. These facilities can be put into service in around 2017.

Together with those waste handling facilities SKB has to date the following well

developed, cutting-edge R&D facilities: the Äspö Hard Rock Laboratory is located

on an island in the archipelago next to the Oskarshamn nuclear power plant; the

laboratory offers a realistic environment for different experiments and tests under

the conditions that will reveal in a deep repository.

The Canister Laboratory is in the harbour of Oskarshamn and it is the centre for

further developement of the encapsulation technology and related safety issues. Its

primary purpose is to develop methods for welding the lid onto the copper canister

and for inspecting the weld for quality assessment. [3]

The Copper Canisters

Around 12000 tonnes of spent nuclear fuel is forecasted to arise from the currently

approved Swedish nuclear power programme (where the last of the 10 operating re-
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actors is planned to end operation in 2045), corresponding to roughly 6000 canisters.

SKB has so far experience from full scale manufacturing of 15 complete canisters:

some of them are used for experiments in the Äspö Laboratory and some of them are

on display on exibitions. A summary of what has been manufactured as of 2007 is

shown in Figure 1.7; for the final project 6000 canisters are needed to be produced.

Figure 1.6: Manufactured canisters by 2007

The reference design of the canister consist of a tight, 5 cm thick corrosion barrier

of copper and a load-bearing insert of nodular cast iron. As shown in Figure 1.7 the

sealed canister will have a total lenght of 4,835 m and a diameter of 1,050 m [7].

Depending on the kind of fuel to be stored (mainly urarium oxide fuel, MOX), the

cast iron insert will be manufactured in two types, BWR and PWR, respectively for

fuel coming from Boiling Water Reactors and Pressure Water Reactors.

This design will allow the canisters to comply with the following three most

important safety functions [7] and [9]

• Provide a corrosion barrier: the canister shell must resist the corrosion to

which it is exposed in the Spent Fuel Repository. The copper in the shell

should therefore have a nominal thickness of 5 cm and it should be of high

quality to prevent intergranular corrosion.

The analyses in the reference evolution showed that at most a few mm of the

copper shell will be corroded in one million years if the buffer’s safety functions

are mantained.

• Provide a radiation barrier: the canister must contribute to keeping the radi-

ation on the surface below 1Gy/h

• Withstand isostatic load: the canister must withstand the loads associated

with handling, transport and deposition. Then when the load from the ground-

water pressure and the swelling of the bentonite develops, the copper will de-

form until it makes contact with the cast iron insert; hence, the copper must
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Figure 1.7: Left: the reference design with a corrosion resistant outer copper shell and a load-
bearing insert of nodular cast iron. Right: cross section of insert designs of the BWR and PWR
types

also possess sufficient ductility to allow straining, either plastically or by creep,

when the external load against the insert deforms the canister.

• Withstand shear load: a rock shear movement will also result in deformation

of the copper canister. The safety assessment showed that the probability of

a failure due to a shear load having occurred at the end of the assessment

period is 0,08 in the ensamble of 6000 canisters, with a number of pessimistic

assumptions regarding both the host rock and the canisters.

The deformation of canister described above will take place at a temperature

of about 100℃ caused by the fuel’s heat flow: the radiation from radioactive decay

infact, will interact with the materials in the fuel and the canister cavity; energy will

thereby be transferred to the materials and the radiation will be attenuated. Most

of the transferred energy is converted into thermal energy and heat is generated

(it is estimated that the heat generation in the fuel to be of importance for a few

hundred years).

The total external loading conditions which have been assessed in [9] will result

in a external pressure of maximum 15 MPa which leads to plastic deformation of

copper from 2.5% up to 4%. For that reason many studies have been carried out

to assess the canisters capability to withstand such deformations and creep tests

and modelling had been performed: both the works from Sandström in 2011 and

Sandström and Yao [?] showed how the creep behaviour of copper is sufficiently
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well understood for developing models that reproduce data from laboratory tests.

In most of the creep modelling it has been assumed that the full load is applied

directly and this is natural since the creep data are practically always generated

with a constant applied load.

In the repository, however, the increase in the mechanical load can be expected to be

slow and gradual; to simulate this situation is reasonable to use slow strain rate ten-

sile tests (SSRT). SSRT tests have been performed on both cold deformed Cu-OFP

[10] and hot worked ones [11]. These investigations cover the temperature interval

from 20 to 175 ℃ and strain rates from 1 · 10−7 to 0.11/s. Also, in citeSSRTreport

SSRT tests have been carried out on friction stir welded Cu-OFP.

In the present work SSRT tests are used to study the behaviour and ductility

of Cu-OFP when subjected to multiaxial stress state. Before going any further, the

material the canisters are made is briefly described in the next chapter.
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2
Material: CU-OFP

As briefly described in Chapter 1, the material for the canister needed to respect

some essential characteristics: it needed to be well characterized, easy to manufac-

ture and available in adequate quantities. Also, it shall maintain its isolation and

containment of the radioactive contents for a very long period and above all, the

corrosion resistance and the mechanical endurance must be especially high. [14]

Initially oxygen free high conductivity copper (Cu-OFHC) has been considered as a

candidate material thanks to its considerable thermodynamic stability in reducing

ground water. However, Cu-OFHC showed inadequate creep ductility, and for this

reason, two candidates were chosen: oxygen free copper with 30-60 ppm phosphorus

(Cu-OFP), and pure copper with 0.1% silver. The first one was expected to give

the least negative influence on the corrosion properties and it was then selected. In

addition to that, the cost of Cu-OFP was essentially lower than that of Cu-0.1%Ag.

In the following sections a short overview on the material which has been used

in this study is given. Relations between the composition and the properties of the

final component are explained.

13



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

2.1 Oxygen Free Copper

Pure copper is a natural element that has shown in nature that it can survive in

comparable circumstances for millions of years. The copper’s capacity for deforma-

tion and strain is also excellent and that is why it has been selected for the material

of corrosion shield of the canister.

The reason for which the absence of oxygen is required for the KBS-3 project

is to avoid hydrogen embrittlement, a dangerous phenomenon especially when the

material is exposed to high temperatures. It has been shown that Copper in its +1

oxidation state reacts with oxygen forming Cuprite (2.1):

4Cu+O2 −→ 2Cu2O (2.1)

and when in the +2 oxidation state the following reaction takes place, giving

Tenorite (2.2):

2Cu+O2 −→ CuO (2.2)

For that reason, in the presence of oxygen, the phase diagram shall be investi-

gated (2.1) to understand which of the compounds is more stable depending on the

temperature and oxygen content.

Figure 2.1: Cu-O phase diagram

From Figure 2.1 is clear how the Cuprite is stable for oxygen content lower than

34% and relatively low temperature. The problem occurs when molecular hydrogen
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diffuses through the material and interacts with the cuprous oxide inclusions at the

grain boundaries following the reaction 2.3

Cu2O + 2H −→ 2Cu+H2O (2.3)

Water, hence steam is formed as pressurized bubbles at the grain boundaries

which can be literally forced apart, causing grain boundary fracture and a decrease

in the mechanical strength of the material.

This kind of embrittlement frequently occurs when copper is annealed and quenched

in hydrogen environment and the safest solution is to severely reduce the oxygen

content in the material. For that reason, the KBS-3’s copper canisters must have

an oxygen content lower than 5ppm.

