

DEPARTMENT OF INFORMATION ENGINEERING

MASTER DEGREE IN COMPUTER ENGINEERING

ARTIFICIAL INTELLIGENCE AND ROBOTICS

Creating a 3D scene using a ToF camera

and VR tracker

Supervisor: Prof. Carli Ruggero

Graduand: Castagna Elisa

2020377

ACADEMIC YEAR 2023 - 2024

Graduation date: 16th April 2024

Thesis developed in EuclidLabs.

"To the stars who listen,

and the dreams that are answered”.

i

ABSTRACT __ 1

INTRODUCTION ___ 5

STUDY OF VIRTUAL REALITY TRACKERS ________________________________ 10

SENSORS: TUNDRA TRACKER, VALVE INDEX CONTROLLER, HTC VIVE TRACKER 3.0 ____ 12

Steam VR Tracking System ___ 14

EXECUTED TESTS ___ 16

Drift experiments __ 18

Tundra Tracker __ 19

Valve Index Controller __ 22

HTC Vive Tracker 3.0 __ 23

Noise experiments __ 26

Tundra Tracker __ 27

Valve Index Controller __ 28

HTC Vive Tracker 3.0 __ 29

Dynamic experiments ___ 32

Tundra Tracker __ 34

Double Tundra Tracker __ 41

Valve Index Controller __ 46

HTC VIVE Tracker 3.0 ___ 48

RESULTS ___ 55

COMPOSITION OF THE 2D PANORAMA ___________________________________ 61

THE TOF CAMERA __ 61

IFM ___ 62

IMAGE PROCESSING ___ 64

Image stitching __ 65

OpenCV and EmguCV __ 66

Stitching algorithm ___ 67

Keypoints detection __ 68

Matching keypoints __ 72

Homography estimation ___ 73

Final output __ 77

COMPOSITION OF THE 3D PANORAMA ___________________________________ 80

POINT CLOUD __ 80

ii

ROTO-TRANSLATION COMPUTATION __ 81

Zhang SVD-based decomposition ___ 84

FINAL RESULT ___ 85

CONCLUSION___ 87

BIBLIOGRAPHY AND WEBSITE __ 90

INDEX OF FIGURES ___ 93

INDEX OF EQUATIONS __ 95

INDEX OF TABLES __ 96

1

Abstract

A robotic arm can perform many useful movements during its use, but attention must be paid

to possible obstacles in the working environment. The aim of this thesis is to develop an

application capable of mapping the robot's work area through the use of a time-of-flight camera

and a tracking sensor for virtual reality.

The time-of-flight camera provides both images in two dimensions and point clouds

representing the images in three-dimensional space. The collected images are used to build the

panorama, through the image stitching process, using algorithms that currently represent the

state of the art in the field of computer vision. Once the panorama has been reconstructed, the

transformations undergone by the 2D images are estimated and applied to the point clouds to

obtain the same result in the 3D world.

When merging the images, it is necessary that there are overlapping areas in common between

them, to allow the stitching algorithms to construct the panorama. To increase the chance of

success, the images are split based on location, which is provided by a virtual reality tracker.

The virtual reality tracker is also intended to make the application portable. The camera, in fact,

is mounted as an end-effector of the robot, but it is difficult to always have a real robotic arm

available, unless the latter is already mounted and functioning, especially considering that the

study of the robot's workspace it is a process that is performed before the final assembly of the

robot and its cell. To overcome this problem, the tracker can be connected to software, which

simulates the robotic arm and its movements, allowing developers to understand how to best

use the manipulator, without needing the physical counterpart.

3

Un braccio robotico può eseguire molti movimenti utili durante il suo utilizzo, ma occorre

prestare attenzione ai possibili ostacoli presenti nell’ambiente di lavoro. Lo scopo di questa tesi

è quello di sviluppare un'applicazione in grado di mappare l'area di lavoro del robot attraverso

l'uso di una telecamera a tempo di volo e di un sensore di tracciamento per la realtà virtuale.

La camera a tempo di volo fornisce sia immagini in due dimensioni che nuvole di punti che

rappresentano le immagini nello spazio tridimensionale. Le immagini raccolte vengono poi

utilizzate per costruire il panorama, attraverso il processo di image stitching, utilizzando

algoritmi che rappresentano attualmente lo stato dell'arte nel campo della computer vision. Una

volta ricostruito il panorama, le trasformazioni subite dalle immagini 2D vengono stimate e

applicate alle nuvole di punti per ottenere lo stesso risultato nel mondo 3D.

Quando si uniscono le immagini, è necessario che ci siano delle zone di sovrapposizione in

comune tra loro, per permettere agli algoritmi di stitching di costruire il panorama. Per

aumentare le possibilità di successo, le immagini vengono divise in base alla posizione, fornita

da un tracker di realtà virtuale. Il tracker per la realtà virtuale ha anche lo scopo di rendere

l'applicazione portatile. La camera, infatti, viene montata come end-effector del robot, ma

risulta difficile avere sempre a disposizione un braccio robotico vero e proprio, a meno che

quest'ultimo non sia già montato e funzionante, soprattutto considerando che lo studio del

workspace del robot è un processo che viene eseguito prima dell'assemblaggio finale del robot

e della sua cella. Per ovviare a questo problema, il tracker può essere collegato a un software,

che simula il braccio robotico e i suoi movimenti, permettendo agli sviluppatori di capire come

utilizzare il manipolatore al meglio, senza aver bisogno della controparte fisica.

5

Introduction

Robotic arms are widely known and used in all sectors, ranging from logistics to surgery. Robots

are in fact capable of execute simple task as moving and positioning objects from one place to

another, and performing extremely delicate surgical operations, as in the case of the da Vinci

surgical system.

The Internation Standard Organization defines an industrial robot as a “automatically

controlled, reprogrammable, multipurpose, manipulator, programmable in three or more axes,

which can be either fixed in place or mobile for use in industrial automation applications” [1].

According to this definition the first robotic arm was created by Unimation, a company founded

by George Devol and Joe Engelberger, in 1956. Together, they created the first industrial robot,

called Unimate, based on Devol’s patent “Programmed Article Transfer”1. Nowadays, the

number of industrial robots working in 2022 is 3,903,633 units2.

A robotic arm is a mechanical structure that tries to simulate a human arm and its versatility. It

is composed of several consecutive rigid links, connected to each other by joints, which can be

revolute (R) or prismatic (P) and together they compose the kinematic chain of the manipulator.

Depending on the combination and number of these joints, you can get different robotic arms,

each of which is designed and programmed to perform specific tasks, depending on the working

environment, the layout of the picking location and the obstacles in its workspace.

The robotic arm can be subdivided into 3 pieces: the arm, which allows the manipulator to reach

the desire final position in the space, the wrist, that provides dexterity, and the end-effector,

which is the tool that performs the required tasks, such as grasping an object, or spraying paint.

The kinematic chain connects the base of the robot, that is where the arm rests, to the end-

effector.

Based on the structure of the manipulator, it is possible to determine the degree of freedom of

the kinematic chain, since each joint is characterized by a degree of freedom. The number of

degrees of freedom determines how the robotic arm moves in the space.

Robotic arms are mainly classified by the first three joints, that compose the arm of the

manipulator. Based on the arm joints, they can be:

- Cartesian arm (PPP), that means the manipulator is composed by three consecutive

prismatic joints. It is also called linear robot, since it moves in straight lines on the three

1 International Federation of Robotics (2012). History of industrial robots.
2 International Federation of Robotics (2023). Executive Summary of World Robotics 2023 – Industrial Robots.

6

different axes of the Cartesian system (x, y, z). It is widely employed in CNC machines,

3D printing, or pick and place operations. In the Figure 1, it is possible to see the

kinematic scheme of the Cartesian arm:

Figure 1: kinematic scheme of a Cartesian arm.3

- SCARA manipulator (RRP) is made up by two consecutive revolute joints and a final

prismatic joint. SCARA is an acronym and stands for Selective Compliance Assembly

Robot Arm. From the extended name, it is possible to understand that this robot is used

for assembly and palletizing. One main characteristic of this robot is the fact that all

axes of motion are parallel.

- Spherical robot (RRP) has the same geometry as the SCARA, but the axes of motion of

each joint are not parallel and their combination allows the robot to obtain a system of

polar coordinates.

- Articulated arm (RRR) is composed by three revolute joints, for which the axis of

motion of the first joint is orthogonal to the axes of the other two joints, that are parallel

to each other. This arm is also called anthropomorphic arm given that it is very similar

to a human arm. It is the most used and known robotic arm, thanks to its flexibility.

- Cylindrical arm (RPP) is composed by a revolute joint and two prismatic joints. It is

mainly used for assembling, machine tending, or coating applications.

In addition, there are two other types of robotic arms that are used in industry, but do not fall

under the previous classification based on the joints that make up the robot arm. These are the

delta robot, which is a type of parallel robot, and the collaborative robot. The delta robot is a

3 Image source: https://commons.wikimedia.org/wiki/File:Cinem%C3%A0tica_robot_cartesi%C3%A0.svg

7

robot composed of three arms, connected at the base by universal joints. This formation allows

the end-effector to always be oriented in the same way. It is a particularly fast robot and suitable

for handling light loads, in fact it is mainly used in pick and place operations. The collaborative

robot, also called a corobot, on the other hand, is a robot that shares the workspace with humans,

in stark contrast to the industrial use of the robot itself. This sharing of the workspace entails

much more stringent constraints in terms of force and speed of movements in order to avoid

harming its user.

Another important aspect to know about a manipulator is its workspace, that is defined as the

space that end-effector attached to the robotic arm can reach and is defined by the physical

constraints on the joints and the geometry of the robotic arm. This means that for each robotic

arm, we can calculate its workspace by knowing which joints compose it and what the

mechanical limits of each joint are. The workspace of a robot can be subdivided into two

subsets: the reachable workspace and the dexterous workspace. The reachable workspace is

the space that the robotic arm can reach, meanwhile the dexterous workspace is the space that

can be reached by the end-effector without losing degrees of freedom. Everything within the

reachable workspace must be correctly evaluated and avoided during the movement of the arm,

otherwise the arm may collide and be damaged.

When talking about robotic arms, or more in general about robotics, it easy to understand that

there is a strong connection with computer vision, because it provides the ability to robots to

see and understand their surroundings. Computer vision is a part of artificial intelligence that

tries to understand, analyse, and process images. Following the computational power increasing

in 1970, computer vision started to improve drastically, thanks to the ability and possibility of

using more and more images, so more algorithms were developed, such as the Hough transform

[2] in 1972, or the Viola-Jones face detection algorithm [3] in 2004. With the advent of neural

networks, a revolution in computer vision can be observed. Deep learning and convolutional

neural networks (CNNs) have allowed computers to recognize objects and patterns within

images, significantly improving facial and object recognition. Indeed, in 2015, a CNNs was

able to outperform a human in the ImageNet Large Scale Visual Recognition Competition

(ILSVRC), achieving an error-rate of 3.57%, while the human error rate was set to 4% [4]. The

future of computer vision is related to augmented and virtual reality. Meanwhile augmented

reality combines together the real world with computer-generated object, virtual reality (VR)

completely substitutes the real world with a simulated one. Virtual reality has been developed

8

since the early 1950s, starting with Sensorama (patented 1962)4, developed by Morton Heilig,

which was one of the first VR machine that stimulated all senses and provided to users a full

cinema experience. Heilig was also the first to invent the VR Head Mounted Display (HDM),

creating the "Telesphere Mask" (patented 1960)5, a device described as “a telescopic television

apparatus for individual use... The spectator is given a complete sensation of reality, i.e. moving

three dimensional images which may be in colour, with 100% peripheral vision, binaural sound,

scents, and air breezes." from its patent. These days, VR is widely used in different fields and

different scopes, such as in video games, 3D cinema or social virtual world for entertainment,

or in the medical field, where VR is used for treating anxiety disorders or post-traumatic stress

disorders (PTSD) [5].

To access to the virtual reality word, it is necessary to have a virtual reality headset, which is a

device that a user can wear, and it is compose by a stereoscopic display, stereo sound, and

sensors for tracking the pose of user’s head. For interacting with virtual word, users can use

motions controllers, that is an input device that use accelerometers, gyroscopes, and cameras to

track the position, or optical sensors for motion capture, which provide the position by using

special markers that have to be attached to the body or wired gloves. All these controllers are

tracked using cameras, in order to not have wires.

The aim of this thesis is to develop an application that can map the robot workspace and create

a relative 3D scene. The presence of obstacles inside the workspace must be highlighted to

allow the robot controller to find the best trajectory for avoiding all obstacles, so creating a 3D

scene of the surrounding of the robot allows the final user to search for obstacles and extract

important details such as positions and size of the obstacle.

