
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in

Ingegneria dell’Automazione

Consensus-based allocation of quotas in
networked systems

Relatore: Laureando:
Prof. Angelo Cenedese Alvise Rossi

1134320

Anno Accademico 2020/2021
Data di laurea 13/12/2021

Abstract

Production processes whose output is represented by an additive quan-

tity are countless. When there are multiple entities that must cooper-

atively produce a target quantity, the allocation of quotas of the target

quantity to the single entities is often a task assigned to an external

system, which acts as a coordinator. The first part of this thesis is

focused on the definition of a distributed strategy for these processes:

the entities capable of production are represented by agents of a Multi-

Agent System, they can communicate over a network and are required

to collectively produce a target amount of the related quantity, with-

out being coordinated by an external system. The general framework

described in the first part of this project is then applied using a Docker

environment that allows to simulate the interaction among the agents

on an actual network, so that the developed code is as close as possible

to the one that would be deployed in a real-world scenario.

ii

Contents

1 Introduction 1

2 Problem Formulation 5

3 Solutions 7

3.1 The Exact-Breakdown method . 8

3.1.1 Description of the method 8

3.1.2 The update rule and the state-space system 9

3.1.3 Characterization of matrices 10

3.1.4 Enforcing hard limits . 13

3.2 The Self-Focused method . 15

3.2.1 Description of the method 15

3.2.2 The update rule and the state-space system 18

3.2.3 Analysis of stability . 20

3.2.4 Analysis of convergence time 23

3.2.5 Enforcing stability by design 28

3.2.6 Enforcing hard limits . 30

3.2.7 Usage in MASs represented by sparse graphs 31

4 Implementation 35

4.1 Usage of Docker Containers . 36

4.2 Container specifications . 39

4.2.1 Communication protocols 40

4.2.2 Programming languages and development techniques . . . 44

4.2.3 Implementation on sparse MASs 49

4.3 Simulation results . 61

4.4 Activities to implement the code in a real-world scenario 67

5 Conclusions and further developments 69

iii

iv CONTENTS

A Container code descriptions 73

B List of software used in the project 85

Acknowledgements 87

References 89

Chapter 1

Introduction

Many classes of consensus problems have obtained wide coverage in the litera-

ture. In [1], some of the most common are cited, including the Synchronization

of Coupled Oscillators, Flocking Theory, Rendezvous in Space and Distributed

Sensor Fusion in Sensor Networks. These classes of consensus problems are bound

together by the fact that they focus on achieving an agreement among the agents

estimates of a scalar variable, or a ❘2 or ❘3 vector: for the mentioned examples,

the phase of the oscillators, the velocity of the agents, the position where to meet

or the measured variable, respectively.

The class of problems studied in this work differs from the mentioned ones

in that the variables to be agreed upon are as many as the number of agents

involved. In fact, the aim of this work is to define a distributed framework for

those processes in which a total quantity can be split into quotas to be assigned

to a number of agents, allowing the agents themselves to agree on a partition

that is accepted and applied by every agent. In [2], a scenario that could fall

into this class of problems is presented, which is the one of dinamically load

balancing the workload of a set of computing processors, but the goal of that

process is to maintain an equal load for all the processors involved. Instead, with

the framework proposed in this thesis, the goal is to let each agent propose its own

partition basing upon an optimization computed locally, possibly with different

criteria from agent to agent; then, perform a consensus process that finds the

partition that represents the best trade-off among the various agents proposals.

Thus, the final trade-off is not meant to assign the same quota to all the agents

as in the load balancing case, but to assign to each agent a dedicated quota which

fits best with all the proposals.

A problem that shares some common ground with the one presented in this

1

2 Chapter 1. Introduction

work is reported in [3]: in that case, the scenario is one where many individuals

are required to express their opinion on a probability distribution for an unknown

value of a parameter and an agreement must be found among all the opinion

expressed. Although in this thesis the consensus problem is not related to a

probability distribution, if the vectors representing the opinions on the probability

distribution are replaced by vectors representing opinions on the deterministic

partition of the total amount – with the main difference that the latter must

have a dimension that matches the number of agents, the algebraic results still

hold and the method proposed in [3] can be adapted to the problem addressed

by this work. In fact, the solution to the problem presented in Subsection 3.1 is

based on an autonomous system that, in algebraic terms, is identical to the one

proposed in [3]. The wider range of application of the method beyond probability

distributions was foreseen by the author, who mentioned the possibility to extend

his theory to cases in which opinions can be represented as points in some fixed

convex set in an arbitrary linear space. Also, throughout this thesis, the terms

opinion and weight will be used with the same meaning with respect to [3].

The applications that could benefit from the framework described in this the-

sis are virtually unlimited. Some of these are related to the energy sector and, in

fact, the idea for this work came from one of these: in the group project related

to the Networked Control for Multi-Agent Systems course, a problem related to

Secondary Control was addressed. The Secondary Control is a service provided

by energy producers to maintain the stability of the grid, which description can

be found in [4], and the author’s group studied a procedure for a distributed allo-

cation of quotas of the secondary control reserve that three hydroelectric plants

were required to offer together. This thesis is meant to be an extension of that

project, in the way that it generalizes the approach designed specifically for the

three hydroelectric plants and it introduces other solutions and applications re-

lated to this problem.

Other applications in the energy sector could be related to microgrids, where

the agreement could be sought by generating devices in relation to how much

power each of them should supply to the microgrid, and to BESS systems, which

have the particular aspect to be generally able to both produce and consume

energy: this represents a particular application as the opinions involved would no

longer be required to be non-negative variables. Moreover, a possible application

on the consumption side is the distributed management of the demand response

service, which is the controlled disconnection from the grid of home appliances

3

during peak load intervals associated with an economic reward granted to the

appliance owner: when a particular area of the grid is required to reduce its

consumption, the grid operator could just provide the consumers belonging to

that area with the overall amount of load reduction requested to that area, then

the group of consumers would agree on how much each of them will decrease

the load, balancing their own economic interest with the urgency to keep their

appliances running.

Such applications are likely to gain interest as the electrical grids move from

the centralized and fossil fuel-based production paradigm that characterized the

past decades to the distributed production model with increasing renewable re-

source participation expected for the following decades. This dramatic change

means that a higher effort must be spent on the local side for maintaining the

stability of the grid and, since this effort will involve a large number of producers

and consumers, a distributed approach seems to be more robust and convenient

as opposed to a centralized one, which could be less scalable than the distributed

one and could make the fault management harder as distances between the center

and the edge of the grid grow.

The thesis is structured as following: in Chapter 2 a formal definition of the

general problem is presented, including a description of the specific terms that are

used across the entire document. Chapter 3 is the main theoretical part where two

possible solutions to the problem are presented, each of which applies best to a

different set of contexts. In Chapter 4 the simulation of the consensus algorithms

in a Docker environment is presented, with Appendix A providing the details of

the developed code. Eventually, in Appendix B the software that was used for

the study is listed.

4

Chapter 2

Problem Formulation

This study has the main purpose of providing general methods to solve problems

that match the specifications reported in the following. Recurrent terms that will

be used throughout the whole study are highlighted in bold.

• A Multi-Agent System (MAS) is composed by n > 1 agents that are able

to communicate over some network. The agents represent control systems,

each one with its own local inputs and outputs: the local inputs of a control

system are not shared through the network with the other agents, nor the

local outputs of a control system are directly influenced by other agents.

• The continuous time axis is divided into time slots of length T ∈ R,T > 0

and the solution to the problem must be found for each time slot. The

resulting discrete time intervals are identified by the variable t ∈ N, which
is relative to a generic continuous time instant T0 ∈ R. This means that the

t-th time interval corresponds to the time range [T0 + t · T,T0 + (t + 1) · T].

• For each time interval t, a signal ū(t) ∈ R representing the total amount

of some quantity is provided by an external system to all the agents of

the MAS. The total amount ū(t) must be divided into n quotas, each one

associated with the n agents forming the network. Depending on the specific

application, the total amount and the quotas can be defined as non-negative

variables. The process of defining the fraction of the total amount that is

assigned to each agent is referred to as allocation. This process leads to the

definition of quotas where the i-th quota is referred to as x
(∞)

i
(t), 1 ≤ i ≤ n.

Trivially, quotas are constrained by the fact that they must collectively

5

6 Chapter 2. Problem Formulation

cover the whole total amount ū(t), that is:

n∑

i=1

x
(∞)

i
(t) = ū(t) (2.1)

The vector stacking all the allocated quotas x(∞)(t) =
[
x

(∞)

1
(t) x

(∞)

2
(t) · · · x

(∞)
n (t)

]T

is called the breakdown of the total amount corresponding to the t-th time

slot.

• The allocation process must follow a distributed approach, where each agent

must have a way to influence the quota it will be assigned by the alloca-

tion process basing upon some optimization process computed locally. The

optimization processes must be performed on the basis of the local inputs

and outputs of the specific agent. The breakdown is then determined as an

agreement among the results of all the optimization processes of the various

agents.

• The allocation process must be designed for providing a result within a

predefined amount of time τMAX ∈ R, where τMAX ≤ T . Extraordinary cases

in which the allocation process is not able to provide a result within the

time limit must be handled by a dedicated fallback logic.

• Agents must also have a way to enforce hard limits, which are boundaries

on the quota they can be assigned during the time interval t. They are

defined by the variables xMIN
i

(t) and xMAX
i

(t) and introduce a new constraint

formally expressed by:

xMIN
i (t) ≤ x

(∞)

i
(t) ≤ xMAX

i (2.2)

Moreover, due to the linear nature of the problem, the set of hard limits

imposed by all the agents introduces a constraint that must be respected

by the total amount ū(t) for the allocation process to be successful:

n∑

i=1

xMIN
i (t) ≤ ū(t) ≤

n∑

i=1

xMAX
i (t) (2.3)

Chapter 3

Solutions

Before exploring the two solutions that were designed to solve the problem, some

common concepts and differences are expressed.

Both the presented solutions are implemented through an iterative approach

based on the concept of opinion, which represents a candidate quota to be as-

signed to one agent – they are therefore defined on the same space of their asso-

ciated quotas x
(∞)

i
(t), 1 ≤ i ≤ n. Throughout the allocation process, agents make

their opinions evolve considering the opinions received by other agents, until all

the opinions are consistent with the constraints imposed by the problem and with

each other.

The main difference between the two methods is described in the following:

• In the Exact-Breakdown method each agent holds opinions about the can-

didate quota for all the agents, including itself. This leads to a number of

n2 opinions defined by x
(k)

i j
(t), i, j ∈ [1, n] , k ∈ N, representing the opinion

computed by agent i on the candidate quota to be assigned to agent j at

the iteration k of the time slot t.

• In the Self-Focused method every agent holds an opinion about the candi-

date quota to be assigned to itself only, which is x
(k)

i
(t), 1 ≤ i ≤ n, k ∈ N.

With regards to time slot t, each agent i initially sets its initial opinion x
(0)

i
(t)

(Self-Focused method) or set of opinions x
(0)

i j
(t) (Exact-Breakdown method) ac-

cording to the outcome of the optimization process that was executed locally.

Basically, initial opinions are the representation of how each agent aims to allo-

cate the quotas of the total amount to itself and to the other agents (collectively

in the Self-Focused case).

7

8 Chapter 3. Solutions

With the initial opinion, agents express their preferred candidate quotas. The

allocation process, while seeking an agreement among all the initial opinions, may

provide results that are largely different from an agent preference: for some agents

this might not represent a critical event, while for some others it could lead to

relevant drawbacks. In order to provide a tool for agents to express their level of

flexibility with respect to the initial opinion they provide, weights are introduced.

With reference to the time slot t, weights are defined as:

• ai j(t) ∈ R, 0 ≤ ai j ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n, with the meaning of the weight

assigned from agent i to the opinion of agent j, in case the Exact-Breakdown

method is used

• ai(t) ∈ R, 0 ≤ ai ≤ 1, 1 ≤ i ≤ n, with the meaning of the weight agent i assigns

to its opinion, in case the Self-Focused method is used

After the definition of the initial opinion and weights by all the agents, the agree-

ment process start, consisting of an update rule that is iterated. The update rule

is different in the two methods and is explained in detail in the related section. As

in many cases the iteration of the update rule leads to an asymptotic behaviour

for the opinions, a stop condition must be defined for both methods when the

changes provided by the application of the update rule are no longer relevant,

then the breakdown x(∞)(t) is derived by the value assumed by the opinions at the

last iteration.

3.1 The Exact-Breakdown method

3.1.1 Description of the method

The Exact-Breakdown method owes its name to the fact that every agent holds

opinions about the candidate quota for all the agents of the network, which means

that at the end of the allocation process every agent holds an exact copy of the

breakdown x(∞)(t). This is the root difference with respect to the method exposed

in the following section, in which an agent does not hold a specific opinion for

each of the other agents, thus it is never aware of the breakdown of the total

amount.

It is also the method that is more similar to traditional consensus approaches,

as it is the natural extension of the consensus problem for a scalar variable to the

vector space. Indeed, at least for what concerns the normal situation when no

3.1 The Exact-Breakdown method 9

agent is hitting a hard limit, this solution resembles the aggregation of n separate

scalar consensus problems, each one related to the quota to be assigned to one of

the agents. As was mentioned in the introduction, the algebraic structure of this

method is closely related to the one reported in [3], which was applied for finding

an agreement among actual opinions expressed by individuals.

3.1.2 The update rule and the state-space system

The update rule of the Exact-Breakdown method is essentially based on a weighted

average, referred to as Linear Opinion Pool in [3]: every agent updates its opin-

ion on the candidate quota to be assigned to a specific agent – itself included

– weighting the current opinion of all the agents on the same candidate quota.

Considering the update of the opinion of agent i on the quota to be assigned to

agent j during time slot t, the update rule is formally expressed by the following

equation:

x
(k+1)

i j
(t) = ai1(t)x

(k)

1 j
(t) + ai2(t)x

(k)

2 j
(t) + · · · + ain(t)x

(k)

n j
(t) =

n∑

l=1

ail(t)x
(k)

l j
(t) (3.1)

In order to study the overall evolution of the opinions and the constraints

to be imposed to meet the specifications, the n2 update rules associated with

the evolution of each agent’s opinion related to each agent’s candidate quota are

grouped in the following matrix equation:



x
(k+1)

11
(t) x

(k+1)

12
(t) · · · x

(k+1)

1n
(t)

x
(k+1)

21
(t) x

(k+1)

22
(t) · · · x

(k+1)

2n
(t)

...
. . .

. . .
...

x
(k+1)

n1
(t) x

(k+1)

n2
(t) · · · x

(k+1)
nn (t)



=



a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

. . .
. . .

...

an1(t) an2(t) · · · ann(t)





x
(k)

11
(t) x

(k)

12
(t) · · · x

(k)

1n
(t)

x
(k)

21
(t) x

(k)

22
(t) · · · x

(k)

2n
(t)

...
. . .

. . .
...

x
(k)

n1
(t) x

(k)

n2
(t) · · · x

(k)
nn (t)



X(k+1)(t) = A(t)X(k)(t)

(3.2)

In Eq. 3.2, matrix X(k)(t) groups all the opinions of the agents at iteration k.

By extracting a row, one obtains all the opinions of a specific agent on how the

total amount should be allocated among the agents; by extracting a column, one

obtains all the opinions of the various agents on the quota to be assigned to a

specific agent. In fact, the similarity with the scalar consensus problem comes

from the fact that column j of the matrix X(t) updates through the equations

10 Chapter 3. Solutions

represented by



x
(k+1)

1 j
(t)

x
(k+1)

2 j
(t)
...

x
(k+1)

n j
(t)



=



a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

. . .
. . .

...

an1(t) an2(t) · · · ann(t)





x
(k)

1 j
(t)

x
(k)

2 j
(t)
...

x
(k)

n j
(t)



(3.3)

which represents the scalar consensus problem on the quota to be assigned to

agent j: the expected behaviour is that the opinion of all agents on the quota to

be assigned to agent j converge to a common value, that is

x
(∞)

1 j
(t) = x

(∞)

2 j
(t) = · · · x(∞)

n j
(t) =⇒



x
(∞)

1 j
(t)

x
(∞)

2 j
(t)
...

x
(∞)

n j
(t)



= x
(∞)

j
(t)✶

where x
(∞)

j
represents the quota eventually assigned to agent j, which is the j-th

component of the breakdown vector x(∞)(t).

3.1.3 Characterization of matrices

For the sake of readability, the dependence on the time slot t is dropped through-

out this Section, as the results of the matrices characterization apply to every

time slot independently.

As the problem definition states that all the agents of the network receive the

value of the total amount ū from the external system and each agent is required

to compute its initial set of opinions (x(0)

i j
, 1 ≤ j ≤ n for agent i), it is easy to

also require that the sum of the initial opinions of an agent is equal to the total

amount. This can be enforced through the optimization logic deployed to the

local control systems that represent the agents of the network.

In the Exact-Breakdown method, the way the constraint on the sum of the

breakdown components given by Eq. 2.1 is implemented is by ensuring that each

iteration of the update rule does not change the sum of the opinions held by an

agent. This imples that, if agent i computes an initial set of opinions x
(0)

i j
, 1 ≤ j ≤ n

that covers the total amount ū, ū will correspond also to the sum of its opinions

at the end of the allocation process, i.e. x
(∞)

i j
.

Proposition 3.1.1. The necessary and sufficient condition for the update rule of

3.1 The Exact-Breakdown method 11

Eq. 3.2 to keep the same value for the sum of opinions of an agent is that A is

row-stochastic.

Proof. The constraint imposing that the sum of the opinions of an agent is equal

to the total amount, using the matrix notation defined in Subsection 3.1.2, re-

quires that the sum by rows of the matrix X(k) is equal to the vector
[
ū ū · · · ū

]T

,

that is:

X(k) · ✶ =



x
(k)

11
x

(k)

12
· · · x

(k)

1n

x
(k)

21
x

(k)

22
· · · x

(k)

2n
...

...
. . .

...

x
(k)

n1
x

(k)

n2
· · · x

(k)
nn





1

1
...