2.2 Effect of Phosphorus on strenght properties

The presence of phosphorus plays some very important role on the oxygen free

copper properties. One among the others is to limit the quantity of free oxygen,

combining with it and avoiding the formation of copper oxides which are potential

cause for hydrogen embrittlement as explained in the previous section.

The effect of phosphorus on copper’s mechanical properties, in particular on creep

ductility and creep strength has been studied for years and in the work of Sandström

and Andersson[11] it is well explained and estimated: in copper the phosphorus

atoms are in solid solution and since they are 16.5% larger than the host atoms

, they give rise to a local stress fields that interact with those of the dislocations,

impeding their motion and causing an increase in strength of the material. This

mechanism is called solute hardening effect.

In [11] the solid solution hardening of 50 wt ppm phosphorus in copper was estimated

using the Labush-Nabarro’s model which express the increase in the yield strength

as shown in equation 2.4

∆Rp0.2 = KLN · ε4/3b · c
2/3 (2.4)

where KLN is a costant, εb is the lattice misfit parameter of phosphorus in copper

and c is the atomic fraction of the solute. It was computed for the ∆Rp0.2 to

be between 0.7 and 0.8 MPa, which is a small increase in the yield strength but

consistent with the measured properties with and without phosphorus.
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While exerting a small influence on the tensile properties, the creep properties are

strongly changed: this is because the solid solution can influence the climb movement

of the dislocations which controls the rate of high temperature creep. The solute

requires the dislocation an additional time to pass over it, hence its strain field

reduces the climb rate.

Figure 2.2: Dislocation line passing solute’s particles

As schematically shown for a line dislocation in Figure 2.2, for a dislocation to

move it must break away from the solute cloud. This requires an additional stress

that is called the break stress. This stress for unpinning a dislocation from the

P-atoms, explains the influence of phosphorous on the creep properties.
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3
Creep and SSRT Tests

As planned in the KBS-3 project, the copper canisters object of this study will grad-

ually be exposed to an external pressure of about 15 MPa due to the hydrostatic

pressure from a 500 m water pillar and the swelling pressure from the surrounding

bentonite clay.

It is well established that plastic deformation in stress-strain tests at constant strain

rate (SSRT) and strain-time tests at constant load (creep) represents the same mech-

anism. In spite of this, the two types of tests are generally described with two

different models which are here described.

3.1 Creep

One of the most critical factors determining the structural integrity of elevated

temperature components is their creep behavior. Creep at high temperature can

lead to micro cracking and ultimate fracture and, therefore, is one of the main

mechanisms that limits the component life.

Creep properties are generally determined by means of a test in which a constant

load is applied to a specimen and the resulting strain is recorded as a function of

time.

17
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Figure 3.1: Typical creep curve

In Figure 3.1 a typical creep curve is shown: after the initial instantaneous strain,

a decelerating strain rate stage (transient primary creep) leads to a steady minimum

creep rate (MCR), which is finally followed by an accelerating stage (tertiary creep)

that ends to fracture at a rupture time tR.

During primary creep, the decreasing slope of the creep curve is attributed to strain

hardening. Secondary stage creep is explained in terms of a balance between strain

hardening, softening, and damage processes, resulting in a nearly constant creep

rate. The tertiary stage is attributed to the appereance of internal and external

damage processes coupled with softening processes, resulting in a decrease in the

resistance to load or a significant increase in the net sectional stress.

Over the past several decades, a range of methods have been developed to predict

and evaluate material’s creep resistance. The most widely used methods include

constitutive equations and parametric correlations.

3.1.1 Creep in copper

The placement of waste package is carried out in a depository 500 m below the

ground. Creep in copper canisters tends to begin when the clay engorges by absorb-

ing water from the surrounding or it can occur when the canister is sheared during

earthquake. Behaviour of creep can be explained using power law relation at low

stress and very high temperature. On the contrary, the power law relation does

not hold good for the behaviour of creep at low temperature and high stress. The

following equation represents the steady-state rate of pure metals [15]

ε = A

(
DbG

Tk

)( σ
G

)
n (3.1)

where b is the Burger vector, A is a fitting parameter, n is a dimentionless
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constant which increases with increasing stress and decreasing temperature; D is

the self-diffusion coefficient, G the shear modulus and k the Boltzmann’s constant.

Atomic diffusion and dislocation motion drives the creep mechanism present in

crystalline solids. Each process has its own crucial role for particular limits of stress

and temperature and for different materials. For example diffusion creep is essential

at fine grain size, high temperatures and low stresses. Dislocation creep instead,

which includes the interaction sliding or dislocation motion coupled with stationary

dislocations, plays an important role in crystalline materials.

From the equation 3.1 one can see how movement of dislocation is dependent on the

applied stresses which is directly proportional to the solid’s elastic modulus. Elastic

modulus infact, adds a temperature dependency to the equation.

Vacancy diffusion controls the dislocation climb rate in the lattice intermediary tem-

peratures ranging from 0.4 − 0.7 · Tm. On the other hand, at lower temperatures

pipe diffusion along dislocation cores turn out to be a dominating diffusion process

at lower temperatures. These are termed as high temperature climb and low tem-

perature climb respectively. Activation energy which is affected by the diffusion

process is drastically lower for pipe diffusion than volume diffusion.

The transition for P-free copper occurs at around 100Mpa and 160℃ whereas the

transition for P-doped Cu is believed to take place at higher temperatures. In the

above mentioned equation, n which is the value of dimensionless constant usually

increases with increasing stress and decreasing temperature. The measurement of n

values for P-doped copper was carried out by Andersson, Seitisleam and Sandström

([?]) which in fact ranges from 35 to 73 at 175℃. Therefore same wise like steel,

copper’s stress exponent increases with decreasing temperature and is in the range

of 50-100.

3.1.2 Creep Testing

Creep is an important design factor for the components which are subjected to

stresses at high temperature. Creep deformation and the material’s rupture be-

haviour are infact used to calculate the material’s strength and lifetime.

The material’s creep behaviour is usually studied under uniaxial loading tests, which

are conducted at constant temperature and under constant dead load. Strain is

calculated as a function of time and tests continue until failure or until they are

interrupted after a specific time. Creep curves like the one shown in Figure 3.1

are obtained which shape is influenced by the mutual balance of many factors; the

following three play a critical role:

- strain hardening;
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- softening process like strain softening, re-crystallization and precipitate over

aging;

- damaging processes like specimen necking, cracking and cavitations.

Creep rate is decreased by the strain hardening while its increase is due to the latter

two factors. In the curve’s primary stage infact, the decreasing slope is the result of

the hardening of strain. A balance between softening, strain hardening and damag-

ing processes results in an approximately constant creep rate in the secondary-phase

in the creep curve. Finally, in the tertiary phase, external and internal damage pro-

cesses decreases the resistance to the applied load until fracture.

Equation 3.1 represent the steady state creep rate of pure metals when applying low

and intermediate stresses; in [?] it was found to be independent from the tempera-

ture when the exponent n is calculated for the tensile tests. Acceptable agreement

between the two testing technique is of utmost importance for the comparative

analysis of tensile and creep data.

3.2 Slow Strain Rate Tensile Tests

As mentioned before, in the work of Sandström and Yao [?] it was confirmed that

ordinary creep test and slow strain rate tensile test give consistent information,

especially in the secondary creep stage. Also, it was shown that tensile tests results

are within the scatter band of the creep data and nearly the same curve’s slopes

were found. The SSRT is therefore an alternative to the ordinary creep test, with

the advantage of the starting phase is much more controlled than in a creep test, so

it can be more easily modelled.