For doing this, three main tools were used: a IFM time-of-flight camera, a virtual reality tracker,

and OpenCV. The IFM ToF camera provided all the information related to the spatial position

of what there is in its field view, creating a 2D image and point cloud each time was necessary

to collect data. These data were stored, in order to be processed at a later time. The virtual reality

tracker provided the position in which the IFM ToF camera was when collecting data, but most

important the portability of this application. As a matter of fact, the ToF camera was mounted

as a robot end-effector, and using a real robotic arm was not a suitable option, since the

application is mainly developed to be used before the installation of the robotic arm. This means

that it is necessary to simulate the robotic arm, and this is possible by using the virtual reality

4 Heilig M. (1962). US Patent #3,050,870.
5 Heilig M. (1960). US Patent #2,955,156.

9

tracker. The tracker provided information to a software that is able to display robotic arms and

their movements, based on how the tracker is moved, allowing programmers to understand

which motions are feasible and which are not. Using images acquired by the IFM camera, it

was required to construct a panorama. For the construction of the panoramic image, OpenCV

was used, which is a library that implements state-of-the-art algorithms for real-time computer

vision. OpenCV is cross-platform and licensed as free and open-source under Apache License

2.

10

Study of virtual reality trackers

Virtual reality (VR) is a simulated experience where the real world is substitute with a computer

generated one, using pose tracking and stereoscopic display for showing the world and its

change. VR is widely used in several applications, such as video games, medical training,

virtual meetings, space, and military industries.

For having the possibility of access and interact in a virtual reality world, it is necessary to have

a proper setup. This setup requires a virtual reality headset, composed by a stereoscopic display,

stereo sound, and sensors for tracking the pose, typically two controllers (one for each hand),

and one or more stereo cameras, as shown in Figure 2.

Figure 2: the Valve Index VR Kit, consisting of a headset, two controllers, and two cameras.

A stereoscopic display is a particular display able to create the illusion of depth by stereopsis

for binocular vision, which means that two 2D images are provided to the user, and, when these

two images are perceived by the human brain as a single 3D image, providing the illusion of

depth. For the sound part, the stereo sound method is implemented, which is a method that can

give the illusion of listening sounds from various directions. For tracking the pose of the headset

and changing what users can see according to their movements, it is used accelerometers and

gyroscopes, which provides information about changing in direction, orientation, and speed.

The controllers can be various types, such as wired gloves, motion controllers, or optical

tracking sensors, and they are chosen based on the use of virtual reality. Stereo cameras,

meanwhile, are used for achieving wired free controlling for localization and navigation.

For this thesis, a virtual reality tracker was used. The tracker had to provide the current position

of the IFM camera, to which it was attached, position that was stored together with the image

and the point cloud for following processing. The tracker also provided information about the

11

motion of the robotic arm and for understanding how the manipulator was moving according

to the motion of the virtual reality tracker, it was used a software called MARVIN [6], developed

by EuclidLabs. This software can simulate how a robotic arm has to move to obtain the same

trajectory of the virtual reality tracker.

Thanks to the increasing interest in virtual and augmented reality, different companies

developed their own tracking products, having different shapes, costs, and possible functions.

The first step, when trying to create an application based on data received from a tracker, is to

determine which tracker is more suitable for the contest. In this specific case, it was decided to

analyse how coherent are the data received by trackers with respect to what a robotic arm has

done, and it was decided to test 3 different sensors: Tundra Tracker, Valve Index Controller, and

HTC Vive Tracker. All these sensors worked with the Valve Index Base Station [7] for tracking

the position and orientation changes during their use, this means that all sensors support the

SteamVR Version 2.0 Tracking.

For each sensor, three different tests were executed, trying to determine the drift of the system,

the noise error, and the ability of the sensor to track a linear motion performed by the robotic

arm. From previous experiments done in EuclidLabs, it was discovered that the system suffers

of a drift error and, statistically, it required at least 30 minutes to reach a stable point. Since

these previous tests were not performed using these three sensors, the first step was to determine

how long it took to the system, using these new trackers, to reach a stable point and provide

coherent position. When the required time was discovered, it was necessary to determine how

noisy these trackers are. To accurately collect this information, it was necessary to minimize

interference, so the data provided were transmitted to the computer using wires. Lastly, it was

measured how good a dynamic motion was registered, and it was decided to perform the

simplest dynamic motion possible, a linear movement. It was measured by placing the tracking

sensor on the flange of the robotic arm and performing a linear motion between two points with

the manipulator. For this test, it was always used the same robotic arm, in order to avoid any

possible change due to using a different manipulator.

Since this virtual reality system uses camera to track sensors, it was natural to change the

number of cameras tracking a sensor and their positions, in order to obtain results that can

represent different situation, where this system is used.

12

Sensors: Tundra Tracker, Valve Index Controller, HTC Vive Tracker 3.0

As previously mentioned, the sensors used were Tundra Tracker, Valve Index Controller, and

HTC Vive Tracker 3.0, in combination with Valve Index Base Station for tracking their position

and orientation. All these trackers work using the SteamVR tracking system [8].

The Tundra Tracker [9] is developed by Tundra Labs, a US based company, founded in 2018.

The Tundra tracker was released in November 2021, and it is a small and light device designed

to be worn more easily, but it can be also mounted on objects in order to track them. It allows

both cabled, using a type-C cable, and wireless connection. The wireless connection is achieved

using the Super Wireless Dongle, created by Tundra Labs, but it can work also with Dongle for

VIVE Tracker, Dongle inside headset of HTC VIVE series and Valve Index, and eteeDongle

for SteamVR. Its dimensions are 50.2 x 50.2 x 38.5 mm, with a weight of approximately 50 g,

and with a battery of 850 mAh the Tundra tracker can work for up to 9 hours. It is equipped

with 18 sensors, shown in Figure 3, which cannot be covered.

Figure 3: sensors placed on Tundra Tracker6

The Valve Index Controller [10] is developed by Valve Corporation, founded in 1996 by Gabe

Newell and Mike Harrington. It was released in June 2019, with the relative headset Valve

Index, which it was intended to be used with, but it can be used with the majority of the headset

on the market. The controller, shown in Figure 4, is usually provided in a couple, since it was

6 Image source: https://docs.tundra-labs.com/tundra-tracker/tracker-hardware-specifications

13

created to simulate all hands behaviours and interact with the virtual world the same way it is

possible to interact in the real one using hands. In addition to providing location using Steam

VR's tracking system, each controller is equipped with several buttons, specifically an A button,

a B button, thumbstick, touchpad, a menu button, a trigger, and, using an array of 87 sensors, it

is possible to track motion and pressure of the hand, creating a precisely representation of the

user’s hand. Using all of these sensors, the controller can tell when an object is being thrown,

squeezed, or crushed. The Valve Index Controller provides both types of connection: USB-C or

2.4GHz Wireless. With a battery of 1100 mAh and a weight of 196g, it is quite large, with

respect to the Tundra Tracker.

Figure 4: the Valve Index Controller7

The last used sensor was the HTC Vive Tracker 3.0 [11], shown in Figure 5, developed by HTC,

a Taiwanese company founded by Peter Chou and Cher Wang in 1997. It was released in March

2021, and it is a device created for a full-body tracking experience. It is 15% lighter and 33%

smaller than its previous version, released in 2018, indeed it weights 75g and its dimensions are

70.9 × 79.0 × 44.1mm. It is equipped with a battery that can last up to seven hours, which is up

to 75% more than the 2018 version. It provides both cable and cableless connectivity, being

compatible with Vive Tracker Dongle and Tundra Labs Super Wireless Dongle.

7 Image source: https://www.gamestop.com/pc-gaming/pc-gaming-controllers/products/valve-index-controllers-

left-only/11206126-11205170.html

14

Figure 5: the HTC Vive Tracker 3.08

In conclusions, these sensors are the latest version, and they are all compatible with the Steam

VR Tracking system. The main difference between these sensors is that HTC Vive Tracker 3.0

and Tundra Tracker are both designed and developed to be worn or mounted on an object, while

Valve Index Controller is designed to reconstruct the experience of using the hands in the virtual

world, going to build the ability to throw or crush objects simply by decreasing or increasing

pressure on the controller. In a gaming environment, the difference between controllers that

only need to be worn and those that allow interactions must be carefully evaluated to choose

the best tracker.

For this thesis, however, it was necessary to determine which tracking sensor was the most

precise in providing the position during movements, recreating the same trajectory performed

by the tracker, even in the virtual world. According to this aim, choosing a wearable or an

interactive tracker was indifferent since it was required to choose the most precise.

Steam VR Tracking System

All these trackers used the Steam VR Tracking system [8], which is the software and hardware

technology that has the assignment to provide the 6 DoF pose of the sensor. The Steam VR

Tracking technology uses the outside-in method. In this method, cameras are placed in a fixed

position among the location, and they track the position of sensors placed on each tracker.

Increasing the number of cameras provides a better reading of the position, as overlaps will be

8 Image source: https://www.vive.com/media/filer_public/fed-assets/tracker3/images/lighter-992-tracker.webp

15

created which allow the final position of the tracker to be better triangulated. There are some

disadvantages to using the outside-in system. First of all, the fact that it is very easy for cameras

to lose the tracked sensor due to occlusion. If during a motion a sensor is shaded to one or more

cameras, then it can jump to a new position when recorded again by the cameras, creating a bad

experience. The other main limitation of this system is the limited space in which sensors are

tracked. The working zone of a camera is limited due to the fixed position of the base station,

which means that changing environment is not possible without shutting down the system.

Another problem for outside-in tracking systems is reflective lights, due to the interferences

created by this light to cameras. If the system is working near a window or a reflective surface,

it is recommended to cover the surface for a better experience.

The Steam VR Tracking is a hardware and software technology that provides actual pose of an

object by tracking the sensors placed on it. It uses 3 main components: base station, sensors,

and host. The base station is a 120° multi-axis laser emitter for the HTC Vive Base Station 1.0

[12] and a 160º x 115º multi-axis laser emitter for the Valve Index Base Station 2.0 [7]. The

sensors placed on trackers are ASIC sensors, lightweight and low power, in particular they are

photodiodes. They are placed on the object such that more sensors can be seen when moving

the object, as it is possible to see in Figure 6, where ASIC chips are placed along the Vive

Controller’s ring, which is the part of the controller that cannot be covered.

Figure 6: portion of the Vive’s controller ring.9

9 Image source: https://pcper.com/wp-content/uploads/2016/04/0932-160404-122447.jpg

16

Other than photodiodes, there is an inertial measurement unit (IMU) with an update of 1000Hz

to provide information about acceleration with a low latency. The host is the computer that

provides the Steam VR API interface for precise timing, synchronization, and prediction of

position.

For obtaining the position of a tracker, each base station emits different lasers, one vertical and

one horizontal, and synch pulses scanning the room. Every time the synch pulse is detected by

the sensors on the tracker, these ones start to count, since they know that the laser beam is

scanning the room. Based on how much time is passed between the synch pulse and the laser

signal, the system is able to calculate, using simple trigonometry, where the sensor is placed in

the two-dimensional plane. This is possible because the Steam VR software contains a template

for each headset, controller, or tracker, which specifies where the photosensors needed for

tracking are placed. By having more points, the system can add the third coordinate, angle, and

rotation of the object. By using the IMU, the Steam VR Tracking technology is able to

understand linear and angular velocity of the tracked object, with an update frequency of

1000Hz.

With the new base station, the Valve Index Base Station 2.0, it is incremented the field of view

of the cameras. It is usually recommended to use at least two cameras, but if there are

obstructions, it is possible to add a base station in order to get rid of them, and, by adding a

fourth one, it is possible to obtain a room of 10x10m. The laser used in this base station fires

100 times per second and it is individually coded, such that the base station can coexist with

other infrared devices, avoiding interferences. Up to know, the new base station is compatible

with Valve Index e HTC Vive Pro [13].

Executed tests

The sensor study was composed of three different tests, each of which was performed for each

sensor. First, the drift of the system was studied. From previous tests carried out, it was

discovered that the system suffered from a drift when it was turned on, which resulted in a

continuous movement of the position received from Steam VR, independent of the movement

of the tracker. It was necessary to understand if the time needed at the system to stabilize was

the same for each sensor, or if each sensor required a different stabilization time. The second

test carried out was to determine how noisy each tracker is, to understand how to counterbalance

this error and how much it affected the received positions. The third test, however, was related

to the execution of a simple movement by the tracking sensor and the ability of the tracking

17

system to correctly perceive and track this movement. This test was aimed at understanding

how large the cylinder was that contained the final movement perceived by the sensor.

When using the Steam VR Tracking system, the positioning of base stations and the presence

of reflective surfaces can significantly affect the data obtained from trackers. In fact, in the

guide to the use of base stations and their positioning, it is suggested to cover reflective surfaces

and position the stereo cameras so that they are almost never obstructed. Another factor of

fundamental importance is the number of cameras that are used for tracking. The greater the

number of base stations, the better the precision of the tracked position. During the execution

of these tests, the behaviour of the system was also studied, changing the position and number

of cameras available for position detection, in order to understand with how many base stations

it was possible to obtain a good result and what the best positioning was. For each measurement,

the sensor being tested was secured to the flange of the robot, a Kuka KR QUANTEC nano

[14]. It was chosen to place the sensor on the robot to prevent it from suffering vibrations

deriving from the surrounding environment. Furthermore, the robot was maneuvered and

positioned, even during the dynamic test, so that the stereo cameras were never obstructed. Only

in configuration 2, the sensor was not positioned on the robot, but on a raised support, as the

room used was a closed and protected environment.

Different configurations were set up for the positioning of the cameras, each of which was

maintained throughout the entire test run for all trackers studied. The configurations chosen

were:

• CONFIGURATION 1: 3 cameras were used, placing the cameras on the left, right and

top, all on the same wall. The robotic arm that housed the sensor under test was located

in the center of the chambers.

