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Abstract

Packing problems are a class of optimization problems that require to pack items into containers.
The Guillotine Two-Dimensional Packing Problems are a sub-class of these problems, where both
items and containers are rectangles and with the constraint that every packed item should be
possibly retrieved with a series of vertical and horizontal cuts that divide the container into two
parts without cutting items. Two exact and two heuristic algorithms have been developed in this
thesis, to solve respectively the Guillotine Two-Dimensional Knapsack Problem and the Guillotine
Two-Dimensional Bin Packing Problem. The first problem has the goal to pack some of the items
into one bin maximizing the total profit. The second one, on the contrary, has the goal to pack all
the items using the lowest number of bin as possible.
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Chapter 1

Introduction

The following thesis is focused on the packing problems. The main purpose of this work is to study
a way to solve these kind of problems, which are computationally very hard to solve.
These problems are not only a mere theoretical study, but they have many practical application.
Usually the main fields where these techniques are used are packaging, transportation and storage
issues. A simple example could be the problem of fill in the best way possible a truck to minimize
the empty space inside and so to minimize the number of times it has to bring everything to the
destination.
Usually very clever techniques are needed to solve packing problems, in particular enumeration
techniques that must be thought very carefully, otherwise the risk is to have too poor performance,
that means a too high computation time that runs the risk of not completing.

Hereafter there is a quick overview on what next chapters will deal with:

• Chapter 2: Problem Description: In this chapter all the typologies of problems and
algorithms touched by this work will be explained in more detail. So there will be first a
general description on what Packing problems are; the attention will be then focused on the
problems actually treated, that are Knapsack problem and Bin-Packing problem, considering,
in particular, the cases with shelf divisions, of which problems with guillotine cuts are a
particular instance. Eventually there will be an explanation on what NP-Hard problems are
and on the difference between exact and heuristic algorithms.

• Chapter 3: Algorithms Description: In this section the algorithms will be very particu-
larly explained from a theoretical point of view. In particular the reasons of certain decisions
will be explained.

• Chapter 4: Used Tools: Here it will be discussed more deeply about the tools that
have been necessary to implement the desired algorithms. So there will be a presentation
of the C language used to implement the algorithms, a brief description of the integrated
development environment (IDE) Eclipse and an illustration of the two debugging tools used,
Valgrind, a very useful framework that helps a lot find memory leak and referencing problems
and Gnuplot, a command-line program that allows you to visualize graphically the output
of the algorithm and that has been useful for logical debugging.

• Chapter 5: Implementation: Here it will be discussed about the implementation of all
the algorithms. In particular the reasons of certain choices will be pointed out, explaining
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1 – Introduction

also which other choices had been thought or tried and which kind of problems they had
brought.

• Chapter 6: Tests: In this chapter the computational experiments are described. First the
benchmark of instances from the literature are presented, then the characteristics of machines
where tests have been performed are illustrated and finally results of tests will be presented
and discussed.

• Chapter 7: Conclusions: In this section the conclusions on the performed work will be
drawn and suggestions for a possible future continuation of the work will be indicated.
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Chapter 2

Problem Description

2.1 Packing Problems
Packing problems are a class of optimization problems that require to pack objects into containers.
The goal is to either pack a single container as densely as possible by selecting a subset of items
from a given set or pack all objects using as few containers as possible.
In packing problems usually the following objects are given:

• Containers, that usually are or mono-dimensional, so they only impose an upper bound on
the maximum weight of the selected items, or a two- or three-dimensional convex region, or,
more rarely, they are an infinite space. In the case they are a finite region, depending from
the type of problem, they can be just one, a finite number or an infinite number.

• A set of items, some or all of which must be packed into one or more containers. The set
may contain different items with given sizes (or just weights in the mono-dimensional case),
or a single item of a fixed dimension that can be used repeatedly.

Two-dimensional Case

Usually the packing must be without overlaps between items and other items or the container
walls. In some variants, the aim is to find the configuration that packs a single container with
the maximal density. More commonly, the aim is to pack all the objects into as few containers as
possible. In some variants the overlapping (of objects with each other and/or with the boundary
of the container) is allowed but should be minimized.
When the container size is increased in all directions, the problem becomes equivalent to the prob-
lem of packing objects as densely as possible in infinite Euclidean space (an infinite number of
objects, all with the same shape). This has brought to the study of the most different shapes,
starting from the regular ones, arriving to the curved ones.

2.2 Knapsack Problem

2.2.1 One-dimensional Knapsack Problem
The Knapsack Problem (KP) [4] is probably the most studied and known packing problem.
Given a set of items {1,...,n}, to each of those a profit pj and a weight wj are associated and given
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2 – Problem Description

a knapsack of capacity W, the Knapsack Problem (KP) consists in choosing a subset of object with
maximum profit to insert into the knapsack.
This problem has a great importance in all those context where the goal is to load in an optimal
way a bin (that could be a camion, a container, a knapsack, etc.) and in finance, where, given a
fixed budget, it is necessary to select which things to buy. In addition, KP arises as sub-problem
in many complex problems; for instance, it turns out to be the pricing problem when column
generation techniques are used to solve the Bin Packing Problem.
Without loss of generality in the model it is possible to suppose that pj , wj and W are positive

integers, with wj < W for each j = 1,...,n and that
n∑

j=1

wj > W

Introducing the following decisional variables:

xj =

{
1, if object j-th is selected
0, otherwise

it is possible to set an integer linear programming (ILP) model:

z∗ := max
n∑

j=1

pjxj

n∑
j=1

wjxj ≤W

0 ≤ xj ≤ 1 integer, j ∈ {1, ..., n}.

The objective function maximize the total profit of the selected items. The capacity constraint
imposes that the sum of the weights of the selected items does not exceed the container capacity;
finally the xj variables are integer variables with value 0 or 1.
It is correct to specify, anyway, that although this model is the most used to represent a Knapsack
Problem, this is not the only one. However in this work we will refer to this model.
Usually this model is solved with the branch-and-bound technique or, if W is a not too big in-
teger, with the dynamic programming. This limitation is due to the fact that using the dynamic
programming the complexity is O(nW ), which means that Knapsack Problem is solvable pseu-
dopolynomial time, because W can be exponential in the input size so the overall running would
become not polynomial.

2.2.2 Two-dimensional Knapsack Problem

The problem considered in this work is not exactly the knapsack problem described by the model
mentioned above. Each item j ∈ N={1,...,n} is a rectangle with height hj , width wj and profit pj
often equal to that item’s area and the container is a sheet with height H and width W.
Without loss of generality in the model it is possible to suppose that pj , wj , hj , W and H are
positive integers, with wj < W and hj < H for each j = 1,...,n.
Each edge of the items must be packed parallel to an edge of the container. Thus, considering the
case with hj = H for all j ∈ N (or, in the same way, wj = W for all j ∈ N), the problem can be
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2 – Problem Description

Figure 2.1. Example of solution of Two-dimensional Knapsack Problem

reduced to the mono-dimensional case.

Real-world applications of Two-dimensional knapsack problem (2KP) arise in loading, transporta-
tion, resource allocation, just to mention a few.
A possible variant of the problem is the possibility of rotate or not the shapes of items by 90°.
This can be useful in some applications, because it can allow less waste of material, while in other
it is not possible to use it, because of features of the material or of the desired items. An example
that allows rotation is the creation of plywood panels, because it makes no difference which way
you cut them; an example that does not allow rotation, on the other hand, is the marble cutting,
because the grains must be followed.
In this work only the so-called fixed-orientation (with no rotation) case has been developed.

2.2.3 2-Staged Knapsack Problem

A classical variant on the 2KP is the 2-staged 2KP, in which the maximum number of cuts allowed
to obtain each item is fixed to 2 [6]. A cut must be parallel to the edges of the sheet and must go
from a part to the other of the portion of surface remained after the previous cuts. It also must
not pass through other items.
If a third stage of cutting is allowed only to separate an item from a waste area, this is called the
non-exact case of 2-staged 2KP or 2-staged 2KP with trimming. Otherwise, we have the exact case
of 2-staged 2KP, or 2-staged 2KP without trimming. Because of the particular disposition that
must have the items in the solution, this type of problem is also called 2KP with shelf divisions.
In figure 2.2 it is possible to see examples of not-exact and exact 2-staged 2KP.

In recent years, most of the literature on two-dimensional packing referred to general k -staged
packing. This constraint (and in particular the constraint with k=2) can make the problem much
easier than pure 2KP from a computational viewpoint, but it increases a lot the amount of wasted
space in the solution. However, if automatic machines are used for unloading/cutting items and
the sheet is not significantly expensive, it could preferable to look for solutions of this type.
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2 – Problem Description

(a) (b)

Figure 2.2. Example of 2-staged patterns: a)Not exact and b)exact

2.2.4 k-Staged Knapsack Problem

A more general case is that where the restriction to the maximum number of cuts allowed to unload
each item is fixed to a given threshold k. In this case the problem is called k-Staged 2KP [3].
Because k can assume any value it is possible to consider in this section also the case when no
restriction on the number of cuts is present. This is the general case of the two-dimensional guil-
lotine knapsack problem (G2KP), which is exactly the case that will be considered in this thesis.

Figure 2.3. Example of solution of Two-dimensional Guillotine Knapsack Problem

This problem can be considered a middle ground between the classic 2KP and the 2-staged 2KP.
The real-world application where it is useful is, like the 2-staged 2KP, that of the automatic ma-
chines. This kind of problem is not more difficult than pure 2KP, but it finds a solution that can be
used by the automatic machine, meanwhile it is harder than 2-staged 2KP from a computational
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2 – Problem Description

point of view, but decreases significantly the wasted space in the solution.
Hence this problem is considered a very good compromise and this is one of the reasons that led
to focus on this kind of problems.

2.3 Bin Packing Problem
Given a set N = {1,...,n} of items, the k -th with weight wk > 0 and a set M = {1,...,m} of
containers (bin), each one with capacity W, the Bin Packing Problem (BPP) requires to insert all
the items into containers observing these constraints:

• each item must be inserted in one bin;

• the total weight of objects inserted in a bin must not be greater that W ;

• the number of bins used must be minimized.

A necessary condition for a feasible solutions is that, for each k ∈ N , wk ≤ W . Under this condi-
tion it is always possible to find a feasible solution in the case that m ≥ n. If m < n the problem
of verify if a feasible solution exists is NP-Hard. It will be considered only the case with m ≥ n
(supposing m as big as necessary).

One-dimensional bin packing (1BPP) is a classic problem with many practical applications related
to minimization of space. Two possible examples can be placing computer files with specified sizes
into memory blocks of fixed size, or the recording of all of a composer’s music, where the length of
the pieces to be recorded are the weights and the bin capacity is the amount of time that can be
stored on an audio CD.

Again, we consider a generalization of 1BPP that arises when more than one dimension is present
and additional constraints are necessary. This case is the two-dimensional guillotine bin packing
problem (G2BPP), that can be easily derived from the previous case of the knapsack problem.
Also for the BPP, in fact, the features of the two-dimensional bin packing problem (2BPP) are the
same of those of 2KP, with the difference of the goal of the problem that always is to minimize the
number of bins (sheets) to insert all the items (with rectangular shape). The same approach can
be used for 2-staged 2BPP and k-staged 2BPP.

2.4 NP-Hard problems
In computer science over the years it was necessary to introduce a discipline that determines if a
certain problem was solvable or not and how easily it could be solved. The theory of computation
is this: it is the branch of computer science that discuss whether and how efficiently problems can
be solved on a model of computation, using an algorithm. This field is divided into three major
branches: automata theory, computability theory and computational complexity theory.
In particular the computational complexity theory studies which are the minimal necessary re-
sources (considering above all computational time and memory) needed by a problem to be solved.
Thus, problems are classified in different complexity classes, according to the most efficient algo-
rithm that is known to solve each problem.
Therefore a complexity class is a class that includes a number of different problems having the
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2 – Problem Description

same resource-based complexity. Usually different classes are defined in this way:
set of problems that can be solved by an abstract machine M using O(f(n)) of resource R, where
n is the size of the input.
An abstract machine is a theoretical model of a computer. Here the abstract machine that has
been decided to be used is the Turing machine.
Two of these classes are particularly important: NP and P. NP is the class of decision problems
whose solutions can be determined by a non-deterministic Turing machine in polynomial time; P,
otherwise, is the class of decision problems whose solutions can be determined by a deterministic
Turing machine in polynomial time.
P then is, trivially, just a subset of NP. But NP has another subset of problems, the so-called NP-
complete problems, for which no polynomial-time algorithms are known for solving them (although
they can be verified in polynomial time). This takes to biggest open question of the complexity
theory, the P = NP problem, which asks whether polynomial time algorithms actually exist for
NP-complete and, accordingly, all NP problems.
Finally there are the so-called NP-hard problems. This class of problem is not properly a subset
of NP, because its problems don’t necessarily belong to NP; the name derives from the fact that
problems belonging to this class are at least as hard as the hardest problem in NP. So a problem
H is NP-hard if and only if there is a NP-complete problem that can be reduced to H by a deter-
ministic Turing Machine in polynomial time.
Knapsack Problem and Bin Packing Problem are two examples of NP-hard problems.

2.5 Exact and Heuristic Algorithms
In this work an exact algorithm to solve the G2KP has been implemented. An exact algorithm is
an algorithm that solves a problem to optimality [12]. For NP-hard problems, anyway, probably
no polynomial time algorithms exist, but it doesn’t mean that it is not possible to find an exact
algorithm.
Two examples of techniques that lead to exact algorithms are Branch and Bound and Dynamic
Programming.