In the slow strain rate tensile tests which were performed in the present work, the

load was varied to mantain a constant extension rate. The important characteristic

of these tests infact, is that the strain rate is low, namely 10−6s−1 and 10−7s−1. The

assimilated data were used to plot stress-strain diagram: in Figure 3.2 a general

shape of a σ − ε curve is shown.

Parameters like the ultimate tensile strength and yield strength are used to define

the curve. The stress-strain diagram can be schematized as composed by two parts:

elastic and plastic region. The stress is directly proportional to the strain in the

first region and when it tends to a particular value, the yield stress, the material

starts yielding and deforms permanently.

The yield point is usually determined by the 0.2% offset method and the tensile

strenght is defined as the stress highest value which occur after the yield point.

Due to the material’s work hardening, an increasing load between the yield point
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Figure 3.2: Shape of ductile specimen at various stages of testing

and the ultimate strength is required: up to the UTS the sample has elongated

and reduced its cross section uniformly along the gauge length. At the maximum

strength then it becomes dimentionally unstable because the area reduction had

become too important for the strain hardening to give its effect; as a result the

additional deformation is non-uniform and the testpiece starts to neck down at the

point where it will eventually fracture.

Many factor can influence the shape and stresses magnitude in a given material’s

stress-strain curve such as temperature, strain rate, prior history of deformation,

heat treatments and many more.

From a microstructural point of view the plastic deformation which occurs during

a tensile test is due to the climb and glide of dislocations along the crystallographic

planes.

3.3 Notched bars and the multiaxial stress state

The mechanism of ductile fracture is of high significance in characterizing KBS-3

copper canisters against plastic collapse and fracture. Ductility characterizes the

material capability to plastically deform and the deep knowledge of this parameter

is required for such a delicate issue as the spent nuclear fuel containment.

What makes ductility difficult to quantify is that it not only changes with temper-

ature but also with the stress state.

Also, it is well known that creep failures often initiate at sites of stress concentra-

tion where a triaxial tensile stress state exist; than the developed actual stress state
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will depend upon the applied loading conditions and the local geometrical configura-

tion. The notched bar tensile test is therefore the most straightforward experimental

procedure [19]. Also, a wide range of stress states can be generated across the notch

throat by altering the notch profile. Geometries based on the Bridgman notch are

useful for this purpose.

In Figure 3.3 the geometry of Bridgman’s semicircular notches are shown: in a spec-

imen of circular cross section with diameter D they are characterized by an initial

notch root radius rn0 and an initial diameter of the testpiece at the notch plane

(throat)dn0 [19]. The ratio between the radius of the specimen at the base of the

notch a = dn0

2
and the notch root radius rn0 = R is defined as notch acuity.

NotchAcuity =
dn0
2R

=
a

R

Figure 3.3: Bridgman semicircular notches profiles with different notch acuity. Notch acuity and
sharpness increase from a) to c)

The stress distribution which developes during a tensile test across a notch throat

is sensitive to the material properties. Initially, on loading, an elastic or elastic plus

plastic stress field will be generated. With time, stress redistribution usually takes

place, sometimes until a stationary stress state is achieved.

This can be seen in Figure 3.4 and 3.5 taken from the SKB report [17] where finite
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element computations have been performed to interpret the tests for notched creep

specimen.

Figure 3.4: Von Mises stress distribution at the notch root for a specimen with acuity 0, 5, tested
with constant load: a) directly after loading, b) after a stationary creep stress has been reached.

Figure 3.5: Von Mises stress distribution at the notch root for a specimen with acuity 5, tested
with constant load: a) directly after loading, b) after a stationary creep stress has been reached.

In Figure 3.4 the stress distribution at an acuity 0.5 notch is shown: there was

a pronounced stress concentration at the notch, marked in red. Stresses eventually

redistributed and reached a stationary creep stress as shown in the right picture.

Same observations can be done when the acuity is increased from 0.5 to 5, with

the difference that here the higher values of stresses are localised and confined in a

smaller area. Evidently, the sharper the notch, the higher the stress concentration

at the notch is. Thus, in a SSRT test the stress distribution and its developement

in time is expected to be qualitatively the same.

One of the aims of the present work is to investigate the relations between the

notch acuity, hence the stress distribution at the notch root, and the other testing

parameter such as temperature and strain rate.
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In the next chapter the experimental methods which were used for investigations

on the material’s behaviour under multiaxial stress state by means of SSRT tests

are explained.
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4
Experimental Testing

4.1 Experimental Apparatus

In the first section of this chapter the discussion is confined to the basic parts of the

apparatus that were necessary to carry out the experiments: after an overview on

the specimen’s composition, geometry and microstructure, the tensile test machine

are introduced. Also, the needed tools for the microstructural investigations and

observations are briefly described. The second section is focused on the method and

procedure for both the mechanical testing and the metallographic investigations.

4.1.1 SSRT Specimens

As described in Chapter 2, the test material is pure, oxygen free copper doped

with 45-60 ppm of phosphorous. The exact composition is given in Table 4.1 [18].

The element that has main influence on the creep properties is phosphorous and it is

in its optimal range, 50-70 ppm; no other element is likely to have a significant effect.

The test materials were taken from a side of the cylindrical body of the cop-

per canister as shown in Figure 4.1; the tube portion was provided by Svensk

Kärnbränslehantering AB.

In total 30 specimens were extracted but in this work we will consider just 10-11
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Cu (%) Ag As Bi Cd Co Cr

99,993 13,7 1,01 0,21 <0,003 <0,006 0,2

Fe H Mn Ni O P Pb

1,1 0,30 <0,01 2 2 45-60 <1

S Sb Se Si Sn Te Zn

5 1 <1 - <0,5 <1 <1

Table 4.1: Composition of tested material, ppm

of them, the ones who went to rupture during my stay at the Material Science

Department. However, further testing are still running in the laboratory.

Figure 4.1: Copper canister shell from which the specimens were extracted

24 cylindrical, double notched specimens with threaded ends were manufactured.

As described in Chapter 3, notched specimens are used when the effect of a multiaxial

stress state on material’s properties is to be investigated; therefore also 6 un-notched

specimens were manufactured, to provide uniaxial stress state data for comparison

and for demonstrating notch strengthening or notch weakening behaviour.

As suggested in the ”A Code for Practice for Conducting notched bar creep tests

and for interpreting the data” [19], Bridgman notched (semicircular) were used, since

they are more suitable for determining material behaviour under triaxial stress state.

In Figure 4.2 the four kind of specimen geometry are shown. Three different

notch acuities were chosen: 0.5, 2, and 5. The acuity, as explained in chapter 3, is

defined as the ratio a/R, where the parameter a is the radius of the specimen at the

base of the notch position and R the notch root radius. As an example the drawing
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Figure 4.2: Cylindrical, double notched specimens set: from the top acuity 0, 0.5, 2 and 5

of a cylindrical, double notch specimen with acuity 5 is shown in Figure 4.3

Figure 4.3: Dimension of a double notched cylindrical specimen with notch acuity 5

The specimens have a total lenght of 129 mm, a gauge lenght of 46,9 mm and a

lenght without thee screw of 79 mm; the diameter at the bottom of both threaded

end is 13 mm, the gross radius of the specimen is 7,98 and the net section 2a is

different for each kind of acuity as is better shown in the notch detail drawings in

Figure 4.4 it can be seen infact that according to the definition of the notch acuity,

the larger the a/R value, the sharper the notch.
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(a) Notch acuity 0,5 (b) Notch acuity 5

(c) Notch acuity 2

Figure 4.4: Drawings of the three kind of notch acuities

In Table4.5 the specimen’s dimentions are summarized. Before testing each spec-

imen dimentions have been checked with a calibrated Vernier caliper; the average

dimention for each feature and group of specimen type is reported in Table 4.5 Ev-

ery set of samples was verified to have dimentions which fell beneath specification’s

limits.