• CONFIGURATION 2: 2 cameras were used, positioned on the opposite side of the room

and at different heights. In this configuration the room was completely dark, to allow

studying in a situation where there was no reflective surface. The sensor was positioned

in the center of the two cameras, resting on a support.

• CONFIGURATION 3: 2 cameras were used, positioned on the left and right on the same

wall, at two different heights, in particular 160cm for the left camera, and 180cm for the

right camera. The robotic arm was positioned in the center of the two cameras.

• CONFIGURATION 4: 2 cameras were used, positioned left and right on the same wall,

at the same height of 257 cm. In this setup, two different room sizes were set during the

Steam VR setup, the large room, and the small room, to see if the room size setting was

18

causing problems for the system. Also in this case, the robotic arm was positioned in the

center.

For each configuration, you could easily change the number of cameras available, simply by

turning the cameras on or off, until the desired number was obtained. All recordings were

performed using the MARVIN software, which through the API provided by Steam VR [15] is

able to receive the position from the tracker and display it in its 3D world.

Drift experiments

System drift was studied by placing the sensor in the center of the base stations' work area and

recording data for approximately one hour. During the recording, the sensor was not moved and

there was no obstruction of the cameras. The location was received every second. The drift

present in the Steam VR tracking system was studied both when the system was turned on, to

calculate the time needed for the system itself to stabilize, and when the system was already

turned on and stabilized, to ensure that the drift was a problem solely derived from the turning

on the system.

To determine the validity or otherwise of the system, once the positions collected during the

test were received, the error on these positions was calculated for each coordinate X, Y, Z, A,

B, and C in accordance with the Equation 1:

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 = 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑉𝑎𝑙𝑢𝑒

Equation 1: computation of the position error for each coordinate.

Once the error for each coordinate was calculated, the absolute error was computed according

to Equation 2:

𝑒𝑟𝑟𝑜𝑟 = √𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟𝑋2 + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟𝑌2 + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟𝑍2

Equation 2: absolute error

19

This error was then brought into a graph, in which the abscissa line represents the time,

expressed in seconds, while the ordinate represents the calculated error, expressed in

millimetres, i.e. how much the position deviates from the average value.

The expected output graphs had to be of two types, in one case having the system just turned

on and in another case the system already stabilized. In the case of the newly powered system,

the output graph was expected to have an initial fluctuation in position, due to system drift,

followed by a complete stabilization after approximately 30 minutes. In the case, however, of

the system already switched on and stabilized, the expected graph consisted of a fluctuation of

the position error around zero.

Tundra Tracker

To study drift with the Tundra tracker, it was decided to record data using configurations 1 and

2, varying the number of cameras used in each different recording.

For configuration 1, data was collected 4 times, including once with the system just turned on.

For configuration 2, the data was collected 11 times, 2 of which when the system had just been

turned on. In this configuration it happened to obstruct the cameras on two separate occasions,

which can be seen in the absolute error graphs, which, in fact, show a jump when the cameras

resumed free vision.

In the Table 1Errore. L'origine riferimento non è stata trovata., you can see the absolute

error graphs obtained from when measuring drift with the Tundra Tracker. It is reported the

worst result in case of multiple registration with the same parameters. Furthermore, the

coordinate that produced the largest standard deviation was also reported, also specifying the

relative value.

Table 1: drift absolute error of Tundra Tracker.

CONFIGURATION ABSOLUTE ERROR [mm]

MAXIMUM

STANDARD

DEVIATION

[mm]

20

Configuration 1 –

registration only with

the right camera

Y coordinate:

1,237580705

Configuration 1 –

registration with left

and right cameras.

X coordinate:

0,6976120504

Configuration 1 –

registration with all 3

cameras.

Y coordinate:

0,2025278112

Configuration 1 –

registration with all 3

cameras, but the system

was just turned on.

C coordinate:

148,9005751

21

Configuration 2 –

system just turned on,

worst case.

Y coordinate:

0,4028559344

Configuration 2 –

obstruction of a

camera.

X coordinate:

0,2078487083

Configuration 2 –

obstruction of a

camera.

Z coordinate:

0,1802598721

Configuration 2 –

registration with both

cameras.

Y coordinate:

0,124494943

As you can see, the Tundra Tracker behaves as expected, with the exception made in

configuration 1 when the system was just turned on. In this case, there was not a drift, but an

initial stability of the system at a specific point of the virtual world, followed by a sudden and

sudden jump to another random point of the virtual 3D world, followed by the final stability of

22

the system. The same sudden jump that occurred when the system was just turned on also

occurred when one of the two cameras in configuration 2 was momentarily obscured. In this

case, however, the system did not undergo major variations and the jump remained limited to a

variation of a few millimetres, which, however, did not happen in the previous case study, where

the jump led to a variation of 20mm in terms of absolute error. As expected from Steam VR, by

increasing the number of base stations, the accuracy of the system is increased.

Valve Index Controller

For the Valve Index Controller, drift was only studied in configuration 1, for which a total of

four recordings were made, one of which was performed when the system was turned on. The

results obtained are shown in the Table 2, where you can observe the graph of the absolute error

and the coordinate with the greatest standard deviation and the relative value.

Table 2: drift absolute error of Valve Index Controller.

CONFIGURATION ABSOLUTE ERROR [mm]

MAXIMUM

STANDARD

DEVIATION

[mm]

Configuration 1 –

registration with the

right camera.

Y coordinate:

7,278858865

Configuration 1 –

registration with left

and right camera.

X coordinate:

0,2601223028

23

Configuration 1 –

registration with 3

cameras.

X coordinate:

0,1445116567

Configuration 1 –

registration with 3

cameras and system

just turned on.

Z coordinate:

0,2530527207

Also in this case, the presence of a jump was noted, which occurred without an obstruction of

the cameras. Aside from this anomaly, the Valve Index Controller behaved as expected,

decreasing the absolute position error as the number of base stations used increased. Drift was

observed when the system was turned on, followed by stabilization.

HTC Vive Tracker 3.0

The study of the drift of this tracker turned out to be more problematic than the two already

studied. In configuration 1, locations were collected 5 times, 2 of which were when the system

was turned on. The tracker, in this configuration, worked in the opposite way to what was

expected. The best results, in fact, were obtained as soon as the system was turned on, while

the number of base stations used was irrelevant for a possible improvement of the system. For

configuration 2, however, the data was collected 11 times and on 2 occasions the system had

just been turned on. In this configuration, the results were consistent with what was expected,

reporting very small absolute errors.

The Table 3 shows the graphs of the absolute error and the coordinate with maximum standard

deviation.

24

Table 3: drift absolute error of HTC Vive Tracker 3.0.

CONFIGURATION ABSOLUTE ERROR [mm]

MAXIMUM

STANDARD

DEVIATION

[mm]

Configuration 1 –

registration with the

right camera.

X coordinate:

40,58165879

Configuration 1 –

registration with right

and left camera

X coordinate:

7,399572384

Configuration 1 –

registration with 3

cameras

X coordinate:

12,15862595

25

Configuration 1 –

registration with 3

cameras and system

just turned on.

X coordinate:

0,1138090438

Configuration 1 –

registration with 3

cameras and system

just turned on – second

attempt.

Z coordinate:

0,2652803129

Configuration 2 –

system just turned on

(worst case)

Y coordinate:

0,3178720278

Configuration 2 –

registration with 2

cameras (worst case).

Z coordinate:

0,2169840993

26

Configuration 2 –

registration with 2

cameras (best case).

X coordinate:

0,05835696222

In Configuration 1, the HTC Vive Tracker 3.0 produced unexpected results. In fact, it was not

possible to determine the reason for the tracker's behaviour, despite several attempts having

been made, each time excluding a possible cause. Potential reflective surfaces, which did not

cause any problems in the other tests, were covered and the measurements were repeated. Any

devices that could cause interference were also removed, again without meaningful results. On

the contrary, the system was much more stable and with a truly reduced error at startup. In one

case, the system did not experience the well-known drift, while in the second attempt the drift

was present, but quickly stabilized.

Reflective surfaces being the biggest problem with the Steam VR tracking system, it was

decided to further evaluate the system in a room completely devoid of light, i.e. configuration

2. In this configuration, the system behaved as expected and produced excellent results.

However, this did not allow us to determine with absolute certainty the origin of the strange

behaviours observed in configuration 1.

Noise experiments

The goal of the noise experiment was to determine how noisy each sensor was, in order to

provide the most accurate measurement possible. To avoid interference from other devices, it

was decided to use a cable to transmit data from the sensor to the PC and not to exploit the

wireless connection with which the sensors are equipped. Each sensor was positioned in the

center of the cameras' workspace and secured to the robot's flange. The location was recorded

for five minutes, with an update rate of one millisecond.

The noise experiment was conducted when the system was fully operational and not when the

system had just been turned on, to avoid running into the drift problem. The error relative to

each coordinate was calculated according to Equation 1, while the absolute error was calculated

27

according to Equation 2. The expected absolute error trend is characterized by a set of constant

values close to zero.

Tundra Tracker

For the Tundra Tracker, the measurements were all performed in configuration 1, recording

with a different number of base stations, in order to understand how the noise changed in

relation to an increase in cameras. Measurements were performed twice for each set of cameras

used, for a total of 6 recordings overall.

The Table 4 shows the graphs of the error obtained, always considering the worst case, i.e. the

case in which the standard deviation of the absolute error was the largest. The coordinate with

the greatest standard deviation is also reported.

Table 4: noise absolute error of Tundra Tracker

CONFIGURATION ABSOLUTE ERROR [mm]

MAXIMUM

STANDARD

DEVIATION

[mm]

Configuration 1 –

registration with right

camera.

Y coordinate:

0,7913909286

Configuration 1 –

registration with left

and right cameras.

Y coordinate:

0,1150919967

28

Configuration 1 –

registration with all 3

cameras.

Y coordinate:

0,227001771

From the results, we can see how the transition from one to two base stations contributed to a

decrease in the absolute error, going from an average absolute error of 0.8773684662mm for

the positions recorded with a single base station to an average error of 0,152208148mm for the

positions received using two base stations. By further increasing the number of cameras, no

significant decrease in noise was found, in fact the absolute average error increased, obtaining

an average absolute error of 0,3050001074mm, always considering the worst case between the

two recording.

Valve Index Controller

Also for the Valve Index Controller, the noise experiment was repeated 6 times, twice for each

number of working cameras, always in configuration 1.

The Table 5 shows the graph representing the absolute error and the coordinate having the

greatest standard deviation.

Table 5: noise absolute error of Valve Index Controller.

CONFIGURATION ABSOLUTE ERROR [mm]

MAXIMUM

STANDARD

DEVIATION

[mm]

29

Configuration 1 –

registration done with

the camera on the

right.

Y coordinate:

0,1136903042

Configuration 1 –

registration done with

left and right cameras.

X coordinate:

0,06116572452

Configuration 1 –

registration with all

cameras.

X coordinate:

0,09650580398

The Valve Index Controller was shown to be quite indifferent to the number of base stations

used for position tracking. In fact, the best result is obtained using two base stations, with an

average error of 0.08112156402mm, while with one and three cameras, the average absolute

error is around 0.13mm.

HTC Vive Tracker 3.0

Several recordings were made for the HTC VIVE Tracker 3.0, as behaviour was noted that

differed from what was expected. It was in fact possible to observe on MARVIN the sensor

which, although it was completely still and anchored to the robot, moved, or jumped in complete

autonomy in the virtual world. A first hypothesis as to the reason for this behaviour of the tracker

30

was the interference of the IFM time-of-flight camera, used during nearby recording, but

subsequent tests showed that the IFM did not cause any interference, since good results, even

while the camera was working and was deliberately pointed at both the base stations and the

tracker.

In total, the data was collected 13 times, all in configuration 1, and the graphs of the trend of

the absolute error in the worst and best cases, based on the maximum and minimum standard

deviation, are provided in the Table 6 together with the coordinate that reached the maximum

standard deviation.

Table 6: noise absolute error of HTC Vive Tracker 3.0.

CONFIGURATION ABSOLUTE ERROR [mm]

MAXIMUM

STANDARD

DEVIATION

[mm]

Configuration 1 –

registration done with

the camera on the right

– best case.

Y coordinate:

0,7953497516

Configuration 1 –

registration done with

the camera on the right

– worst case.

Y coordinate:

7,12638882

31

Configuration 1 –

registration done with

the right and left

camera – best case.

X coordinate:

0,07084194781

Configuration 1 –

registration done with

the right and left

camera – worst case.

Y coordinate:

8,2794865

Configuration 1 –

registration done with

all cameras – best

case.

X coordinate:

0,07565882987

Configuration 1 –

registration done with

all cameras – worst

case.

X coordinate:

29,33615729

The performance of the HTC Vive Tracker 3.0 led to inconclusive results. In fact, in some

recordings, as can be seen from the graphs in which the absolute error is not an accumulation

32

of points close to zero, but the values form a v, the sensor moved autonomously in the virtual

world, as if something was moving it moving. Unfortunately, despite various attempts, it has

not been possible to determine the causes of this shift. In fact, reflective surfaces, interference

due to other devices, such as the IFM used during recordings, and an insufficient number of

base stations were excluded. When this visible movement on MARVIN did not occur, the HTC

Vive Tracker 3.0 performed noteworthy. In fact, with two and three cameras, the average

absolute error was 0.09149734072mm and 0.1166392708mm respectively.