Branch And Bound

Branch and bound is a general technique for finding optimal solutions of various combinatorial
problems. A branch and bound algorithm consists of a systematic enumeration of all candidate
solutions, from which some of possible candidates are discarded using upper and lower estimated
bounds of the quantity being optimized.
This procedure is usually used to maximize or minimize a function. Suppose that the goal is to find
the maximum value for a function f(x), where x ranges over some set S of admissible or candidate
solutions. Branch and bound is a recursive algorithm that performs 3 steps each time it is called:

1. Branching: splitting procedure that returns two or more subset S1,..., Sn whose union it is
the initial set S. All these new subset are children nodes of a tree where their father node is
S ;

2. Bounding: procedure that computes upper and lower bounds for the maximum value of
f(x) within a given subset of S ;

3. Pruning: if the upper bound for some tree node (set of candidates) A is lower than the
lower bound for some other node B, then A may be safely discarded from the search.

8



2 – Problem Description

The recursion stops when the current candidate set S is reduced to a single element, or when the
upper bound for set S matches the lower bound. Either way, any element of S will be a maximum
of the function within S.

Dynamic Programming

Dynamic programming is a method for solving complex problems by breaking them down into
simpler sub-problems. It is applicable to problems exhibiting the properties of overlapping sub-
problems (it can be reduced into sub-problems which are reused several times) and optimal sub-
structure (an optimal solution can be constructed efficiently from optimal solutions of its sub-
problems).
The idea behind dynamic programming is quite simple. In general, to solve a given problem, it is
necessary to solve different parts of the problem (sub-problems), then combine the solutions of the
sub-problems to reach an overall solution. Often when using a more naive method, many of the
sub-problems are generated and solved many times. The dynamic programming approach seeks to
solve each sub-problem only once, thus reducing the number of computations: once the solution
to a given sub-problem has been computed, it is stored. So the next time the same solution is
needed, it is simply looked up. This approach is especially useful when the number of repeating
sub-problems grows exponentially as a function of the input size.
Examples of algorithm that can be implemented using dynamic programming are Dijkstra’s algo-
rithm for the shortest path problem, Fibonacci sequence, tower of Hanoi, matrix chain multiplica-
tion.

Heuristics

Often, however, the determination of the optimal solution of a NP-hard problem may be too costly
in terms of computation time and in some of these cases even the technological development can
not significantly reduce this time. But sometimes these problems are required to be implemented
for a practical application, so it is not possible to wait for dozen years to have the exact result.
Moreover often some parameters are just estimates, so it has no sense to try to find the exact
solution of a problem that comes from uncertain values.
Therefore the need arises to solve the difficult problems in reasonable computation times sacrificing
the optimality of the solution.
It is due to these reasons that heuristic algorithms are important. Literally they are any method
that finds a solution of the problem. Ideally one would like a heuristic algorithm to be able to
always determine the optimal solution of a problem. But for most of the problems this is not possi-
ble. So generally heuristic algorithms are meant to be algorithms that are likely to find reasonably
good solutions in a short time [11].
Unfortunately some problems exist for which even heuristic algorithms can not guarantee to find
a solution. In these cases heuristic algorithms are able to find an upper bound (if the problem is
a minimization problem) or a lower bound (if the problem is a maximization problem).
In this thesis some heuristic algorithm have been implemented. They have been used above all
when the optimal solution was not needed, because it was enough knowing if a solution existed or
having just a good solution and not necessary the optimal one.
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Chapter 3

Algorithms Description

In this section the implemented algorithms will be described.
Because in this thesis we are dealing with two-dimensional problems, sheets of width W and height
H will be considered. In addition to this a set N={1,...,n} of types of rectangles (called items) is
given. The j -th type of items contains aj items, each having a width wj , a height hj and a profit
pj .

3.1 Procedure Recursive

The goal of this algorithm is to solve the Guillotine Two-dimensional Knapsack Problem (G2KP)
[3].
It must receive in input a parameter z0, which is a lower bound on the profit of desired solution.
This solution will be a subset of items that can be put into the sheet satisfying the constraints
of the problem. In the solution not only the list of these items will be returned, but also their
position in the sheet, by means of the coordinates of the bottom-left vertex of each selected item,
assuming dimensions be labelled from 0 to W and from 0 to H respectively.
In general we denote each assignment of a subset of items to the sheet as a feasible packing, so the
solution is a feasible packing with its own profit that is greater than z0. A feasible packing can
be usually represented as a vector with length n, in which each element of the vector defines the
number of items of that type that are present in the packing: f = [f1, . . . , fn].
Procedure Recursive is called with this name because it implicitly enumerates all feasible packings
by recursively dividing the sheet into two parts, so that each of these divisions represents a (either
horizontal or vertical) guillotine cut.

As observed by Christofides and Whitlock [1], for any two-dimensional packing problem an opti-
mal solution corresponding to a normal pattern exists, i.e. a solution in which any item is packed
with its left edge adjacent either to the right edge of another item or to the left edge of the sheet.
Thanks to this result it is possible to consider just vertical cuts that are in correspondence of linear
combinations of widths of the items. The same observation can be done also with horizontal cuts.
So these 2 sets are obtained as follows:

W = {x : x =
n∑

i=1

wiαi , 1 ≤ x ≤W , 0 ≤ αi ≤ ai , i = 1, ..., n}.
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H = {y : y =
n∑

i=1

hiαi , 1 ≤ y ≤ H , 0 ≤ αi ≤ ai , i = 1, ..., n}.

We assume that both W and H are sorted in ascending order and let t = |W| and s = |H|.
Given x ∈ W and y ∈ H and the lower bound solution value z0, let F (x, y, z0) be the set of all
feasible packings of the given items into a sheet of size x× y that can produce a profit larger than
or equal to z0 considering their profit plus the profit that could come from a possible packing of
some of the remained items into the residual area of the sheet.
Moreover, given two sets of feasible packings F 1 = {f1, . . . , fk} and F 2 = {f̄1, . . . , ¯fm}, it is
possible to denote by F 1 ⊕ F 2 the so-called pairwise sum of the packings in those two sets:

F 1 ⊕ F 2 := {f i + f̄ j : i = 1, . . . , k, j = 1, . . . ,m}.

Where the sum between two packings is defined as follows: given two feasible packing f =
[f1, . . . , fn] and f̄ = [f̄1, . . . , f̄n] a new packing f̂ = f+f̄ is defined int this way: f̂i := min{f+f̄i, ai}
(i = 1, . . . , n).
Hence, F 1 ⊕ F 2 is the set of packings that can be obtained combining any packing f i ∈ F 1 with
any packing f̄ j ∈ F 2.
So, thanks to the fact that W and H are ordered, once set F (x1, y1, z0) has been found, also
sets F (x1, y2, z0), F (x1, y3, z0), . . . , F (x1, ys, z0) can be computed and, in a similar way, also
F (x2, y1, z0), F (x3, y1, z0), . . . , F (xt, y1, z0). Therefore it is possible to notice that each packing
f ∈ F (xj , yi, z0) can be computed as the sum of two feasible packings defined for smaller sizes of
the bin. Thus, knowing F (xi, H, z0) and F (W, yj , z0) for every i = 1, ..., t− 1 and j = 1, ..., s− 1,
F (H,W, z0) can be easily found.

For each packing f that is computed for a certain sheet with width x and height y, an upper bound
U(f) is computed on the profit obtainable from the knapsack instance with capacity WH − xy,
n types of items, the j -th available in aj − fj copies, each with profit pj and weight wjhj . The
upper bound is computed according to a procedure proposed by Martello and Toth [9] that will
be described later (see section 3.2).
This calculation is fundamental to determine whether each found packing is really feasible for the
sheet x× y or not and this can be easily verified through this simple inequality:

p(f) + U(f) ≥ z0

with p(f) that is given by
n∑

i=1

pifi, where with fi the number of items of type i that are in the

packing is meant.
If the aforementioned inequality is satisfied the packing is kept, otherwise it is discarded.
In addition to this, another control is introduced, that is the control if a packing is maximal or not
and allows to discard all the not maximal packings. We say that a feasible packing f is maximal
if no further items can be packed into the sheet, i.e. if, for example, a packing f = [0,2,1,0] was
feasible, then packings like f = [0,2,0,0], f = [0,1,1,0] and f = [0,1,0,0] would not be maximal,
because at least one item can be added still obtaining a feasible packing.
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Figure 3.1. Procedure Recursive

Let us take now a closer look on this procedure presented in figure 3.1.
First of allW and H are computed like discussed above and F (x0, yi, z0) is initialised to � for each
i from 1 to s.
Then we enter in a double loop where all the possible dimensions of the smaller rectangles are con-
sidered. Here set S stores the set of all the possible packings that could be feasible for a rectangle
xj × yi.
After that we enter in an inner loop, which is very important because here the constraint on guil-
lotine cuts is implemented. In this cycle, some xq that satisfies two features are considered: they
must be lower than half of the current xj (because in the second half solutions would be repeated)
and a xq̄ so that xq + xq̄ = xj must exist. These xq are possible positions where vertical cuts
can be placed. All the possible packings found from the pairwise sum between the sets of feasible
packings in rectangles with the same height yi and width xq and xq̄ are then added to S through
the union, so that there are no repeated packings.
Then the exactly same process is performed for possible horizontal cuts.
At the end of these two phases, if there is an item with dimension that is exactly xj × yi, it is
added to S.
Finally on each packing in S the two controls mentioned above are performed: the control on the
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reachability of the minimum desired profit z0 and that on the maximality of the packing.
At the end of the algorithm the solution of the problem can be found in F (xt, ys, z0).

To find the coordinates of the bottom-left corner of each item in the solution track of the char-
acteristics of each cut performed is kept; in this way, a backward search like in a tree structure
allows to find out the desired coordinates from the leaves of the tree, that are the sets of feasible
packings where each item in the solution is inserted into a packing for the first time (that is when
a rectangle with the same dimensions of the item is considered).

3.2 UB Martello and Toth

Before describing the algorithm created by Martello and Toth to compute an upper bound (UB)
of the knapsack problem, it is necessary to present the algorithm found by Dantzig [2].
In Dantzig algorithm first of all it is necessary to order all the items by profit over weight (p/w)
ratio. Then the critical object s is searched, that is the first object of the list that can not be

inserted into the container. Formally: s = min{t :
t∑

j=1

wj > c}. After this computation the

residual capacity is defined as the capacity of the container that is still free before inserting items:

c̄ = c −
s−1∑
j=1

wj . Dantzig UB is then the sum of the profits of the items before the critical object

plus part of the profit the critical object, this amount being proportional to the part that could be
inserted in the residual capacity. Formally:

UB(Dantzig) =
s−1∑
j=1

pj + c̄ ps

ws

The algorithm of Martello and Toth [9] starts in the same way of that of Dantzig. First there is
the ordering of items, then there are computations of critical object and residual capacity. At this
point there are two possibilities: either not choosing the critical object or choosing it.
If the critical object is not chosen, the UB is computed like the Dantzig UB but using the item
after the critical object in the ordered list in its stead:

UB0 = UB(xs = 0) =
s−1∑
j=1

pj + c̄ ps+1

ws+1

If the critical object is chosen, then the item before it is just partially chosen:

UB1 = UB(xs = 1) =
s∑

j=1

pj + (c̄− ws)
ps−1

ws−1

Once these two UBs have been computed the algorithm of Martello and Toth states that the max-
imum between them is the searched UB:

UB(Martello− Toth) = max(UB0, UB1)

13
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3.3 Exact Algorithm for G2KP

The previous algorithm is able to find an exact solution for G2KP, but it requires to have a lower
bound on this solution as input, which could assume the most different values and is impossible to
know in advance.
To overcome this problem this algorithm has been introduced. We iteratively execute procedure
Recursive with different threshold values in order to find the optimal input z0 to have the best
possible packing.

First of all a heuristic algorithm (that will be described in detail in the next section) is used to
find a reasonable solution zH that is used as lower bound then an upper bound U is also computed
using the exact algorithm by Martello and Toth for 1KP.
After these two preliminary computations, we enter in a loop where the procedure Recursive is
iteratively called. The lower bound z0 passed as input is updated at the end of each iteration of
the cycle. For the first time this value z0 coincides with U but then it assumes always values that
are new.
At this point there are two possible situations: either the procedure finds (at least) a feasible
packing or it does not and returns NULL. In this case, we know that the value of z0 is an upper
bound on the optimal solution value; thus U is updated. Otherwise, if a feasible packing is found,
the procedure Recursive is used again, but this time with threshold z0 + 1 to understand if z0 was
the optimal value of the solution or it can be improved. If the algorithm returns NULL it means
that the optimal solution has been found at it is possible to exit the loop. Otherwise it means
that it is possible to find a better solution, therefore z0 is a lower bound and so it is possible to
update zH with this value. Moreover z0 is set again equal to U because to update the value of z0

is necessary to start from the upper bound and decrease it.
At the end of the cycle z0 is decreased of a value (U − zH)/50. The value 50 has been computed
empirically as trade off between the necessity of a fast improvement of the value and the necessity
of not finding lower bounds for Recursive that are too small, because in that case a too large num-
ber of packings is found during the execution of the algorithm and this slow down the performance
a lot, both considering computational time and memory used. Hence we have preferred to use a
not too big decrease of U, so that the case where the lower bound must be updated rarely happens
and, when it happens, it is with a value that will not be much lower than the optimal solution
value. The only contraindication is that in this manner a bigger number of cycles is performed,
but, as they have almost all a value of z0 that is an upper bound on the solution, less packings are
found during the execution of Recursive so it computes faster.

3.4 Heuristic algorithms for G2KP and G2BPP

These algorithms try to find the best possible packing, which will not be necessarily the optimal
one; they return respectively the profit of the best packing found and the minimum number of bins
necessary to pack items.