1



=



ū

ū
...

ū



= ū · ✶ (3.4)

The proposition is proven by induction: the base case X0 ·✶ = ū·✶ is verified by

construction as the local optimization process executed by the agents is required

to provide consistent initial opinions. Then, assuming that the (3.4) holds for a

certain iteration k and considering how the i-th row of the state matrix updates,

we have the following:

[x
(k+1)

i1
x

(k+1)

i2
· · · x

(k+1)

in
] = [ai1 ai2 · · · ain] · X(k) (3.5)

Right-multiplying both sides by ✶ we have:

[x
(k+1)

i1
x

(k+1)

i2
· · · x

(k+1)

in
] · ✶ = [ai1 ai2 · · · ain] · X(k) · ✶

=

[
ai1 ai2 · · · ain

]
· ū · ✶ =

[
ai1 ai2 · · · ain

]
· ✶ · ū

(3.6)

where the inductive hypothesis X(k) · ✶ = ū · ✶ was used.

The sum of the i-th row of the matrix is ū at the iteration k + 1 when

[
x

(k+1)

i1
x

(k+1)

i2
· · · x

(k+1)

in

]
· ✶ = ū (3.7)

which, from (3.6), becomes

[
ai1 ai2 · · · ain

]
· ✶ · ū = ū (3.8)

that, for ū , 0, is true if and only if it holds that

[
ai1 ai2 · · · ain

]
· ✶ = 1 (3.9)

This means that the necessary and sufficient condition to guarantee that the

agreement process preserves the value of the sum of the opinions of agent i is

12 Chapter 3. Solutions

that:
n∑

l=1

ail = 1 (3.10)

which means that the i-th row of matrix A must sum up to 1. The same reasoning

can be applied to the opinions of all the other agents, resulting in the requirement

that all the rows of matrix A must sum up to 1, i.e. matrix A must be a row-

stochastic matrix. �

A similar statement and proof in the context of computational load balancing

can be found in Lemma 1 of [2], where the focus is on the average of the workloads

assigned to processors: it is not a relevant difference as the sum of workloads

equals to the average times the fixed number of agents, therefore if the average

does not change through iterations, neither does the sum of the workloads.

The following proposition sets the conditions for the Exact-Breakdown method

to be successful, that is, for the sets of agents’ opinions to converge to the same

vector – the breakdown.

Proposition 3.1.2. A sufficient condition for the agent opinions to converge to an

equal vector is that A is a row-stochastic and positive matrix.

Proof. For this analysis of convergence, we will consider how the columns of

the matrix X(k) update at each iteration. According to Eq. 3.3, the update of

each column of matrix X(k) resembles the usual scalar consensus problem: in this

context, a corollary of the Perron-Frobenius theorem states that, if matrix A is

row-stochastic and primitive, the states of the consensus problem converge in a

linear combination of the initial conditions. Applied to our case, the corollary

means that

lim
k→∞

Ak



x0
1i

x0
2i
...

x0
ni



= α✶ = wT
0



x0
1i

x0
2i
...

x0
ni



with w0 eigenvector associated with the largest eigenvalue of A, that is λ0 = 1.

The fact that matrix A is row-stochastic is already required by Proposi-

tion 3.1.1. On the other hand, ensuring that the matrix is generically primitive

is something that could not be enforced by single agents without exchanging the

information about each other’s weight. Instead, requiring the matrix to be posi-

tive is a constraint that each agent can trivially enforce independently from each

other; as the positivity of a matrix is a stricter condition that implies primitivity,

3.1 The Exact-Breakdown method 13

it is a sufficient condition for consensus. In practical terms, in order to build a

positive matrix A, it is required that every agent assigns a weight greater than

zero to every agents’ opinions, that is

ai j > 0, ∀i, j

�

Corollary 3.1.2.1. A sufficient condition for ensuring both the convergence of

opinions and the compliance with constraint 2.1 is that every agent assign weights

such that

0 < ai j < 1,∀i, j

and that they sum up to 1, that is
∑n

j=1 ai j(t) = 1,∀i.

Proof. Directly from Proposition 3.1.2: since n > 1, for the weights assigned by

an agent to be both positive and have unitary sum they must also be lower than

one. �

3.1.4 Enforcing hard limits

The system studied so far does not handle situations in which agents are bounded

by some hard limits on the minimum or maximum quota they can take care of,

which was a requirement of the problem defined in Chapter 2. Recall that hard

limits mean that during the time slot t the agent i is bounded by

xMIN
i (t) ≤ x

(∞)

i
(t) ≤ xMAX

i (t)

A simple example is again the context of power generation, where the plants

represented by the agents cannot generate a negative amount of energy — in some

cases they cannot even decrease the power below a minimum positive threshold

— and are capped by a maximum limit.

The solution that was applied to enforce hard limits was to introduce an input

Ũ (k)(t) to the autonomous system defined by Eq. 3.2. The update rule would then

become

X(k+1)(t) = A(t)X(k)(t) + Ũ (k)(t) (3.11)

In the proposed approach, the value of the input is computed by agent i only

in relation to its own hard limits xMIN
i

(t) and xMAX
i

(t) and is designed in such a

way that it counteracts the action of the autonomous update rule of Eq. 3.2 when

14 Chapter 3. Solutions

the latter would bring its opinion about its quota x
(k)

ii
(t) outside the acceptable

range, keeping it at the limit value instead. Using the Heaviside step function,

defined as

θ(x) =


1, x > 0

0, x ≤ 0

the counteraction input of agent i is represented by

u
(k)

i
(t) = − θ


n∑

l=1

ail(t)x
(k)

li
(t) − xMAX

i (t)

 ·


n∑

l=1

ail(t)x
(k)

li
(t) − xMAX

i (t)

+

+ θ

xMIN
i (t) −

n∑

l=1

ail(t)x
(k)

li
(t)

 ·
xMIN

i (t) −
n∑

l=1

ail(t)x
(k)

li
(t)

 =

= − u
(k)

i+
(t) + u

(k)

i− (t)

(3.12)

where the first term accounts for the counteraction of excesses of the updated

opinion x
(k+1)

ii
(t) with respect to xMAX

i
(t) and the second accounts for the conterac-

tion of defects with respect to xMIN
i

(t).

In order to comply with the basic constraint of maintaining a set of opinions

that is consistent with the total amount ū(t) – which must be enforced at each

iteration of the update rule for the breakdown x(∞)(t) to sum up to ū(t) – the

row sum of the opinion matrix X(k+1)(t) must not be changed by the introduction

of the input with respect to the row sum X(k)(t). This can be accomplished by

imposing that the row sum of matrix Ũ (k)(t) of Eq. 3.11 is zero, as shown by the

following chain of equations:

X(k+1)(t) · ✶ =
(
A(t)X(k)(t) + Ũ (k)(t)

)
· ✶ = A(t)X(k)(t) · ✶ + Ũ (k)(t) · ✶ = A(t)X(k)(t) · ✶

Imposing that the rows of Ũ (k)(t) have zero sum means to require that agents

compensate the input they apply to their opinion about their quota (Eq. 3.12)

with an opposite change in the sum of the opinions about the quota to be assigned

to other agents. This can be achieved by breaking down the input Ũ (k)(t) as the

3.2 The Self-Focused method 15

product of two matrices:

Ũ (k) (t) = U (k) (t) · B =

=



u
(k)

1
(t) 0 · · · 0

0 u
(k)

2
(t) · · · 0

...
. . .

. . .
...

0 0 · · · u
(k)
n (t)





1 b12 · · · b1n

b21 1 · · · b2n

...
. . .
. . .

...

bn1 bn2 · · · 1



=

=



u
(k)

1
(t) b12u

(k)

1
(t) · · · b1nu

(k)

1
(t)

b21u
(k)

2
(t) u

(k)

2
(t) · · · b2nu

(k)

2
(t)

...
. . .

. . .
...

bn1u
(k)
n (t) bn2u

(k)
n (t) · · · u

(k)
n (t)



(3.13)

With this notation, the constraint on the row sum of the input matrix can be

enforced by making the rows of matrix B sum up to zero, that is to impose
∑

i, j bi j = −1. In this context, coefficients bi j represent parameters whose purpose

is to define how much agent i relies on agent j for balancing its counteraction

u
(k)

i
(t).

As long as the constraint on the range of the total amount ū(t) given by

Eq. 2.3 is satisfied, it is trivial to recognise that not all the agents will activate

their input together, therefore the convergence to a common breakdown vector

is ensured. Nevertheless, the introduction of the input slows down the allocation

process, with consequences on the convergence time that must be investigated

further.

3.2 The Self-Focused method

3.2.1 Description of the method

The main drawback of the Exact-Breakdown method described in the previous

section is that every agent involved, besides expressing the quota that aims to

assign to itself, must also express an opinion about the specific quota to be as-

signed to each of the other agents. This can be useful when agents are aware of

the dynamics underlying their mutual relationship at the physical level, and also

share the state of each time slot: for instance, if a hydropower plant wants to

increase its production, it can also try to make the upstream plant increase its

production so that it will receive a higher water flow.

16 Chapter 3. Solutions

On the other hand, this method is not really suitable for scenarios where the

number of agents involved is large, as using that method the overall number of

opinions to be computed and transmitted across the network increases with the

square of the number of agents. Since one of the advantages of the decentralized

solution to the problem addressed in this study is that it can be deployed to

infrastructures where the computing power and the network bandwidth are low,

a different solution must be found for environments with a large number of agents.

Moreover, using the Exact-Breakdown method in scenarios where the agents

are not bound by some common physical dynamics, is also likely to result in

suboptimal allocation of quotas. This is due to the fact that an agent is always

required to express an opinion about the quota to be assigned to every other agent,

even when it has no a-priori information about the mutual physical relation with

them and from its standpoint the exact breakdown of quotas among the other

agents is not relevant at all. In that case, every agent might express opinions

about other agents without any meaningful procedure, for instance by dividing

equally among the other agents the remaining part of the total, after defining its

opinion about itself. This has an influence on the final allocation that should be

avoided in order to obtain the best allocation possible for all agents. Also, the

structure of the Exact-Breakdown procedure does not allow to weight differently

the various opinions expressed by the same agent, so if an agent aims to have a

lower influence on the allocation related to other agents it is forced to have less

influence also on the quota eventually assigned to itself.

Referring to the example of hydropower plants production, assume that three

of them are not placed along the same river, they are instead totally independent

to one another in terms of water stream involved, and they need to coopera-

tively generate an active power of 90MW. As a limit example, assume that they

all weight every opinion equally, that is ai j =
1
3
,∀i, j (more generally, nothing

changes in what follows if the self-weights aii are equal to each other and so do

the remaining weights ai j, i , j), but the first of the three aims to take care of the

whole amount of 90MW and the other two aim to not generate power at all. The

most reasonable allocation of quotas would be to actually assign 90MW to the

first agent and leave the other two inactive but, if the second and third agents

assign the quotas related to the other agents by dividing the remaining power

equally, their opinion will be that other agents must generate 45MW each, that

3.2 The Self-Focused method 17

is:

X(0)(t) =



x
(0)

11
(t) x

(0)

12
(t) x

(0)

13
(t)

x
(0)

21
(t) x

(0)

22
(t) x

(0)

23
(t)

x
(0)

31
(t) x

(0)

32
(t) x

(0)

33
(t)


=



90 0 0

45 0 45

45 45 0



The breakdown of power setpoint in these conditions would be
[
60, 15, 15

]
, bring-

ing all the three agents away from their preferred condition without any significant

benefit. Different approaches that might allocate the opinions on other agents’

quotas through more thoughtful procedures are expected to mitigate the issue,

but they do not solve it completely. A completely different approach has been

studied to overcome the mentioned issues, which will be referred to as Self-Focused

method. This method requires that, for every time slot t:

• As for the Exact-Breakdown method, every agent is initially informed by an

external system of the total amount ū to be divided among all the agents.

Also, all agents have the capability of exchanging information with all the

other agents, although this hypothesis will be relaxed in Section 3.2.7;

• Every agent holds an opinion about the quota to be assigned to itself only,

which is called x
(k)

i
(t); implicitly, an opinion x̃i

(k)
(t) about the complemen-

tary quota to be assigned collectively to the other agents is defined as the

difference between the total amount ū(t) and x
(k)

i
(t), i.e. x̃i

(k)
(t) = ū(t)− x

(k)

i
(t);

• Similarly, every agent chooses a single weight assigned to itself, which is

called ai(t); also in this case, an implicit weight ãi(t) that represents the

weight associated with the opinion of other agents is defined as ãi(t) =

1 − ai(t).

This procedure is based on a weighted average of x̃i
(k)

(t) and
∑

j,i x
(k)

j
(t): also in

this case every agent updates its opinion through the method called linear opinion

pool in [3], but in this case the linear combination involves only two terms:

• the one related to the amount the agent aims not to take care of, and

• the sum of the candidate quotas that the other agents aim to assign them-

selves.

As will be shown in what follows, if some conditions are met – and they can be

enforced by design, the sum of opinions
∑n

i=1 x
(k)

i
(t) for k → ∞ converges to the

total amount ū(t) requested to the group of agents. One main difference with

the Exact-Breakdown method is that, in the general case, the constraint about

18 Chapter 3. Solutions

having opinions consistent with the total amount is reached asymptotically and

cannot be enforced at each step of the consensus; in the Exact-Breakdown method

instead, at each iteration every agent held a valid n-uple of opinions, although

different agents held different n-uples until convergence happened, making this

difference not so relevant.

3.2.2 The update rule and the state-space system

For what concerns the opinion held by a single agent, the update rule is derived

from the following equation:

x̃i
(k+1)

(t) = ai(t)x̃i
(k)

(t) + ãi(t)
∑

j,i

x
(k)

j
(t)

which states that the updated opinion of agent i about its complementary quota

is a linear combination of two terms:

• the current value of the same quantity;

• the sum of the other agents’ opinion about their own quotas

Intuitively, for the update rule to bring to an agreement, this linear combination

must represent a weighted average, that means 0 ≤ ai(t) ≤ 1; this requirement

will also be needed for converging to a set of states x(∞)(t) that sums up to ū(t),

as will be proven later on.

By recalling that x̃i
(k)

(t) = ū(t) − x
(k)

i
(t) and that ãi(t) = 1 − ai(t), the equation

can be rewritten as:

ū(t) − x
(k+1)

i
(t) = ai(t)

(
ū − x

(k)

i
(t)

)
+ (1 − ai(t))

∑

j,i

x
(k)

j
(t)

x
(k+1)

i
(t) = ai(t)x

(k)

i
(t) + (ai(t) − 1)

∑

j,i

x
(k)

j
(t) + (1 − ai(t)) ū(t) (3.14)

With the purpose of studying the evolution of the system made of the whole set of

agents, the equations of the single agents can be stacked, achieving the following

3.2 The Self-Focused method 19

state-space system:

x(k+1)(t) =



x
(k+1)

1
(t)

x
(k+1)

2
(t)
...

x
(k+1)
n (t)



=



a1 a1 − 1 · · · a1 − 1

a2 − 1 a2 · · · a2 − 1
...

. . .
. . .

...

an − 1 an − 1 · · · an





x
(k)

1
(t)

x
(k)

2
(t)
...

x
(k)
n (t)



+



1 − a1

1 − a2

...

1 − an



ū =

= Ax(k)(t) + Bū(t)

(3.15)

Proposition 3.2.1. When the system asymptotically converges, it reaches a set of

values that actually meets the required condition of covering the total demand ū(t),

that is

lim
k→∞

n∑

i=1

x
(k)

i
(t) = ū(t)

Proof. For the sake of easiness, during this proof the dependence on the time

slot t will be dropped. If the system asymptotically converges, it holds that

limk→∞
(
x(k+1) − x(k)

)
= 0, therefore at steady state the update equation can be

rewritten as

x(k)
= Ax(k)

+ Bū

(I − A) x(k)
= Bū



1 − a1 1 − a1 · · · 1 − a1

1 − a2 1 − a2 · · · 1 − an

...
. . .

. . .
...

1 − an 1 − an · · · 1 − an





x
(k)

1

x
(k)

2
...

x
(k)
n



=



1 − a1

1 − a2

...

1 − an



ū



1 − a1

1 − a2

...

1 − an



[1 1 · · · 1]



x
(k)

1

x
(k)

2
...

x
(k)
n



=



1 − a1

1 − a2

...

1 − an



ū



1 − a1

1 − a2

...

1 − an



∑

i

x
(k)

i
=



1 − a1

1 − a2

...

1 − an



ū

∑

i

x
(k)

i
= ū

�

20 Chapter 3. Solutions

3.2.3 Analysis of stability

In order to study the stability of the system, which ensures that all the opinions

asymptotically reach a constant value, the eigenvalues and eigenvectors of matrix

A are analysed. The dependence on the specific time slot t is disregarded also for

this section.

Proposition 3.2.2. Regardless of the value of n, the structure of matrix A yields

to:

1. A set of eigenvalues λ1 = λ2 = . . . = λn−1 = 1, with multiplicity (both

algebraic and geometrical) equal to n − 1 and corresponding eigenvectors

v1 =



1

0
...

0

−1



, v2 =



0

1
...

0

−1



, · · · , vn−1 =



0

0
...

1

−1



;

2. A single eigenvalue λn =
∑

i ai− (n−1), with corresponding eigenvector equal

to vn =



a1 − 1

a2 − 1
...

an−1 − 1

an − 1



.

The proof of the statement is reported below.

Proof. 1. First of all, the proof that λ = 1 is an eigenvalue of the matrix A is

directly shown by the fact that the matrix

A − λI = A − I =



a1 − 1 a1 − 1 · · · a1 − 1

a2 − 1 a2 − 1 · · · a2 − 1
...

. . .
. . .

...

an − 1 an − 1 · · · an − 1



is trivially rank-deficient as all the columns are equal, therefore its deter-

minant must be zero, meaning that 1 is an eigenvalue for A.