Dynamic experiments

The last aspect studied about these three sensors was their ability to record linear movement.

The main purpose of the dynamic test, in fact, was to determine the ability of the sensors to

faithfully reproduce the linear movement performed by the robot and to calculate the radius of

the cylinder containing the movement. Ideally, the radius of this cylinder should be zero, as the

sensor should identically reproduce what it experienced in the real world in the virtual one.

Each sensor was placed on the flange of the robotic arm, which performed three linear

movements, one for each Cartesian axis. It is important to underline that the movement was

linear with regards to the robot's reference system, which is not guaranteed by the sensor. In

fact, the reference system of the robot and the one that the sensor has in the world generated by

MARVIN are completely independent of each other. Another feature studied in these dynamic

tests was the sensor's ability to correctly record the distance travelled. If, in fact, the robotic arm

had performed a linear movement of one meter, the distance between the initial and final

position of the sensor should be at a distance in space of one meter, because that is the distance

travelled in the real world.

The tests were performed by repeating the same loop, changing only the axis of movement of

the robotic arm. Initially, the sensor remained stationary at the starting point for approximately

5 to 10 seconds, linear movement was performed, followed by another stop of 5 to 10 seconds.

In this way, it was possible to recover the initial and final point of the straight line travelled in

the virtual world, calculating the average of the first and last 200 points recorded. The code

used to make the robot move is shown in the Figure 7.

33

Figure 7: code for X motion.

In the evaluation of the dynamic tests, two errors were evaluated: the distance of each individual

position with respect to the straight line followed in the linear movement and the length of this

straight line. Remembering that there is no correlation between the frame the robot used, and

the frame used by the sensor in the virtual world, all calculations were performed in three

dimensions. As regards the distance 𝑑(∙,∙) between the straight line 𝑟 and each individual

position 𝑃𝑖, it was calculated according to Equation 3, where 𝑃1 = (𝑥1, 𝑦1, 𝑧1) is any point on

the line 𝑟 and it was decided to use the final point, 𝒏 is defined as 𝒏 = 𝒎 × (𝒎 × 𝑃𝑖𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗), and

𝒎 is defined as 𝒎 = 〈𝑎, 𝑏, 𝑐〉, where 𝑎, 𝑏, 𝑐 are the coefficient of the linear equation of line 𝑟.

𝑑(𝑃𝑖, 𝑟) =
|𝑃𝑖𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝒏|

‖𝒏‖

Equation 3: distance between a point and a line in space.

The distance 𝑑(∙,∙) between the initial measured point 𝐴 = (𝑥𝐴, 𝑦𝐵, 𝑧𝐵) and final measured

points 𝐵 = (𝑥𝐵, 𝑦𝐵, 𝑧𝐵) was calculated according to Equation 4.

𝑑(𝐴, 𝐵) = √(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 + (𝑧𝐴 − 𝑧𝐵)2

Equation 4: distance between point A and point B in a 3-dimensional space.

34

The expected graph representing the distance of each individual position with respect to the line

travelled should have had a bell shape, in fact during the first 5/10 seconds of the test the robot

was stationary, followed by a linear movement towards the final point, where it would have

restated for another 5/10 seconds. The recordings made when the robotic arm was stationary

should have produced an almost zero distance from the line. The bell shape, however, should

have reached its peak towards the middle of the line, because the robotic arm performed an

acceleration up to the halfway point, followed by a deceleration to reach the final point and

stop. Since the sensors are equipped with IMU and the position calculated by Steam VR also

based on the data received from the IMU, it was expected that the acceleration and deceleration

would affect the recorded position, creating the bell-shaped graph.

Tundra Tracker

For the dynamic tests, the movements performed by the robotic arm consisted of a repeated

sequence of linear movements, performed one for each axis of the Cartesian reference system.

In particular, for configuration 1, the movement along the X-axis and Y-axis was 1000mm,

while for the Z-axis it was 500mm, in order to avoid going outside the working range of the

base stations. In configurations 3 and configuration 4, however, the movements along the three

Cartesian axes were all 500mm long. With the aim of recording movement as precisely as

possible, it was decided to record trajectories with at least two cameras switched on at all times.

In accordance with this, one recording was made with two cameras, using the left and the right

camera, and two recordings with all three base stations for each movement performed in

configuration 1. In configurations 3 and 4, however, each movement was recorded six times.

Graphs showing the distance of each recorded position to the line calculated from the start point

to the end point and the distance travelled as measured by the tracker are shown in the Table 7.

To determine the best and worst case, the standard deviation of the mean of the distance between

each individual point and the line travelled was calculated.

Table 7: point-line and measured distance for Tundra Tracker.

CONFIGURATION DISTANCE POINTS-LINE [mm]

MEASURED

DISTANCE

[mm]

35

X

MOTION

Configuration

1 –

registration

with left and

right cameras.

1009,525669

Configuration

1 –

registration

with all

cameras –

worst case.

1009,204628

Y

MOTION

Configuration

1 –

registration

with left and

right cameras.

1004,600502

Configuration

1 –

registration

with all

cameras –

worst case.

999,3449921

36

Z

MOTION

Configuration

1 –

registration

with left and

right cameras.

504,213404

Configuration

1 –

registration

with all

cameras –

worst case.

504,6515467

X motion

Configuration

3 – best case.

506,7414017

Configuration

3 – worst

case.

506,8251189

37

Y motion

Configuration

3 – best case.

510,6966075

Configuration

3 – worst

case.

507,710826

Z motion

Configuration

3 – best case.

505,9614791

Configuration

3 – worst

case.

521,3983842

38

X motion

Configuration

4 (big room)

– best case.

501,6321646

Configuration

4 (big room)

– worst case.

503,3852616

Y motion

Configuration

4 (big room)

– best case.

501,0487939

Configuration

4 (big room)

– worst case.

618,2568119

39

Z motion

Configuration

4 (big room)

– best case.

496,4305413

Configuration

4 (big room)

– worst case.

538,5562775

X motion

Configuration

4 (small

room) – best

case.

501,7408512

Configuration

4 (small

room) – worst

case.

501,601504

40

Y motion

Configuration

4 (small

room) – best

case.

501,953283

Configuration

4 (small

room) – worst

case.

530,8506427

Z motion

Configuration

4 (small

room) – best

case.

500,1816479

Configuration

4 (small

room) – worst

case.

501,2992505

During the execution of the dynamic tests, it was noticed, as already happened for HTC Vive

Tracker 3.0 during the noise tests, some jumps and movements that did not agree with the

movement performed by the robotic arm. As can be seen from some graphs, there are sudden

peaks, which place the sensor very far from the straight line travelled in the virtual world of

41

MARVIN, leading to the execution of a non-linear movement and an incorrect measurement of

the overall distance travelled. The jumps made by the sensor are not connected to the axis of

the movement performed, as they are present in all three Cartesian axes. Furthermore, they are

not even connected to the different configuration of the Steam VR room, as the jumps are

present both in the room configured as small and in the one configured as large. When these

jumps are not present, the movement performed on the X-axis is the one that achieved better

performance, managing to contain the line travelled inside a cylinder with a maximum radius

of 0,6862903364 mm.

High jumps, i.e. where you can see from the graph, a notable increase to the point of observing

all the other distances measured as a single line, also significantly affect the distance measured.

Generally, the Tundra Tracker was able to correctly measure the distance travelled to within a

few millimetres.

Double Tundra Tracker

During tests relating to the Tundra Tracker sensor, jumps and peaks were noted which led the

sensor to provide incorrect information, both relating to the distance travelled and the distance

of each individual position with respect to the trajectory performed. To try to limit this problem,

the dynamic tests performed for the Tundra Tracker were repeated using two Tundra Trackers

simultaneously and averaging the two positions received, to limit any possible incorrect reading

by one of the two sensors. The two sensors were placed on a bar attached to the flange, at a

distance of 15cm from each other. Since the Tundra Trackers are placed far apart from each

other, the recorded positions of the sensors do not coincide. It was, therefore, necessary to

manipulate the data in order to obtain a single relative position for both sensors, simulating the

measurement of the same point by both. The two sensors were placed at a distance of 15cm to

reduce the possible number of photodiodes covered by the presence of the other sensor.

The tests were carried out in configuration 4, recording 6 movements for each axis, covering a

distance of 500mm. The Table 8 shows the graphs of the distance of each point with respect to

the line travelled and the distance measured, relative to the average of the data received from

both sensors.

42

Table 8: point-line and measured distance for double Tundra Tracker.

CONFIGURATION DISTANCE POINTS-LINE [mm]

MEASURED

DISTANCE

[mm]

X

motion

Configuration 3

– best case.

504,0582598

Configuration 3

– worst case.

558,7241646

Y

motion

Configuration 3

– best case.

497,1101181

Configuration 3

– worst case.

431,9820084

43

Z

motion

Configuration 3

– best case.

503,4948609

Configuration 3

– worst case.

494,7577204

X

motion

Configuration 4

(big room) –

best case.

502,5242297

Configuration 4

(big room) –

worst case.

432,4266245

44

Y

motion

Configuration 4

(big room) –

best case.

500,3860924

Configuration 4

(big room) –

worst case.

376,8588932

Z

motion

Configuration 4

(big room) –

best case.

498,2322746

Configuration 4

(big room) –

worst case.

513,7498514

45

X

motion

Configuration 4

(small room) –

best case.

501,3652286

Configuration 4

(small room) –

worst case.

500,5601538

Y

motion

Configuration 4

(small room) –

best case.

501,7838017

Configuration 4

(small room) –

worst case.

502,3532542

46

Z

motion

Configuration 4

(small room) –

best case.

501,6296631

Configuration 4

(small room) –

worst case.

491,9248033

As can be seen from the graphs of the distance of each position from the straight line travelled,

the presence of two sensors to provide the final position did not serve to improve the final

performance of the system. In fact, although during the tests only one sensor underwent

movements in the virtual world that did not conform to the movements performed in the real

world, the one not affected by these jumps is unable to compensate for the incorrect reading of

the position and provide, through the average, a final position consistent with what is performed

in the real world.

It is also worth underlining that both sensors are affected by these sudden jumps in the space of

the virtual world, eliminating, as a trigger, the possible breakage of the two sensors.

Valve Index Controller

For Valve Index Controller, the dynamic tests were always performed in configuration 1, once

for each axis of the Cartesian system using two base stations, in particular the cameras

positioned on the right and left were used, while two recordings were performed for each axis

with all three cameras present. The distance travelled during each movement along the X and

Y axes was 1000 mm, while along the Z axis it was 500 mm.

47

The Table 9 shows the graphs representing the distance of each position detected with respect

to the line travelled and the distance measured from the starting point to the final point.

Table 9: point-line and measured distance for Valve Index Controller.

CONFIGURATION DISTANCE POINTS-LINE [mm]

MEASURED

DISTANCE

[mm]

X

motion

Configuration 1

– registration

with left and

right cameras.

995,752264

Configuration 1

– registration

with all

cameras – worst

case.

996,1899583

Y

motion

Configuration 1

– registration

with left and

right cameras.

1010,856248

48

Configuration 1

– registration

with all

cameras – worst

case.

997,8108896

Z

motion

Configuration 1

– registration

with left and

right cameras.

499,0184554

Configuration 1

– registration

with all

cameras – worst

case.

498,911419

The Valve Index Controller provided the best performance with three cameras working,

managing to contain the recorded linear motion within a cylinder of radius 0.457015668mm.

Also regarding the ability to measure the distance travelled, the sensor has shown itself to be

able to measure the distance correctly, with a deviation of a few millimetres.

HTC VIVE Tracker 3.0

The dynamics of the HTC VIVE Tracker 3.0 were studied in different configurations. In

configuration 1, data was collected once for each axis with two cameras, specifically the left

and right base stations were turned on, and twice with three cameras. The distance travelled

49

along the X and Y axes was 1000 mm, while along the Z axis it was 500 mm. In configurations

3 and 4, six movements of 500mm each were performed and recorded.

In the Table 10 you can see graphs showing the distance of each position sent by the sensor

from the line formed from the start point to the end point. The distance measured by the sensor

during movement is also shown. The worst case was chosen by observing the movement that

produced the greatest standard deviation compared to the average distance of each single point

from the line.

Table 10: point-line and measured distance for HTC Vive Tracker 3.0.

CONFIGURATION DISTANCE POINTS-LINE [mm]

MEASURED

DISTANCE

[mm]

X

motion

Configuration 1

– registration

with left and

right cameras.

1000,649107

Configuration 1

– registration

with all

cameras – worst

case.

1003,18467

50

Y

motion

Configuration 1

– registration

with left and

right cameras.

1001,160374

Configuration 1

– registration

with all

cameras – worst

case.

1003,069011

Z

motion

Configuration 1

– registration

with left and

right cameras.

501,2255416

Configuration 1

– registration

with all

cameras – worst

case.

501,1005786

51

X

motion

Configuration 3

– best case.

500,660658

Configuration 3

– worst case.

500,7138501

Y

motion

Configuration 3

– best case.