3.4.1 Heuristic G2KP

In this algorithm items are no more divided by type, here each one is considered separately from
the others. So first of all, just for the first time, they are all ordered by profit over weight.
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Then we enter in a loop that is performed a fixed number of times and can not be terminated
before. In this cycle there is another loop inside, where the first k items are considered, such that
the sum of their profit is better than the actual best profit and that their total area is smaller than
the area of the container. If the desired list of items does not respect one of the two constraint the
cycle is performed again, for maximum a fixed (and low) number of times.
When exited from the inner loop, if no set of items is returned no computations are made. Oth-
erwise these items are tried to be inserted in the container with a strategy that has been called
"MixedStrategy". Two versions of this have been created. These differ from each other just because
one begins with a vertical shelf while the other with a horizontal one. This has been made because
some times items can be packed in a way and not in the other. So in the heuristic algorithm first
the vertical strategy is tried and then, if it does not work, also the horizontal one is tested. If a
packing is found the variable containing the best profit is updated and the cycle starts again with
the items in the same order (because it could be possible to add another item and obtain again a
feasible packing), otherwise all the items are ordered randomly.

The MixedStrategy has been called in this way because it tries to pack items with an algorithm
based on shelves, but with the difference that these are not all horizontal or vertical, but they are
alternated. So in the case of the so-called "MixedStrategyV_G2KP" the first shelf that is tried
to be filled is vertical, the second one is horizontal, the third vertical again and so on. For the
"MixedStrategyH_G2KP" the algorithm works exactly in the same way starting from the hori-
zontal one. Each item of the list is tried to be inserted in the first possible shelf of the order. If in
none of them it is possible to insert the item, another shelf is opened. If also it is not possible to
open another shelf then it means that a packing for those elements with this strategy does not exist.

3.4.2 Heuristic G2BPP

Like for the previous algorithm, also in this one items are no more divided by type, but each one
is considered separately from the others. Initially, however, they are all ordered not by profit over
weight, but by decreasing size of area.
After that we enter in a loop where two strategies are performed to compute the total number of
bins that are necessary to pack all the items. Also here these strategies are based on the Mixed-
Strategy and differ from each other because of the different direction of the first shelf (vertical
against horizontal).
Here the cycle is repeated until a strategy finds that all the items can be packed in only one bin
or until the maximum number of times that the loop must be performed is reached (fixed before
the beginning of the algorithm).

The MixedStrategy works exactly in the same way of the previous for G2KP and the same is also
true for "MixedStrategyV_G2BPP" and "MixedStrategyH_G2BPP". The differences are only
those connected to the different goals of the problems. So the main difference is that here it is not
possible to have a situation where the packing is not feasible: in the worst case, if it is not possible
to open a new shelf in a bin, a shelf in a new bin is opened.
For this kind of problem, anyway, it is possible to terminate the computation before the end of
the algorithm: this strategy receives in input the best solution that has been found until that
moment and so, if during the execution of the algorithm the i -th bin is open when i is the best
solution, the algorithm can be terminated because there will not be an improvement on the solution.
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3.5 Exact Algorithm for G2BPP

The exact algorithm to solve G2BPP is based on the branch and bound technique described above
(see Martello and Vigo [10]).
First of all also here all items are considered separately and no more divided by type and, as for
the Heuristic G2BPP, they are ordered by decreasing size of area.
Then we enter in the recursive algorithm that uses branch and bound. It can be considered as a
tree structure where each level represents an item and, for each level, the nodes of the upper level
have as many children as the number of bins where it is possible to pack the item that corresponds
to this level. This number of children is the current depth in the tree, because it is assumed that
each item can be inserted in all the possibly previous opened bins plus one (so the total number
of nodes for each level is the number of nodes of the upper level times the depth of each level).
To check all the possible combination we begin from the root and then we go down through nodes
with a depth first search. In the meanwhile, to avoid visiting all possible nodes, many nodes can
be pruned or, if the best solution has been found, the search can be stopped. Each time that the
search reaches a leaf (that will be certainly on the last level) it means that a new better solution
is found.

To check if the solution found is the best solution and stop the search, the so-called lower bound
2 (LB2) has been used. This can be found in literature and gives a lower bound on the minimum
number of bins that are necessary to pack all the items. Hence if a solution that is equal to the
value of LB2 is found, it must be the optimal solution and the algorithm can terminate.
To prune some nodes two techniques are used:

1. if the current node should be inserted into a new bin i and the best solution so far is i as
well, that node and all the branches that start from it are pruned, because there would not
be an improvement of the solution if they were visited;

2. if the current item is the same type of item of the previous one (they are ordered by size, so
equal items are close to each other), supposing that the previous item has been inserted in
the j -th bin, all nodes that would represent the insertion into bin from 1 to j -1 are pruned,
because if it was not possible to insert the previous item there, so it will not be possible to
insert the current one as well (symmetry breaking).

For each node that is not pruned we try to insert the corresponding item into each bin starting
from the first possible. If the insertion succeeds the algorithm moves down recursively to its first
child (obviously checking the pruning conditions), otherwise it moves to its left sibling until it is
able to insert the element in a bin. If it is not possible to insert this item in any already opened
bin a new bin is opened.

To try to insert the current item in a bin four steps are performed, where the first three guarantees
a faster execution of the algorithm:

1. the total area of the items already inserted in the bin summed with the area of the current
item must be lower than (or equal to) the area of the bin, otherwise it is not possible the
insertion;

2. if LB2, computed on the items already in the bin plus the current one, is greater than 1 it
means that only one bin is not sufficient to pack all these items and so it is not possible the
insertion;
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3. the heuristic for G2BPP aforementioned is used. If it returns 1 it means that all items can
be packed into just one bin and so the insertion is performed, otherwise nothing can be said
about it;

4. if the heuristic returns a value greater than 1 the procedure recursive is used. It tries to
solve the G2KP where all items have profit equal to 1 and the desired total profit is the total
number of items that are wanted to be packed. If it returns NULL no packing is possible for
these elements in one bin, otherwise the insertion is performed.
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Chapter 4

Used Tools

4.1 C Programming Language

Figure 4.1. C Logo

C is a general-purpose programming language [5]. Initially it was associated with the UNIX system,
within which it was developed, because both the system and many of its programs were written
with C. Anyway this language is not constrained to any machine or operative system, in fact just
as effectively it has been used to create primary utilities in different fields.
Many basic ideas of C come from BCPL language, but its influence has been mitigated by the
language B, created by Ken Thompson in 1970.
An important difference, anyway, is that BPCL and B are languages with the absence of types,
while C owns a wide range of them. The fundamental types (primitive types) are characters, inte-
ger numbers and decimal numbers. Also some derived types exist, created with pointers, vectors,
structures and unions. Pointers give rise to an arithmetic of addresses that is independent from
the machine.
C provides the basic constructs to regulate the flow of control, constructs required for the develop-
ment of well-structured programs: instructions grouping, the implementation of decisions (if-else),
the choice of one among the possible cases (switch), the use of a cycle with a stopping condition
at the beginning (while, for) or at the end (do), the early exit from a cycle (break).
Values returned from functions can be both primitive or derived types. Any function can be
called recursively. Local variables are typically "automatic" or created from scratch at each call.
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Functions of a same program can be divided in different files, called "source files", which must be
compiled separately. Variables can be internal to a function, external but visible only within a
given source file, or visible in the entire program (global variables).
Before the compilation, another phase called "preprocessing" exists. Here macros, which are con-
ventional abbreviations, are substituted with their effective values in the program and other source
files can be included.

C is considered a relatively "low level" language. This definition means that C uses the same kind
of objects of many computers, like characters, sets, lists, vectors, that can be combined through
arithmetical and logical operators used by real machines.
C does not provide commands to directly deal with complex objects (like strings, sets, lists, vec-
tors). It does not offer specific tools to allocate memory, with the exception of static definitions
and the local stack of functions. Also the garbage collection is not present. This language does
not even offer input/output functionalities, it has no read or write operations and no incorporated
methods to access file as well. All these "high level" mechanisms must be performed with apposite
functions, so many implementations of the language provide a reasonably uniform collection of
these functions.
Despite the absence of some features could seem a big lack, the reduced dimension of the language
brings some benefits, like the fact that C can be easily learned and that a programmer can expect
to know and use the whole language.

C was initially developed by Dennis Ritchie between 1969 and 1973. For many years the so-called
"Reference Manual" (a first edition of a book about C) represented the definition of C. In 1983,
the American National Standards Institute (ANSI) founded a committee in order to arrive to a
modern and exhaustive definition of C. At the end of 1988 the result was the so-called standard
"ANSI C". It bases on the original reference manual, because one of the goals of the committee
was to assure that most of the already existing programs would remain valid.
The biggest change was that the declaration of a function could then contain a description of its
arguments and the syntax of the definition evolved consequently. This change has been very use-
ful, because helps compilers to find errors due to arguments that are incoherent with the expected
types of the function.
Other minor changes has come, like, for example, floating point computation can now be also
executed with single precision.
Anyway The standard gave a second relevant contribution that was the definition of a library
of functions to support C. It included functions to access the operative system (for example to
read and write files), to format input and output data, to allocate memory, to manipulate strings
and so on. Some so-called headers allow uniform access to functions declarations and to data types.

C is not a "strongly typed" language, in the sense that it does not adopt an absolutely rigid
policy of consistency of data types; in its evolution, however, it has strengthened control over the
types. For example the original version of C tolerated the interchange between pointers and integer
numbers, feature that with the new standard has been removed. Now own declarations and explicit
conversions are needed. In spite of this, C keeps its originally philosophy, that programmers know
what they are doing, it only asks that their intentions are clearly expressed.
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4.2 Eclipse

Figure 4.2. Eclipse Foundation Logo

Eclipse [13] is a multi-language Integrated Development Environment (IDE) comprising a base
workspace and an extensible plug-in system for customizing the environment. It is written mostly
in Java. It can be used to develop applications in Java and, by means of various plug-ins, other
programming languages including C thanks to the so-called "C Development Tools" (CDT).

The Eclipse Platform uses plug-ins to provide all functionality within and on top of the runtime
system. A plug-in in Eclipse is a component that provides a certain type of service within the
context of the Eclipse workbench. Under this point of view Eclipse can also be considered as an
extensible platform for building IDEs. The basic mechanism of extensibility in Eclipse is that new
plug-ins can add new processing elements to existing plug-ins.
This plug-in mechanism is used for the most different branches of computer science. In addition
to allow the Eclipse Platform to be extended using other programming languages such as C and
Python, the plug-in framework permits the Eclipse Platform to work with typesetting languages
like LaTeX, networking applications such as telnet and database management systems. The plug-in
architecture supports writing any desired extension to the environment, such as for configuration
management. Java and CVS support is provided in the Eclipse SDK, with support for other version
control systems provided by third-party plug-ins.

Brief History

Industry leaders Borland, IBM, MERANT, QNX Software Systems, Rational Software, Red Hat,
SuSE, TogetherSoft and Webgain formed the initial eclipse.org Board of Stewards in November
2001. By the end of 2003, this initial consortium had grown to over 80 members.
On Feb 2, 2004 the Eclipse Board of Stewards announced Eclipse’s reorganization into a not-for-
profit corporation. Originally a consortium that formed when IBM released the Eclipse Platform
into Open Source, Eclipse became an independent body that will drive the platform’s evolution to
benefit the providers of software development offerings and end-users. All technology and source
code provided to and developed by this fast-growing community is made available royalty-free via
the Eclipse Public License.

Releases

Since 2006, the Foundation has coordinated an annual Simultaneous Release. Each release includes
the Eclipse Platform as well as a number of other Eclipse projects (like, for example, new versions
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of some plug-ins).
So far, each Simultaneous Release has occurred on the fourth Wednesday of June.

At the time of the work the latest released version of the platform was Eclipse 4.2 (Juno project),
but on 26 June 2013 the version 4.3 (Kepler project) has been released. The version used, anyway,
was Eclipse 3.8, which stands between the 3.7 and 4.2 versions and provides bugfixes for Indigo
(3.7 version) and adds Java 7 support. The CDT version used, however, is the 8.1.1, which was
the latest release at the time.

4.3 Valgrind

Figure 4.3. Valgrind Logo

Valgrind [16] is a GPL’d system for debugging and profiling Linux programs. With Valgrind’s tool
suite the user can automatically detect many memory management and threading bugs, avoiding
hours of frustrating bug-hunting, making his programs more stable. He can also perform detailed
profiling to help speeding up his programs.
The Valgrind distribution currently includes six production-quality tools: a memory error detector,
two thread error detectors, a cache and branch-prediction profiler, a call-graph generating cache
and branch-prediction profiler, and a heap profiler. It also includes three experimental tools: a
heap/stack/global array overrun detector, a second heap profiler that examines how heap blocks
are used, and a SimPoint basic block vector generator. It is also possible to use Valgrind to build
new tools.

Features

• Valgrind is Open Source / Free Software, and is freely available under the GNU General
Public License, version 2;

• Valgrind works with all major Linux distributions and since version 3.5 also on Mac OS X.
The latest release is the version 3.8.1 that is the one used for this work.

• It is possible to automatically detect many memory management and threading bugs. This
gives the user confidence that programs will be free of many common bugs.

• Profiling can help find bottlenecks in programs and so speed up them.

• Valgrind has been used for very complex programs (with up to 25 milion lines of code), for
any type of software (from games to scientific programs, to business software) and all over
the world (in over 30 countries)
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• Valgrind works with programs written in any language, but most of all it is aimed at programs
written in C and C++, because programs written in these languages tend to have the most
bugs. However it can, for example, be also used to debug and profile systems written in a
mixture of languages like Java, Perl, Python, Fortran and many others.

• Valgrind gives 100% coverage of user-space code, even within system libraries. You can even
use Valgrind on programs for which you don’t have the source code.

