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Preface

This work will deal with two important aspects of statistics very useful in

particular in management engineering: the use of statistical instruments in

management research and the investigation of some methods useful to make

rankings of treatments (for example different products).

Quite often in management literature, in the framework of research that uses

Likert’s scales, some statistical instruments are used because only most of all

other people do it this way, even writers of articles published in important

scientific magazines, but probably these statistical instruments are not always

methodologically correct and the results could be completely wrong; in the

first chapter we will present this traditional analysis and we will propose a

method to do it in another way.

The second and the third chapters, instead, will deal with some methods

useful to order treatments: this helps for example to evaluate different (new)

products.

1





Chapter 1

Analysis of Likert’s scales

In this chapter we will eventually discuss two ways of analyzing data which

are constructed on Likert’s scales: first we will present a more traditional

(but probably not correct) analysis and then we will introduce a new (and

probably more correct) analysis. But first of all let us see in a better way

types of existing variables and their features, in particular variables based on

Likert’s scale.

1.1 Introduction: a brief summary of types

of variables

In order to know how to analyze data based on Likert’s scale, it is very useful

to do a brief classification of statistical variables’ types1, so we can also better

frame our type of data.

We can distinguish substantially these types of variables:

Quantitative variables

Their modalities are numeric and they in turn are distinguished in two ways:

1The reader can find it (probably a better one) in all statistics books, in particular we

have used [17].

3
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ratio scales vs. interval scales the “zero” of ratio scales is not conven-

tional, but fixed (for example: weight, height, length, etc.), whereas the

“zero” of interval scales is merely conventional (for example: temperature).

To compare modalities of ratio scales we can use every operation, even the

ratio itself2, in fact we can always say, for example, that two meters is twice

as long as one, as we can correctly say that two yards is twice as long as one

yard; to compare modalities of interval scales, instead, we cannot use ratio,

but we have to stop to the difference, in fact we can say that from 15∘C and

30∘C there are 15∘C, but we cannot absolutely say that 30∘C is twice as hot

as 15∘C, in fact instead of using Celsius scale, if we used Kelvin scale, we

would have, instead of 15∘C and 30∘C, 288.15K and 303.15K and the second

is not twice the first, but the difference is the same: 15K, like 15∘C.

continuous scales vs. discrete scales in continuous scales modalities of

variables can assume all values in one or more real intervals, whereas discrete

variables can assume only a few values or a countable infinity of values.

Qualitative variables

Their modalities are not numeric and there are two types of them:

ordinal scales their modalities have a certain order and no numeric oper-

ation is possible, we can only order modalities (example: tha variable which

describes the mark of some schools: its modalities can be insufficient, suffi-

cient, discrete, good, perfect).

nominal scales their modalities have no order and the only operation

possible between them is comparison (example: the variable “faculty of the

University of Padua” has thirteen modalities which we can only compare).

2It is not strange indeed that the name of this type of variable is “ratio” variable. . .
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Dichotomic variables

They have only two modalities (examples: sex, presence or absence of a par-

ticular feature in something, etc.); depending on the situation sometimes are

considered quantitative variables, sometimes qualitative variables, therefore

we prefer to consider them apart.

1.2 Likert’s scales: the peculiarities of this

type of data

1.2.1 Features and construction of a Likert’s scale

In this chapter we are analyzing a particular type of data that we normally

call Likert’s scales. They seem to be very useful to try to measure attitudes

of people. This particular scale was proposed by Rensis Likert (1903-1981),

an american educator and organizational psychologist, in his primary work3.

Likert’s scales, as already written, are used to measure people attitudes with

respect to an abstract concept and every concept is measured with a series

of questions, generally called items ; every item is normally coded in 5 or 7

levels: “1” indicates the lowest level of attitude, “5” (or “7”) indicates the

highest level of attitude. For further information on Likert’s scales, see [15],

[16], [48], [49], [12] and [30].

1.2.2 The literary “disputation” between methodologic

statisticians and more pragmatic economists

This type of data is particularly problematic: how can we consider them?

From a methodologic-statistical point of view they are merely qualitative or-

dinal variables, in fact, for example, we know that for a Likert’s scale “6” is

more than “3”, so we can at least extablish an ordering between modalities:

7 ≻ 6 ≻ 5 ≻ 4 ≻ 3 ≻ 2 ≻ 1, where “≻” indicates is better than.

3See [31].
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Instead very often, above all in economical and management literature, they

treat this type of data as quantitative discrete variables and in this way they

give a numeric significance to the modalities. But this is not correct from a

statistical point of view, because the modalities have no numeric significance:

for example if an informant answers “4” to an item and another informant

answers “2” it does not mean that the first response is twice as satisfied as

the second, but only that the first informant is more (or less, if the sense of

the question is inverted) satisfied than the second. For further information

on this topic, see [43], [44], [28] and, in particular, [25], that is a brief but

very interesting paper.

Considering these variables as quantitative discrete, as the main part of man-

agement literature does, we can apply to this type of data lots of statistical

analysis: mean is good to synthesize the answers, standard deviation is good

to synthesize the variability of the answers, all parametric tests can be ap-

plied to the data, etc. Instead, if we consider the items of Likert’s scale

merely qualitative ordinal, as they are indeed, we should change the prece-

dent analysis: median (or mode) instead of mean, interquartile difference

(or also other variability indexes) instead of the standard deviation, lots of

parametric tests cannot be used any more and must be supplied by non-

parametric tests.

Likert himself called the scales summating scales, because he said that as

the scales respect some assumptions4, scores on items of the same scale can

be correctly summed up. But the problem is that it is almost impossible to

verify all assumptions of the scales:

1. unidimensionality: every declared scale (every group of items that are

underlining a same concept to investigate) should be subjected to a

same concept that should represent only one dimension;

2. equidistance of intervals: the modalities of the items should be equidis-

tant; so, for example, between “3” and “4” there should be the same

4See [8].
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difference than the one between “6” and “7”;

3. validity: every scale should really measure what it is declared to mea-

sure;

4. reliability: every scale should have the capability to limit random er-

rors, that is if we repeated the analysis, the new results should be not

significantly different from the first ones5.

Furthermore it is desirable that the items of the scales have another prop-

erty: they should have an approximated normal (gaussian) shape, or at least

symmetric. Items that are too skew or too concentrated cannot be used in

the analyses because they are not useful: it would mean that such an item

is unuseful to discriminate within the population of interest. In order to

check this property it can be useful to perform histograms and boxplots of

the answers and to calculate skewness and curtosis indexes: it is adviced to

keep only items that have skewness and curtosis indexes between −1 and 1.

Even if in literature some statistical instruments have been proposed to as-

sess unidimensionality, validity and reliability of a Likert’s scale, we have no

way to check the equidistance of intervals; furthermore the instruments to

assess previous assumptions are not always correct from a methodological-

statistical point of view6.

So, remembering these considerations and also that Rensis Likert was not a

statistician, but a psychologist, we may have some perplexities about how

we can treat this particular type of data.

My proposal to the reader for this work and what we were going to do in the

next two sections is to consider a real dataset and to perform on these data

5Notice that validity and reliability are completely different even if it is very easy to

confound them: for example a scale could really measure what it is declared to measure

but could also have great random errors and in this case the scale is valid but not reliable;

it can also occur that a scale has very small errors, but it does not measure at all what

we want it to measure and in this case the scale is reliable, but not valid.
6See sections 1.3 and 1.4.
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the two types of analysis we are going to present: the first one is the tradi-

tional and more simple analysis that the main part of management literature

does7 and that we will see not to be methodologically correct in almost all

its steps; the second is a new, in a main part innovative, maybe a little more

complicated, but surely methodologically correct analysis that we want to

propose to the reader.

In the end, it would also be good to compare the results of the two analyses

seeing if, at least in this case, results of the first (very used but not correct)

analysis are similar to the results of the second (not used but correct) analy-

sis. We must say that we are only proposing an alternative possible analysis

to the traditional one and that we have absolutely no claim to demonstrate

anything, but we would like to see how this second alternative analysis could

work on real sets of data.8

1.3 A first more traditional and pragmatic

analysis

In this section we will discuss the first analysis. Reading and analyzing lots

of management papers (in particular [38] and also schemes of analysis of

the scales quoted in [7]), we have identified the following steps in order to

perform an analysis based on Likert’s scales:

1. aggregation of multiple informants in the same analysis unit;

2. check of the first aggregation;

3. aggregation of multiple items in a unique scale;

7We have used in particular the outline of the paper [38], but we found this sequence

of operations in lots of management papers and you can also do it.
8We wanted to perform also the two analyses and the comparison between them in

this work, but then we chose not to insert it, because it was too long and time was not

enough; we will probably do it in other works. Furthermore a simulation approach, as

the one followed in chapters 2 and 3 would be even better than simply comparing the two

analyses applied on a single dataset, but this requires really a lot of time.
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4. check of reliability;

5. check of validity and unidimensionality;

6. evaluation of presence of multicollinearity;

7. final analysis.

In the paragraphs of this section we will see all previous steps with the

first method (the traditional, but not correct one), in the paragraphs of the

following section, instead, we will do the same with the second method (the

unused, but innovative and correct one).

1.3.1 Aggregation of multiple informants in the same

analysis unit

Before analyzing data we very often have to do a preliminar operation; in

fact in management research normally the unit of analysis is the firm, but for

every firm there are more informants: so items are referred to the firms, but

we have more than one answer for every analysis unit and, afterall, not all the

items have the same informants; so, the beginning datasets in this particular

situation are presented in a way like the one you can see in table 1.19, where

ui indicates the unit of analysis (for example the firm), rij indicates the j-

th informant of the i-th unit of analysis, sk indicates the k-th scale and ikl

indicates the l-th item of the k-th scale.

The first step is therefore to aggregate the answers of different informants

in a unique answer for the units of analysis in order to have one answer to

every item for every unit (firm); look at the example in table 1.210.

In this first analysis we advise you to do it with arithmetic mean of the

answers; for more details about how to perform this aggregation with different

types of mean, see [45].

9In this example items are based only on 5 and not on 7 modalities.
10In the example we have used arithmetic mean in order to perform this aggregation.
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s1 s2 s3

i1a i1b i1c i2a i2b i3a i3b i3c i3d i3e

u1 r11 3 4 3 1 1

u1 r12 1 3 3 3 4 3 2

u1 r13 1 3 5 4 2

u1 r14 2 1 4 4 3 1 4

u2 r21 3 5 5 5 5 5 5 5

u2 r22 5 5 4 3 4 3 3

u2 r23 3 4

u3 r31 3 4 5 4 3 1 3 2

u3 r32 4 4 5 3 2

u3 r33 5 5 4 1 4

u3 r34 3 3 4 4 4 3 4 2 5 4

u3 r35 4 4 4 3 5

u3 r36 2 3

u4 r41 5 5 5 3 5

u4 r42 4 3 5 4 4 2 2 3 4 1

u5 r51 1 2 4 2 1 5 5 5 3 4

Table 1.1: Example of how data based on Likert’s scales can appear.

s1 s2 s3

i1a i1b i1c i2a i2b i3a i3b i3c i3d i3e

u1 2.50 3.50 4.00 2.00 1.75 3.00 3.00 4.00 3.00 2.00

u2 3.00 5.00 5.00 4.00 4.50 4.50 4.00 4.50 4.00 4.00

u3 3.75 4.00 4.50 2.50 3.25 3.67 3.67 2.33 3.67 3.67

u4 4.50 4.00 5.00 3.50 4.50 2.00 2.00 3.00 4.00 1.00

u5 1.00 2.00 4.00 2.00 1.00 5.00 5.00 5.00 3.00 4.00

Table 1.2: Example of aggregation of more informants on the same unit of

analysis.

1.3.2 Missing data and exploration of distributions of

answers

We suggest to deal with missing data only after the first aggregation, because

it would be too onerous to deal with them on individual data11; instead, after

11Notice that at the individual level we consider missing data only cases when an infor-

mant that should answer does not answer; obviously data on items where an informant



CHAPTER 1. ANALYSIS OF LIKERT’S SCALES 11

the first aggregation, we have missing data only where no informant in a firm

for a certain item has answered: in this way we have not so many missing

data and it is very much simpler to deal with them12. . .

As we have already said in the previous section, they say that distributions of

answers should be at least symmetric: we advise you to perform a histogram,

a boxplot and the calculation of skewness and curtosis indexes for every item.

1.3.3 Assessing the first aggregation: some indicators

After aggregating multiple answers in a unique answer for every unit of anal-

ysis, we should check if this first aggregation was possible, that is if the

agreement between informants of the same firm is high or not. If answers of

informants of the same firm are similar, we are more confident that we have

not lost a great piece of information. We can check the previous aggregation

by evaluating the values of some indexes13: F test, Interclass Correlation

(ICC), �2 and the different versions of Inter-Rater Agreement (IRA).

In literature there are some criteria14 that tell us how good is the agreement

among informants of the same unit of analysis:

∙ �2 should be greater than 0.16 (others say greater than 0.20);

∙ F -value should be greater than 1.00 (or, better, relative p-value should

be statistically significant, traditionally less than 0.05);

∙ ICC should be greater than 0.60;

∙ IRA should be greater than 0.80.

must not answer are not missing data (for example the empty cells of table 1.1 at page

10).
12An interesting paper where you can find lots of choices, also more sophisticated than

ours, in order to solve the problem of missing data is [41]; you can also have a look at [17].
13Some relevant papers where these indexes are calculated are [34], [38], [32], [11], [20],

[27] and [10]; the last two ones, in particular, are very useful to learn something more

about different types of IRA.
14see, for example, [34] and [40].
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1.3.4 Some used methods to assess reliability of scales

To evaluate the reliability of scales to measure attitudes, management liter-

ature proposes more statistical instruments.

Probably the best method to assess reliability of a scale is the test-retest tec-

nique: in order to see how much the analysis is repeatable, we should repeat

it and compare the results, seeing (for example with a paired t-test) if the

differences are significative. Obviously if we want to perform this analysis

on a given dataset, we cannot perform this technique, therefore we are using

other methods.

First of all the main part of this literature calculates for every scale (for every

group of items) the coefficient Cronbach’s �15, which formula is:

� =
nr

1 + r(n− 1)
(1.1)

where r is the average Pearson’s correlation coefficient between the items

and the scale and n is the number of the items of the scale. Some researches

say that � should be over 0.7, therefore if for a certain scale it is not so, we

should exclude from the analysis items that are not so much correlated with

the scale, in order to increase the value of �.

In the final analysis it is better using the scales and not the single items,

because we should lose reliability in order to capture the concept.

1.3.5 Some used methods to assess validity and unidi-

mensionality of scales

To check if all scales capture only one dimension each, in management lit-

erature very often an Explorative Factor Analysis (EFA) is performed16 for

every scale, checking if every scale loads on only one factor. To assess va-

lidity, instead, in management literature we find that an explorative factor

15For further details on how using it, see [21].
16Sometimes also a Confirmative Factor Analysis (CFA) is performed, but we will not

discuss it in this context.
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analysis is still performed, but this time with all items of all scales and we

must check if every scale loads on a different dimension.

1.3.6 Aggregation of multiple items in a unique scale

At this point researchers normally want to deal with some variables that can

represent some identified concepts; essentially at this point we need to join

the items (only the ones kept from previous analyses) in scales in order to

have one variable (scale) for every concept; look at the example below17:

s1 s2 s3

u1 3.17 1.88 3.00

u2 4.33 4.25 4.20

u3 4.08 2.88 3.40

u4 4.50 4.00 2.40

u5 2.33 1.50 4.40

Table 1.3: Example of aggregation of more items on the same scale.

One could question that we could deal also with single items, but the problem

is that very often a single item cannot catch one whole concept, because

usually a concept is something too much complex; so, if we used single items

in the analyses we want to perform, probably we would not have consistent18

variables and also we would have too many of them.

In most of management papers this second aggregation is performed with

sum (in fact, as we have already said, Likert himself referred to these data

as summating scales) or arithmetic mean; in this work we have chosen to

use arithmetic mean, because the scales of our dataset have not the same

17In order to perform this second aggregation on the example of table 1.2 at page 10,

we suggest to use arithmetic mean.
18We are not using this word in a strict statistical sense, but for us it only means that

single items probably do not represent whole abstract concepts.
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number of items and so, using mean and not sum, all scales have a range in

the interval [1, 7].

1.3.7 Assessing presence of multicollinearity in indipen-

dent variables

It can be very useful to check if the indipendent variables (scales, not single

items anymore) of our future model are indipendent, because in this way

every variable explains an original part of the variability of the response

variable. In management literature this evaluation is performed by a simple

table of Pearson’s correlation coefficients among indipendent variables; if two

variables are very correlated, in the future analysis we will use only one of

them.

1.3.8 Final analysis

Very often we are interested in performing a regression, in order to see if and

how much a response variable is influenced by some explicative variables.

In management literature almost always a linear regression is performed;

sometimes also an analysis of variance is performed, because it is often useful

to know if some groups have a significantly different behaviour or not.

1.4 A second less traditional but more method-

ologically correct analysis

1.4.1 Aggregation of multiple informants in the same

analysis unit

Considering items merely ordinal variables as they indeed are, we cannot

apply to the answers the mean anymore; in this second analysis we advise

to aggregate multiple answers in a unique one using median; other possible

choices are using mode or keeping only one answer (maybe the answer of the
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informant that we think to be, for some motivation, the most reliable19), but

each of these choices has its pros and cons. Probably it would be interesting

to investigate better this point of the analysis in order to use a method that

can keep all information we have.

1.4.2 Assessing the first aggregation: some indicators

Probably only some versions of IRA indexes are methodologically correct.

1.4.3 Explorating distributions of answers

Skewness and curtosis indexes and boxplot are not correct from a statistical

point of view, because they are applicable only to quantitative variables and

not to qualitative ones; the histogram instead can be still performed.

1.4.4 Some used methods to assess reliability of scales

Pearson’s correlation coefficients are not statistically correct, because they

are performed only with quantitative variables. With qualitative variables

we should use Kendall’s � , Goodman and Kruskal’s  or Spearman’s �20

correlation indexes.

Therefore we suggest to do the same analysis we did before, but changing

Pearson’s correlation coefficients with Spearman’s � correlation coefficients.

19For example it could be possible to insert a particular question in every questionnaire

in order to determine a ranking of the informants and, in this way, the best informant

for every item (see [23]); but with our example this is not possible any more because the

survey has been already done and data has been already collected.
20As a matter of fact we should use this third index only with distinct ranks; nevertheless

the index seems to work correctly also if there are repeated ranks.
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1.4.5 Some used methods to assess validity and unidi-

mensionality of scales

If we want to do also this step in a methodologically correct way, we propose

to use corrispondence analysis instead of factor analysis; in fact corrispon-

dence analysis is substantially a factor analysis for not quantitative variables.

1.4.6 Aggregation of multiple items in a unique scale

From a methodologic point of view, the simple sum (or mean) of the items in

order to obtain a scale is not so correct; the main problem is that, as we have

already said in section 1.2, we cannot check the equidistance of intervals,

furthermore we can obtain the same score in several ways: for example, if we

have four items (with all modalities in the discrete range 1-7), the summating

scale we can construct has the discrete range 4-28, but we can obtain a same

number (for example 22) in several ways (for example: 7 7 7 1, 7 2 6 7, 5 5

5 7, etc.).

Some recently proposed methods that we could use to perform this second

aggregation in a more sophisticated (and maybe correct) way are: fuzzy

clustering methods, methods based on ordering functions, methods based on

multi-criteria analysis, methods based on non parametric techniques21. If you

want to do a simple choice we advise to use Fisher’s combining function22

after reducing all items in the interval (0, 1) thanks to this transformation:

z =
x+ 0.5

C + 1
(1.2)

where C is the number of modalities of the items (7 in our example), x is the

previous score and z is the new score; the constants added at the numerator

(0.5) and at the denominator (1) are useful to prevent z to assume border

21But we will not treat them hear analitically, a part from multi-criteria analysis (see

subsection 1.4.6 at 58); for further information about them, it is enough you see [5].
22�ik = −2

∑Jk

j=1 zijk, where Jk is the number of items of k-th scale, zijk is the score of

the i-th unit of analysis on j-th item of k-th scale and �ik is the score of the i-th unit on

the whole k-th scale.
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values 0 and 1; 0 would be problematic because log(0) is not defined, 1 could

be problematic in further analysis because log(1) = 0.