498,5079719

Configuration 3

– worst case.

498,3249213

52

Z

motion

Configuration 3

– best case.

500,8744656

Configuration 3

– worst case.

500,9026684

X

motion

Configuration 4

(big room) –

best case.

498,5087948

Configuration 4

(big room) –

worst case.

499,3826092

53

Y

motion

Configuration 4

(big room) –

best case.

495,529309

Configuration 4

(big room) –

worst case.

491,8911094

Z

motion

Configuration 4

(big room) –

best case.

498,8271946

Configuration 4

(big room) –

worst case.

498,7279385

54

X

motion

Configuration 4

(small room) –

best case.

502,1255223

Configuration 4

(small room) –

worst case.

499,3868284

Y

motion

Configuration 4

(small room) –

best case.

501,0584043

Configuration 4

(small room) –

worst case.

502,2481032

55

Z

motion

Configuration 4

(small room) –

best case.

513,7118094

Configuration 4

(small room) –

worst case.

533,8013837

HTC Vive Tracker 3.0 generated better results when running the dynamic tests than it performed

with the noise tests. The sensor, in fact, was more stable and less subject to sudden jumps. Using

three base stations, the tracker was able to keep the cylindrical moving along a linear trajectory,

always with a radius of less than 1.5mm in the worst case. In configurations with two cameras,

however, the cylinder expanded, extending the beam to 3mm or more.

Results

During the execution of required measurements, it was discovered a problem within the system,

since it was seen a random jitter, also when the sensors were fixed. This jitter caused problems

during the measurements since it did not provide a coherent position for all the time

measurement. The cause that generated this event was not precisely discovered, because the

possible causes provided by the developer were one by one checked and, eventually, corrected.

Another problem that was encountered was the drift present also when the system had been on

for a long time. It was known that the system required some time to calibrate and provided the

exact position of the sensors, but in some cases, it drifted without following any predictable

path. For the drift experiments, it was discovered that 1 camera was not enough for receiving

data with an acceptable error, considering the fact that the precisions requested was about 1mm,

so the system needed at least 2 cameras.

56

The Tundra Tracker worked very well with 2 cameras in a dark place and with 3 cameras in a

lighter place, but it did not provide any guarantees about its behaviour when the system was

just turned on, so it needed that the system will be turned on before starting the usage of the

sensor.

The Valve Index Controller worked very well with 3 cameras, but it provided satisfying results

also with 2 cameras. When the system was just turned on it fit with the expected behaviour,

namely a first continuous oscillation, followed by a stabilization. It stabilized after

approximately 30 minutes.

The HTC Vive Tracker 3.0 was the sensor that provided the best results in terms of time; indeed,

it stabilized after 20 minutes, but it provided some strange behaviour. The exact cause of these

behaviours was not very clear, since the sensor worked in the same conditions as all the others,

but it was supposed to be a change in the light of the room, that was not perceptible by humas.

In support of this hypothesis, there is the fact that the HTC Vive Tracker 3.0 provided the best

results in the dark room, staying within the upper limits of the error, also when the system was

just turned on.

The difference in time required for each sensor to stabilise when the system is just switched on

is displayed in the Figure 8:

Figure 8: drift results for the three sensors.

57

In the noise experiment both Valve Index Controller and Tundra Tracker worked very well with

two or more cameras, provided the expected output. The HTC Vive Tracker 3.0, on the other

hand, behaved unexpectedly, indeed sometimes it behaved as predicted, provided optimal

results with two or three cameras, while at other times, the position received by the sensor

during recording showed a movement of the sensor, although the sensor had always been

stationary in place.

For the dynamic tests, all the sensor worked as predicted, since most of the time, the output

graphs had a bell shape.

The Tundra Tracker provided similar results with two or three cameras, both in terms of point

distance from the line and measured covered distance. The distance of each received position

to the line travelled was most often too great, in fact the sensor moved further away from the

line than the required 1 mm, meanwhile the measured distance was always very different from

the distance covered by the robotic arm. With the Tundra Tracker, it was decided to use two

sensors and mediate the received position to increase the precision of both sensors. In this case,

the reliability of the two sensors was very important, but in always all performed motions, at

least one sensor did not work correctly, so the average output value was not usable.

Nevertheless, the average of the two sensors provided a better result in terms of measuring the

travelled distance, in fact the two sensors were able to measure accurately the covered line.

In Figure 9, the graph shows the difference between the distance measured by the single Tundra

sensor and the pair of Tundra sensors in configurations 3 and 4. The measurements reported are

the same as those reported in Table 7 and Table 8. In these configurations, the sensors travelled

a distance of 500mm for each Cartesian axis. The average difference measured for the single

Tundra Tracker is 14mm, which translates to the sensor adding, on average, 14mm to the

recorded measurement. The Tundra Tracker pair, however, has an average difference of -10mm,

resulting in measurements approximately 10mm lower than the 500mm performed.

58

Figure 9: difference of measured distance by Tundra Tracker and double Tundra Tracker.

The Valve Index Controller provided good results in both studied behaviours, since it was able

to measure the covered distance with accuracy and have small spikes during the motion,

reducing the bell shape of the graph.

The HTC Vive Tracker 3.0 was good in measuring the travelled distance and gave good results

in following the line during the motion. It was more consistent in the final outputs, but it

provided a bigger cylinder with respect to the Valve Index.

In Figure 10, Figure 11, and Figure 12 it is possible to see the differences between the 3 sensors

in terms of point-line distance from the line travelled by the robotic arm, for each frame axis.

59

Figure 10: point-line distance during X-axis motion.

Figure 11: point-line distance during Y-axis motion.

60

Figure 12: point-line distance during Z-axis motion.

In conclusion, according to these experiments, it is recommended to use two cameras to cover

more area and have the possibility to be able to see the sensor also when one camera is

obstructed. With two cameras, the position received from the sensor is more precise. For these

sensors, the presence of a third camera is not necessary, unless the motions done will go to

occlude both cameras.

After the stabilization of the system, for dynamic purpose, the best sensors are the HTC Vive

Tracker 3.0 and the Valve Index Controller, since they provided the best results during both

measuring processes.

61

COMPOSITION OF THE 2D PANORAMA

After the studies relating to the choice of the sensor to be used for the final part of the project,

the next part concerned the creation of a final overall image, using a time-of-flight camera for

data acquisition.

The time-of-flight camera was mounted on a robotic arm, which, initially, provided the position

of the camera relative to the robot's world reference system, meanwhile the time-of-flight

camera provided data about the scene in its field of view. Meanwhile positions were used to

divide each image into different list having similar position to each other, the IFM camera

provided two types of data; indeed, it created the point cloud of the scene, but also the relative

16 bits grayscale image, which is used for the image stitching. Each received information were

stored in the computer to allow subsequent usage.

The ToF camera

The Time-of-Flight camera [16] [17] is a sensor that measures the distance between the camera

itself and surrounding objects, calculating the time it takes for light, or other signals, to return

to the camera after hitting the surface of objects.

A Time-of-Flight camera is composed by different pieces, as shown in Figure 13:

- Sensor module, which collects the reflected light from the scene and convert the data

into a depth map, where each pixel represents the distance between the camera itself

and the object in the scene.

- Light source, which is the module that provides the signal source that travels through

space.

- Depth processor, which helps to convert the raw data into depth information. This

processor can also provide a 2D infra-red image.

Time-of-flight camera operation is based on the time, represented by the phase of the light, it

takes for the signal to complete the camera-object-camera path. The phase of the light is then

converted into a distance and stored into a depth map.

Usually, the used light is emitted by a LED or a solid-state laser that works in the near infrared

range, so from 780 nm to 2500 nm, light that is invisible to the human eyes. The imaging sensor

must work in the same rage of light.

62

Figure 13: system of a time-of-flight camera.10

The time-of-flight camera has some advantages, first of all, the speed, since it works with the

fastest thing in the universe, light. It is also very compact, because sensor and light source are

place one near the other and there are no moving parts. The energy that the camera needs is not

elevated, since the time-of-flight camera does not require a lot of computational power.

On the other hand, this type of sensor is sensitive to the background light, which can interfere

with the light emitted by the ToF camera. Another problem is given if more ToF are used at the

same time, since the cameras can disturb each other. Similarly, when the light is reflected by

the object there is no guarantee that it will be a single path, but it can be reflected in several

different path, which results in a wrong reading by the ToF camera.

IFM

In this case of study, the used time-of-flight camera was an IFM camera [18], in particular the

3D camera O3D301. The camera is shown in Figure 14:

10 Image source: https://www.e-consystems.com/blog/camera/technology/what-is-a-time-of-flight-sensor-what-

are-the-key-components-of-a-time-of-flight-camera/

63

Figure 14: IFM ToF O3D301. Image taken from IFM website.

Meanwhile, its technical scheme is shown in the Figure 15:

Figure 15: technical scheme of IFM O3D301. Image taken from IFM O3D301 manual.

The technical characteristics of this 3D camera are:

- Image resolution: 352 x 264 pixels.

- Angle of aperture 3D: 40° x 30° (horizontal x vertical), nominal value without lens

distortion correction.

- Operating distance: from 300 mm to 10000 mm.

The data output format can be:

64

Data type Data value Note

Distance [mm]
0 to 65535 (16 bits unsigned

integer)
Radial distance

Cartesian coordinates x, y, z

[mm]

-32767 to 32767 (16 bits signed

integer)

x, y: lateral

position

z: vertical distance

Amplitude [a.u.]
0 to 65535 (16 bits unsigned

integer)
Object brightness

Some parameters can be set via PC with IFM Vision Assistant, which is the proprietary software

used for controlling, checking, saving, or cloning the IFM sensors, or XML-RPC. For

communicating with the PC or Internet, the IFM camera needs an Ethernet cable.

IMAGE PROCESSING

Every time the IFM camera was activated, the application saved the data received and added

the spatial position of the camera. The position is composed of the three cartesian coordinates

and the three angles. At first, the position referred to the robot's world reference system, while

subsequently the VR tracker was added, in order to free the camera from the robotic arm and

thus make it portable.

Once the acquisition of the images is finished, they are divided into lists based on the coordinate

chosen by the user. To divide the images, it was chosen to use a tolerance threshold related to

the coordinate, as specified by the Equation 5:

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑛𝑒𝑤 ∈ (𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑓𝑖𝑟𝑠𝑡 ± 𝑇𝑂𝐿𝐿𝐸𝑅𝐴𝑁𝐶𝐸)

Equation 5: formula used for adding an image.

where:

- 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑛𝑒𝑤 is the coordinate of the image that is currently processed. This image is

waiting to be added to its list.

- 𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑓𝑖𝑟𝑠𝑡 is the coordinate of the first image of the list.

- 𝑇𝑂𝐿𝐿𝐸𝑅𝐴𝑁𝐶𝐸 is the tolerance that create the boundaries for deciding if an image can

be added to the list or not.

65

This allowed us to create a set of images where there are elements in common, which will allow

OpenCV to make the final stitch. Depending on which coordinate is used for sorting images,

different results can be obtained.

The IFM camera provided 16 bits grayscale images. These images provided a better quality,

since their color range to represent a pixel is not limited to 255, but it can sweep from 65536

different values. From the images obtained from the IFM, it was noted that this range is not

fully utilised, in fact most of the images assign maximum pixel values around 5000. Although

16-bit images provide better detail and information, in order to be able to stitch them, it was

necessary to transform them into 8 bits per pixel images, otherwise OpenCV would not be able

to work with them, as it only accepts 8-bit greyscale images, or 32 bits in the case of ARGB.

During this transformation, of course, some information was lost, but it did not compromise the

realisation of the final stitch. An example of input images received from the IFM and then

transformed into 8-bits images can be seen in Figure 16.

Figure 16: two input images received from IFM camera.

Image stitching

Image stitching is a well-known part of computer vision. It is a process where different images

are merged together to create a panoramic picture, but input images must have overlapping

fields of views, to allow the merging, and these overlapping parts can be between 15% to 30%

of the whole image.

66

Image stitching is used for different applications, such as document mosaicking, that is the

process where multiple images of the same document are stitched together for obtaining a large

and high-resolution image of the document, image stabilization, where the stitching is used for

compensation the motion of the camera, high-resolution image mosaics in digital maps and

satellite imagery, medical imaging, video stitching and more other different applications.

Image stitching is not an easy task since multiple problems and challenges can occur. First of

all, the illumination of the scene, which is impossible to have equal in every image. These

difference illuminations can lead to create a panoramic image whit different illumination zone.

Other problem to solve are lens distortion due to camera’s lenses, presence of parallax, exposure

difference between images, and scene motion.

All these problems can lead to a failure during the computation of the panorama or can lead to

the creation of a panoramic image having an inadequate quality, making it unusable.

OpenCV and EmguCV

OpenCV (Open-Source Computer Vision Library) [19] is used for programs that needs real-

time computer vision tasks. It is a cross-platform library and licensed as free and open-source

software under Apache License 2. Developed in 1999, by Intel, it is written in C++, but there

are language bindings in Python, Java, and MATLAB. To enable a wider audience to use the

library, different wrapper libraries have been developed.

