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Introduction

Quantum information certainly is one of the most promising interdisciplinary

�elds that take advantage of quantum mechanics.

By combining the principles of this theory with state of the art technology, it man-

ages to break communication and information problems that cannot be solved with

classical theories, and it achieves that in ultimately thrilling and appealing ways.

One of the �elds where this theory turned out to be groundbreaking is cryptog-

raphy, a subject that directly or indirectly interests specialists and non-specialists

alike. In this research area, the photon is certainly the favorite quantum object to

work with. We will see how quantum properties of light can make communication

more secure - or may we say unconditionally secure - and e�ective. In particular,

the cryptographic task of key distribution between two users and its �generalization�

to many parties, called secret sharing, have been heavily studied after Bennett and

Brassard proposed a protocol for secure key distribution employing single photon

polarization in 1984 [1].

In the following years, many theoretical proposals and experimental realizations

vastly stimulated the scienti�c community interest in this subjects.

Nowadays, quantum key distribution (QKD) with good rates over 200 kilometers of

optical �ber has been achieved [2], and protocols for secure quantum secret sharing

(QSS) with many parties over dozens of kilometers of �bers have been successfully

carried out [3]. The general goal is to implement these schemes in the already ex-

tensively available �ber telecommunication network, in order to have a smoother

transition from classical to quantum communication.

In the past decade, QKD systems have become commercially available, and success-

ful secure quantum communication over real �ber telecommunication networks have

been attained around the world.

All these experiments share a common feature: they use two dimensional quan-

tum systems (called qubits) as information carriers. However, as higher dimensional-

ity means denser coding1 and looser security requirements [4], several research groups

1To understand this, compare a big number written in base ten with the same number in binary

system. Which one is longer?
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have shown their interest in testing protocols in higher dimension, and consequently

QKD protocols for more than two dimensions have been successfully implemented

in the lab.

With regard to QSS, proposals with three dimensional systems - called qutrits in

analogy with qubits - have obtained good experimental results [5]. However, they

all su�er from the consequences of being based on entanglement, speci�cally they

are not scalable with respect to the number of parties participating in the secret

sharing, mainly because of two reasons; the �rst one is somehow technological, that

is, entangled states with many particles are still hard to prepare in the lab. The

second reason is related to detection e�ciency and is more intrinsic: the proposed

protocols require single photons detections from every user in an experiment run,

thus detection e�ciency decreases exponentially with the number of users.

Our work, realized at the KIKO group labs in Stockholm2, consisted in realizing

a proof-of-principle experiment that implemented a di�erent and innovative protocol

for qutrits QSS, proposed in [6], in a �ber interferometric setup. The main di�erence

between this new scheme and the ones we have just mentioned is that this does

not require entanglement, being instead based on one single photon per run, with

information encoded in its phase. Our con�guration is highly scalable because it

needs only three detectors, therefore its detection e�ciency is independent from the

number of parties. This is, of course, of paramount importance in a secret sharing

protocol.

After a brief recap of some classical features of cryptography and optics in the

�rst chapter, we will move into the fascinating quantum world.

First of all, the basic ingredients that any work related to quantum cryptography

needs will be presented in chapter 2, then we will discuss a bit more in detail about

quantum cryptography in chapter 3, and in particular about QKD and QSS, �nally

presenting the protocol we implemented in a general and formal way at the end of

the same chapter.

The last part, i.e. chapter 4, regards our experimental work. Results and com-

ments will follow a description of the setup we built and a more speci�c explanation

of the protocol.

2http://kiko.fysik.su.se/



Chapter 1

Classical Foundations

1.1 Cryptography

Every piece of information we share has a target, and whenever this information

has any value we would like it to be acknowledged only by the designated receiver.

In an ideal world writing �TOP SECRET� on top of the message would su�ce but,

unfortunately, that is usually not the case. This is why cryptography was invented

thousands of years ago. The �rst form of cryptography simply consisted in writ-

ing down the �secret� message anywhere, since literacy was practically non-existent.

Ancient Greeks used bizarre methods as tattooing the message on a slave's shaved

head and hide it under the grown hair [7], but also started adopting proper cryp-

tographic protocols, as transposition and substitution cyphers. Even though these

methods are still employed nowadays, mainly by �rst grade children, they are known

to be easily breakable by means of frequency analysis. Many other protocols were

invented during the Renaissance thanks to the general improvement of education

standards and advances in science, however modern cryptographic methods can be

easily divided in two groups: symmetric-key and asymmetric-key cyphers. The for-

mer group exploits the same key for encrypting and decrypting, while the latter

needs two keys, usually a public one for encrypting and a private one for decrypting.

Let's see some examples.

1.1.1 One-time Pad - A Symmetric-key cypher

The One-time pad method, invented in 1882 by Frank Miller, is to this day the

only (classical) method proved to be completely secure [8]. The encryption and

decryption of any message is based on the bitwise exclusive OR (XOR) operation

and the key should be at least as long as the message itself. We can see a practical

example in Table 1.1. Provided that the key is random, never reused and secret,

1



2 Classical Foundations

Message Y E S

Plain text ASCII 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1

Secret digital key 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0

Encrypted text ASCII 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 1 1

Secret digital key 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0

Deciphered text ASCII 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1

Message Y E S

Table 1.1: Example of one-time pad. The message (written in ASCII code) is en-

crypted by XOR operation with the secret key. The key, once transmitted to the

receiver, can be applied again to obtain the original message.

the cypher is totally unbreakable. The only information an adversary can gain

from the key is the maximum length of the message. Unfortunately, the one-time

pad method has some severe disadvantages: for it to be secure, the key must be

genuinely random, a requirement not easily satis�ed; but most of all, every time we

send a message we need to generate a new (one-time) key at least as long as the

message that has to be securely and wholly transmitted to the receiver. These are

the reasons why this cryptographic method is usually discarded in favor of less - or

di�erently - secure protocols. Let's have a look at the most famous one.

1.1.2 The RSA protocol - Computationally secure cryptog-

raphy

With the blazing fast development of technology and telecommunications in the

twentieth century, a fundamental problem concerning security arose: the key distri-

bution part of any cyphering process for symmetric-key protocols is risky and very

demanding. Di�e and Hellman managed to solve this problem in 1976, when they

published the �rst public-key method (known as the Di�e-Hellman key exchange

[9]) that successfully established a secret key over an authenticated public chan-

nel without prior secret-key sharing. One year later Ron Rivest, Adi Shamir and

Leonard Adleman invented the famous RSA algorithm [10], which is still used today

for both secret sharing and digital signature. The protocol has been upgraded many

times since its �rst release to overcome potential weak spots, but we can understand

the way it works just by looking at the original algorithm. Before starting, we should

introduce Alice and Bob, two characters (not necessarily human) usually living at

least one room apart and with plenty of secret stu� going on between them. They

are the protagonists of every cryptographic protocol, either classical or quantum,
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and they often have to deal with their technologically cutting edge and in�nitely

rich arch-enemy, Eve the eavesdropper, trying to work out their secrets 24/7. Now,

back to the RSA protocol, let's pretend that Alice needs to send a secret encrypted

message to Bob. This is how they could do it:

1) Bob: keys generation

• Chooses two random distinct prime numbers p and q of similar bit-length

and calculates n = p · q. The length of n is the key-length

• Computes the totient ϕ(n) = (p− 1)(q − 1)

• Picks an integer 1 < e < ϕ(n) such that e is coprime with ϕ(n)

• Announces n and e on a public channel. (n, e) is the public key

• Calculates the private key exponent d by solving d · e = 1 mod ϕ(n). (n, d)

is the private key.

2) Alice: message encryption

• Converts the message M to an integer 0 < m < n using a padding protocol

• Encrypts the message by calculating the cypher-text c = me mod n

• Sends the cypher-text c over a public channel

3) Bob: message decryption

• Using the private key (n, d), decrypts the message c calculating m = cd

mod n

• Recovers the plain-text message M applying the same padding protocol

used by Bob.

We see that any eavesdropper trying to calculate d starting from the public

key (n, e) will have to factorize n to �nd p and q. This is called the factorization

problem and with the currently available algorithms it's solvable in exponential time.

This means that breaking the RSA encryption takes a time which is exponential to

the bit-length of n. Keys up to 768 bits have been broken [11], and modern RSA

protocols use 1024 to 2048 bits keys. So this protocol is not completely secure. It

is only computationally secure, in the sense that no available computational power

could break it in any reasonable time. However, we cannot be sure that a new

algorithm capable of solving the factorization problem in polynomial time has not

been or will never be invented. Actually, Peter Shor has proved in 1994 [12] that a

quantum computer could, using Shor's quantum algorithm, solve the factorization

problem in polynomial time, therefore breaking RSA security. The world clearly

needs a new kind of cryptography.
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1.2 Optics

This work is based on quantum mechanics applied to optics. However, most of

the experimental characterization of the various components used has been done

in classical regime. The reason is that working in classical conditions is much eas-

ier than quantum (for example you can use oscilloscopes instead of the extremely

delicate single photon detectors). This is possible because, as we will see later on,

many optical objects and physical quantities behave in a very similar way in the

two regimes. For example, whenever we consider interference we are interested in

intensities, which are proportional to squared �eld amplitudes. Very similarly in

the quantum formulation we would like to predict the number of photons (i.e. the

probability density functions), which in turn is proportional to the squared modulus

of the wave function. Therefore we give now a brief recap of classical optics, before

moving on into the quantum world.

1.2.1 Electromagnetic waves

We all know that light is a wave, and of course we have - at least - heard

about Maxwell's equations. Let's see how the �rst statement is derived from those

legendary equations. If we have electric �eld E, magnetic �eld B, electric charge

density ρ end electric current density j, then the equations describing the �elds

evolution are

∇ · E =
ρ

ϵ0
(1.1a)

∇ ·B = 0 (1.1b)

∇× E = −∂B
∂t

(1.1c)

∇×B = µ0j−
1

c2
∂E

∂t
. (1.1d)

In vacuum, with no electric charge or current, the solutions to Maxwell equations

are the electromagnetic waves. In fact, if we take the curl of eqs. (1.1c) and (1.1d)

and use the vector identity

∇× (∇× F) = ∇(∇ · F)−∇2F (1.2)

keeping in mind eqs. (1.1a) and (1.1b), we get(
∇2 − 1

c2
∂2

∂t2

)
E = 0 (1.3)(

∇2 − 1

c2
∂2

∂t2

)
B = 0 (1.4)
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These are equations describing transverse waves propagating with velocity c and

with E ⊥ B. The explicit solutions are

E = E0e
i(k·r−ωt+ϕ) (1.5)

B = B0e
i(k·r−ωt+ϕ) (1.6)

where |E0| and |B0| are the waves amplitudes, k is the wave vector, ω the pulsation

frequency and ϕ the optical phase. We should also remember that c = ω/k. The

previous calculations were done for EM waves traveling in vacuum, but the analysis

is the same - short of some constants - for any dielectric medium. The main di�er-

ence, which a�ected our work, is that the wave velocity in a material with relative

permittivity ϵr becomes

v =
c

√
ϵr

=
c

n
(1.7)

Another important property of EM waves is polarization. This is de�ned as the

direction of the electric �eld and, considering that E and B lie on the plane perpen-

dicular to k, it can be of three di�erent types:

• linear polarization: the direction of E is constant

• circular polarization: E rotates along a circle. This situation can be seen as

two orthogonal linearly polarized waves with the same amplitude and π
2
phase

di�erence

• elliptical polarization: this is the most general case, and we can depict it as

two orthogonal linearly polarized waves with a phase di�erence that is neither

0 nor π
2
.

It's usually extremely important to control the polarization when working on secure

communication with single photons. In fact, in order to have high interference

visibility, the light pulses should have equal amplitude and polarization. While

amplitudes - or intensities - are easy enough to control, polarization is trickier.

In fact, light pulses propagating in free space are not subjected to polarization

changes, but there are other transparent materials that have di�erent refractive

indexes depending on the polarization of the traveling wave. This special property of

such crystals is called birefringence. As we will see later on, standard communication

�bers are strongly birefringent, and this has been one of the most delicate aspects

of this work.

1.2.2 Interference

The main physical phenomenon behind the secret sharing achieved in this work

is interference, so it is important to have a good understanding of the subject. The
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principle of superposition states that whenever two light waves are located on the

same spacial region, their amplitudes sum point by point. This is called interference,

and we should mention that it happens only if the two waves have similar proper-

ties, namely polarization and frequency. Interference is called constructive when the

phase di�erence between the two waves is an even multiple of π, while odd multiples

will give destructive interference.

Many types of interferometers have been invented, depending on aim and applica-

tion; We can see an example of a simple Mach-Zehnder interferometer on �bers in

Fig. 1.1: a light pulse entering the interferometer from port A gets splitted by the

�ber coupler (FC). The two halves go through arms 1 and 2 - or paths L1 and L2 -

and recombine at the output C thanks to a second �ber coupler. We can do some

calculations considering a simple case where only 50 : 50 couplers are used, with nei-

ther attenuation nor birefringence. To make the example slightly more interesting

(and suitable to this thesis) let's consider an extra phase ϕ added to the pulse going

through arm 1, achieved by using, for example, a commercial phase modulator. We

should consider only the electrical �eld, as we know from Maxwell's equations that

|E| ≈ c|B|, so I ≈ |E|2. The incoming light wave is then of the form of eq. (1.5).

After the second coupler the two halves recombine and at point C we have

E(C, t) =
E0

2
ei(kL1−ωt+ϕ) +

E0

2
ei(kL2−ωt)

=
E0

2
ei(kL1−ωt+ϕ)

(
1 + ei[k(L2−L1)−ϕ]

)
(1.8)

We can �nd the light intensity at the output C, which is what we actually measure,

by taking the squared average of eq. (1.8)

I(C) =
|E0|2

2
(1 + cos(k∆L− ϕ)) (1.9)

Figure 1.1: A simple Mach-Zehnder interferometer on �bers with input port A, a

�ber coupler that splits the incoming light into two arms of length L1 and L2, one

of which includes a ϕ phase shift, another coupler that recombines the paths together

into output port C.
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It's now clear that we have maxima whenever the cosine argument is an even multiple

of π, that is
∆L

λ
− ϕ

2π
= m, m ∈ Z (1.10)

while minima are related to odd multiples of π.

1.2.3 Multiport Devices

In the last paragraph we have seen a simple example of a two-arms interferometer.

This work, however, is based on a three-arms interferometer; in order to build such

a setup we need something slightly more complicated than a plain coupler. Any

optical device with N inputs and N outputs is called a multiport device, and can

be seen as a black box related to a transfer matrix which describes how any input

state (e.g. an electrical �eld) is transformed into an output state. Once again we

will consider only the case with neither attenuation nor birefringence. The latter

approximation is allowed because we used only polarization maintaining �bers in

the three interferometer arms with linearly polarized light (and polarization aligned

to the �ber slow axis). Any birefringent optical element was placed exclusively

in common paths, so that all interfering pulses would undergo the same changes,

thus resulting in no relative e�ect. This will be much clearer later on once we

present the optical setup in detail. The lossless approximation, however, is never

strictly correct in practice. One of the 3x3 beam splitters (also called tritters)

we used, for example, has coupling ratios (from input 1 to the outputs) of 36% :

27% : 36%, meaning that some light is �lost� inside the tritter. Anyway, as we are

not interested in absolute intensities, but only in relative ones, we can consider this

approximation legitimate as long as the coupling ratios for the di�erent input-output

con�gurations are approximately equal. In the lossless case the device is called ideal

multiport splitter. Considering then an ideal splitter, energy conservation guarantees

the unitarity of the transfer matrix, and if we consider tritters with equal coupling

ratios for any input-output combination, we get the condition that each matrix

entry should have the same absolute value. These conditions dramatically reduce

the possible di�erent matrices. We present here the 3x3 symmetric tritter case,

as this is what we actually employed in the experiment. A candidate frequently

adopted in literature [13][14] is the matrix

T =
1√
3

1 1 1

1 e−i 2π
3 ei

2π
3

1 ei
2π
3 e−i 2π

3

 (1.11)

We can now use this matrix to predict the output intensities of a balanced (L1 =

L2 = L3 in Fig. 1.2) three-arms Mach-Zehnder interferometer similar to the one in



8 Classical Foundations

Figure 1.2: Mach-Zehnder three-arms �ber interferometer consisting of two 3x3 trit-

ters and two phase modulators. Commercially available tritters introduce �by default�

a 2π
3 relative phase between any two of the three inputs (as we can see from Eq. (1.11)).