Tool Memcheck

The default and most used tool is Memcheck. It is also the tool used for the debugging of this
work.
Memcheck inserts extra instrumentation code around almost all instructions, which keeps track of
the validity (all unallocated memory starts as invalid or "undefined", until it is initialized into a
deterministic state, possibly from other memory) and addressability (whether the memory address
in question points to an allocated, non-freed memory block), stored in the so-called V bits and A
bits, respectively. As data is moved around or manipulated, the instrumentation code keeps track
of the A and V bits so they are always correct on a single-bit level.
In addition, Memcheck replaces the standard C memory allocator with its own implementation,
which also includes memory guards around all allocated blocks (with the A bits set to "invalid").
This feature enables Memcheck to detect off-by-one errors where a program reads or writes outside
an allocated block by a small amount. The problems Memcheck can detect and warn about include
the following:

• Use of uninitialized memory;

• Reading/writing memory after it has been freed;

• Reading/writing off the end of malloc’d blocks;

• Memory leaks.

The price of this is lost performance. Programs running under Memcheck usually run much slower
than running outside Valgrind and use more memory (there is a memory penalty per-allocation).
Thus, few developers run their code under Memcheck (or any other Valgrind tool) all the time.
They most commonly use such tools either to trace down some specific bug, or to verify there are
no latent bugs (of the kind Memcheck can detect) in the code.

The command used to launch Valgrind was the following:
valgrind --tool=memcheck --leak -check=yes --max -stackframe =26118672 ./a.out

where –tool=memcheck indicates which tool of Valgrind it is going to be used; the –leak-check
option turns on the detailed memory leak detector; the –max-stackframe increases the size of the
stack to the desired value; the last parameter is the name of the executable program to analyse.

Here below there is an example of what this tool of Valgrind can return:

In figure 4.4 it is possible to see a kind of leak of memory. This happens because after having
allocated dynamic memory in the C code, it has not been deallocated. And this forgetfulness
has happened two times: for the allocation made in the method recursive and for that made in
readInput. Valgrind also informs of how many bytes of memory has been lost.
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Figure 4.4. Example of final report after the use of memcheck with memory leaks

Figure 4.5. Example of final report after the use of memcheck with no memory leaks

In figure 4.5, otherwise, it is possible to see what happens if all these forgetfulness have been
corrected. The program informs that all heap blocks have been freed and so no memory leaks are
possible.

4.4 Gnuplot
Gnuplot [14] is a portable command-line driven graphing utility for Linux, OS/2, MS Windows,
OSX, VMS, and many other platforms. The source code is copyrighted but freely distributed. It
was originally created to allow scientists and students to visualize mathematical functions and data
interactively, but has grown to support many non-interactive uses such as web scripting. It is also
used as a plotting engine by third-party applications like Octave. Gnuplot has been supported and
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under active development since 1986.

Gnuplot supports many types of plots in either 2D and 3D. It can draw using lines, points, boxes,
contours, vector fields, surfaces, and various associated text. It also supports various specialized
plot types.

Gnuplot supports many different types of output: interactive screen terminals (with mouse and
hotkey input), direct output to pen plotters or modern printers, and output to many file formats
(eps, emf, fig, jpeg, LaTeX, pdf, png, postscript, ...). Gnuplot is easily extensible to include new
output modes. Recent additions include interactive terminals based on wxWidgets (usable on
multiple platforms), and Qt. Mouseable plots embedded in web pages can be generated using the
svg or HTML5 canvas terminal drivers.

The used version is the 4.6.1, which was the latest one at the beginning of the work. At the moment
versions till 4.6.3 have been released.

The importance of Gnuplot in this work has been that of "logical debugging". It has been used
to check whether the output of the algorithms were correct or not, printing on the screen the plot
representing the resulting packing of rectangular items. To have a better debugging it has been
possible to set the length of the axes that must be visible in a single window in order to represent
a single bin.
To represent items in the bin, objects Rectangles of the program has been used. To plot them it
was enough to set the coordinates of the bottom left and of the upper right corners. They also
have been coloured with the command "fillcolor" to avoid confusing them with the empty spaces
in the bin, thing that could have happened if the rectangles would have been filled with white as
the background of the bin.
Here below there is an example of a file that creates a plot with Gnuplot.

set xrange [0:537]
set yrange [0:244]
set object rect from 504 ,178 to 534 ,244 fillcolor rgb "#87 cefa"
set object rect from 458,0 to 537,89 fillcolor rgb "#87 cefa"
set object rect from 458,89 to 537 ,178 fillcolor rgb "#87 cefa"
set object rect from 474 ,178 to 504 ,244 fillcolor rgb "#87 cefa"
set object rect from 400,90 to 458 ,178 fillcolor rgb "#87 cefa"
set object rect from 444 ,178 to 474 ,244 fillcolor rgb "#87 cefa"
set object rect from 347,0 to 458,45 fillcolor rgb "#87 cefa"
set object rect from 347,45 to 458,90 fillcolor rgb "#87 cefa"
set object rect from 414 ,178 to 444 ,244 fillcolor rgb "#87 cefa"
set object rect from 120,0 to 236,90 fillcolor rgb "#87 cefa"
set object rect from 236,0 to 347,45 fillcolor rgb "#87 cefa"
set object rect from 236,45 to 347,90 fillcolor rgb "#87 cefa"
set object rect from 212,90 to 400 ,134 fillcolor rgb "#87 cefa"
set object rect from 212 ,134 to 400 ,178 fillcolor rgb "#87 cefa"
set object rect from 384 ,178 to 414 ,244 fillcolor rgb "#87 cefa"
set object rect from 0,66 to 119 ,90 fillcolor rgb "#87 cefa"
set object rect from 159,90 to 212 ,147 fillcolor rgb "#87 cefa"
set object rect from 168 ,147 to 210 ,178 fillcolor rgb "#87 cefa"
set object rect from 256 ,178 to 384 ,244 fillcolor rgb "#87 cefa"
set object rect from 90,0 to 120 ,66 fillcolor rgb "#87 cefa"
set object rect from 106,90 to 159 ,147 fillcolor rgb "#87 cefa"
set object rect from 126 ,147 to 168 ,178 fillcolor rgb "#87 cefa"
set object rect from 0,178 to 128 ,244 fillcolor rgb "#87 cefa"
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set object rect from 128 ,178 to 256 ,244 fillcolor rgb "#87 cefa"
set object rect from 60,0 to 90,66 fillcolor rgb "#87 cefa"
set object rect from 0,90 to 53,147 fillcolor rgb "#87 cefa"
set object rect from 53,90 to 106 ,147 fillcolor rgb "#87 cefa"
set object rect from 84 ,147 to 126 ,178 fillcolor rgb "#87 cefa"
set object rect from 0,0 to 30,66 fillcolor rgb "#87 cefa"
set object rect from 30,0 to 60,66 fillcolor rgb "#87 cefa"
set object rect from 0,147 to 42,178 fillcolor rgb "#87 cefa"
set object rect from 42 ,147 to 84,178 fillcolor rgb "#87 cefa"

Code 4.1. Gnuplot input file to plot a packing

Figure 4.6. The resulting plot of the packing
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Chapter 5

Implementation

5.1 Input File
For the implementation of the problem it has been decided to use as input the same kind of files
that are used in literature. So they have a very well defined structure, which will be described here.

20
40 70
31 43 4 500
30 41 2 480
29 39 4 460
28 38 4 440
27 37 3 420
26 36 4 410
25 35 3 400
24 34 4 380
33 23 4 360
22 32 3 340
31 21 3 320
29 18 3 300
17 27 2 280
15 24 2 240
16 25 4 260
15 24 1 240
23 14 4 220
21 12 3 180
19 11 4 160
9 17 1 140

Code 5.1. Example of an input file

The structure of the file must be the following:

• on the first row there must be the number of the types of rectangles that are listed in the
following lines;

• on the second row there must be the values of the dimensions of the bin. The first number
represents the width and the second one stands for the height;

• all the next lines have the same structure and they are exactly the quantity present in the
first line. For each of these rows the first two numbers represent respectively width and
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height of the rectangle, the third number stands for the number of rectangles that have that
shape and the fourth is the profit that each rectangle with that shape has.

In the example, moreover, rectangles are ordered by profit, but this is not the rule: to have a valid
input file it is enough to follow the three points described here above, with no limitations on the
order of rectangles.

5.2 Organization of Files

To make the implementation as readable as possible, the work has been structured following the
idea of modularity. So different files have been created for different algorithms and also in the same
file, functions have been programmed using sub-functions to increase readability and because, if a
sub-function is used more than one time in the main function and there is the desire to modify it,
in this manner it is possible to modify only one time the code to change it everywhere.
The files that have been implemented are the following:

• structures.h: here all the structs that are needed to represent objects present in this kind
of problem are implemented: for example some of them are Sheet, Rectangle, Packing,
Container;

• auxiliaryFunctions.h: header file where all the functions present in auxiliaryFunctions.c
are listed;

• auxiliaryFunctions.c: here all the functions of its header file are implemented. These func-
tions are not sub-functions of algorithms to solve G2KP and G2BPP, but they are external.
Here there are, for example, the method to parse the input and a method to order rectangles
by profit over weight ratio;

• functionsG2KP.h: header file where all the functions present in functionsG2KP.c are listed;

• functionsG2KP.c: here all the functions of its header file are implemented. These are all
the functions related to G2KP, so those necessary to compute the exact solution of G2KP
and the procedure recursive, plus all the related sub-functions;

• functionsG2BPP.h: header file where all the functions present in functionsG2BPP.c are
listed. Here also some struct and some types necessary to use LB2 are defined;

• functionsG2BPP.c: here all the functions of its header file are implemented. These are all
the functions related to G2BPP, therefore that used to compute the exact solution of G2BPP
and all its sub-functions, like heuristic functions and branch and bound method;

• main.c: in this file just the main of the program has been implemented where can be decided
to perform G2KP or G2BPP.

In addition to these files other two file called 3dbpp.h and 3dbpp.c [8], which have been imple-
mented by David Pisinger [15], are used. These are necessary, because the implementation of LB2
is contained within them.
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5.3 Structures
In these section all the implemented structures are described.
To understand why some data types are used instead of others it is important to briefly explain
what is a struct. A definition of a struct is the same of defining a variable, because both are
defining a limited memory space. The difference is that a struct has inside some fields. These
fields are not necessarily all of the same size (in terms of memory space). If all the fields have the
same size, then the space used by the structure is the sum of them, otherwise it is a bit different.
The size of a struct must be a multiple of the biggest of its fields, so the sum of all of them is
computed and, if the result is not perfectly a multiple of the biggest element, a padding is used to
reach the next multiple.
Hereafter the implemented structures are presented:

• Sheet: it represents the bin where items must be packed. It has only two fields of integer,
which represent the dimensions, width and height, respectively.

• Rectangle: it represents each item that must be packed. As it is possible to see from the
code, it has five fields that represent respectively width and height of the rectangle, the total
number of rectangles that have that shape, the profit of that kind of rectangles and the index,
that is the position that it has in the input file from where it has been retrieved.

/∗∗
∗ Struc ture t ha t r ep re s en t s r e c t an g l e s
∗/

typedef struct r e c t ang l e {

int width ; //width o f the r e c t ang l e
int he ight ; // he i gh t o f the r e c t ang l e
int number ; //number o f r e c t an g l e s with t h i s s i z e
int p r o f i t ; // p r o f i t o f t h i s kind o f r e c t an g l e s
int index ; // index o f the r e c t ang l e

} Rectangle ;

Code 5.2. Example of code for a structure

• Shelf : it represents a shelf in the heuristic algorithms. It can be used either as horizontal or
vertical shelf thanks to its four fields: the first two determines the width or the height of the
shelf, used respectively in the case if the shelf is vertical or horizontal. In the case of vertical
shelf, then, to determine if any other packing can still be packed the residualHeight field is
used, while for the horizontal there is the residualWidth field. All these fields are integer.

• Bin: it represents the bin in the implementation with shelves inside in the heuristic algo-
rithms. It has four fields: a pointer to an array of shelves, where they are saved, an integer
that gives the number of shelves (the length of the array) and other two integers that represent
residual height and residual width in the bin.

• Packing: it represents each possible packing of items in the bin. This is the most critical
structure in terms of memory space used, because the number of packings that might be
saved at the same time could be very high. So, above all in this case, it has been tried to
minimize the space necessary for each field. Moreover, for each packing has been necessary
to save some information that are used at the end of the algorithm to retrieve the coordinates
of the position of items in the packing. So six fields have been implemented:
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– unsigned char* pack: pointer to an array that represents the packing: each number
represents the total number of rectangles with that shape that are in the packing.

– unsigned short k: index of the array W or H where to cut, which is needed to retrieve
the position of the first of the two packing, between which the cut has been performed,
in the matrix where all packings are saved. If it is a "base case" (which will be better
defined later), so there is only field element in the packing and can not be cut, it is
equal to 0.

– unsigned short q: index of the other packing that brings to the feasible Packing through
the cut obtained through the pairwise sum; like the previous one if we are in a base
case, it assumes the value 0.

– char direction: it can assume three values: ’W’ if there cut is vertical, ’H’ if the cut is
horizontal, ’0’ if no cut can be performed

– unsigned char positionK: index of the position of the packing in the cell of the matrix
found thanks to the field k.

– unsigned char positionQ: index of the position of the packing in the cell of the matrix
found thanks to the field q.

Hence, the total memory space occupied by this struct is the following: 8 bytes for the
pointer, if the architecture of the computer is 64-bit, 1 byte for each of the three chars and
2 bytes for each of the two shorts. So the sum is 15 bytes, but, because of the pointer, the
struct occupies 16 bytes, with 1 byte of padding.

• Container: it represents a set of packings. It is used in the matrix where all packings are
saved to represent each cell of the matrix. It has only two fields, which are a pointer to the
array of packing and the length of this array.