The proof that this eigenvalue has geometrical multiplicity equal to n− 1 is

directly shown:

Av = λv

3.2 The Self-Focused method 21

(A − 1I) v = 0


a1 − 1 a1 − 1 · · · a1 − 1

a2 − 1 a2 − 1 · · · a2 − 1
...

. . .
. . .

...

an − 1 an − 1 · · · an − 1





v1

v2

...

vn



= 0



(a1 − 1) (v1 + v2 + · · · + vn) = 0

(a2 − 1) (v1 + v2 + · · · + vn) = 0

...

(an − 1) (v1 + v2 + · · · + vn) = 0

(3.16)

Which, in the general case with ai , 1 ∀i (which will later be required to

be enforced for stability), yields to the single constraint expressed by

v1 + v2 + · · · + vn = 0 ⇒ vn = −v1 − v2 − · · · − vn−1

The associated eigenspace is then defined by the eigenvectors

<



1

0
...

0

−1



,



0

1
...

0

−1



, . . . ,



0

0
...

1

−1



>

which dimension proves that the eigenvalue λ = 1 has geometrical multiplic-

ity equal to n−1. The algebraic multiplicity of the eigenvalue must therefore

be greater or equal than n − 1. In order to prove that also the algebraic

multiplicity is exactly n − 1, it is sufficient to find a different eigenvalue to

reach a number of single eigenvalues equal to n, and this will be shown in

the following point.

2. The fact that λn =
∑

i ai− (n−1) is an eigenvalue of A is also shown by direct

proof. Matrix A − (
∑

i ai − (n − 1)) I is equal to



−
∑

i,1 (ai − 1) a1 − 1 · · · a1 − 1

a2 − 1 −
∑

i,2 (ai − 1) · · · a2 − 1
...

. . .
. . .

...

an − 1 an − 1 · · · −
∑

i,n (ai − 1)



22 Chapter 3. Solutions

For the sake of clarity, the matrix is rewritten by using the different set of

parameters bi = ai − 1:



−
∑

i,1 bi b1 · · · b1

b2 −
∑

i,2 bi · · · b2

...
. . .

. . .
...

bn bn · · · −
∑

i,n bi



If we study the linear independence of the rows of the matrix using coeffi-

cients k j, j = 1, ..., n, the result is as follows:

k1

−
∑

i,1

bi + (n − 1) b1

 + k2

−
∑

i,2

bi + (n − 1) b2

 + · · ·+

+ kn

−
∑

i,n

bn + (n − 1) bn

 = 0

(3.17)

When k1 = k2 = . . . = kn the equation holds regardless of bi, showing that

the rows of the matrix are not linearly independent and therefore the matrix

does not have full rank. This means that it has determinant equal to zero,

proving that λn =
∑

i ai − (n − 1) is an eigenvalue for A.

In order to prove the correctness of the eigenvector



a1 − 1

a2 − 1
...

an − 1



, a direct proof

is provided in the following:

A −

∑

i

ai − (n − 1)

 I





a1 − 1

a2 − 1
...

an − 1



=

=



−
∑

i,1 (ai − 1) a1 − 1 · · · a1 − 1

a2 − 1 −
∑

i,2 (a2 − 1) · · · a2 − 1
...

. . .
. . .

...

an − 1 an − 1 · · · −
∑

i,n (ai − 1)





a1 − 1

a2 − 1
...

an − 1



And, again by performing the substitution bi = ai − 1 for the sake of clarity,

3.2 The Self-Focused method 23

it yields 

−
∑

i,1 bi b1 · · · b1

b2 −
∑

i,2 bi · · · b2

...
. . .

. . .
...

bn bn · · · −
∑

i,n bi





b1

b2

...

bn



=

=



−b1

∑
i,1 bi + b1b2 + · · · + b1bn

b1b2 − b2

∑
i,2 bi + · · · + b2bn

...

b1bn + b2bn + · · · − bn

∑
i,n bi



=



0

0
...

0



The existence of λn =
∑

i ai−(n−1) also implies that the algebraic multiplicity

of λ = 1 is actually n− 1, equal to the corresponding geometric multiplicity.

�

3.2.4 Analysis of convergence time

The results on the eigenvalues and eigenvectors of Subsection 3.2.3 imply that

matrix A can be transformed in the Jordan form whose diagonal entries are the

eigenvalues of matrix A:

AJ =



1 0 · · · 0 0

0 1 · · · 0 0
...
...
. . .
...

...

0 0 · · · 1 0

0 0 · · · 0
∑

i ai − (n − 1)



(3.18)

The change-of-basis matrix has the corresponding eigenvectors as columns:

T =



1 0 · · · 0 a1−1

an−1

0 1 · · · 0 a2−1

an−1
...
...
. . .

...
...

0 0 · · · 1 an−1−1

an−1

−1 −1 · · · −1 1



(3.19)

In order to analyse how the convergence time changes with the eigenvalues –

specifically with the eigenvalue λn, the only one that changes – the same change-

of-basis is applied to the opinion vector x(k)(t), which is transformed to the Jordan-

24 Chapter 3. Solutions

space opinion vector defined by

x
(k)

J
(t) = T−1x(k)(t) (3.20)

The inversion of matrix T is then computed through the procedure reported in [5]

that makes use of the Schur complement. In this context, by recurring to the usual

substitution bi = ai − 1 for the sake of clearliness, matrix T is divided into blocks

as follows:

T =



1 0 · · · 0 b1

bn

0 1 · · · 0 b2

bn

...
...
. . .

...
...

0 0 · · · 1 bn−1

bn

−1 −1 · · · −1 1



=


T11 T12

T21 T22

 (3.21)

where we note that T11 = In−1 and T22 = 1. From [5], we have that

T−1
=


(T/T22)−1 −T−1

11
T12(T/T11)−1

−T−1
22

T21(T/T22)−1 (T/T11)−1

 (3.22)

with the inverse of the Schur complements (T/T11)−1 and (T/T22)−1 computed as

(T/T11)−1
=

(
T22 − T21T−1

11 T12

)−1
=

1 +
n−1∑

i=1

bi

bn


−1

=

(∑n
i=1 bi

bn

)−1

=

bn∑n
i=1 bi

(3.23)

3.2 The Self-Focused method 25

(T/T22)−1
= T−1

11 + T−1
11 T12(T/T11)−1T21T−1

11

= In−1 + In−1 ·
1

bn



b1

b2

...

bn−1



· bn∑n
i=1 bi

[
−1 −1 · · · −1

]
In−1

= In−1 −



b1∑n
i=1 bi

b1∑n
i=1 bi

· · · b1∑n
i=1 bi

b2∑n
i=1 bi

b2∑n
i=1 bi

· · · b2∑n
i=1 bi

...
...

. . .
...

bn−1∑n
i=1 bi

bn−1∑n
i=1 bi

· · · bn−1∑n
i=1 bi



=

1∑n
i=1 bi

·



∑
i,1 bi −b1 · · · −b1

−b2

∑
i,2 bi · · · −b2

...
...

. . .
...

−bn−1 −bn−1 · · ·
∑

i,n−1 bi



(3.24)

The off-diagonal blocks of Eq. 3.22 are computed as

−T−1
11 T12(T/T11)−1

= −



b1∑n
i=1 bi

b2∑n
i=1 bi

...

bn−1∑n
i=1 bi



=

1∑n
i=1 bi



−b1

−b2

...

−bn−1



(3.25)

− T−1
22 T21(T/T22)−1

=

=

[
1 1 · · · 1

]
· 1∑n

i=1 bi

·



∑
i,1 bi −b1 · · · −b1

−b2

∑
i,2 bi · · · −b2

...
...

. . .
...

−bn−1 −bn−1 · · ·
∑

i,n−1 bi



=

1∑n
i=1 bi

·
[
bn · · · bn

]

(3.26)

Joining the blocks of matrix T−1, we obtain:

T−1
=

1∑n
i=1 bi



∑
i,1 bi −b1 · · · −b1 −b1

−b2

∑
i,2 bi · · · −b2 −b2

...
...

. . .
...

...

−bn−1 −bn−1 · · ·
∑

i,n−1 bi −bn−1

bn bn · · · bn bn



(3.27)

26 Chapter 3. Solutions

Reverting to Eq. 3.20, we obtain the following relation between the opinions in

the two basis:

x
(k)

J
(t) =

1∑n
i=1 bi



x
(k)

1
(t)

∑
i,1 bi − b1

∑
i,1 x

(k)

i
(t)

x
(k)

2
(t)

∑
i,2 bi − b2

∑
i,2 x

(k)

i
(t)

...

x
(k)

n−1
(t)

∑
i,n−1 bi − bn−1

∑
i,n−1 x

(k)

i
(t)

bn

∑n
i=1 x

(k)

i



(3.28)

In the Jordan representation, the first n−1 states are associated with eigenvalues

λ1 = λ2 = · · · = λn−1 = 1, therefore they represent constants of the system,

even if the input term
[
1 − a1 · · · 1 − an

]T

ū is applied – as it is constant itself.

The only state associated with the dynamic of the system is x
(k)

Jn
(t). In order to

analyse its characteristics, we transform the input part of Eq. 3.15 through the

same change-of-basis:

BJ = T−1B = T−1



1 − a1

1 − a2

...

1 − an



= T−1



−b1

−b2

...

−bn



=

=

1∑n
i=1 bi



−
∑

i,1 bi · b1 + b1

∑
i,1 bi

−
∑

i,2 bi · b2 + b2

∑
i,2 bi

...

−
∑

i,n−1 bi · bn−1 + bn−1

∑
i,n−1 bi

−bn

∑n
i=1 bi



=

1∑n
i=1 bi



0

0
...

0

−bn

∑n
i=1 bi



=



0

0
...

0

−bn



(3.29)

The evolution of the n-th state in the Jordan basis is therefore described by the

following equation:

x
(k+1)

Jn
(t) = λnx

(k)

Jn
(t) − bnū(t)

bn∑n
i=1 bi

n∑

i=1

x
(k+1)

i
= λn

bn∑n
i=1 bi

n∑

i=1

x
(k)

i
− bnū(t)

n∑

i=1

x
(k+1)

i
= λn

n∑

i=1

x
(k)

i
−

n∑

i=1

bi · ū(t)

(3.30)

Introducing the variable δ(k)(t) =
∑n

i=1 x
(k)

i
(t) − ū(t), which represents the deviation

from the steady state value of the sum of the opinions, we have that
∑n

i=1 x
(k)

i
(t) =

3.2 The Self-Focused method 27

δ(k)(t) + ū(t) and the update rule becomes

δ(k+1)(t) + ū(t) = λn

[
δ(k)(t) + ū(t)

]
−

n∑

i=1

bi · ū(t) (3.31)

which, by noting that λn =
∑n

i=1 ai − (n − 1) =
∑n

i=1 (ai − 1) + 1 =
∑n

i=1 bi + 1, yields

δ(k+1)(t) + ū(t) =


n∑

i=1

bi + 1


[
δ(k)(t) + ū(t)

]
−

n∑

i=1

bi · ū(t)

δ(k+1)(t) + ū(t) =

n∑

i=1

bi · δ(k)(t) +

n∑

i=1

bi · ū(t) + δ(k)(t) + ū(t) −
n∑

i=1

bi · ū(t)

δ(k+1)(t) =

n∑

i=1

bi · δ(k)(t) + δ(k)(t)

δ(k+1)(t) =


n∑

i=1

bi + 1

 · δ(k)(t)

δ(k+1)(t) = λnδ
(k)(t)

(3.32)

Eq. 3.32 proves that the deviation of the sum of the opinions from their steady-

state value defined as δ(k)(t) evolves as an autonomous system characterised by

the eigenvalue λn =
∑n

i=1 ai − (n− 1). This means that, at iteration k, its value can

be derived from the initial value δ(0)(t), which depends on the initial opinions of

the agents:

δ(k)(t) = λk
nδ

(0)(t) (3.33)

Assuming that we want to consider the number of iterations k̄ needed for δ(k)(t) to

drop to the 1% of its initial value and considering the absolute values – as while

analysing the convergence time we are not interested in possible oscillations – we

have that

0.01 =

∣∣∣∣∣∣
δ(k̄)(t)

δ(0)(t)

∣∣∣∣∣∣ = |λn|(k̄)

k̄ = log|λn | 0.01

(3.34)

On the other hand, if a maximum number of iterations kMAX for reaching the 1%

deviation is desired, we need to introduce an upper bound on λn, that is

∣∣∣∣∣∣
δ(k)

δ(0)

∣∣∣∣∣∣ = |λnMAX |kMAX

|λnMAX | =
kMAX
√

0.01

(3.35)

28 Chapter 3. Solutions

For instance, considering a maximum number of iterations of 100 for reaching the

1% of the final value, the value of λn must not exceed 0.955: following a procedure

simular to the one reported in Subsection 3.2.5, this can be enforced by setting

upper limits on the weights ai depending on the number of agents of the system.

Considering the definition of a maximum weight aMAX
i

equal for all agents, such

that
∑

i ai ≤ n · aMAX
i

, we have that the maximum weight for obtaining λn ≤ 0.955

is derived by the following equations:

∑

i

ai − (n − 1) ≤ 0.955

n · aMAX
i = n − 1 + 0.955

aMAX
i =

n − 1 + 0.955

n
= 1 − 0.045

n

3.2.5 Enforcing stability by design

Proposition 3.2.2 shows that, in order to ensure that the state-space system is

not unstable – which means that the agents asymptotically reach a stable opinion

about the quota to be assigned to themselves – the only eigenvalue to be studied

is λn =
∑

i ai − (n − 1), because the eigenvalue λ = 1 cannot introduce unstable

modes as its geometric multiplicity is equal to the algebraic multiplicity.

Thus, the stability condition is defined as

−1 <
∑

i

ai − (n − 1) < 1

Where values −1 and 1 are excluded to avoid permanent oscillations and the

possibility of introducing an unstable mode, respectively. Since in the consensus

procedure each agent chooses its own value for the self-weight ai without consid-

ering the value chosen by other agents, general bounds must be defined. These

are obtained by considering the worst-case scenario where all the agents choose

the same self-weight, identifying the lower and upper bounds aMIN
i

and aMAX
i

. For

what concerns the minimum self-weight, it holds that:

∑

i

ai − (n − 1) = −1

n · aMIN
i − (n − 1) = −1

3.2 The Self-Focused method 29

aMIN
i =

n − 2

n

While for the maximum self-weight it holds that:

∑

i

ai − (n − 1) = 1

n · aMAX
i − (n − 1) = 1

aMAX
i = 1

Another condition of interest is when the eigenvalue λn has a zero value, as this

represents:

• The value below which the evolution of the system is oscillatory, which

might be an undesired behaviour;

• The value that brings to one-step convergence

If all self-weights ai are equal to each other, the condition is met when:

∑

i

ai − (n − 1) = 0

n · aī − (n − 1) = 0

aī =
n − 1

n

Therefore, the value aī can be used as the default value for the self-weights, as

it is the one that yields the fastest convergence. As for the Exact-Breakdown

method, agents are allowed to increase it in case they need to try to make their

opinion prevail, at the cost of a slower convergence.

According to the bounds obtained above, the range of possible values for the

self-weights is

aMIN
i =

n − 2

n
< ai < 1 = aMAX

i

if oscillatory modes are allowed, while if they are not the range is restricted to

aī =
n − 1

n
< ai < 1 = aMAX

i

In Table 3.1, values for the bounds aMIN
i

, aī and aMAX
i

when n changes are reported.

30 Chapter 3. Solutions

Table 3.1: Allowed values for self-weights when n changes

n aMIN
i

aī aMAX
i

2 0 0.5 1

3 1
3

2
3

1

4 0.5 0.75 1

5 0.6 0.8 1

10 0.8 0.9 1

20 0.9 0.95 1

50 0.96 0.98 1

100 0.98 0.99 1

3.2.6 Enforcing hard limits

The constraint imposed by hard limits can be enforced with a method similar

to the one used in the Exact-Breakdown method, which is described in Subsec-

tion 3.1.4. The proposed strategy involves an additional input ũ(k)(t) that agents

are allowed to activate when the iteration process is bringing them towards un-

sustainable quotas. Nevertheless, the way the input is applied to the Self-Focused

method is much simpler, as in this case there is no compensation to be applied

on the opinion about other agents’ candidate quota. In fact, the update rule of

Eq. 3.15 is changed to

x(k+1)(t) = Ax(k)(t) + Bū(t) + ũ(k)(t)

and, with respect to the Exact-Breakdown case, the excesses u
(k)

i+
and defects u

(k)

i−

are changed respectively to:

u
(k)

i+
(t) =

ai(t)x
(k)

i
(t) + (1 − ai(t))

∑

j,i

x
(k)

j
(t)

 − xMAX
i (t)

u
(k)

i− (t) = xMIN
i (t) −

ai(t)x
(k)

i
(t) + (1 − ai(t))

∑

j,i

x
(k)

j
(t)



Also in this case, the Heaviside step function is used to define the input applied

by an agent as a function of the excess or defect value, aimed at keeping the

3.2 The Self-Focused method 31

opinion x
(k+1)

i
at the limit value when the iteration would bring it beyond:

u
(k)

i
(t) = −θ

(
u

(k)

i+
(t)

)
· u

(k)

i+
(t) + θ

(
u

(k)

i+
(t)

)
· u

(k)

i+
(t) (3.36)

Eventually, the additional input vector ũ(k)(t) is composed by stacking all the

counteractions performed by the agents:

ũ(k)(t) =



u
(k)

1
(t)

u
(k)

2
(t)
...

u
(k)
n (t)



As in the Exact-Breakdown case, when the constraint on the total amount defined

by Eq. 2.3 is satisfied, it is not possible that all the agents are limited at the same

time, therefore convergence is ensured but, also in this case, the activation of the

input is an action that slows down the convergence, with consequences that have

not been addressed yet.

3.2.7 Usage in MASs represented by sparse graphs

The Exact-Breakdown method exposed in Subsection 3.1 requires that every

agent maintains as many opinions as are the number of agents; moreover, agents

assign different weights to each of the other agents. This paradigm requires that,

during the consensus phase, each node informs every other node about its updated

opinions. If we represent the Multi-Agent System with an undirected graph in

which nodes correspond to agents and edges correspond to communication chan-

nels between the agents, this can be achived in two ways:

• The graph is complete, that is, every node is able to exchange information

directly with every other node.