Fig. 1.2.

The full matrix of the whole tritter-phase modulators-tritter system is of course

the matrix product of the three di�erent elements, that is

TST =
1√
3

1 1 1

1 e−i 2π
3 ei

2π
3

1 ei
2π
3 e−i 2π

3


1 0 0

0 eiϕ2 0

0 0 eiϕ3

 1√
3

1 1 1

1 e−i 2π
3 ei

2π
3

1 ei
2π
3 e−i 2π

3

 (1.12)

where the matrix S represents phase modulators in arms 2 and 3 that carry out

phase shifts of respectively ϕ2 and ϕ3 angles. If we name the incoming electric �eld

Ein ≡ (Ein
1 , 0, 0)

1 and the outgoing electric �eld Eout ≡ (Eout
1 , Eout

2 , Eout
3 ), with the

subscript index representing the input/output port as in Fig. 1.2, we can compute

the output amplitudes simply by

Eout = (TST )Ein (1.13)

As always we are interested in intensities, i.e. the squared modulus of electric �elds,

which can be found after some calculations to be

I1 =
(Ein

1 )2

9
{3 + 2 [cosϕ2 + cosϕ3 + cos(ϕ2 − ϕ3)]} (1.14a)

I2 =
(Ein

1 )2

9

{
3 + 2

[
cos

(
ϕ2 −

2π

3

)
+ cos

(
ϕ3 +

2π

3

)
+ cos

(
ϕ2 − ϕ3 +

2π

3

)]}
(1.14b)

I3 =
(Ein

1 )2

9

{
3 + 2

[
cos

(
ϕ2 +

2π

3

)
+ cos

(
ϕ3 −

2π

3

)
+ cos

(
ϕ2 − ϕ3 −

2π

3

)]}
(1.14c)

We can notice from these equations that (relative) output intensities depend only

on phase di�erences between distinct paths. Most importantly, whenever we have a

1In our experiment, as happens in most of the same type, we are using only one input port of

the tritter. In this example we are connecting the laser source to input 1.
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maximum in one output (e.g. in port 1 for (ϕ2, ϕ3) = (0, 0)), the other two yield no

light at all. We will see how this property translates into the quantum language of

operators and probabilities, and how crucial it is for secret sharing.
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Chapter 2

The Quantum World

2.1 The Basics

At the very beginning of the twentieth century Max Planck and Albert Einstein

explained black-body radiation and the photoelectric e�ect with a very bold hy-

pothesis: light can behave as if it was made of particles - later called photons - with

discrete energy levels and momenta. Before the end of the twenties, quantum me-

chanics, or at least all its basic principles, had been pretty much laid out. However,

no one could foresee how remarkably accurate its predictions were going to turn out

in future experiments. One century later we are still looking for new ways to ex-

ploit the amazing consequences of this counterintuitive - often even illogical - theory.

Quantum communication is one of the most straightforward yet potentially revolu-

tionary application taking advantage of the quantum properties of reality, namely

the wave-particle duality, the superposition principle and the no-cloning theorem.

We will have a look at these special features of the theory in the next paragraphs.

2.1.1 Wave-Particle Duality

Black-body radiation and the photoelectric e�ect can both be explained assuming

that light consists of particles - photons - with quantized energy, E = hν per photon

of frequency ν. h is of course the Planck constant, introduced in 1901 by Max

Planck appositely to solve the black-body emission spectrum problem. But of course

we know from our everyday experience that light also has wavelike properties, as

di�raction and interference. The single most astonishing experiment showing this

dual nature is the well-known double slit experiment, where single, isolated photons

show interference patterns only if we are not aware of the paths they took, otherwise

they simply behave as �classical� particles. Experiments showing interference fringes

have been run not only with photons, but also with electrons, atoms and even much

11
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bigger molecules exceeding 10000 amu [15]. In conclusion, not only light but matter

too is inherently dual in nature, and in order to fully understand quantum mechanics

and grasp the logic governing it we de�nitely need to abandon the classical notions

of particles and waves, moving instead towards the idea of a quantum particle.

This can be done introducing the quantum state - or wave function - ψ.

2.1.2 The Quantum State |Ψ⟩1

In any physical theory we characterize a system by its state and experimentally

measurable quantities called observables. In the quantum mechanics formalism

we identify a generic (pure) state by a vector in a Hilbert space, whose properties

depend on the system it is linked to. We also refer to vectors in Hilbert spaces

as wave functions, as these spaces are usually made up of complex functions. For

example, the Hilbert space associated to position and momentum states of a single

particle is the space of square-integrable (wave) functions L2. While states are linked

to wave functions, observables are represented by self-adjoint linear operators acting

on the state space. The possible states of a system (after a measurement) are the

eigenstates of these operators, and the eigenvalues related to these eigenstates

are the possible values of the observable associated with an operator.

Before a measurement, a system can be in a state |Ψ⟩ which is a linear combi-

nation of pure states |Φi⟩, each with its own statistical weight factor ci. We write

this generic state as

|Ψ⟩ =
∑
i

ci|Φi⟩ . (2.1)

In the standard interpretation (a.k.a. Copenhagen interpretation) of quantum

mechanics, whenever we measure an observable on a state the system collapses

on an eigenstate of the measured observable and the measurement outcome is the

eigenvalue related to that eigenstate.

Wave functions also give us the so called transition probabilities, which represent

the probability for a system to collapse from a state |Ψi⟩ to a state |Ψj⟩ after a

measurement. We can get these probabilities by calculating the squared absolute

value of the inner product (de�ning the considered Hilbert space) between the two

states

P (|Ψi⟩ → |Ψj⟩) = ∥⟨Ψi|Ψj⟩∥2 (2.2)

It is clear that if we write the initial state |Ψ⟩ as in Eq. (2.1) including all possible
�nal states in the sum, the transition probability to any state |Φi⟩ will simply be

∥⟨Φi|Ψ⟩∥2 = |ci|2 (2.3)

1We are going to use the bra-ket notation throughout the whole thesis, taking for granted the

reader's knowledge about it.
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The probabilistic nature of quantummechanics comes then from the measurement

process. With regards to position measurements, we can think of quantum particles

as waves that interact with each other by means of interference and superposition as

long as we do not measure their location, at which point they immediately collapse

in a position operator eigenstate (i.e. a precise location) and assume particle-like

properties.

On a slightly more technical level, we can explain quantum interference by in-

troducing the superposition principle.

2.1.3 Superposition Principle

The link between mathematical foundations - that give us Hilbert spaces and

wave functions - and physics is the Schrödinger equation. Its most general form

for a single non-relativistic particle is[
− ℏ2

2m
∇2 + V (r, t)

]
Ψ(r, t) = iℏ

∂

∂t
Ψ(r, t) (2.4)

where as usual m is the particle mass, V (r, t) the potential energy and Ψ(r, t) the

particle wave function. Eq. (2.4) is a linear partial di�erential equation. In partic-

ular, its linearity implies that many (often in in�nite number) wave functions Ψ(r, t)

are solutions to the equation. The physical meaning of this statement is explained

by the superposition principle: a quantum system exists in all its possible states

(i.e. wave functions that solve its Schrödinger equation) simultaneously, but as soon

as a measurement is performed on the system, it collapses in one of the possible

eigenstates of the measured observable. It is crucial to understand that this uncer-

tainty deriving from superposition is not something caused by our limited knowledge

of the system that just goes away as soon as we perform a measurement. A quantum

system before a measurement actually is in a superposition of di�erent states. This

is the reason why we can see interference patterns in the double slit experiment - or

in this work - even when we are working with a single photon. Regarding Fig. 1.2,

for example, due to a superposition of the states placing our photon in each of the

three arms, we actually measure interference-like intensities in the three outputs,

despite the photon being only one.

2.1.4 No-Cloning Theorem

The no-cloning theorem, �rst proved by Wootters and Zurek in 1982 [16], is the

ultimate argument that makes quantum communication secure. There are di�erent

ways to prove it; we are going to give a simple demonstration for pure states in

the following lines, but proofs exist for mixed states as well. Suppose we have two
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quantum systems, A and B, with the same state space. System A is initially in the

state |Ψ⟩A, pure but unknown to us, while system B is in the pure generic state

|0⟩B. The whole point in copying is to have both systems in the state |Ψ⟩ in the end.

Slighty more precisely, we have a composite system initially in the state |Ψ⟩A⊗|0⟩B,
and we want some unitary cloning operator to transform this state to |Ψ⟩A ⊗ |Ψ⟩B.

Suppose this operator exists, then it must be able to clone not only the initial

state |Ψ⟩A, but also any other di�erent initial state, for example |Φ⟩A. In this case

we have

U (|Ψ⟩A ⊗ |0⟩B) = |Ψ⟩A ⊗ |Ψ⟩B
U (|Φ⟩A ⊗ |0⟩B) = |Φ⟩A ⊗ |Φ⟩B

(2.5)

If we take the inner product of eqs. (2.5), we end up we the very restricting condition

⟨Ψ|Φ⟩ = (⟨Ψ|Φ⟩)2 (2.6)

This is satis�ed either if |Ψ⟩ and |Φ⟩ are orthonormal or if |Ψ⟩ = |Φ⟩.
We have just proved that no unitary operator can clone any pure state. From the

quantum communication security point of view, this means that if the exchanged

information is encoded in non-orthogonal states (i.e. with di�erent bases), an eaves-

dropper will not be able to clone a single photon state without knowing a priori the

basis previously used for encoding.

Despite the no-cloning theorem, you can of course still make imperfect copies of

any unknown state. Actually, it turns out [17] that the optimal universal cloning

machine could reach, for a two-dimensional system, the surprising �delity of
√

5
6
.

2.2 Quantum Optics

In the previous chapters we have brie�y discussed some aspects of classical optics

and quantum mechanics. This section is the place where these two elements come

together and create the extremely fascinating subject that is quantum optics.

How does classical optics become quantum? Not surprisingly, what we need is an

analogy and a quantization method. We have seen in Sec. 1.2.1 that the EM �eld

(which we will mostly be calling light as per �professional� bias) is an oscillatory

phenomenon. The analogy is then of course between light and the harmonic oscilla-

tor. If we then quantize EM �eld oscillations, what we get is the amazing quantum

optics!

We will start this section by explaining the basic ideas behind light quantization,

and after showing the analogy with an harmonic oscillator, we will have a look at

some interesting states of light that enhance its quantum nature.
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2.2.1 EM Field: Analogy and Quantization

In Sec. 1.2.1 we mentioned Eqs. (1.5, 1.6) as possible solutions for Maxwell

equations in vacuum. If we now suppose to con�ne the radiation �eld in a one-

dimensional cavity along the z-axis limited by conductive walls at z = 0 and z = L,

the �elds must vanish at the boundaries. We further assume that the cavity is empty

and that the electric �eld is polarized along the x-axis.

Single-mode �elds satisfying these boundary conditions are [18]

Ex(z, t) =

√
2ω2

ϵ0V
q(t) sin(kz)

By(z, t) =

√
2ω2

ϵ0V

(µ0ϵ0
k

)
q̇(t) cos(kz)

(2.7)

where ω is the mode frequency and k its wave number, q(t) and q̇(t) = p(t) include

time dependences of the solutions and have the dimension of length and velocity

respectively. We will see that these quantities are the canonical position and mo-

mentum for a unit mass particle.

The Hamiltonian of this single-mode EM �eld is found by integrating the energy

density over the whole cavity volume, that is

H =
1

2

∫
dV

[
ϵ0E

2
x(z, t) +

1

µ0

B2
y(z, t)

]
. (2.8)

Substituting Eqs. (2.7) into Eq. (2.8) we can easily �nd

H =
1

2

(
p2 + ω2q2

)
(2.9)

which is clearly equivalent to a harmonic oscillator of unit mass.

We now enter the quantum formalism by substituting the canonical position and

momentum variables with their corresponding quantum operators

q → q̂

p→ p̂ = −iℏ ∂
∂t

H → Ĥ

(2.10)

with the usual commutation relation

[q̂, p̂] = iℏ . (2.11)

At this point the two ladder operators are traditionally introduced. They are the

annihilation operator â, and its adjoint â†, called the creation operator, de�ned as

â =
1√
2ℏω

(ωq̂ + ip̂)

â† =
1√
2ℏω

(ωq̂ − ip̂) .
(2.12)
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From Eqs. (2.11, 2.12) their commutation relation turns out to be[
â, â†

]
= 1 . (2.13)

Substituting Eqs. (2.12) into the operator version of Eq. (2.8), we can rewrite the

Hamiltonian operator in terms of â and â† as

Ĥ = ℏω
(
â†â+

1

2

)
. (2.14)

With the commutators [
Ĥ, â†

]
= ℏωâ†[

Ĥ, â
]
= −ℏωâs

(2.15)

and remembering the Schrödinger equation

ĤΨn = EnΨn (2.16)

we can �nd out how the ladder operators act on the eigenfunctions of Ĥ. With some

straightforward calculations we get

ĤâΨn = (En − ℏω)âΨn (2.17a)

Ĥâ†Ψn = (En + ℏω)â†Ψn . (2.17b)

Eqs. (2.17) show that the harmonic oscillator energy spectrum is discreet and its

eigenenergies are equally spaced by ℏω steps. Furthermore, the creation operator

â† raises the energy by ℏω while the annihilation operator â lowers it by the same

amount.

Reassuming, the energy spectrum is

En =

(
n+

1

2

)
ℏω , n ∈ N (2.18)

We will see in the next paragraph how we can interpret the ladder operators and

the quantum number n in the EM �eld case.

2.2.2 Photon Number State

Whenever we are considering light, the quanta of energy our system contains (n

in Eq. (2.18)) are called photons. We understand now why â and â† are named

annihilation and creation operators: if we act on a state |Ψn⟩ with â, the system

will lose an amount of energy equal to ℏω, that is, the annihilation operator will

remove a photon from the system. Of course the opposite happens with regards to
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â†. We can therefore write the wave functions solving the Schrödinger equation for

the harmonic oscillator and the Schrödinger equation itself in the so-called number

state representation:

|Ψn⟩ ≡ |n⟩

Ĥ|n⟩ = ℏω
(
n+

1

2

)
|n⟩ .

(2.19)

Considering Eqs. (2.17) and after normalization, we can rede�ne ladder operators

as

â|n⟩ =
√
n|n− 1⟩

â†|n⟩ =
√
n+ 1|n+ 1⟩

(2.20)

which imply

|n⟩ = 1√
n!