Figure 4.5: Designed and average specimens dimentions: the latter were calculated after 3 repeated
calliper measurements.

4.1.2 Tensile Tests Machines

The mechanical testing were conducted using two electromechanical uniaxial tensile

testing machines: the NT101 and the NT2005 41-E model which are respectively

shown in figure 4.6b and 4.6a; both were designed by Swetest Instrument AB.

The NT101 sytem (Figure 4.6a) consist of:

- 1 electro-mechanical screw with 20 KN load cell and ±125 mm stroke distance;

- 1 oven with 250℃maximum operating temperatures;
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(a) Tensile test machine
NT101

(b) Tensile test machine
NT2005

Figure 4.6: Electromechanical tensile test machines used for SSRT tests

- 1 extensometer of type Epsilon, HT3 type, with 50 mm gaugelenght and

±25, 0mm elongation limit;

- a load and temperature regulating console;

- a computer where the WinTest™software is installed.

Prior to tests, the machine parameters were optimised for the specific test conditions

and material used: these parameters include the PID values and filters. The last

ones are necessary to reduce the noise contribution from the received signals.

Tests could be conducted using either the load control channel or the encoder con-

trol channel: during the tests the time, the load (KN), the stroke travel and the

extensometer extension values can be recorded. Furthermore, the temperature of

both the oven chamber and the specimen can be registered by two thermocouples

mounted in the furnace and attached to the specimen just outside the gauge length.

The NT2005 system consist mainly of the same devices, which characteristics

are slightly different, namely:

- 1 electro-mechanical screw with 50 KN load cell and ±250 mm stroke distance;

- 1 oven with 400℃maximum operating temperatures;

- 1 extensometer of type Epsilon, HT2 type, with 50 mm gaugelenght and

±2, 50mm elongation limit;

- a load and temperature regulating console;

- a computer where the WinTest™software is installed [20].

4.1.3 Metallography Tests Apparatus

Metallography tests were carried out both on a original testpiece and on a failed

specimen. The apparatus needed for that purpose consisted on a cutting machine

Struers model Accutom-5, a grinding machine model Phoenix 1000 (4.7b) and a

mechanical polishing machine Phoenix 4000 (4.7a)
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The grinding machine was provided with Buehler Carbimet™P240, P320, P600 and

P1200 abrasive papers.

The polishing machine had adjustable rotation speed and normal force and it has

been used with 2 kind of cloth and 3 different Kemet diamond paste suspention

with increasing particles dimentions: 3 µ , 1µ and 0,06 µ. For each set of cloth and

diamond paste an optimal combination of rotation speed and normal force was set

up.

(a) Polishing machine,
model Phoenix 4000

(b) Grinding machine,
model Phoenix 1000

Figure 4.7: Polishing and grinding apparatus

4.2 Mechanical SSRT Tests

4.2.1 Test Plan

A total of 10 specimens has been tested and brought to rupture in the present

work: 8 of them were notched, thus subjected to a multiaxial stress state in the

notch region; 2 of them were un-notched, so that uniaxial data were provided for

comparison.

Two were the chosen exposition temperature, 75℃and 125℃and two the strain

rates: 10−6s−1 and 10−7s−1. Due to the large extention of time needed for each

test, not every notch acuity type has been exposed to different pairs of strain rate

and temperature but the test plan has been thought to cover as much various test

conditions as possible. Moreover, only two were the test specimens which could have

been tested with 10−7s−1 strain rate, as time was limited: each of those tests infact,

took around 400 hours to go to rupture.

A schematic overview of the test plan with specimen’s numbering is given in Figure

4.8
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Figure 4.8: Testing programme: for each specimen the strain rate and the exposition temperature
is showed.

4.2.2 Testing Procedure

As already described in the previous section the specimens designed dimention have

been checked; infact, every sample was verified to be beneath the specification limits.

The mechanical testing were conducted using the two uniaxial tensile test ma-

chines described before. The samples were mounted in the machines using the hold-

ing fixtures to ensure that the uniaxial tesile testing took place under controlled

conditions. As shown in Figure 4.9 the Epsilon extensometers were carefully at-

tached so that the grip was solidly fixed in the middle of the specimen’s lenght.

The NT2005 extensometer has a maximum elongation limit of 2.5 mm (5% strain),

therefore it was necessary to remove it, reset it to zero and remounted when the

strain got close to the above mentioned limits. This produced small discontinuities

in the data which were corrected for later on.

In the NT101 machine a thermocouple was attached at one edge of the specimen

with high temperature tape: in this way eventual differencies between the chamber

and the specimen temperature could have been recorded.
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Figure 4.9: Specimen with no notch mounted on the NT101 machine

The testpieces were then heated for some minutes before the start of the test in

order to homogenize the temperature distribution.

For each sample data for force, load, stroke travel, extensometer extension, time

and temperature were collected by means of the WinTest software. In the program

the required parameters for the tensile test were set: a ramp function with a strain

rate of 4, 7 · 10−5s−1 or 4, 7 · 10−6mm/s (equivalent to 10−6s−1 and 10−7s−1)was

defined; the number of points acquired in a time interval of 4000 s was set to be 10.

Low frequency filters were chosen in order to remove noise and interference on the

signal: for every recorded parameter 0,5 Hz was estimated to be a reasonable value.

Also, the machines were programmed to stop if certain limit values for the load and

extensometer extention were met: this has been done in order to prevent premature

rupture of the specimens.

To start the test an initial load was input using the encoder control channel on

the machine: values between 0,1 and 0,05 KN were necessary to put the specimen

in tension within the machine’s holding. In this way uneuseful time waited for the

load to increase was avoided.

Each specimen was expected to go to failure in one of the two notches, were the

stress concentration took place (see Chapter 3). The data recording was set to stop

once the load turned back to 0 MPa, meaning the specimen went to rupture. In

Figure 4.10 the failure of a notch acuity 2 is shown as an example
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Figure 4.10: Broken specimen with notch acuity 2 on the NT101 machine

4.3 Post-Test Metallography

After testing, 2 specimen were chosen for microstructural investigation: one de-

fective specimen (number 43), which hadn’t been used for testing, provided the

undeformed, original microstructure. The other one was the testpiece number 16

(Figure 4.11), which was exposed to a strain rate of 10−6s−1 and a temperature of

75℃.

Figure 4.11: Broken specimen with acuity 2, exposed to ε̇ = 10−6s−1 and T=75℃

The first one was trasversely cutted in an arbitrary section beneath the gauge

length; a cylinder was extracted and mounted in a resin holder in such a way to

expose the transversal section of the specimen. It was then grinded with 4 paper,

from the coarser (240p) to the finer (1200p); in each step the specimen was holded

(a) Testpiece 16: broken
section nr.1

(b) Testpiece 16: broken
section nr.2

Figure 4.12: Specimen 16’s broken sections

33 Chapter4



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

in the same direction and for enough time to remove the 90 degrees scratches of the

previous grinding step. The specimens were thoroughly washed between each step.