1.4.7 Assessing presence of multicollinearity in indipen-

dent variables

In order to check if future indipendent variables of our model are very cor-

related or not, we could use another index instead of Pearson’s correlation

index; as we have already said, correlation indexes more correct for qual-

itative ordinal variables are Spearman’s �23, Kendall’s � or Goodman and

Kruskal’s . Anyway, afterall using Spearman’s �, results should not be so

different from the ones using Pearson’s index, but we propose this way only

because we want the second analysis to be completely (or at least almost24

completely) correct from a statistical-methodological point of view.

1.4.8 Final analysis

Linear regression has some particular assumptions that cannot be respected

in Likert’s scales: the main one is normality of random errors and, there-

fore, of the response variable (but every unit can come from a mean-different

normal distribution) and that can occur only if the response variable is quan-

titative continuous. Very often the dependent variable is also a scale and in

this case we cannot use linear regression at all. Let us sum up different types

of regression in function of the nature of the dependent variable in case of

indipendent observations25:

23Indeed there are even some management papers which use this index instead of Pear-

son’s index, as for example [42].
24Probably the reader will find some aspects that even in the second analysis are not

completely correct from a methodological point of view.
25I have done this classification on my personal statistical knowledge, in particular using

slides of a statistics course ([46]) of the Faculty (Statistical Sciences) of my University

(Università degli studi di Padova). Anyway you can find this information in most of all

statistics books related with statistical models.
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∙ linear regression: the dependent variable is quantitative continuous and

three assumptions must be respected: normality, homoscedasticity of

the random errors and linearity of the relation;

∙ gamma regression: the dependent variable is quantitative continuous

positive: this model is very useful when the response variable is time

or money;

∙ Poisson regression: the dependent variable is qualitative discrete, in

particular an account;

∙ logistic regression: the dependent variable is dichotomic and with this

model we can estimate the probability of the two events in function of

the values of some indipendent variables;

∙ multi-logistic regression: the dependent variable is qualitative nominal;

∙ ordered-logistic regression: the dependent variable is qualitative ordi-

nal: this model can be very useful for dependent variables that are

Likert’s scales26.

26We have found also some papers where there is the same idea we had, that is comparing

results of linear regression and ordered logit regression when the response variable is based

on a Likert’s scale: see [33] and [50]. Other papers dealing with ordered logit regression

are [26] and [47].



Chapter 2

Multivariate ranking methods:

theoretical backgrounds and

critical comparison

2.1 Introduction and motivation

Firm’s applied problems are often related to datasets observed over more

units (subjects, samples of product unit, etc.), with reference to several vari-

ables (evaluations, product performances, etc.), with the aim of studying the

relationship between these variables and a factor of interest under investiga-

tion (a given firm’s feature, product, etc.). In this framework the main goal

is to compare the factor levels (features, products, etc.), with respect to all

variables, in order to find out the “best” one.

From a statistical point of view, when the response variable is multivariate

in nature, the problem may become quite difficult to cope with, because the

dimension of the parametric space may be very large. This situation can arise

very often the context of the overall quality assessment of products, where

evaluations are provided by taking into account for several aspects and points

of view (for example performances of new products: strength, pleasantness,

appropriateness of a new fragrance, punctuality, assistance, distribution net-

19
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work of a new service).

Figure 2.1: Example of a typical situation we are interested to investigate.

In fig. 2.1 we have illustrated a situation we could be interested to investigate:

in this case we have 20 statistical units, that are part of 5 different groups

(different treatments or products), on which three variables (X, Y and Z)

are relevated; the full-coloured points represent the real average values of

the three variables for each group, the empty-coloured points represent the

observations and the circled point on the top is the optimum point, that rep-

resents the whole of values that the average values should assume in order to

have the best treatment of all. So, it should be clear that the less a medium

point of a group is near the optimum point, the better that group is; as a

result, in the example of the figure the true ranking of the 5 groups is: black

≻ red ≻ green ≻ blue ≻ yellow.

The topic of defining a treatment ranking from a multivariate point of view

seems to be quite recent: it has been firstly addressed by Bonnini, Corain,

Salmaso et al. in 20061 and the reference framework is experimental design

and analysis of variance. The literature of multiple comparison methods

addresses the problem of ranking the treatment groups from worst to best,

however there is no clear indications on how dealing with the information

1See [9].
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from pairwise multiple comparisons, especially in case of blocking (or strati-

fication) or in case of multivariate response variable.

This problem is not only of theoretical interest but it has also a recognized

practical relevance, especially for applied research. Moreover, in industrial

research a global ranking in terms of performance of all investigated prod-

ucts/prototypes is very often a natural goal; as a proof, in 2008 an interna-

tional industrial organization called AISE has formally incorporated such a

method as official standard for industrial research on house cleaning prod-

ucts2.

2.2 Theoretical background

2.2.1 The ANOVA model

Let Y be the multivariate numeric variable related to the response of any

experiment of interest and let us assume, without loss of generality, that

high values of each Y univariate element correspond to better performance

and therefore to a higher degree of treatment preference. The experimental

design of interest is defined by the comparison of C groups or treatments with

respect to S different variables where n replications of a single experiment are

performed by a random assignment of a statistical unit to a given group. The

C-group multivariate statistical model (with fixed effects) can be represented

as follows:

Yijk = �ij + "ijk, "ijk ∼ IID(0, �2
ij), i = 1, ..., C; j = 1, ..., S; k = 1, ..., n;

(2.1)

where, in the case of a balanced design, n is equal to the number of replica-

tions and indexes i and j are related with the groups (treatments) and the

univariate response variable respectively.

The resulting inferential problem of interest is concerned with a set of S hy-

pothesis testing procedures H0j : �1j = �2j = . . . = �Cj vs. H1j : ∃�ij ∕= �ℎj,

2See [3] and subsubsection 2.2.2 at page 23.
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i, ℎ = 1, . . . , C, i ∕= ℎ, j = 1, . . . , S. If H0j is rejected a further possible set

of C × (C − 1)/2 all pairwise comparisons are performed:

{

H0iℎ∣j : �ij = �ℎj

H1iℎ∣j : ∃ �ij ∕= �ℎj

.

In the framework of parametric methods, when assuming the hypothesis of

normality for random error components, the inferential problem can be solved

by means of the ANOVA F -test and a further set of pairwise tests using

Fisher’s LSD or Tukey procedures, which are two of most popular multiple

comparison procedures3. On the basis of inferential results achieved at the

univariate C-group comparison stage, the next step consists in producing a

ranking of the treatments from the less to the more preferred.

2.2.2 5 proposed ranking methods

Scheme of ranking methods we are proposing

To perform almost all methods we are about to propose in the following

subsubsections, we have to execute these steps:

1. the starting point is the result of the multiple comparisons analysis (S

C × C p-value matrices);

2. a suitable score matrix is then defined;

3. through a synthesis procedure (sum, mean or some combination func-

tion) the scores are synthesized into a C-dimensional score vector;

4. the set of S score vectors are finally synthesized to perform one global

score vector4;

3See [36].
4We could also choose to use in the combining function different weights for the S

variables used to produce the score in order to give different levels of importance to them;

in the 5 ranking methods we are presenting we will not use weights, or, if you want, we

will use all weights equal to 1
S
.
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5. the rank5 of this final global scores provides the required multivariate

global ranking of treatments.

We are about to present 5 ranking methods: three of them (AISE, NPC and

GPS) are of particular scientific interest as we have already explained in the

previous section and follow completely the scheme descripted above; the last

two (Method “0” and Method “1”) are only used as terms of comparisons

for the first three.

AISE score method

In 2007 Corain and Salmaso6 proposed to sum some meaningful scores from

inferential results at the univariate C-group comparison and then to apply

the Non Parametric Combination (NPC) of partial rankings7. In this way

they acquire a unique preference criterion which jointly takes into account all

performances achieved for every response variable. To illustrate the method,

let us suppose H 0j has been rejected for all j = 1, ..., S, so that for each uni-

variate response there is some treatment that significantly differs for some

others.

In order to suitably synthesize the pairwise comparison results for each re-

sponse variable j, j = 1, ..., S, let us define a set of S score matrices of

dimension C × C, where each element [x iℎ∣j] is related to the comparison

between the treatments i and h for each response variable j, giving the value

of +1 to the significantly better treatment and −1 to the other, while both

5As we use rank transformation it is better to clear up that, from this moment and for

all this work, 1 is the worst treatment/product/group and C is the best one, therefore with

this choice the more the rank is high, the better the treatment is; this choice can appear

a little strange, but we have done it essentially for two reasons: first because almost all

scores are higher if the performance is better and lower if the performance is worse and

second because the software we have used, R (see [39]), for default behaves like this.
6See [13].
7See [29].
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scores are 0 if the comparison is not significant. Formally,
⎧





⎨





⎩

if H0iℎ∣j : �ij = �ℎj is not rejected then xiℎ∣j = xℎi∣j = 0;

if H0iℎ∣j : �ij = �ℎj is rejected then

{

if ȳij > ȳℎj then xiℎ∣j = +1 and xℎi∣j = −1;

if ȳij < ȳℎj then xiℎ∣j = −1 and xℎi∣j = +1;

(2.2)

where ȳij and ȳℎj, i, ℎ = 1, . . . , C, i ∕= ℎ, are the sample means of groups i

and ℎ for response variable Yij, i = 1, . . . , C, j = 1, . . . , S. Note that pair-

wise comparisons and the valid score assignments are performed only when

the C-sample test has rejected the null hypothesis H0j, j = 1, ..., S.

For each response variable j = 1, ..., S once this assignment has been per-

formed for each pairwise comparison, it is easily feasible to obtain a set of

S Xj = [x1∣j, x2∣j, . . . , xC∣j]
′ score vectors, j = 1, ..., S, where the C elements

x i ∣j , i = 1, . . . , C, j = 1, ..., S, of the score vector Xj, are calculated by

summing all the obtained scores for each treatment, i.e.:

xi∣j =
C
∑

ℎ=1,ℎ ∕=i

xiℎ∣j, i = 1, . . . , C, j = 1, . . . , S. (2.3)

In order to obtain the final global AISE score we just apply a simple sum:

AISEi =
S
∑

j=1

xi∣j, i = 1, . . . , C (2.4)

In the end, we obtain the global combined ranking by applying the rank

transformation:

GAISE
i = R(AISEi) = #(AISEi ≥ AISEℎ), i, ℎ = 1, . . . , C. (2.5)

NPC score method

Instead of using ±1 summation as proposed by Corain and Salmaso in 2007,

we could also make directly use of p-values. For this goal let us consider the

set of S one-sided p-value matrices of dimension C ×C, where each element
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Figure 2.2: Example of calculation of AISE score for one variable.

Figure 2.3: Example of calculation of global AISE score (more than one

variable).

[pih∣j ] is related to the comparison between treatments i and h for response

variable j. For each response variable j, j = 1, ..., S, it is possible to obtain

an alternative set of S score vectors Xj, j = 1, ..., S, where each element of
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Xj is calculated as follows:

xi∣j = −2
C
∑

ℎ=1,ℎ ∕=i

log(piℎ∣j), i = 1, . . . , C, j = 1, ..., S. (2.6)

Note that we use as p-value synthesis criterion the Fisher’s combining func-

tion. It is worth noting that the Fisher’s combining function is non-parametric

with respect to the underlying dependence structure among p-values from

different univariate response variables, in that all kinds of monotonic depen-

dences are implicitly captured. Indeed, no explicit model for this dependence

structure is needed and no dependent coefficient has to be estimated directly

from the data.

Then, in order to suitably synthesize the scores for each response variable

j, j = 1, . . . , S, Corain and Salmaso suggested to use the Non-Parametric

Combination (NPC) of partial rankings8 to acquire a unique preference cri-

terion which jointly takes into account all response variables. In order to

obtain the final global NPC score we apply just a simple sum:

NPCi =
S
∑

j=1

xi∣j, i = 1, . . . , C (2.7)

In the end, we obtain the global combined ranking by applying the rank

transformation:

GNPC
i = R(NPCi) = #(NPCi ≥ NPCℎ), i, ℎ = 1, . . . , C. (2.8)

GPS score method

With respect to each response variable an ANOVA test is performed and from

the usual C× (C−1)/2 pairwise comparisons it is possible to test the statis-

tical significance of the differences between the mean performances for each

couple of treatments (u, v). Let us indicate with y(1)j ≥ y(2)j ≥ . . . ≥ y(C)j

the ordered observed sample means for Yj and assume that high values cor-

respond to better performance. The algorithm to calculate GPS score is the

following:

8See [29].
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Figure 2.4: Example of calculation of NPC score (for one variable).

1. for each of the S variables a C×C matrix X is created (see the example

in table 2.1 at page 29) where the elements under the main diagonal

are null and those over the main diagonal take value 0 or 1 according

to the following rule:

X[u, v] = ℎ
[

y(u)j, y(v)j
]

{

1 if y(u)j is significantly not equal to y(v)j

0 otherwise;

(2.9)

2. a rank table, as shown in the example of table 2.1, is created according

to the following steps:

(a) in row 1, rank C is assigned to the treatment with the higher mean

(first column), indicated with (1), and to all the other products

which mean performances are not significantly different from that

of (1);

(b) in row 2, rank C − 1 is assigned to the treatment with the higher

mean, among those excluded from rank C assignation, and to all

the other products which mean performances are not significantly

different from that of (2);

(c) in row r, rank C − r + 1 is assigned to the treatment with the

higher mean, among those excluded from rank C − r assignation,
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and to all the other products which mean performances are not

significantly different from that of (r);

(d) the iterated procedure stops when a rank is assigned to the prod-

uct (C);

3. for each treatment, the arithmetic mean of the values from the rank

table (mean by columns) gives a partial performance score: x(i)j;

4. in order to obtain the final global GPS score we apply, as usually, just

a simple sum:

GPSi =
S
∑

j=1

x(i)j, i = 1, . . . , C; (2.10)

5. in the end, we obtain the global combined ranking by applying, as

usually, the rank transformation:

GGPS
i = R(GPSi) = #(GPSi ≥ GPSℎ), i, ℎ = 1, . . . , C. (2.11)

“0” method (mean of the means)

This is the first of the two methods we have used as terms of comparison for

the previous three and it is very simple: it consists only in calculating the

sample mean table (the mean of the variables in the different groups, so a

C × S table) and then in aggregating with respect to the variables, simply

by averaging and in this way obtaining a unique value for every group; the

ranking is then obtained by applying the rank transformation to these values.

In symbols operations made on observations yijk are:

yij =
1

n

n
∑

k=1

yijk, i = 1, . . . , C; j = 1, . . . , S; k = 1, . . . , n. (2.12)

0i = yi =
1

S

S
∑

j=1

yij (2.13)



CAP. 2. MULTIVARIATE RANKING METHODS 29

Ord. tr. (1) (2) (3) (4) (5) (6) (7) (8)

(1) 0 0 1 1 1 1 1

(2) 0 0 0 0 1 1

(3) 0 0 0 0 1

(4) 0 0 0 0

(5) 0 0 0

(6) 0 0

(7) 0

Rank

4 8 8 8

3 7 7 7 7 7

2 6 6 6 6 6

1 5 5 5 5 5

Z(c)tsk 8 7.5 7 6 6 6 5.5 5

Table 2.1: Example of X matrix for the multiple comparisons between pairs

of products (C = 8).

G0
i = R(0i) = #(0i ≥ 0ℎ), i, ℎ = 1, . . . , C. (2.14)

This method is indeed based on no real score, but on two simple arithmetical

means; anyway it can be seen as an application of Multicriteria Methods (see

subsections 1.4.6 at page 16 and above all 3.2.2 at page 58).

“1” method (based on confidence intervals of distances)

This is the other method used as term of comparison, but this one is a

little bit complicated, based on the distance between the observation and

the optimum point, it consists in the following steps:

1. euclidean distances between units (yijk) and optimum point (yoij) are
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calculated for each unit9;

dik =

√

√

√

⎷

S
∑

j=1

(yijk − yoij)
2 i = 1, . . . , C; j = 1, . . . , S; k = 1, . . . , n.

(2.15)

2. arithmetic means of the distances are calculated, in order to obtain a

unique value for every group (after this step we have a C-dimensional

vector of means of distances);

di =
1

n

n
∑

k=1

dik (2.16)

3. from the vector of ordered means of distances confidence intervals10 are

calculated and then a score C × C matrix X of comparisons among

groups is defined: 0 means that the two confidence intervals of that

cell do intersect and therefore that the comparison is not significant,

1 means the contrary, that is the comparison is significant because

the two intervals do not intersect; clearly, because of the ordering, the

structure of matrix X is very similar to the matrix used by GPS score

(1s will be jointed on the top right and over the diagonal of the matrix,

0s will be elsewhere); the two limits of the confidence interval are:

d1(i) = d(i) − t1−�1
2
;nC−C d2(i) = d(i) + t1−�1

2
;nC−C (2.17)

where d(i) indicate the distances obtained at the previous step after we

have ordered them.

4. to X GPS score for one variable is applied, in order to obtain a C-

dimensional vector of scores: 1(i);

9Notice that if we keep assuming that to large values correspond better performances

as we are doing (see the beginning of this section), to small (and not to large) distances

correspond better performances.
10We suggest to use Bonferroni’s correction, in order to obtain simultaneous confidence

intervals, that simply consists in using a significance level that is the significance level

declared (very often 0.05) divided for the number of comparisons we are going to do, that

is
(

C
2

)

; the degrees of freedom are nC − C = n(C − 1).
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5. afterwards the rank transformation is applied, but pay attention be-

cause this is the only case where to lower scores correspond better per-

formances and to higher scores correspond worse performances, there-

fore the rank transformation is applied indeed to the opposite values

of the score (we mean for example −4 instead of 4):

G1
i = R(−1(i)) = #(−1(i) ≥ −1(ℎ)), i, ℎ = 1, . . . , C. (2.18)

Mean and variance of the proposed scores

For our future research on these topics and to inhance the evaluation of the

results of simulations performed in this work, it is very useful to calculate

mean and variance of the three scores of scientific interest, in order to obtain

a way to better calculate11 confidence intervals of the scores. In fact the

scores defined by different procedures (both parametric and non-parametric)

can be viewed as realizations of appropriate random variables and depending

on hypothesis of random errors, the distribution of these random variables

can be derived (parametrically or non-parametrically) in an exact or asymp-

totically way.

AISE We have decided not to calculate mean and variance of AISE score

because it would be not useful: as you will be able to see from the results of

the simulation studies, it is clear that AISE score performs similar, but quite

worse than GPS score and much worse than NPC score.

NPC In order to find a way to calculate mean and variance of NPC score,

we have begun from this point12: under the null hypothesis H0 (that is: “the

groups are all equivalent”) we have that

 ijk0 = −2
C
∑

ℎ=1,ℎ ∕=i

log(piℎ∣j) ∼ a�2
g, k = 1, . . . , B (2.19)

11Better than those that we will use in our simulation studies, which are more pseudo-

confidence intervals of the scores than real true confidence interval of the scores.
12This starting point was suggested by Hinkley in [24].
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where a is a parameter that takes into account the possible (probable in-

deed) dependence between the components of the sum and if a = 1 we

have independence; g, instead, which represents the degrees of freedom of

the chi-squared, is simply twice the number of components of the sum13; i

is the index of the group (i = 1, . . . , C), j the one relative to the variable

(j = 1, . . . , S) and, finally, k is the index of the simulations (B is the number

of them and normally we choose B = 1000 or B = 10000). Substantially we

consider that sum, which synthesizes every simulation, the realization of a

chi-squared variable modified with an appropriate multiplicative constant.