(
â†
)n |0⟩ (2.21)

where |0⟩ is the ground (or vacuum) state. Eq. (2.21) also suggests that we may

intuitively interpret the state |n⟩ as a vacuum state where n photons have been

created.

Finally, we should notice that if we act on the state |n⟩ with the operator â†â, we

get

â†â|n⟩ =
√
nâ†|n− 1⟩ = n|n⟩ . (2.22)

â†â is indeed called number operator. Number states are eigenstates of the number

operator n̂ as we can see from Eq. (2.22).

We will understand later how important this operator actually is for secure quantum

communication. Nevertheless, number states are not a good description of physical

�eld states generated, for example, by a laser. It is actually possible to show [18]

that number and phase are complementary observables, so that number states have

uniform (i.e. random) phase distribution, which is certainly not the case for coherent

light coming from a laser source.

It is suitable then to introduce a di�erent class of states, conveniently called coherent

states, which better describes �real� coherent light sources.

2.2.3 Coherent States

We have noticed in the previous section that number states contain a de�nite

number of photons and are thus characterized by completely random phases. On

the contrary, coherent states do not have a �xed number of photons nor a precise

phase. Actually, the product of uncertainties in amplitude and phase for coherent

states is the minimum allowed by the Heisenberg's uncertainty principle [19].
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There are di�erent ways of introducing coherent states; here we are going to do it

by taking advantage of their most fundamental di�erence from number states, that

is, they are eigenstates of the annihilation operator. Thus, they must satisfy the

relation

â|α⟩ = α|α⟩ (2.23)

where α is a complex number as â is not Hermitian.

Thanks to number states completeness we may expand any state |α⟩ as

|α⟩ =
∞∑
n=0

cn|n⟩ , (2.24)

acting with â on each term we get

∞∑
n=0

cn
√
n|n− 1⟩ = α

∞∑
n=0

cn|n⟩ (2.25)

and comparing coe�cients recursively we can easily calculate

cn =
αn

√
n!
c0 . (2.26)

From the normalization condition we �nd c0 = exp (−|α|2/2), thus the �nal expression

for a coherent state becomes

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ . (2.27)

We can understand something more about coherent states by carrying out some

simple calculations. For example, from Eq. (2.23) and its conjugate we can compute

the expectation value of the number operator

n̄ = ⟨α|n̂|α⟩ = ⟨α|α∗α|α⟩ = |α|2 . (2.28)

We can therefore regard α as a complex number whose modulus is proportional to

the electric �eld amplitude and thus the squared modulus to the �eld intensity.

The variance of the photon number is found to be [20]

(∆n)2 = ⟨α| (n̂− n̄)2 |α⟩ = n̄ , (2.29)

which shows that coherent states have poissonian photon number distribution.

Finally, we can calculate the probability for a coherent state to contain n photons

as

P (n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
= e−n̄

(
n̄n

n!

)
(2.30)

which clearly proves the Poisson distribution hypotheses.
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Figure 2.1: 2x2 beam splitter with input ports (0, 1) and output ports (2, 3). Re-

�ectance and transmittance are shown according to eq. (2.31).

2.2.4 Beam Splitter: from Number States to Single Photon

Interferometry

We have seen in sec. 1.2.2 how classical interference can easily be explained

by means of a wave-like description of light. At some point we had also hinted at

the similarity between interferometric results in the classical and quantum cases.

However, in order to fully understand single photon interferometry and see how

the quantum states we have just introduced are actually exploited in this �eld, we

should give a quantum mechanical description of a single photon interferometer.

The building block of most interferometers is the beam splitter. In this work

3x3 beam splitters (called tritters, with three input and three output ports) have

been used. We should however look at the simpler 2x2 case �rst, and then upgrade

the result to the slightly more complicated 3x3 device.

Let us suppose we have a 2x2 beam splitter as the one in Fig. 2.1. First of all we

should notice that even if we are using only one input port, it is absolutely necessary

to consider both inputs in the quantum treatment, otherwise contradictions would

raise2 (for example ladder operators commutation relations would not be preserved).

This is one of the many occasions in which vacuum turns out to be a proper quantum

state that needs to be considered.

That being made clear, we write ports with subscripts (using numbers as Fig. 2.1),

so that âi and â†i will be respectively the annihilation and creation operators for

port i. If we take r and t as the complex re�ectance and transmittance of the beam

2For an example with calculations, see section 6.2 in [18]
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Figure 2.2: Fiber Mach-Zehnder interferometer with input ports (0, 1), a 2x2 beam

splitter (also known as �ber coupler) working in accordance to eqs. (2.33), two arms

one of which includes a ϕ phase shift, another 2x2 coupler that recombines the pulses

into output ports (4, 5), connected respectively to detectors D0 and D1. Detection

probabilities for this setup are derived in eqs. (2.38) and (2.39).

splitter, the device transformations for the ladder operators are

â2 = râ1 + t′â0

â3 = tâ1 + r′â0 .
(2.31)

Furthermore, because of energy conservation the following relations must be satis�ed

|r| = |r′|
|t| = |t′|
|r|2 + |t|2 = 1

r∗t′ + r′t∗ = 0

r∗t+ r′t′∗ = 0 .

(2.32)

We now introduce some typical hypothesis about the beam splitter: we choose to

describe a 50:50 splitter which introduces a π
2
phase shift in the re�ected pulse. This

type of device is made of a single dielectric layer.

Considering this choice and eqs. 2.32, eqs. 2.31 become

â2 =
1√
2
(iâ1 + â0)

â3 =
1√
2
(â1 + iâ0) .

(2.33)

We may see now how we can easily apply this formalism to a simple interferometric

�ber system as in �g. 2.2. The Mach-Zehnder interferometer consists of two 2x2

50:50 beam splitters and a phase modulator in one of the two arms. We may write

any input state in photon number representation as |m⟩i|n⟩j, meaning that we have

m photons in mode (or path) i and n in mode j.

Let us consider the input state |ψ⟩in = |0⟩0|1⟩1 that is, a single photon entering

the interferometer from port 1. Taking into account eqs. 2.33 and their conjugates
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and the obvious fact that an input vacuum state transforms into an output vacuum

state, we can compute the system state after the �rst beam splitter

â†1|0⟩0|0⟩1 = |0⟩0|1⟩1 (2.34)y BS1

â†1|0⟩2|0⟩3 =
1√
2

(
iâ†2 + â†3

)
|0⟩2|0⟩3 =

1√
2
(i|1⟩2|0⟩3 + |0⟩2|1⟩3) . (2.35)

It should be noticed that the state coming out from the �rst splitter is entangled.

It is indeed a superposition of the photon being in mode 2 or 3, with probabilities

equal to 1
2
.

Because of the phase modulator PM , the state with the photon in mode 3 will be

phase shifted by an angle ϕ

1√
2
(i|1⟩2|0⟩3 + |0⟩2|1⟩3)

PM−−−−−−→ 1√
2

(
i|1⟩2|0⟩3 + eiϕ|0⟩2|1⟩3

)
(2.36)

With very similar calculations we can now compute the �nal state after the second

beam splitter

1√
2

(
i|1⟩2|0⟩3 + eiϕ|0⟩2|1⟩3

)
y BS2

1

2

[
i
(
eiϕ + 1

)
|1⟩4|0⟩5 +

(
eiϕ − 1

)
|0⟩4|1⟩5

]
= |ψ⟩out . (2.37)

The probability that detector 0 (D0 in �g. 2.2) clicks corresponds to the probability

for the system to be found in the state |1⟩4|0⟩5, that is

P (D0) = |⟨ (⟨1|4⟨0|5) |ψ⟩out|2 =
1

2
(1 + cosϕ) , (2.38)

while, on the other hand

P (D1) = |⟨ (⟨0|4⟨1|5) |ψ⟩out|2 =
1

2
(1− cosϕ) . (2.39)

The cosϕ dependences clearly show the interference process going on in the system.

We should point out that the result we have just obtained is completely analogous

to the one we had previously got to in the classical formalism (see eq. 1.9). Except

that this time we have taken account of the fact that photons are indivisible, by

using photon number states.
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Figure 2.3: Mach-Zehnder three-arms �ber interferometer consisting of two 3x3 trit-

ters and two phase modulators. Phase di�erences dependent probabilities for the three

detectors are reported in eqs. (2.40).

We mentioned in the beginning of this section that we would have explained

how the 2x2 beam splitter results change when we have di�erent beam splitters; in

particular, we should show the 3x3 unbiased beam splitter case, as this is the type

of multiport device used in this thesis work.

Consistently with what we have just seen, there is no need to carry out the cal-

culations one more time, as the result we obtain using creation and annihilation

operators for the tritter is the same as the classical scenario described by eqs. 1.14.

The only di�erence of course is that in the single photon case we may interpret

intensities as probabilities, and (Ein
1 )2 = 1 (remembering that |E|2 = n̄).

All these things considered, the �nal probabilities for a single photon 3-arms inter-

ferometer as in �g. 2.3 are

P (D0) =
1

9
{3 + 2 [cosϕ2 + cosϕ3 + cos(ϕ2 − ϕ3)]} (2.40a)

P (D1) =
1

9

{
3 + 2

[
cos

(
ϕ2 −

2π

3

)
+ cos

(
ϕ3 +

2π

3

)
+ cos

(
ϕ2 − ϕ3 +

2π

3

)]}
(2.40b)

P (D2) =
1

9

{
3 + 2

[
cos

(
ϕ2 +

2π

3

)
+ cos

(
ϕ3 −

2π

3

)
+ cos

(
ϕ2 − ϕ3 −

2π

3

)]}
.

(2.40c)

2.3 Quantum Information

�Information is physical� are the famous �rst words of a 1996 Landauer's paper

[21]. Even disregarding the underlying physics the author was referring to in this

powerful sentence, one can easily agree. Any piece of information is carried - or en-

coded - in some physical way. Everyday examples are electrical pulses or magnetic

states in computers, protein sequences in genetics, light pulses in �ber communi-

cation. These and every other �commercially� available system work within the

boundaries of classical physics, at least in the information treatment part.
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At the beginning of this chapter we mentioned how quantum physics managed, in

the �rst decade of the last century, to overcome some key problems that classical

physics was su�ering from. But the new theory didn't just solve those problems,

it also turned out to be a groundbreaking step forward in physics and basically ev-

erything else. A question naturally comes up then: why don't we apply quantum

physics and its amazing consequences to information processing and computation?

As it always happens, it took a genius to come up with the right question. Richard

Feynman introduced the idea of a quantum computer in 1982 [22] and since then a

lot of progress has been made both theoretically and experimentally towards that

goal. Many bene�ts of a quantum computer over a classical one have already been

proved, and they all include the idea of e�ciency. What do we mean by e�ciency?

In information science, problems are divided in complexity classes; two signi�cant

examples are

• Polynomial complexity class (P): the number of computer operations re-

quired to solve these problems scales as a polynomial power of the problem

size (i.e. bits)

• Non-polynomial complexity class (NP): the number of operations in-

creases with size faster than any polynomial function.

An example of a task that turns out to belong to the NP class in classical comput-

ing (it's dependence with size is actually exponential) has already been introduced

in sec. 1.1.2, when we considered prime numbers factorization. This task cannot

be solved e�ciently by classical computers, while it can in the quantum computing

realm (where it belongs to P-class problems). In fact, prime numbers factorization is

only one of the tasks that can be carried out more e�ciently by quantum computers.

Apart from computing, there are other areas where quantum physics show its supe-

riority over classical models. One of them is of course cryptography. Later in this

section we will talk about it, but in order to do it we are going to need some basic

notions about quantum information.

2.3.1 Qubits

We all know the bit, the basic unit of classical information. It can be de�ned

as a two-valued variable, which can be 0 or 1, or equivalently false or true. This

logical value is usually implemented in computers as on/o� voltages or �up/down�

magnetization states.

By analogy, quantum information is built upon the qubit (short for quantum bit).

A qubit can be in one of the two logical states |0⟩ or |1⟩ (as we are talking about

quantum states, we are going to use the bra-ket notation as usual), but this is not
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the whole story. |0⟩ and |1⟩ are the two states constituting the computational basis

(⟨i|j⟩ = δi,j) of a two-dimensional Hilbert space related to our quantum system.

As we know, a quantum system can be in any superposition of the basis states;

therefore, the generic qubit state can be written as

|ψ⟩ = α|0⟩+ β|1⟩ (2.41)

where as usual |α|2 + |β|2 = 1. A qubit state can thus be interpreted as a unit vec-

tor in a two-dimensional complex (Hilbert) space, exactly as any two-dimensional

quantum system.

However, the main di�erence between classical and quantum bits comes out in the

measurement process. As a bit is either 0 or 1, whenever we perform a measurement

on it we will get exactly its state as a result. On the contrary, a measurement on

a qubit (in the computational basis) in the state (2.41) will return |0⟩ - or more

precisely its related eigenvalue - with probability |α|2 and |1⟩ with probability |β|2.
This probabilistic nature inherent in qubits may seem destabilizing at �rst, but it

actually is a huge resource to build a whole new way of communicating and com-

puting.

Now that we introduced the abstract concept of qubit, we should spend some words

on how to physically realize it. Any quantum system with two easily distinguish-

able states, orthogonal to each other, can act as a qubit. Common examples are:

photon polarization (horizontal/vertical or left/right), electron spin (up/down) or

even atomic energy levels (ground/�rst excited), provided that they are su�ciently

decoupled from the other levels. As an example, we consider a linearly polarized

photon, with horizontal and vertical polarization states acting as our computational

basis, such that for example

|0⟩ ≡ |H⟩ ≡ Horizontal

|1⟩ ≡ |V ⟩ ≡ Vertical .
(2.42)

These polarization states are easily understood by looking at �g. 2.4. Now suppose,

for example, that we happen to measure a diagonally (i.e. |+⟩ - see �g. 2.4) polarized
photon. We can write this state in the computational basis as

|+⟩ = 1√
2
(|H⟩+ |V ⟩) . (2.43)

At this point we can easily understand that a measurement in our chosen computa-

tional basis is going to return either H or V randomly, as |α|2 and |β|2 in eq. (2.41)

are both equal to 1/2 .

Now you may be wondering why we should use qubits if any measure - that is, all

we can acknowledge - is going to return only one of two values just as in the classical



2.3 Quantum Information 25

Figure 2.4: Linear polarizations space for a photon. Every point on the dashed circle

is a linear polarization state, and may be written as a linear combination of one of the

two bases
⊕

= {|H⟩, |V ⟩} and
⊗

= {|+⟩, |−⟩}. In this drawing we can also clearly

see the non orthogonality of the two bases.

bit case. The point is that any di�erent linear combination (i.e. superposition)

of basis states carries di�erent information; in our example, any linear polarization

(and they are in�nitely many) is a di�erent state, therefore we can in principle store

an in�nite amount of information in a qubit state. Of course whenever we perform a

measurement in any basis, the system will collapse to an eigenstate of that basis, and

there goes our information! But we should notice that thanks to unitarity evolution,

all the information stored in the superposition is somehow preserved. Furthermore,

if we have more than one qubit, the number of states our system may be in increases

exponentially with the number of qubits, thus making the amount of information

huge very soon3.

We mentioned some of the simplest ways to physically realize a qubit. Slightly

more creatively, we will see that a two dimensional system can easily be built using

phase di�erences of light pulses. This is indeed the way our secret sharing protocol

works.

Before getting there, however, we need to �upgrade� the qubit to a higher level. We

have seen that qubits are two-dimensional entities, but what about higher dimen-

sional systems?