OpenCV was created to provide an infrastructure that was common to all to enable the use of

applications that required computer vision tasks, such as facial recognition system, human-

computer interaction, gesture recognition, mobile robotics, object detection, augmented reality,

and segmentation and recognition. It also provides 2D and 3D feature toolkits. Since all of these

tasks are quite complex, OpenCV had to include statistical machine learning libraries that

execute algorithm as boosting, support-vector machine, random forest, and all the other

algorithms used in machine learning. In total, OpenCV has more than 2500 algorithms, all

optimized for performing all the basics and the state-of-the-art algorithms of both the computer

vision and machine learning tasks.

In this case of study, the language used for developing the application was C#, so it was needed

to use a wrapper library, and the chosen one was EmguCV [20]. EmguCV is a .Net wrapper for

the OpenCV library and it is cross platform. This allows to call OpenCV from all the .Net

67

compatible languages, in order to be able to use all the capacities of OpenCV, without being

forced to use C++. The wrapping of OpenCV is done using 3 classes:

- Emgu.CV.CvInvoke, which wraps the functions of OpenCV. This class provides a

method to invoke functions from OpenCV, using directly a .Net language.

- Emgu.CV.Structure.Mxxx, which wraps the structures present in OpenCV, and the M

stands for Manged. EmguCV uses also structures present in .Net for representing

structures of OpenCV.

For example, the MCvScalar represents the managed structure equivalent to CvScalar

in OpenCV, meanwhile System.Drawing.Point, which is a .Net structure, is used for

representing the OpenCV structure CvPoint.

- Emgu.CV.CvEnum, which wraps the OpenCV enumerations.

Since version 3.0 of OpenCV, the IplImage class has slowly been abandoned, replaced by the

newer Mat class. As a result, EmguCV also had to adapt, using the new Mat class. The old

Image<,> class remained available, however for retro compatibility, although the use of the

Mat class is recommended. There are some differences between the Mat class and the Image<,>

class in EmguCV. First of all, in the Mat class, there is no constraint on the memory allocation,

which means that it is not mandatory to pre-allocate memory, but an empty object can be used.

On the other hand, a Mat object can change its dimension during its lifetime, so there is no

method that can access the pixel like it were a managed array, which is possible in the

deprecated Image<,> class, using the Data method. To overcome this problem, one can

transform the Mat object into an Image<,> object and then use the Data method to be able to

use the image as if it were an array. This method is, however, rather slow, but also the safest.

There is, in fact, also another faster, but much more dangerous solution, which forces the use

of pinned managed memory. This way, if the new Mat object is created with an incorrect size,

a solution with all zeros is obtained and no exception is thrown, not allowing programmers to

know the error.

Stitching algorithm

OpenCV provides a class that can do all the work for the image stitching, which is Stitcher.

Using this class, it is necessary to write only few rows of code to obtain the final result, but, the

provided method returns only the final panorama, without all the matrices used for the

transformation of input images into the computed panorama.

68

The pipeline used by the provided class is shown in the Figure 17:

Figure 17: OpenCV stitching pipeline taken from OpenCV documentation.

In this case of study, the matrices were important to know since they were used in the

computation of the rotation and translation of the matrices for the points clouds. Since it was

necessary to know all the transformation matrices, the provided class was not used, and the

image stitching pipeline was manually implemented, following these subsequently steps:

1. Keypoints detection.

2. Matching keypoints.

3. Homography estimation.

4. Panorama computation.

Since it was necessary to merge more possible images, it was decided to search for the best

match between the computed panorama and all the images.

Keypoints detection

The first step implemented in the stitching process was the computation and detection of the

keypoints for each image.

69

For computing the keypoints was used the SIFT (Scale-Invariant Feature Transform) algorithm

[21], developed by David Lowe in 1999, because it is a very reliable keypoint detector and

descriptor. SIFT is powerful, since it is invariant to rotation, translation, uniform scaling,

illumination changes, and, partially, to affine distortion. Additionally, SIFT features are robust

to occlusions, and very dense, since many features can be found also in small objects. Even the

computation of the SIFT features is quite fast, despite having different steps to do before

creating the final features, in fact, for computing 1000 SIFT keys are necessary less than 1

second.

The first step in the computation of the SIFT features is to find key locations, which is done by

performing a difference of Gaussian (DoG) applied in scale space and then selecting the key

locations at maxima and minima of this DoG, because they represent points of high variation.

Scale space is divided into octaves and for each image contained into an octave, it is performed

a gaussian smoothing, in the vertical and horizontal directions. The gaussian smoothing

performed for each image of an octave has its σ increased: 𝑘𝜎, 𝑘2𝜎, 𝑘3𝜎.

When moving from one octave to the next, the images are down sampled, which means that

although the same Gaussian filter is always used, in the next octave this filter behaves as if it

had a double σ. To find the keypoints, it is necessary to calculate the DoG, an operation that is

conducted for each octave in the space-scale representation by subtracting the images within

each octave two by two, after applying the Gaussian filter, as shown in the Figure 18.

Figure 18: Difference of Gaussian (DoG).11

The maxima and minima of the DoG are calculated by comparing each pixel with its 8

neighbours at the same level of the pyramid composing the scale space. The pixel is also

11 Image source: D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints.

70

checked against all 9 corresponding pixels in the other neighbouring levels of the octave. In

practice, the pixel under consideration is checked against its neighbours in a cube of size 3x3x3,

as shown in the Figure 19. If the pixel turns out to be either a maximum or a minimum, then it

is a candidate to be a SIFT keypoint.

Figure 19: analysed point and its neighbours.12

This way of finding keypoints produce a large number of results, which must be refined, since

it is necessary to eliminate any low-contrast and edge keypoints. Using the quadratic Taylor

expansion of the DoG for obtaining a better position of the extrema, it is checked if its intensity

is greater than a threshold. If this condition is not satisfied, then the extrema is discarder. Since

the DoG has a strong response to the presence of edges in the images, it is necessary to eliminate

these extrema, since they are not a good keypoint choice. For doing this elimination, it is used

a 2x2 Hessian matrix.

Once the useless keypoints are eliminated, the second step for the computation of the SIFT

features is the orientation assignment, that is the key step to achieve the invariance to rotation.

For each detected keypoint, now, it is necessary to compute the gradient orientation, θ(x, y), and

the gradient magnitude, m(x, y), for each pixel of its neighbourhood in the scale image L(σ),

which is the image that had generated the keypoint. The gradient magnitude is computed

according to Equation 6, meanwhile the gradient orientation is computed according to Equation

7.

12 Image source: D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints.

71

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))
2
+ (𝐿(𝑥, 𝑦 + 1) + 𝐿(𝑥, 𝑦 − 1))

2

Equation 6: gradient magnitude computation.

𝜃(𝑥, 𝑦) = 𝐴𝑡𝑎𝑛2(𝐿(𝑥, 𝑦 + 1) + 𝐿(𝑥, 𝑦 − 1), 𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))

Equation 7: gradient orientation computation.

When the computation is done, the gradient magnitudes are weighted with a zero mean gaussian

centered in (x, y) with standard deviation equals to 1.5*σ, meanwhile the gradient orientations

are quantized with a 10° step and their magnitude is stored into a 36 bins histogram. At the end,

the highest peak of the histogram corresponds to final orientation of the keypoint. If other peaks

greater that 80% of the highest peak are found, then for each of them a keypoint is generated,

with same location and scale, but with different orientation.

Now, each keypoint has its position, its scale, and its orientation. The following step is to

generate the keypoint descriptor. This last step aims to describe in a unique way the keypoints,

such that it will be highly distinctive one from the other. Taken the scaled image closed to the

scale of the keypoint, it is computed the gradient magnitude and orientation around the

keypoint, usually in a neighbourhood of 16x16 pixels, and the gradient orientations are rotated

according to the orientation of the keypoint. As in the step before, gradient magnitudes are

weighted with a zero mean gaussian centered in (x, y) and with standard deviation 1.5 * σ. Now,

the area around the keypoint is divided into smaller 4x4 regions, and for each of them an

orientational histogram having 45° steps for each bean is computed. All the keypoints in the

smaller region vote with their orientation and magnitude, as before. Now, the orientational

histogram is stored as a vector, normalized, thresholded, and normalized again. This is done in

order to reduce problems due to illumination changes in images. The normalized vector is now

the keypoint descriptor, which is returned with the keypoint position, scale, and orientation.

The SIFT algorithm applied to the images collected by the IFM camera produced excellent

results, both in terms of computational time and the number of keypoints detected, as shown in

Figure 20.

72

Figure 20: keypoints detected using SIFT.

Matching keypoints

When the keypoints are found in an image, the following step is to match them with the

keypoints in another image for finding a possible correspondence between them. To be able to

obtain a correspondence between the keypoints of an image and the keypoints of another image,

a brute force matcher was used, i.e. a descriptor matcher that compares two sets of keypoint

descriptors and generates a list of matches. It is called brute force matcher because it is not

optimized but scans every single keypoint descriptor of the first image and searches for the

match between all the keypoints of the second image. In the implementation of this thesis, the

brute force matcher used was KnnMatch, as suggested by D. Lowe in his paper [22], setting k

= 2 as the number of neighbours to find. To determine whether two keypoints were good

matches, KnnMatch used the Euclidean distance, expressed in Equation 8, where 𝒙 and 𝒚 are

the vectors representing the keypoints descriptors and are composed of n features each. This

choice was also made in accordance with what D. Lowe wrote in his 2004 paper relating to

SIFT features.

𝑑(𝒙, 𝒚) = √∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

Equation 8: Euclidian distance.

73

The result produced by the brute force matcher is shown in the Figure 21 and, as you can see,

each keypoint in the first image is associated with two corresponding keypoints in the second

image and vice versa.

Figure 21: matched keypoints between two input images.

Homography estimation

Now that the matches between the keypoints have been calculated, it is necessary to find the

transformation matrix that links the various keypoints in order to be able to merge the two

images in question. Images can undergo different transformations [23] as they try to show a 3D

world in a two-dimensional space, but also due to the different camera angle when taken. The

different transformations, shown in the Figure 22, can be:

• Euclidian transformation. It is the simplest transformation, being composed of a

rotation and a translation, providing 3 DoF.

• Similarity transformation. This transformation includes the Euclidean transformation

but adds the ability to change the scale of the image. It therefore has 4 DoF.

• Affine transformation. This transformation includes the similarity transformation, but

adds the ability to preserve parallel lines, i.e. the lines that were parallel in the original

image are also parallel in the image that has undergone a similar transformation. It

provides 6 DoF.

• Projective transformation, also called homography transformation, is a non-linear

transformation that maps any two images of the same planar surface in space. It

provides 8 DoF, and preserves collinearity, but does not preserve parallelism, lengths,

and angles of lines.

74

Figure 22: image of geometric transformations taken from “Perspective correction of building facade images for

architectural applications”.

These transformations have a hierarchical structure. In fact, the affine transformation includes

the similarity transformation, exactly as the projection transformation includes the affine

transformation. By setting ℎ31 = ℎ32 = 0 and ℎ33 = 1 in the homography matrix it is possible

to obtain the affine matrix. Therefore, to be able to link the various matched keypoints together,

it was necessary to reconstruct the homography matrix between the two images. To do this, a

method provided by OpenCV was used, namely the

GetHomographyMatrixFromMatchedFeatures()13, using the Features2DToolbox class. This

method returns the homography matrix, if found, calculated using the RANSAC method.

Random sample consensus (RANSAC) [24] is an iterative method for finding the mathematical

model parameters that best fits the input data set, input data that may contain outliers, that is,

values that differ significantly from the input values. These outliers are not considered when

estimating the parameters of the mathematical model. By increasing the number of iterations

allowed to the algorithm, the greater the probability of its success. RANSAC works by

iteratively following two steps:

1. selects, randomly, a subset of the starting data and constructs for these, providing the

parameters that satisfy the required mathematical model.

13 GetHomographyMatrixFromMatchedFeatures(), https://emgu.com/wiki/files/3.0.0/document/html/284ab4f5-

1ea4-bae9-3ec5-4e1b1fa11d72.htm

75

2. calculate the number of inliers and outliers compared to the newly generated model.

Inliers are data that reflect the model, while outliers are values that are clearly out of

context.

By repeating these two steps many times, RANSAC provides the model that provides the

highest number of inliers, as shown in Figure 23.

Figure 23: model fitted with RANSAC; outliers have no influence on the result.14

Let 𝒖 = [𝑥 𝑦 1]𝑇 a point from the first image and let 𝒖′ = [𝑥′ 𝑦′ 1]𝑇 the corresponding

point in the second image. It is known that these two points are related to each other, since they

were matched in the previous step. 𝒖 and 𝒖′ are related by the homography matrix 𝐻, according

to the Equation 9:

[
𝑥′

𝑦′

1

] = [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

] [
𝑥
𝑦
1
]

Equation 9: homography relation between two points.

14 Image source: https://en.wikipedia.org/wiki/Random_sample_consensus#/media/File:Fitted_line.svg

76

It is possible to rewrite Equation 9, such that it is obtained the expressions shown in Equation

10.