Three polishing step were then carried out; the mechanical head of the machine was

used just for the first two stages, the ones performed with the 3µ and 1µ respectively.

Because of the high ductility of the material, unwanted scratches were easy to obtain

and the last polishing stage was decided to be carried out manually and with no

suspension; water was used instead. The process went on until a satisfactory surface

finish was reached.

The optimal etching solution for the specimens was found to be the one in [?]

which contained:

40g CrO3, 75g HN4Cl, 50ml H2SO4, 50ml HNO3, 1.900ml H2O

The solution was swabbed on the specimen’s surafce for less than 10 seconds: the

exposure time depend on the seconds the surface takes to turn into a darker color.

From the specimen number 16 two cylinder were extracted: one containing one

of the two broken section and the other containing the unbroken notch.

The longitudinal middle section was needed to be exposed for both of the testpieces

so that the mode of fracture could be obtained from the broken notch, and the un-

failed notch could allow the identification of the sites of damage formation. Since

the particular configuration of the cutting machine didn’t allow longitudinal cutting

of the cilindric specimens, they have been grinded and polished until the middle

longitudinal section was reached.

Then the same procedure as for the testpiece 43 was followed: when reached a suffi-

ciently un-scratched surface trough several steps of grinding and polishing, the two

specimens had been etched in the above cited solution with the same exposure time.
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5
Experimental Results

In this chapter the experimental results are explained. Comparisons between stress

strain curves obtained at different strain rate, temperature and notch acuity are

made. The material’s strength and rupture parameters are evaluated so that con-

clusions on the material’s behaviour can be drawn.

In the last section an overview on the specimen’s deformed microstructure is shown.

5.1 Stress-Strain Curves

As described in Chapter 4, values for time, load and extensometer stroke were

recorded for each tested specimen and basic calculations were made to obtain both

engineering and true stress strain values.

Although the true stress-true strain curves are a better representation of how the

material behaves as it is being deformed, in engineering applications, where usually

the task is to determine whether a load will produce acceptable values of stress

and deformation, the engineering curves are preferred; their respective expressions

infact, involve data which are readily available, namely the cross sectional area A0

and the lenght L0 of the specimen in its undeformed state. Hence, the engineering

stress and strain values are used to make the final conclusion of the present work.
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The equation used to calculate them from the data acquired by the tensile tests

machines are shown below: the definition of the engineering stress and engineering

strain were used (Equation 5.1 and 5.2 )

εeng =
∆L

L0

(5.1)

σeng =
Load

A0

(5.2)

where A0 is the initial measured area, ∆L is the extensometer stroke and L0 the

specimen’s gauge lenght.

The σeng−εeng curves are reported for each specimen in the following figures (Figures

5.1 to 5.10):

Figure 5.1: Specimen’s 51 engineering curve: no notch, tested at 75℃ with 10−61/s strain rate

The first un-notched specimen in Figure 5.1 went to failure after almost 143 h,

reaching a strain to rupture of 47.2% and a maximum stress of about 167 MPa.

From the curve is clearly visible the elastic trait which extends until 60 Mpa.

Chapter5 36



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

Figure 5.2: Specimen’s 50 engineering curve: no notch, tested at 125℃ with 10−61/s strain rate

The second un-notched testpiece 5.2 was exposed to an higher temperature,

namely 125℃. It reached a lower maximum stress compared to the one tested at

75℃ and it went to rupture with almost the same strain and rupture time.

Figure 5.3: Specimen’s 45 engineering curve: notch acuity 5, tested at 75℃ with 10−61/s strain
rate

The first specimen from the acuity 5 set 5.3 was tested at 75℃ with 10−61/s

strain rate. It comes immediately evident the effect of the notches introduction:
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with a strain to rupture of about 13.9% and a maximum stress of almost 120 MPa,

the specimen’s strength properties are drastically reduced.

Figure 5.4: Specimen’s 38 engineering curve: notch acuity 5, tested at 125℃ with 10−61/s strain
rate

Still tested with ε̇ = 10−6 but at 125℃ the testpiece 38 with acuity 5 showed

a slightly lower strenght and strain to rupture if compared to the previous one,

respectively of 215 MPa and 12.9% 5.4. Furthermore the shape of the stress-strain

curve did not change significantly.
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Figure 5.5: Specimen’s 38 engineering curve: notch acuity 5, tested at 75℃ with 10−71/s strain
rate

The specimen 52 in Figure 5.5 was the first one to be tested with 10−71/s strain

rate: it took 413 hours to go to rupture but other condition being equal, both the

strain to failure and the σmax didn’t differ appreciably from the specimen tested

with higher strain rate.

Figure 5.6: Specimen’s 16 engineering curve: notch acuity 2, tested at 75℃ with 10−61/s strain
rate
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In Figure 5.6 the σeng − εeng curve of the specimen 16 is shown. It can be

compared to the one obtained for the testpiece 45 as all the testing conditions were

equal so that the introduction of blunter notches can be appreciated: it can be seen

infact that while the maximum strength decreased of about 7 MPa, it reached an

higher strain to rupture compared to both the testpiece with acuity 5. In particular

its σmax was 113.78, thus between the two values of the acuity 5 set. This can be

better appreciate in Figure 5.11.

Figure 5.7: Specimen’s 42 engineering curve: notch acuity 2, tested at 125℃ with 10−61/s strain
rate

The stress-strain engineering curve of the specimen number 42 showed the same

shape of the equivalent one tested at 75℃; the higher exposition temperature had

infact the effect of reducing both the maximum stress and the strain to rupture.
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Figure 5.8: Specimen’s 19 engineering curve: notch acuity 2, tested at 125℃ with 10−71/s strain
rate

The second and last specimen that have been tested with 10−71/s strain rate

was the one shown in Figure 5.8. It went to rupture after 390 hours and a strain

of 12.3%. Its maximum stress was less that 2 MPa smaller then the corrispondent

specimen 52 tested at higher strain rate and other condition being equal.

Figure 5.9: Specimen’s 12 engineering curve: notch acuity 0.5, tested at 75℃ with 10−61/s strain
rate

The curves of the two specimens with the bluntest notches (acuity 0.5) are shown
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in Figure 5.9 and 5.10: the first one went to rupture after almost 48 hours reaching

a strain of 16% which is the higher value recorded between the notched specimens.

On the other hand, its maximum stress (97.98 MPa) was the lowest between the

specimens tested at 75℃.

Figure 5.10: Specimen’s 17 engineering curve: notch acuity 0.5, tested at 125℃ with 10−61/s
strain rate

The lowest calculated strain to rupture was the one of the testpiece 17, with

notch acuity 0.5 tested at 125℃: its value is about 91.6 MPa but the strain to rup-

ture it reached is the highest between the specimens tested at that temperature.

In figure 5.11 all the curve obtained with 10−6 strain rate are plotted to give

an overview of the specimens geometry and testing parameter on the stress-strain

curves.

True stress-strain curves Altough the engineering curves are used to ex-

trapolate basic informations on material’s strenght, the effective stress and strain

values can only be found when referred to the instantaneous variations of the cross

sectional area and gauge lenght. For that reason also true stress-strain curves were

calculated. Basic expressions for the true strain and true stress were deduced from

the engineering ones; few steps are shown below.

The engineering strain and stress are defined as:
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Figure 5.11: Engineering curves obtained with 10−6 strain rate
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εtrue =

∫
dl

L0

(5.3)

σtrue =
Load

A
(5.4)

where A is the istantaneous cross sectional area or the net cross sectional area

for the notched specimens.