We can in general de�ne a d-dimensional quantum information system as a qudit.

Given a computational basis {|0⟩, |1⟩, . . . , |d − 1⟩} for the qudit Hilbert space, we

3For a very comprehensive and entertaining introduction to the charms of quantum computa-

tion, look no further than [23].
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can, in analogy with eq. (2.41), write any pure state |ψ⟩ as superposition of the

basis states

|ψ⟩ =
d−1∑
i=0

ci|i⟩ (2.44)

where as usual any measurement in the computational basis will return i (that is

the eigenvalue of the state |i⟩) with probability |ci|2.
Of course working with higher dimensional systems has the advantage of carrying

more information with the same number of quantum systems. Nevertheless, while

in principle nothing forbids us from doing quantum communication with high di-

mensional qudits, things can get quite complicated on the experimental side. Insta-

bilities and ridiculously low generation rates (especially in the entanglement-based

protocols) may actually nullify the advantages the additional dimensions grant.

Getting back to our work, we dealt with the 3-dimensional version of qudits,

called qutrits. We will get into a more detailed explanation of the advantages of

this choice over qubits once we have the required knowledge.

Finally, we will now go through a short mathematical digression which may seem a

bit out of place, but it is actually of paramount importance for quantum communi-

cation security.

2.3.2 Mutually Unbiased Bases

Granted that we can express any state in a Hilbert space as a linear combination

of vectors making up a basis for that space, we move now one level higher in our dis-

cussion about quantum information. Hilbert spaces can have many di�erent bases,

therefore making our life more complicated, apparently. But this is exactly what

makes quantum communication secure. Imagine Alice preparing a secret state in

one of many bases and sending it to Bob. Eve, the mean eavesdropper, would like

to know the state Alice sent, so she intercepts and measures it. But hang on, there

is a problem! In which one of the many possible bases is she going to perform her

measurement? If she picks the right one she will get the correct result, but even

if Alice and Bob choose to implement only two bases, she is going to get a wrong

- or at least not �deterministic� - result half of the times. We will discuss about

these security issues later, but we can sense some crucial doubts here: is there a

best choice for Alice and Bob when it comes to choose bases? And if there is, how

can they get to know them? Well, the latter question is way over the level of this

dissertation (and it actually is currently an open theoretical problem), but we can

still answer the former and show some results.

The answer of course is yes, and the solution for our overcautious friends is us-

ing Mutually Unbiased Bases (MUBs). They are de�ned in the following way:
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consider a quantum system linked to an N-dimensional Hilbert space; two bases

{|e0⟩, |e1⟩, . . . , |eN−1⟩} and {|f0⟩, |f1⟩, . . . , |fN−1⟩} for this space are mutually unbi-

ased if and only if

|⟨ei|fj⟩|2 =
1

N
∀ 0 ≤ i, j ≤ N − 1 . (2.45)

Condition (2.45) can be interpreted in many ways. For sure it means that the

overlap between states belonging to MUBs is constant and independent of the states

considered. From a more �practical� point of view, it guarantees that if we prepare

a state in one basis and measure it in any other which is unbiased to the �rst one,

every outcome is equally likely. That is, no information can be obtained about a

state if the measurement is performed in the wrong basis.

The existence of a complete set of MUBs in any dimension is an open question. It

has been proved that complete sets of N + 1 MUBs exist, �rst in prime dimensions

[24] and later in any power of prime dimensions [25]. But there is no general rule

for all remaining dimensions. For example dimension 6 has been and currently is

heavily studied, with strong conjectures suggesting the existence of only three MUBs

[26].

However, the two and three-dimensional cases are well known and characterized,

and we report them here as examples.

• Two dimensions - Qubit MUBs

B1 =

(
1 0

0 1

)
B2 =

1√
2

(
1 1

1 −1

)
B3 =

1√
2

(
1 1

i −i

)
(2.46)

where every matrix Bi is a basis, and columns are basis vectors. We may

notice that B1 is the computational basis, with |0⟩ ≡
(
1
0

)
and |1⟩ ≡

(
0
1

)
. If

we consider photon polarization with de�nitions (2.42), then we can easily see

that these three MUBs correspond respectively to horizontal/vertical, diago-

nal/antidiagonal and left/right circular polarization states.

• Three dimensions - Qutrit MUBs

M1 =

1 0 0

0 1 0

0 0 1

 M2 =
1√
3

1 1 1

1 ω ω2

1 ω2 ω


M3 =

1√
3

1 ω ω

ω 1 ω

ω ω 1

 M4 =
1√
3

 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1


(2.47)

with ω = e
i2π
3 .
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It is clear that these de�nitions satisfy condition (2.45). For example, naming vectors

in bra-ket notation as |Mi(j)⟩ with j = 0, 1, 2 indicating the matrix column, we can

calculate the squared inner product of a vector from M2 with one from M3:

|⟨M2(2)|M3(2)⟩|2 =
1

9

∣∣∣∣∣∣∣∣
(
1 ω2 ω

)ω1
ω


∣∣∣∣∣∣∣∣
2

=
1

9

∣∣ω + ω2 + ω2
∣∣2 =

=
1

9

∣∣∣e i2π
3 + 2e

i4π
3

∣∣∣2 = 1

9

∣∣∣∣∣−3

2
+ i

√
3

2

∣∣∣∣∣
2

=
1

3
.

(2.48)

We will see how the protocol we used for quantum communication takes advantage

of three dimensional MUBs and their unique properties.

At this point we are ready to introduce the subject which this experimental work

has focused on, that is quantum cryptography.



Chapter 3

Quantum Cryptography

3.1 Quantum Key Distribution

Quantum cryptography is the extremely fascinating �eld that studies innovative

ways to solve classical cryptographic problems by using special features uniquely

possessed by quantum mechanical systems. Its applications range from military se-

curity to card games [27]. This experimental work focused on the so-called quantum

secret sharing (QSS) problem, which will be introduced in the following of this chap-

ter. Indeed we shall �rst concentrate on the most studied and developed problem in

the quantum cryptography �eld, that is quantum key distribution (QKD). We will

see that QSS has many similarities with QKD, and can almost be interpreted as a

generalization to many users.

We mentioned in sec. 1.1.2 that commercial - but also military - cryptographic

protocols are currently based on public-key cyphers, and we pointed out in an almost

arrogant way that these methods are not secure. Well, quantum mechanics not only

o�ers an unconditionally secure way to encrypt private information, but it also

allows us to do it through a public (i.e. not protected) channel. Let us explain

this. The main weakness of any classical cypher is the secret key exchange: when

Alice sends her decrypting key to Bob, for example by e-mail of phone, she has no

way to be sure that Eve has not intercepted the transmission and is not aware of

the key, unless maybe if she personally delivers it to Bob. But suppose that Bob

is the US president and Alice is his best secret agent acting undercover somewhere

in a very hostile country. How can they possibly meet? All it takes for them to

solve this problem is some hundred-thousands of dollars worth of optical equipment

- which is surely no problem for them - and a good �ber optical network.

Apart from this unlikely (or maybe not that much) scenario, the crucial point is that

quantum cryptography is not focused on the encryption part of a secure communi-

cation, but rather on the key distribution process. Once Alice has sent her secret

29
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key to Bob by means of a secure QKD protocol, they can use for example a one-time

pad method, which has been proved to be unbreakable (see sec. 1.1.1 and [8]), to

encrypt their messages, and be comfortably positive about their shared secrets.

But how does QKD works precisely, and why is it unconditionally secure?

While classical cryptography needs very special (and often expensive) precautions

to make sure that no eavesdropper is intercepting the secret key, thus keeping the

communication channel secure, QKD o�ers a failsafe way to know easily when some-

one is listening to our communications, therefore letting us exchange information

through public channels while being sure that no one is listening.

What basically happens is that Alice sends a key to Bob through a public unpro-

tected channel, and if this is intercepted by Eve then quantum mechanics assures us

that Alice and Bob get to know it, thus discarding the key and creating a new one.

As soon as they manage to have a shared secret key, they can encrypt and decrypt

messages.

On a slightly more physical level, what prevents Eve from eavesdropping without

being unmasked is the fact that any measurement on a quantum state a�ects the

state itself, i.e. it projects the state on the basis the measurement is performed in,

thus resulting in the system being in a state belonging to that basis, not necessarily

the same as before the measurement (see sec. 2.1.2). Technically, Alice and Bob are

sure that Eve cannot copy a state without modifying it thanks to the no-cloning

theorem we proved in sec. 2.1.4. Of course this is true provided that there is only

one copy of the system transmitted between the users. We will get into more details

on the security of QKD later.

We should point out that there are two basic types of QKD, one involving entan-

gled particles and the other using single particles. While the former may be more

fascinating from a fundamental point of view, here we are going to present only sin-

gle particle schemes, as these are incredibly simpler to understand and implement,

and far more common in the �eld. Moreover, we will discuss exclusively photon

based QKD, which is basically the only type deeply studied and implemented.

We will now introduce an extremely simple protocol for QKD from which most of the

currently realized systems are developed. It is based on qubits encoded in photon

polarization.

3.1.1 BB84 Protocol

Early proposals to exploit quantum mechanics in order to establish secure cryp-

tography date back to the early '70s, when Stephen Wiesner submitted his �Conju-

gate Coding� paper to the IEEE Transactions on Information Theory, unfortunately

only to see it rejected. It took some more years and lots of discussions between that
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same physicist and two of his friends, Charles Bennett and Gilles Brassard, before

the �rst protocol for QKD was invented and published1 in 1984 [1].

The original scheme was based on photon polarization encoding, and this is how we

are going to present it as it is the simplest way to understand the principles behind

it.

The protocol uses qubits encoded in two MUBs, for example we choose the horizon-

tal/vertical and the diagonal/anti-diagonal bases, that is matrices B1 and B2 in eq.

(2.46). Looking at the notation we used in �g. 2.4, we can rename vectors in a more

convenient way using Dirac's notation(
1

0

)
≡ |H⟩

(
0

1

)
≡ |V ⟩

1√
2

(
1

1

)
≡ |H⟩+ |V ⟩√

2
≡ |+⟩ 1√

2

(
1

−1

)
≡ |H⟩ − |V ⟩√

2
≡ |−⟩ .

(3.1)

From these de�nitions, and from the fact that we are using MUBs, it is clear that

states belonging to di�erent bases are not orthogonal to each other. We will see that

this is exactly where the security comes from.

Anyway, back to the protocol, Alice and Bob want to establish a binary key, so they

need to agree on each vector representing either �0� or �1� for example as in tab.

3.1.

basis⊕
: horizontal/vertical

⊗
: diagonal/anti-diagonal

bit
0 |H⟩ |+⟩
1 |V ⟩ |−⟩

Table 3.1: Given the two mutually unbiased bases used in the protocol, one vector

from each basis represents either 0 or 1.

At this point, having established a public quantum channel (e.g. optical �ber

or free space) and a public classical channel, as phone or email, Alice and Bob are

ready to take the following steps:

1. Alice randomly generates a bit and randomly chooses one of the two bases.

The randomness of these choices is of course crucial if she wants her data to

be unpredictable. Depending on the outcomes, she prepares a photon in the

1It actually took a meeting in the pool af a Caribbean posh hotel, by the beach in San Juan,

as Brassard himself explains in a very entertaining paper on the history of quantum cryptography

[28].



32 Quantum Cryptography

correct polarization state according to tab. 3.1, and she sends it to Bob trough

the quantum channel after registering its polarization and time of departure.

So, for example, if she randomly generated (1,
⊕

), she will send a vertically

polarized photon (i.e. |V ⟩).

2. Bob receives the photon and, unaware of the basis Alice encoded it in, he

randomly picks either
⊕

or
⊗

and performs a measurement in that basis.

The outcome will be unconditionally correct (save for experimental errors or

eavesdropping) if he happens to choose the same basis as Alice, otherwise

thanks to the de�ning property (2.45) of MUBs the outcome will be random.

He �nally registers time of arrival, measurement basis and outcome.

3. After having checked that traveling times are constant (and possibly make

sense too), Alice and Bob share through the classical channel their basis

choices: they discard every run in which they picked di�erent bases, and keep

the rest. This process will result in them having strings of bits which will be

in average half the number of runs, as Bob will randomly choose the wrong

basis half of the times. During this process only the basis choices are revealed,

while the vector choices and measurements (i.e. the bit values) are kept secret.

4. Bob and Alice now perform a security check on the sifted key: they share a

statistically relevant amount of bits and compare their values; if no eavesdrop-

ping happened (and the experimental setup was perfect) the shared bits will

be totally identical and the two friends can be sure that Eve has no informa-

tion about the key. On the contrary, if there are errors in the sample then

they can argue that Eve has probably gained some information, in which case

they just discard the key and run the whole process again from the �rst step,

possibly on a di�erent quantum channel.

5. If the key generation was successful, they can apply for example a one-time

pad method to encrypt their message with the key they have just established,

and share it through the classical channel, being con�dent that Eve does not

possess the key to decrypt it.

We can see a practical example of a key generation process following the BB84

protocol in tab. 3.2.

This protocol is extremely simple and easy to implement in a lab. However, we

should mention some common sources of errors a�ecting any real QKD implemen-

tation:

• Random deletion of photons: this source of errors and problems a�ects

every implementation. It frequently happens that while Alice has sent a pho-
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Alice

bit 0 0 1 0 1 1 1 0 1

basis
⊕ ⊗ ⊗ ⊗ ⊕ ⊗ ⊕ ⊕ ⊗

state |H⟩ |+⟩ |−⟩ |+⟩ |V ⟩ |−⟩ |V ⟩ |+⟩ |−⟩

Bob
basis

⊕ ⊕ ⊗ ⊕ ⊕ ⊗ ⊗ ⊕ ⊕
outcome 0 1 1 0 1 1 0 0 1

basis check ✓ × ✓ × ✓ ✓ × ✓ ×
sifted key 0 1 1 1 0

error check? yes no yes no no

secure key 1 1 0

Table 3.2: Secure key generation with BB84 protocol. In this case there has been no

eavesdropping.

ton, Bob registers no click in any detector, as if the photon had never left the

source. This may be caused by absorption or scattering by the setup, or by

detection e�ciencies. Depending on the speci�c con�guration, the attenuation

from the single photon source to the detectors may be of many dozens of deci-

bels, and detection e�ciency usually goes from 10% to 70% with commercially

available photodetectors. There factors however, while considerably reducing

the key generation rate, are innocuous from the security point of view, as Alice

will simply discard any run which Bob has not measured.

• Birefringence and noisy quantum channel: this is a serious problem for

protocols using polarization, as standard commercial �bers are birefringent,

thus they introduce changes in the polarization during the photon transmis-

sion. This is why most protocols nowadays use phase encoding for which

birefringence is not a big problem. We shall see anyway, that these other type

of implementations su�er from interferometric instabilities and require other

countermeasures.

• Detector dark counts: this problem is caused by thermal detections in

photodiodes. Every time a photon gets lost in the transmission, it is still

possible for Bob to register a click in a random detector because of the thermal

excitations inside the photocathode. This problem becomes really important

for low-e�ciency detectors and highly attenuating setups, and even more if

gated biased photodetectors are used, as in our case. The solution is to reduce

the attenuation as much as possible and �nd a good compromise between dark

counts and e�ciency.

All the aforementioned problems may be solved by using error correction algorithms,
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whose �nal e�ect is a reduction of the key length, or equivalently, of the generation

rate.

But what about security against external threats? Let's see how Eve could use

her in�nite budget to hack this - and actually almost any other - QKD protocol.