So, we could think14 that, by adding a certain parameter �, we could report

the distribution under alternative hypothesis H1 to the one, simpler, under

H0:

 �
ijk1 = −2

C
∑

ℎ=1,ℎ ∕=i

log(piℎ∣j) ∼ a�2
g, k = 1, . . . , B. (2.20)

Therefore, remembering properties of expectation and variance and that the

mean of a chi-squared variable is its degrees of freedom and that the variance

of a chi-squared variable is twice its degrees of freedom, we can state that:

E( �
1) = ag (2.21)

V ar( �
1) = 2a2g (2.22)

And therefore a possible good estimation of parameter a could be:

â =
1

2

ˆV ar( �
1)

Ê( �
1)

, (2.23)

because:
V ar( �

1)

E( �
1)

=
2a2g

ag
= 2a. (2.24)

13Therefore g = 2(C − 1).
14This was an idea of Lehmann who applied this to the uniform variable: under

null hypothesis p-value is distributed as a Unif(0, 1) variable, so we could think that

p� ∼ Unif(0, 1)); nobody and nothing forbids us to use the same trick with a statistic

distributed as a chi-squared variable.
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With a simulation study it is obviously very simple to calculate Ê( �
1) and

ˆV ar( �
1), good estimations of the true E( �

1) and V ar( 
�
1).

In order to estimate �, probably we have to do it in a numeric way, for ex-

ample by minimizing a loss function; maybe it is also possible to do it in

another way but still more methodological research on this topic is needed.

We could say that all the reasoning about the calculation of expectation and

variance of NPC score is based on a semi-parametric estimate of a distribu-

tion.

GPS It is important to begin this paragraph saying that our research was

not enough to find a real method to calculate expectation and variance of

GPS score, anyway until now we have reached a good point and we are

working on it.

The first idea we had and we tried to follow, was to find a C ×Q15 matrix A

that pre-multiplicated to the Q-dimensional vector Y (that is the matrix of

0s and 1s written as a vector) becomes the C-dimensional vector of the scores

(in the end we have always one score for every different group/treatment),

in symbols:

AY = S; (2.25)

this idea seemed to be good because elements of Y are almost all realizations

of bernoullian variables and, for the central limit theorem, we could approxi-

mate the whole vector to a multivariate normal distribution, so that it would

be very simple to calculate approximated estimations of E(S) = E(AY ) and

V ar(S) = V ar(AY ) by finding matrix A.

But there are lots of problems following this idea, so we have tried an-

other way: let us take as example the score matrix of table 2.1 at page

29 (see fig. 2.2). As we have already said, we can consider the scores

xij, i, j = 1, . . . , C in the matrix as realizations of known causal variables:

Xij ∼ Ber(pij), or analogously Xij ∼ Bin(1, pij), (2.26)

15Q = SC(C − 1).
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⎡
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 1 1 1 1

0 0 0 0 1 1

0 0 0 0 1

0 0 0 0

0 0 0

0 0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 2.2: Beginning score matrix useful to get E and Var of the final GPS

score.

where pij is the probability that the comparison between group i and group

j is significant, therefore:

∙ we can estimate every pij, i = 1, . . . , C − 1; j = i + 1, . . . , C, (so only

probabilities of the comparisons written in the beginning score matrix)

with the p-value of that comparison;

∙ where scores are not written, we can consider them to be always 0, so

pij = 0, i = 1, . . . , C; j = 1, . . . , i; in this way on and below the diag-

onal of the matrix we can consider to have realzations of a degenerate

variable.

Notice that now we can estimate expectation and variance of these C × C

scores, remembering that for a bernoullian variable X with parameter �,

E(X) = � and V ar(X) = �(1− �).

At this point we had the idea of transforming the beginning matrix in another

one where written scores and scores on the diagonal are inverted (1 appears

instead of 0 and viceversa) and the other not written scores are considered to

stay equal to 0; therefore in our guiding example the matrix would become

the one you can see in table 2.3:
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⎡

⎢
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 2.3: First passage matrix useful to get E and Var of the final GPS

score.

Notice that even now we can estimate expectation and variance of the single

scores: over the diagonal the probabilities of success and failure are now in-

verted and are respectively 1− p and p.

Now in the first line we change 1 with C, in the second with C − 1 and so

on until the first line in which only 1s compare written16 and after that line

we write 0 in all last lines of the matrix; furthermore all 0s of the table are

cancelled. So, in our example we have now the matrix you can see in fig. 2.4.

Even now the moments of interest (E and Var) of the elements of this matrix

can be simply estimated (we have to deal with bernoullian variables multi-

plicated with some constants).

At this point we have some problems and we need some more methodolog-

ical research to go on; we had thought two ways to obtain the vector of

the C scores, which in our example is indicated in fig. 2.5. The first way

we had thought would be to find a certain C-dimensional vector, that post-

multiplicated to the last calculated C×C score matrix (see table 2.4) should

give the C-dimensional vector of scores, but this way seems not practicable

at all. The second way would be to obtain the final C scores by averaging

16That is we are not taking into account lines with 0s which are not written.
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

8 8 8

7 7 7 7 7

6 6 6 6 6

5 5 5 5 5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 2.4: Second passage matrix useful to get E and Var of the final GPS

score.

[

8 7.5 7 6 6 6 5.5 5
]′

.

Table 2.5: Final scores.

by column the scores of the last C ×C matrix, taking into account only the

scores which are different from 0 (so, only the written ones). For example the

fourth score of the example above is 6, because 6 is the mean of the written

values of the fourth column of the last score matrix, that are 5, 6 and 7 and

the last one is 5, because in the last column only one 5 is written.

But where is there the problem in this second choice? Until now after all

passages we have always obtained a score matrix which components are de-

scriptable in terms of expectation and variance of the causal variables of

which they are realizations, but on the final score vector it is very difficult

to calculate expectation and variance, because we should calculate expecta-

tion and variance of the ratio of two causal variables: in fact the final scores
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xi, i = 1, . . . , C are calculated in this way:

xi =

∑Ki

j=1 x̃ij

Ki

,

where x̃ij are the scores of the last C×C matrix and Ki is the causal variable

that describes the number of written values for the column i of the matrix.

Therefore we are now not able any more to go on and to calculate expecta-

tion and variance of the final scores, but probably we are very close to our

goal. We must also say that we have not already taken in account that if

in the beginning score matrix we have two equal lines, we have to jump one

of them and this can complicate the calculation of the moments during all

passages we have illustrated.

Anyway the situation is not so bad, because the way of calculating the mo-

ments of the most important score, NPC, is almost completely sketched out

and with the calculation of the moments of GPS score, as we have just said,

we are not so far to complete it with some more research.

2.3 Simulation study

In order to evaluate the degrees of accuracy of these methods in detecting

the true “unknown” treatment ranking, in this section we will perform a

first simulation study where parameters are set and errors are randomly gen-

erated. In sections 2.5 and 3.3, respectively at pages 44 and 61, you will

find other two simulation studies: the second uses true experimental data,

the third is similar to the first, but contains some issues more than the first

one. The main goals of these three simulation studies are to find out the

best performing and the more robust multivariate ranking methods and to

investigate the role played by the number of treatment to be ranked, the

dimension of the response variable and the number of replications.

In these simulation studies we have applied the ranking methods (NPC,

AISE, GPS) only to quantitative variables, but these methods are completely

applicable also to qualitative variables, and in particular also ordinal vari-
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ables (therefore also Likert’s scales): to adapt the three methods to ordinal

variables it is enough to obtain p-values of comparisons with an appropriate

test for ordinal variables, instead of t-test, because as we can obtain some

p-values that describe the pairwise comparisons, than we are completely ca-

pable to perform the three methods. It is very interesting that we can apply

these methods also to ordinal variables and in particular to Likert’s scales,

because it could be possible to use them in the analyses of questionnaires

with Likert’s scales, analyses which we descripted in the first chapter.

But, as we have already said, now we are going to deal only with quantita-

tive variables, even if, results are extendable to other types of variables (the

main point is using a correct test for the comparisons), and in this section we

are dealing only with the first simulation study; let us consider the following

simulation settings:

∙ 3 and 6 positive numeric response variables (p = 3, 6), with “hypothet-

ical” maximum value at 100 (the optimum point);

∙ 3, 5 and 7 treatments (C = 3, 5, 7);

∙ 4 and 8 experimental replications (n = 4, 8);

∙ three types of random errors ("ijk, i = 1, . . . , C; j = 1, . . . , p; k =

1, . . . , n): normal, skew-normal17 (with shape parameter equal to 5)

and Student’s t (with 2 degrees of freedom). We have chosen these

three distributions in order to have good examples of: a symmetric

distribution with light tails (low curtosis) (normal distribution), an

asymmetric distribution (we wanted to use exponential distribution,

but there were lots of difficulties in using it at a multivariate level,

so we chose skew-normal distribution), a symmetric distribution with

heavy tails (high curtosis) (Student’s t with 2 degrees of freedom);

17For further information on this finding of prof. Adelchi Azzalini of Department of

Statistical Sciences of Padua, see [6].
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∙ three variance-covariance settings (different variance-covariance matri-

ces (p× p) of the vectors of random errors):

1. setting 1: variables are independent (�2
iℎ = 0, i, ℎ = 1, . . . , p, i ∕=

ℎ) and their variances are homoscedastic (�2
ii = 1, i = 1, . . . , p);

2. setting 2: variables are independent (�2
iℎ = 0, i, ℎ = 1, . . . , p, i ∕=

ℎ) and their variances are heteroscedastic (�2
11 = 1, �2

22 = 4, �2
33 =

2.25);

3. setting 3: variables are not independent (covariances are all dif-

ferent with values in the interval [0, 1]) and their variances are

homoscedastic (�2
ii = 1, i = 1, . . . , p);

∙ the p C ×C matrices of p-values are obtained with t-test: in NPC and

AISE they are unilateral and no correction is applied, whereas in GPS

they are bilateral and correction for multiple comparisons is applied18.

∙ 1000 independent simulations are performed for each of the 108 settings

(2× 3× 2× 3× 3);

∙ fixed structures of true treatment mean values (see the two tables in

the next page).

Note that the true global ranking follows the label treatment ordering and can

be obtained by calculating the euclidean distance of each treatment from the

perfect ideal treatment, that is from the 3-dimensional point (100, 100, 100)

with 3 variables or from the 6-dimensional point (100, 100, 100, 100, 100, 100)

with 6 variables.

18See R codes in appendix A at page 67.
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True global ranking �1 �2 �3 Distance

C=3 C=5 C=7 from optimum

1 90 90 90 17.3

1 2 89 89 87 20.3

1 2 3 88 87.5 87 21.7

2 3 4 87 87 87 22.5

3 4 5 86 86.5 87 23.4

5 6 85 85 87 24.9

7 84 84 84 27.7

Table 2.6: Setting of treatment mean value for simulation study (p = 3).

True global ranking �1 �2 �3 �4 �5 �6 Distance

C=3 C=5 C=7 from optimum

1 90 90 90 90 90 90 24.5

1 2 89 89 87 90 89 89 27.4

1 2 3 88 87.5 87 90 87 87 30.1

2 3 4 87 87 87 87 87 87 31.8

3 4 5 86 86.5 87 84 87 86 34.2

5 6 85 85 87 84 85 84 36.8

7 84 84 84 84 84 84 39.2

Table 2.7: Setting of treatment mean value for simulation study with (p = 6).

Analyzing results of this first simulation study (you can find an example19 of

how we can present results in fig. 2.5) we can eventually state some consid-

erations:

19In this first study we have performed only two indexes/calculations to analyze results

for every method for every setting: classification matrix and the percentage of simulations

when Spearman’s � calculated between the true ranking and the calculated ranking is

equal to 1 (for further details on these indexes see the second simulation study); in the

example of fig. 2.5 this percentage is 52.5 for NPC method, 19.7 for AISE method and

20.2 for GPS method.
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Figure 2.5: First simulation study: example of results (classification matri-

ces) in the setting with p=3, C=5, n=4, normal errors, indep.-heter. var.-cov.

matrix.

Figure 2.6: First simulation study: example of results (rate of right classi-

fication for the median treatment) in the settings with p=3, n=4, normal

errors.

∙ the most performing method between those of interest is NPC, that

is much better than AISE; GPS is almost in the middle of the two

methods, but much less performing than NPC and not very distant

from AISE; method “1” is completely wrong to search the true ranking

(we could expect it because it is very difficult that confidence intervals
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Figure 2.7: First simulation study: example of results (rate of of exact match-

ing with the true ranking) in the settings with p=3, n=4, normal errors.

of near treatments do not intersect even if they are in reality different);

method “0”, the simplest because it is only the mean value of the mean

values, seems to be always a little bit better than AISE. Therefore, the

final ranking of the methods seems to be: 0 ≻ NPC ≻≻ GPS ≻ AISE

≻≻ 120;

∙ all methods get important benefits from an increased number of (infor-

mative) variables and a greater number of replications;

∙ asymmetry does not affect results almost at all, conversely heavy-tailed

distributions reduce reliability; heteroscedasticity mainly reduces the

performance of GPS and AISE, while dependency negatively affects

NPC; in general, the most robust method is NPC.

20A ≻≻ B indicates that A is much better than B.
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2.4 Extension to multivariate RCB design

What we are introducing in this part was all implemented in a R code21, but

it was not possible to complete it, because simulations took really too much

time22. Anyway we report briefly here the lying below idea, because maybe

it is possible in the future to try to simplify the R code in some way and to

obtain results in a useful time.

Let us consider the experimental design where there are n blocks and, within

each block, experimental units are randomly assigned to the C (C > 2:

C = 2, 3, 4, 5) treatments and exactly one experimental unit is assigned to

each of the C treatments. Let Y be the multivariate variable related to

a p-dimensional vector of responses (in our example p had to be equal to

3). The experimental design is developed with the aim of comparing the

C treatments with respect to p different response variables. The statistical

model (with fixed effects) for the multivariate Randomised Complete Block

(RCB) design can be represented as follows:

Yij = �+�i+�j+"ij, "ij ∼ IID(0,Σ), i = 1, . . . , n; j = 1, . . . , C. (2.27)

where �i, �j and Yij, are respectively the effect of the i-th block, the effect

of the j-th treatment and the p-dimensional multivariate response variable

for the i-th block and the j-th treatment. The random term "ij represents a

p-vector of experimental errors with zero mean, variance-covariance matrix

Σ and unknown continuous distribution P and the usual side-conditions for

effects are given by the constrains
∑

i �i =
∑

j �j = 0. The model described

in (2.27) is called “effect model”23. If we define �j = �+ �j, j = 1, . . . , C,

an alternative representation of the model is the so called “mean model”, i.e.

Yij = �j + �i + "ij. (2.28)

21See appendix A at page 67.
22We had to perform 16 settings and to obtain the results of only one of them we saw

that it would take us more than one day!
23See [36].
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The resulting inferential problem of interest is concerned with the following

hypotheses:

1. H0 : �j = 0, ∀j, against H1 : ∃j : �j ∕= 0; note that this hypothesis is

referred to a global test; if H0 is rejected, it is of interest to perform

inference on each pairwise comparison between couples of treatments,

i.e.

2. H0(jℎ) : �j = �ℎ, j, ℎ = 1, . . . , C, j ∕= ℎ, against H1(jℎ) : �j ∕= �ℎ; with

reference to the second model, an equivalent representation of H0(jℎ) is

the following: H0(jℎ) : �j − �ℎ = 0, j, ℎ = 1, . . . , C; j ∕= ℎ, against

H1(jℎ) : �j − �ℎ ∕= 0.

2.5 Application to industrial experiments

In this section we are dealing with the second simulation study we have

eventually performed.

Let us consider the following real case study:

∙ the treatments of interest are 4 dosages (P1: 100%, P2: 95%, P3: 90%,

P4: 85%) of a given detergent (C = 4); note that, a priori, we know

the true ranking: P1 ≻ P2 ≻ P3 ≻ P4;

∙ detergent performances are assessed by measuring the percentages of

removed soil (so called reflectance) from a piece of fabric, previously

soiled with 25 different soils (p = 25);

∙ the washing experiment has been replicated 24 times (n = 24), so we

can extract random samples of different smaller sizes: 4, 8, 12, 16, 20;

∙ soils can be classified by their degree of importance (discrimination

capability: 1, 2, 3) and by their main chemical properties (Bleachable,

Enzymatic, General detergency): take a look at table 2.5 at page 46;
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∙ since we grouped soils into 6 categories (1-5: all Bleachable soils of

group 1, 6-9: all Enzymatic soils of group 1, 10-14: all General de-

tergency soils of group 1, 1-14: all soils of group 1, 1-19: all soils of

groups 1-2, 1-25: all soils (all soils of groups 1, 2 and 3)) the simulation

settings were 42, because for each of the 6 group of variables we have

performed 7 settings: 5 settings (n = 4, 8, 12, 16, 20) under H0 : C = 4

(that we know it is true) and 2 settings under H1 : C = 8 (that we

know it is false).

The main idea of this second simulation study, is to apply the three methods

of scientific interest (NPC, AISE and GPS, whereas “0” and “1” methods

were used only in the first simulation study to use them as terms of compar-

isons for the other three methods and not for a real interest), beginning with

real data and not only with invented ones, as in our first simulation study

(see tables 2.6 and 2.7 at page 40). Furthermore, another very innotavive

aspect of this second study, is that it is very interesting to try the methods

also under a false hypothesis (C = 8).

In order to evaluate the goodness of the classifications of the ranking methods

in the different settings, we have performed various indexes and calculations:

1. first of all for each setting we have three classification matrices (one for

each method);

2. confidence intervals of the scores with percentiles method: after sim-

ulation are performed, then we put together all the obtained scores

and then we take the 0.025 and the 0.975 quantiles (actually they are

pseudo-confidence intervals);

3. confidence intervals of the rankings of the scores with percentiles method;

4. average Spearman’s �: for every setting, for each of the 1000 simu-

lations, Spearman’s � correlation coefficient is calculated in order to

compare the true classification and the classification (we measure their

cograduation) performed by the simulation; the index of this third point

is simply the mean of the Spearman’s �’s.;
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Soil no. Soil ID Import. Class

1 CFT CS-15 1 Bleachable

2 Empa 164 1 Bleachable

3 WFK 10J 1 Bleachable

4 WFK 10K 1 Bleachable

5 WFK 10LI 1 Bleachable

6 CFT CS-01 1 Enzymatic

7 Empa 111 1 Enzymatic

8 Empa 112 1 Enzymatic

9 WFK 10Z 1 Enzymatic

10 Empa 141 1 General detergency

11 Empa 143 1 General detergency

12 WFK 10C 1 General detergency

13 WFK 10D 1 General detergency

14 WFK 20D 1 General detergency

15 CFT CS-120 2 Bleachable

16 CFT CS-28 2 Enzymatic

17 CFT CH-021 2 General detergency

18 CFT CH-022 2 General detergency

19 WFK 10GM 2 General detergency

20 CFT RB-001 3 General detergency

21 CFT RB-005 3 General detergency

22 CFT RB-006 3 General detergency

23 CFT RB-007 3 General detergency

24 CFT RB-008 3 General detergency

25 CFT RB-009 3 General detergency

Table 2.8: Types of soils, classified by their importance and their main chem-

ical properties.

5. percentage of simulations in which Spearman’s � is equal to 1.

The first and the last ones are the only ones we used also in the first simu-

lation study; here we decided to use also other methods, as you were able to
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see from this list, in order to try to find better methods and ways to assess

goodness of a classification. The fourth method (average Spearman’s �) has

a little drawback, because it is not always possible to calculate Spearman’s

�, for example when a certain method in a certain setting provides in one

simulation a result in which all treatments have the same ranking24, so when

analyzing this index we must always remember this aspect and realize that

this statistic is not so reliable in order to evaluate the classification; in par-

ticular we have seen that the number of cases in which it is not possible to

calculate Spearman’s � increases with the number of considered replications.

Furthermore we have not this problem with NPC method, but only with

AISE and GPS methods and this happens because these last two methods

are constructed in a way that needs a larger sample difference in order to

construct a score that can really reflect the reality. A main point to develop

is just this: we will need in the future to improve these methods and to use

an evaluation method based on the calculation of Expectation and Variance

of the scores of the three methods (see subsubsection 2.2.2 and chapter 4 for

some further details on this topic).