The expression for the true strain can be modified as follows, leading to Equation

5.8 after few simple step:

εtrue = log
L

L0

(5.5)

εtrue = log

(
L0 + ∆L

L0

)
(5.6)

εtrue = log 1 +
∆L

L0

(5.7)

εtrue = log (1 + εeng) (5.8)

The equation 5.8 is the one used to calculate the true strain values from the

extensometer stroke values (L) acquired from the tensile test machine.

The expression for the true stress can be obtained from the engineering one in a sim-

ilar way: thanks to the volume conservation assumption during plastic deformation

(Equation 5.9), the σtrue can be rewritten as showed in Equation 5.11

A0 · L0 = A · L (5.9)

σeng · L0 = σtrue · L (5.10)

σtrue = σeng ·
L

L0

(5.11)

Since the Equation 5.8 can be modified as L = L0(1 + εeng), the final expression

for the true stress can be obtained from Equation 5.12:

σtrue = σeng · (1 + εeng) (5.12)

Through equation 5.12 true stress values were directly related to the load and

extensometer ones which were recorded by the tensile machine. For the calculations,
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the nominal values for the initial test lenght and initial area, respectively L0 = 47mm

and A0 = 5.64mm were used. For the notch acuity 0.5 set of testpiece an initial

area of 5.64mm was taken instead.

The so calculated values for the true stress and true strain were then plotted for

each specimens as shown in the next figures.

Figure 5.12: Specimen’s 51 true stress-true strain curve: not notched, tested at 75℃ with 10−61/s
strain rate
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Figure 5.13: Specimen’s 50 true stress-true strain curve: not notched, tested at 125℃ with 10−61/s
strain rate

Figure 5.14: Specimen’s 45 true stress-true strain curve: notch acuity 5, tested at 75℃ with
10−61/s strain rate
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Figure 5.15: Specimen’s 38 true stress-true strain curve: notch acuity 5, tested at 125℃ with
10−61/s strain rate

Figure 5.16: Specimen’s 45 true stress-true strain curve: notch acuity 5, tested at 75℃ with
10−71/s strain rate
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Figure 5.17: Specimen’s 16 true stress-true strain curve: notch acuity 2, tested at 75℃ with
10−61/s strain rate

Figure 5.18: Specimen’s 42 true stress-true strain curve: notch acuity 2, tested at 125℃ with
10−61/s strain rate
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Figure 5.19: Specimen’s 19 true stress-true strain curve: notch acuity 2, tested at 125℃ with
10−71/s strain rate

Figure 5.20: Specimen’s 12 true stress-true strain curve: notch acuity 0.5, tested at 75℃ with
10−61/s strain rate

49 Chapter5



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

Figure 5.21: Specimen’s 17 true stress-true strain curve: notch acuity 0.5, tested at 125℃ with
10−61/s strain rate

5.1.1 Effect of the strain rate

The effect of the strain rate on the material’s behaviour can be shown with the help

of the stress strain curves of the specimen number 19 (acuity 2) and 52 (acuity 5):

they were exposed to 125℃ and 75℃ respectively and both loaded with a strain rate

of 10−71/s. A comparison can be made with the specimens 42 and 45 respectively

since they were tested at 10−61/s, notch acuity and exposition temperature being

equal.
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Figure 5.22: Effect of the strain rate on σ − ε curves; the two specimens had notch acuity 5 and
were both exposed to 75℃. Lighter blue colour indicates the testpiece tested with higher strain
rate

Figure 5.23: Effect of the strain rate on σ − ε curves; the two specimens had notch acuity 2 and
were both exposed to 125℃. Lighter red colour indicates the testpiece tested with higher strain
rate

Evidently and as expected, a lower strain rate brought to a lower materials

resistance and lower failure strain. This effect was more visible on the set of specimen

with the blunter notches and higher testing temperature: when the acuity was 2

infact, a difference of 13.9 MPa in the maximum stress was recorded while just a

difference of 5.5 MPa was found in the acuity 5 testpieces when the strain rate
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was changed. Same observation can be made for the strain to rupture, which was

decreased more effectively when blunter notches were introduced.

The effect can reasonably be found in the higher temperature the acuity 2 specimens

were exposed to, which brought to a general decrease in the strength properties. This

is better explained in the next section.

5.1.2 Effect of the temperature

As reasonably expected the effect of the temperature on the specimens is to decrease

their resistance: strain rate and notch geometry being equal, the specimens tested

at higher temperature showed lower maximum stresses and failure strains as shown

in Figure 5.24, 5.25, 5.26 and 5.27.

Figure 5.24: Temperature effect on σ−ε curves; the two specimens had no notch and were exposed
to 75℃ and 125℃

The strain to rupture values for the two smooth specimens made an exception:

if the maximum stress was found to be smaller when the temperature was higher,

the strain to rupture remained the same.
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Figure 5.25: Temperature effect on σ − ε curves; the two specimens had notch acuity 5 and were
exposed to 75℃ and 125℃

Figure 5.26: Temperature effect on σ − ε curves; the two specimens had notch acuity 2 and were
exposed to 75℃ and 125℃
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Figure 5.27: Temperature effect on σ− ε curves; the two specimens had notch acuity 0.5 and were
exposed to 75℃ and 125℃

It is clearly visible how just the plastic region was affected by the raise of tem-

perature, while the elastic trait showed no appreciable modification.

Actually it has to be remarked that the overall effect of the temperature was not

appreciable nor significant at all, for the difference in both the maximum stresses

and strains to be negligible.

In this case any consideration can be done for the specimen tested at 10−71/s

strain rate since the notches had different acuities. It is however reasonable to expect

a similar effect even at lower strain rate values.

5.1.3 Effect of the notch acuity

It is interesting to observe how a different induced multiaxial stress state influenced

the specimen’s resistance values. The notch acuity effect is well evident in Figure

5.28 and 5.29 where the stress-strain curves are divided by exposition temperature.
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Figure 5.28: Notch acuity effect on σ − ε curves; the three specimens with notch acuity 5, 2 and
0.5 and were exposed to 75℃

Figure 5.29: Notch acuity effect on σ − ε curves; the three specimens with notch acuity 5, 2 and
0.5 and were exposed to 75℃

The trend that is evident from both the diagram is that, test temperature and

strain rate being equal, the higher the ratio A0/R the higher the UTS and the lower

the ultimate tensile strain are.

Moreover, also the yield strength was affected by the notch acuity, resulting in

smaller values for the specimens with blunter notches.

55 Chapter5



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

What is interesting is that while the maximum strength decreased with an in-

creasing notch acuity, the strain to rupture increased: from 0.139 for specimen’s

acuity 5, through 0.147 for acuity 2, up to 0.161 for the bluntest notch, the increase

was evident but still not significative. Further investigations in this direction have

infact to be made.

5.2 Yield Strenght and Notch Strengthening Be-

haviour

From the engineering curves showed in the first section the values for both the yield

stress σY and the maximum stress σmax were extrapolated and they are shown in

Figure 5.30. In particular, for copper being a ductile material, the yield strength

was not a well defined point and it was considered reasonable to determine it with

the 0.2% offset method.

The maximun stress instead was calculated as the higher value reached by the stress

in the engineering curve.