3.1.2 Security against eavesdropping

Many di�erent types of attacks have been invented and subsequently neutralized

during the years, thanks to the unstoppable creative power of scientists. We have

said more than once that QKD is a priori unbreakable because of the fundamental

principles of quantum mechanics (and thus nature which seems to adapt pretty well

to this theory) that lead to the no-cloning theorem. Unfortunately, theories are

always approximations of real-world experiments, or rather their ideal counterparts.

In fact, even if Eve cannot attack the principles of quantum mechanics, she can

surely exploit any technological and experimental weakness in Alice's and Bob's

setups. For this reason when we introduced Eve in sec. 1.1.2, we said that she has

access to any feasible technology - and then some - to be bought with unlimited

money.

We should say from the beginning that this work has not taken care of all the

countermeasures against the technological attacks we are now going to present, as

they usually consist in some additional equipment or error correction algorithm, and

this work has been focused mainly on a proof-of-principle of the proposed protocol.

Nonetheless, it is important to have an idea of the problems any real-world QKD

implementation has to face.

• Intercept and resend: this is the simplest type of attack Eve can perform.

She basically cuts the transmission line halfway between Alice and Bob and

measures the state. She then sends to Bob a new system in the same state

she got from the measurement. As she is not aware of which basis the state

she receives is encoded in, she will choose the wrong basis 50% of the times,

in which cases if Bob measures the state in the same basis Alice encoded it

in, he will get the state wrong in half the runs. The total error introduced by

Eve is then in average 50%× 50% = 25%. This attack can be easily detected

in the error checking part of the protocol (step number 4). Actually, Eve

could use better bases for the attack and get help from others (in a so-called

coherent attack). It has been proved that the minimum error introduced by

the optimal cloning attack to a QKD protocol is 11% in the qubit case and

15.95% if qutrits are used [4]. If Alice and Bob obtain an error rate lower than

these thresholds, they are sure that no such attack has been performed.
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• Photon number splitting: in real QKD implementations weak pulsed lasers

attenuated much below the single photon level are used. Usually average

intensities as low as 0.1 photons per pulse are used, but as the photon number

distribution is Poissonian (see sec. 2.2.3), there is always a small probability

that more than one photon is sent in one pulse. If Alice sends two photons,

Eve can split them, keeping one in a quantum memory and sending the other

to Bob, and then measure it after the bases announcement. There are many

countermeasures against this attack. The best solution would certainly be to

use a true single photon source. Even though modern implementations of these

sources still have low generation rates, experiments have been run with them

[29], thus setting high expectations for their future use. The best solution

is employing decoy states, which consist in randomly sending pulses with a

di�erent average number of photon. Successful realizations of these protocols

have been attained [30][3].

• Man-in-the-middle: this is a weakness that QKD shares with any other

cryptographic protocol. In fact, nothing guarantees to Alice that the person

she thinks is Bob actually is...Eve! The solution to this problem requires the

step of identity veri�cation, for which well-known classical procedures exist

and can be applied. However, they all require a previously shared secret key,

for which it may be necessary for Alice and Bob to meet face to face una

tantum before starting their secret sharing.

Finally, we should say that other attacks exploiting particular con�gurations have

been carried out, but they can all usually be solved by means of some setup modi-

�cations or improvement.

In conclusion, the BB84 protocol looks extremely useful and well-built for QKD,

but it has one major �aw in its polarization implementation, that is the birefringence

problem we discussed above. A possible, and actually almost universally accepted,

solution is to use instead an interferometric setup with phase encoding.

3.1.3 QKD with phase encoding - the Plug&Play con�gura-

tion

In order to implement a real-world QKD system, we need it to work over long

distances. For example, we can think of running a protocol over telecommunication

optical �bers, which means over a hundred of kilometers between �repeaters�. These

commercial �bers are not polarization maintaining and due to environmental changes

they are strongly - and randomly - birefringent. Thus polarization is not the way to

go in the real-world scenario.
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Figure 3.1: Qubit QKD interferometric setup with phase encoding (φA, φB). The

source is either truly single photon or an attenuated pulsed laser.

A good solution is a somehow slightly di�erent realization of the BB84 protocol,

with interferometry and phase encoding instead of polarization states. Suppose

Alice and Bob use an interferometric setup as in �g. 3.1. We know from sec. 2.2.4

that the measurement outcome depends on the relative phase between the two arms

pulses, namely ϕ = |φA − φB| in our �gure. But then we can easily establish two

MUBs and perform the BB84 protocol just as in the polarization case. For example

we can take the angles {0, π} as one basis and {π
2
, 3π

2
} as the other. Whenever Alice

and Bob both choose the same basis the total phase di�erence ϕ will be a multiple of

π, thus giving a click in a de�nite detector with probability 100%, otherwise ϕ = π
2

or ϕ = 3π
2
, thus giving random detections as we can see from eqs. (2.38) and (2.39),

just as in the polarization case when Bob measures in the wrong basis. Actually,

exactly as in that case, Bob only needs to choose the basis, that is, choose between

angles 0 and π
2
. You can �nd all the possible cases in tab. 3.3, where we supposed

that detector 0 and 1 correspond respectively to bit values 0 and 1.

This version of the BB84 protocol is de�nitely the most common in the QKD

Alice's bit 0 0 1 1 0 0 1 1

φA 0 0 π π π
2

π
2

3π
2

3π
2

φB 0 π
2

0 π
2

0 π
2

0 π
2

ϕ = |φA − φB| 0 π
2

π π
2

π
2

0 3π
2

π

Bob's outcome 0 random 1 random random 0 random 1

Table 3.3: BB84 protocol with phase encoding. The MUBs are {0, π} and {π
2 ,

3π
2 }.
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�eld and it has been successfully applied both in the lab and in commercial system.

However, setups as the one in �g. 3.1 are not what is really used by scientists

and engineers all over the world. In fact, if we imagine Alice and Bob to be a

hundred kilometers apart, these setups would require to balance ridiculously long

interferometers, which is in practice impossible. The best solution to this problem

is to use an automatically balanced interferometer, as in �g. 3.2.

In this case, thanks to the polarization beam splitter (PBS) and the Faraday mirror

(FM) the two pulses go through exactly the same lengths - actually even the same

physical �bers - but in opposite traveling directions. Let's see how this setup works:

a light pulse (for simplicity we suppose it is horizontally polarized) gets splitted by

the 50:50 �ber coupler (FC). The half going through the short (S) arm is transmitted

without any change by the PBS, while the long (L) arm pulse is rotated by 90

degrees. During the way to the FM both Bob's and Alice's phase modulators (PM)

are o�. The FM then re�ects back the two pulses while transforming them into

their orthogonal polarization states, that is vertical for the �rst one and horizontal

for the second one. Now the attenuator (ATT) lowers their intensities to the single

photon level and secure encryption can take place. Alice modulates the �rst pulse

while doing nothing to the second one. Then at the PBS the early pulse, which is

vertically polarized, gets re�ected into the L arm and rotated back to horizontal,

while the late pulse, already horizontally polarized, simply goes through the PBS.

Now Bob can modulate the early pulse - which is traveling along the L arm - and

at the FC the two halves recombine and interfere just like we want, having traveled

exactly the same paths.

There have been many successful realizations of QKD experiments with this type of

con�guration, over dozens of kilometers of �ber [3][31].

Having seen the most common realization of QKD with qubits, we shall now

Figure 3.2: Plug&Play QKD setup with an automatically balanced interferometer.

Detailed description in sec. 3.1.3.
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move on to the very similar qutrits case.

3.1.4 QKD with qutrits

Knowing how the BB84 protocol works in the easiest case, we can now describe

an �upgraded� version of the same type of protocol for the three dimensional case,

that is for qutrits. This upgrade has two main advantages over the standard qubit

version

• Denser coding: of course having three possible outcomes from every mea-

surement is better than two. To understand why, just compare any big number

written in binary system with the same number in base three!

• Enhanced security: this cannot be so easily understood. The main point

is �how good� Eve can clone a generic state used in the protocol. It turns

out that an optimal cloning machine gets worse with increasing dimensions

[4], and as we have already mentioned in sec. 3.1.2, the upper boundary for

qutrits error rate (QTER) is 15.95% for coherent attacks (where Eve keeps

many photons in memory and measure them at the same time), while it is

11% for qubits.

An other potential advantage is the possibility to use more MUBs, as their number

increases for higher dimensions, at least for power of prime ones (see sec. 2.3.2).

This of course makes Eve's life harder, as she has to guess between more basis, but it

also decreases the number of bits that pass the key-sifting part, as Bob will measure

in the right basis less often too, thus causing lower generation rates.

Anyway, QKD for qutrits works very similarly to the qubits case. Photon polariza-

tion cannot be used this time, since polarization state space is two dimensional, but

phase encoding can instead be adopted. The generalization of the BB84 protocol to

three dimensions consists in the two users working with two of the three dimensional

MUBs in eq. (2.47). In analogy with �g. 3.1, the simplest setup they can use is

reported in �g. 3.3.

Choosing for example vector |M2(1)⟩ =
(
1 ω ω2

)T
means adding phases φ1 =

ω = e
i2π
3 to the pulse in arm 1 and φ2 = ω2 = e

i4π
3 to the pulse in arm 2. As we

can see from eqs. (2.40), the �nal probability to have a click in one detector will be

unitary if Alice and Bob chose the same basis, otherwise detection will be random.

We should comment again that a setup as in �g. 3.3 is quite inconvenient because

of interferometric instabilities. Unfortunately, no automatically balanced interfer-

ometer can be built for the three dimensional case (as there must be three di�erent

paths), but there are much better con�gurations than this, as we will see for example

when we explain our own setup.
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Figure 3.3: Qutrit QKD setup. The interferometer must me carefully balanced in

order to have good visibilities. For this reason (and because it needs three �ber

channels between Alice and Bob) this is not the best setup, however it is useful to

understand the basics of qutrit QKD.

3.2 Quantum Secret Sharing

In this case, a somehow classical example is: suppose there is group of high

commanders in a very belligerent country that is in charge of an extremely powerful

nuclear arsenal (hopefully it won't ring any bell). Now, what happens if one of these

men one day feels particularly irritated and decides to launch a missile against some

opposite group/organization? For sure the launch will need at least a password

from each commander (here is an example of secret sharing), but then how can we

be sure that this lunatic had not intercepted all the other's passwords during the

initial distribution process and kept them hidden knowing that a bad day would

have eventually come?

Secret sharing protocols aim at solving these kind of problems by splitting a secret

among di�erent users, in such a way that one or more of them (but not all of course)

cannot reconstruct it without the collaboration of the others.

There are classical solutions for these issues, but as you may guess they all require

some secure communications between users, therefore being susceptible to eaves-

dropping attacks. But wait a minute! We know that quantum communication can

do that! This problem is somewhat similar to the key distribution problem then,

except that in this case there usually is a distributor splitting the secret and giving

one part to each of many users, and this distributor has to take care not only of any

external eavesdropper, but also of one or more possible traitors inside the sharing

group.

Contrary to the QKD case, the �rst papers reporting QSS protocols exploited entan-

glement [32, 33]. Nevertheless, QSS was successfully carried out later using only one

particle with interferometry and phase encoding [34, 3]. All these experiments have

been realized with qubits. After an initial explanation of the two dimensional phase

encoding case, we will present the protocol for qudits we used and our particular
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Figure 3.4: Plug&Play QSS setup using qubits. In this example there are RN parties.

implementation.

3.2.1 QSS with qubits

The QSS method for N users we are going to present is based on the BB84

protocol we have seen in sec. 3.1.1. Our exposition will basically report the protocol

introduced in ref. [3], as per the setup in �g. 3.4.

1. As in the BB84 protocol, a qubit is initially prepared in the state

|+⟩ = 1√
2
(|0⟩+ |1⟩) (3.2)

by the �rst user R1
2.

2. Each user Rn from R1 to RN−1 acts sequentially on the received qubit with

the unitary operator

Û(φn) = |0⟩⟨0|+ eiφn |1⟩⟨1| (3.3)

where φn is one of four angles divided in the two mutually unbiased bases

{0, π} and {π
2
, 3π

2
}. Sounds familiar? These are exactly the same setting

applied to the same qubits of the BB84 QKD protocol described in sec. 3.1.1.

And precisely as in that case,

3. RN chooses only the basis, that is he picks either φn = 0 or φn = π
2
. The

qubit will �nally be in the state

|ψN⟩ =
1√
2

(
|0⟩+ ei

∑N
n=1 φn |1⟩

)
(3.4)

2Actually in a Plug&Play setup as in �g. 3.4 and [3], RN both prepares and measure the qubit.

However, nothing changes in the mathematical and physical properties of the protocol.
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In the end he measures the qubit in the
⊗

= {|+⟩ = 1√
2
(|0⟩+ |1⟩) , |−⟩ =

1√
2
(|0⟩ − |1⟩)} basis. Again, very similarly to the BB84 case, the probabilities

of the outcomes will be

1

4
|⟨+|ψN⟩|2 = P (D0) =

1

2
(1 + cos

N∑
n=1

φn)

1

4
|⟨−|ψN⟩|2 = P (D1) =

1

2
(1− cos

N∑
n=1

φn) .

(3.5)

as per eqs. (2.38) and (2.39).

4. The parties reveal in reverse order the bases they used on a public channel.

From this information they know which runs gave a unitary probability for one

detector and zero for the other (we call these deterministic runs) and which

returned random results. These second type of runs get at this point discarded,

and in average half of the measurements will remain (as in the key-sifting part

of BB84).

Whenever the run is deterministic, N − 1 users can calculate the remaining

party's phase by sharing their own setting among each other, thus achieving

the goal of secret sharing.

We should point out that the reverse order in the basis revealing part is due to

security reason, so that any cheating from user Rn may become harmless.

Finally we would like to mention a crucial advantage of the single particle protocols

over the entanglement ones, that is scalability. In fact, suppose we have ten users:

if Alice wants to run an entanglement-based QSS protocol, she needs to generate

ten entangled systems for every run and perform at least ten measurements at the

same time. This is gonna result in a ridiculously low generation rate, if any at all.

If you also consider the imperfect (euphemistically speaking) detection e�ciency η,

the rate will decrease as ηN because every user adds his own detectors. In the single

particle version instead, adding users simply means having higher attenuation, which

is not such a big problem, and can in principle be solved with better equipment.

Moreover, the number of detectors is constant, and such is detection e�ciency.

We will now present a more general protocol for higher dimensional QSS.

3.2.2 QSS with qudits

QSS has been experimentally achieved both with entanglement-based [33] and

single particle [34, 3] protocols. However, these implementations employed qubits.

Using higher dimensional systems gives the same advantages we talked about in the
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QKD case (see sec. 3.1.4), namely denser coding and higher security bound-

aries. It is interesting then to explore the possibility of higher dimensionality for

QSS methods. Therefore, we are now going to present a generic protocol valid for

any prime number dimension except for two, which we have already explained in

the previous section anyway. This scheme has been proposed in [6], and this work

is part of its experimental realization.

First, we need to introduce few mathematical objects, some new and others simply

written in a more convenient notation.

As you may guess at this point, the protocol is going to use MUBs. We can write ev-

ery basis as {|sjl ⟩}, where j = 0, ..., d−1 3 speci�es the basis and l = 0, ..., d−1 labels

the vector in basis j. We can then remind the MUBs de�ning condition rewritten

in a slightly more precise way than eq. (2.45), that is∣∣∣⟨sjl |sj′l′ ⟩∣∣∣2 = 1

d
(1− δj,j′) + δj,j′δl,l′ , (3.6)

while all the d MUBs vectors can be written as

|sjl ⟩ =
1√
d

d−1∑
k=0

ωk(l+jk)|k⟩ (3.7)

where ω = e
i2π
d . This de�nition is consistent with eq. (2.47).