• The graph is not complete but connected, and if two nodes are not neigh-

bours (i.e. not connected by an edge), other nodes along a path that con-

nects the two considered nodes take care of the opinion propagation.

Both of the two scenarios introduce some drawbacks: in the first, especially when

the number of agents involved is large, the effort required on communication is

relevant; furthermore, if some of the communication links suffers from a failure

(which means that the graph becomes no longer complete) and if no fallback

32 Chapter 3. Solutions

mechanism is defined, the mentioned procedure of assigning quotas to agents be-

comes impossible, because the two involved agents could not update their opinions

on each other’s quota and share it with all the other agents.

On the other hand, the second option of allowing agents to propagate other

agents’ opinion requires the introduction of some tight timing protocol, because

all the opinions must be propagated to all the other nodes before the following

iteration of the update rule occurs. This decreases the robustness of the procedure

and can be difficult to apply when the number of not-neighbouring agent pairs

grows, thus it was not considered in this study.

In the Self-Focused scenario instead, each agent holds an implicit opinion on

the complementary quota to be assigned to all other nodes collectively, and ap-

plies the update rule considering the sum of other agents’ opinion about their

own quota (see the second term of Eq. 3.14). Therefore, agents can perform their

update rule by receiving only aggregated opinions consisting of the sum of the

other agents opinion. This characteristic of the Self-Focused method was deemed

relevant for implementations in which not all the agents are capable of exchanging

information with the other agents directly, as the data exchange needed for the

propagation of the opinions across the MAS network can be optimized: for ex-

ample, assume that one agent of a large MAS is neighbour of only another agent,

the latter can take care of aggregating all of the other agents opinion through

a sum and send only the result to the poorly connected agent. For this reason,

the possibility to apply the Self-Focused method to MASs represented by sparse

graphs was investigated further. The following paragraphs describe two possi-

ble approaches that were considered, which differ by the timing with which the

propagation takes place.

Synchronous one-hop propagation

With this approach, during an iteration of the update rule, any data held by an

agent can reach only its neighbouring agents. Considering the graph representing

the MAS this means that, if two agents n1 and n2 have a distance equal to d > 1, at

iteration k the updated opinion of agent n2 – that is, x
(k)

2
– is computed considering

the opinion x
(k−d)

1
of agent n1 instead of considering x

(k−1)

1
, because it takes d

iterations for an opinion of agent n1 to reach agent n2. This approach enables

to have a fast consensus algorithm, as the time taken to exchange information

during an iteration can be considered constant (i.e. the time needed to exchange a

message between two neighbouring agents) and does not depend on the diameter

3.2 The Self-Focused method 33

of the graph representing the MAS. Of course, the introduced delay changes

substantially the update rule of the agents and thus the dynamics of the system:

most importantly, the criteria for stability reported in Section 3.2.3 must be

verified. The review of the stability criteria was considered beyond the scope of

this project, but the implementation of such a technique was nevertheless tested

using the same stability criteria exposed in Section 3.2.3. The details of this

implementation are reported in Subsection 4.2.3 and Appendix A: although the

theory behind the dynamics of such kind of MAS is yet to be formalized, the

empirical results obtained are promising as multiple tests did not highlight an

unstable behaviour, although the quotas assigned with this procedure are slightly

different from those obtained in case the graph representing the MAS is complete,

for a reason that is detailed in Subsection 4.2.3.

Multi-hop propagation

With this approach, the whole opinion propagation process happens in the time

window between two subsequent iterations of the consensus algorithm. With

respect to the one-hop propagation approach, this means that the consensus al-

gorithm is slowed down because between two iterations there must be an amount

of time that is sufficient for an opinion to traverse a number of hops equal to

the graph diameter, making this drawback more relevant when considering larger

and sparser MASs. In practical terms, this also means that agents must take

care to propagate opinions at a faster rate with respect to the rate at which they

compute their own opinion updates, requiring the two activities to be handled in-

dependently, while with the previous approach a single program cycle could fulfill

them both. On the other hand, from the consensus algorithm standpoint, all the

theoretical results exposed in this Section apply directly: this kind of propagation

implies that, at each iteration of the consensus algorithm, every agent is aware of

the sum of all the other agents’ opinion at the previous iteration as if the graph

representing the MAS was complete. In fact, with this approach the opinion

propagation process can be considered something that happens in background,

not impacting at all the update rule execution. Figure 3.1 shows the difference

between the one-hop and the multi-hop propagation techniques. The multi-hop

propagation was not tested because it was considered less interesting than the

Synchronous one-hop propagation, as the former would be completely equivalent

to the complete graph scenario for what concerns the dynamics of the opinions.

34 Chapter 3. Solutions

1 2 3

Agent1 Agent2 Agent3

Agent1 Agent2 Agent3

Iteration 0

x
1(0)

x
2(0)

x
3(0)

Iteration 1

x
1(1) = x1(0)

x
3(1) = x3(0)

x
2(1) + x1(0)

x
2(1) + x3(0)

Iteration 2

x
1(2) = f(x 1(1),x 2(1),x 3(0))

x
3(2) = f(x 1(0),x 2(1),x 3(1))

x
2(2) + x1(1)

x
2(2) + x3(1)

Agent1 Agent2 Agent3

Agent1 Agent2 Agent3

Iteration 0

x
1(0)

x
1(0) + x2(0)

x
3(0)

x
3(0) + x2(0)

Iteration 1

x
1(1)

x
1(1) + x2(1)

x
3(1)

x
3(1) + x2(1)

Iteration 2

x
1(2)

x
1(2) + x2(2)

x
3(2)

x
3(2) + x2(2)

Figure 3.1: Example of differences between the Synchronous one-hop propagation and the Multi-hop

propagation. At the top, the graph representing the MAS; at the bottom, Unified Modeling
Language (UML) sequence diagrams showing the one-hop propagation (left) and the multi-
hop propagation (right).

Chapter 4

Implementation

After the definition of the theoretical method to address the allocation of quotas

was completed, obtaining the results reported in Chapter 3, a way to implement

the method was sought. The implementation described in this Section is related

to the Self-Focused method only, as it was considered the one with the wider

range of applications, but most of the techniques involved could be reused for

the implementation of the Exact-Breakdown method, requiring only changes to

the part of the code that actually performs the mathematical computation of

the iterations. More generally, the author thinks that many aspects reported in

this Section are relevant for the implementation of a wider range of Multi-Agent

Systems: for this reason, the code base developed for this thesis is available in a

public Git repository located at https://gitlab.dei.unipd.it/alviserossi/

thesiscode, in the hope that it is useful for other similar projects.

The design of the implementation was driven by the following two main re-

quirements:

• The developed code base shall be meant for both simulation and for real-

world applications: this means that the code can be written and tested

without working on some specific hardware – especially for what concerns

the tests on the interaction among agents, which shall not require the avail-

ability of many devices. Nevertheless, porting the code used for simulation

to a specific hardware environment would require some unavoidable addi-

tional development, mostly related to the management of I/O for the specific

platform. This requirement is hard to match when using a typical academic

environment like Matlab for simulation, as in that context it is not easy to

run in a parallel fashion the same agent code multiple times and make every

of these instances interact with each other. Moreover, the code developed

35

36 Chapter 4. Implementation

in Matlab would hardly be portable to an actual agent environment, requir-

ing the code to be rewritten and tested before being able to deploy it in a

real-world application.

• The developed code base shall be meant for a wide range of hardware

platforms: as the problem of allocation of quotas has many real-world ap-

plications, the code base should be capable to run on the widest range of

hardware devices, ranging from industrial servers to IoT devices.

The two requirements mentioned above led the author to choose a development

environment based on Docker Containers, for reasons that are explained in the

following subsection.

4.1 Usage of Docker Containers

Containerization is a technique that gained more and more consideration during

the last decade as it was an important ingredient for the migration of many IT

services to cloud environments, though for this implementation it was chosen

for different reasons – mainly because it allowed to simulate an IP network of

agents on a single computer and because it allows the code to run on many kinds

of hardware and operating systems, as will be detailed later in this section. A

brief overview of what containers are and the advantages they introduce can be

found in at [6], where they are referred to as ”a new way to abstract one or

more processes from the rest of a system. [. . .] They also provide a standard

way to package and isolate application code, configurations, and dependencies

into a single object”. Containers are different from a virtual machine as they

do not include an operating system, they rely on the operating system of the

machine where they run – the host operating system, which makes them much

more lightweight than virtual machines. By default, containers are isolated from

the host operating system, which means that they cannot access any resource

available on its disk drives or connect to its network: specific exceptions must be

configured if a container requires them.

Although the concept of containers was known before, their usage was boosted

in 2013 with the launch of the Docker Engine, a software used for creating, man-

aging and running containers. Docker allows to create and use container images,

which are software packages that are used to execute one or more instances of a

container (possibly specifying configuration parameters that define the behaviour

4.1 Usage of Docker Containers 37

of the container, if the bundled software allows to). Container images can be used

also to build another image that expands the functionality of the original one: for

instance, a developer can retrieve the publicly available image of an interpreter

such as Python, include the Python code developed for a specific application and

build a new image that includes both the code and the Python interpreter, which

allows the code to be executed directly on an operating system that does not

have the Python interpreter installed. A similar example is the one in which the

developer needs to build a container image that contains a simple website: for

such a need, one can start from the image of a generic web server – there are

many publicly available ones such as Apache – and include web pages developed

for the specific website, then build a new self-consistent image with the web server

application and the custom web pages. Publicly available images can be found in

online repositories such as the Docker Hub.

Docker allows to execute the following operations that were used in the im-

plementation:

• Build: create an image from the source code, possibly including another

container image

• Run: execute a container instance, possibly passing parameters to the inner

software and specifying the exceptions to the isolation from the resources of

the host that runs the Docker engine, which could be needed for the proper

behaviour of the software. Two examples of exception to the isolation are

reported below:

– TCP or UDP ports of the container that must be accessible from out-

side the container environment, which are used for exchanging data

with other applications or users – for instance, referring to the exam-

ple of the website reported above, a TCP port must be exposed by the

container in order to transport the HTTP protocol traffic and serve

requests from the browsers connecting to the website

– Storage volumes: for containers that need data persistence, such as a

container that implements a database server, a directory of the host

system can be made accessible (i.e., mounted) to the container, so that

if it is restarted there is no data loss.

• Compose: the Docker Compose feature allows to launch a group of contain-

ers at once. It can be used to automate the execution of an environment

38 Chapter 4. Implementation

composed by many containers through the definition of a text file (namely

the Compose file) that specifies which containers must be launched and

their configuration. In this study it was used for simulation purposes, as

the simulation consisted in launching a number of containers representing

the agents of the Multi-Agent System and some auxiliary containers useful

for the simulation, as will be shown later.

One useful aspect of the Compose feature is that it allows scaling : starting

from the same Compose file that defines the group of containers to be

launched, when the environment is launched users can specify how many

instances they want to launch for each of the single containers reported in

the Compose file. Although the feature is arguably meant to be used for

load balancing among many containers in IT applications, in this project it

was used to be able to quickly change the number of agents that the Multi-

Agent System is made of: in the Compose file only one agent container

was reported, then the number of agents for each simulation was defined

leveraging on the scale feature.

As previously stated, one of the two main reasons why the author chose to

use Docker containers for the implementation is that, when many containers are

deployed onto the same host, they are allowed to communicate with each other

over a virtual IP subnet. A default configuration for the network can be used,

otherwise the subnet parameters such as the address range can be customized

through commands or configuration files. By default, this virtual network is

isolated from the network of the host (that is, containers can communicate only

with each other), but specific container TCP or UDP ports can be made accessible

from the host network, as was previously reported.

Each of the containers is assigned an IP address in the virtual subnet range,

that can be dynamically assigned or manually configured for each of the contain-

ers. A specific feature of the IP protocol that is available in the virtual subnet

(as in actual IP networks) is the capability of sending broadcast packets, which

are packets that are received by all the members of the network – at least in

the same subnet, while when routing is involved broadcast packets are forwarded

to other subnets only if the routers along the path are configured accordingly.

Broadcast packets were used to implement a simple discovery protocol that al-

lowed the agents of the network to be aware of each other’s existence with a very

low effort, regardless of the number of agents involved and the IP address that

they were assigned in a particular scenario.

4.2 Container specifications 39

The availability of the virtual subnet made it possible to simulate the proto-

cols defined for the communication among the agents of the MAS exactly as if the

code was running on different hosts of a physical LAN, which reduces the efforts

required to port the code in a real-world scenario. In the following section, a

description of the container types that were developed and the definition of their

communication protocols is detailed.

4.2 Container specifications

In this section the different container images that were implemented are described.

For the simulation purposes, four image types were considered, one related to the

software running on an agent and three related to auxiliary services. All these

images could be used also in real-world applications with little changes to the

code.

• Agent: the image containing the software that is meant to run on an agent

of the Multi-Agent System. The code implements the iteration logic needed

for reaching consensus among agents; moreover, the code handles the com-

munications with other agents (that is, other instances of the same container

image) and with the other container types reported in the following. For

simulation purposes, this image type is instanced a number of times equal

to the amount of agents that the simulation requires; for real-world appli-

cations, a single instance of the image must be deployed onto the hardware

associated with each of the agents involved in the MAS. For simulation

purposes, more than one image of this kind was developed in order to test

different behaviours of the agents (see Chapter 4), but they all represent

the code that runs on an agent of the network.

• Gateway: the image containing the software that acts as a single point

of contact between the agent network and the host network for real-time

operations. It takes care to receive from the user the commands to be issued

to agents and forward them to the involved agents; it also collects real-time

information about the state of the MAS and makes it available to the user.

This image and the following two are meant to be deployed only once in

the virtual subnet.

• Coordination dashboard: an image that exposes a simple web page that

the user can access through the browser. The web page exposes a user

40 Chapter 4. Implementation

interface and makes the connecting browser download the code that allows

it to interact directly with the gateway. Therefore, it plays no role in the

actual communication with the agent network: it only provides the user

with the means needed to interact with the gateway. In order to simplify

the architecture, the gateway and the coordination dashboard container

images could have been aggregated in a single container that implements

both features, but this was not done because it was not a quick task and it

did not introduce relevant benefits in terms of features.

• Influx: an image containing an instance of InfluxDB, an open source time-

series database that is available online. This container is used to store the

data produced by the agents so that it can be retrieved and analysed as

the result of the simulation. Nevertheless, an instance of InfluxDB could be

deployed also in a real scenario for the same purposes.

In order to start a simulation, the four types of container are launched by means

of the Docker Compose feature described in Section 4.1, specifying the number of

agent instances to be launched through the scale parameter of the docker compose up

command. Figure 4.1 shows a diagram of the resulting networks and their con-

nected members.

The rest of this section reports an overview of the designed communication

protocols and of the programming languages that were used for the implementa-

tion. The details about the structure of the code included in the container images

is reported in Appendix A.

4.2.1 Communication protocols

Any kind of information exchange involved in the project is based on TCP con-

nections and UDP datagrams, involving both the IP subnet that the agents are

connected to (either virtual or real) and the possible outer network that the user

is connected to. For the services built on existing applications such as the Apache

web server or the one used by InfluxDB, the default port numbers were used. For

the services that were defined ad-hoc for this project, a port number belonging

to the non-dynamic range and not already registered for well-known services had

to be defined: both for TCP and UDP based messages, the choice fell on number

218521.

1The port number was chosen as a tribute to Joe Strummer (born August 21st, 1952),
frontman of The Clash.

4.2 Container specifications 41

Figure 4.1: Network diagram of the simulation environment deployed through the Docker Compose

command, with a number of agents equal to three. Components represented as a cube are
the deployed contaners: the ones with the orange logo are the service containers, the ones
with the blue logo are the agent containers.

The messages that the containers need to exchange are grouped into three

categories, detailed in the three following paragraphs.

Discovery messages

The discovery messages are the ones through which each agent informs the whole

MAS of its existence. As anticipated before, for this kind of messages it was chosen

to leverage on the capability to send a broadcast packet over an IP network, which

allows to send a packet that is received by all the members of the network. For

this purpose it is not possible to use the TCP transport protocol, as its property

of being connection-oriented does not allow for one-to-many communications.

Therefore, discovery messages were implemented through a simple UDP datagram

whose payload reports the hostname of the sending agent: upon reception of

such a datagram, a member of the network is able to update a list of known

agents, reporting the map between agents’ hostname – used as unique identifiers

of the agents – and the IP address currently assigned to each of them, which

is determined from the UDP packet metadata, specifically from the sender IP

address. The IP address was not directly used as an identifier for the agents as

42 Chapter 4. Implementation

there might be situations in which an agent changes its IP address, for instance

after a temporary network disconnection, and using the IP address as an identifier

would not allow to correlate the same agent’s data before and after such an event.

Moreover, the known agents list is the basis upon which each agent knows the

number of agents available in the network, an information needed to define the

acceptable range of weights that ensures the stability of the consensus procedure,

as reported in Subsection 3.2.3.

The broadcast message is not only received by the agents: it is also received

by the gateway container, which maintains its known agents list as well, and uses

it to both report the list of available agents to the user browser upon need and

to know which IP addresses it needs to use in order to forward the commands

coming from the user browser.

The usage of UDP as the transport protocol has a main drawback: UDP

does not implement any reliability feature as retransmissions and error check,

which are natively implemented when using TCP. Anyway, discovery messages

are periodically resent and, if an agent never succeeds in informing another agent

of its existence, the reason is probably related to a serious network issue that

would nevertheless make the communication between the two agents impossible,

therefore it is acceptable that the two are not informed of each other’s existance.

Moreover, possible discovery techniques based on TCP such as attempting to

open TCP connections towards all the addresses of the subnet were considered

inefficient and not scalable to large networks, making the usage of UDP the only

choice.