• Node: it represent a node of the tree used to retrieve the positions of items in the feasible
packing, starting from the root and descending to the leaves. There are seven fields. The first
is a pointer to the next packing from where another cut (and consequently 2 sub-packings)
can be retrieved. Then w and h are the indexes of the matrix where this packing is saved. x
and y are the searched coordinates of the bottom-left vertex. hDx and wDx are the indexes
used to set the right child. They are necessary to determine position taking into account also
cuts previously made.

• RectPosition: it represents the position of each item in the feasible packing. It has three
fields: the index of the item, the coordinate x of the position and the coordinate y of the
position, all of them are integers.

5.4 Auxiliary Functions
In the file of the auxiliary functions just three methods are present (two if we consider that merge-
Sort and merge are used together). We will focus only on the method readInput, because mergeSort
has the classic recursive implementation.

int readInput (char∗ inputFileName , Sheet ∗ sheet , Rectangle ∗∗ r e c t s , int∗ numRects ) ;
void mergeSortRectangles ( Rectangle ∗∗ r e c t s , int f i r s t , int l a s t ) ;
void mergeRectangles ( Rectangle ∗∗ a , int f i r s t , int center , int l a s t ) ;

Code 5.3. Functions present in auxiliaryFunctions.h
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readInput, first of all, tries to open the file just in reading mode with the function "fopen" and,
if there is any problem, it terminates with an error. Then with some "scanf" information are
retrieved from the input file and saved into the correct fields of a Rectangle and each of these is
placed into an array.
It has been noticed, however, that some of the input files, even if they were from literature, had
some of the types of rectangles that were equal to each other, despite being written in different
rows. So in this function a control has been introduced to check if this happens and, in case, to
merge the two types into one.
This method returns 0 if the reading was successful, 1 otherwise, and returns also the array of
Rectangles and the length of this array, thanks to the fact that it received their addresses as input.

5.5 Functions For G2KP
The list of functions present in functionsG2KP.h has been divided in two parts: in the first part
there are all those related to the function exactG2KP, while in the second there are all those related
to the procedure recursive.

For the first part first of all we must consider the function exactG2KP. It has been described in
detail above and the implementation is really simple, thanks to the modularity of the code. The
only fact that is particularly interesting to notice is that this function returns not only the list of
the coordinates of the items in the feasible packing, but also its length and the optimal solution
value, thanks to the fact that the input variables optimalSolution and numPackedRects are ad-
dressed and so these values are updated directly there and they do not need a return statement.

RectPos i t ion ∗ exactG2KP ( int maxWidth , int maxHeight , int numRects , Rectangle ∗ r e c t s ,
int ∗ opt imalSo lut ion , int ∗ numPackedRects ) ;

int heuristicG2KP ( int maxHeight , int maxWidth , int numRects , Rectangle ∗ r e c t s ) ;
int mixedStrategyV_G2KP( Rectangle ∗ randomOrder , int numElem , int maxHeight , int maxWidth ) ;
int mixedStrategyH_G2KP( Rectangle ∗ randomOrder , int numElem , int maxHeight , int maxWidth ) ;
void findRandomOrder ( Rectangle ∗∗ r e c tL i s t , int totRects ) ;
void mergeSortRectanglesByNumber ( Rectangle ∗∗ r e c t s , int f i r s t , int l a s t ) ;
void mergeRectanglesByNumber ( Rectangle ∗∗ a , int f i r s t , int center , int l a s t ) ;

Code 5.4. Functions present in functionsG2KP.h part 1

Also the heuristicG2KP implementation is quite simple. An auxiliary array of Rectangles rando-
mOrder has been introduced where all the randomizations of the items are saved. For the first
time, where, as mentioned before, all elements should be ordered by profit over weight ratio, it
is enough to copy elements from array rects, because they should be already ordered in this way.
Then, considering the inner loop, has been decided to proceed in the way described in chapter 3,
because in this manner the 2 strategies in the outer cycle are computed only for set of items that
potentially can improve the best solution value saved at the time.
To randomize the order of items has been used the function srand that seeds the random number
generator with the input number. The input number is the current time, so it gives a good random-
ization. Each random number that is generated is saved in the field "number" of the Rectangles,
because they are no more divided by type, so each Rectangle would have value 1 in that field.
Then items are ordered with the mergesort by decreasing order of field number.
Let us consider now the mixedStrategy functions. We will discuss only the vertical one, because
the horizontal one is the complementary.
First of all this function is characterized by a big external loop that is performed on each Rectangle
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to find the correct Shelf where to pack it. This search is performed starting from the first Shelf
and then trying the following. Shelves with even index are considered as vertical (respectively:
horizontal), those with odd index are considered as horizontal (vertical) (the first index is zero, so
it will start with a vertical one). To check if an item can be packed into a vertical (horizontal)
shelf two controls are necessary: its width (height) should be lower than the width (height) of the
shelf and its height (width) should be lower than the residualHeight (residualWidth) of the shelf.
If these two controls are passed, the residualHeight (residualWidth) is updated decreasing it by the
height of the item. If we arrive to consider the index of a shelf that has not been opened yet, we
try to open it (vertical or horizontal, depending from the index). The control to perform to verify
if it is possible is to check if height and width of the current item are lower than the residual height
and residual width of the bin. These two variables have been initialised at the beginning of this
function with the values of the dimensions of the bin and each time a new shelf is opened (passing
the last control mentioned) they are updated. If the shelf is vertical the residual width is decreased
by the item width, otherwise the residual height is decreased by the item height. Moreover, when a
new vertical (horizontal) shelf is created, also the width (height) and the residualHeight (residual-
Width) of the shelf are set as respectively the width (height) of the current item and the difference
between the residual height (width) of the bin and the height (width) of the current item. The
method returns 1 if at the end a packing for each item is found, otherwise it returns 0 if it happens
that the conditions for opening a new shelf can not be met.

Now the procedure recursive and all its sub-functions will be considered.

RectPos i t ion ∗ r e c u r s i v e ( int z0 , int maxWidth , int maxHeight , int numRects ,
Rectangle ∗ r e c t s , int ∗ numPackedRects ) ;

void saveDataAndQuantities ( int ∗ value , int ∗ number , int ∗∗ arrayData , int ∗∗ arrayQuantity ,
int ∗ s i z e , int ∗ counter ) ;

int ∗ l inearCombinat ion ( int maximum, int ∗∗ arrayData , int ∗∗ arrayQuant i t i e s ,
int counterInput , int ∗ counterOutput ) ;

Container pairwiseSum ( Container a , Container b , int numRects , Rectangle ∗ r e c t s , int q ,
int cut , char d i r e c t i o n ) ;

Container unionPackingsUB ( Container a , Container b , int numRects , Rectangle ∗ r e c t s ,
int maxWidth , int maxHeight , int width , int height , int isLastW ,
int isLastH , int z0 ) ;

void mergeSortPackings ( Container ∗pack , int f i r s t , int l a s t , int numRects ) ;
void mergeSort ( Packing ∗∗ a , int f i r s t , int l a s t , int numRects ) ;
void mergePackings ( Packing ∗∗ a , int f i r s t , int center , int l a s t , int numRects ) ;
int ∗ r e s i z eAr r ay In t ( int ∗ array , int ∗ o ldS ize , int newSize ) ;
Packing∗ re s i zeArrayPack ing ( Packing∗ array , int ∗ o ldS ize , int newSize ) ;
Node∗ res izeArrayNode (Node∗ array , int ∗ o ldS ize , int newSize ) ;
RectPos i t ion ∗ res izeArrayRectPos ( RectPos i t ion ∗ array , int ∗ o ldS ize , int newSize ) ;
int minVal ( int a , int b ) ;
int maxVal ( int a , int b ) ;
int f i n dC r i t i c a lOb j e c t ( int pro f i t_j , int area_j , int maxNum_j, int ∗ r e s idua lCapac i ty ,

int previousUpperBound , int ∗ c r i t i ca lOb j ec tFound ) ;
int comparePackings (unsigned char∗∗ a , unsigned char∗∗ b , int s i z e ) ;

Code 5.5. Functions present in functionsG2KP.h part 2

It is possible to consider the procedure recursive as divided into three parts: a first part where W
and H are computed, a second part where all possible packings are generated and at the end the
feasible packing, if exists, is found and a third part where the positions of the items in the feasible
packing are retrieved.
In the first part the computation of W and H is pretty simple in the method recursive, because
all the work is performed by the two auxiliary functions saveDataAndQuantities and linearCom-
bination.
To compute W saveDataAndQuantities saves into two different arrays all the possible different
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widths of the items and the number of items that have each width. Then it does the same with
heights to compute H. To implement this, because of the small size of input, for each element a
simple exhaustive search has been used to find the position where to insert it.
LinearCombination uses the two arrays computed with saveDataAndQuantities to find W (or H
respectively). This algorithm will be explained only for the widths, because for the heights it is the
complementary. First of all an array A is created with length equal to the width of the sheet plus
one and it is initialised with all zeros except in the position of index 0 where it is initialised with
1. This happens because each cell of the array is considered as a possible dimension and in each
cell is saved the value of the iteration when that dimension is found or zero if it has still not been
found at that moment. For each element in the input arrays (j ) each element of A (k) is checked
and considered only if it has been computed on the previous iteration. In this case, considering
the quantity (i) that corresponds to the current element, the new sizes are computed as the linear
combination between the current size k and the dimension corresponding to the index j weighted
by the quantities i. To explain it more clearly, it has been computed with the following formula:
// I t e r a t e on quan t i t i e s
for ( i = 0 ; i <= (∗ ar rayQuant i t i e s ) [ j −1] ; i++) {

//Compute the value
int value = k + i ∗(∗ arrayData ) [ j −1] ;

}

Code 5.6. Formula for linear combination

After this computation the found value is checked to be lower than the length of A and, if this is
the case, the number of the computation is saved into the cell corresponding to the computed size.
At the end of the algorithm all the found sizes are saved into another array that is returned with
its size.

Going back to procedure recursive, starting the second part we have W, H and their respective
sizes t and s. The second part is characterized by a double loop on all values of W and H. At the
end of each iteration a set of Packings is saved into the correct cell of a matrix t× s of Containers,
called F.
For the implementation of this part of the algorithm, because the biggest problems were coming
from the memory space needed to save all the possible packing, we have decided to change a little
the algorithm to reduce the number of packings that were saved into the matrix. To obtain this
result the control on the UB of the profit for each packing is performed each time a union must be
executed.
In this part some other variables of type Container have been introduced, because each of them
represents one set of packing, in the pseudo-code represented with F (x, y, z0). Moreover, when
is computed the Container temp as solution of the pairwise sum, it is ordered with a mergeSort
by lexicographical order before performing the union with the Container S containing the packing
that could be insert in the current cell of the matrix, so both S and temp are ordered and it is
much easier to perform the union.
Considering the pairwise sum, to call this function from the recursive procedure, it is necessary
to pass as its input the values of the cut, so the index q found, his complementary index called k
(that is the q̄ of the pseudo-code), which is the real position where the cut is performed, and the
direction of the cut, that could be horizontal (’H’) or vertical (’W’). In this method then a double
cycle on all the elements of the two Containers passed as input is performed to find the pairwise
sum and, when a packing belonging to it is computed, all the features of the cut are saved as well.
Here there is a fragment of code where it can be seen:
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//Cycle on a l l the elements of a
for ( l = 0 ; l < a . s i z e ; l++) {

//Cycle on a l l the elements of b
for ( k = 0 ; k < b . s i z e ; k++) {

//Cycle on a l l the components of the f ea sab l e packings
for ( i = 0 ; i < numRects ; i++) {

int value = a . f [ l ] . pack [ i ] + b . f [ k ] . pack [ i ] ;
sum . f [ l ∗b . s i z e + k ] . pack [ i ] = minVal ( value , r e c t s [ i ] . number ) ;
sum . f [ l ∗b . s i z e + k ] . pos i t ionK = k ;
sum . f [ l ∗b . s i z e + k ] . pos i t ionQ = l ;
sum . f [ l ∗b . s i z e + k ] . d i r e c t i o n = d i r e c t i o n ;
sum . f [ l ∗b . s i z e + k ] . q = q ;
sum . f [ l ∗b . s i z e + k ] . k = cut ;

}

}

}

Code 5.7. Fragment of the function to compute the pairwise sum

In unionPackingsUB (this is the name of the function were both union and control of the UB on the
profit of packings are performed) the packings of the two Containers to merge are lexicographically
compared. The first container is always S and it is considered already checked and ordered. If
they are equal the pointer to the packings of the second Container is moved to the next packing
and nothing else is performed. Otherwise if they are different the smallest is considered. If it
belongs to S it can be directly inserted into the new Container, otherwise it must be checked if it
satisfies the control on the UB and only after this it is inserted. Then if all the elements of one
of the Containers have been checked, the other are tried to be inserted into the new Container. If
the remaining Container is the first one they can directly be inserted, otherwise the control of UB
must be performed also in this case, after having checked that the current element was not just
inserted into the Container (it could happen because the second Container, although it is ordered,
may contain duplicates).
Now let us take a closer look on the implementation of the UB by Martello and Toth. This
implementation follows the general case described above, but we have had the necessity to manage
some other particular cases:

• if the critical object is not found it means that all the items can be packed and so the UB is
simply the sum of their profits;

• the standard situations occurs when the critical item is neither the first nor the last item in
this list;

• if the critical object is the last element of the array, the UB is computed as the maximum
between Dantzig UB and the UB computed by using the entire critical object and a part of
the object before;

• if the critical object is the first position of the array, the UB is computed as the maximum
between the Dantzig UB and the UB computed by using part of the object after the critical
object instead of the critical one.