Now we introduce two new unitary operators whose combined actions on any MUB

vector |sjl ⟩ can return any other vector |sj
′

l′ ⟩ in the MUBs set, and no other vector

outside this set.

The �rst operator is

X̂d =
d−1∑
m=0

ωm|m⟩⟨m| , (3.8)

and by applying it on a generic vector in our set we get

X̂d|sjl ⟩ =
1√
d

d−1∑
m=0

ωm|m⟩⟨m|
d−1∑
k=0

ωk(l+jk)|k⟩

=
1√
d

d−1∑
k=0

ωk((l+1)+jk)|k⟩ = |sjl+1⟩ .

(3.9)

We have shown that the action of X̂d is to increase the vector index, thus by applying

it several times to any state we can get any other state in the same MUB.

3It is worth noticing that we are using only d MUBs, even though we know (see sec. 2.3.2)

that in prime d dimensions we have d + 1 MUBs. This happens because the computational basis

is of no use in this protocol.
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The second operator as you may guess will change the basis, that is index j. We

de�ne it as

Ŷd =
d−1∑
m=0

ωm2 |m⟩⟨m| (3.10)

and its action is

Ŷd|sjl ⟩ =
1√
d

d−1∑
m=0

ωm2 |m⟩⟨m|
d−1∑
k=0

ωk(l+jk)|k⟩

=
1√
d

d−1∑
k=0

ωk(l+(j+1)k)|k⟩ = |sj+1
l ⟩ .

(3.11)

As we anticipated, Ŷd increases the basis index j, and its multiple application will

give us any basis in the MUBs set.

Therefore, we see that we can easily map |sjl ⟩ into any other vector |sj
′

l′ ⟩ just by

combining the actions of these two operators elevated to some powers, while being

sure that we will obtain no vector outside our set.

We are now ready to present the protocol, which involves N users that act sequen-

tially on the same qudit system.

1. R1, the distributor, prepares the qudit system in the initial state

|ψ0⟩ = |s00⟩ =
1√
d

d−1∑
k=0

|k⟩ . (3.12)

2. Sequentially, every user Rn with n = 1, ..., N − 1 generates two independent

random numbers xn, yn ∈ {0, ..., d − 1}, acts on the received qudit with the

transformation

X̂xn
d Ŷ yn

d |ψn−1⟩ = |ψn⟩ (3.13)

and �nally forward the obtained qudit to the next party, that is Rn+1.

3. The last user, RN , applies X̂
xN
d Ŷ yN

d , getting the �nal state

|ψN⟩ =
N∏

n=1

X̂xn
d Ŷ yn

d |ψ0⟩ =
1√
d

d−1∑
k=0

ω
∑N

n=1(kxn+k2yn)|k⟩ . (3.14)

He then performs a measurement in the basis {|s0l ⟩}, and announces on a

public channel the outcome a ∈ {0, ..., d− 1}, which at this point none of the

parties knows if it is deterministic or random.

4. All the users R2, ..., RN−1, in random order, announce their yn. R1 and RN do

it after everyone else, again in random order. This is important for security

reasons.
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5. Here comes the usual key-sifting part: if and only if the condition

N∑
n=1

yn = 0 mod d (3.15)

is satis�ed, then the �nal state |ψN⟩ was an eigenstate of the measurement

operator, that is, |ψN⟩ ∈ {|s0l ⟩}. The run is then valid and equation

N∑
n=1

xn = a mod d (3.16)

produces the shared secret, that is the set {xn}. This happens averagely in 1
d

of the runs. If, instead, condition (3.15) is not satis�ed, the run is discarded.

6. As in every other protocol we have analyzed, all users announce on the public

channel a statistically relevant part of their choices for xn, in order to check

inconsistencies with eq. (3.16).

We can at this point de�ne a qudit error rate (QDER) as

QDER =
Cw

Cr + Cw

=
Cw

CTOT

(3.17)

where Cr is the number of valid runs which produced detections in the right

output (i.e. eq. (3.16) is satis�ed as expected), Cw the ones that violated eq.

(3.16), by causing detections in a wrong output, and CTOT is obviously the

total amount of valid runs. This de�nition represents the error rate in the

communication, and is commonly used in literature [5].

Back to the protocol, if the error rate is below the security threshold, than

the shared secret is secure and at least N − 1 parties need to collaborate in

order to solve eq. (3.16), thus �nding out the remaining user's choice of xn
and reconstructing the whole secret {xn}.

We should point out once more that the single particle has the advantage of

being highly scalable with respects to the entanglement version, because of course

it doesn't require any entangled-particles generation and the number of detectors

is constantly d, thus making detection (in)e�ciency independent of the number of

users.

Security of the protocol

We can basically have two di�erent types of attacks:

• Intercept and resend: this is the same threat we have explained in sec. 3.1.2

for the QKD case. Exactly as in that protocol, if the QDER calculated in step
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6 is lower than a secure threshold value, than the parties can safely assume

that this attack has not been performed, or was not successful. We should

point out again that higher dimensions have more relaxed security conditions

[4].

The other attacks we described for QKD (namely photon number splitting and

man-in-the-middle) have the same consequences and solutions in QSS.

• Cheating parties: this security threat is characteristic of secret sharing

schemes. Suppose one of the users would like to cheat and gain some in-

formation on other users' choices of xn. A potentially dangerous way to do

this could be by storing the state he receives from the previous user in a quan-

tum memory and send instead one of two entangled qudits, while keeping the

other [35]. If in step 4 every other user announces his yn before our cheater,

then he could gain some information without being detected, such that by

collaborating with other cheating users, a subset of less than N − 1 parties

could reconstruct the whole secret.

Unfortunately for the cheater, the random way users announce their yn pre-

vents this possibility.

Security is instead not guaranteed if more than one cheater collaborate. How-

ever even in this case the probability for a successful attack can be made

arbitrarily small by running the protocol more times. For example, it can be

shown [6] that in the worst case scenario where there are N − 2 collaborating

cheaters, 35 valid runs give a successful attack probability of 0.001 for N = 11.

We will see in the following chapter how this protocol has been experimentally

applied to a three dimensional case, therefore proving that it could be implemented

in order to achieve secret sharing.
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Chapter 4

The Experiment

4.1 Setup and Equipment

In sec. 3.2.2 we have presented, theoretically, a protocol for an innovative ap-

proach to secret sharing, for any number of parties and in d dimensions (with d

any prime number di�erent from two). This chapter will discuss our experimen-

tal implementation of a three dimensional (i.e. qutrits) version of that proposed

scheme: it will be shown that, save for some (reasonable) technical limitations, the

system produces the expected results with error rates that are well below the secu-

rity thresholds.

The technical problems mentioned above are due to the particular experimental

realization of the setup, and will likely be solvable by future developements.

We start this chapter by presenting the experimental setup we built, pictured

in �g. 4.1. It is a three arms Mach-Zehnder-like interferometric system

completely realized with optical �bers. The core or this con�guration are two 3x3

�ber splitters (usually called tritters). Along the tritters arms and in every user's

station (see �g. 4.1), relative phases can be actively controlled by lithium niobate

electro-optic phase modulators (PMs) driven by pulse generators. Thus, we can

precisely govern the interference pattern at the setup outputs. The whole system

is handled by computer software written in LabVIEW code. The con�guration is

Plug&Play-like (see sec. 3.1.3), in the sense that there is a mirror after the tritter

system that re�ects light back to the single photon detectors. This way, by a precise

timings combination (see �g. 4.2), the pulses going through the long and short

arms �exchange� paths in the way back, while the middle pulse travels through the

medium arm twice. The main advantage is that, since there is no known way to

build a true Plug&Play three-arms interferometer, at least two of them - i.e. the

long and short ones - are automatically balanced, limiting the �manual� balancing to

the medium arm only. Other standard �ber components employed are a circulator,

47
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Figure 4.1: Setup used in this work. The components are: digital attenuator (ATT),

circulator (CIR), two tritters (TRIT1 and TRIT2), phase modulators (PM), long and

middle arms delays (respectively DLL and DLM), polarization controller (PC), Quan-

tum Composer pulse generator (QC), P400 pulse generator (P400) and three single

photon detectors D0, D1 and D2.

a polarization controller and of course �ber connectors. The photon source is a 1550

nm externally triggered diode laser strongly attenuated to single photon level by a

variable attenuator.

All the �bers except for a long delay line and the mirror are polarization maintaining,

and only polarization maintaining arms of the tritters have been used.

We will now proceed with a more detailed walk through of the setup and a short

description of the main components. In the following section we will describe the

protocol presented in sec. 3.2.2 adapted to our con�guration, and from a more

experimental point of view.

After the desired transformations are set in the LabVIEW software, the PC

sends them to an FPGA card, that triggers the Quantum Composer pulse generator

(QC) and the P400 pulse generator (P400). The FPGA card also sets clock and

frequency of every run. The QC then triggers the laser source. The pulse gets

attenuated by the digital attenuator (ATT) enough to have 0.1 photons per pulse

right after Charlie's station, and goes trough the circulator (CIR) and to the �rst

tritter (TRIT1), where it is splitted in three. The pulse in the short (S) arm is our
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Figure 4.2: Pulses order at the interferometer output. Every square is a pulse, and its

colors encode the arms the pulse has gone through, where red=short, green=medium

and blue=long. For example, the square represents a pulse that has traveled through

the long arm in the way in and the short arm in the way out. Only the middle

(composite) pulse is of our interest, since it contains the whole qutrit.

|0⟩, the one in the medium (M) arm is |1⟩ and in the long (L) arm we have |2⟩.
Delays DLL and DLM are respectively equal to (63.40± 0.05) ns and (126.75± 0.05)

ns.

After the second tritter (TRIT2) the three pulses go through the long single mode

delay line ((244.02 ± 0.05) ns) which changes their polarization from horizontal

to elliptical. Since the phase modulators (PM) have an horizontal polarizer at the

output, a polarization controller (PC) after the long delay line changes polarizations

back to horizontal, and the pulses get to the mirror and re�ected. During the whole

way to the mirror, all the PMs are o�.

After the re�ection, modulation starts: the FPGA card triggers the P400 that drives

Charlie's PM �rst and then Bob's PM, according to the parameters we set in the

software and at the perfect timing for every pulse. Each one of them is then splitted

in three again by TRIT2 and at this point the QC drives the voltages in Alice's

PMs. The three pulses arrive at TRIT1 at the same time and interfere. The QC

now triggers the gated detectors that send a TTL pulse for every detection to the

FPGA card that counts them.

It is worth noting that since the three pulses arriving at TRIT2 on the way back get

splitted in three again, in the end we will have �ve composite pulses coming out of

the interferometer, as in �g. 4.2.

This �almost-Plug&Play� con�guration has one main advantage over a Mach-

Zehnder like setup, which would have an exact copy of Alice's tritter system at

Charlie's station to make the pulses interfere: in our setup we only need DLL =

2DLM in order to balance the interferometer. An other tritter system would need



50 The Experiment

Alice
PM3

PM2
DLL

DLM

delay

line

Bob

PC

Figure 4.3: Photo of the setup in an early stage. For acronyms explanation see �g.

4.1

two more delay lines exactly identical (up to 1 cm - or 0.05 ns) to DLL and DLM.

In �g. 4.3 we reported a photo of the experimental setup during its realization.

4.1.1 Passive Optical Components

Optical Fibers

While most commercial and industrial �bers are multimode (MMF), in the quan-

tum optics research �eld an other type is more interesting, i.e. single mode �bers

(SMF). These have a much thinner core (see �g. 4.4), and allow only one guided

mode for signals having a wavelenght close to the operational design (i.e. 1550 nm

in our case).

A big problem with using �bers in the lab is silica birefringence. In fact, every

Figure 4.4: Longitudinal sections of di�erent types of commercial �bers. The pictured

PMF is called Panda con�guration PMF, and it is the one we used throughout the

whole setup.
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�ber has fast and slow axes, and since their alignment depends on the stress induced

on the core, polarization cannot be practically controlled. To solve this problem, a

special kind of SMF has been invented, that is polarization maintaining �ber (PMF).

PMFs have carefully localized defects (in the form of plastic rods aligned with the

�ber cylindrical axis) in the cladding that cause strong stresses to the core, thus

making external disturbances mainly negligible (see �g. 4.4). However, PMFs really

preserve polarization only along the slow axis, therefore we need to align them care-

fully every time we make connections. More or less precise �mating sleeves� can help

us doing this, but of course this problem will a�ect our interferometric visibility.

In our setup, we used only polarization maintaining 1550 nm �bers, except for the

long delay line between Charlie and Bob and the mirror, which are normal SMFs

(of course 1550 nm). Their polarization changes are canceled by a polarization con-

troller on the way to the mirror and by Bob's and Charlie's horizontal polarizers at

their PMs output on the way back.

Finally, we should say that modern SMFs have an average attenuation of 0.25 db/km,

that is, intensities are halved every 12 kilometers. However in our setup, which falls

way short of a kilometer, this attenuation is utterly negligible - also compared to

basically every other component.

Circulator

Figure 4.5: Fiber optics circulator.

An optical circulator (see �g. 4.5) is a three-ports device that directs light

incoming from port i to port i+1, while having very high attenuation rates (as high

as an isolator, i.e. around 40 db) along the opposite way. For this reason, it is a

non-reciprocal optical component, and is widely used in telecommunications.

In our setup, we used a polarization maintaining circulator from THORLABS (model

CIR1550PM) with insertion loss equal to 0.9 db and 40 db isolation.
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Figure 4.6: The two tritters used in the setup have 4 PM and 2 SM ports. Using

them as in the picture allows us to have a PM qutrits source and measuring station.

Three-ports �ber couplers - Tritters

These couplers are a key component in our setup, as they materially create the

qutrits and are responsible for the interference. They are basically made of three

�ber cores fused together along a short distance, thus coupling EM �elds from/into

di�erent ports. Due to energy conservation they introduce a e
i2π
3 relative phase shift

between the outputs, as we have seen in sec. 1.2.3.

While those calculations referred to ideal tritters, i.e. with equal coupling e�ciencies

among the di�erent ports and no insertion loss, real devices are slightly di�erent,

mainly in the latter condition. In particular we have used two tritters, again from

THORLABS, with 4 PM ports and 2 SM ports each, as you can see in �g. 4.6.

Measured coupling ratios for the two tritters and the used ports (referring to �g.

4.6) are reported in each tritter data sheet. We list them in tab. 4.1.

Tritter Input → Output Ratio

TRIT1

0 → 3 33.39%

0 → 4 41.46%

0 → 5 25.15%

1 → 3 42.64%

1 → 4 23.33%

1 → 5 34.03%

2 → 3 25.65%

2 → 4 34.52%

2 → 5 39.83%

TRIT2

0 → 1 36.54%

0 → 2 27.34%

0 → 3 36.12%

Table 4.1: Coupling ratios for the two employed tritters.
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Of course these small di�erences in the ratios a�ect interference visibility and

error rates, as equal intensities would be required to have good interferometric re-

sults. Unfortunately, the only way to �x this problem would be to have tritters with

equal coupling ratios between every input-output pair. On the other hand, uniform

insertion loss is not a problem in our case, since we need to attenuate the laser pulses

anyway.