Analyzing results of simulations we have more or less the same indications of

those got in the first simulation study (NPC is the best method, all methods

work better with more treatments, with more replications and so on) and

almost always all evaluating methods give the same results and gave us the

same impressions, therefore in a certain sense we have no great surprises with

this second simulation study. There are anyway some new aspects emerged

from this second study and the main ones are synthesized in the following

two points:

∙ the three ranking methods answer in a good way when we work under

H1 : C = 8, knowing that it is false, because the number of simulations

with Spearman’s � equal to 1 is always 0, that is the three ranking

methods work very good succeeding in recognizing that H1 is false

24Software returns a message error when we ask it to calculate for example Spearman’s

� between these two vectors: (1, 2, 3, 4, 5) and (5, 5, 5, 5, 5).
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when it is so;

∙ the second point is a little more thorny: it happens, only with AISE

and GPS, that these two methods get worse in terms of numbers of

simulations with a perfect classification (percentage of cases on the

1000 simulations with � = 1) and this was very surprising for us.

Figure 2.8: Second simulation study: example of results (classification ma-

trices) in the setting with p=5, soils 10-14, n=4.

Figure 2.9: Second simulation study: example of results (quantiles of the

simulated distribution of the scores) in the setting with p=3, n=4, normal

errors for NPC method.
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Figure 2.10: Second simulation study: example of results (graphic represen-

tation of pseudo-confidence intervals) in the settings with p=3, n=4, normal

errors for NPC method.

Figure 2.11: Second simulation study: example of results (a sort of way

to estimate power) in the settings with p=3, n=4, normal errors for NPC

method.

My explaination to the phenomenon illustrated in the second point of the

previous list is this: if we take a better look at the results of simulation, we

can see that the percentage of classifications with Spearman’s � equal to 1 is
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the only evaluation index/statistic that gets worse by increasing the number

of replications. We spent a whole day in order to understand this strange

phenomenon and we had the idea of trying to perform a particular setting

with all 24 replications (in this case one simulation is enough, because we

sample (always without replacing!) all replications we have in hand) and we

saw that by sampling all units, AISE and GPS cannot recognize some of the

differences between treatments, while NPC can do it very well25. Therefore,

if AISE and GPS cannot succeed in good working on the whole dataset, it

happens that in samples of it, by increasing the number of replications and

by coming nearer to the whole population this index of the two methods

comes nearer and nearer to 0!

We have different proofs of this fact: first of all, all other statistics and

indexes improve by increasing the number of replications (the average Spear-

man’s � increases, confidence intervals become smaller and smaller) but this

cannot happen on percentage of correct classifications, because this is only

the number of the cases in which the classification is equal to the true one

and not more and it is inadequate to describe the real trend of performances

of methods; furthermore, we tried lots of times to increase the first type error

(in all simulations � value is always 0.05) used for the multiple comparison

in AISE and GPS and indeed we could see that by reaching high level of �,

even AISE and GPS could recognize some differences that first they could

not recognize (sometimes 0.20 was enough, sometimes even 0.60 or 0.70!).

We realize this is very difficult to understand, also because it was very diffi-

cult even for us to find and to explain, but we are really sure of what we are

saying and we were also a little bit proud when we discovered it, also because

first we thought that it was an error of the R code or of something else.

We can conclude that we have a further consistent proof that NPC is really

25This is because NPC is much more informative than the other two ranking methods

and by using directly p-values and not using an intermediate significance score, as AISE

and GPS do, NPC can point out also very small differences and it is almost impossible

that two treatments with NPC are in ex-aequo, differently from the other two methods

where this happens very usually.
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the best ranking method, and that in particular it is very robust and can

really recognize the difference between two treatments which are very close

to each other; however, probably (we had just taken a look at it by mak-

ing a brief test in R, while we were working on these things) it is possible

that NPC risks to have the opposite drawback of AISE and GPS: probably

when, in the truth classification, two treatments are completely equal, the

inevitable sample differences are sufficient for NPC to recognize differences

between treatments that in reality are not true.





Chapter 3

Multivariate performance

indicators: theory, methods

and application to new product

development

3.1 Introduction and motivation

In the research and development of new products often the aim is focused

on evaluating the product performances in connection with more than one

aspect (dimension) and/or under several conditions (strata). In this frame-

work the main goal of statistical data analysis consists in the calculation of

an index to obtain a global performance evaluation of the products under

investigation which is a synthesis of the information given by whole perfor-

mance data.

The considered experimental design presents a multivariate response vari-

able where the univariate components have different degrees of importance.

In general, each dimension of the global performance should be evaluated

under different conditions which can be represented by two or more strata,

jointly considered. The methodological solution to cope with this problem is

53



CAP. 3. MULTIVARIATE PERFORMANCE INDICATORS 54

described and applied, considering different possible data transformation.

Let us suppose that the global performance is represented by a variable �,

that indicates a complex and underlying concept, often named construct,

which is not directly measurable, hence it is broken into a set of measurable

components, dimensions or items. In order to build up a global performance

index, two main critical steps have to be taken into account: standardization

and aggregation.

Standardization methods should take into account both the data proper-

ties and objectives of the analysis. Let Y1, Y2, . . . , YK be the informative

variables representing the measurable components of �. Standardization of

Y1, Y2, . . . , YK is a transformation that replaces each Yk by a new variable

Tk(Yk). The main reason for standardization is to allow for the comparabil-

ity among variables; a review of the most commonly used transformations

and an exploration of the main mathematical and statistical consequences of

their application is proposed in [1].

After the transformation of non homogeneous data, it is necessary to put to-

gether the variables Tk(Yk) through an aggregating function g(⋅). Hence the

aggregation allows us to obtain a global final variable which gives a measure

of the construct or latent variable �:

Y = g [T1(Y1), T2(Y2), . . . , TK(YK);!1, !2, . . . , !K ] , (3.1)

where !1, . . . , !K are the weights (degrees of importance) assigned to Y1, . . . , YK ,

respectively, which usually have an important impact on the aggregated val-

ues of the performance index. Although some weights could be negative, in

general !k ≥ 0, k = 1, 2, . . . , K and
∑

k !k = 1: from now on we will assume

this condition unless a different assumption is explicitly done.

The most frequent aggregation functions proposed in literature1 are based

on additive methods and require assumptions about indicators and weights

which are often not desirable and difficult to meet and to test2. For this

1See [18] for an extensive review.
2See [37].
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reason other aggregation methods heve been proposed and among these, we

mention multiplicative methods such as geometric aggregation and multi-

criteria analysis.

In this chapter we are facing the problem of determining a comparative global

performance evaluation of C products, summing up partial performance mea-

sures coming from multivariate experimental data in presence of multistrat-

ification. The complexity of the experimental design is due to the following

aspects:

∙ the response variable is multivariate in nature and the univariate com-

ponent variables present different degrees of importance;

∙ often one or more component variables represent primary performances,

while the other ones represent secondary performances and two partial

aggregated evaluations are at least needed along with the global eval-

uation;

∙ some experiments (in general those related to primary performances)

allow replications hence, for some responses, comparative evaluations

can be based on multiple comparisons of one-way ANOVA but, for

economic or practical reasons, other responses are characterized by un-

replicated designs, hence, for these variables, inferential procedures are

not possible;

∙ each dimension of the global performance should be evaluated under

different conditions which can be represented by two or more strata,

jointly considered.

3.2 Composite indexes

A composite index has to measure a complex and underlying phenomenon Y

which is not measurable but can be broken into K measurable components,

dimensions or items. Data transformation procedure for the calculation of a
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composite indicator consists in a sequence of steps aimed to achieve compa-

rability among component variables Y1, Y2, . . . , YK and to make a synthesis of

the available information: the former purpose is obtained through standard-

ization, the latter can be achieved through the application of an aggregation

technique.

3.2.1 Standardization: data transformations to obtain

homogeneous variables

Let us suppose that Yck represents the value of k-th variable for c-th unit

(product): a possible standardization approach to have comparability is to

rank each variable across units. For example, in the case of decreasing rank

transformation we have:

Tk(Yck) = R(Yck) =
C
∑

u=1

Iuk(Yck) + 1, (3.2)

where

Iuk(x) =

{

1 if Yuk > x

0 otherwise .
(3.3)

This typical non-linear transformation requires just simple calculations and

is robust in presence of outliers; the main drawback is the loss of information

related to the original metric. The evaluation of a unit based on a given

variable consists in the position of the unit in the ranking based on that

variable; relative rank R(Yck)/C can be preferable to R(Yck) because it takes

values in the interval [0, 1].

To avoid computational problems in the aggregation phase (i.e. null denom-

inator, null argument of logarithm, etc.), relative rank [R(Yck)+ c1]/(C + c2)

can be calculated, where c1 and c2 are constants such that the relative rank

takes values in the open interval (0, 1).

The traditional standardization method converts all original variables to vari-
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ables with zero mean and standard deviation equal to one, applying the

well-known transformation:

Tk(Yck) =
Yck − Y k

Sk

, (3.4)

where Y k is the sample mean and Sk the sample standard deviation of Yk.

The standardized variables present different ranges and this transformation

is not robust with respect to outliers. Sometimes a similar linear transforma-

tion, with median instead of mean as a location measure and median absolute

deviation instead of standard deviation as a variability measure, is used.

The re-scaling technique produces standardized variables with identical range

[0, 1]:

Tk(Yck) =
Yck −minu(Yuk)

maxu(Yuk)−minu(Yuk)
. (3.5)

Since this method uses range instead of standard deviation as denominator,

outliers have a great effect on standardization.

Standardization can also be applied just comparing the original data with

the maximum value, according to the following formula:

Tk(Yck) =
Yck

maxu(Yuk)
. (3.6)

In this case the standardized variables assume values in [minu(Yuk)
maxu(Yuk)

, 1].

A similar transformation can be obtained just considering the minimum

value, for instance:

Tk(Yck) = 1−
minu(Yuk)

Yck
, (3.7)

and the range of standardized variable is [0, 1− minu(Yuk)
maxu(Yuk)

]. It is worth noting

that the latter transformation is non-linear unlike standardization, based on

maximum value and (3.5), which are linear.

When standardization is aimed at the comparison with a reference unit (or

with a target), value one is given to the reference unit, i.e. Tk(Y
∗
k ) = 1, and

transformed values are calculated through the following ratio:
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Tk(Yck) =
Yck
Y ∗
k

, (3.8)

where Y ∗
k indicates the value of Yk corresponding to the reference unit or

the target value for Yk. With this method, typical of economic applications

where all Yck are non-negative (e.g. index numbers), transformed data take

value in [0,∞). Alternatively, when we are interested in gaps, the relative

variations Tk(Yck) =
Yck−Y ∗

k

Y ∗

k

, taking values in (−∞,+∞), can be calculated.

A similar, but more robust, method of standardization distinguishes among

values above, close to, or below a certain percentage threshold around the

mean or a reference value:

Tk(Yck) =

⎧





⎨





⎩

−1 if Yck −mk < −�k∣mk∣

akYck if −�k∣mk∣ ≤ Yck −mk ≤ +�k∣mk∣ ,

+1 if Yck −mk > +�k∣mk∣

(3.9)

where mks are the means or the reference values, �ks are the percentage

thresholds and aks are non negative constants; as a special case some aks

could be null. The drawbacks of this non-linear transformation are the arbi-

trariness of �k and the loss of the information about the original metric.

3.2.2 Aggregation: synthesis of information

The application of an aggregation technique consists in the choice of an ap-

propriate function g : ℝK → ℝ to apply (3.1). The most used are additive

techniques but they require assumptions which are often not desirable and

sometimes difficult to meet and to verify3, hence some authors propose alter-

native aggregation methods such as multiplicative (geometric) aggregations

or non-compensatory aggregations (e.g. multi-criteria methods).

Additive aggregation is based on the weighted sum of standardized variables:

3See [37].
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Y =
K
∑

k=1

!kTk(Yk). (3.10)

There should be no conflict or synergy among standardized variables; in case

of conflict, standardization should be used also to change direction of the

original variables decreasingly related to the latent variable Y .

Additive aggregation is a fully compensatory approach because low values in

some variables can be completely compensated by sufficiently high values in

other variables. Assuming all Tk are positive, geometric aggregation presents

less compensability because it is based on a multiplicative approach:

Y =
K
∏

k=1

Tk(Yk)
!k . (3.11)

If a geometric aggregation is applied to calculate a composite performance

indicator, a unit under evaluation should prefer to increase partial indicators

(variables) with low score than those with high score to improve its position

in the global ranking.

The multi-criteria approach is based on a non-compensatory rationale; the

main assumption is the comparability between units for each variable Yk and

the method consists in ordering the units after pairwise comparisons across

the whole set of variables. Multi-criteria analysis allows us for considering

jointly qualitative and numeric variables and in general it does not necessarily

require standardization to assure comparability among variables. For each

variable Yk a preference function is defined, such that for each couple of units

(u, v), it indicates if u is worse, equivalent or better than v (u, v = 1, . . . , C).

The preference function can be written in this way:

ℎk(Yuk, Yvk) =

⎧





⎨





⎩

−1 if u is worse than v according to Yk

0 if u is equivalent to v according to Yk

+1 if u is better than v according to Yk .

(3.12)

The above general definition of the preference function can be applied to a
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wide range of functions and the choice about which function should be used

depends on the decision-making problem and from the nature of Yk, hence for

each aspect (criterion) a specific preference function must be defined. The

most common preference functions are the following:

∙ subjective: values +1, 0 and -1 are assigned according to judgements

of experts;

∙ dichotomic: -1 is assigned if a requested characteristic or property is

satisfied by v but not by u, 0 is assigned if both units or neither of

them satisfy the characteristic/property and +1 is assigned otherwise;

∙ ordinal : the k-th preference function takes the value +1 if Yuk > Yvk,

-1 if Yuk < Yvk and 0 otherwise;

∙ �-ordinal : the k-th preference function takes the value +1 if Yuk >

Yvk + �, -1 if Yuk < Yvk + � and 0 otherwise;

∙ �-stochastic: value +1 (-1) is given if the observed value of Yuk is greater

(less) than the observed value of Yvk and if they are stochastically not

equal (at significance level �); value 0 is given otherwise.

Hence, considering Yk, for each unit a flow is computed according to:

Tk(Yck) = Φ(k)
c =

C
∑

v=1

ℎk(Yck, Yvk). (3.13)

The flow measures the degree of preference associated to each unit: a positive

flow expresses how much the unit dominates the other ones and a negative

flow indicates how much it is dominated by the other ones; based on these

flows, K partial rankings of the C units are obtained. The global synthesis

respect to the K aspects can be obtained through a weighted mean of flows

(or of flow transformations which do not modify partial rankings). For a

review of the main multi-criteria methods related to the construction of a

composite index see [22].
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3.3 Simulation study

The settings considered in this third simulation study do not take into ac-

count all we have said in this third chapter, but anyway also this simulation

study offers some interesting cues; they are almost the same of the first study,

except from the following points:

1. the number of treatments is 5 or 10 (C = 5, 10), no longer 3, 5 and 7;

2. two (and no longer three) types of random errors are considered: we

have excluded the skew-normal distribution, because we had seen in

the first simulation study that skewness was not an influence factor on

the results;

3. we have not changed all other features of the simulations (p = 3, 6; n =

4, 8; always the same three variance-covariance random error settings);

4. notice that in this case we have 48 simulation settings (2×2×2×2×3).

Practically there is only a new aspect in this study with respect to the first

study, that is we have added two new phases:

∙ aggregation of scores;

∙ standardization of scores.

Actually in the first study we had already used aggregation (it is not possible

using no form of aggregation): in all three methods of interest (NPC, AISE

and GPS) we had used always the sum of scores and for some of them we

also had to use a sort of pre-aggregation (for example an intermediate sum

for AISE and an intermediate Fisher’s combining function for NPC); here we

introduce three new types of little more sophisticated aggregations (always

without weighting variables) for each of the three methods:

1. arithmetic mean;

2. geometric mean;
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3. Fisher’s combining function.

Furthermore, for each method, to each type of score aggregation we applied

11 types of standardization:

1. std. with the minimum value: I

min(I)
;

2. std. with the sample minimum value: I
I(1)

;

3. std. with the maximum value: I
max(I) ;

4. std. with the sample maximum value: I
I(n)

;

5. no standardization: I;

6. std. with mean and variance: I−I

sd(I)
;

7. inverse std.: 1
I
;

8. norm. with respect to the minimum value: I−min(I)

max(I)−min(I)
;

9. norm. with respect to the sample minimum value:
I−I(1)

I(n)−I(1)
;

10. norm. with respect to the maximum value: max(I)−I

max(I)−min(I)
;

11. norm. with respect to the sample maximum value:
I(n)−I

I(n)−I(1)
.

So, in the end, we obtain 3 × 11 = 33 new sub-methods, for each of the

three ranking methods, for each of the 48 settings (actually: 32 sub-methods

for NPC, 33 each for AISE and GPS, for each setting, because for NPC

the combination between aggregation with Fisher’s combining function and

standardization with inverse standardization is not practicable). To each

of the, therefore, 98 combinations are then applied some tricks4 and simple

4For “tricks” we mean that in lots of these combinations we have some logistic problems:

for example if the maximum theoretical value of an index is 0 we must take into account of

this in the third standardization by dividing for a very very little number close to 0; it can

also occur that in a simulation the sample maximum value is 0, so we have to prevent this

potential problem by taking into account of it also in the fourth standardization (some
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calculations, so that all these 98 combination are included in the interval

[0, 1]5.

The main idea and our goal in this study is to find out the best combination

of aggregation and standardization in function of the features of the setting

and of the ranking method used. The evaluation methods are the same used

also for the second simulation study (see section 2.5 at page 44).

The main new considerations that we can do analyzing results of third study,

besides all indications we had from the previous two studies, that keep being

true, and the main new indications that we can have are:

∙ as we could expect it, the type of standardization does not influence

at all the goodness of the classification obtained with a certain method

(NPC, AISE or GPS); in fact standardization was introduced above all

to have comparable results (in particular all 98 indexes are included in

the interval [0, 1]);

∙ what is very important to differentiate the goodness of the classifica-

tion, instead, is the type of aggregation: in particular we have noticed

that in a great part of the results arithmetic mean behaves in a certain

way and the other two aggregation types (geometric mean and Fisher’s

combining function) behaves similarly in a different way; in particular

arithmetic mean seems to perform and to fit better if we use it with

NPC method, whereas geometric mean and Fisher’s combining func-

tion seem to perform and to fit better if we use them with AISE and

GPS methods and these statements seem to be true for almost every

simulations could have no problem, some other ones not and often you do not realize it

at once, but often you realize it when you see that the software in the simulations returns

some errors). This is only a single example of what may happen, but we had to correct

lots and lots of the 98 combinations and it took us a big part of our time to found all the

problems (both evident and not evident ones) of these combinations.
5We are not explaining in detail what we have exactly done for each of the 98 combi-

nations, because it would be really too long! If you want to try to understand what we

have done in detail, try to take a look at the code of this simulation: see appendix A at

page 67.
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setting (so, type of variance-covariance matrix, type of distribution and

so on seem to have not a great influence on these considerations).

After these three simulation studies it is clear that in the future we will have

to better explore the results of simulations (see also discussion in chapter 4

about this topic), but we can anyway already for sure conclude some things:

∙ multivariate ranking methods are reliable tools to rank treatments

within the experimental design framework;

∙ NPC method allows us to better rank the treatments than AISE and

GPS methods;

∙ NPC method is able to “include” more useful information from exper-

imental data than other methods;

∙ NPC method is also the most robust method, especially in case of

heavy-tailed random distribution and heteroscedasticity;

∙ the proposed simulation-based approach allows us to properly design

the suitable size of replications.



Chapter 4

Discussion and conclusions

Work and commitment lying below this thesis to carry it out were really a

lot, more than the reader can imagine (it is sufficient for example that you

take a look at the length of R codes used for simulation studies or at the

huge number of bibliographical entries). But unfortunately even working so

hard, it was not enough to perform all we wanted to do; we are listing these

topics so that in the future it will possible to develop them1.