Considering again the procedure recursive, let us give now a deeper look on the moment when an
item perfectly matches the dimension of the current sub-rectangle of the sheet, which has been
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called "base case". It is called in this manner because no other cuts are performed to insert it.
When it is inserted, all the informations about cuts are set to 0, including also the direction where
the char ’0’ is inserted. This is important so, when we are trying to retrieve the position of items,
we know when to stop, because we have found a packing of a single item.
Going forward with the procedure recursive, there is the last part of the algorithm, that is checking
if a packing is maximal or not. To implement this a simple observation is done: a packing is not
maximal if there is at least another packing that has all the components greater or equal compared
to the packing that is being checked. So in the implementation each packing is compared with
all the others until a component of the second one is smaller than that of the first one. If for a
packing this can not be found, this means that the packing that is being checked is not maximal
and can be discarded.
After this last control, memory is freed and S is resized and saved in F [i][j], that is the cell of the
matrix considered in that iteration. In F [t-1][s-1], if exists, a feasible packing is present, otherwise
the algorithm returns NULL.

Now we enter in the third part of the algorithm, that to retrieve all the positions of the elements
in the packing. The binary tree used to retrieve all the elements is implemented using an array
where all the left children are in the positions with indexes (2× i) + 1, where i is the index of the
father, and all the right children in the positions with indexes (2 × i) + 2. The root is initialised
with all data recovered from the feasible packing in F [t-1][s-1], as it can be seen in the listing here
below.
// I n i t i a l i z e root of the t ree
a l l [ 0 ] .w = t −1;
a l l [ 0 ] . h = s−1;
a l l [ 0 ] . x = 0 ;
a l l [ 0 ] . y = 0 ;
a l l [ 0 ] . wDx = 0 ;
a l l [ 0 ] . hDx = 0 ;
a l l [ 0 ] . p = ( Packing ∗) mal loc (1∗ s izeof ( Packing ) ) ;
a l l [ 0 ] . p−>d i r e c t i o n = F[ t −1] [ s −1] . f [ 0 ] . d i r e c t i o n ;
a l l [ 0 ] . p−>k = F[ t −1] [ s −1] . f [ 0 ] . k ;
a l l [ 0 ] . p−>q = F[ t −1] [ s −1] . f [ 0 ] . q ;
a l l [ 0 ] . p−>pos i t ionK = F[ t −1] [ s −1] . f [ 0 ] . pos i t ionK ;
a l l [ 0 ] . p−>pos it ionQ = F[ t −1] [ s −1] . f [ 0 ] . pos i t ionQ ;
a l l [ 0 ] . p−>pack = (unsigned char ∗) mal loc ( numRects∗ s izeof (unsigned char ) ) ;
for ( j = 0 ; j < numRects ; j++) {

a l l [ 0 ] . p−>pack [ j ] = F [ t −1] [ s −1] . f [ 0 ] . pack [ j ] ;
}

Code 5.8. Initialisation of the root of the binary tree

Some other variables are initialised at the beginning of this part, like the total number totRects
of Rectangles present in the solution and the number of leaves numLeaves found in the solution.
There is also a system to manage the size of the array all by taking trace of his size and increasing
it threefold each time that it is necessary. This kind of management is crucial because, as the tree
is not balanced, in the worst case it could need a very long array even for representing just few
nodes. To recognize each cell that does not belong to the tree (empty nodes), their field x has been
set to -1.
The algorithm then iterates on each element of the array of Nodes all until numLeaves is equal to
totRects. For each iteration of the cycle four possibilities can happen:

1. The node is empty. Its left and right children are set as empty nodes as well and then the
iteration continues on the next node.

2. The node is a leaf, because the direction is ’0’. Here in fields x and y the true coordinates
are found and the index of the item is recovered by the position of the item in the packing.
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Then the fields x of its two children are set to empty and the variable numLeaves is increased
by 1.

3. The cut direction of the node is vertical. Its left and right children must be updated. Con-
sidering first the left child, its fields x, y, wDx, hDx, and h assume the same value of the
father, while w assumes the value all[i].p->k. The values of the packing are, in the general
case, recovered from the matrix F and more precisely from the cell with indexes all[i].p->k
and all[i].h in the position all[i].p->positionK of its array of packings.
In the right child things are a little more complicated: field w assumes the value all[i].p->q,
while h the same of the father. Also y assumes the same of the father, while x assumes the
valueW[all[i].p->k] +W[all[i].wDx] if all[i].wDx > 0, otherwise just the valueW[all[i].p->k].
Finally hDx assumes the same value of the father and wDx assumes the value all[i].p->k.
The values of the packing are, in general, recovered from F [all[i].p->q][all[i].h] and they can
be found in the position all[i].p->positionQ of its array of packings.

4. The cut direction of the node is horizontal. It is very similar to the previous case, here
are the few differences: in the left child x assumes the value of the father, while y becomes
all[i].p->k. The packing is now retrieved from F [all[i].w][all[i].p->k] always in the position
all[i].p->positionK. In the right child w, x and wDx assume the same values of the father,
h assume the value all[i].p->q, hDx the value all[i].p->k and y the value H[all[i].p->k] +
H[all[i].hDx] if all[i].hDx > 0, otherwise just the value H[all[i].p->k]. The packing is recov-
ered from F [all[i].w][all[i].p->q], always in the position all[i].p->positionQ.

The algorithm terminates returning the array of RectPositions where the coordinates have been
saved and his size and freeing the binary tree all and the matrix F.

5.6 Functions For G2BPP

Eventually the functions developed in functionsG2BPP.c are considered. To use these functions,
in particular to use the function exactG2BPP, it is necessary to include the functions for G2KP as
well, because of the use of the procedure recursive.

RectPos i t ion ∗ exactG2BPP( int maxHeight , int maxWidth , int numRects , Rectangle ∗ r e c t s ,
unsigned char∗ optSolut ion , int ∗ numPackedItems ) ;

void mergeSortRectanglesByArea ( Rectangle ∗∗ r e c t s , int f i r s t , int l a s t ) ;
void mergeRectanglesByArea ( Rectangle ∗∗ a , int f i r s t , int center , int l a s t ) ;

unsigned char branchAndBound ( int currElem , unsigned char currZ , short∗ currSo l ,
Rectangle ∗ r e c t s , int totRects , int binHeight , int binWidth ,
boolean ∗ terminate , short∗∗ s o l u t i o n ) ;

int i n s e r tCur r en t ( int bin , int currElem , short∗ currSo l , Rectangle ∗ r e c t s , int binHeight ,
int binWidth ) ;

int heuristicG2BPP ( int maxHeight , int maxWidth , int numRects , Rectangle ∗ r e c t s ) ;
int mixedStrategyV_G2BPP( Rectangle ∗ randomOrder , int numElem , int maxHeight , int maxWidth ,

int maxBins ) ;
int mixedStrategyH_G2BPP( Rectangle ∗ randomOrder , int numElem , int maxHeight , int maxWidth ,

int maxBins ) ;

Code 5.9. Functions present in functionsG2BPP.h
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Initially, in exactG2BPP, before the branch and bound, only the creation of an array of all dif-
ferent items, no more divided by type of Rectangles, and the initialization of an array where to
save the solution of the branch and bound (the index of the bin where each element is packed)
are performed. After the execution of branch and bound, for each bin all the items that must be
packed there, are inserted into an array, divided by type of Rectangles and with profit set to 1;
this array is then passed as input of a recursive procedure that finds their exact packing into one bin.

For branch and bound, being a recursive procedure, to stop the search when the optimal solution
is found, it has been necessary to use a boolean variable that pointed out if the optimal solution
was reached or not. To be sure that its value would not change calling the method recursively its
address has been used as input parameter. The same has been done with the array representing
the solution, while the best solution found at the moment is saved as global variable.
The implementation is simple: first there are two controls that makes the function return, which
are the control on the boolean flag described above and the control if a leaf of the tree is reached,
finding then a better solution. If these controls fail, the current item is tried to be inserted in
each bin that has already been opened. If it succeed branch and bound is called on the next item,
otherwise, another bin is opened if the solution could be still potentially improved and then the
branch and bound on the next item is performed.

The method for the insertion of an item in a bin follows exactly what has been described in section
3.5 and so does the heuristic method with what is described in 3.4.2, so we will consider now the
mixed strategy.
The mixed strategy is exactly the same algorithm used for G2KP, but with one big difference:
here packings are always possible, because if it is not possible to insert all the items into one bin,
another bin can be opened. So the differences in the algorithm are that for each item first there is
a cycle that checks each opened bin and then another cycle that checks all the opened shelves in
that bin. It is possible to notice that inside the cycle that checks the bins, the algorithm is almost
the same of that for G2KP. The only difference is that there is a flag that allows to break also the
loop on the bins when a shelf is found. At the end if it is not possible to insert an item in any bin,
another bin is opened and the item is inserted there. Anyway, to avoid useless iteration, a control
when a new bin is opened is performed: if with the opened bin the number of bin opened reaches
a value maxBin passed as input parameter, containing the value of the best solution found at the
moment in the heuristic function, it means that there will not be improvement in the solution of
the heuristic method and so the function returns.

5.7 Outputs
In Code 5.10 it is possible to see how an output of a G2BPP is. For each item its type (which is
the position in the input file), index (which increases for each element of the same type), profit,
dimension, the bin where it is packed and the coordinates of the bottom-left corner are specified.
At the end we also report the value of the optimal solution and the time needed to perform the
computation.
For a G2KP, on the other hand, the output is the same, with the differences that the number of the
bin is not present, because there is only one bin, and the optimal solution is no more the number
of bins used, but the best profit found, for which there is a feasible packing.
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Type: 10, Index: 0, Profit: 759, Dimension: 23 x 33, Bin: 0, Position: 43 x 0
Type: 18, Index: 0, Profit: 1333, Dimension: 43 x 31, Bin: 0, Position: 0 x 0
Type: 0, Index: 0, Profit: 153, Dimension: 17 x 9, Bin: 0, Position: 0 x 31
Type: 17, Index: 0, Profit: 1230, Dimension: 41 x 30, Bin: 1, Position: 0 x 0
Type: 10, Index: 1, Profit: 759, Dimension: 23 x 33, Bin: 1, Position: 41 x 0
Type: 16, Index: 0, Profit: 1131, Dimension: 39 x 29, Bin: 2, Position: 0 x 0
Type: 10, Index: 2, Profit: 759, Dimension: 23 x 33, Bin: 2, Position: 39 x 0
Type: 15, Index: 0, Profit: 1064, Dimension: 38 x 28, Bin: 3, Position: 0 x 0
Type: 9, Index: 0, Profit: 704, Dimension: 32 x 22, Bin: 3, Position: 38 x 0
Type: 6, Index: 0, Profit: 459, Dimension: 27 x 17, Bin: 3, Position: 38 x 22
Type: 14, Index: 0, Profit: 999, Dimension: 37 x 27, Bin: 4, Position: 0 x 0
Type: 9, Index: 1, Profit: 704, Dimension: 32 x 22, Bin: 4, Position: 37 x 0
Type: 6, Index: 1, Profit: 459, Dimension: 27 x 17, Bin: 4, Position: 37 x 22
Type: 13, Index: 0, Profit: 936, Dimension: 36 x 26, Bin: 5, Position: 0 x 0
Type: 11, Index: 0, Profit: 816, Dimension: 34 x 24, Bin: 5, Position: 36 x 0
Type: 5, Index: 0, Profit: 400, Dimension: 25 x 16, Bin: 5, Position: 36 x 24
Type: 12, Index: 0, Profit: 875, Dimension: 35 x 25, Bin: 6, Position: 0 x 0
Type: 4, Index: 0, Profit: 360, Dimension: 24 x 15, Bin: 6, Position: 0 x 25
Type: 12, Index: 1, Profit: 875, Dimension: 35 x 25, Bin: 6, Position: 35 x 0
Type: 4, Index: 1, Profit: 360, Dimension: 24 x 15, Bin: 6, Position: 35 x 25
Type: 8, Index: 0, Profit: 651, Dimension: 21 x 31, Bin: 7, Position: 49 x 0
Type: 11, Index: 1, Profit: 816, Dimension: 34 x 24, Bin: 7, Position: 0 x 0
Type: 3, Index: 0, Profit: 322, Dimension: 14 x 23, Bin: 7, Position: 34 x 0
Type: 5, Index: 1, Profit: 400, Dimension: 25 x 16, Bin: 7, Position: 0 x 24
Type: 4, Index: 2, Profit: 360, Dimension: 24 x 15, Bin: 7, Position: 25 x 24
Type: 7, Index: 0, Profit: 522, Dimension: 18 x 29, Bin: 8, Position: 42 x 0
Type: 8, Index: 1, Profit: 651, Dimension: 21 x 31, Bin: 8, Position: 0 x 0
Type: 8, Index: 2, Profit: 651, Dimension: 21 x 31, Bin: 8, Position: 21 x 0
Type: 7, Index: 1, Profit: 522, Dimension: 18 x 29, Bin: 9, Position: 46 x 0
Type: 7, Index: 2, Profit: 522, Dimension: 18 x 29, Bin: 9, Position: 28 x 0
Type: 5, Index: 2, Profit: 400, Dimension: 25 x 16, Bin: 9, Position: 0 x 23
Type: 3, Index: 1, Profit: 322, Dimension: 14 x 23, Bin: 9, Position: 0 x 0
Type: 3, Index: 2, Profit: 322, Dimension: 14 x 23, Bin: 9, Position: 14 x 0
Type: 1, Index: 0, Profit: 209, Dimension: 11 x 19, Bin: 10, Position: 50 x 0
Type: 1, Index: 1, Profit: 209, Dimension: 11 x 19, Bin: 10, Position: 50 x 19
Type: 2, Index: 0, Profit: 252, Dimension: 12 x 21, Bin: 10, Position: 38 x 0
Type: 1, Index: 2, Profit: 209, Dimension: 11 x 19, Bin: 10, Position: 38 x 21
Type: 5, Index: 3, Profit: 400, Dimension: 25 x 16, Bin: 10, Position: 0 x 23
Type: 2, Index: 1, Profit: 252, Dimension: 12 x 21, Bin: 10, Position: 26 x 0
Type: 1, Index: 3, Profit: 209, Dimension: 11 x 19, Bin: 10, Position: 26 x 21
Type: 3, Index: 3, Profit: 322, Dimension: 14 x 23, Bin: 10, Position: 0 x 0
Type: 2, Index: 2, Profit: 252, Dimension: 12 x 21, Bin: 10, Position: 14 x 0
Optimal solution = 11
Time required (seconds) = 0.3400

Code 5.10. Example of output of G2BPP
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Chapter 6

Computational Experiments

In this section all the tests that have been performed are presented, not only those concerning
the performance of the algorithms, but also those made to study possible improvements of the
algorithms, even if they did not bring the desired benefits.