Polarization Controller

Having the same polarization is a crucial requirement for di�erent light pulses

to interfere. In our setup this is not a problem since every photon, on its way back

to Alice's tritter system, goes through Bob's PM, inside which there is a horizontal

polarizer that simply kills the vertical component, so that only horizontally polarized

light interferes in TRIT1
1

However for this reason, if photons arriving at these polarizers are vertically (or

close to vertically) polarized, they will be almost completely deleted by them, and

as the setup is already attenuating a lot by itself, we would like to avoid this. This

is why we put a polarization controller next to the long SMF, which is by far the

most polarization-changing object in our experiment.

The particular PC we adopted is from OZ Optics (model HFPC-11-1550-S-9/125-

SCSC), and it consists of a short �ber length (0.39 ns) on which you can easily apply

stress from any angle along its longitudinal section. These PCs are speci�cally built

to make elliptically polarized light, coming from a SMF, linearly polarized in order

to inject it into PMFs.

Mirror

We employed an extremely simple retrore�ector from THORLABS (model P1-

SMF28ER-P01-1) with one meter (5.07 ns) SMF tail. It has a minimum re�ectance

of 97.5%.

4.1.2 Active Optical Components

Laser Source

As we said before, the ideal case scenario in quantum communication would be

to use true single photon sources, which are still being researched. In the meantime,

the common solution is to use pulsed weak lasers attenuated well below the single

photon level.

1Actually, DLL and DLM are made of many �bers, therefore several connectors can somehow

slightly alter the horizontal polarization, again a�ecting visibilities and error rates.
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In our work, we have employed a source which has actually been designed appositely

for this task: it is a 1550 nm laser diode (model ID300) made by ID Quantique (one

of the few �rms that industrially produces QKD systems), externally triggered, that

generates 1 mW pulses with FWHM ≃ 500 ns, and can be triggered at up to 500

MHz. In our experiment we have used two di�erent trigger frequencies: a slower

one, 3 kHz, for manual calibration of the interferometer (we will talk about its phase

drifting in a while), and a faster frequency, equal to 70 kHz, for the communication.

This limited frequency is due to the relatively slow FPGA card, which has long rise

times for digital outputs, approximately 200 ns.

Light coming out from the laser is horizontally polarized, that is, aligned to the slow

axis.

Attenuator

As we said before, a coherent light source as a laser can approximate a single

photon source if its emissions are strongly attenuated.

In that situation, the photon number distribution is Poissonian (see sec. 2.2.3), that

is the probability for a pulse with n̄ photons averagely to contain n of them is

P (n) = e−n̄

(
n̄n

n!

)
. (4.1)

In our case we chose to attenuate until we had n̄ = 0.1 (which is the usual choice

in the �eld) at the position in the setup where security against eavesdropping is

needed, that is after Charlie's PM in the way back, after re�ection and Charlie's

modulation. At this intensity level we have the following probabilities

Pn̄=0.1(0) = 0.905

Pn̄=0.1(1) = 0.090

Pn̄=0.1(n > 1) = 0.005 ,

(4.2)

i.e. approximately one every ten pulses contains a single photon and around 5% of

these have more than one. It is now very clear why this attenuated laser source is a

big limitation for secure communication systems.

In our case, we have employed a digital variable attenuator from OZ Optics (model

DA-100-SC-1550-9/125-P-50). It has −1.6 dB insertion loss, 2.11 ns insertion delay

and can attenuate an additional 0.00 dB to −60.00 dB in 0.01 dB steps with ±0.03

dB accuracy.

Depending on small changes in the setup, we set attenuation values from ranging

from −18.00 to −22.00 dB. As the desired intensity level is clearly too low to be

measured with any power meter or oscilloscope, to set the right values we measured
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attenuations from di�erent parts of the setup separately and we checked �nal in-

tensities at the single photon detectors, considering that they have 20% detection

e�ciencies. However, since in this work we were not aiming for the best generation

rate possible, we considered the n̄ = 0.1 level as an upper bound, so that experiments

were run even if we were slightly below this intensity.

Phase Modulators

In our case, modulating the phase of a photon roughly means changing its velocity

while keeping the same path lengths. This can be done by modifying the medium

refractive index, which is easily obtained in materials exhibiting the electro-optic

e�ect, as lithium niobate. This e�ect consists in the (linear in the lithium niobate

case) dependence of the refractive index on the strength of the local electric �eld.

Therefore, if we put a parallel plates capacitor along the propagating direction, its

�eld will be proportional to the potential we apply, thus the angular modulation is

proportional to the voltage. We can clearly see this dependence in the calibration

plot in �g. 4.9.

The PM we used are made by JDSU (model APE PM-150-005) in lithium niobate,

and they all have the same calibration. They work with DC voltages at up to 500

MHz repetition rates, and have 3.5 dB insertion loss and PMFs of di�erent lengths.

Since the phase modulation is polarization dependent, they all include a horizontal

polarizer (aligned to the PMF slow axis).

We should say at this point that Bob's and Charlie's stations actually include two

PMs each because of timing reasons. However, nothing changes by imagining every

pair as a single PM.

4.1.3 Electronic Devices

FPGA Card

Communication between the controlling software and the experimental hardware

is carried out by a Field Programmable Gate Array board. This is an integrated

circuit that can be programmed after manufacturing via computer. Our card is the

PCI-7833R, sold by National Instruments and whose FPGA circuit is manufactured

by Xilinx. It has 8 analog inputs, 8 analog outputs and 96 digital input/outputs,

and an internal clock working at 40 MHz and multiples, depending on the gate

programming required.

We used an 80 MHz clock, which means that the best time resolution our software

can have is 1
80

= 12.5 ns. This, together with the fact that the analog outputs are

relatively slow (around 1 µs rise time) and have low currents, is the reason why we



56 The Experiment

used �standard� pulse generators to trigger laser and detectors and to drive the PMs

(that have high input impedance).

Quantum Composers delay pulse generator

The 9528 Digital Delay Pulse Generator manufactured by Quantum Composers

is an 8 channels voltage generator that can provide standard digital and variable

analog voltages with a time resolution of 250 ps and 200 ps jitter. In can be externally

triggered and can operate at up to 20 MHz.

We triggered the 9528 with the FPGA card and we employed four channels to

(digitally) trigger laser and detectors, and two channels to drive Alice's PMs with

analog voltages.

While this pulse generator has plenty of options, its major drawback is the rise time

of the analog output signals, which is around 100 ns. Since qutrits created by Alice

are made of three 63.4 ns apart pulses, this pulse generator is clearly not an option

for the sequential modulation that Bob and Charlie are doing. Besides, the 9528 is

two channels short of what we need for these users. These are the reasons why we

used two additional pulse generators.

P400 delay pulse generator

The Highland Technology P400 delay and pulse generator is an extremely precise

4-channels device that can produce digital and analog voltages at 10 MHz with a

jitter of only 25 ns. Widths and delays are adjustable for every output with 1

ps resolution and voltages can be set from −5.0 to 11.8 V. The most astonishing

feature is the analog output rising time, which is equal to 2 ns from 0 to 11.8 V, thus

making it the ideal candidate for sequentially modulating qutrit pulses at Bob's and

Charlie's stations.

For timing reasons, we employed two P400s, one to perform ω phase shifts and the

other for ω2. They were both triggered by the FPGA card.

Single Photon Detectors

The technologically most advanced devices employed in this experiment are the

three PGA-600 single photon detectors manufactured by Princeton Lightwave. Since

silicon photodetectors are insensitive in this wavelength region, the PGA-600 include

an InGaAs diode. But this alone is not enough to detect 1550 nm single photons: the

diodes are also biased above their breakdown voltages for a very short period - 1 ns -

every time the detector is triggered and a photon is expected. This technique allows

the device to reach 20% detection e�ciency, but also causes so called dark counts,
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which are fake detections due to avalanches started by the diode carriers. By cooling

down the detectors to 218 K dark counts are extremely reduced (below 5 · 10−5 per

trigger), but considering the fact that we have one photon leaving Charlie's station

every ten triggers and all the following attenuation, even a low number of dark

counts can considerably a�ect the �nal error rate, as we will quantitatively see in

the following section.

Our three photodetectors are externally triggered by the Quantum Composer and

every time a detection happens, they send a TTL pulse to the FPGA card that

stores it for the analysis.

4.1.4 LabVIEW Software

In order to easily and automatically control most of the parameters in the ex-

periment, We have written some software in LabVIEW code. This programming

language makes communication between computer and instruments way easier that

other more generic coding languages, since many devices drivers can be downloaded

from the web and used more or less right away. However, the price for this simplicity

is �exibility, as usual: the available functions and methods that can be implemented

are predetermined and not in�nite, and a software often needs some serious upgrad-

ing every time the setup - or the analysis - is changed. Besides, as code optimization

is automatically carried out by the compiler, it can sometimes be far from perfect.

Still, a good LabVIEW software can easily take care of everything, from the (pseudo)

random numbers generation to the QTER calculation. To give an idea of how this

language really is easy to use, su�ce it to know that the whole software controlling

the experiment has been written in something more than a month, starting from no

knowledge of the code whatsoever.

Since timing requirements are way too strict for a common operating system (Win-

down and Unix have approximately 1 ms time resolutions), the input and output

settings cannot be controlled by the workstation in real time. This is why the soft-

ware is divided in two main programs that we may call host-software (HS) and

FPGA-software (FS). The main di�erence as you may guess is that the HS runs in

the computer, while the FS is run by the FPGA card. Slightly less roughly, they

work in the following way:

1. After the user has set the desired parameters in the graphical interface of the

HS, this part sends them to the FS through a FIFO (First-In-First-Out) mem-

ory bu�er. Due to this bu�er limited resources, the settings for a maximum of

70000 runs (i.e. 70000 laser and detectors triggers) can be stored each time.

2. The FS runs the experiment and gets from the FPGA card inputs the signals
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from the detectors, storing them in an internal register.

3. After the 70000 runs are �nished, the FS returns to the HS the raw data,

which can now be securely stored in the computer memory.

Steps 1− 3 are called a loop.

4. New loops are carried out as many times as the user has initially set.

Once all of them have been executed, the HS performs the analysis required

to calculate the QTER, plus some other signi�cant results.

In �g. 4.7 we can have a look at the HS graphical interface.

Figure 4.7: Graphical interface of the controlling software.



4.2 Three Users QSS with Qutrits - The Protocol 59

4.2 Three Users QSS with Qutrits - The Protocol

Knowing something more about the setup, we can now specify the protocol

presented in sec. 3.2.2 for this experimental con�guration.

For stability reasons, we have used three dimensional systems (qutrits), i.e. the

lowest possible dimensionality the qudits protocol allows. Moreover, we realized our

proof-of-principle for three parties, just enough to have secret sharing.

First of all, let's analyze how our choices change the general formalism.

• Three dimensional systems - qutrits

� Using qutrits implies adopting MUBs for three dimensions, for example

matrices M2, M3 and M4 in eq. (2.47), since M1 cannot be used for

interferometric setups.

� From eqs. (3.8) and (3.10) we �nd for three dimensions

X̂3 =
2∑

m=0

ωm|m⟩⟨m| = |0⟩⟨0|+ ω|1⟩⟨1|+ ω2|2⟩⟨2| (4.3)

for the �vector changing� operator, and

Ŷ3 =
2∑

m=0

ωm2 |m⟩⟨m| = |0⟩⟨0|+ ω|1⟩⟨1|+ ω4|2⟩⟨2| (4.4)

for the �basis changing� operator.

� In the key-sifting part (step 5 in the qudits protocol in sec. 3.2.2), the

condition for a valid run in eq. (3.15) becomes

N∑
n=1

yn = 0 mod 3 . (4.5)

• yn = {0,1} ∀n = {1, ..., N} . This of course reduces the number of possible
(x, y) pairs every party can apply, from nine to six. From a more practical

point of view, the main consequence is a smaller fraction of valid runs, from 1
3

to 1
4
, since there are less possibilities to satisfy condition (4.5), thus resulting

in a slightly lower generation rate.

You may be wondering what the reason for this apparently pointless limitation

is! Everything will be clearer as soon as we will have explained what �applying

(x, y) � practically means, but for now su�ce it to know that more (x, y) pairs

possibilities means more (classical!) computational resources needed by the

controlling software, and this increase is exponential in the number of pairs.

This experiment being a proof of concept, we are more interested in the physics,
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that is showing the validity of the protocol which in principle is not changed

by this limitation, than having high generation rates, rather a technological

issue.

• Three parties: considering the previous choice, the consequence of having

three users is that the condition for a run to be valid becomes

N∑
n=1

yn ∈ {0, 3} (4.6)

that is, either all parties have y = 0 or they all have y = 1.

We can now present step-by-step the scheme we used in our experiment, in a more

explicit and experimental way than in sec. 3.2.2.

The exposition will refer to our setup, shown in �g. 4.1.

1. Alice, who plays the role of the distributor, prepares a qutrit in the initial

state

|ψ0⟩ =
1√
3
(|0⟩+ |1⟩+ |2⟩) (4.7)

2. Charlie, Bob and Alice generate each the two independent random numbers

xi ∈ {0, 1, 2} and yi ∈ {0, 1} where i = C,B,A stands for the user's name

initial. Then, sequentially and in C → B → A order, they act with the

operator X̂xi
3 Ŷ

yi
3 . To understand better how these operators action practically

works, we can start by writing down explicitly all the possible combinations

for each party, since there are only six of them:

(x, y) = (0, 0) = X̂0
3 Ŷ

0
3 = 1313 = |0⟩⟨0|+ |1⟩⟨1|+ |2⟩⟨2|

(1, 0) = X̂1
3 Ŷ

0
3 = |0⟩⟨0|+ ω|1⟩⟨1|+ ω2|2⟩⟨2|

(2, 0) = X̂2
3 Ŷ

0
3 = |0⟩⟨0|+ ω2|1⟩⟨1|+ ω|2⟩⟨2|

(0, 1) = X̂0
3 Ŷ

1
3 = |0⟩⟨0|+ ω|1⟩⟨1|+ ω|2⟩⟨2|

(1, 1) = X̂1
3 Ŷ

1
3 = ω|0⟩⟨0|+ |1⟩⟨1|+ ω|2⟩⟨2|

(2, 1) = X̂2
3 Ŷ

1
3 = ω|0⟩⟨0|+ ω|1⟩⟨1|+ |2⟩⟨2|

(4.8)

with ω = e
i2π
3 . Since the three computational states (|0⟩, |1⟩, |2⟩) are separated

in time (see the next section for more details), every user can actually perform

the phase shifts on every one of them separately and sequentially. For example,

suppose Charlie generated the pair (1, 0); he will

(a) do nothing to the �rst (|0⟩) pulse

(b) apply an ω = e
i2π
3 phase shift to the second (|1⟩)



4.2 Three Users QSS with Qutrits - The Protocol 61

(c) apply an ω2 = e
i4π
3 phase shift to the third (|2⟩).

How to phase shift these light pulses? What you need to do is either change

the path length or change the refractive index of the medium. Of course the

best (and the only practically feasible in �bers) way to do it is the latter,

and we achieved it with commercial phase modulators, as we described in sec.

4.1.2.