Core messages

After the IP address of each agent is known to the network members thanks to

discovery messages, members have all the information needed to exchange one-to-

one messages. In this scenario, the increased reliability of TCP was considered a

relevant advantage as it requires much less effort for handling network issues when

developing the application code. Moreover, HTTP was chosen as the application

layer protocol and the HTTP payload was formatted in JSON: these two choices

combined represent common practices in the implementation of RESTful APIs,

which are a kind of web service used to exchange data structures over the Internet

that is nowadays widely used. Their wide usage was the driver of the design

choice, as it means that many runtime environments have built-in features to

handle this kind of data exchange very easily. Using such a method is arguably

4.2 Container specifications 43

not the best choice in terms of efficiency, as HTTP does not natively implement

compression of the payload and introduces overheads that might be avoided using

other protocols, but for the sake of this project these downsides were considered

acceptable.

A positive effect of using JSON for the payload format is that it allows to

easily define schemas, a property shared with other data structure formats such as

XML. A JSON schema represents a definition that specifies how a JSON message

must be built to be considered acceptable for that kind of message, including

constraints about mandatory data and the data type of the values reported in

the message. A JSON schema is itself structured in JSON format, and modern

programming languages have built-in tools to easily test a JSON message against

a JSON schema, allowing the detection of malformed messages without the need

of developing custom code for the purpose.

The group of core messages includes the ones that were designed specifically

for the purpose of the project. In the following, the list of messages belonging to

this group is reported:

• Total amount: the message used for notifying agents of the total amount to

be broken down into quotas. The only mandatory variable of this message

is the total amount value; optionally, also the time range in which that total

amount is valid can be reported. This allows a future implementation in

which consensus can be reached not only for real-time allocation of quotas,

but also for quotas valid for the future, resulting in the capability of agents

of reaching a consensus on the quotas to be taken care in advance. In the

simulation environment, the message is firstly sent by the user browser to

the gateway container when the user clicks on the associated Send button of

the User Interface; the gateway then takes care of forwarding the command

to all the agents available on the network.

• Iteration: the message that an agent sends to every other agent as soon

as it computes a new opinion about the quota to be assigned to itself. It

reports the opinion value, the iteration index (so that the receiving agent

is able to ensure it did not miss any message after the previously received

one, an event that would have impacts on the consensus procedure) and

the hostname identifying the agent that computed the opinion. The last

information was included to pave the way for an implementation on agent

networks where multi-hop message transmission is required as not all the

agents are capable to exchange information with each other: in that context,

44 Chapter 4. Implementation

this additional field allows an agent to transmit an opinion on behalf of

another agent.

The iteration message is only exchanged between the agents of the MAS.

Auxiliary messages

These are the messages that are not strictly related to the implementation of the

consensus algorithm, but are used for operation of the MAS and analysis of the

data produced by the agents. They include:

• Get agent list: The request that the coordination dashboard sends to the

gateway to retrieve the list of agents currently available on the network.

Implemented through the same set of protocols of the core messages – JSON

payload on an HTTP request served on TCP port 21852.

• Save data: The message through which agents store data onto InfluxDB.

The standard API defined by InfluxDB is used for the purpose.

• Exit: The message involved in the procedure used to gracefully stop the

software running on the agents. The message is primarily sent from the co-

ordination dashboard to the gateway as an HTTP request without payload

on a specific URL; upon reception of such a request, the gateway forwards

it to each of the agents. As will be shown in the following, since the im-

plementation is based on parallel processing, the message is then further

forwarded by the main process of the agent software to its auxiliary pro-

cesses: in order to stop the auxiliary process that handles UDP messages,

the message transport protocol is switched to UDP.

Figure 4.2 and 4.3 offer a graphical representation of all the messages involved

in the operation of the MAS.

4.2.2 Programming languages and development techniques

The implementation activity involved two different kinds of software development:

the less challenging one was related to the Coordination dashboard, the webpage

allowing the user browser to interact with the gateway, which was implemented

through HTML and Javascript. HTML was used to define the static part of the

webpage, including textboxes where the user can type numeric values for com-

mands and buttons to launch actions. The Javascript part is the one that makes

4.2 Container specifications 45

Gateway
Agent1 Agent2 Agent3

Gateway

Agent1 Agent2 Agent3

discovery

UDP/21852

discovery

UDP/21852

discovery

UDP/21852

Agent1

Agent1

Agent2

Agent2

Agent3

Agent3

InfluxDB

InfluxDB

Iteration

TCP/21852

Iteration

TCP/21852

WriteValue

TCP/8086

200 OK

200 OK

200 OK

User

User

Browser

Browser

Gateway

Gateway

Click on Get

GetAgentsList

TCP/21852

200 OK

(AgentsList)

Show list
on page

User

User

Browser

Browser

Gateway

Gateway

InfluxDB

InfluxDB

Agent1

Agent1

Agent2

Agent2

Agent3

Agent3

Click on Send

TotalAmount

TCP/21852

WriteValue

TCP/8086

200 OK

TotalAmount

TCP/21852

TotalAmount

TCP/21852

TotalAmount

TCP/21852

200 OK

200 OK

200 OK

200 OK

Figure 4.2: Unified Modeling Language (UML) sequence diagrams representing message exchanges
among the member of the networks for a network of three agents. The top-left diagram
represents the messages exchanged for agent discovery; the top-middle diagram the mes-
sages that Agent 1 sends to the other members in order to inform about its updated
opinion during the iterations of the consensus process; the top-right diagram represents
the sequence of messages that allow the user to retrieve the list of agents in the network;
the bottom part represents the message sequence associated with a Total Amount com-
mand sent by the user.

46 Chapter 4. Implementation

User
Browser Gateway

Agent1 Agent2 Agent3

User

Browser Gateway

Agent1 Agent2 Agent3

Click on Send

Exit

TCP/21852

Exit

UDP/21852

200 OK

Exit

TCP/21852

Exit

TCP/21852

Exit

TCP/21852

Figure 4.3: Unified Modeling Language (UML) sequence diagram representing the message exchanged
when the user wants to stop the operation of a network of three agents. The self-pointing
arrows on the agents part represent network packets needed to gracefully terminate the
TCP listener process of each agent.

the user browser interact with the gateway: when the user clicks on a button,

a Javascript function that sends the command to the gateway is launched. For

commands that return an output to the dashboard, such as the Get agent list one,

the same Javascript function also takes care of changing the displayed webpage

in order to show the command output to the user. As the Coordination dash-

board consists of a single webpage which is dynamically changed by code running

on the client side, the technique used is loosely related to AJAX (acronym for

Asynchronous Javascript and XML), a web development paradigm that consists

in designing background data exchanges between the browser and the server,

with the Javascript code running on the browser taking care of handling the data

exchange for the user and updating the page aspect according to the outcomes

of the data exchange. This paradigm emerged during the last two decades as a

more efficient alternative to the conventional interaction between a browser and a

4.2 Container specifications 47

webserver, in which the browser requests a webpage to the server, the server op-

tionally runs some code to customize the page for the specific request and returns

a static webpage to the browser, then any new operation that the user might

require must pass through a whole new page loading process. More details about

the Coordination dashboard development are reported in Appendix A.

The other kind of software development involves the code running on the

agents and the one of the gateway. For these purposes, any kind of general pur-

pose programming language that allowed containerization could be used. The

choice fell on PowerShell, an interpreted scripting language developed by Mi-

crosoft that is primarily meant to be used for automation of IT system con-

figurations, which can nevertheless be used to develop general purpose simple

applications. The choice was mostly related to the fact that PowerShell was the

language the author is most experienced with; moreover, it has the advantages

of being cross-platform (although it was originally built for Microsoft Windows

systems, since 2016 version 6 was released with runtime environments for Linux

and macOS operative systems) and already present in all Windows installations,

although the available PowerShell version changes with the version of Windows,

requiring some attention on compatibility aspects. An official Docker image of

PowerShell is publicly available. The main drawback of using an interpreted lan-

guage is on the performance side, as compiled languages perform better due to the

lower effort required to the hosting system at runtime, but for the implementa-

tion of the consensus algorithm the computational burden is not relevant, making

the usage of an interpreted language acceptable. Moreover, purely compiled lan-

guages are usually less interoperable than interpreted ones, as compilation is an

operation that is specific to the operative system and hardware where the code

needs to run.

Although the PowerShell language was already fairly known to the author,

some advanced techniques were learnt during this project. A useful source that

was used for acquiring the related knowledge was [7], whose chapters range from

some that allow to learn the basic concepts of the language to those describing the

most advanced features available. The source was especially used for understand-

ing how to handle parallel processing: in particular, the software running on the

agents had to be capable of listening to messages that might be received at any

time from other members of the network and react to these messages. The most

basic instructions that allow a PowerShell script to listen on a network are meant

to be used for synchronous operations, which means that the code execution halts

48 Chapter 4. Implementation

after the instruction related to the message reception, until a message is actually

received. Using such an approach would have meant that the program would have

not been capable of handling the reception of the UDP discovery messages and

the TCP core messages concurrently, nor that it could perform the computations

related to the consensus algorithm iteration while listening to any kind of mes-

sage. Instead, in order to implement an asynchronous agent message reception,

the author opted for the usage of Background Jobs described in Chapter 13 of [7].

The concept behind this implementation is that the main program running on the

agents performs the actions described in Algorithm 1, starting background jobs

and periodically checking if they produced some output. Another task where

Algorithm 1 Agent code structure

1: START discovery message sender job
2: START udp listener job
3: START tcp listener job
4: while exit signal = false do
5: READ udp listener job output
6: if UDP messages received then
7: UPDATE known agents list
8: end if
9: READ tcp listener job output
10: if TCP messages available then
11: STORE total amount, other agent opinions or exit signal
12: end if
13: if total amount available and consensus algorithm not initialized then
14: k ← 0
15: COMPUTE initial opinion
16: COMPUTE weight
17: SEND initial opinion
18: end if
19: if all opinions received for iteration k then
20: COMPUTE updated opinion
21: SEND updated opinion
22: k ← k + 1
23: end if
24: WAIT pause time
25: end while
26: STOP all jobs

parallel processing was used is the one related to spreading the agent opinion:

the related message is sent through HTTP requests directed to each of the other

agents, each of which can take some tenths or hundreds of milliseconds to be

4.2 Container specifications 49

completed (although the time is mostly spent because of network latency and

while waiting for the other agent’s response, without relevant computational bur-

den). Therefore, using the standard synchronous instruction for issuing HTTP

requests would have meant to serialize these requests, resulting in a time spent for

spreading an agent opinion proportional to the number of agents in the network,

a drawback particularly relevant in large MASs. Instead, HTTP requests were

issued in parallel to all the agents using PowerShell Runspaces (widely described

in Chapter 20 of [7]), which are implemented through separate threads of the

main PowerShell process, as in this case using Background Jobs would introduce

a heavier overhead because they run on separate processes – furthermore, in this

case the capability of Background Jobs of being able to produce an output for

the main process was not needed, as the only thing the additional thread has to

take care of is to send a single HTTP request.

4.2.3 Implementation on sparse MASs

In order to apply the consensus algorithm on Multi-Agent Systems represented

by sparse graphs, according to the considerations expressed in Section 3.2.7, three

main challenges must be faced:

• How to modify the network protocols described in Section 4.2.1 to simulate

a sparse MASs scenario;

• How to modify the discovery process so that every agent is made aware of

every other agents’ existence and of the path that must be used to exchange

messages;

• How to handle the opinion propagation across the MAS network, especially

for what concerns the situations in which a set of opinions can be aggregated

into their sum and the aggregated opinion can be propagated.

These three topics are addressed in the following paragraphs.

Simulation of a sparse MAS

The communication protocols described in Section 4.2.1 are consistent with a

scenario in which every member of the network can exchange direct communi-

cation with each of the other network members, that is, one in which the graph

representing the network is complete. More specifically, the discovery messages

that every agent sends to inform the other agents of its existence are sent in

50 Chapter 4. Implementation

broadcast on the whole IP subnet, which means that they are received by all

the network members, and when an agent needs to inform another agent of its

updated opinion, the former opens a direct TCP connection towards the latter.

Instead, in order to represent a sparse network of agents in simulation, a different

method must be followed. The chosen method was driven by the following design

requirements:

• Each simulation run should be based on a different random sparse graph, so

that the validity of the consensus algorithm in the multi-hop case is verified

on the larger number of topologies possible;

• The implemented method should allow to influence the sparsity of the

randomly-generated graph through some tuning parameter, in order to be

able to observe how the algorithm behaviour changes with the sparsity of

the graph;

• The topology of the graph should not be defined by a centralized system

external to the agent containers, as this would decrease the distributed

property of the environment and increase the differences between the simu-

lation and a possible real-world scenario. The topology of the graph should

be defined somehow by the agents themselves;

• As for the other design choices described in this Chapter, the implemented

method should require the least changes possible when it needs to be applied

to a real-world scenario.

The design requirements reported above led to the usage of multicast groups,

where the term multicast represents the fact that they involve a subset of net-

work members, as opposed to broadcast communications in which all the members

of a network are involved. Multicast groups are a feature of the IP protocol that

allows network members to join a multicast group defined by a multicast address :

when a network member joins a multicast group, from that moment onwards all

the messages sent to the associated multicast address are delivered to it, and to all

the other network members that joined the same multicast group. All the IPv4

addresses ranging from 224.0.0.0 to 239.255.255.255 are dedicated to multicast

groups, with subranges assigned for particular purposes2. For the implementa-

tion described in the following, the range from 224.0.224.0 to 224.0.229.255 was

2For more details, see https://www.iana.org/assignments/multicast-addresses/

multicast-addresses.xhtml, the page where the Internet Assigned Numbers Authority pub-
lishes information about multicast addresses and their subgroup purpose.

4.2 Container specifications 51

chosen, which is a portion of the multicast address space that is not assigned

to any specific purpose yet: for example, this means that when the simulation

requires the availability of n ≤ 255 multicast groups (they are considered enough

for simulations involving a reasonably large MAS), the ones with address from

224.0.224.1 to 224.0.224.n are used.

As reported in Section 4.2.1 with reference to broadcast messages, the TCP

protocol is intrinsically connection-oriented, therefore it does not allow one-to-

many communications such as the ones provided by multicast addresses: for this

reason, the multicast-based communications defined in this study always rely on

UDP as the transport protocol.

In the context of this study, the usage of multicast groups boils down to the

definition of whether two existing agents of the simulated MAS are neighbours.

A customizable number of multicast groups m is set before the simulation begins

and, when the code of an agent starts to run, it immediately chooses whether to

join each of the single multicast groups available (possibly joining more than one

group, or no group at all): then, all the other agents of the network that share

at least one multicast group with the considered agent represent neighbouring

agents. By analogy, multicast groups can be seen as radio channels that are

available for the agents to exchange information, with each agent listening and

sending data only on a specific subset of radio channels: if two agents share the

connection to at least one common radio channel, they are allowed to exchange

information directly; otherwise, they could still be able to communicate indirectly,

by leveraging on a third agent that shares the connection to a radio channel with

each of the two former agents separately. In the latter case, the third agent can

take care of forwarding the message to be exchanged between the two former

agents. Of course, the same concept applies to paths that involve more than one

forwarding agent. Figure 4.4 shows an example of graph corresponding to an

association between each agent and the multicast group it joined.

As one requirement of the simulation is that the generated sparse graph has a

random topology, the agent code developed for the simulation chooses at random

which are the multicast groups to join. More specifically, the code considers the

m ≥ 1 available multicast groups separately and, for each of them, extracts an

outcome from a Bernoulli random variable with parameter 0 ≤ p ≤ 1, p being

constant for all the agents; if the outcome is 1, the agent joins that multicast

group, if it is 0 it does not. Referring to the requirement of allowing to influ-

ence the sparsity of graphs through some tuning parameters, with this approach

52 Chapter 4. Implementation

1

Joined multicast groups:

224.0.224.1

224.0.224.2

224.0.224.3
224.0.224.5

4

Joined multicast groups:
224.0.224.1

224.0.224.4

224.0.224.5

2

5

3

Joined multicast groups:
224.0.224.2

224.0.224.3

Joined multicast groups:

224.0.224.4
224.0.224.5

224.0.224.6

Joined multicast groups:

224.0.224.4

224.0.224.6

Figure 4.4: Example of sparse graph representing the association between each agent and the multicast
group it joined.

both the defined amount of multicast groups m and the Bernoulli coefficient p

have an influence: as the involved extractions are independent and identically

distributed, considering a single multicast group, the probability associated with

the event that two agents can communicate through that multicast group is p2,

therefore the probability associated with the event that they cannot communicate

through that specific multicast group is 1 − p2; the probability that two agents

cannot communicate through any of the available multicast groups is therefore

(1 − p2)m, which leads to the final definition of the probability that two agents

are neighbours, equal to 1 − (1 − p2)m. As expected, the formula shows that an

increase in either the Bernoulli coefficient p or the number of multicast group m

brings to a higher probability of two agents being neighbours. Of course, a higher

probability for each pair of agents of the graph to be neighbours means a lower

extent of sparsity for the resulting graph. Figure 4.5 represents the probability

that two agents are neighbours as a function of p and m. Another approach

for simulating a random topology could have been to make every agent choose

whether to connect or not to any other specific agent, without relying on mul-

ticast groups but again using the outcome of a Bernoulli random variable. This

4.2 Container specifications 53

Figure 4.5: The probability of the events that two agents are neighbours as a function of the Bernoulli
parameter p and the number of multicast groups m, for 1 ≤ m ≤ 10.

would have required a preliminary step in which a full discovery is performed,

during which every agent becomes aware of the existence of every other agent of

the MAS, then the definition of the edges of the graph would have taken place

through the mentioned process. Besides the addition of the preliminary discovery

phase, the solution was discarded because it requires a number of extractions

that grows with the square of the agents of the MAS, as opposed to a number

of extractions proportional to the product between the amount of agents and the

amount of multicast groups (which in large MASs is meant to be lower than the

number of agents); moreover, the usage of multicast groups is a technique that

could be adopted also in real-world scenarios, where the list of multicast groups

that an agent needs to join could be defined through a meaningful logic instead

of a random one, allowing to quickly define the desired topology of the MAS.