Figure 5.30: Summary of the calculated values for the yield strength and the maximum stress for
each tested specimen. The values were extracted from the engineering curves

What has been observed is that, other conditions being equal, both the yield

strenght and the maximum stress increased with an increasing notch acuity. This is

better represented in Figure 5.31 and 5.32 where the specimens tested with 10−71/s

strain rate are not reported because no relation was found between the values.
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Figure 5.31: Calculated yield strenght in function of notch’s sharpness for the specimens tested
with 10−61/s; the squared points represent the un-notched yield values.

Figure 5.32: Maximum stress in function of notch’s sharpness; the squared points represent the
un-notched yield values.

An increase in notch acuity from 0.5 to 5 lead to an increase of the yield strength

of 30.87 MPa at 75℃ and of 24.5 at 125℃.

The maximum stress instead increased by 40.82 MPa when the notch acuity was

increased from 0.5 to 5 at 75℃; at 125℃ the registered increase was 29.19 MPa, sug-

gesting that the acuity had a slightly bigger effect at lower temperatures, although

the temperature effect can not be considered as significant as explained in section

1.1.2

Notch sensitivity The parameter that was used in this work to evaluate the

notch strengthening or weakening behaviour was the ratio defined as follows:
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NotchStrength =
σmax

Anet

(5.13)

where σmax is extracted from the engineering curve and Anet is the net cross

sectional area calculatd at the base of the notch. It has been calculated also for the

smooth specimens so that a comparison could have been made. Infact, as showed

in the table in Figure 5.34, because of the plastic constraint at the notch, the ratio

is higher for the notch specimens with respect to the un-notched ones. Also, the

higher the ratio, the higher the strengthening due to the induced multiaxial stress

state is.

Figure 5.33: Notch strenght values calculated with Equation

From the table in 5.34 it can be seen how the ratio σmax/Anet for the notched

specimens had an increase from 16 to 30% at both the testing temperature com-

pared to the smooth specimens. Also it can be observe that the notch strength

parameter is higher for the testpiece exposed at 75℃, suggesting the notch strength

to be temperature sensitive. Moreover the ratio increased with an increasing notch

acuity, clearly indicating the material is notch strengthening.

5.3 Time to rupture and ductility evaluation

In Figure 5.34 the time to rupture for each specimen are reported. What is evident

and obvious is the large difference between the values obtained with 10−61/s and

10−71/s strain rate. For the latter infact it took 413.28 hours at 75℃ when the
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notch acuity was 5 and 390.17 hours at 125℃ for the specimen with notch acuity 2.

For the specimens tested with 10−61/s strain rate , the time to rupture turned out

to be increasing with the notch acuity and this same trend was found for both the

testing temperature.

Figure 5.34: Time to rupture values and engineering strain to rupture values calculated for all the
tested specimens

However, the introduction of the notches, of any sharpness, turned out to de-

crease the materials lifetime. This is more visible if the data from the notched

specimens are compared to the smooth ones: at 75℃ infact, the decrease after the

introduction of notches with acuity 5, 2 and 0.5 was 100, 98 and 95 hours respec-

tively. At 125℃ instead was about 103, 102 and 98 hours.

Currently, ductility is considered a qualitative, subjective property of a material.

For the purpose of the present project it indicates the extent to which the material

can be deformed without fracture i.e its ability to flow plastically before fracture

[22]. For that reason the engineering strain to rupture was taken as measure of

ductility and the calculated values are reported in Figure ??

Decreasing values of strain to rupture with increasing notch acuity were found: at

75℃ infact the εR changed from 0.161 for the specimen with acuity 0.5 to 0.139

when the acuity was 5 and the same trend was found at 125℃.

Anyway, it can be observed that the maximum difference between the strain to rup-

ture values was ∆R,75 = 2.2% at 75℃ and ∆R,125 = 2.5% at 125℃, which are too

small values to conclude that a ductility change occurred in the specimens. Never-

theless, an increasing trend of the strain to rupture with notch acuity was observed,
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as was already visible in the stress-strain curves in Figure 5.28 and 5.29.

It has to be remarked that the the reported values represented the overall axial

strain measured within the gauge length of 51 mm and they are not representative

of the local deformation within the notches: the local strain in the notches is of

course much larger than average overall strain as it is further shown in Section 1.4.

It can be observed that the maximum difference between the εR values is ∆R,75 =

0.019 at 75℃ and ∆R,125 = 0.021 at 125℃, which are too small values to conclude

that a ductility change occurred in the specimens. Nevertheless, an increasing trend

of the strain to rupture with notch acuity was observed, as was already visible in

the stress-strain curves in Figure 5.28 and 5.29.

5.4 Shape Changes Within the Notches

In the present section the observed shape changes in the notched bar specimens

during the tests are described.

Notch dimentions has been measured for each specimen before and after the tensile

tests: values for both the broken and the unbroken notch can be found in Figure

5.35

. The two parameters which were used to characterise the notches deformation

are the axial strain reduction for the unbroken notches (equation 5.14)and the radial

strain reduction in both the broken and unbroken ones (equation 5.15)

εA% =
Lf − L0

Lf

· 100 (5.14)

εR% =
A0 − Af

A0

· 100 (5.15)

where L0 is the intial notch length which was equal to 1.12 mm for the acuity 5

notches, 2.82 for the acuity 2 and 6.65 for the acuity 0.5; Lf is the final measured

length of the unbroken notche. In equation 5.15 instead, A0 is the area of the original

cross section, calculated with the measured values of the specimen’s diameter and

Af is the minimum cross sectional area after fracture.

SEM images of the fractured sections were used to calculate the final area; from

Figure5.38 to 5.42 the fractured areas and how they have been calculated are shown.

The images of just four specimens (one for each set of acuity) are reported for

practical reasons: the fractured area was identified and highlighted in black, then
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Figure 5.35: Dimentions and deformation of notches before and after rupture. Data are reported
for both the broken and unbroken notches
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Figure 5.36: Specimen nr.12 with acuity 0.5, tested at 10−61/s strain rate and 75℃. Broken
section 1: SEM image on the left and the calculated area in black on the right

Figure 5.37: Specimen nr.12 with acuity 0.5, tested at 10−61/s strain rate and 75℃. Broken
section 2: SEM image on the left and the calculated area in black on the right

the area was calculated with Photoshop software.

The so calculated for the axial and radial strain were found to have no relation

for the unbroken notches, while an in the broken ones the radial strain showed an in-

creasing trend with a decreasing notch acuity. The maximum percentage reduction

of area was infact found in the smooth specimens, namely 86% reduction at both

125and75℃; the two specimens with acuity 5, accordingly to the trend, experienced

the smaller area reduction, with values around 71% and 79%. No such consideration

can be made for the specimens tested at 10−71/s due to lack of data.

It can be observed how the local radial strain reduction with the notch acuity

Figure 5.38: Specimen nr.42 with acuity 2, tested at 10−61/s strain rate and 125℃. Broken section
1: SEM image on the left and the calculated area in black on the right
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Figure 5.39: Specimen nr.38 with acuity 5, tested at 10−61/s strain rate and 125℃. Broken section
1: SEM image on the left and the calculated area in black on the right

Figure 5.40: Specimen nr.38 with acuity 5, tested at 10−61/s strain rate and 125℃. Broken section
2: SEM image on the left and the calculated area in black on the right

Figure 5.41: Un-notched specimen nr.51, tested at 10−61/s strain rate and 75℃. Broken section
1: SEM image on the left and the calculated area in black on the right

Figure 5.42: Un-notched specimen nr.51, tested at 10−61/s strain rate and 75℃. Broken section
1: SEM image on the left and the calculated area in black on the right
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(a) Broken section 1 (b) Broken section 2

Figure 5.43: SEM images of specimen nr.16, notch acuity 2 tested at 10−61/s strain rate and 75℃

follows the same trend as both the time to rupture and the strain to rupture: the

three parameters increase with the notch sharpness at both the testing temperature.