3. After all three parties have applied their own transformations, Alice obtains

the �nal state

|ψf⟩ =
1√
3

2∑
k=0

ω
∑

i=C,B,A(kxi+k2yi)|k⟩ (4.9)

on which she performs a measurement in basis M2, that is explicitly

M2 =


1√
3
(|0⟩+ |1⟩+ |2⟩) ,

1√
3
(|0⟩+ ω|1⟩+ ω2|2⟩) ,

1√
3
(|0⟩+ ω2|1⟩+ ω|2⟩)

 , (4.10)

with the tritter on the left in �g. 4.1 (TRIT1)2, getting the outcome a ∈
{0, 1, 2} .

4. Now Alice should announce the outcome publicly, then the three parties would

randomly disclose some of their yi and the non-valid runs would be discarded.

But since this experiment is a proof of principle, we physicists working in the

lab need to know everything in advance, in order to prove the principle indeed!

So, at this point there are two possibilities:

(a) Condition ∑
i=C,B,A

yi ∈ {0, 3} (4.11)

is satis�ed and the run is valid. Then if the measurement result is actually

the same as predicted by equation∑
i=C,B,A

xi = a mod 3 , (4.12)

we label the run as correct, otherwise as wrong.

(b) Equation (4.11) is not satis�ed. The outcome is then random, and we

label it that way.

2For a precise description of how a tritter works, see sec. 1.2.3 and [13]
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5. We rerun the experiment many times from step 1 to step 4 with the same

(xi,yi) settings for every party. If case (a) in the previous step was true, then

we should have only valid runs, and we can proceed on calculating the qutrit

error rate as

QTER =
[wrong runs]
[valid runs]

=
[wrong runs]

[correct runs] + [wrong runs]
. (4.13)

Otherwise, if case (b) was true, we have only random runs, and we can just

check if probabilities are actually uniformly 1
3
for every detector by comparing

outcome counts.

6. Whenever we set transformations that produce valid runs, if the obtained

QTER is below 15.95% (see [4]), it means that the experiment was successful,

i.e. we could detect any eavesdropping while doing secret sharing

with this setup and protocol.

After a brief discussion of the most important devices used throughout the experi-

ment, we will proceed with results presentation and some comments.

4.3 Results and Analysis

4.3.1 Phase Modulators Calibration

The �rst measurements we performed was the PMs calibration. To take these

measurements we employed a very simple Plug&Play setup, as in �g. 4.8. This

setup, completely polarization maintaining, is extremely stable (as we have said in

sec. 3.1.3), thus making for an ideal calibration benchmark.

The measurements con�rmed our expectation that all our PMs are identical. For

this reason, we will report only one calibration. The results, taken using a LeCroy

WaveMaster 8300A oscilloscope, are plotted in �g. 4.9.

Figure 4.8: Plug&Play setup used for PMs calibration.
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Figure 4.9: Amplitude vs. modulation voltage plot for one of the PMs. The angular

phase shift is clearly linear in the voltage. Sinusoidal �tting curves are also plotted.

From the sinusoidal �tting, we obtained the period of the phase shifting in volts,

which is equal to (13.97± 0.07) V. Therefore, the voltages needed to perform the ω

and ω2 phase shifts are

φω =
2π

3
→ ∆Vω =(4.66± 0.02) V

φω2 =
4π

3
→ ∆Vω2 =(9.31± 0.05) V .

(4.14)

It is worth pointing out that these voltages uncertainties produce angular errors,

in the phase shifts, that are fractions of a degree. These quantities are absolutely

negligible compared to the errors introduced by all the factors we are going to

describe in a moment, thus they will simply be neglected.

4.3.2 Qutrit Error Rates

There are (3 · 2)3 = 216 possible (xi, yi) pairs combinations for three parties. We

report in tab. 4.2 some results which, as you will see, are quite similar among each

other. In the table, a is the expected measurement outcome, Ci=0,1,2 are counts in

detector i, QTER are calculated with the formula in eq. (4.13), and generation rates

(R) are simply ratios between total counts and total running time.

Every measurement consisted in 10 loops with 70000 runs each, and lasted 30
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(xA, yA) (xB, yB) (xC, yC) a C0 C1 C2 QTER R[trits/s]

(0, 0) (0, 0) (1, 0) 1 15 243 15 10.99% 9.1

(0, 0) (0, 0) (2, 0) 2 14 15 246 10.58% 9.2

(0, 0) (1, 0) (0, 0) 1 10 182 10 9.90% 6.7

(0, 0) (1, 0) (1, 0) 2 7 14 190 9.95% 7.0

(0, 0) (1, 0) (2, 0) 0 232 19 5 9.37% 8.5

(0, 0) (2, 0) (0, 0) 2 9 16 233 9.69% 8.6

(0, 0) (2, 0) (1, 0) 0 292 13 23 10.98% 10.9

(0, 0) (2, 0) (2, 0) 1 14 228 12 10.24% 8.5

(0, 1) (0, 1) (0, 1) 0 228 3 23 10.24% 8.5

(0, 1) (0, 1) (1, 1) 2 15 11 231 10.12% 8.6

(0, 1) (0, 1) (2, 1) 1 14 270 19 10.89% 10.1

(0, 1) (1, 1) (0, 1) 2 14 13 239 10.15% 8.9

(0, 1) (1, 1) (1, 1) 1 8 204 16 10.53% 7.6

(0, 1) (1, 1) (2, 1) 0 225 20 6 10.36% 8.4

(0, 1) (2, 1) (0, 1) 1 15 239 13 10.49% 8.9

(0, 1) (2, 1) (1, 1) 0 220 7 19 10.57% 8.2

(0, 1) (0, 0) (1, 1) random 54 57 40 − −
(0, 1) (0, 0) (0, 1) random 40 49 67 − −
(0, 1) (1, 1) (1, 0) random 44 45 66 − −
(0, 0) (1, 1) (0, 1) random 61 61 72 − −

Table 4.2: Some measurement results. QTER is not de�ned if the expected measure-

ment outcome is random, and the generation rate is clearly zero in that case, since in

a real secret sharing application all these runs would be discarded.

seconds3 (see sec. 4.1.4).

From the measurements reported here it is clear that not only that the protocol

presented in sec. 4.2 works, but also that real secret sharing tasks with this

setup are possible, since no measured QTER reaches the 15.95% security threshold

[4], and actually they all are below 11%. These results are similar to those in

entanglement-based qutrits experiments [5]. In the next paragraphs we will comment

the data and try to understand what the reasons could be for our QTER to deviate

from the ideal 0%.

3We have said before that the laser trigger frequency was 70 kHz. This stands correct, but due

to computer elaboration time, there is a small time gap (of around two seconds) between loops,

thus lowering the average frequency of a measurement.
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Phase Drift

The main experimental problem any interferometer presents is a never stopping

phase drift. This causes the interference pattern to move without any apparent ex-

ternal cause.

However, we need to consider that the light wavelength is - in our case - 1550 nm,

and few nanometers changes in the paths length di�erences can be noticed with bare

eyes in the interference pattern.

The main reasons for these small length changes are temperature �uctuations and

mechanical stresses (as vibrations). Necessary countermeasures, adopted through-

out the whole experiment, consist in putting the whole tritter system inside an

aluminum bow thermally shielded with Styrofoam, and placing this box on a stable

optical table. These expedients allowed, some 20 minutes after the box closure, to

have a more stable system.

During measuring sessions, it took the system around 10 minutes to make a full 2π

phase shift due to this drift. Now, to evaluate the consequences of this systematic

error on the QTER, we can think of it as a change in the relative phase (i.e. angle)

between the three arms. Considering that every measurement lasted 30 seconds, 10

minutes for a 2π phase shift correspond to an 18◦ change during one measurement.

If we put this value in eqs. (2.40) and calculate the probabilities, we get a QTER

of approximately 2.2%.

While a bit roughly, this clearly labels this �natural� phase drift as the main sys-

tematic contribution to our error, thus making it the most eminent problem to solve

in the future. Actually, good solutions have already been found and partially im-

plemented [36], but need to be upgraded and optimized for every particular case.

They basically consist in a PID (proportional-integral-derivative) controller that

automatically adjusts the voltage in PMs to keep the system stable. Precisely this

adjustment leads us to the next problem.

Calibration

Because of the above-mentioned phase drift intrinsic to the system, there was a

necessary procedure to do before every measurement that can be called calibration.

This consists in changing the phases until, without any additional transformation,

we had a maximum of interference in detector 0 and minima in the other two.

We set this situation as our �no modulation� starting point, and run the protocol

once thereafter. Since both phases and voltages are relative, nothing changes in

the formalism, and measurements of course con�rmed this. However, due to the

drift, this calibration process cannot take too long, thus it is not perfect. To make

it faster, we reduced the attenuation in order to see higher count di�erences, since
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probabilities don't change between classical and quantum regime anyway (compare

eqs. (1.14) and (2.40)). Still, due to intensity �uctuations the maxima and minima

could be found with a limited precision, also because the intensity curve derivative

is zero at these points. To quantitatively evaluate this calibration error, we can

consider the fact that during this process, we could not distinguish a maximum (or

minimum) up to a voltage variation of ±0.5V , that correspond to ≃ ±13◦. This is

another a systematic error that a�ects our interferometric visibility. To quantify it

we can, as before, calculate the QTER given by the probabilities in eqs. (2.40) with

this angular shift. We get a contribution to our QTER equal to 1.1%.

Therefore, this is an other relevant issue in the experiment. It can be partially

solved by using a PID circuit as we mentioned in the previous paragraph, but the

underlaying cause, which is those intensity �uctuations, is intrinsic to any �ber

system and is probably due to mechanical stresses and temperature �uctuations that

slightly change the single mode �ber birefringence, thus changing the polarization

arriving at the polarizers inside the PMs. These �uctuations are also the reason

behind the slightly di�erent generation rates in tab. 4.2.

Dark Counts

In sec. 4.1.3, when we described single photon detectors, we mentioned that they

su�er from so-called dark counts, that are basically counts without photons, due to

the above breakdown threshold bias. These counts represent a systematic error, and

are independent of any laser. We measured their probability by running 50 loops (i.e

50 ·70000 = 3.5 ·106 runs) with the laser o�, and we obtained 1 count per loop, that

is approximately 1.4 · 10−5 dark counts per trigger. This is in agreement with what

is written in the data sheets of our detectors (whose values range from 1.3 · 10−5 to

1.8 · 10−5).

Considering again a typical case of 200−10−10 counts and QTER= 9%, subtracting

dark counts would give us 199− 9− 9 counts and QTER= 8.29%, that is 0.7% less.

In conclusion, this is an important issue too. However, this problem cannot be

solved without using di�erent types of single photon detectors, which are still not

commercially available. Nonetheless, we should consider that dark counts are con-

stant and independent of the working frequency, thus setting it higher, or simply

reducing the setup attenuation rate, would lower their weight in the �nal result.

Interfering Polarizations and Intensities

Finally, two problems regarding the tritter may a�ect our interference quality.

In order to have perfect patterns, interfering light pulses must have the same po-

larization and same intensities. With regards to polarization, we should point out
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that there are many �ber connectors in both the medium and long arms. These

connectors, as we said before, may easily have small misalignments from the PMF

axis, thus leading to small polarization changes due to birefringence. This problem

can be solved by substituting all these sequential �bers with a single one of the

needed length.

On the other hand, intensities di�erences are caused by the slightly unequal coupling

ratios between tritters inputs and outputs (see tab. 4.1). To solve this, we would

need to use perfectly balanced tritters, which are hardly possible to �nd.
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Chapter 5

Conclusions

5.1 Achievements

In this work, we have carried out a proof-of-principle experiment that has shown

the possibility to achieve secret sharing tasks with qutrits and a single photon, with

phase encoding, for the �rst time to our knowledge.

Our optical interferometric setup is entirely based on �bers, in order to make that

possibility more realistically implementable with current �ber telecommunication

networks.

In addition, this thesis work included extensive LabVIEW programming. The writ-

ten software not only run the experiment while setting many protocol parameters,

but also carried out most of the data analysis, as errors and rates calculation.

We have obtained secret sharing with error rates below 11%, that is quite far

from the maximum security bound of 15.95%, and comparable to results found in

literature [5]. This de�nitively proves that our setup can be employed for secure

secret sharing tasks.

Above all, however, our protocol has some crucial advantages over other realiza-

tions based on entanglement. For example, with our setup we can easily extend our

con�guration to as many parties as we want, at the only price of signal attenua-

tion, while in the entangled version more users means entangled states with more

particles, whose generation is still an experimentally researched issue. On the other

hand, the single particle scheme shows a de�nitive superiority in detection e�ciency.

In fact, as we mentioned before, entanglement-based protocols need three detectors

per user (at least with three dimensional systems), and for a run to be considered

valid every one of them needs to detect a photon with one of his three detectors

(that is, perform a measurement and get any outcome). Supposing now that these

detectors have an e�ciency equal to η (where η ∼ 20% in the best case scenario),

then this probability scales as ηN , where N is the number of parties.
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In our single particle scheme instead, only one user (Alice in our experiment) per-

forms the measurements, thus the abovementioned probability is always proportional

to η, independently of the number of parties. This makes our protocol extremely

more scalable compared to the other proposals.

Finally, beside secret sharing, other security problems can be experimentally ad-

dressed with this same setup, for example the Byzantine Agreement and the Com-

munication Complexity protocols. Therefore, many good results can be achieved

with this con�guration.

5.2 Future Improvements of the Setup

The fact that this experiment turned out to be successful represents a new place

where to start from in order to achieve real secure QSS. Indeed, at the time of this

writing, an upgraded version of the setup with a long delay between Alice and Bob

is being realized and characterized.

However, to ful�ll our dream of unconditionally secure secrets in everyday life,

some improvements are still needed, as we have seen in chapter 4.

First of all, many kilometers of �bers would separate each user from the others,

thus a far better phase stability control is needed. PID softwares could be a good

solution to this problem.

Another great limitation that this experiment shared with every other in the quan-

tum communication �eld is the photon source. In fact, our results indicate secure

communication only if we suppose to have had exclusively single photons modulated

in every run. To avert this security breach, we lowered the intensity to very low val-

ues, much below the single level. This of course highly limit the generation rate,

thus giving more weight to the dark counts problem.

Talking about generation rates leads us to the discussion of a main part of our

work, that is LabVIEW coding. While it proved to be very simple, powerful and

reliable, this programming environment has also imposed some serious constraints

on the experiment. For example, its low time resolution has made us use the P400

pulse generators to drive Bob's and Charlie's phase modulators, while Alice's ones

had to be controlled by the much slower 9528 Quantum Composer pulse generator,

thus lowering the maximum working frequency. Apart from code optimization, an

integrated circuit speci�cally realized for the experiment, or at least less generic

than an FPGA card, would probably result in much higher performances.

Another constraint to the generation rate which is shared among all quantum

communication protocols is the detecting e�ciency. InGaAs avalanche diodes are

the best commercially available single photon detectors in the 1550 nm wavelength
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region, nevertheless they have a very big drawback in the relatively low 20% e�-

ciency. Groups all around the world have been studying and realizing prototypes

of a new type of superconducting single photon detectors, that can reach outstand-

ingly high e�ciencies for these wavelengths, even more than 90%, while working at

above-GHz frequencies [37].

Last but not least, it should be reminded that secret sharing and QKD protocols

at some point all require, in general, random numbers generation, and that this needs

to be genuinely random to make the communication secure. In our experiment we

generated these numbers with pseudo random codes in the computer, while a real

QSS implementation would need for example a quantum random number generator.

Hopefully, in a near future, this work will help in making secure quantum commu-

nication the standard way to exchange sensitive information, thus taking the amaz-

ing world of quantum mechanics one step closer to non-specialists curious enough

to learn it.
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