Besides the numeric values in the tables containing results that are presented in this section, also
three abbreviations are present: NA = Not Applicable, T.L. = Time Limit, M.L. = Memory Limit.

6.1 Instances

The instances used as input for the computational experiments come from literature. These in-
stances are the following: WANG20, from OKP01 to OKP05, from CGCUT01 to CGCUT03, from
GCUT01 to GCUT13 and from ATP30 to ATP49.
GCUT instances are characterised by not having two items with the same shape, by having item
profits equal to item areas and by having containers with a squared shape that goes from 250×250
to 3000× 3000.
CGCUT instances and WANG20 are very small and easy to solve, WANG20 has item profits equal
to item areas.
OKP instances do not have two items with the same shape and their containers have a squared
shape 100× 100.
ATP instances are divided in two groups: ATPs from 30 to 39 that have item profits equal to item
areas and that are a little easier to solve than ATPs from 40 to 49 that do not have this feature.
Anyway all the ATPs are very difficult to solve, because of the large number of items present for
each instance.
In table 6.1 the features of every instance are shown. From the values of the last two columns it is
possible to understand why ATPs are more difficult: the average number of items that can packed
in the solution is much higher than for the other instances, so a much greater number of packings
is generated at every iteration.
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#SHAPES #ITEMS W H AVERAGE w AVERAGE h AVERAGE #ITEMS HORIZ AVERAGE #ITEMS VERT
WANG20 19 42 40 70 23,83 23,21 1,68 3,02
CGCUT01 7 16 10 15 4,50 3,25 2,22 4,62
CGCUT02 10 23 70 40 14,17 15,13 4,94 2,64
CGCUT03 19 62 70 40 24,66 28,10 2,84 1,42
OKP01 15 50 100 100 37,52 43,40 2,67 2,30
OKP02 30 30 100 100 31,73 52,50 3,15 1,90
OKP03 30 30 100 100 30,03 57,60 3,33 1,74
OKP04 33 61 100 100 35,16 52,48 2,84 1,91
OKP05 29 97 100 100 29,56 48,47 3,38 2,06
GCUT01 10 10 250 250 108,60 146,00 2,30 1,71
GCUT02 20 20 250 250 118,35 117,50 2,11 2,13
GCUT03 30 30 250 250 110,57 123,97 2,26 2,02
GCUT04 50 50 250 250 122,50 117,10 2,04 2,13
GCUT05 10 10 500 500 262,80 206,40 1,90 2,42
GCUT06 20 20 500 500 259,80 241,90 1,92 2,07
GCUT07 30 30 500 500 243,27 268,03 2,06 1,87
GCUT08 50 50 500 500 245,00 228,64 2,04 2,19
GCUT09 10 10 1000 1000 405,00 497,70 2,47 2,01
GCUT10 20 20 1000 1000 543,40 499,15 1,84 2,00
GCUT11 30 30 1000 1000 478,43 460,53 2,09 2,17
GCUT12 50 50 1000 1000 496,74 505,18 2,01 1,98
GCUT13 32 32 3000 3000 573,28 771,56 5,23 3,89

ATP30 38 192 152 927 214,26 26,68 0,71 34,75
ATP31 51 258 964 856 186,55 217,17 5,17 3,94
ATP32 55 249 124 307 69,20 25,05 1,79 12,26
ATP33 44 224 983 241 57,27 216,87 17,16 1,11
ATP34 27 130 456 795 165,77 78,23 2,75 10,16
ATP35 29 153 649 960 212,62 124,95 3,05 7,68
ATP36 28 153 244 537 107,08 57,31 2,28 9,37
ATP37 43 222 881 440 99,32 193,71 8,87 2,27
ATP38 40 202 358 731 174,39 70,23 2,05 10,41
ATP39 33 163 501 538 137,08 126,67 3,65 4,25

ATP40 56 290 138 683 146,64 32,45 0,94 21,05
ATP41 36 177 367 837 205,57 89,64 1,79 9,34
ATP42 59 325 291 167 32,42 66,21 8,98 2,52
ATP43 49 259 917 362 79,41 195,76 11,55 1,85
ATP44 39 196 496 223 45,34 108,29 10,94 2,06
ATP45 33 156 578 188 38,41 134,83 15,05 1,39
ATP46 42 197 514 416 89,79 124,57 5,72 3,34
ATP47 43 204 554 393 89,50 139,94 6,19 2,81
ATP48 34 167 254 931 195,15 57,78 1,30 16,11
ATP49 25 119 449 759 150,97 93,03 2,97 8,16

Table 6.1. Features of instances

6.2 Packed Area Percentage

This test has been made in the algorithm to solve G2BPP to understand if it was possible to add
another control to speed up the algorithm even more. The idea of this kind of test came from
a simple observation: if the items that we want to pack occupy just a little portion of the total
area of the bin, it should be very likely to be able to pack them into the bin, despite the guillotine
constraints. So from this observation we wanted to check if this was just a feeling or if there
was really a bound on the percentage of area occupied by the items under that the packing was
certainly possible or over that it was certainly impossible.
To perform this test we have computed the percentage of area occupied by items that have been
tried to be packed into a bin in the function insertCurrent used to solve G2BPP. Once this has
been computed, this value has been saved into a file together with the result of the insertion. At
that point the list of values have been ordered and the four maximum values and the four minimum
values for both insertions successful and non- have been saved into a table.
The input files that have been used for this test were some files from literature, called CGCUT01,
CGCUT02 and CGCUT03 and all GCUTs from GCUT01 to GCUT13. GCUT08 has reached
memory limit, because it is a very difficult problem for G2BPP and too much data were returned,
so we did not have enough computational power to analyse them.
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The final results (see table 6.2) have not been too far from the expectations, in fact an upper
bound on the percentage of area needed to pack items can not be found, as it was easy to forecast,
because feasible packings can exists also occupying the whole area.
A bit more surprising were the values obtained from the lower bound of percentage of area of items
that can not be packed. It was expected to be a little higher, although not too much. But then,
retrieving the set of items with the lowest percentage of area that it was not possible to pack, it
has been understood that it is not possible to determine a lower bound on the percentage of area of
the set of items to be packed as well, because there can be always particular cases where items can
not be packed even if they occupy a very little portion of the total area. A simple example is the
following: if we have a bin with dimensions 100 × 100 and two items with dimensions 1× 100 and
100×1 they can not be packed, even if their total area is (100+100)/(100∗100) = 200/10000 = 2%
of the area of the bin. And following this case many other examples can be built, also obtaining a
lower percentage on the area of the bin.

6.3 Combo Upper Bound

Trying to improve the performance of G2KP, we have tried to use the so-called Combo UB [7].
This UB is stronger than Martello and Toth UB, because Martello and Toth solves a continuous
relaxation, while Combo determines an optimal solution solving an instance of KP. So our goal was
to decrease consistently the number of packings saved into the matrix F of the procedure recursive
eliminating them during the test that verifies if the minimum required profit can be reached.
Unfortunately tests have demonstrated that this was not convenient: as it can be seen in table
6.3, in only two of the tested instances of input there was an improvement of the performance.
Most of the times, in fact, and above all when the instances were more difficult like the ATP, the
percentage of packings that were cut in this way was meaningless and did not justify the greater
computational time needed to compute Combo UB.
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#PACKING MT TIME (s) MT #PACKING COMBO TIME (s) COMBO DIFF #PACKING (%) DIFF TIME (%)
WANG20 740 0,00 710 0,05 -4,05% NA
CGCUT01 736 0,00 575 0,01 -21,88% NA
CGCUT02 303 0,00 258 0,01 -14,85% NA
CGCUT03 5266 0,10 4251 0,17 -19,27% +70,00%
OKP01 11472 1,05 9368 1,24 -18,34% +18,10%
OKP02 88234 99,33 60344 48,73 -31,61% -50,94%
OKP03 66829 50,85 47164 29,42 -29,43% -42,14%
OKP04 3961 0,27 2486 0,32 -37,24% +18,52%
OKP05 5461 0,30 3715 0,34 -31,97% +13,33%
GCUT01 4156 0,00 3722 0,06 -10,44% NA
GCUT02 8160 0,05 7191 0,48 -11,88% +860,00%
GCUT03 12069 0,12 10464 2,30 -13,30% +1816,67%
GCUT04 25140 0,53 23128 9,71 -8,00% +1732,08%
GCUT05 11988 0,03 8971 0,19 -25,17% +533,33%
GCUT06 5376 0,02 4559 0,19 -15,20% +850,00%
GCUT07 13636 0,10 10889 1,38 -20,15% +1280,00%
GCUT08 12479 0,38 11619 15,00 -6,89% +3847,37%
GCUT09 1981 0,00 1692 0,03 -14,59% NA
GCUT10 25264 0,09 19196 0,58 -24,02% +544,44%
GCUT11 125783 1,21 100651 16,98 -19,98% +1303,31%
GCUT12 107604 1,45 86477 59,65 -19,63% +4013,79%

ATP30 5727 5,40 5662 12,07 -1,13% +123,52%
ATP31 319307 126,35 318989 2162,79 -0,10% +1611,75%
ATP32 145046751 587468,20 T.L. T.L. T.L. T.L.
ATP33 46603 13,34 46261 80,94 -0,73% +506,75%
ATP34 3032892 2789,39 3032036 11486,22 -0,03% +311,78%
ATP35 823650 141,25 822741 6586,46 -0,11% +4562,98%
ATP36 35987 3,99 35744 39,47 -0,68% +889,22%
ATP37 11109 14,93 11096 53,48 -0,12% +258,20%
ATP38 42312 9,09 42254 90,53 -0,14% +895,93%
ATP39 27970 8,04 27902 79,63 -0,24% +890,42%

Table 6.3. Table that shows differences between number of packings and times using
Combo or Martello and Toth

Hence, it has been tried to understand if it was possible that the eliminations of packings happen
only when the number of items passed as input in the Combo function is varying between two
bounds, defined as percentage on the total number of items of the original problem. If this idea was
correct, it could have been possible to use Combo UB only for the instances between these bound,
reducing in this way the number of times it is called and speeding up the overall computation.
The results, shown in table 6.4, are very different, but for almost all the tested instances it can
be noticed that those bounds varies between 50% and 100%, with the exception of two very small
problems. At first look it could seem a very good result, because it seems to halve the number of
instances where it should be used, but actually it is not so good. The dimension of the instances
passed as input of Combo function depend, in this case, by the number of item present in the
packing that is being analysed. So if the total number of items of the problem is n and the packing
has k items, Combo will receive n − k items in input. For medium and big problems it is very
difficult that a packing will contain more than half of the total number of items, so the dimension
of the instances passed as input to the Combo function is almost always included between the two
found bounds and so the result can not considered positive.
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Dim Initial KP n_max(1) n_min (2) % on the total (1) % on the total (2)
WANG20 42 39 33 92,86% 78,57%
CGCUT01 16 15 6 93,75% 37,50%
CGCUT02 23 22 10 95,65% 43,48%
CGCUT03 62 61 53 98,39% 85,48%
OKP01 50 49 33 98,00% 66,00%
OKP02 30 29 19 96,67% 63,33%
OKP03 30 29 19 96,67% 63,33%
OKP04 61 60 50 98,36% 81,97%
OKP05 97 96 84 98,97% 86,60%
GCUT01 10 9 6 90,00% 60,00%
GCUT02 20 19 14 95,00% 70,00%
GCUT03 30 29 23 96,67% 76,67%
GCUT04 50 48 42 96,00% 84,00%
GCUT05 10 9 5 90,00% 50,00%
GCUT06 20 19 15 95,00% 75,00%
GCUT07 30 29 25 96,67% 83,33%
GCUT08 50 48 43 96,00% 86,00%
GCUT09 10 9 5 90,00% 50,00%
GCUT10 20 19 15 95,00% 75,00%
GCUT11 30 29 23 96,67% 76,67%
GCUT12 50 49 44 98,00% 88,00%

ATP30 192 164 145 85,42% 75,52%
ATP31 258 241 208 93,41% 80,62%
ATP32 249 T.L. T.L. T.L. T.L.
ATP33 224 213 184 95,09% 82,14%
ATP34 130 110 66 84,62% 50,77%
ATP35 153 135 107 88,24% 69,93%
ATP36 153 137 115 89,54% 75,16%
ATP37 222 208 186 93,69% 83,78%
ATP38 202 182 157 90,10% 77,72%
ATP39 163 150 133 92,02% 81,60%

Table 6.4. Table that shows maximal and minimal percentage of the total elements for which using
Combo at least one packing is cut

6.4 Performance of G2KP

First of all the dimension of loops in heuristicG2KP has been defined. For the inner loop has been
seen empirically that it is better to avoid to perform it too many times, because if a very good
heuristic solution is found early in the execution, it is very difficult to find values that are better
and that at the same time are also coming from a set of possibly feasible items. So it has been
decided to set the variable NUMBER_OF_INNER_LOOPS to the value 50. On the other hand,
for the outer cycle, it has been necessary to execute it a sufficient number of times to increase the
possibility of finding a good heuristic solution, to decrease the chances of being obliged to perform
the procedure recursive with a too small lower bound, as described before. So it has been decided
after some tests, that a good compromise between execution speed and goodness of the solution is
to set the variable NUMBER_OF_LOOPS to the value 2000000.