This leads to the conclusion that in the material an higher concentration of stresses

induces a small but still appreciable ductility reduction hence a decrease in the

component’s lifetime.

5.5 Metallographic investigations

As described in Chapter 4 one specimens was chosen for post test metallography,

namely the specimen 16 with notch acuity 2, tested with 10−61/s strain rate at 75℃.

Both the broken notch and the unbroken one were examined by cutting the specimen

in its longitudinal middle section so that investigation on the mode of fracture could

have been made. Also, an untested specimen, was sectioned and analyzed at LOM

so that it could provide the original microstructure for comparison.

In Figure 5.43 SEM pictures of the failed specimens broken sections are showed: it

is evident how a ductile fracture occurred, for the failure surface having a dimpled

aspect and a cup-and-cone shape.

In figure 5.44 and 5.45 the microstructure of the broken notch is showed: it

is evident how the grain size is smaller in correspondence of the fracture while an

averagely mixed grain size is found far away from the edges. Also, an higher number

of elongated grains along the loading direction were found closer to the failure region
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Figure 5.44: Specimen nr.16 tested at 75℃ with 10−71/s strain rate. Image taken at 10x magni-
fication in a area far from the notch. Image taken with 5x magnification in a region far from the
broken notch.

Figure 5.45: Specimen nr.16 tested at 75℃ with 10−71/s strain rate. Image taken at 10x magnifi-
cation in a area far from the notch. Image taken with 5x magnification at the center of the broken
notch

65 Chapter5



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

Figure 5.46: Specimen nr.16 tested at 75℃ with 10−71/s strain rate. Image taken at 10x magnifi-
cation in a area far from the notch. Some elongated grains with 45° orientation are visible

At 10x it was possible to better appreciate the grains alignment throuout the

sample: far from the fracture infact, many 45 degrees aligned and elongated grains

were found as shown in Figure 5.46.

For the unbroken notch just pictures at 5x were taken. Here again it can be

observed an homogeneous grains dimention and orientation far from the notch

(5.47)and aligned elongated ones in the notch throat, suggesting the region to be

subjected to higher stresses, hence stronger plastic deformation (5.49). Also, finer

grains were found on the surface around the minimum cross section.

Figure 5.47: Specimen nr.16 tested at 75℃ with 10−71/s strain rate. Image taken with 5x magni-
fication in a region far from the unbroken notch

Chapter5 66



Slow Strain Rate Tensile Tests on Notched CU-OFP bars

Figure 5.48: Specimen nr.16 tested at 75℃ with 10−71/s strain rate. Image taken with 5x magni-
fication at the center of the unbroken notch: aligned grains in corispondence of the notch throat
and finer grains on the notch’s surface.

Figure 5.49: Specimen nr.16 tested at 75℃ with 10−71/s strain rate. Image taken at 10x mag-
nification in a area far from the notch. Image taken with 5x magnification at the center of the
unbroken notch.

In Figure 5.50 the specimen’s original mixed microstructure is shown: here it

can be appreciate the difference in the grain size and shape before and after testing
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Figure 5.50: Specimen 43, not tested. The specimen’s original microstructure shows mixed grains
size and orientation.

Unfortunately, the magnification in the optical microscope was not enough to

allow cavities observation but it is reasonable to expect the failure occurred by void

nucleation and coalescence.
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Conclusions

The influence of multiaxial stress state on Cu-OFP mechanical properties has been

studied by means of slow strain rate tensile tests on double notched specimens: two

were the strain rate used, 10−61/s, 10−71/s and two were the testing temperature

75℃ and 125℃. Three were the set of specimen’s notch acuity, namely 5, 2 and 0.5.

The following conclusions can be drawn:

• Both the yield strength and maximum strength were found to be higher for

specimens with higher acuity: a more localised stress field increases material’s

strength properties.

• The strain rate has more influence on the bluntest notches than in the sharper

ones but the effect is not to be considered to be significantly influencing the

material’s strength properties.

• The effect of the temperature was not appreciable nor significant at all, for

the difference in both the maximum stress and strain to be negligible.

• The introduction of U-shaped double notches on the material has the effect

to decrease the component’s lifetime to an extent that is proportional to the

notch’s sharpness.

• The material’s ductility turned out to be affected by the notch acuity for a

small extent: the sharper the notch, the smaller the strain to rupture

• The shape changes within the notches were found to be higher on the ruptured

one but was not found to be any trend in the axial and radial strain reduction

values. More tests are needed to be performed with different strain rates and

notch acuity.
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Svensk Kärnbränslehantering AB, 2010.

[15] Kirti Teja Pasupuleti ”Slow strain rate testing of welded copper”, Material Sci-

ence and Engineering, KTH, 2012.

[16] Rolf Sandström, Sakander Waqas Ahmad, Kirti Teja Pasupuleti, Meyasam

Mahdavi Shahri, ”Slow strain rate tensile testing of friction stir welded Cu-

OFP; constitutive equations for creep”, Department of Materials Science and

Engineering, KTH.

[17] Rui Wu, Facredin Seitisleam, Rolf Sandström, ”Creep Properties of phospho-

rus alloyed oxygen free copper under multiaxial stress state”,Swerea KIMAB,

Department of Materials Science and Engineering, KTH, 2009.

[18] Rolf Sandström, Josefin Hallgren, ”The role of creep in stress strain curves for

copper”, Journal of Nuclear Materials, 2011.

[19] G.A Webster, S.R Holdsworth, M.S Loveday, K.Nikbin, I.J. Perrin, H. Purper,

R.P. Skelton, M.W. Spindler, ”A code of Practice for conducting notched bar

creep tests and for interpreting the data”, Loveday M S, Gibbons T B, Blackwell

Publishing Ltd, 2004

[20] Johan Pilhagen, ”Manual for the electromechanical tensile/compression testing

system NT2005 (Model 41-E)”, Material Science and Engineering Department,

KTH, 2014.

[21] Xuexing Yao, Rolf Sandström, ”Study of creep behaviour in P-doped copper with

slow strain rate tensile tests”, Material Science and Engineering Department,

KTH, 2000.

[22] Joseph R. Davis, ”Tensile Testing”, ASM International, 2004.

Chapter5 70



Acknowledgements 

 

I wish to express my sincere thanks to prof. Irene Calliari and Rolf Sandström for having 

given me  this important opportunity: to carry out my thesis project at the KTH in 

Stockholm was a great chance for me to learn and grow. I would also thank Fangfei, my 

tutor and friend, and the Material’s Technology group for all the support they gave me. 

A big thanks to my friends and classmates from University for all the good time and 

sincere friendship. 

A special thanks to my mum and my family, with whom I would have never come so far. 

 



 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as page 1
      

        
     Blanks
     Always
     1
     1
            
       D:20141128122706
       25.5118
       Blank
       649.1339
          

     1
     Tall
     722
     245
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as page 1
      

        
     Blanks
     Always
     1
     1
            
       D:20141128122706
       25.5118
       Blank
       649.1339
          

     1
     Tall
     722
     245
    
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

   1
  

 HistoryList_V1
 qi2base