∙ It would be good to perform the two parallel analyses of chapter 1

in order to be able to compare them and to better understand if the

analysis of management literature is really not correct at all, or if it is

possible to use it even if it is not statistically correct; it would be even

more beautiful to approach this situation with simulations, in order to

be a little more certain of the results. Anyway it is very long to plan

and sure it will take us really a lot of time.

∙ The second important thing that we should better develop in the fu-

ture is to find a better way to evaluate results of simulations, that are

performances of ranking methods of interest; therefore, we started to

try this method and the main point is to try to find a way to calculate

1Anyway we will surely have to develop almost all of them after my graduation.
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Expectation (E) and Variance (Var) of the scores of the methods of

interest, in order to calculate some confidence intervals. In reality the

way to begin was already found and illustrated in subsubsection 2.2.2,

but, as we have already said in that section, we need some more time to

better develop these ideas and unfortunately there was no time enough

to complete totally these calculations in this work, therefore additional

further methodological research is needed to develop formal confidence

intervals.

∙ We are in possession of lots of results from the three simulation studies

(results that can be even improved by developing the previous point)

and we could exploit them better by performing other analyses, graph-

ics, considerations and so on, that could allow us to discover other

interesting aspects of the methods, because probably (surely, indeed)

we have not found out everything about them yet; furthermore simula-

tions have to be extended by comparing different methods to perform

inference (parametric vs. non-parametric).

∙ Furthermore we should better develop the aspect of the extension of

the work to multivariate RCB design, as we have already said in the

relative section, because this one is probably very interesting and there

are still lots of things and pieces of information to discover about this

topic.



Appendix A

R codes used for the analyses

We wanted to report here in this work the R codes, so that if the reader

knows the language R, he can take the code here and try to improve it; we

decided to report the codes here, also because they were a great part of our

work and they took us a great part of the time used to perform this work,

also because we had to update the codes lots and lots of times and also

simulations were runned more than one time, because there has been always

something to adjust or update.

A.1 R code used for the first simulation study

library(mnormt)

library(mvtnorm)

library(sn)

source("pairwise_beta.r")

source("pairwise_gamma.txt")

source("score.r")

mu7<-read.csv("mu.csv",header=FALSE)

mu7<-matrix(unlist(mu7),ncol=6) # medie delle 6 variabili con 7 trattamenti

S2<-read.csv("sigma.csv",header=FALSE)
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S2<-matrix(unlist(S2),ncol=6) # sigma etero-indip (6 variabili)

S1<-matrix(c(rep(c(1,rep(0,6)),5),1),ncol=6) # sigma omo-indip (6 variabili)

S3<-read.table("sigma3.txt",header=FALSE)

S3<-matrix(unlist(S3),ncol=6) # sigma omo-dip (6 variabili)

mu7b<-mu7[,1:3] # medie delle 3 variabili con 7 trattamenti

S1b<-S1[1:3,1:3] # sigma omo-indip (3 variabili)

S2b<-S2[1:3,1:3] # sigma etero-indip (3 variabili)

S3b<-S3[1:3,1:3] # sigma omo-dip (3 variabili)

mu5<-mu7[2:6,] # medie delle 6 variabili con 5 trattamenti

mu3<-mu7[3:5,] # medie delle 6 variabili con 3 trattamenti

mu5b<-mu7b[2:6,] # medie delle 3 variabili con 5 trattamenti

mu3b<-mu7b[3:5,] # medie delle 3 variabili con 3 trattamenti

simula.settings<-function(mu=mu7,sigma=S1,distr=c("norm","t2","nasimm")

,n=8,alpha=0.05,B=1000){

C=dim(mu)[1] #n∘ trattamenti

p=dim(mu)[2] #n,∘ variabili

Sc<-array(0,dim=c(B,C,p))

Sc_mean<-array(0,dim=c(B,C,p))

Grad_0<-array(0,dim=c(C,B)) # matriciona di risultati per media medie

Grad_1<-array(0,dim=c(C,B)) # matriciona di risultati per int. conf. dist.

Grad_mean<-array(0,dim=c(C,B)) # matriciona di risultati per la media

Grad<-array(0,dim=c(C,B)) # matriciona di risultati per NPC rank

Grad_gps<-array(0,dim=c(C,B)) # matriciona di risultati per GPS

SP_0<-array(0,dim=c(B,1)) # vettore di indici di Spearman per media medie

SP_1<-array(0,dim=c(B,1)) # vettore di indici di Spearman per int. conf. dist.

SP<-array(0,dim=c(B,1)) # vettore di indici di Spearman per NCP rank

SP_mean<-array(0,dim=c(B,1)) # vettore di indici di Spearman per media

SP_gps<-array(0,dim=c(B,1)) # vettore di indici di Spearman per GPS
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for(cc in 1:B){

X<-array(0,dim=c(C,p,n)) # inizializza la matrice di dati

for(i in 1:C){

if (distr=="norm") X[i,,]<-rmvnorm(n,mean=mu[i,],sigma=sigma)

if (distr=="t2") X[i,,]<-rmvt(n, sigma = sigma, df = 2)+mu[i,]

if (distr=="nasimm") X[i,,]<-rmsn(n, xi=mu[i,], Omega=sigma, alpha=rep(5,p))

}

X<-matrix(X,ncol=p,byrow=FALSE)

label<-rep(seq(1,C),n)

Y<- data.frame(label,X)

Z<-data.frame(Y,double(n*C))

colnames(Z)[dim(Z)[2]]<-"dist"

Z[,dim(Z)[2]]<-apply(Y[,-1],1,function(x){sqrt(sum((100-x)ˆ2))})

m<-array(0,dim=c(C,p))

for(j in 1:p){

for(i in 1:C){

m[i,j]<-mean(X[label==i,j])

}

}

P<-array(1,dim=c(C,C,p))

D<-array(0,dim=c(C,C,p))

MSD<-array(0,dim=c(p,1))

P_mean<-array(1,dim=c(C,C,p))

P_gps<-array(1,dim=c(C+1,C,p))

D_mean<-array(0,dim=c(C,C,p))

D_1<-array(0,dim=c(C+1,C))

for(j in 1:p){

MSD[j]<-unlist(summary(aov(Y[,(j+1)]˜as.factor(Y$label),data=Y)))[6]



APPENDIX A. R CODES USED FOR THE ANALYSES 70

}

MSD<-sqrt(MSD)

MSDdist<-unlist(summary(aov(Z[,dim(Z)[2]]˜as.factor(Z$label),data=Z)))[6]

MSDdist<-sqrt(MSDdist)

mdist<-tapply(Z$dist,Z$label,mean)

mm<-t(m)

colnames(mm)<-seq(1:C)

for(j in 1:p){

P[,,j]=pairwise(m,MSD,k=j,n,alt="greater",correct=FALSE)$P

D[,,j]=pairwise(m,MSD,k=j,n,alt="greater",correct=FALSE)$D

P_mean[,,j]=pairwise(m,MSD,k=j,n,alt="two.sided",correct=TRUE)$P

a=ord.pairwise(mm[j,],MSD[j],n,alt="two.sided",correct=TRUE)$P

b<-as.numeric(colnames(a))

P_gps[,,j]<-rbind(a,b)

}

pp1<-P_gps

for (i in 1:C){

for (j in 1:C){

for (k in 1:p){

if (pp1[i,j,k]>=alpha) pp1[i,j,k]=0

else pp1[i,j,k]=1

}}}

pp<-pp1

for (k in 1:p){

for (j in 1:C){

for (i in j:C){

pp[i,j,k]<-0

}}}

d<-matrix(0,p*2,C)

for (k in 1:p){
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d[2*k-1,]<-score.inv(pp[-(C+1),,k])

d[2*k,]<-pp[C+1,,k]

}

g<-matrix(0,p,C)

for(k in 1:p){

ii<-order(d[2*k,],d[2*k-1,])

g[k,]<-(d[2*k-1,])[ii]

}

e<-apply(g,2,sum)

alpha1<-alpha/choose(C,2)

ordmdist<-sort(mdist,decreasing=T) # si ordina rispetto alle distanze

l1<-ordmdist-qt(1-alpha1/2,n*C-C)*MSDdist

l2<-ordmdist+qt(1-alpha1/2,n*C-C)*MSDdist

for(i in 1:(C-1)){

for(j in (i+1):C){

if ((l2[j]<l2[i])&(l2[j]>l1[i])) {D_1[i,j]=0}

else {D_1[i,j]=1}

}

}

D_1[C+1,]<-as.numeric(names(ordmdist))

d_int<-matrix(0,2,C)

d_int[1,]<-score.inv(D_1[-(C+1),])

d_int[2,]<-D_1[C+1,]

g_int<-double(C)

ii<-order(d_int[2,],d_int[1,])

g_int<-(d_int[1,])[ii]

D_mean<-apply(ifelse(P_mean<alpha,sign(D)*1,0),c(1,3),sum)

Sc_mean[cc,,]<-D_mean # da utilizzare se si vuole il punteggio originale



APPENDIX A. R CODES USED FOR THE ANALYSES 72

Grad_mean[,cc]<-rank(apply(Sc_mean[cc,,],1,sum),ties.method = "max")

Grad_gps[,cc]<-rank(e,ties.method = "max")

Sc[cc,,]<-apply(P,c(1,3),function(x){-2*sum(log(x))})

lambda<-apply(Sc[cc,,],1,sum)

Grad[,cc]<-rank(lambda,ties.method = "max") #graduatoria finale secondo Fisher

mmm<-apply(m,1,mean)

Grad_0[,cc]<-rank(mmm,ties.method = "max")

Grad_1[,cc]<-rank(-g_int,ties.method = "max")

SP_0[cc,]<-cor.test(Grad_0[,cc],seq(C,1),method = "spearman")$estimate

SP_1[cc,]<-cor.test(Grad_1[,cc],seq(C,1),method = "spearman")$estimate

SP[cc,]<-cor.test(Grad[,cc],seq(C,1),method = "spearman")$estimate

SP_mean[cc,]<-cor.test(Grad_mean[,cc],seq(C,1),method = "spearman")$estimate

SP_gps[cc,]<-cor.test(Grad_gps[,cc],seq(C,1),method = "spearman")$estimate

} #fine generazione dei dati

truth<-matrix(rep(seq(C,1),B),ncol=B,byrow=FALSE)

t0<-table(truth,Grad_0)

t00<-table(truth,Grad_1)

t1<-table(truth,Grad)

t2<-table(truth,Grad_mean)

t3<-table(truth,Grad_gps)

SP0<-table(SP_0[SP_0>0.9999])/B

SP00<-table(SP_1[SP_1>0.9999])/B

SP1<-table(SP[SP>0.9999])/B

SP2<-table(SP_mean[SP_mean>0.9999])/B

SP3<-table(SP_gps[SP_gps>0.9999])/B

t<-list(t0,t00,t1,t2,t3,SP0,SP00,SP1,SP2,SP3)

names(t)<-c("0","1","NPC","Media","GPS","Sp0","Sp1","SpNPC","SpMedia","SpGPS")

t

}
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# Simulazioni:

set.seed(123)

a<-simula.settings(mu=mu3b,sigma=S1b,n=4)

write.table(a$"0","a5.txt",sep="\t",row.names=F,col.names=F)

write.table(a$"1","a6.txt",sep="\t",row.names=F,col.names=F)

write.table(a$NPC,"a1.txt",sep="\t",row.names=F,col.names=F)

write.table(a$Media,"a2.txt",sep="\t",row.names=F,col.names=F)

write.table(a$GPS,"a3.txt",sep="\t",row.names=F,col.names=F)

write.table(c(a$Sp0,a$Sp1,a$SpNPC,a$SpMedia,a$SpGPS),"a4.txt",sep="\t",

row.names=F,col.names=F)

set.seed(123)

b<-simula.settings(mu=mu3b,sigma=S1b,n=8)

write.table(b$"0","b5.txt",sep="\t",row.names=F,col.names=F)

write.table(b$"1","b6.txt",sep="\t",row.names=F,col.names=F)

write.table(b$NPC,"b1.txt",sep="\t",row.names=F,col.names=F)

write.table(b$Media,"b2.txt",sep="\t",row.names=F,col.names=F)

write.table(b$GPS,"b3.txt",sep="\t",row.names=F,col.names=F)

write.table(c(b$Sp0,b$Sp1,b$SpNPC,b$SpMedia,b$SpGPS),"b4.txt",sep="\t",

row.names=F,col.names=F)

set.seed(123)

c<-simula.settings(mu=mu5b,sigma=S1b,n=4)

write.table(c$"0","c5.txt",sep="\t",row.names=F,col.names=F)

write.table(c$"1","c6.txt",sep="\t",row.names=F,col.names=F)

write.table(c$NPC,"c1.txt",sep="\t",row.names=F,col.names=F)

write.table(c$Media,"c2.txt",sep="\t",row.names=F,col.names=F)

write.table(c$GPS,"c3.txt",sep="\t",row.names=F,col.names=F)

write.table(c(c$Sp0,c$Sp1,c$SpNPC,c$SpMedia,c$SpGPS),"c4.txt",sep="\t",

row.names=F,col.names=F)

...

(108 different simulations, therefore other 105)
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A.2 R code used for the second simulation

study

library(mnormt)

library(sn)

source("pairwise_beta.r")

source("pairwise_gamma.txt")

source("score.r")

dati<-read.table("Dataset.txt",header=T,row.names=1)

dati1<-matrix(0,96,27)

dati1<-as.data.frame(dati1)

dati1[,1:2]<-dati[1:96,1:2]

for (i in 1:25){

dati1[,i+2]<-dati[(96*i-95):(96*i),5]

}

colnames(dati1)<-c(c("Product","Type"),

c("CFT-RB-001","CFT-RB-009","CFT-RB-005","CFT-RB-006","CFT-RB-007",

"CFT-RB-008","WFK-10J","CFT-CH022","CFT-CH021","WFK-10K","CFT-CS-15",

"WFK-10D","WFK-10Z","CFT-CS-01","Empa-143","WFK-20D","WFK-10LI",

"Empa-141","WFK-10GM","WFK-10C","empa-164","CFT-CS-28","Empa-111",

"Empa-112","CFT-CS-120"))

dati<-dati1

set25_123<-seq(1:25)

set19_12<-set25_123[-c(1:6)]

set14_1<-set25_123[-c(1:6,8,9,19,22,25)]

set5_1gd<-c(12,15,16,18,20)

set5_1b<-c(7,10,11,17,21)

set4_1e<-c(13,14,23,24)

dat1=dati[,c(1:2,set25_123+2)]

dat2=dati[,c(1:2,set19_12+2)]
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dat3=dati[,c(1:2,set14_1+2)]

dat4=dati[,c(1:2,set5_1gd+2)]

dat5=dati[,c(1:2,set5_1b+2)]

dat6=dati[,c(1:2,set4_1e+2)]

simula2.settings<-function(C=4,n=4,setting=dat1,alpha=0.05,B=1000){

p=dim(setting)[2]-2 # n∘ variabili

if (C==4) kk<-24

if (C==8) kk<-12

Sc<-array(0,dim=c(B,C,p))

Sc_mean<-array(0,dim=c(B,C,p))

Grad_mean<-array(0,dim=c(C,B)) # matriciona di risultati per la media

Grad<-array(0,dim=c(C,B)) # matriciona di risultati per NPC rank

Grad_gps<-array(0,dim=c(C,B)) # matriciona di risultati per GPS

Score_mean<-array(0,dim=c(C,B))

Score<-array(0,dim=c(C,B))

Score_gps<-array(0,dim=c(C,B))

SP<-array(0,dim=c(B,1)) #vettore di indici di Spearman per NCP rank

SP_mean<-array(0,dim=c(B,1)) #vettore di indici di Spearman per media

SP_gps<-array(0,dim=c(B,1)) # vettore di indici di Spearman per GPS

for(cc in 1:B){

X<-array(0,dim=c(n,p,C))

X<-matrix(X,ncol=p,byrow=FALSE)

X<-as.data.frame(X)

s<-sample(1:kk,n)

for (i in 1:n){

for (k in 1:C){

X[n*(k-1)+i,]<-setting[(k-1)*kk+s[i],3:(p+2)]
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}

}

colnames(X)<-colnames(setting)[3:(p+2)]

label<-double(n*C)

for (i in 1:C){

label[((i-1)*n+1):(n*i)]<-rep(i,n)

}

X<- data.frame(label,X)

m<-array(0,dim=c(C,p))

for(j in 1:p){

for(i in 1:C){

m[i,j]<-mean(X[label==i,(j+1)])

}

}

P<-array(1,dim=c(C,C,p))

D<-array(0,dim=c(C,C,p))

MSD<-array(0,dim=c(p,1))

P_mean<-array(1,dim=c(C,C,p))

P_gps<-array(1,dim=c(C+1,C,p))

D_mean<-array(0,dim=c(C,C,p))

for(j in 1:p){

MSD[j]<-unlist(summary(aov(X[,(j+1)]˜as.factor(X$label),data=X)))[6]

}

MSD<-sqrt(MSD)

mm<-t(m)

colnames(mm)<-seq(1:C)

for(j in 1:p){
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P[,,j]=pairwise(m,MSD,k=j,n,alt="greater",correct=FALSE)$P

D[,,j]=pairwise(m,MSD,k=j,n,alt="greater",correct=FALSE)$D

P_mean[,,j]=pairwise(m,MSD,k=j,n,alt="two.sided",correct=TRUE)$P

a=ord.pairwise(mm[j,],MSD[j],n,alt="two.sided",correct=TRUE)$P

b<-as.numeric(colnames(a))

P_gps[,,j]<-rbind(a,b)

}

pp1<-P_gps

for (i in 1:C){

for (j in 1:C){

for (k in 1:p){

if (pp1[i,j,k]>=alpha) pp1[i,j,k]=0

else pp1[i,j,k]=1

}}}

pp<-pp1

for (k in 1:p){

for (j in 1:C){

for (i in j:C){

pp[i,j,k]<-0

}}}

d<-matrix(0,p*2,C)

for (k in 1:p){

d[2*k-1,]<-score.inv(pp[-(C+1),,k])

d[2*k,]<-pp[C+1,,k]

}

g<-matrix(0,p,C)

for(k in 1:p){

ii<-order(d[2*k,],d[2*k-1,])

g[k,]<-(d[2*k-1,])[ii]

}

e<-apply(g,2,sum)
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D_mean<-apply(ifelse(P_mean<alpha,sign(D)*1,0),c(1,3),sum)

Sc_mean[cc,,]<-D_mean

lam<-apply(Sc_mean[cc,,],1,sum)

Score_mean[,cc]<-lam

Grad_mean[,cc]<-rank(lam,ties.method = "max")

Score_gps[,cc]<-e

Grad_gps[,cc]<-rank(e,ties.method = "max")

Sc[cc,,]<-apply(P,c(1,3),function(x){-2*sum(log(x))})

lambda<-apply(Sc[cc,,],1,sum)

Score[,cc]<-lambda

Grad[,cc]<-rank(lambda,ties.method = "max") #graduatoria finale secondo Fisher

if (C==4) SP[cc,]<-cor.test(Grad[,cc],seq(C,1),

method = "spearman")$estimate

if (C==8) SP[cc,]<-cor.test(Grad[,cc],c(8,8,6,6,4,4,2,2),

method = "spearman")$estimate

if (C==4) SP_mean[cc,]<-cor.test(Grad_mean[,cc],seq(C,1),

method = "spearman")$estimate

if (C==8) SP_mean[cc,]<-cor.test(Grad_mean[,cc],c(8,8,6,6,4,4,2,2),

method = "spearman")$estimate

if (C==4) SP_gps[cc,]<-cor.test(Grad_gps[,cc],seq(C,1),

method = "spearman")$estimate

if (C==8) SP_gps[cc,]<-cor.test(Grad_gps[,cc],c(8,8,6,6,4,4,2,2),

method = "spearman")$estimate

} #fine generazione dei dati

if (C==4) truth<-matrix(rep(seq(C,1),B),ncol=B,byrow=FALSE)

if (C==8) truth<-matrix(rep(c("8A","8B","6A","6B","4A","4B","2A","2B"),B),

ncol=B,byrow=FALSE)

t1<-table(truth,Grad)
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t2<-table(truth,Grad_mean)

t3<-table(truth,Grad_gps)