It is worth to stress that, by using multicast groups, the partition of the

agents is only a logical grouping; technically, all the agents are still connected

to the same subnet and could exchange messages directly. In fact, after the

discovery phase that defines the graph topology and leverages on multicast groups,

neighbouring agents exchange messages by means of direct TCP connections;

from the network perspective, they could do the same also with non-neighbouring

agents, but the discovery process described in the following paragraph provides

them with information useful to interact directly with the neighbouring agents

only.

54 Chapter 4. Implementation

Discovery process for sparse graphs

While the discovery process reported in Section 4.2.1 consists of a simple message

containing the hostname of the sender that is spread to all the other agents

by means of a broadcast packet, additional information needs to be exchanged

between the agents when the graph representing the MAS is not complete. This

is due to the fact that each agent needs to become aware not only of the existence

of its neighbours, but also of the existence of all the other agents, in order to make

sure that the choice of the weight it performs is compatible with the amount of

agents composing the MAS, as defined in Section 3.2.5. Moreover, as there could

be more than one path connecting two agents of the MAS (and there usually is),

a way allowing an agent to become aware of the overall amount of agents in the

MAS without maintaining a list of identifiers for each of them was not found.

Therefore, the goal of the discovery process for the sparse MAS case was defined

as making each agent maintain an agent map, which consists of a list of tuples,

each one related to a remote agent of the MAS. Using the term local agent to

define the agent holding the specific agent map and remote agent to define the

agent described by one specific tuple, each of the tuples contains the following

fields:

• The hostname of the remote agent

• The hostname of the next-hop agent (neighbour of the local agent) along

the path between the local and the remote agent. If the remote agent is a

neighbour of the local agent, this field contains the hostname of the remote

agent as well

• The IP address of the next-hop agent, needed to establish the network

connections. If the remote agent is a neighbour of the local agent, this

fields contains the IP address of the remote agent

• The distance between the local agent and the remote agent in terms of hops.

If the remote agent is a neighbour of the local agent, this field is set to one.

This field is used in case more than one path is available between the local

and the remote agent, to select the next-hop agent that ensures the shortest

path to the remote agent.

Because of the way the discovery process work, the agent map includes also a

special tuple representing the local agent, with next-hop fields set to the place-

holder null value and the distance set to zero. The discovery process that makes

4.2 Container specifications 55

every agent obtain the mentioned fields for all the agents of the MASs consists of

the following steps:

1. At the beginning of the process, every agent stores in its agent map only

the special tuple about itself.

2. Every agent periodically shares its agent map with all of its neighbours,

that is, it sends the information to the multicast addresses associated with

the multicast groups it joined.

3. Upon reception of an agent map from a neighbour, an agent increases all

the distance values reported in the received tuples by one in order to ac-

count for the additional step between the neighbour and the local agent.

Then, the local agent checks whether each remote agent hostname is already

known: if a remote agent is not known, the associated tuple is inserted in

the local agent map, with the next-hop fields changed to the ones related

to the neighbour that sent the list; if a remote agent is already known, the

increased distance reported in the considered tuple is compared with the

one stored in the tuple already held by the local agent. If the received one is

lower, it means that the path associated with the received tuple is shorter

and the local agent updates the next-hop and distance fields in its map

accordingly.

4. After a local agent updates its agent map, it immediately starts to send the

updated map to all of its neighbours, which allows to propagate the infor-

mation about the network topology across the whole connected component

of the graph that represents the MAS.

Figure 4.6 shows the sequence of events that happen during a discovery process

in the context of a simple sparse MAS. The results of the discovery process allow

the agents to exchange messages in a way that shares some common ground

with the concepts behind routing in the IP protocol. By analogy, the agent map

held by a local agent would equate to a host routing table. The neighbours

of the local agent are similar to hosts on the same subnet that do not require

routing to exchange information, and when a remote agent to be contacted is not

a neighbour of the local agent, the local agent looks up which is the next hop

address, similarly to the gateway associated with a certain destination subnet

that is reported in the routing table of hosts. Also the agent distance has an

equivalent field in the routing table, which is the metric value, although with the

56 Chapter 4. Implementation

3

4

1 2

3

4

1 2

3

4

1 2

Agent N.H. Dist.

3 null 0

Agent N.H. Dist.

2 null 0

Agent N.H. Dist.

1 null 0

Agent N.H. Dist.

3 null 0

1 1 1

2 2 1

4 4 1

Agent N.H. Dist.

3 null 0

1 1 1

2 2 1

4 4 1

Agent N.H. Dist.

4 null 0

3 3 1

Agent N.H. Dist.

4 null 0

Agent N.H. Dist.

1 null 0

3 3 1

Agent N.H. Dist.

2 null 0

3 3 1

Agent N.H. Dist.

1 null 0

3 3 1

2 3 2

4 3 2

Agent N.H. Dist.

2 null 0

3 3 1

1 3 2

4 3 2

Agent N.H. Dist.

4 null 0

3 3 1

1 3 2

2 3 2

Figure 4.6: Discovery procedure for sparse MASs, where the tables represent the agents maps, N.H.

stands for Next Hop and Dist. for distance. Initially, every agent puts in its agents map

only the special tuple about itself (left pane); then, the special tuples of every agents are
shared with neighbours, that increase the received distance value by one and set the next-
hop reference to the agent that sent the information, resulting in the situation depicted in
the central pane; eventually, the updated agents maps are shared again through the same
process, with agents 1, 2 and 4 notified of the existence of their non-neighbouring agents
too (right pane).

current implementation in the MAS case there is only one tuple in the agent map

for each remote agent, associated with the information about the shortest path to

the remote host and updated when the topology changes. Nevertheless, inserting

details about multiple paths towards the same remote agent in the agent map of

an agent could increase the fault tolerance of the message exchange as, when the

shortest path fails to deliver the message to the remote host, an alternative path

to be used would be already known to the sender.

Opinion propagation

The implementation of the consensus algorithm on a MAS represented by a sparse

graph requires the introduction of a protocol for managing the propagation of

opinions to allow non-neighbouring agents to exchange information. As in a

sparse graph there is usually more than one path connecting two non-neighbouring

agents, the protocol is needed to select which are the intermediate agents that

are required to forward the data.

4.2 Container specifications 57

The protocol that was designed for the purpose is rooted in the concept of

subscriptions. A subscription is a request that one agent, the subscriber, issues

to a neighbouring agent, the provider : with such a request, the subscriber asks

the provider to be forwarded the opinions of some non-neighbouring agent, the

latter named the target of the subscription. Because of the previously mentioned

discovery process that was carried out beforehand, the subscriber is aware that

there is a path to the target that traverses the provider; moreover, if many neigh-

bouring agents could serve as provider for the same target, the subscriber will

choose the neighbour that ensures the shortest path. Of course, the provider

could be a non-neighbour of the target agent as well, in which case it will require

a subscription itself to its next-hop agent towards the target agent (if it does not

already have a suitable subscription active).

In the code developed for the implementation of the consensus algorithm

in sparse MASs, subscriptions are uniquely identified by the tuple (subscriptor,

provider, target). In order to implement all the opinion exchanges in the same

way, when an agent needs to receive from a neighbour the latter’s opinion only,

it nevertheless activates a subscription: in this case the provider and the target

of the subscription will be equal.

The subscription process is one in which the local agent that needs to receive

an opinion of a remote agent plays an active role, requiring other agents to act as

forwarders. Other approaches could consist in processes where the local agents

play a passive role, receiving the opinions needed because the forwarders detected

that they need to. The choice fell on using the former approach as the author

believes that latter ones would imply one of the two following conditions:

• The same opinion, with same source and destination agent, is shared in

parallel through all the possible paths connecting the source and the desti-

nation, because every intermediate agent that detects that the destination

agent could require that specific opinion chooses to forward it, regardless

of whether that intermediate agent belongs to the shortest path between

the two agents. Using this approach would mean that the network traffic is

increased significantly, without introducing any relevant benefit.

• Every agent is aware of the whole topology of the MAS, including the edges

that do not involve itself, as opposed to be only aware of which are its

neighbours and of the next-hop and distance related to the shortest path

that connects it to non-neighbouring agents. This would make it possible

for an agent to detect if it lies along the shortest path between two agents

58 Chapter 4. Implementation

– implying that it actually needs to forward the opinions between the two

– or if there is a shorter path that connects the two agents, which implies

that it should not forward the opinions itself. Anyway, the requirement for

an agent to know the whole topology of the MAS would make the discovery

process more complex and agents would need to handle a larger amount

of data related to the topology, which makes the active-subscriber method

more appealing.

As mentioned in Section 3.2.7, one interesting feature of the Self-Focused method

is that it allows agents to update their opinion by knowing only the sum of the

other agents opinion, without requiring to know separately the single values. In

the context of subscriptions, this means that the subscription target can consist

of a set of remote agents instead of a single one, requiring the provider to sum the

opinions of the agents specified as the target (or to subscribe to another agent

for obtaining directly the sum) and send only the sum of the opinions back to

the subscriber. With these premises, an additional type of core message must be

introduced with respect to the ones mentioned in Section 4.2.1, which is called

Subscription request, is based on HTTP over TCP port 21852 as for the other

core messages and contains the following parameters formatted in JSON:

• Subscriptor ID: the hostname of the subscriptor agent;

• Remote agents ID list: the list of agents that the subscription is about,

whose opinions can be aggregated into their sum;

• Activate: a boolean value that specifies whether the involved subscription

must be activated or cancelled, as the same type of message can also be

used for unsubscriptions when required.

The aggregation of opinions into their sum poses an additional challenge: with

the subscription mechanism, agents of the MAS often serve as both subscriptors

that retrieve a remote agent opinion through a neighbouring provider and as

providers that need to forward opinions to other agents. When an opinion of

a remote agent is both received in relation to a subscription to a neighbouring

agent and one of those that must be forwarded to another agent, the aggregation

with which the opinions are received from a provider could be not suitable for

forwarding an opinion to another agent. For instance, if agent n1 subscribes to

agent n2 for the aggregated opinion of n2, n3 and n4, when agent n5 subscribes to

agent n1 in order to obtain the opinion of n2 only (because it could be receiving

4.2 Container specifications 59

the opinions of n3 and n4 through another path of the graph), agent n1 would not

be able to satisfy n5’s request because it is not aware of the specific value of the

opinion of n2. The algorithm that was designed to handle these kind of scenarios

is shown in the following paragraph.

Management of subscriptions

From the standpoint of a specific agent, the subscriptions in which it is involved

can be trivially divided into two classes:

• Input subscriptions: those in which the agent is involved as a provider

• Output subscriptions: those in which the agent is involved as a subscriber

When the discovery process is complete, an agent immediately determines the

output subscriptions needed for executing its update rule: it does so by grouping

the elements of the agent map by their next-hop hostname, an action that inserts

in the same group all the agents whose opinion can be received by a specific

neighbouring provider (including the opinion of the provider itself – this means

that even neighbours that are not used as forwarders belong to a one-element

group). Then, the agent activates a subscription to each provider, each of which

has the associated group of remote agents as target: when a provider acts as

a forwarder, sending back to the subscriber not only its own opinion, all the

opinions involved are summed as the subscription is just one for all the targets.

Besides the management of the output subscriptions, at any time the agent

could need to activate input subscriptions for other agents. When the input

subscription request is received, the agent needs to evaluate if with the current

output subscriptions it is capable of satisfying the incoming subscription request:

it could happen that, by summing its own opinion and the information retrieved

through some output subscriptions, the agent is directly capable of providing the

requested data to the subscriber. On the other hand, as previously anticipated, it

could happen that its current output subscriptions aggregate opinions in such a

way that does not allow to identify an opinion subset required by the subscriber.

In these cases, the agent detects that it needs to change its output subscrip-

tions to satisfy the new input subscription: it changes them by selecting which

agent opinions must be taken out of the aggregation, then it cancels the previous

output subscriptions and request others with a lower level of aggregation. An

example of such an operation is shown in Figure 4.7. It is worth noting that the

designed algorithm takes care of partitioning an existing output subscription in

60 Chapter 4. Implementation

Agent N.H. Dist.

1 null 0

2 2 1

3 3 1

5 5 1

4 3 2

Agent N.H. Dist.

2 null 0

1 1 1

4 4 1

3 1 2

5 1 2

Agent N.H. Dist.

3 null 0

1 1 1

4 4 1

2 1 2

5 1 2

Agent N.H. Dist.

4 null 0

2 2 1

3 3 1

1 3 2

5 3 3

Agent N.H. Dist.

5 null 0

1 1 1

2 1 2

3 1 2

4 1 3

1

4

2

5

3

<5>
<3+4>

<4>

<4>

1

4

2

5

3

<5>
<3>, <4>

<4>

<4>

<1+3+5>

Figure 4.7: An example of input subscription that requires to change the aggregation level of the active
output subscriptions. Subscriptions are represented by arrows, with the tail poining to
the subscriber, the head pointing to the provider and the target reported as text aside the
arrow. In the scenario reported at the top, agent 1 is subscribing to agent 3 for the sum
of the opinions of agents 3 and 4; when agent 2 requests a subscription to agent 1 for the
sum of the opinions of agents 1, 3 and 5, agent 1 changes its output subscription to obtain
the opinions of agents 3 and 4 separately, in order to be able to satisfy the new incoming
subscription.

order to satisfy a new input subscription, but it does not guarantee the opposite:

for instance, if the new input subscription gets cancelled at a later stage, the

partitioned output subscription does not return to be aggregated. An algorithm

for the aggregation of separate output subscriptions was considered beyond the

4.3 Simulation results 61

scopes of this project because, in practical terms, it is not trivial to verify that

the aggregation of some output subscriptions can be done while keeping all the

involved input subscription satisfied. Nevertheless, this aspect should be treated

before the implementation in a real-world scenario so that the exchange of mes-

sages is always the most efficient possible.

All the techniques described in this Section were then applied in the Docker

environment, with the details and the results shown in the following Section and

in Appendix A.

4.3 Simulation results

This section shows the results that were produced through the simulations de-

scribed in the previous section. The results are taken from two sources: the

logs printed in the command line interface where the container environment is

launched, where the actions performed by the code running inside the containers

are traced, and the data stored in the InfluxDB historian, reporting the evolution

of the agent opinions in a plot. A separate analysis is reported for the simulation

related to the Unpredictable Agent code, which is an implementation of a MAS

where all the agents are capable of exchanging direct messages with each other,

and for the simulation related to the Sparse Agent code, the one that represents an

environment where agents need to exchange messages through multi-hop paths.

Simulation of the Unpredictable Agent

The simulation of the Unpredictable Agent behaviour worked completely as ex-

pected. After a debug activity that solved some errors in the developed code, no

issue was detected concerning the consensus algorithm or the Docker environment,

and it could be verified from the sources mentioned above that the containers were

operating properly. As an example of simulation, Figure 4.8 shows a screenshot of

the command-line interface used for the simulation, where the top row shows the

command used for launching an environment with five agents, then the following

ten rows account for the operations that Docker does for launching the environ-

ment, after which the messages logged by the single containers are printed, with

different colours grouping messages from different containers, a feature that can

speed up the analysis of the printed messages. The rows at the center of the

screen are related to the discovery process, where each agent becomes aware of

the existence of the other agents in the network, while the rows at the bottom

62 Chapter 4. Implementation

started appearing when the value of 100 for the total amount was set using the

coordination dashboard and account for the iterations of the consensus algorithm.

Figure 4.9 shows the output for the same simulation taken from the other source,

Figure 4.8: A screenshot taken from the command line interface where the set of containers was
launched.

which is the InfluxDB webpage, and shows the evolutions of the opinions.

Figure 4.9: A screenshot taken from the InfluxDB dashboard for tracing the results.

Many other similar simulations were run and, when the simulation involved

up to 20 agents, no issues were reported. As each of the agent container needs

around 175 MB of RAM (a figure that can be retrieved from the Docker Desk-

top dashboard), when the amount of agents grows further, the containerization

environment can misbehave due to an overloading of the host system: as a refer-

ence, the author experienced such overloading issues while attempting to run an

environment with 30 agents. Nevertheless, in cases where a MAS consisting of a

larger number of agents must be simulated, an option could be to use a datacenter

with higher resources or a cloud service that allows to run container-based appli-

4.3 Simulation results 63

cations: all the industry-leading cloud services currently allow to deploy Docker

container environments onto the user’s tenant.

Simulation of the Sparse Agent

For what concerns the Sparse Agent simulation, which is the one related to a

MAS represented by a non-complete graph, the generation of the random graph

succeeded and the mechanism developed for subscriptions was proven to work

properly too. The simulations considered only the Synchronous one-hop propa-

gation defined in Section 3.2.7, as it was considered the most relevant because it

is the only one in which the dynamics of the overall system are different: never-

theless, in the multiple tests that were carried out, the opinions always converged

to a set of quotas that summed up to the total amount requested, although the

theoretical definition of the modified system is yet to be addressed.

One thing that was noted is that, comparing two simulations, one related to

a complete graph and one related to a non-complete graph using the Synchronous

one-hop propagation, using the same number of agents and the same initial opinion

and weight chosen by each of the agents, the quotas eventually assigned to each

agent are different between the two simulations. By denoting the distance between

two agents in the graph as di j, and by defining the maximum distance of a agent

i as

di,MAX = max
j

di, j

it was found that agents that have higher value for di,MAX – which are the most

peripheral in the graph – are favoured in obtaining a final quota closer to the ini-

tial opinion they chose. This is explained by the fact that, with the implemented

algorithm, agents begin to trade-off their initial opinion with the opinions ex-

pressed by other agents only after they received the initial opinions of all the

other agents, and with the Synchronous one-hop propagation this happens after

di,MAX iterations; before that moment, they simply repeat their initial opinion in

subsequent iterations. Agents with a lower value for di,MAX begin to drift away

from their preferred opinion earlier in the iterations, therefore the quota they are

eventually assigned is farther from their initial opinion. As a simple example,

consider the same scenario of Figure 3.1, with three agents in a line connected in

pairs: with respect to the associated completed graph (that has an additional edge

between agent 1 and agent 3), agent 2 is penalised in the consensus algorithm, as

it begins to compute the weighted average with the other agents’ opinion at the

first iteration, while agents 1 and 3 wait an additional iteration before doing so.