{

𝑥ℎ1 + 𝑦ℎ2 + ℎ3 = 𝑥′

𝑥ℎ4 + 𝑦ℎ5 + ℎ6 = 𝑦′

𝑥ℎ7 + 𝑦ℎ8 + ℎ9 = 1
}

⟺ [

0 0 0
𝑥 𝑦 1

−𝑦′𝑥 −𝑦′𝑦 −𝑦′

−𝑥 −𝑦 −1
0 0 0

𝑥′𝑥 𝑥′𝑦 𝑥′

𝑦′𝑥 𝑦′𝑦 𝑦′

−𝑥′𝑥 −𝑥′𝑦 −𝑥′

0 0 0

]

[

ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

ℎ6

ℎ7

ℎ8

ℎ9]

= [
0
0
0
]

⟺ 𝐴𝒉 = 𝟎

Equation 10: rewritten homography relation.

From Equation 10, it is easy to see that the last row of matrix A is a linear combination of the

first two rows, hence, each point correspondence contributes with 2 equations for the 9

unknown entries of h. Since the homography matrix is homogeneous, it is known the value of

the last entry: ℎ9 = 1. This results in the need for at least 4 points for the calculation of the

homographic matrix, where there are no 3 collinear points. For solving the homography matrix,

4 points are stacked up, as shown in Equation 11.

[

0 0 0 −𝑥1 −𝑦1 1 𝑦1

′𝑥1 𝑦1
′𝑦1 𝑦1

′

𝑥1 𝑦1 1 0 0 0 −𝑥1
′𝑥1 −𝑥1

′𝑦1 −𝑥1
′

0 0 0 −𝑥2 −𝑦2 −1 𝑦2
′𝑥2 𝑦2

′𝑦2 𝑦2
′

𝑥2 𝑦2 1 0 0 0 −𝑥2
′𝑥2 −𝑥2

′𝑦2 −𝑥2
′

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮]

[

ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

ℎ6

ℎ7

ℎ8

ℎ9]

=

[

0
0
0
0
⋮]

Equation 11: stacking of the 4 points needed to calculate the homography matrix.

77

To estimate the homography matrix, therefore, RANSAC selects 4 random points

correspondences from the vector containing the matches between the keypoints of the two

images being worked on, such that no three points are collinear, and then solve the linear system

shown in Equation 11. It then proceeds to compute inlier and outlier of the founded solution.

The final model output is the one with lowest outlier. By repeating the process up to a maximum

of 2000 times, RANSAC provides the best estimate of the homography matrix, calculated using

the matches between keypoints.

The homography matrix calculated by OpenCV using RANSAC for the images shown in Figure

16 is shown in Equation 12.

𝐻 = [
1,00135781000071 −0,0877269188397514 −40,0127309066868
0,109446594398558 0,992696439617528 −22,7583202632904

0,000153741421464847 −8,75170770843245𝐸 − 05 1
]

Equation 12: homography matrix for the input images.

Final output

Using the newly calculated homography matrix, the two images were stitched together, as

shown in Figure 24.

Figure 24: final result for the manually implemented stitching pipeline.

78

It was first necessary, however, to calculate the size of the final image and to do this the 4

corners of the first image were taken, transformed according to the homography matrix and

from these the size of the final image was obtained, then adding the possible horizontal and

vertical translation of the second image.

Merging images didn't always produce an optimal result, like the one in Figure 24, but

sometimes it led to results that didn't make any sense. Taking the images shown in Figure 25 as

an example, stitching them did not produce an acceptable result (Figure 26). This result, from

a human point of view, is particularly incomprehensible, because it is easy to see how the two

images can be superimposed on each other. However, the estimate of the homography matrix

clearly produced an incorrect result, as the first image is exaggerated and causes the stripes that

can be seen in the final output.

Figure 25: two input images.

79

Figure 26: final output of stitching together the two previous images, where it is possible to see result of a wrong

homography matrix.

80

Composition of the 3D panorama

Now that the stitching of the images has been performed, it was necessary to bring the

transformations made to compose the two-dimensional image also into the three-dimensional

world. The main purpose for which the IFM time-of-flight camera was used is for its ability to

measure distance in space, through a light beam. The time taken by the light to travel the

camera-object-camera path determines the distance of the object from the camera ToF itself, a

distance which is then used to generate the point cloud relating to what is seen by the camera.

To transform the transformations from the 2D world to the 3D world, OpenCV and the methods

that the library makes available were used. Once the roto-translation matrices were retrieved,

they were applied to the objects as homogeneous matrices and visualized in the 3D world.

Point cloud

The IFM time-of-flight camera was used to generate the point cloud. The IFM measures the

distance between the camera and the nearest surface point by point, obtaining a complete scan

of what is in its field of view. The generated point cloud represents the space in front of the

camera and is made up of a series of points, represented through the 3 Cartesian coordinates (x,

y, z) and, with each scan, 92’928 points are acquired. Since it is needed a significant overlap of

the images to be able to carry out the stitching, it is easy to deduce that the number of points to

be processed is high, resulting in a slowdown in the manipulation of the data produced by the

point cloud.

Specifically, Figure 27 represents the point cloud associated with the left image present in

Figure 16. Figure 27 was viewed through a viewer15 for viewing PCD files, and it is easy to

recognize the profile of the robotic arm framed by the camera. The viewer used allowed each

distance to be associated with a different color, allowing for a simpler vision of the different

distances involved.

15 Online LIDAR point cloud viewer: http://lidarview.com/

81

Figure 27: point cloud collected by the IFM camera.

Roto-translation computation

The homography matrix [25] allows to connect two images to each other, describing the relative

movement between these two images, when the camera (or the observed object) moves. This

means that it is possible to reconstruct the movement performed by the camera, based on the

previously calculated homography matrix. This means that it is possible to reconstruct the

movement performed by the camera, based on the previously calculated homography matrix.

Having two points 𝒙 = [𝑥 𝑦 1]𝑇 belonging to the first image and 𝒙′ = [𝑥′ 𝑦′ 1]𝑇

belonging to the second image, they are linked by the formula expressed in Equation 13.

𝒙′ = 𝐻𝒙 ⟺ [
𝑥′

𝑦′

1

] = [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

] [
𝑥
𝑦
1
]

Equation 13: homography relation between two points.

The pinhole camera model [26], shown in Figure 28, is a mathematical representation of a

camera, that describes the relationship between a point in the 3D world and its projection onto

the image, using an ideal pinhole camera. The ideal pinhole camera is a camera where the light

is passing through a single hole, without any lens, removing therefore the problem of lens

distortions. This model is characterized by Equation 14, where [𝑢 𝑣 1]𝑇 is a point in the

image place, 𝐾 is a 3x3 matrix representing the intrinsic parameters of the camera, 𝑀𝑒𝑥 is the

3x4 extrinsic matrix of the camera, and [𝑋 𝑌 𝑍 1]𝑇 is the point in the three-dimensional

world. Both points are expressed in homogeneous coordinates.

82

Figure 28: pinhole camera model.16

The intrinsic matrix 𝐾 contains information about the camera intrinsic details, such as the focal

length 𝑓 and the position of the principal point, which is the point that represents the intersection

between the image plane and the optical axis. The extrinsic matrix 𝑀𝑒𝑥 contains information

about the pose of the camera, using a rotation matrix and a translation vector.

[
𝑢
𝑣
1
] = 𝐾 ∗ 𝑀𝑒𝑥 ∗ [

𝑋
𝑌
𝑍
1

]

Equation 14: pinhole camera model equation relating a point in the image plane to a point in the three-dimensional world.

From Figure 29, it is possible to observe how the homography matrix relates a pixel to the

corresponding point of the observed object, assuming that the point rests on a plane with

coordinate Z=0, according to Equation 15. From Equation 15, it is possible to see that the

homography matrix contains the roto-translation of the camera.

The goal was to recover the roto-translation matrix from the homography matrix in order to

apply these translations and rotations to the point cloud collected with the IFM. To obtain these

matrices, a method provided by OpenCV was used: decomposeHomographyMat(). This

function returns up to 4 possible sets of results, if found. This method uses the single value

decomposition of the homography matrix, using the Zhang SVD-based decomposition.

16 Image source: https://miro.medium.com/v2/resize:fit:1100/format:webp/1*zVeZ6F0RFwB4imnhOQ0EDg.png

83

[
𝑢
𝑣
1
] = 𝐾 ∗ 𝑀𝑒𝑥 ∗ [

𝑋
𝑌
𝑍
1

] = [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] ∗ [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟33 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] ∗ [

𝑋
𝑌
𝑍
1

]

= [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] ∗ [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟33 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] ∗ [

𝑋
𝑌
0
1

]

= [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] ∗ [

𝑟11 𝑟12 0 𝑡𝑥
𝑟21 𝑟22 0 𝑡𝑦
𝑟31 𝑟32 0 𝑡𝑧

] ∗ [

𝑋
𝑌
0
1

]

= [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] ∗ [

𝑟11 𝑟12 𝑡𝑥
𝑟21 𝑟22 𝑡𝑦
𝑟31 𝑟32 𝑡𝑧

] ∗ [
𝑋
𝑌
1
] = [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

] ∗ [
𝑋
𝑌
1
]

Equation 15: derivation of homography matrix.

Figure 29: planar projection.17

17 Image source: https://www.cse.psu.edu/~rtc12/CSE486/lecture16.pdf

84

Once 4 roto-translation matrices were obtained, it was necessary to choose the correct matrices.

We started by checking whether the image to be stitched with the other was to be added to the

right or left of the base image, in order to check which translation vector satisfied this condition.

Once the correct translation vector was found, the two rotation matrices associated with it were

subjected to further control in turn. The rotation matrices, in fact, produced the same rotation,

but one was performed on the image plane, while the other was performed with a rotation of

180° with respect to the image plane. The matrix that performed a rotation in front of the camera

was therefore chosen.

Zhang SVD-based decomposition

The Zhang SVD-based decomposition [27] [28] is the SVD decomposition method used by

OpenCV to obtain rotation and translation matrices from the homography matrix. Authors of

this method starts the decomposition by computing the eigenvalues and eigenvectors of matrix

𝐻𝑇𝐻, where 𝐻 is the homography matrix:

𝑯𝑇𝑯 = 𝑽𝚲2𝑽𝑇

with 𝚲 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] , 𝜆1 ≥ 𝜆2 = 1 ≥ 𝜆3, and 𝑽 = [𝒗𝟏 𝒗𝟐 𝒗𝟑].

After this, 𝒕∗ = 𝑹𝑇𝒕 is defined as the normalized translation vector in the desired camera frame,

authors propose the following relations:

‖𝒕∗‖ = 𝜆1 − 𝜆3; 𝒏𝑇𝒕∗ = 𝜆1𝜆3 − 1

and

𝒗𝟏 ∝ 𝒗𝟏
′ = 𝜁1𝒕

∗ + 𝒏

𝒗𝟐 ∝ 𝒗𝟐
′ = 𝒕∗ × 𝒏

𝒗𝟑 ∝ 𝒗𝟑
′ = 𝜁3𝒕

∗ + 𝒏

where 𝒗𝒊 are unitary vectors, while 𝒗𝒊′ are not, and 𝜁1,3 are scalar function of 𝒗𝟏, 𝒗𝟐, 𝒗𝟑.

Authors propose then to use the follow expression to compute the first solution for 𝒕∗ and 𝒏:

𝒕∗ = ±
𝒗𝟏

′ −𝒗𝟑
′

𝜁1−𝜁3
 𝒏 = ±

𝜁1𝒗𝟑
′ −𝜁3𝒗𝟏

′

𝜁1−𝜁3

and the second solution:

85

𝒕∗ = ±
𝒗𝟏

′ +𝒗𝟑
′

𝜁1−𝜁3
 𝒏 = ±

𝜁1𝒗𝟑
′ +𝜁3𝒗𝟏

′

𝜁1−𝜁3

𝜁1,3 are computed according to the following equation:

𝜁1,3 =
1

2𝜆1𝜆3
(−1 ± √1 + 4

𝜆1𝜆3

(𝜆1 − 𝜆3)2

The rotation matrix is then obtained with:

𝑹 = 𝑯(𝑰 + 𝒕∗𝒏𝑇)−1

Final result

The roto-translation matrices calculated during image stitching were applied to the associated

point clouds. The result can be seen in Figure 30.

Figure 30: point cloud associated to the stitching of two input images.

It is possible to notice how the calculated roto-translation matrices do not produce a perfect

result, especially as regards the Z axis. To reduce the error present on the Z axis, it was chosen

to allow a refinement of the points, merging them together points that have the same x and y

coordinates and similar z values. This operation is performed on a considerable number of

points and can lead to a considerable slowdown of the system. Each single stitched image, in

fact, produces 92,928 points and the more images that make up the final panorama, the more

points will accumulate, making it necessary for several minutes to refine all the points of the

86

cloud. An example of a refined cloud can be seen in Figure 31, where we have gone from

278784 points shown in Figure 30 to 208336 points, so 30% of the total points were merged.

Figure 31: refined point cloud.

87

Conclusion

During the development of this thesis, three major goals were set: to determine the most suitable

sensor between Tundra Tracker, Valve Index Controller, and HTC Vive Tracker 3.0, to construct

the panoramic image using the images received from the ToF camera, and, finally, report the

transformations undergone by the images for the construction of the final panorama in the three-

dimensional world, applying the transformations to the point clouds associated with each

image.