SP1<-table(SP[SP>0.9999])/B

SP2<-table(SP_mean[SP_mean>0.9999])/B

SP3<-table(SP_gps[SP_gps>0.9999])/B

SP11<-c(mean(SP,na.rm=T),B-sum(table(SP)))

SP22<-c(mean(SP_mean,na.rm=T),B-sum(table(SP_mean)))

SP33<-c(mean(SP_gps,na.rm=T),B-sum(table(SP_gps)))

Int1<-matrix(0,C,3)

Int1<-as.data.frame(Int1)

colnames(Int1)<-c("q 0.025","q 0.975","scarto")

rownames(Int1)<-1:C

for (i in 1:C){

Int1[i,1]<-quantile(Grad[i,],0.025)

Int1[i,2]<-quantile(Grad[i,],0.975)

Int1[i,3]<-Int1[i,2]-Int1[i,1]

}

Int2<-matrix(0,C,3)

Int2<-as.data.frame(Int2)

colnames(Int2)<-c("q 0.025","q 0.975","scarto")

rownames(Int2)<-1:C

for (i in 1:C){

Int2[i,1]<-quantile(Grad_mean[i,],0.025)

Int2[i,2]<-quantile(Grad_mean[i,],0.975)

Int2[i,3]<-Int2[i,2]-Int2[i,1]

}

Int3<-matrix(0,C,3)

Int3<-as.data.frame(Int3)

colnames(Int3)<-c("q 0.025","q 0.975","scarto")

rownames(Int3)<-1:C

for (i in 1:C){
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Int3[i,1]<-quantile(Grad_gps[i,],0.025)

Int3[i,2]<-quantile(Grad_gps[i,],0.975)

Int3[i,3]<-Int3[i,2]-Int3[i,1]

}

Int11<-matrix(0,C,3)

Int11<-as.data.frame(Int11)

colnames(Int11)<-c("q 0.025","q 0.975","scarto")

rownames(Int11)<-1:C

for (i in 1:C){

Int11[i,1]<-quantile(Score[i,],0.025)

Int11[i,2]<-quantile(Score[i,],0.975)

Int11[i,3]<-Int11[i,2]-Int11[i,1]

}

Int22<-matrix(0,C,3)

Int22<-as.data.frame(Int22)

colnames(Int22)<-c("q 0.025","q 0.975","scarto")

rownames(Int22)<-1:C

for (i in 1:C){

Int22[i,1]<-quantile(Score_mean[i,],0.025)

Int22[i,2]<-quantile(Score_mean[i,],0.975)

Int22[i,3]<-Int22[i,2]-Int22[i,1]

}

Int33<-matrix(0,C,3)

Int33<-as.data.frame(Int33)

colnames(Int33)<-c("q 0.025","q 0.975","scarto")

rownames(Int33)<-1:C

for (i in 1:C){

Int33[i,1]<-quantile(Score_gps[i,],0.025)

Int33[i,2]<-quantile(Score_gps[i,],0.975)

Int33[i,3]<-Int33[i,2]-Int33[i,1]

}
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t<-list(t1,t2,t3,SP1,SP2,SP3,SP11,SP22,SP33,Int1,Int2,Int3,Int11,Int22,Int33)

names(t)<-c("NPC","Media","GPS","SpNPC","SpMedia","SpGPS","SpmNPC","SpmMedia",

"SpmGPS","IntNPC","IntMedia","IntGPS","IntsNPC","IntsMedia","IntsGPS")

t

}

# Simulazioni:

set.seed(123)

a<-simula2.settings(C=4,n=4,setting=dat1)

write.table(a$NPC,"a1.txt",sep="\t",row.names=F,col.names=F)

write.table(a$Media,"a2.txt",sep="\t",row.names=F,col.names=F)

write.table(a$GPS,"a3.txt",sep="\t",row.names=F,col.names=F)

write.table(c(a$SpNPC,a$SpMedia,a$SpGPS),"a4.txt",sep="\t",row.names=F,

col.names=F)

write.table(a$IntNPC,"a5.txt",sep="\t",row.names=F,col.names=F)

write.table(a$IntMedia,"a6.txt",sep="\t",row.names=F,col.names=F)

write.table(a$IntGPS,"a7.txt",sep="\t",row.names=F,col.names=F)

write.table(c(a$SpmNPC,a$SpmMedia,a$SpmGPS),"a8.txt",sep="\t",row.names=F,

col.names=F)

write.table(a$IntsNPC,"a9.txt",sep="\t",row.names=F,col.names=F)

write.table(a$IntsMedia,"a10.txt",sep="\t",row.names=F,col.names=F)

write.table(a$IntsGPS,"a11.txt",sep="\t",row.names=F,col.names=F)

set.seed(123)

b<-simula2.settings(C=4,n=8,setting=dat1)

write.table(b$NPC,"b1.txt",sep="\t",row.names=F,col.names=F)

write.table(b$Media,"b2.txt",sep="\t",row.names=F,col.names=F)

write.table(b$GPS,"b3.txt",sep="\t",row.names=F,col.names=F)

write.table(c(b$SpNPC,b$SpMedia,b$SpGPS),"b4.txt",sep="\t",row.names=F,

col.names=F)

write.table(b$IntNPC,"b5.txt",sep="\t",row.names=F,col.names=F)
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write.table(b$IntMedia,"b6.txt",sep="\t",row.names=F,col.names=F)

write.table(b$IntGPS,"b7.txt",sep="\t",row.names=F,col.names=F)

write.table(c(b$SpmNPC,b$SpmMedia,b$SpmGPS),"b8.txt",sep="\t",row.names=F,

col.names=F)

write.table(b$IntsNPC,"b9.txt",sep="\t",row.names=F,col.names=F)

write.table(b$IntsMedia,"b10.txt",sep="\t",row.names=F,col.names=F)

write.table(b$IntsGPS,"b11.txt",sep="\t",row.names=F,col.names=F)

set.seed(123)

c<-simula2.settings(C=4,n=12,setting=dat1)

write.table(c$NPC,"c1.txt",sep="\t",row.names=F,col.names=F)

write.table(c$Media,"c2.txt",sep="\t",row.names=F,col.names=F)

write.table(c$GPS,"c3.txt",sep="\t",row.names=F,col.names=F)

write.table(c(c$SpNPC,c$SpMedia,c$SpGPS),"c4.txt",sep="\t",row.names=F,

col.names=F)

write.table(c$IntNPC,"c5.txt",sep="\t",row.names=F,col.names=F)

write.table(c$IntMedia,"c6.txt",sep="\t",row.names=F,col.names=F)

write.table(c$IntGPS,"c7.txt",sep="\t",row.names=F,col.names=F)

write.table(c(c$SpmNPC,c$SpmMedia,c$SpmGPS),"c8.txt",sep="\t",row.names=F,

col.names=F)

write.table(c$IntsNPC,"c9.txt",sep="\t",row.names=F,col.names=F)

write.table(c$IntsMedia,"c10.txt",sep="\t",row.names=F,col.names=F)

write.table(c$IntsGPS,"c11.txt",sep="\t",row.names=F,col.names=F)

...

(42 different simulations, therefore other 39)

A.3 R code used for the third simulation study

library(mnormt)

library(mvtnorm)

source("pairwise_beta.r")

source("pairwise_gamma.txt")
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source("score.r")

mu10<-read.csv("mu10.csv",header=FALSE)

mu10<-matrix(unlist(mu10),ncol=6) # medie delle 6 variabili con 10 trattamenti

S2<-read.csv("sigma.csv",header=FALSE)

S2<-matrix(unlist(S2),ncol=6) # sigma etero-indip (6 variabili)

S1<-matrix(c(rep(c(1,rep(0,6)),5),1),ncol=6) # sigma omo-indip (6 variabili)

S3<-read.table("sigma3.txt",header=FALSE)

S3<-matrix(unlist(S3),ncol=6) # sigma omo-dip (6 variabili)

mu10b<-mu10[,1:3] # medie delle 3 variabili con 10 trattamenti

S1b<-S1[1:3,1:3] # sigma omo-indip (3 variabili)

S2b<-S2[1:3,1:3] # sigma etero-indip (3 variabili)

S3b<-S3[1:3,1:3] # sigma omo-dip (3 variabili)

mu5<-mu10[3:7,] # medie delle 6 variabili con 5 trattamenti

mu5b<-mu10b[3:7,] # medie delle 3 variabili con 5 trattamenti

simula3.settings<-function(mu=mu10,sigma=S1,distr=c("norm","t2"),n=8,

alpha=0.05,B=1000){

C=dim(mu)[1] #n∘ trattamenti

p=dim(mu)[2] #n,∘ variabili

Sc<-array(0,dim=c(B,C,p))

Sc_mean<-array(0,dim=c(B,C,p))

Score_mean<-array(0,dim=c(C,B,33)) # matriciona di risultati per la media

Grad_mean<-array(0,dim=c(C,B))

Score<-array(0,dim=c(C,B,33)) # matriciona di risultati per NPC rank

Grad<-array(0,dim=c(C,B))

Score_gps<-array(0,dim=c(C,B,33)) # matriciona di risultati per GPS

Grad_gps<-array(0,dim=c(C,B))

SP<-array(0,dim=c(B,1,33)) #vettore di indici di Spearman per NCP rank

SP_mean<-array(0,dim=c(B,1,33)) #vettore di indici di Spearman per media
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SP_gps<-array(0,dim=c(B,1,33)) # vettore di indici di Spearman per GPS

for(cc in 1:B){

X<-array(0,dim=c(C,p,n)) # inizializza la matrice di dati

for(i in 1:C){

if (distr=="norm") X[i,,]<-rmvnorm(n,mean=mu[i,],sigma=sigma)

if (distr=="t2") X[i,,]<-rmvt(n, sigma = sigma, df = 2)+mu[i,]

}

X<-matrix(X,ncol=p,byrow=FALSE)

label<-rep(seq(1,C),n)

X<- data.frame(label,X)

m<-array(0,dim=c(C,p))

for(j in 1:p){

for(i in 1:C){

m[i,j]<-mean(X[label==i,(j+1)])

}

}

P<-array(1,dim=c(C,C,p))

D<-array(0,dim=c(C,C,p))

MSD<-array(0,dim=c(p,1))

P_mean<-array(1,dim=c(C,C,p))

P_gps<-array(1,dim=c(C+1,C,p))

D_mean<-array(0,dim=c(C,C,p))

for(j in 1:p){

MSD[j]<-unlist(summary(aov(X[,(j+1)]˜as.factor(X$label),data=X)))[6]

}

MSD<-sqrt(MSD)

mm<-t(m)

colnames(mm)<-seq(1:C)
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for(j in 1:p){

P[,,j]=pairwise(m,MSD,k=j,n,alt="greater",correct=FALSE)$P

D[,,j]=pairwise(m,MSD,k=j,n,alt="greater",correct=FALSE)$D

P_mean[,,j]=pairwise(m,MSD,k=j,n,alt="two.sided",correct=TRUE)$P

a=ord.pairwise(mm[j,],MSD[j],n,alt="two.sided",correct=TRUE)$P

b<-as.numeric(colnames(a))

P_gps[,,j]<-rbind(a,b)

}

pp1<-P_gps

for (i in 1:C){

for (j in 1:C){

for (k in 1:p){

if (pp1[i,j,k]>=alpha) pp1[i,j,k]=0

else pp1[i,j,k]=1

}}}

pp<-pp1

for (k in 1:p){

for (j in 1:C){

for (i in j:C){

pp[i,j,k]<-0

}}}

d<-matrix(0,p*2,C) # Fase di pre-aggregazione per GPS

for (k in 1:p){

d[2*k-1,]<-score.inv(pp[-(C+1),,k])

d[2*k,]<-pp[C+1,,k]

}

g<-matrix(0,p,C)

for(k in 1:p){

ii<-order(d[2*k,],d[2*k-1,])

g[k,]<-(d[2*k-1,])[ii]
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}

# Fase dell’aggregazione per GPS

e1<-apply(g,2,mean) # Media aritmetica

e2<-apply(g,2,function(x){prod(x)ˆ(1/p)}) # Media geometrica

e3<-apply(g,2,function(x){-2*sum(log(x))}) # Fisher

# Fase della normalizzazione per GPS

e1a<-e1/1 # std della media aritmetica col minimo teorico

e1a<-(e1a-1)/(C-1)

e1b<-e1/min(e1) # std della media aritmetica col minimo campionario

if ((max(e1b)-min(e1b))!=0) e1b<-(e1b-min(e1b))/(max(e1b)-min(e1b))

if ((max(e1b)-min(e1b))==0) e1b<-rep(0,C)

e1c<-e1/C # std della media aritmetica col massimo teorico

e1c<-(e1c-1/C)/(1-1/C)

e1d<-e1/max(e1) # std della media aritmetica col massimo campionario

if ((max(e1d)-min(e1d))!=0) e1d<-(e1d-min(e1d))/(max(e1d)-min(e1d))

if ((max(e1d)-min(e1d))==0) e1d<-rep(0,C)

e1_<-e1 # media aritmetica non standardizzata

e1_<-e1a

if (sd(e1)!=0) {e1e<-(e1-mean(e1))/sd(e1)

e1e<-(e1e-min(e1e))/(max(e1e)-min(e1e))}

if (sd(e1)==0) e1e<-e1_ # std della media aritmetica con media 0 e var 1

e1f<-1/e1 # std della media aritmetica con il suo reciproco (INVERSIONE!)

e1f<-(e1f-1/C)/(1-1/C)

e1g<-(e1-1)/(C-1)

if ((max(e1)-min(e1))!=0) e1h<-(e1-min(e1))/(max(e1)-min(e1))

if ((max(e1)-min(e1))==0) e1h<-rep(0,C)

e1i<-(C-e1)/(C-1) # (INVERSIONE!)

e1i<-e1i

if ((max(e1)-min(e1))!=0) {e1j<-(max(e1)-e1)/(max(e1)-min(e1));e1j<-e1j}
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if ((max(e1)-min(e1))==0) e1j<-rep(0,C)

e2a<-e2/1

e2a<-(e2a-1)/(C-1)

e2b<-e2/min(e2)

if ((max(e2b)-min(e2b))!=0) e2b<-(e2b-min(e2b))/(max(e2b)-min(e2b))

if ((max(e2b)-min(e2b))==0) e2b<-rep(0,C)

e2c<-e2/C

e2c<-(e2c-1/C)/(1-1/C)

e2d<-e2/max(e2)

if ((max(e2d)-min(e2d))!=0) e2d<-(e2d-min(e2d))/(max(e2d)-min(e2d))

if ((max(e2d)-min(e2d))==0) e2d<-rep(0,C)

e2_<-e2

e2_<-e2a

if (sd(e2)!=0) {e2e<-(e2-mean(e2))/sd(e2)

e2e<-(e2e-min(e2e))/(max(e2e)-min(e2e))}

if (sd(e2)==0) e2e<-e2_ # std della media aritmetica con media 0 e var 1

e2f<-1/e2 # (INVERSIONE!)

e2f<-(e2f-1/C)/(1-1/C)

e2g<-(e2-1)/(C-1)

if ((max(e2)-min(e2))!=0) e2h<-(e2-min(e2))/(max(e2)-min(e2))

if ((max(e2)-min(e2))==0) e2h<-rep(0,C)

e2i<-(C-e2)/(C-1) # (INVERSIONE!)

e2i<-e2i

if ((max(e2)-min(e2))!=0) {e2j<-(max(e2)-e2)/(max(e2)-min(e2));e2j<-e2j}

if ((max(e2)-min(e2))==0) e2j<-rep(0,C)

e3a<-e3/(-2*p*log(C))

e3b<-e3/min(e3-0.01)

e3c<-e3/-0.01 # Accorgimento per l’applicabilità

e3c<-e3c/(2*p*log(C)/0.01)

e3d<-e3/(max(e3)-0.01) # Accorgimento per l’applicabilità

e3d<-e3d/(-2*p*log(C)/(max(e3)-0.01))
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e3_<-e3 # (INVERSIONE!)

e3_<-e3a

if (sd(e3)!=0) {e3e<-(e3-mean(e3))/sd(e3)

e3e<-(e3e-min(e3e))/(max(e3e)-min(e3e))}

if (sd(e3)==0) e3e<-e3_ # std della media aritmetica con media 0 e var 1

e3f<-1/(e3-0.01) # Accorgimento per l’applicabilità

e3f<-(e3f+1/0.01)/((2*p*log(C))/(2*p*log(C)+0.01)+1/0.01)

e3g<-(e3-(-2*p*log(C)))/(0-(-2*p*log(C))) # (INVERSIONE!)

e3g<-e3g

if ((max(e3)-min(e3))!=0) {e3h<-(e3-min(e3))/(max(e3)-min(e3));e3h<-e3h}

if ((max(e3)-min(e3))==0) e3h<-rep(0,C)

e3i<-(0-e3)/(0-(-2*p*log(C)))

if ((max(e3)-min(e3))!=0) e3j<-(max(e3)-e3)/(max(e3)-min(e3))

if ((max(e3)-min(e3))==0) e3j<-rep(0,C)

# Classifica punteggio GPS

M3<-matrix(0,33,3+C*3)

M3<-as.data.frame(M3)

if (C==5) colnames(M3)<-c("#(rho=1)","rhom","NA","q0.025 1","q0.975 1",

"diff 1","q0.025 2","q0.975 2","diff 2","q0.025 3","q0.975 3","diff 3",

"q0.025 4","q0.975 4","diff 4","q0.025 5","q0.975 5","diff 5")

if (C==10) colnames(M3)<-c("#(rho=1)","rhom","NA","q0.025 1","q0.975 1",

"diff 1","q0.025 2","q0.975 2","diff 2","q0.025 3","q0.975 3","diff 3",

"q0.025 4","q0.975 4","diff 4","q0.025 5","q0.975 5","diff 5","q0.025 6",

"q0.975 6","diff 6","q0.025 7","q0.975 7","diff 7","q0.025 8","q0.975 8",

"diff 8","q0.025 9","q0.975 9","diff 9","q0.025 10","q0.975 10","diff 10")

M33<-matrix(0,33,C)

cn1<-c("rank 1","rank 2","rank 3","rank 4","rank 5")

cn2<-c("rank 1","rank 2","rank 3","rank 4","rank 5","rank 6","rank 7",

"rank 8","rank 9","rank 10")

if (C==5) colnames(M33)<-cn1
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if (C==10) colnames(M33)<-cn2

M333<-matrix(0,33,C)

cn11<-c("mean 1","mean 2","mean 3","mean 4","mean 5")

cn22<-c("mean 1","mean 2","mean 3","mean 4","mean 5","mean 6","mean 7",

"mean 8","mean 9","mean 10")

if (C==5) colnames(M333)<-cn11

if (C==10) colnames(M333)<-cn22

eee<-matrix(0,33,C)

eee[1,]<-e1a

eee[2,]<-e2a

eee[3,]<-e3a

eee[4,]<-e1b

eee[5,]<-e2b

eee[6,]<-e3b

eee[7,]<-e1c

eee[8,]<-e2c

eee[9,]<-e3c

eee[10,]<-e1d

eee[11,]<-e2d

eee[12,]<-e3d

eee[13,]<-e1_

eee[14,]<-e2_

eee[15,]<-e3_ # INVERSIONE!

eee[16,]<-e1e

eee[17,]<-e2e

eee[18,]<-1-e3e # INVERSIONE!

eee[19,]<-1-e1f # INVERSIONE!

eee[20,]<-1-e2f # INVERSIONE!

eee[21,]<-e3f

eee[22,]<-e1g

eee[23,]<-e2g
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eee[24,]<-1-e3g # INVERSIONE!

eee[25,]<-e1h

eee[26,]<-e2h

eee[27,]<-1-e3h # INVERSIONE!