64 Chapter 4. Implementation

Figure 4.10 show the comparison between the two cases.

0 5 10

0

50

100

150

0 5 10

0

50

100

150

Figure 4.10: Comparison between the evolution of opinions in a complete graph (left) and in a non-
complete graph using Synchronous one-hop propagation (right), referring to the graph
of Figure 3.1, with a Total amount of 100 and same initial opinion and weight per agent.
For the non-complete graph case, it can be noted that opinions of agents 1 and 3 do not
change at the first iteration, and these agents obtain a final quota closer to their initial
opinions compared to the same quantity in the complete graph case.

In the rest of this section, two examples of randomly-generated Multi-Agent

System upon which the Synchronous one-hop propagation was run are described.

The parameters used in the simulations are reported in the following:

• Number of agents: 5

• Number of multicast groups available: 4

• Bernoulli parameter: 0.4

• Total amount: 100

The random graph generation resulted in the graphs shown in Fig. 4.11, while

the evolution of the opinions in the two simulations is reported in Fig. 4.12.

Figure 4.13 reports the log related to the launch of the container environment

during simulation A, where the information about the discovery process and the

subscriptions is reported. The updates about the agents map are in JSON format,

while the subscriptions that are activated are mentioned in the form subscriptor-

>provider->target. In the last five rows of the log, two subscriptions to aggregated

targets are shown, which are then satisfied when the iterations of the consensus

algorithm start as shown in Figure 4.14.

4.3 Simulation results 65

0ce2d9a7ce8b

MG: 1,4

055019123c14

MG: 2,3

d2eb09c47567

MG: 2,4

becd85f9c8da

MG: 2,3

52e2ce17f349

MG: 1,4

0ce2d9a7ce8b

MG: 3

055019123c14

MG: 4

d2eb09c47567

MG: 1,2,3

becd85f9c8da

MG: 2,4

52e2ce17f349

MG: 3

Figure 4.11: Sparse graphs generated: on the left, the graph of simulation A; on the right, the one of
simulation B. The text within the circle representing each of the nodes reports the agent
hostname and the multicast groups that the node joined. Agents that share at least one
common multicast group are neighbours.

Figure 4.12: A screenshot of the opinion evolutions in simulation A (top) and B (bottom).

66 Chapter 4. Implementation

Figure 4.13: A screenshot of the log produced by the environment at its start during simulation A.

Figure 4.14: A screenshot of the log produced by the agents when the iterations of the consensus
algorithm for simulation A begins, showing the propagation of two subscriptions related
to the aggregated opinions (the ones in which the target consists of two agent hostnames
concatenated with a plus sign).

4.4 Activities to implement the code in a real-world scenario 67

4.4 Activities to implement the code in a

real-world scenario

The following list includes the activities that the author believes are needed before

an implementation on a specific real-world scenario can be done:

• For a specific use case, the definition of the optimization logic related to

the initial opinions, the weights, and hard limits is required. As the study

is focused on the design of a general framework for the allocation of quotas,

this part was not addressed in the simulations: the choice of initial opinions

and weights is done randomly and the hard limits are not even implemented.

However, given a certain process to be controlled, it should not be hard to

define the optimal quota that an agent aims to be assigned (the initial

opinion), how much it is prone to be assigned a different quota than its

chosen one (resulting in the weight choice) and which are the boundaries

on the quota that it can take care of (the hard limits).

• As the initial opinion choice is meant to be based on some local variables

under the single agent’s domain of control, and the quota that an agent

is assigned at the end of the consensus procedure must be actuated in the

controlled plant, in a real-world scenario the software needs to exchange I/O

signals with sensors and actuators. This is a design phase that is specific

to both the hardware where the software runs and the specific application

which the algorithm is applied to, therefore it was not considered during

simulations. Moreover, an agreement with the external party that sends the

total amount value must be reached about the protocol to be used for this

purpose, not necessarily being the JSON payload over an HTTP connection

as it was done during the simulations.

• More generally, the protocols used in the simulation environment could

not represent the best choice, especially when considering industrial envi-

ronments. The replacement of HTTP with some industrial protocols such

as Modbus TCP or IEC 60870-5-104 could represent some more efficient

and robust alternatives to exchange the same payload, while keeping the

physical media and the structure of the communication almost unchanged.

They were not used in the simulation because this would have increased the

complexity of the code without relevant benefits.

68 Chapter 4. Implementation

• As it was developed for the simulation, the code is completely lacking of

cybersecurity measures that must be adopted in a real-world scenario. In

fact, for a malicious agent that aims to alter the result of the consensus

process to its convenience, the only thing that is needed is the physical

access to the network that the agents are connected to. This issue can

be mitigated by acting at the data link or network level without changing

anything in the agent code, implementing techniques such as VLANs or

IPsec tunnels with a configuration that ensures that only the authorized

agents are allowed to join the network. Nevertheless, a far better approach

would be to implement cybersecurity measures at the application level: first

of all switching from HTTP to HTTPS as the application protocol used

for exchanging data between the members of the network (provided that

industrial protocols are not used in place of HTTP), using TLS certificates

signed by an authority trusted by all the agents, so that confidentiality and

server authentication are implemented – where the server in this case is the

agent receiving a message; for client authentication – the authentication

of the agent sending the message – one could either opt for client TLS

certificates implementing the same approach of the server side, or some

type of authentication through credentials or tokens could be implemented.

Moreover, if InfluxDB is used for as the historian for the agent’s data, it

must be protected too by using HTTPS and a more secure authentication

method, both for user access and the access of agents that connects to

InfluxDB for recording their data.

Chapter 5

Conclusions and further

developments

The author believes that the study carried out for this thesis yielded multiple re-

sults. The main result is arguably the theoretical definition of the two distributed

solutions to the problem of allocating quotas, the Exact-Breakdown and the Self-

Focused methods, where the first was found to be very similar to one already

discovered in a different context – finding consensus on the opinions expressed by

many scientists on a stochastic distribution, while for the second there is no simi-

lar study known to the author. In fact, the problem of allocating quotas through

a distributed procedure itself was found to have few references in the literature,

making the study relevant as fields where such a solution could be applied are

many. As reported in the introduction, one of the fields of interest for the ap-

plication of these solutions is the energy sector, that in the following decades

will need to transition further from a centric paradigm where the most relevant

share of power generation happens on few, large plants, to a paradigm where the

power generators are many and smaller. And if the plant to be controlled has a

distributed structure, a distributed control system attracts more interest because

it fosters redundancy and fault tolerance.

Besides the energy sector, the results represent a general purpose approach

that can be applied to a wide range of fields. The stability conditions of both

theoretical methods were addressed, making them applicable to a real network of

agents without requiring further studies on the theory, at least for what concerns

the case in which all agents are allowed to exchange messages directly with each

other. The Self-Focused method seems to be promising also for applications on

Multi-Agent Systems that are represented by a non-complete graph, where some

69

70 Chapter 5. Conclusions and further developments

of the agents must serve as a gateway for exchanging information between two

other agents, which was empirically tested but further studies are required to

apply the method in these scenarios. However, if the assumption that opinions

propagation can happen within the time window between two consecutive itera-

tions of the consensus algorithm hold, the Self-Focused method can be directly

applied in sparse scenarios as well, as the dynamics of the consensus algorithm

would be exactly the same of those that characterise the scenario where all the

agents can communicate with each other, but this is an assumption that would

hardly hold when the number of agents in the MAS and the diameter of the graph

representing the MAS grow.

Another relevant result, which came as a sort of side-effect of the study, was

the usage of Docker containers for the simulation of a generic Multi-Agent System,

which probably represents an unusual reason to use containers but was proven to

be effective: it allowed to define and test the developed code in an environment

hosted on a single device, while keeping it close to a real-world environment, where

multiple instance of an agent type run on different devices connected to the same

network. Indeed, all the communication protocols that define the data exchange

among agents and between an agent and the external network were implemented

and tested, making them ready for the deployment on a real-world environment.

The author believes that this way to simulate the operation and the interaction of

the software running on the agent hardware could be reused in many other MAS-

related projects, as it speeds up the developing and testing activities. In order to

encourage the usage of such a simulation platform, as mentioned in the related

Chapter 4, the code base developed is published on a free access Git repository,

which includes seventeen snippets that represent simple containerized programs

that perform basic tasks. They were developed as the first steps that the author

himself did while learning how to develop in the Docker environment, and they

are included in the repository to allow for a quick learn of the basics behind the

topic, without the need to use as a reference the more complex code developed for

the actual simulation. Although almost all of the code published in the repository

is written in PowerShell language, the author believes that these snippets could

be quickly ported in any other containerizable language that a developer could

be familiar with.

This study leaves many challenges open for further developments, the most

important being the theoretical study of the consensus algorithm when using Syn-

chronous one-hop propagation in sparse Multi-Agent Systems (see Section 3.2.7):

71

if the validity of the method is confirmed, this distributed approach for allocating

quotas would be useful, especially in large and sparse networks, where the usage of

the Multi-hop propagation could slow down the consensus algorithm excessively.

Another aspect that was not addressed about the sparse MAS scenario is how

to reaggregate the output subscriptions on the basis of the changed input sub-

scription (see Section 4.2.3), a study that should not be really complicated and

would optimize further the data exchange on a sparse MAS. On the other hand,

for what concerns the application to MASs represented by complete graphs, a

yet to be addressed topic is the evaluation of the convergence time of the Exact-

Breakdown method and the related constraints to be imposed when selecting an

agent’s weight.

It should be noted that all the methods defined in the theoretical part assume

that, before the consensus algorithm iterations take place, each agent chooses its

initial condition and weight (consisting of an array in the Exact-Breakdown case

and of a scalar value in the Self-Focused case). Although in the project for

the course Networked Control for Multi-Agent systems, where the basis of this

thesis are rooted, the problem of defining how to choose the initial condition

and weight was addressed according to the specific application’s characteristics,

throughout this thesis such a problem is never addressed because it is specific to

the application that the method must be applied to, while the thesis is meant to

provide a general framework. During the simulations such a choice was made at

random, but of course whenever this method needs to be applied to a real-world

scenario the choice logic must be defined. Anyway, for each application it should

be easy to define a logic that expresses an agent’s preference on the quota to

be assigned and its availability to drift away from its preference, expressed in

the form of a lower or higher weight. Such a choice is meant to be based on

an optimization process computed locally, by considering the state of the plant

governed by the single agent.

The last theoretical open point is related to how the agents are rewarded

for their flexibility: in applications where the agents of a MAS are controlled

by different non-cooperating entities, each of the agents could be tempted to

raise its weight (or self-weight in the Exact-Breakdown case), aiming to yield a

quota as close as possible to its optimized candidate quota expressed through the

initial conditions. If many agents raise their weight, the consensus process will

slow down; moreover, as the impact of weights is relative, a hostile agent could

try to raise it more and more until its weight is significantly higher than the

72 Chapter 5. Conclusions and further developments

other agents’, possibly leading to a chain reaction that could bring many weights

very close to one, making the consensus-seeking process unacceptably slow. In

applications where the specific activity that the agents execute together results

in an economic reward that must be divided among the agent (power generation

could again be one example), a solution could be to implement a business model

that rewards each agent basing upon the combination of two factors: the quota

they where assigned through the consensus process – which accounts for the actual

production they contributed to – and the weight or self-weight that they chose.

The latter factor should be considered in a way such that the revenue of agents

that specified a higher weight for their initial opinion is reduced. Using this

method, the flexibility offered by agents that specify a lower weight is rewarded,

and it is expected that agents themselves are led to identify a trade-off between the

willing to obtain an optimal quota and the revenue they plan to gain. Especially

in the Self-Focused case, agents are able to determine which weight was chosen by

each of the other agents by inverting their update rule, therefore the application

of the rewarding scheme could be distributed as well, without the need for an

external central authority that computes and assigns the revenue quotas. The

definition of such a business model was not addressed in this study, and the

author believes it represents an interesting evolution.

Appendix A

Container code descriptions

In this section, further details about the developed software for each of the con-

tainers are reported, including flowcharts that describe the high-level structure of

the code and details about configurations.

Gateway

The gateway container implements a single point of contact between the user and

all the agents. It takes care of receiving requests and commands from the user

– who triggers them thanks to the Javascript code included in the Coordination

dashboard described in the following Section, forward commands to agents upon

need and return replies to the user. With reference to message types listed in

Section 4.2.1, it handles:

• The reception of broadcast discovery messages from agents, in order to

update a local known agents table that is needed for handling the message

types reported in the following.

• The reception of the Total amount command from the user, which reports

the overall amount to be split into quotas, forwarding it to all the known

agents. The gateway also takes care of storing the updated Total amount

value in the InfluxDB database to allow for analyses.

• The reception of the Get Agents list command from the user, replying with

the list of currently discovered agents, which is then shown in the Coordi-

nation dashboard.

• The reception of the Exit command from the user, that is forwarded from

the gateway to all the agents before triggering its own exit process.

73

74 Chapter A. Container code descriptions

An additional feature that was developed in the gateway code in order to allow

the user interaction was the configuration of the CORS-related HTTP headers.

CORS, an acronym for Cross Origin Resource Sharing, is a technique that allows

an external HTTP resource to be accessed using some code that was retrieved

from a page hosted on a different domain, an action that would normally be

blocked by the browsers due to security reasons. In the case of this project, the

resource is the gateway API and the page is the one provided by the Coordi-

nation dashboard. In order to allow the action, the external HTTP resource

must explicitly specify that it consents being accessed from other webpages,

and it does so providing the client with the additional HTTP headers Access-

Control-Allow-Headers, Access-Control-Allow-Methods, Access-Control-Max-Age

and Access-Control-Allow-Origin, each one with properly configured values. In

particular, the last of the four headers must report the domain of the webpages

that are allowed to make the client contact the external HTTP resource: for

the sake of simulation only, this header was set to the wildcard value ”*”, which

practically means that any webpage can make the user contact the gateway. For

real-world applications, a more restricted policy must be implemented to improve

the security level of the whole system.

Coordination Dashboard

The Coordination dashboard is a basic web application. It is implemented start-

ing from an Apache webserver official container, adding an HTML page and a

Javascript file containing the functions needed for the interaction with the gate-

way. The webpage is made of three sections, each of which has a related Javascript

function:

• A section to send a value for the Total amount command: when the user hits

the associated Send button, the sendTotalAmount() Javascript function is

triggered, which sends the value inserted in the corresponding textbox as a

Total amount message to the gateway.

• A section to retrieve the agent list: when the associated Get button is

clicked, the getAgents() Javascript function is triggered, which sends a Get

Agent List message to the gateway, then parses the response payload and

shows the agent list below the button.

• A section to launch the Exit command: when the associated button is

clicked, the command is sent to the gateway through the stopAll() Javascript

75

function.

The appearance of the Coordination Dashboard webpage is presented in Fig-

ure A.1.

Figure A.1: Appearance of the Coordination Dashboard, related to a simulation of a MAS consisting
of five agents. The five alphanumeric codes reported in the center of the page appeared
when the Get button was clicked, and are the hostnames of the five Docker containers
representing the agents.

InfluxDB

The container related to InfluxDB was used as it is published on the Docker

Hub, only adding some custom configuration related to the following settings. In

fact, if the InfluxDB container image is launched straightforwardly, at the first

connection from a browser a configuration wizard is shown. Through this wizard,

the user is required to set the following parameters about the instance:

• The name of the Organization that owns the instance

• The name of the initial Bucket, where a Bucket defines a subset of the data

stored in the InfluxDB instance – many of these can be deployed if there is

76 Chapter A. Container code descriptions

the need to store totally different datasets on the same InfluxDB instance,

which is not the case of this project

• The username and password representing the initial credentials to access

the InfluxDB instance webpage, through which the initial user can create

more logins at a later stage

At least for what concerns the simulation environment, custom settings were not

needed, therefore a standard configuration was applied through environment vari-

ables of the container as reported in the InfluxDB Docker image official webpage1.

With this procedure, the InfluxDB container instance can be used directly after

being cloned from the image, without requiring an user to go through the wizard

before being able to use the instance. Besides the parameters that the user would

need to insert in the wizard, three additional parameters were preset:

• The initial token, another kind of credential meant to be used to authenti-

cate an application – in this case the code running on the other containers

– instead of a user

• The log level, which was set to Error instead of the default value of Info:

if the Docker compose command is used to launch a set of containers as

was done for the simulations, all the logs from the various containers are

shown in a single window, which in our case includes both the logs from the

agents and those of the service containers. Allowing the InfluxDB to display

information logs makes it harder for the user to understand the behaviour

of the agents during the simulation, because their logs are obfuscated by

the InfluxDB ones

• The retention time, which is the time interval after which the data is deleted

from the DB. The interval was set to one hour, as for the simulation the

InfluxDB is meant to show only the data about the last simulation runs.

Without this setting, choosing the data to be displayed for the simulation

analysis would be harder, as all the past simulation data would be listed

among the most recent simulation data

Of course, these kind of presets are not meant to be used in real-world scenarios,

especially for what concerns the security aspects of having standard hardcoded

1See https://hub.docker.com/_/influxdb/, especially the Using this Image - InfluxDB

2.x section.

77

credentials valid for all the implementations. Nevertheless, using a different con-

figuration, InfluxDB is deemed an easy and valuable way for storing the agents’

data also in real-world implementations.

After the entire simulation environment is launched (but the operation in a

real-world scenario would be almost identical), InfluxDB can be accessed through

a web browser exposed on the default port TCP/8086. Users can log in using the

default credentials configured for the simulation, access the Explore section of the

application, filter the data they want to display – possibly all the recorded data

– and analyse the simulation results. Figure A.2 shows an example of InfluxDB

data that can be accessed through a browser.