To determine which sensor was the most suitable and accurate, it was decided to perform three

different tests for each sensor: the drift test, the noise test, and the dynamic test. The drift test

was used to calculate how long after the sensor and the related tracking system stabilized and

lost the drift shift typical of the ignition phase. The noise test was used to determine the accuracy

of the position detected by each sensor and determine the error with which the position is

reported. Both of these two tests were carried out with the sensor always fixed in position. The

last test performed on the three sensors under study was the dynamic one, where the sensor had

to correctly report the linear movement performed by the robotic arm to which it was connected

and measure the distance travelled. The data received from these tests was processed and, at

times, produced unexpected results. As for the drift test, the sensor that stabilized first was the

HTC Vive Tracker 3.0, which took about 20 minutes to stabilize, compared to 30 minutes for

the Valve Index Controller and 50 for the Tundra Tracker. In the noise tests, all three sensors

worked very well, correctly detecting the position, with the exception of some recordings from

the HTC Vive Tracker 3.0, where the sensor could be seen moving in the virtual world, although

it was completely still in reality. As regards the dynamic tests, however, most of the time the

expected graph was obtained, i.e. a graph having a bell shape, where the highest point of the

bell coincided with the end of the acceleration of the robotic arm and the start of the deceleration

necessary to perform the requested movement. Also in this case there were some unexpected

results, where it was possible to notice a jump in the linear trajectory performed, which could

also be observed in the graph representing the distance of each single position received with

respect to the line travelled as it was no longer a graph bell with a gentle climb towards the

point of maximum distance, but had an extreme and steep increase in distance from the line

travelled. In carrying out the dynamic tests, to increase the precision obtained from the sensor,

it was chosen to try to record the position using two Tundra Trackers. This did not lead to major

changes because when the two sensors worked correctly, the improvement obtained by

averaging the two sensors was minimal, while in the event of failure of one of the two, the

sensor that was still working was unable to contain the error of the other sensor. From the tests

88

carried out we also tried to understand how many base stations it was necessary to work with.

Recordings were performed with one, two or three base stations, positioned in 4 different ways.

It has been found that the sensor must be located in the center of the working area of the

cameras, more precisely in the overlap area of the working area of the cameras themselves. To

obtain precise results, remembering that it was required to obtain a precise position to 1mm, it

is advisable to use at least two base stations. It is, in fact, possible to notice a significant increase

in the precision of the detected position when switching from using one camera to two. On the

contrary, going from two cameras to three did not lead to significant increases in precision. In

conclusion, it is therefore possible to state that it is necessary to use at least two base stations

to compress a greater area and prevent any obstruction, i.e. when the sensor is no longer visible

from the camera, of the sensor with respect to the camera. For dynamic reasons, the sensors that

produced the best results are HTC Vive Tracker 3.0 and Valve Index Controller, both in terms

of measuring the distance travelled and in terms of measuring the line travelled.

For the second objective, that is the creation of the panorama using the images received from

the IFM camera, it was necessary to manually implement the stitching pipeline. In fact, OpenCV

automatically stitched the images, but did not return the homography matrix, necessary to

recover the rotations and translations for the three-dimensional world. Manually implementing

the stitch resulted in a number of issues. First of all, it was necessary to search among all the

images for those having the greatest number of points in common to increase the possibility of

finding the correct homography matrix and therefore being able to perform the final stitch. Once

we found the two images with the most points in common, which correspond to the features

found in the two images, we proceeded to create the panorama. The process was then repeated

for the newly constructed panorama in relation to all the other images in the list. Once the final

panorama was obtained for each list of images, these were stitched together in turn, to provide

a single final panorama. However, the success rate of this final stitch was not very high, mainly

due to the fact that each constructed panorama could have different dimensions and different

brightness. Trying to give each image the same size and equalize the histograms didn't result in

better performance. Using RANSAC to obtain the value of the homography matrix, it is possible

that the obtained matrix does not produce correct image fusion, therefore making the final

panorama unusable.

For the third goal of the thesis, it was necessary to find the rototranslation matrices associated

with the homography matrix. Again, OpenCV, using the RANSAC algorithm, returned the

rototranslation matrices. Being an estimate, they are not precise, in fact, there is not a perfect

overlap of the point clouds, and you can notice the point clouds distinctly from each other,

89

which is why a method has been implemented to refine the points, fusing together points having

the same x and y coordinates and similar z coordinates. Although this refinement leads to a

consistent elimination of points, it is also very slow having to compare every single point with

all the others.

As can be seen from Figure 24 and Figure 30, the developed application is able to build the

panorama and bring the transformations undergone by the images into the three-dimensional

world.

Further developments can be made, such as finding a method to reduce the time required for

refining the points present in the final point cloud, performing another study regarding the

sensors to understand why the system performs random jumps and therefore being able to adopt

countermeasures to reduce the impact that these jumps have on the system and try to improve

image stitching, improving the success rate of the same.

90

Bibliography and website

[1] ISO, “ISO 8373:2012 - Robots and robotic devices — Vocabulary,” ISO, 2012. [Online].

Available: https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en. [Accessed February

2024].

[2] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect Lines and Curves

in Pictures,” Communications of the ACM, vol. 15, pp. 11- 15, 1972.

[3] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of

Computer Vision, vol. 57, p. 137–154, 2004.

[4] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-

778, 2016.

[5] R. Gonçalves, A. L. Pedrozo, E. S. F. Coutinho, I. Figueira and P. Ventura, “Efficacy of

Virtual Reality Exposure Therapy in the Treatment of PTSD: A Systematic Review,” PloS

one, vol. 12, 2012.

[6] Euclid Labs, “MARVIN SOFTWARE,” [Online]. Available:

https://www.euclidlabs.it/marvin-no-code-robot-programming-software/. [Accessed

February 2024].

[7] Valve, “VALVE INDEX BASE STATION 2.0,” [Online]. Available:

https://www.valvesoftware.com/en/index/base-stations. [Accessed February 2024].

[8] SteamVR, “SteamVR Tracking,” [Online]. Available:

https://partner.steamgames.com/vrlicensing#Tracking. [Accessed February 2024].

[9] Tundra, “TUNDRA TRACKER,” [Online]. Available: https://tundra-

labs.com/products/tundra-tracker-1?variant=40250107494609. [Accessed February

2024].

[10] Valve, “VALVE INDEX CONTROLLER,” [Online]. Available:

https://www.valvesoftware.com/en/index/controllers. [Accessed February 2024].

91

[11] HTC, “HTC VIVE TRACKER,” [Online]. Available:

https://www.vive.com/eu/accessory/tracker3/. [Accessed February 2024].

[12] HTC, “HTC Base Station 1.0,” [Online]. Available:

https://www.vive.com/eu/accessory/base-station/. [Accessed February 2024].

[13] HTC, “HTC Vive Pro,” [Online]. Available: https://www.vive.com/eu/product/vive-pro2-

full-kit/overview/. [Accessed February 2024].

[14] Kuka, “KR QUANTEC nano,” [Online]. Available: https://www.kuka.com/it-it/prodotti-

servizi/sistemi-robot/robot-industriali/kr-quantec-nano. [Accessed February 2024].

[15] ValveSoftware, “OpenVR SDK,” [Online]. Available:

https://github.com/ValveSoftware/openvr. [Accessed February 2024].

[16] P. Kumar, “What is a ToF sensor? What are the key components of a ToF camera?,” e-con

Systems, [Online]. Available: https://www.e-

consystems.com/blog/camera/technology/what-is-a-time-of-flight-sensor-what-are-the-

key-components-of-a-time-of-flight-camera/. [Accessed February 2024].

[17] L. Li, “Time-of-Flight Camera – An Introduction,” Technical White Paper, Texas

Instruments, January 2014, Revised May 2014.

[18] IFM, “IFM,” [Online]. Available: https://www.ifm.com/it/it. [Accessed February 2024].

[19] OpenCV, “OpenCV,” [Online]. Available: https://opencv.org/. [Accessed February 2024].

[20] Emgu, “Emgu,” [Online]. Available: https://www.emgu.com/wiki/index.php/Main_Page.

[Accessed February 2024].

[21] D. Lowe, «Object recognition from local scale-invariant features,» Proceedings of the

Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150 - 1157,

1999.

[22] D. Lowe, «Distinctive Image Features from Scale-Invariant Keypoints,» International

Journal of Computer Vision, vol. 60, p. 91–110, 2004.

92

[23] A. Soycan and M. Soycan, “Perspective correction of building facade images for

architectural applications,” Engineering Science and Technology, an International

Journal, vol. 22, pp. 697-705, 2019.

[24] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography,” Communications of the

ACM, vol. 24, p. 381–395, 1981.

[25] D. Biswas, “Homography,” [Online]. Available: https://dibyendu-

biswas.medium.com/homography-883f5bba92f2. [Accessed February 2024].

[26] A. Peri, “Using Homography for Pose Estimation in OpenCV,” Medium, 18 September

2020. [Online]. Available: https://medium.com/analytics-vidhya/using-homography-for-

pose-estimation-in-opencv-a7215f260fdd. [Accessed February 2024].

[27] E. Malis and M. Vargas, “Deeper understanding of the homography decomposition for

vision-based control,” [Research Report] RR-6303, INRIA, p. 90, 2007.

[28] Z. Zhang and A. Hanson, “3D Reconstruction based on homography mapping,” Proc.

ARPA96, pp. 1007-1012, 1996.

93

Index of figures

Figure 1: kinematic scheme of a Cartesian arm. ___________________________________ 6

Figure 2: the Valve Index VR Kit, consisting of a headset, two controllers, and two cameras.

 __ 10

Figure 3: sensors placed on Tundra Tracker ______________________________________ 12

Figure 4: the Valve Index Controller ___ 13

Figure 5: the HTC Vive Tracker 3.0 __ 14

Figure 6: portion of the Vive’s controller ring. ____________________________________ 15

Figure 7: code for X motion. ___ 33

Figure 8: drift results for the three sensors. ______________________________________ 56

Figure 9: difference of measured distance by Tundra Tracker and double Tundra Tracker. _ 58

Figure 10: point-line distance during X-axis motion._______________________________ 59

Figure 11: point-line distance during Y-axis motion. _______________________________ 59

Figure 12: point-line distance during Z-axis motion. _______________________________ 60

Figure 13: system of a time-of-flight camera. ____________________________________ 62

Figure 14: IFM ToF O3D301. Image taken from IFM website. _______________________ 63

Figure 15: technical scheme of IFM O3D301. Image taken from IFM O3D301 manual. ___ 63

Figure 16: two input images received from IFM camera. ___________________________ 65

Figure 17: OpenCV stitching pipeline taken from OpenCV documentation. ____________ 68

Figure 18: Difference of Gaussian (DoG). _______________________________________ 69

Figure 19: analysed point and its neighbours. ____________________________________ 70

Figure 20: keypoints detected using SIFT. _______________________________________ 72

Figure 21: matched keypoints between two input images. ___________________________ 73

Figure 22: image of geometric transformations taken from “Perspective correction of building

facade images for architectural applications”. ____________________________________ 74

Figure 23: model fitted with RANSAC; outliers have no influence on the result. _________ 75

Figure 24: final result for the manually implemented stitching pipeline. _______________ 77

Figure 25: two input images. ___ 78

Figure 26: final output of stitching together the two previous images, where it is possible to see

result of a wrong homography matrix. __ 79

Figure 27: point cloud collected by the IFM camera._______________________________ 81

Figure 28: pinhole camera model. ___ 82

Figure 29: planar projection. ___ 83

Figure 30: point cloud associated to the stitching of two input images. ________________ 85

94

Figure 31: refined point cloud. __ 86

95

Index of equations

Equation 1: computation of the position error for each coordinate. ____________________ 18

Equation 2: absolute error__ 18

Equation 3: distance between a point and a line in space. ___________________________ 33

Equation 4: distance between point A and point B in a 3-dimensional space. ____________ 33

Equation 5: formula used for adding an image. ___________________________________ 64

Equation 6: gradient magnitude computation. ____________________________________ 71

Equation 7: gradient orientation computation. ____________________________________ 71

Equation 8: Euclidian distance. ___ 72

Equation 9: homography relation between two points. _____________________________ 75

Equation 10: rewritten homography relation. _____________________________________ 76

Equation 11: stacking of the 4 points needed to calculate the homography matrix. _______ 76

Equation 12: homography matrix for the input images. _____________________________ 77

Equation 13: homography relation between two points. ____________________________ 81

Equation 14: pinhole camera model equation relating a point in the image plane to a point in

the three-dimensional world. ___ 82

Equation 15: derivation of homography matrix. __________________________________ 83

96

Index of tables

Table 1: drift absolute error of Tundra Tracker. ___________________________________ 19

Table 2: drift absolute error of Valve Index Controller. _____________________________ 22

Table 3: drift absolute error of HTC Vive Tracker 3.0. _____________________________ 24

Table 4: noise absolute error of Tundra Tracker __________________________________ 27

Table 5: noise absolute error of Valve Index Controller. ____________________________ 28

Table 6: noise absolute error of HTC Vive Tracker 3.0. ____________________________ 30

Table 7: point-line and measured distance for Tundra Tracker. _______________________ 34

Table 8: point-line and measured distance for double Tundra Tracker. _________________ 42

Table 9: point-line and measured distance for Valve Index Controller. _________________ 47

Table 10: point-line and measured distance for HTC Vive Tracker 3.0. ________________ 49