eee[28,]<-1-e1i # INVERSIONE!

eee[29,]<-1-e2i # INVERSIONE!

eee[30,]<-e3i

eee[31,]<-1-e1j # INVERSIONE!

eee[32,]<-1-e2j # INVERSIONE!

eee[33,]<-e3j

for (i in c(1:33)){

Score_gps[,cc,i]<-rank(eee[i,],ties.method = "max")

SP_gps[cc,,i]<-cor.test(Score_gps[,cc,i],seq(C,1),method = "spearman")$estimate

if (length(table(SP_gps[,,i][SP_gps[,,i]>0.9999]))>0)

{M3[i,1]<-table(SP_gps[,,i][SP_gps[,,i]>0.9999])/B}

else {M3[i,1]<-0}

M3[i,2]<-mean(SP_gps[,,i],na.rm=T)

M3[i,3]<-B-sum(table(SP_gps[,,i]))

Score_gps[,cc,i]<-eee[i,]

for (j in 1:C){

M3[i,j*3+1]<-quantile(Score_gps[j,,i],0.025)

M3[i,j*3+2]<-quantile(Score_gps[j,,i],0.975)

M3[i,j*3+3]<-M3[i,j*3+2]-M3[i,j*3+1]

}

}

for (i in c(1:33)){

for (j in 1:C){

M333[i,j]<-mean(Score_gps[j,,i])

}

M33[i,]<-rank(M333[i,],ties.method="max")

}
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# Fase di pre-aggregazione e pre-normalizzazione

D_mean<-apply(ifelse(P_mean<alpha,sign(D)*1,0),c(1,3),sum)

Sc_mean[cc,,]<-D_mean

Sc_mean[cc,,]<-D_mean+(C-1)

Sc_mean[cc,,]<-Sc_mean[cc,,]/(2*(C-1))

for (i in 1:C) {

for (j in 1:p) {

if (Sc_mean[cc,i,j]==0) Sc_mean[cc,i,j]<-Sc_mean[cc,i,j]+0.0000000001

}

}

# Fase dell’aggregazione per Media

e1<-apply(Sc_mean[cc,,],1,mean) # Media aritmetica

e2<-apply(Sc_mean[cc,,],1,function(x){prod(x)ˆ(1/p)}) # Media geometrica

e3<-apply(Sc_mean[cc,,],1,function(x){-2*sum(log(x))}) # Fisher

# Fase della normalizzazione per Media

e1a<-e1/0.0000000001 # std della media aritmetica col minimo teorico

e1a<-(e1a-1)/(1/0.0000000001-1)

e1b<-e1/min(e1) # std della media aritmetica col minimo campionario

if ((max(e1b)-min(e1b))!=0) e1b<-(e1b-min(e1b))/(max(e1b)-min(e1b))

if ((max(e1b)-min(e1b))==0) e1b<-rep(0,C)

e1c<-e1/1 # std della media aritmetica col massimo teorico

e1c<-(e1c-0.0000000001)/0.9999999999

e1d<-e1/max(e1) # std della media aritmetica col massimo campionario

if ((max(e1d)-min(e1d))!=0) e1d<-(e1d-min(e1d))/(max(e1d)-min(e1d))

if ((max(e1d)-min(e1d))==0) e1d<-rep(0,C)

e1_<-e1 # media aritmetica non standardizzata

e1_<-e1c

if (sd(e1)!=0) {e1e<-(e1-mean(e1))/sd(e1)
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e1e<-(e1e-min(e1e))/(max(e1e)-min(e1e))}

if (sd(e1)==0) e1e<-e1 # std della media aritmetica con media 0 e var 1

e1f<-1/e1 # std della media aritmetica con il suo reciproco (INVERSIONE!)

e1f<-(e1f-1)/(1/0.0000000001-1)

e1g<-(e1-0.0000000001)/0.9999999999

if ((max(e1)-min(e1))!=0) e1h<-(e1-min(e1))/(max(e1)-min(e1))

if ((max(e1)-min(e1))==0) e1h<-rep(0,C)

e1i<-(1-e1)/0.9999999999 # (INVERSIONE!)

if ((max(e1)-min(e1))!=0) e1j<-(max(e1)-e1)/(max(e1)-min(e1)) # (INVERSIONE!)

if ((max(e1)-min(e1))==0) e1j<-rep(0,C)

e2a<-e2/0.0000000001 # std della media aritmetica col minimo teorico

e2a<-(e2a-1)/(1/0.0000000001-1)

e2b<-e2/min(e2) # std della media aritmetica col minimo campionario

if ((max(e2b)-min(e2b))!=0) e2b<-(e2b-min(e2b))/(max(e2b)-min(e2b))

if ((max(e2b)-min(e2b))==0) e2b<-rep(0,C)

e2c<-e2/1 # std della media aritmetica col massimo teorico

e2c<-(e2c-0.0000000001)/0.9999999999

e2d<-e2/max(e2) # std della media aritmetica col massimo campionario

if ((max(e2d)-min(e2d))!=0) e2d<-(e2d-min(e2d))/(max(e2d)-min(e2d))

if ((max(e2d)-min(e2d))==0) e2d<-rep(0,C)

e2_<-e2 # media aritmetica non standardizzata

e2_<-e2c

if (sd(e2)!=0) {e2e<-(e2-mean(e2))/sd(e2)

e2e<-(e2e-min(e2e))/(max(e2e)-min(e2e))}

if (sd(e2)==0) e2e<-e2 # std della media aritmetica con media 0 e var 1

e2f<-1/e2 # std della media aritmetica con il suo reciproco (INVERSIONE!)

e2f<-(e2f-1)/(1/0.0000000001-1)

e2g<-(e2-0.0000000001)/0.9999999999

if ((max(e2)-min(e2))!=0) e2h<-(e2-min(e2))/(max(e2)-min(e2))

if ((max(e2)-min(e2))==0) e2h<-rep(0,C)

e2i<-(1-e2)/0.9999999999 # (INVERSIONE!)
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if ((max(e2)-min(e2))!=0) e2j<-(max(e2)-e2)/(max(e2)-min(e2)) # (INVERSIONE!)

if ((max(e2)-min(e2))==0) e2j<-rep(0,C)

max=-2*p*log(0.0000000001)

min=0.0000000001

e3a<-e3/min # (INVERSIONE!)

e3a<-e3a/(max/min)

e3b<-e3/min(e3+min) # (INVERSIONE!)

if ((max(e3b)-min(e3b))!=0) e3b<-(e3b-min(e3b))/(max(e3b)-min(e3b))

if ((max(e3b)-min(e3b))==0) e3b<-rep(0,C)

e3c<-e3/max # (INVERSIONE!)

e3d<-e3/max(e3) # (INVERSIONE!)

if ((max(e3d)-min(e3d))!=0) e3d<-(e3d-min(e3d))/(max(e3d)-min(e3d))

if ((max(e3d)-min(e3d))==0) e3d<-rep(0,C)

e3_<-e3 # (INVERSIONE!)

e3_<-e3_/max

if (sd(e3)!=0) {e3e<-(e3-mean(e3))/sd(e3)

e3e<-(e3e-min(e3e))/(max(e3e)-min(e3e))}

if (sd(e3)==0) e3e<-e3_ # std della media aritmetica con media 0 e var 1

e3f<-1/(e3+0.0000000001)

e3f<-(e3f-1/max)/(1/min-1/max)

e3g<-e3c # (INVERSIONE!)

if ((max(e3)-min(e3))!=0) e3h<-(e3-min(e3))/(max(e3)-min(e3)) # (INVERSIONE!)

if ((max(e3)-min(e3))==0) e3h<-rep(0,C)

e3i<-(max-e3)/max

if ((max(e3)-min(e3))!=0) e3j<-(max(e3)-e3)/(max(e3)-min(e3))

if ((max(e3)-min(e3))==0) e3j<-rep(0,C)

# Classifica punteggio Media

M2<-matrix(0,33,3+C*3)

M2<-as.data.frame(M2)

if (C==5) colnames(M2)<-c("#(rho=1)","rhom","NA","q0.025 1","q0.975 1",
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"diff 1","q0.025 2","q0.975 2","diff 2","q0.025 3","q0.975 3","diff 3",

"q0.025 4","q0.975 4","diff 4","q0.025 5","q0.975 5","diff 5")

if (C==10) colnames(M2)<-c("#(rho=1)","rhom","NA","q0.025 1","q0.975 1",

"diff 1","q0.025 2","q0.975 2","diff 2","q0.025 3","q0.975 3","diff 3",

"q0.025 4","q0.975 4","diff 4","q0.025 5","q0.975 5","diff 5","q0.025 6",

"q0.975 6","diff 6","q0.025 7","q0.975 7","diff 7","q0.025 8","q0.975 8",

"diff 8","q0.025 9","q0.975 9","diff 9","q0.025 10","q0.975 10","diff 10")

M22<-matrix(0,33,C)

if (C==5) colnames(M22)<-cn1

if (C==10) colnames(M22)<-cn2

M222<-matrix(0,33,C)

if (C==5) colnames(M222)<-cn11

if (C==10) colnames(M222)<-cn22

eee<-matrix(0,33,C)

eee[1,]<-e1a

eee[2,]<-e2a

eee[3,]<-1-e3a # INVERSIONE!

eee[4,]<-e1b

eee[5,]<-e2b

eee[6,]<-1-e3b # INVERSIONE!

eee[7,]<-e1c

eee[8,]<-e2c

eee[9,]<-1-e3c # INVERSIONE!

eee[10,]<-e1d

eee[11,]<-e2d

eee[12,]<-1-e3d # INVERSIONE!

eee[13,]<-e1_

eee[14,]<-e2_

eee[15,]<-1-e3_ # INVERSIONE!

eee[16,]<-e1e

eee[17,]<-e2e
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eee[18,]<-1-e3e # INVERSIONE!

eee[19,]<-1-e1f # INVERSIONE!

eee[20,]<-1-e2f # INVERSIONE!

eee[21,]<-e3f

eee[22,]<-e1g

eee[23,]<-e2g

eee[24,]<-1-e3g # INVERSIONE!

eee[25,]<-e1h

eee[26,]<-e2h

eee[27,]<-1-e3h # INVERSIONE!

eee[28,]<-1-e1i # INVERSIONE!

eee[29,]<-1-e2i # INVERSIONE!

eee[30,]<-e3i

eee[31,]<-1-e1j # INVERSIONE!

eee[32,]<-1-e2j # INVERSIONE!

eee[33,]<-e3j

for (i in c(1:33)){

Score_mean[,cc,i]<-rank(eee[i,],ties.method = "max")

SP_mean[cc,,i]<-cor.test(Score_mean[,cc,i],seq(C,1),method = "spearman")

$estimate

if (length(table(SP_mean[,,i][SP_mean[,,i]>0.9999]))>0)

{M2[i,1]<-table(SP_mean[,,i][SP_mean[,,i]>0.9999])/B}

else {M2[i,1]<-0}

M2[i,2]<-mean(SP_mean[,,i],na.rm=T)

M2[i,3]<-B-sum(table(SP_mean[,,i]))

Score_mean[,cc,i]<-eee[i,]

for (j in 1:C){

M2[i,j*3+1]<-quantile(Score_mean[j,,i],0.025)

M2[i,j*3+2]<-quantile(Score_mean[j,,i],0.975)

M2[i,j*3+3]<-M2[i,j*3+2]-M2[i,j*3+1]

}
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}

for (i in c(1:33)){

for (j in 1:C){

M222[i,j]<-mean(Score_mean[j,,i])

}

M22[i,]<-rank(M222[i,],ties.method="max")

}

# Fase di pre-aggregazione per NPC

Sc[cc,,]<-apply(P,c(1,3),function(x){-2*sum(log(x+0.00000000000000000001))})

# Fase dell’aggregazione per NPC

e1<-apply(Sc[cc,,],1,mean) # Media aritmetica

e2<-apply(Sc[cc,,],1,function(x){prod(x)ˆ(1/p)}) # Media geometrica

e3<-apply(Sc[cc,,],1,function(x){-2*sum(log(x))}) # Fisher

# Fase della normalizzazione per NPC

mm<-(-2*C*log(1.0000000001))

max<-(-2*C*log(0.0000000001)) # Trucchetti per tentare comunque le std.

min<-(-2*C*log(max)) # Trucchetti per tentare comunque le std.

e1a<-e1/0.0000000001 # std della media aritmetica col minimo teorico

e1a<-(e1-mm/0.0000000001)/(max/0.0000000001-mm/0.0000000001)

e1b<-e1/min(e1) # std della media aritmetica col minimo campionario

e1b<-(e1b-min(e1b))/(max(e1b)-min(e1b))

e1c<-e1/max # std della media aritmetica col massimo teorico

e1c<-(e1c-mm/max)/(1-mm/max)

e1d<-e1/max(e1) # std della media aritmetica col massimo campionario

e1d<-(e1d-min(e1d))/(max(e1d)-min(e1d))

e1_<-e1 # media aritmetica non standardizzata

e1_<-(e1-mm)/(max-mm)

if (sd(e1)!=0) {e1e<-(e1-mean(e1))/sd(e1)
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e1e<-(e1e-min(e1e))/(max(e1e)-min(e1e))}

if (sd(e1)==0) e1e<-e1 # std della media aritmetica con media 0 e var 1

e1f<-1/(e1+0.0000000001) # std della media aritmetica con il suo reciproco

e1f<-(e1f-1/max)/(1/max-1/0.0000000001)

e1g<-e1_ # UGUALE A e1c

if ((max(e1)-min(e1))!=0) e1h<-(e1-min(e1))/(max(e1)-min(e1))

if ((max(e1)-min(e1))==0) e1h<-rep(0,C)

e1i<-(max-e1)/(max-0) # (INVERSIONE!) UGUALE A 1-e1c

if ((max(e1)-min(e1))!=0) e1j<-(max(e1)-e1)/(max(e1)-min(e1)) # (INVERSIONE!)

if ((max(e1)-min(e1))==0) e1j<-rep(0,C)

e2a<-e2/0.0000000001

e2a<-(e2-mm/0.0000000001)/(max/0.0000000001-mm/0.0000000001)

e2b<-e2/min(e2)

e2b<-(e2b-min(e2b))/(max(e2b)-min(e2b))

e2c<-e2/max

e2c<-(e2c-mm/max)/(1-mm/max)

e2d<-e2/max(e2)

e2d<-(e2d-min(e2d))/(max(e2d)-min(e2d))

e2_<-e2

e2_<-(e2-mm)/(max-mm)

if (sd(e2)!=0) {e2e<-(e2-mean(e2))/sd(e2)

e2e<-(e2e-min(e2e))/(max(e2e)-min(e2e))}

if (sd(e2)==0) e2e<-e2 # std della media aritmetica con media 0 e var 1

e2f<-1/(e2+0.0000000001) # (INVERSIONE!)

e2f<-(e2f-1/max)/(1/max-1/0.0000000001)

e2g<-e2_ # UGUALE A e2c

if ((max(e2)-min(e2))!=0) e2h<-(e2-min(e2))/(max(e2)-min(e2))

if ((max(e2)-min(e2))==0) e2h<-rep(0,C)

e2i<-(max-e2)/(max-0) # (INVERSIONE!) UGUALE A 1-e2c

if ((max(e2)-min(e2))!=0) e2j<-(max(e2)-e2)/(max(e2)-min(e2)) # (INVERSIONE!)

if ((max(e2)-min(e2))==0) e2j<-rep(0,C)
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e3a<-e3/min

e3a<-(e3a-max/min)/(1-max/min)

e3b<-e3/min(e3)

e3b<-(e3b-min(e3b))/(max(e3b)-min(e3b))

e3c<-e3/max # (INVERSIONE!)

e3c<-(e3c-1)/(1-min/max)

e3d<-e3/max(e3) # (INVERSIONE!)

e3d<-(e3d-min(e3d))/(max(e3d)-min(e3d))

e3_<-e3 # (INVERSIONE!)

e3_<-(e3-min)/(max-min)

if (sd(e3)!=0) {e3e<-(e3-mean(e3))/sd(e3)

e3e<-(e3e-min(e3e))/(max(e3e)-min(e3e))}

if (sd(e3)==0) e3e<-e3 # std della media aritmetica con media 0 e var 1

#e3f<-1/e3 # Senza senso perché abbiamo valori sia positivi che negativi

e3g<-e3_ # (INVERSIONE!)

if ((max(e3)-min(e3))!=0) e3h<-(e3-min(e3))/(max(e3)-min(e3))

if ((max(e3)-min(e3))==0) e3h<-rep(0,C)

#e3i<-((-2*p*log(1.5/(C+1)))-e3)/((-2*p*log(1.5/(C+1)))-

(-2*p*log((C+0.5)/(C+1))))

e3i<-(max-e3)/(max-min)

if ((max(e3)-min(e3))!=0) e3j<-(max(e3)-e3)/(max(e3)-min(e3)) # (INVERSIONE!)

if ((max(e3)-min(e3))==0) e3j<-rep(0,C)

# Classifica punteggio NPC

M1<-matrix(0,33,3+C*3)

M1<-as.data.frame(M1)

if (C==5) colnames(M1)<-c("#(rho=1)","rhom","NA","q0.025 1","q0.975 1",

"diff 1","q0.025 2","q0.975 2","diff 2","q0.025 3","q0.975 3","diff 3",

"q0.025 4","q0.975 4","diff 4","q0.025 5","q0.975 5","diff 5")

if (C==10) colnames(M1)<-c("#(rho=1)","rhom","NA","q0.025 1","q0.975 1",

"diff 1","q0.025 2","q0.975 2","diff 2","q0.025 3","q0.975 3","diff 3",
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"q0.025 4","q0.975 4","diff 4","q0.025 5","q0.975 5","diff 5","q0.025 6",

"q0.975 6","diff 6","q0.025 7","q0.975 7","diff 7","q0.025 8","q0.975 8",

"diff 8","q0.025 9","q0.975 9","diff 9","q0.025 10","q0.975 10","diff 10")

M11<-matrix(0,33,C)

if (C==5) colnames(M11)<-cn1

if (C==10) colnames(M11)<-cn2

M111<-matrix(0,33,C)

if (C==5) colnames(M111)<-cn11

if (C==10) colnames(M111)<-cn22

eee<-matrix(0,33,C)

eee[1,]<-e1a

eee[2,]<-e2a

eee[3,]<-e3a

eee[4,]<-e1b

eee[5,]<-e2b

if (min(e3)<0) {eee[6,]<-e3b}

if (min(e3)>=0) {eee[6,]<-1-e3b} # Inversione condizionata

eee[7,]<-e1c

eee[8,]<-e2c

eee[9,]<--e3c # INVERSIONE!

eee[10,]<-e1d

eee[11,]<-e2d

if (max(e3)<=0) {eee[12,]<-e3d}

if (max(e3)>0) {eee[12,]<-1-e3d} # Inversione condizionata

eee[13,]<-e1_

eee[14,]<-e2_

eee[15,]<-1-e3_ # INVERSIONE!

eee[16,]<-e1e

eee[17,]<-e2e

eee[18,]<-1-e3e # INVERSIONE!

eee[19,]<-1+e1f # INVERSIONE!
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eee[20,]<-1+e2f # INVERSIONE!