Figure A.2: Example of how InfluxDB data can be accessed through a web browser

Unpredictable agent

The unpredictable agent is the most basic implementation of an agent logic, made

for the only purpose of testing the consensus algorithm, the communications

among the agents and the overall container-based environment. The code struc-

ture described in Algorithm 1 was developed and, as its name aims to suggest,

the choice of the initial opinion and weight is made at random. More specifi-

cally, the initial opinion choice is made extracting a random value from a uniform

distribution ranging between 0 and the total amount requested by the user; the

weight is extracted from an exponential distribution, which support is properly

scaled in a way such that:

78 Chapter A. Container code descriptions

Algorithm 2 Algorithm used for weight selection in the Unpredictable agent. Vari-
able op represents the desired probability of having an outcome higher than one,
used for scaling the exponential distribution parameter; λ is the resulting parame-
ter for the exponential distribution; U[0, 1] represents the extraction of a uniform
random variable in the range [0, 1]; wMIN is the minimum weight determined from
the results of Section 3.2.3; wn is the exponential variable extraction normalized
in the range [0, 1].

1: op ← 0.001

2: λ← − log op

3: if oscillatory behaviour allowed then
4: wMIN ← n−2

n

5: else
6: wMIN ← n−1

n

7: end if
8: wu ← U[0, 1]

9: wn ← − 1
λ

log(1 − wu)

10: if wn > 1 then
11: wn ← 1

12: end if
13: w ← wMIN + wn ∗ (1 − wMIN)

14: return w

• the minimum value possible corresponds to the lowest weight that ensures

the stability of the consensus process according to the outcomes of Sec-

tion 3.2.3 (which means that the lowest weight depends upon the number

of agents in the MAS). The code allows to quickly select whether the os-

cillatory behaviour is acceptable or not by changing the value of a boolean

variable and setting the minimum value accordingly.

• as the exponential distribution function is always decreasing but never

reaches 0, it is scaled so that the probability of extracting a value above 1

is equal to 0.1%; after the extraction is performed, if the extracted value

exceeds 1 it is nevertheless forced to 1.

The process that performs the weight choice is detailed in Algorithm 2, where

the Inversion method for extracting a sample of an exponential distribution start-

ing from a uniform distribution was used. Further details on this consolidated

method can be found for instance in [8]. The extraction of the random weight was

performed in the mentioned way, without opting for a uniform random variable as

was the case for the initial opinion, to simulate the fact that agents should choose

weights that are as low as possible to speed up the consensus process, but con-

79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

Figure A.3: The probability density functions that represents the distribution used for the weight
choice as the number of agents change, corresponding to the setting of allowing oscillatory
evolution for the opinions. If the oscillatory behaviour is not allowed, the corresponding
densities would be pushed farther to the right due to the increased wMIN factor.

sidering that agents can raise their weight in critical cases when they need their

assigned quota to be closer to their initial opinion. The distribution that was

simulated with the algorithm is represented in Figure A.3, where the dependance

on the number of agents is highlighted.

In order to allow for an easy change of the initial opinion and weight choice

logic, the PowerShell modules that implement these processes were kept separated

from the rest of the code, so that different logics can be quickly implemented

by changing these modules only. Eventually, Figure A.4 shows the complete

flowchart that represents the code implemented for the Unpredictable Agent.

Sparse agent

In order to test the implementation of the logic to be used when the graph rep-

resenting the MAS is not complete, as a result of the considerations expressed in

Sections 3.2.7 and 4.2.3, the code related to the Unpredictable agent described in

the previous paragraph was changed. Only the Synchronous one-hop propagation

approach was considered in this test. The parts that were added or changed with

respect to the Unpredictable Agent code were the following:

• The choice of the multicast groups to join for the sparse graph generation

(see Section 4.2.3). The number of available multicast groups was set to

six as default value, but it can be easily changed by setting an environment

80 Chapter A. Container code descriptions

START

BROADCAST

DISCOVERY

MESSAGE
ON UDP/21852

AWAIT MESSAGE

ON UDP/21852

AWAIT MESSAGE

ON TCP/21852

WAIT

5 SECs

ELAPSED?

N

N

Y

KNOWN

HOSTNAME
AND

SENDER

IP?

Y

UPDATE KNOWN

AGENTS TABLE

N

JOB OUTPUT:
NEW KNOWN

AGENTS TABLE

READ

UDP LISTENER
JOB OUTPUT

OUTPUT
AVAILABLE?

READ

TCPLISTENER
JOB OUTPUT

N

UPDATE KNOWN
AGENTS TABLE

Y

MESSAGE
AVAILABLE?

TOT.

AMOUNT

MESSAGE?

Y

UPDATE

TOTAL AMOUNT

Y

ITERATION
MESSAGE?

N

STORE OPINION
OF NODE i FOR

CURRENT ITERATION

Y

EXIT
MESSAGE?

JOB

COMPLETED

Y

CHECK
MESSAGE SCHEMA

N

VALID

SCHEMA?

JOB OUTPUT:

MESSAGE

Y

N

TCP

LISTENER

JOB
COMPLETED?

SEND STOP
MESSAGE TO SELF

ON PORT

UDP/21852

N

TIMER
STILL

ACTIVE?

YJOB

COMPLETED

STOP TIMER

END

TOT.

AMOUNT

RECEIVED AND
INIT. OPINION

NOT SET?

ACTIVATE TIMER

N

Y COMPUTE AND STORE

INITIAL OPINION

AND WEIGHT

SEND ITERATION
MESSAGE TO ALL

THE OTHER AGENTS

ALL
OPINIONS

AVAILABLE
FOR

CURRENT

ITER.?

N

N

COMPUTE AND STORE
NEW OPINION;

INCREMENT INDEX

SEND ITERATION
MESSAGE TO ALL

THE OTHER AGENTS

Y

STOP
MESSAGE?

JOB
COMPLETED

Y

N

Y

Figure A.4: Flowchart representing the Unpredictable agent code. When the program starts, four
parallel processes are launched, represented in the flowchart by four branches: the leftmost
branch represents the main process of the program; the second branch represents the
process that periodically sends a broadcast discovery message to all the other agents; the
rightmost two branches represent the processes that handle the synchronous reception
of UDP and TCP messages and pass their outputs to the main process. Input-output
relations among the four processes are highlighted using shapes with the same background
colour.

81

variable named CHANNELNO in the command line interpreter before launching

the containers through the docker compose command: the reason why

the parameter can be set this way lies in the fact that also the gateway

container must be aware of the number of available multicast groups, as

explained later in this section, so the usage of an environment variable

allows to specify the parameter value only once and make both container

types aware of it. On the other hand, a parameter that does not need

to be known by more than one container type is the Bernoulli parameter,

which defines the probability that an agent joins a multicast group, and

is hardcoded in the sparse agent code. The default value of 0.4, but it

can be changed directly in the code. The extraction of an outcome from

a Bernoulli random variable is performed by extracting the outcome of a

uniform random variable in the range [0, 1] and comparing the outcome to

the Bernoulli parameter: if the outcome of the uniform random variable is

lower, the outcome of the Bernoulli random variable is set to 1, otherwise

it is set to 0.

• The management of discovery messages, both the ones to be sent and the

reception of those sent by other agents. As explained in Section 4.2.3, in

the case of non-complete graphs the discovery messages cannot contain only

the hostname of the sending agent, they need to contain the data structure

called agent map. The agent map itself is a data structure not present in the

Unpredictable agent that is handled by the sparse agent code, and replaces

the known agents data structure of the Unpredictable agent that contained

the association between the hostname and the IP of all the other agents of

the network (which in that case were all neighbours).

• The management of subscriptions: a new JSON schema was defined to rep-

resent how the Subscription request message should be structured, and the

logic for sending the subscription requests needed to receive all the agents

opinions was developed. Moreover, the code needed for handling incoming

subscription requests was developed, implementing the logic described in

the paragraph 4.2.3, which updates the output subscriptions by dividing a

subscription to aggregated targets into many more granular subscriptions,

when the current output subscriptions would not allow to serve a new in-

put subscription request. In order to streamline the algorithm that man-

ages the input and output subscriptions, the opinions needed by the agent

82 Chapter A. Container code descriptions

to compute its own update rule were considered using an additional input

subscription associated with the hostname of the agent itself, as if the agent

was requiring the involved opinions to itself.

• The aggregation of received opinions that must be performed to satisfy an

input subscription: this was the most challenging part to implement. Main-

taining a data structure with links between each input subscription and the

output subscriptions needed to satisfy the former was deemed a too complex

process, therefore a different approach was used. Whenever an agent needs

to evaluate the value to be sent to a subscriber, it loads the set of agents

that represent the target of the subscription, removes from the set the refer-

ence to the agent itself if present, then calls a function that computes all the

possible partitions of the set: for instance, if the input subscription has the

agent set {a, b, c} as target, the function returns the partitions {{a}, {b}, {c}},
{{a, b}, {c}}, {{a}, {b, c}}, {{a, c}, {b}} and {{a, b, c}}. Then, the algorithm checks

whether any of the returned partitions is composed by sets that are all

existing output subscriptions: the existence of one matching set of output

subscriptions should be guaranteed by the management of input and output

subscriptions described above. When the set of output subscriptions that

are needed to satisfy the input subscription is detected, values received from

the involved output subscriptions at the previous iteration are summed, the

own opinion of the agent is summed as well if the agent itself was included

in the target of the input subscription, and the result of the sum is sent to

the subscriber.

As the function that computes all the partitions of a set, which code was

retrieved online (see Appendix B), was hard to be translated into PowerShell

due to the data structures it relied on, an additional feature of PowerShell

was used: by means of the Add-Type command, PowerShell is capable of

loading .NET classes either compiled in DLL files or by compiling at runtime

some C# language code. The latter option was used: the specific algorithm

was used as it was found online, written in C# language, and loaded into

the PowerShell script through the Add-Type command.

It is worth to stress that the implemented algorithm uses the synchronous

one-hop propagation method, meaning that at every iteration of the con-

sensus algorithm an opinion can proceed of one hop only towards a remote

agent. This means that an agent, while managing correctly its output sub-

83

scriptions to satisfy an input subscription, could not have received a target

opinion itself, especially during the first iterations of the consensus algo-

rithm. These cases are handled by using the placeholder value null to

describe such situations and signal to the subscriber that the requested

opinion is not yet available; when an agent receives at least one null value

from its providers, it is not capable of performing the update rule, therefore

at the next iteration it will stick to the same opinion value sent during the

previous iteration. As mentioned in Section 3.2.7, this introduces a delay

whose effects need to be evaluated further.

• The last thing that was slightly changed was the Iteration JSON schema

related to the exchange of opinion among agents: instead of reporting the

single hostname that the transmitted opinion is about, it reports an array of

hostnames in order to account for the possibility of transmitting aggregated

opinions.

The simulation was then run by replacing the Unpredictable agent container with

the Sparse agent one and using all the other containers almost unchanged, with

the sole exception of the Gateway that was slightly modified so that it could

receive discovery messages sent to all the multicast addresses associated with

the available groups, which amount is retrieved from the CHANNELNO environment

variable or set to the default value of six if the environment variable is not set. In

fact, the gateway container needs to be aware of the existance of all the agents,

regardless of their role in the topology, so that it is capable of sending them the

total amount value received from the user and can reply correctly to the user’s

request of listing the available agents on the coordination dashboard.

The case in which an agent does not join any of the multicast groups was

not handled: in such a case, the other agents of the MAS will not become aware

of its existence, therefore they will not share their opinions with it; the gateway

will not be aware of the isolated agent either, therefore the latter will not receive

the total amount value sent by the user. This means that the isolated agent will

not take part in the quotas allocation process, and the author believes that this

behaviour correctly accounts for real-world cases in which one agent would not

be able to communicate at all with the MAS it belongs to. Another possible

scenario could make the randomly-generated graph be composed by two or more

connected components: in this case all the connected components would try to

reach consensus on the allocation of quotas of the total amount, independently

from the other connected components, as if the latter did not exist. This be-

84 Chapter A. Container code descriptions

haviour is undesired, but a solution to overcome this issue was considered beyond

the scopes of this study.

Appendix B

List of software used in the project

The following list includes the software and tools that were used throughout the

study along with the reason why they were chosen:

• Visual Studio code: a free source code editor published by Microsoft, which

allows to write and test code in many languages, all in a single environment.

It was used for both writing this document in LaTeX and for the develop-

ment of the code to be containerized in PowerShell, HTML and JavaScript;

moreover, it was used to write the dockerfiles and the compose files needed

for setting up the containerized environment. Visual Studio Code allows to

install extensions that can be downloaded from the Visual Studio market-

place, which are useful when developing in a particular programming lan-

guage as they provide syntax highlighting for the language and integration

with the interpreter of the language. For this reason, the following exten-

sions were installed and used, most of which integrate with other standalone

software reported below:

– LaTeX Workshop

– PowerShell

– Docker

– PlantUML

• TeX Live 2021: a LaTeX environment that includes fonts, LaTeX packages

and a compiler, among other tools. Its integration with Visual Studio Code

was used for editing this document.

• A LaTeX template made for thesis of the Department of Information Engi-

neering of the University of Padova, kindly shared on GitHub by the user

85

86 Chapter B. List of software used in the project

@mamio19941.

• PowerShell v7.2 (see Section 4.2.2)

• PlantUML: a free software based on Java that renders diagrams defined by

the user through text files. It was used to create the UML sequence and

network diagrams.

• Docker Desktop: a package that contains the Docker engine and some tools

that are useful to manage containers (both graphical and command-line).

• Windows Subsystem for Linux 2 (WSL): a component that allows to run

executables made for Linux on a Windows machine, with version 2 imple-

menting a real Linux Kernel. Its installation is a requirement for running

the Docker engine on Windows.

• Git: a source code versioning tool that was used both while writing this

document and for the source code developed for the containers. The online

repository that was used is the one of the Department of Information Engi-

neering of University of Padova, hosted at https://gitlab.dei.unipd.it.

• A C# algorithm used to find all the possible partitions of a set, uploaded

on StackOverflow by the user Daniel Wolf2. See the part of Appendix A

related to the sparse MAS simulation.

• Matlab, for the creation of the figures containing plots of functions through-

out this document.

1https://github.com/mamio1994/template-latex-unipd
2https://stackoverflow.com/questions/20530128/how-to-find-all-partitions-of-a-set

Acknowledgements

As already mentioned, the idea behind this work comes from the group project

developed for the Networked Control for Multi-Agent System course. During that

group project, the problem of allocating quotas of a total amount through a

distributed approach was posed, and the solution I later identified with the term

Exact-Breakdown method was defined. I share the merit for that part with Marco

Donà and Leonardo Gastaldello, my fellow students in that group, to whom I

wish a very fulfilling conclusion of their studies and an excellent career afterwards.

Also, that project would have been about a totally different matter without the

contribution of Enel, my employer, who was eager to suggest a real business need

to the group and to follow us along the project, especially in the person of Davide

Passuello and the other colleagues who helped to retrieve useful information and

data. Besides the people from Enel who cooperated in the mentioned project, I

also want to thank all the colleagues from the team I currently belong to, who

are always keen to establish a collaborative and friendly environment and to help

each other out, providing some relief even when though challenges need to be

addressed.

A special acknowledgement goes to Angelo Cenedese, the professor of the

course that the group project was developed for and the supervisor of this thesis,

for the inspiration he provided on the topics related to distributed control during

the course and for his open-mindedness that allowed to explore a topic that is

apparently not so covered from past studies.

A different project that contributed significantly to my education was the

STAR Experiment, conducted in 2016 in the framework of the Drop Your Thesis!

ESA programme, which was the first relevant international experience I had and

the first time I was involved in the process of designing the electronics of a real

device from scratch, making me more confident with the responsibilities that come

with such a role. I owe an acknowledgement to Gilberto Grassi, the whole team of

students and the academics who supported us, for giving me the chance to make

87

88 Acknowledgements

such a great experience, which has truly helped me in my professional growth.

I also want to mention the importance that open source communities had in

the implementation part of this thesis, as nowawadays it is easier than ever to find

online the solution to particular issues that one may encounter while developing. I

strongly support open knowledge, as I think it is a practice that makes everybody

win.

This thesis marks the end of my ten-year long journey as a working student.

I would never have succeeded without the support of the wonderful and positive

people I am surrounded with, who took care of helping me while I was standing

stressful times, either by lending a hand on logistic tasks when I was busy or

just by making me enjoy every moment of spare time I had, providing me with

the recharge I needed to get through each stage of the route. My beloved friends

are an invaluable source of energy, I strongly hope that we can continue to grow

together for a long time to come.

A heartfelt acknowledgement goes also to my Mom, Dad and Brother, who

made me the person I am and always offered their support beyond what I con-

sidered reasonable. I think that, without the inspiration they gave me during

the first two decades of my life, I would not even have thought of trying to get a

degree while working.

Last but definitely not least, I will never be grateful enough to Alice, with

whom I shared every aspect of my life during last years. Her warm love and

understanding were undoubtedly the keys for making it through the obstacles I

faced in the final phases of my career as a student. She has constantly made me

feel like everything is possible as long as we are together.

References

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation

in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 215–233, 2007.

[2] G. Cybenko, “Dynamic load balancing for distributed memory multiproces-

sors,” Journal of Parallel and Distributed Computing, vol. 7, no. 2, pp. 279–

301, 1989.

[3] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical

Association, vol. 69, no. 345, pp. 118–121, 1974.

[4] M. Eremia and M. Shahidehpour, Active Power and Frequency Control,

pp. 291–339. 2013.

[5] E. Fornasini, Appunti di Teoria dei Sistemi, ch. Complemento di Schur e

inversione di una matrice a blocchi, pp. 594–595. Edizioni Libreria Progetto,

2015.

[6] Building modern apps with Linux containers. Red Hat, Inc.

[7] B. Payette and R. Siddaway, Windows PowerShell in Action, Third Edition.

Manning Publications, 2017.

[8] R. C. Larson and A. R. Odoni, Urban Operations Research, ch. Generating

samples from probability distributions. Prentice-Hall, 1981.

89