Let us now discuss about the performance of the algorithm for G2KP.
Normally, we should describe performances of the entire algorithm exactG2KP. But, as these
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performances can vary a lot depending on the result of the heuristic algorithm, which is very ran-
domized, we have decided to focus here more on performances of the procedure recursive, which is
the real bottleneck of the algorithm and that is not affected by random values. The computation
of procedure recursive has been performed with the optimal lower bound passed as input of the
function to determine computational time and maximum memory needed for the execution of this
function. The values computed for exactG2KP must be considered only as indicative because of
the already mentioned random component.
Tests have been executed on a blade server used for cluster computing. On the cluster any 32- or
64-bit application can be run that might normally be run on a linux pc or any program that has
been recompiled. The cluster is composed by 14 computing resources, each one with:

• 2 quad core processors Intel Xeon E5450 (12M Cache, 3.00 GHz, 1333 MHz FSB);

• 16 GB RAM;

• 2 hard disk of 72 GB in configuration RAID-1 (mirror).

The various requests are managed by the server management program, queued according to a pri-
ority system and executed by the most appropriate computing resource at that time. The results
of computation that normally would appear on the screen are saved in an output file. The man-
agement program adopted is Sun Grid Engine (SGE). To launch a program is necessary to create
a job file containing the required computing resources, the program to run, the files to use as input
and the file where to write as output. This job can be then used to queue the request.
With SGE on the cluster different groups have been defined, each one with more or less privileges.
We belonged to the group called "Medium" so the maximum available memory (i.e. memory limit
M.L.) for our test was 10 GB. The maximal computational time (i.e. time limit T.L.) has been
assumed to be 15 days.

In the following table (Table 6.5), the obtained results are presented.
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#SHAPES #ITEMS OPT SOL TIME RECURS (s) MEMORY RECURS (MB) TIME EXACT (s) MEMORY EXACT (MB)
WANG20 19 42 2721 0,00 NA 10,01 125,879
CGCUT01 7 16 244 0,00 NA 7,46 125,879
CGCUT02 10 23 2892 0,00 NA 4,66 125,879
CGCUT03 19 62 1860 0,08 NA 311,88 125,879
OKP01 15 50 27589 0,91 126,383 36,62 126,508
OKP02 30 30 22502 64,48 132,988 3161,06 133,652
OKP03 30 30 24019 23,73 132,945 1240,51 133,621
OKP04 33 61 32893 0,21 NA 306,78 126,164
OKP05 29 97 27923 0,23 NA 42,88 126,160
GCUT01 10 10 48368 0,00 NA 8,02 125,875
GCUT02 20 20 59307 0,04 NA 14,74 126,152
GCUT03 30 30 60241 0,10 NA 10,61 126,754
GCUT04 50 50 60942 0,40 NA 32,09 127,738
GCUT05 10 10 195582 0,03 NA 6,59 126,375
GCUT06 20 20 236305 0,01 NA 12,04 125,887
GCUT07 30 30 238974 0,08 NA 21,71 126,973
GCUT08 50 50 245758 0,20 NA 26,24 127,668
GCUT09 10 10 919476 0,00 NA 4,75 125,879
GCUT10 20 20 903435 0,07 NA 13,46 126,918
GCUT11 30 30 955389 0,66 134,848 30,13 135,549
GCUT12 50 50 970744 0,79 NA 60,38 137,758
GCUT13 32 32 8532720 T.L. - T.L. -

ATP30 38 192 140904 2,77 127,633 45,75 127,777
ATP31 51 258 823976 48,52 162,066 68927,06 2503,000
ATP32 55 249 38068 587468,20 9189,000 587513,00 9189,000
ATP33 44 224 236611 7,27 131,918 309,26 142,836
ATP34 27 130 361398 1645,50 328,297 79863,59 NA
ATP35 29 153 621021 81,34 186,473 6241,58 371,211
ATP36 28 153 130744 2,22 128,570 108,17 135,051
ATP37 43 222 387276 12,69 131,137 551,75 146,109
ATP38 40 202 261395 5,92 131,746 369,20 179,875
ATP39 33 163 268750 5,00 134,766 219,81 138,270

ATP40 56 290 67154 255923,83 1071,000 T.L. -
ATP41 36 177 206542 T.L. - T.L. -
ATP42 59 325 33503 T.L. - T.L. -
ATP43 49 259 214651 T.L. - T.L. -
ATP44 39 196 73868 T.L. - T.L. -
ATP45 33 156 74691 T.L. - T.L. -
ATP46 42 197 149911 23949,42 464,301 T.L. -
ATP47 43 204 150234 T.L. - T.L. -
ATP48 34 167 167660 T.L. - T.L. -
ATP49 25 119 219354 T.L. - T.L. -

Table 6.5. Table that shows performances of procedure Recursive and of exactG2KP

From the table it is possible to see that for the greater part of the input instances has been possible
to find a solution. For those for that it has not been possible because of the time limit, during their
execution we were checking the maximum memory usage and it was quite low (few gigabytes), so
we can say that probably with no limitations of time they would have terminated. But anyway, we
have must remember that this is not the whole algorithm to compute G2KP, but just the recursive
part, which is repeated many times. So it will be important in a possible future work trying to
speed up the algorithm to be able to end up also all the ATP input files in reasonable times. The
computed times, anyway, must be considered as indicative, because they depend on the load of the
machine.

Table 6.6 contains the values obtained by the heuristic algorithm executing it five times, so the
seed that generates random values changes and different values are obtained. It also contains the
average of these values and the optimal solution. In the last column is present which percentage of
the optimal value is the average of the values found. This gives us a performance indicator of the
algorithm used and, because all the average values are above 70% of the optimal value and almost
all also above 80%, we can say that the heuristic algorithm implemented can be considered very
good.
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OPT SOL TEST #1 TEST #2 TEST #3 TEST #4 TEST #5 AVERAGE % OF THE OPT
WANG20 2721 2479 2559 2702 2307 2613 2532 93,05%
CGCUT01 244 230 244 244 229 240 237 97,30%
CGCUT02 2892 2360 2323 2614 2324 2343 2393 82,74%
CGCUT03 1860 1600 1580 1660 1600 1560 1600 86,02%
OKP01 27589 21471 21628 20906 23853 20967 21765 78,89%
OKP02 22502 15744 15988 15597 16502 17591 16284 72,37%
OKP03 24019 18871 18773 22130 19781 19957 19902 82,86%
OKP04 32893 26214 24867 26474 26391 27360 26261 79,84%
OKP05 27923 20155 21864 23321 23997 25417 22951 82,19%
GCUT01 48368 48368 42025 41378 42348 48368 44497 92,00%
GCUT02 59307 48288 48664 52148 55111 53323 51507 86,85%
GCUT03 60241 57462 55424 58396 58714 55804 57160 94,89%
GCUT04 60942 57822 60522 60195 59117 60073 59546 97,71%
GCUT05 195582 177617 192907 187987 192907 189856 188255 96,25%
GCUT06 236305 228442 216644 228675 216481 224166 222882 94,32%
GCUT07 238974 226069 221511 232723 228130 223253 226337 94,71%
GCUT08 245758 220262 232064 225736 233058 233963 229017 93,19%
GCUT09 919476 786653 858697 851794 835406 851794 836869 91,02%
GCUT10 903435 839394 877079 805607 827223 847308 839322 92,90%
GCUT11 955389 903187 918825 864879 879182 897941 892803 93,45%
GCUT12 970744 914253 941884 943625 933988 970744 940899 96,93%
GCUT13 8532720 7594031 7740992 7354480 7408240 7514303 7522409 88,16%

ATP30 140904 128918 126349 126992 125459 129960 127536 90,51%
ATP31 823976 761800 744577 748714 747602 759090 752357 91,31%
ATP32 38068 34395 34736 34608 34795 33910 34489 90,60%
ATP33 236611 212807 212897 211738 215630 209572 212529 89,82%
ATP34 361398 325023 327239 329322 328881 326658 327425 90,60%
ATP35 621021 562979 554089 545209 562001 573636 559583 90,11%
ATP36 130744 115754 119316 117264 116164 119913 117682 90,01%
ATP37 387276 342280 343677 348652 339340 343596 343509 88,70%
ATP38 261395 234816 235670 236071 234105 236440 235420 90,06%
ATP39 268750 247479 246807 255880 246119 248941 249045 92,67%

ATP40 67154 53495 50839 56444 52615 55423 53763 80,06%
ATP41 206542 172873 180189 181823 175524 175617 177205 85,80%
ATP42 33503 27062 26880 27356 26992 28645 27387 81,74%
ATP43 214651 177980 167411 167800 169983 167415 170118 79,25%
ATP44 73868 61166 64091 58657 58136 61032 60616 82,06%
ATP45 74691 65784 66431 65358 65137 65350 65612 87,84%
ATP46 149911 123669 126195 124818 127287 126526 125699 83,85%
ATP47 150234 123171 123809 122932 121504 124345 123152 81,97%
ATP48 167660 133433 139095 132705 138814 135845 135978 81,10%
ATP49 219354 176047 169359 170733 172859 170209 171841 78,34%

Table 6.6. Table that shows average values found by the heuristic algorithm for G2KP

6.5 Performance of G2BPP

Like the case of G2KP, also for G2BPP first of all the dimension of the loop in heuristicG2BPP
has been defined. The problem here is different for two reasons: the first one is that here it is
possible to exit the loop before its end and the second one is that this loop is performed many
times during the execution of the algorithm, not just one time at the beginning like G2KP.
Starting from these considerations the value searched should not have been a too high value, but
also it was not necessary that it was too small. Eventually, after some tests, it has been seen that
a good value for this variable NUMBER_OF_LOOPS is 1000.

To test the efficiency of the algorithm that solves G2BPP the same machine used for G2KP
has been adopted. Considering the performance of G2BPP in terms of computational time and
memory used, the result that we have obtained can be considered very good. For this kind of

46



6 – Computational Experiments

problem the input instances ATPs have not been considered, because we have based on the same
kind of instances used by Martello and Vigo in [10]. Moreover, with this algorithm, we also want
to find the coordinates that will have the items in the packings and not only the number of bins
used to pack all of them. In table 6.7 the time needed and the memory used by the instances are
represented.

#ITEMS OPT SOL TIME (s) MEMORY (MB) 2BPP TIME (s)
WANG20 42 11 0,27 NA NA
CGCUT01 16 2 0,02 NA 0,01
CGCUT02 23 2 17,75 128,633 0,01
CGCUT03 62 23 0,61 NA 0,04
OKP01 50 4 16,80 126,492 NA
OKP02 30 4 0,61 NA NA
OKP03 30 4 385,41 126,715 NA
OKP04 61 7 359,86 126,613 NA
OKP05 97 - T.L. - NA
GCUT01 10 5 0,02 NA 0,02
GCUT02 20 6 0,14 NA 0,02
GCUT03 30 8 0,10 NA 0,01
GCUT04 50 14 3,67 125,875 3,73
GCUT05 10 3 0,01 NA 0,01
GCUT06 20 7 1,91 125,875 0,90
GCUT07 30 11 0,17 NA 0,28
GCUT08 50 - T.L. - T.L.
GCUT09 10 3 0,01 NA 0,02
GCUT10 20 8 3,73 125,875 1,22
GCUT11 30 9 1264,46 125,875 909,70
GCUT12 50 16 0,52 125,875 0,17
GCUT13 32 2 34,09 * 0,01

Table 6.7. Table that shows performances of exactG2BPP

Comparing results with results of Martello and Vigo present in the last column, it is possible to
see that even with the addition of Guillotine constraints the optimal solution remains the same
for all instances with the exception of GCUT10. Moreover, also computational times are all very
close to those presented in the paper and sometimes even better. The only two instances that has
a big performances decay are CGCUT02 that passes from 0.01 seconds needed for the 2BPP to
the 17.75 seconds needed here for G2BPP and GCUT13 that passes from 0.17 to 34.09. GCUT13
has a * on the memory column because that is the time needed to compute only the best solution,
to compute also the optimal packing much more time is needed.
OKPs and WANG20 were not used by Martello and Vigo for their tests, but they have been used
here because their size is similar to the other used instances. OKP05 is the only of these instances
that reaches time limit, but it is not surprising because its size is almost two times bigger than all
the other considered instances.
Considering the memory usage, on the other hand, results obtained are great, because the memory
used is very limited, so no problem connected with a big memory usage should be present.
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Conclusions

To conclude, therefore, a function that computes an exact packing of a Guillotine Two-dimensional
Knapsack Problem with a minimum profit z0 has been implemented. This function is also able
to return the correct position where the various items that are in the solution should have in the
container to obtain the correct packing.
Thanks to this function it has been possible to compute first of all the exact solution for a G2KP
even without knowing a lower bound and secondly also the exact solution for a G2BPP, returning
for each item the bin where it should be packed and the correct coordinates into that bin.
Moreover, to obtain these results, also two heuristic algorithms have been developed and imple-
mented to speed up the global computation.

Considering the memory performances, that was the main goal, the created algorithms can be con-
sidered very positively, because even with big input instances it never reaches the memory limit.
Considering, on the other hand, the time performances, the procedure recursive should be im-
proved, because to be able to guarantee the absence of memory problems, the speed of the algo-
rithm has been sacrificed and so for many of the ATP4x instances (which are very difficult) the
algorithm is not able to end up before the time limit. Anyway this has not been a problem for
G2BPP, because the instances where it is computed are not very big, because all items must be
packed, and so the procedure recursive works well, in line with the times obtained by the exact
algorithm for 2BPP implemented by Martello and Vigo.
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