#eee[21,]<-e3f

eee[22,]<-e1g

eee[23,]<-e2g

eee[24,]<-1-e3g # INVERSIONE!

eee[25,]<-e1h

eee[26,]<-e2h

eee[27,]<-1-e3h # INVERSIONE!

eee[28,]<-1-e1i # INVERSIONE!

eee[29,]<-1-e2i # INVERSIONE!

eee[30,]<-e3i

eee[31,]<-1-e1j # INVERSIONE!

eee[32,]<-1-e2j # INVERSIONE!

eee[33,]<-e3j

for (i in c(1:20,22:33)){

Score[,cc,i]<-rank(eee[i,],ties.method = "max")

SP[cc,,i]<-cor.test(Score[,cc,i],seq(C,1),method = "spearman")$estimate

if (length(table(SP[,,i][SP[,,i]>0.9999]))>0)

{M1[i,1]<-table(SP[,,i][SP[,,i]>0.9999])/B}

else {M1[i,1]<-0}

M1[i,2]<-mean(SP[,,i],na.rm=T)

M1[i,3]<-B-sum(table(SP[,,i]))

Score[,cc,i]<-eee[i,]

for (j in 1:C){

M1[i,j*3+1]<-quantile(Score[j,,i],0.025)

M1[i,j*3+2]<-quantile(Score[j,,i],0.975)

M1[i,j*3+3]<-M1[i,j*3+2]-M1[i,j*3+1]

}

}

for (i in c(1:20,22:33)){
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for (j in 1:C){

M111[i,j]<-mean(Score[j,,i])

}

M11[i,]<-rank(M111[i,],ties.method="max")

}

} #fine generazione dei dati

t<-list(M1,M111,M11,M2,M222,M22,M3,M333,M33)

names(t)<-c("NPC","NPCm","NPCgm","Media","Mediam","Mediagm",

"GPS","GPSm","GPSgm")

t

}

# Simulazioni:

set.seed(123)

a<-simula3.settings(distr="norm",mu=mu5b,sigma=S1b,n=4)

write.table(a$NPC,"a1.txt",sep="\t",row.names=F,col.names=F)

write.table(a$NPCm,"a2.txt",sep="\t",row.names=F,col.names=F)

write.table(a$NPCgm,"a3.txt",sep="\t",row.names=F,col.names=F)

write.table(a$Media,"a4.txt",sep="\t",row.names=F,col.names=F)

write.table(a$Mediam,"a5.txt",sep="\t",row.names=F,col.names=F)

write.table(a$Mediagm,"a6.txt",sep="\t",row.names=F,col.names=F)

write.table(a$GPS,"a7.txt",sep="\t",row.names=F,col.names=F)

write.table(a$GPSm,"a8.txt",sep="\t",row.names=F,col.names=F)

write.table(a$GPSgm,"a9.txt",sep="\t",row.names=F,col.names=F)

set.seed(123)

b<-simula3.settings(distr="norm",mu=mu5b,sigma=S1b,n=8)

write.table(b$NPC,"b1.txt",sep="\t",row.names=F,col.names=F)

write.table(b$NPCm,"b2.txt",sep="\t",row.names=F,col.names=F)

write.table(b$NPCgm,"b3.txt",sep="\t",row.names=F,col.names=F)

write.table(b$Media,"b4.txt",sep="\t",row.names=F,col.names=F)
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write.table(b$Mediam,"b5.txt",sep="\t",row.names=F,col.names=F)

write.table(b$Mediagm,"b6.txt",sep="\t",row.names=F,col.names=F)

write.table(b$GPS,"b7.txt",sep="\t",row.names=F,col.names=F)

write.table(b$GPSm,"b8.txt",sep="\t",row.names=F,col.names=F)

write.table(b$GPSgm,"b9.txt",sep="\t",row.names=F,col.names=F)

set.seed(123)

c<-simula3.settings(distr="norm",mu=mu10b,sigma=S1b,n=4)

write.table(c$NPC,"c1.txt",sep="\t",row.names=F,col.names=F)

write.table(c$NPCm,"c2.txt",sep="\t",row.names=F,col.names=F)

write.table(c$NPCgm,"c3.txt",sep="\t",row.names=F,col.names=F)

write.table(c$Media,"c4.txt",sep="\t",row.names=F,col.names=F)

write.table(c$Mediam,"c5.txt",sep="\t",row.names=F,col.names=F)

write.table(c$Mediagm,"c6.txt",sep="\t",row.names=F,col.names=F)

write.table(c$GPS,"c7.txt",sep="\t",row.names=F,col.names=F)

write.table(c$GPSm,"c8.txt",sep="\t",row.names=F,col.names=F)

write.table(c$GPSgm,"c9.txt",sep="\t",row.names=F,col.names=F)

...

(48 different simulations, therefore other 45)

A.4 Functions we need for all three simula-

tion studies

A.4.1 Pairwise

This function is useful to do multiple comparisons and it returns a matrix of

p-values and a matrix of differences (it is useful to perform NPC and AISE):

pairwise<-function(m,MSD,k,n=4,alt=c("less","two.sided","greater"),

correct=c(TRUE,FALSE)){

C<-dim(m)[1]

T<-array(0,dim=c(C,C))
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P<-array(1,dim=c(C,C))

D<-array(0,dim=c(C,C))

df<-(n*C)-C

for(i in 1:(C-1)){

for(j in (i+1):C){

D[i,j]<- m[i,k]-m[j,k]

t<-sqrt(2)*(D[i,j])/MSD[k]

if(alt=="less"){P[i,j]<-pt(t,df);P[j,i]<-1-pt(t,df)}

if(alt=="two.sided"){P[i,j]<-2*min(pt(t,df),(1-pt(t,df)));P[j,i]=P[i,j]}

if(alt=="greater"){P[i,j]<-1-pt(t,df);P[j,i]<-pt(t,df)}

D[j,i]<- -D[i,j]

}

}

n.test<-choose(C,2)

if(correct==TRUE){P<-apply(P,c(1,2),function(x){min(x*n.test,1)})}

return(list(P=P,D=D))

}

A.4.2 Ord.pairwise

This function is useful to do multiple comparisons and it returns a matrix

of p-values and a matrix of differences, but it is different from the previous

because it pre-orders sample means (it is useful to perform GPS):

ord.pairwise<-function(m,MSD,n=4,alt="two.sided",correct=c(TRUE,FALSE)){

ordm<-sort(m,decreasing=TRUE)

ordmp<-as.matrix(ordm,1,C)

o<-t(ordmp)

C<-length(m)

T<-array(0,dim=c(C,C))
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P<-array(1,dim=c(C,C))

D<-array(0,dim=c(C,C))

df<-(n*C)-C

for(i in 1:(C-1)){

for(j in (i+1):C){

D[i,j]<- ordm[i]-ordm[j]

t<-sqrt(2)*(D[i,j])/MSD

if (alt=="two.sided"){P[i,j]<-2*min(pt(t,df),(1-pt(t,df)));P[j,i]=P[i,j]}

D[j,i]<- -D[i,j]

}

}

colnames(P)<-colnames(o)

n.test<-choose(C,2)

if(correct==TRUE){P<-apply(P,c(1,2),function(x){min(x*n.test,1)})}

return(list(P=P,D=D))

}

A.4.3 Score

This last function contains in turn other three functions that are needed to

calculate GPS score; score and score2 were two different ways to calculate

GPS score as it was thought in the origin (ranks were inverted and you had to

begin with 1 and not with C), score.inv is the correct one and the function

used in the three codes:

score<-function(X){

rango<-function(x){

l=seq(1,length(x))

o=order(x,decreasing=F)

r=vector(length=length(x))

r[o]=rep(seq(1,length(table(x))),table(x))
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return(r)

}

row=rango(apply(-X,1,sum))

col=rango(apply(X,2,sum))

scores=apply(cbind(row,col),1,mean)

return(scores)

}

score.inv<-function(xx){

x<-1-xx

C=dim(x)[1]

s<-matrix(0,C,C)

for (i in 1:C) {

for (j in 1:C) {

if (x[i,j]==1) s[i,j]=C+1-i

else s[i,j]=0

}

}

cfr_row<-matrix(0,C,C)

for (i in 1:(C-1)) {

for (j in (i+1):C) {

if ((sum(as.numeric(xx[i,]==xx[j,])))!=C) cfr_row[i,j]=1

else cfr_row[i,j]=0

}

}

r<-double(C)

for (i in 1:C) {

if (sum(cfr_row[i,])==C-i) r[i]=1

else r[i]=0

}

k<-c(0,seq(1:C)[r==1])
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for (i in (1:(length(k)-1))) {

r[(k[i]+1):(k[i+1])]<-sort(r[(k[i]+1):(k[i+1])],decreasing=T)

}

for (i in 1:C) {

if (r[i]==1) s[i,]<-s[i,]

else s[i,]<-double(C)

}

for (i in 2:C) {

for (j in 1:(i-1)) {

if (sum(s[i,])==0) s[i,]=0

else {if (s[i,j]!=0) s[i,j]=0}

}

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}
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for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

for (j in 1:C) {

if (s[i,j]!=0) s[i,j]=C+1-i

}

}

t<-double(C)

for (j in 1:C) {

t[j]<-mean(s[,j][s[,j]!=0])

}

t

}

score2<-function(xx){
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x<-1-xx

C=dim(x)[1]

s<-matrix(0,C,C)

for (i in 1:C) {

for (j in 1:C) {

if (x[i,j]==1) s[i,j]=i

else s[i,j]=0

}

}

cfr_row<-matrix(0,C,C)

for (i in 1:(C-1)) {

for (j in (i+1):C) {

if ((sum(as.numeric(xx[i,]==xx[j,])))!=C) cfr_row[i,j]=1

else cfr_row[i,j]=0

}

}

r<-double(C)

for (i in 1:C) {

if (sum(cfr_row[i,])==C-i) r[i]=1

else r[i]=0

}

k<-c(0,seq(1:C)[r==1])

for (i in (1:(length(k)-1))) {

r[(k[i]+1):(k[i+1])]<-sort(r[(k[i]+1):(k[i+1])],decreasing=T)

}

for (i in 1:C) {

if (r[i]==1) s[i,]<-s[i,]

else s[i,]<-double(C)

}

for (i in 2:C) {

for (j in 1:(i-1)) {
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if (sum(s[i,])==0) s[i,]=0

else {if (s[i,j]!=0) s[i,j]=0}

}

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}



APPENDIX A. R CODES USED FOR THE ANALYSES 110

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

if (sum(s[i,])==0) s<-rbind(s[-i,],double(C))

}

for (i in 1:C) {

for (j in 1:C) {

if (s[i,j]!=0) s[i,j]=i

}

}

t<-double(C)

for (j in 1:C) {

t[j]<-mean(s[,j][s[,j]!=0])

}

t

}

A.5 R code for multivariate RCB design

library(mnormt)

library(mvtnorm)

library(sn)

library(vegan)

mu21<-matrix(rep(0,6),2,3)

mu22<-mu21;mu22[2,1]<-4

mu23<-mu22;mu23[2,2]<-4
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mu24<-mu23;mu24[2,3]<-4

colnames(mu21)<-c("X","Y","Z");rownames(mu21)<-c(1,2)

colnames(mu22)<-c("X","Y","Z");rownames(mu22)<-c(1,2)

colnames(mu23)<-c("X","Y","Z");rownames(mu23)<-c(1,2)

colnames(mu24)<-c("X","Y","Z");rownames(mu24)<-c(1,2)

mu31<-matrix(rep(0,9),3,3)

mu32<-matrix(0,3,3);mu32[2,]<-c(2,0,0);mu32[3,]<-mu22[2,]

mu33<-mu32;mu33[,2]<-mu33[,1]

mu34<-mu33;mu34[,3]<-mu33[,1]

colnames(mu31)<-c("X","Y","Z");rownames(mu31)<-c(1,2,3)

colnames(mu32)<-c("X","Y","Z");rownames(mu32)<-c(1,2,3)

colnames(mu33)<-c("X","Y","Z");rownames(mu33)<-c(1,2,3)

colnames(mu34)<-c("X","Y","Z");rownames(mu34)<-c(1,2,3)

mu41<-matrix(rep(0,12),4,3)

mu42<-mu41;mu42[,1]<-c(0,2,3,4)

mu43<-mu42;mu43[,2]<-c(0,2,3,4)

mu44<-mu43;mu44[,3]<-c(0,2,3,4)

colnames(mu41)<-c("X","Y","Z");rownames(mu41)<-c(1,2,3,4)

colnames(mu42)<-c("X","Y","Z");rownames(mu42)<-c(1,2,3,4)

colnames(mu43)<-c("X","Y","Z");rownames(mu43)<-c(1,2,3,4)

colnames(mu44)<-c("X","Y","Z");rownames(mu44)<-c(1,2,3,4)

mu51<-matrix(rep(0,15),5,3)

mu52<-mu51;mu52[,1]<-c(0,1,2,3,4)

mu53<-mu52;mu53[,2]<-c(0,1,2,3,4)

mu54<-mu53;mu54[,3]<-c(0,1,2,3,4)

colnames(mu51)<-c("X","Y","Z");rownames(mu51)<-c(1,2,3,4,5)

colnames(mu52)<-c("X","Y","Z");rownames(mu52)<-c(1,2,3,4,5)

colnames(mu53)<-c("X","Y","Z");rownames(mu53)<-c(1,2,3,4,5)

colnames(mu54)<-c("X","Y","Z");rownames(mu54)<-c(1,2,3,4,5)

S1<-matrix(c(9,0,0,0,9,0,0,0,9),3,3)

S2<-matrix(c(9,-0.5,0.5,-0.5,9,-0.25,0.5,-0.25,9),3,3)
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simula.adonis<-function(mu=mu21,B=1000,np=1000){

C=dim(mu)[1]

p=dim(mu)[2]

dataset<-matrix(0,B*36*C*6,10)

k<-dim(dataset)[1]

colnames(dataset)<-c("ID_sim","Num_blocchi","Num_tratt","ID_blocco",

"ID_tratt","Distr","Sigma","X","Y","Z")

for (i in 1:(36*B*C)){

dataset[i,2]<-6

}

for (i in ((36*B*C)+1):(96*B*C)){

dataset[i,2]<-10

}

for (i in ((96*B*C)+1):k){

dataset[i,2]<-20

}

dataset[,3]<-C

dataset[1:(36*B*C),4]<-rep(1:6,(6*B*C))

dataset[((36*B*C)+1):(96*B*C),4]<-rep(1:10,(6*B*C))

dataset[((96*B*C)+1):k,4]<-rep(1:20,(6*B*C))

if (C==2) {

dataset[1:(36*B*C),5]<-rep(c(rep(1,6),rep(2,6)),(3*B*C))

dataset[((36*B*C)+1):(96*B*C),5]<-rep(c(rep(1,10),rep(2,10)),(3*B*C))

dataset[((96*B*C)+1):k,5]<-rep(c(rep(1,20),rep(2,20)),(3*B*C))

dataset<-as.data.frame(dataset)

dataset[1:(36*B*C),6]<-rep(c(rep("norm",24),rep("t2",24),rep("nasimm",24)),B)

dataset[((36*B*C)+1):(96*B*C),6]<-rep(c(rep("norm",40),rep("t2",40),

rep("nasimm",40)),B)

dataset[((96*B*C)+1):k,6]<-rep(c(rep("norm",80),rep("t2",80),

rep("nasimm",80)),B)
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dataset[1:(36*B*C),7]<-rep(c(rep(c(rep("S1",12),rep("S2",12)),3)),B)

dataset[((36*B*C)+1):(96*B*C),7]<-rep(c(rep(c(rep("S1",20),rep("S2",20)),3)),B)

dataset[((96*B*C)+1):k,7]<-rep(c(rep(c(rep("S1",40),rep("S2",40)),3)),B)

}

if (C==3) {

dataset[1:(36*B*C),5]<-rep(c(rep(1,6),rep(2,6),rep(3,6)),(2*B*C))

dataset[((36*B*C)+1):(96*B*C),5]<-rep(c(rep(1,10),rep(2,10),rep(3,10)),(2*B*C))

dataset[((96*B*C)+1):k,5]<-rep(c(rep(1,20),rep(2,20),rep(3,20)),(2*B*C))

dataset<-as.data.frame(dataset)

dataset[1:(36*B*C),6]<-rep(c(rep("norm",36),rep("t2",36),rep("nasimm",36)),B)

dataset[((36*B*C)+1):(96*B*C),6]<-rep(c(rep("norm",60),rep("t2",60),

rep("nasimm",60)),B)

dataset[((96*B*C)+1):k,6]<-rep(c(rep("norm",120),rep("t2",120),

rep("nasimm",120)),B)

dataset[1:(36*B*C),7]<-rep(c(rep(c(rep("S1",18),rep("S2",18)),3)),B)

dataset[((36*B*C)+1):(96*B*C),7]<-rep(c(rep(c(rep("S1",30),rep("S2",30)),3)),B)

dataset[((96*B*C)+1):k,7]<-rep(c(rep(c(rep("S1",60),rep("S2",60)),3)),B)

}

if (C==4) {

dataset[1:(36*B*C),5]<-rep(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6)),(1.5*B*C))

dataset[((36*B*C)+1):(96*B*C),5]<-rep(c(rep(1,10),rep(2,10),rep(3,10),

rep(4,10)),(1.5*B*C))

dataset[((96*B*C)+1):k,5]<-rep(c(rep(1,20),rep(2,20),rep(3,20),rep(4,20)),

(1.5*B*C))

dataset<-as.data.frame(dataset)

dataset[1:(36*B*C),6]<-rep(c(rep("norm",48),rep("t2",48),rep("nasimm",48)),B)

dataset[((36*B*C)+1):(96*B*C),6]<-rep(c(rep("norm",80),rep("t2",80),

rep("nasimm",80)),B)

dataset[((96*B*C)+1):k,6]<-rep(c(rep("norm",160),rep("t2",160),

rep("nasimm",160)),B)

dataset[1:(36*B*C),7]<-rep(c(rep(c(rep("S1",24),rep("S2",24)),3)),B)
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dataset[((36*B*C)+1):(96*B*C),7]<-rep(c(rep(c(rep("S1",40),rep("S2",40)),3)),B)

dataset[((96*B*C)+1):k,7]<-rep(c(rep(c(rep("S1",80),rep("S2",80)),3)),B)

}

if (C==5) {

dataset[1:(36*B*C),5]<-rep(c(rep(1,6),rep(2,6),rep(3,6),rep(4,6),rep(5,6)),

(1.2*B*C))

dataset[((36*B*C)+1):(96*B*C),5]<-rep(c(rep(1,10),rep(2,10),rep(3,10),

rep(4,10),rep(5,10)),(1.2*B*C))

dataset[((96*B*C)+1):k,5]<-rep(c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),

rep(5,20)),(1.2*B*C))

dataset<-as.data.frame(dataset)

dataset[1:(36*B*C),6]<-rep(c(rep("norm",60),rep("t2",60),rep("nasimm",60)),B)

dataset[((36*B*C)+1):(96*B*C),6]<-rep(c(rep("norm",100),rep("t2",100),

rep("nasimm",100)),B)

dataset[((96*B*C)+1):k,6]<-rep(c(rep("norm",200),rep("t2",200),

rep("nasimm",200)),B)

dataset[1:(36*B*C),7]<-rep(c(rep(c(rep("S1",30),rep("S2",30)),3)),B)

dataset[((36*B*C)+1):(96*B*C),7]<-rep(c(rep(c(rep("S1",50),rep("S2",50)),3)),B)

dataset[((96*B*C)+1):k,7]<-rep(c(rep(c(rep("S1",100),rep("S2",100)),3)),B)

}

for (j in 1:B){

dataset[((j-1)*36*C+1):((j-1)*36*C+36*C),1]<-j

dataset[((j-1)*60*C+1+36*B*C):((j-1)*60*C+60*C+36*B*C),1]<-j

dataset[((j-1)*120*C+1+96*B*C):((j-1)*120*C+120*C+96*B*C),1]<-j

}

for (i in 1:B){

if (C==2){

dataset[(72*(i-1)+1):(72*(i-1)+6),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S1)

dataset[(72*(i-1)+7):(72*(i-1)+12),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S1)

dataset[(72*(i-1)+13):(72*(i-1)+18),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S2)
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dataset[(72*(i-1)+19):(72*(i-1)+24),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S2)

dataset[(72*(i-1)+25):(72*(i-1)+30),8:10]<-rmvt(6,sigma=S1,df=2)+mu[1,]

dataset[(72*(i-1)+31):(72*(i-1)+36),8:10]<-rmvt(6,sigma=S1,df=2)+mu[2,]

dataset[(72*(i-1)+37):(72*(i-1)+42),8:10]<-rmvt(6,sigma=S2,df=2)+mu[1,]

dataset[(72*(i-1)+43):(72*(i-1)+48),8:10]<-rmvt(6,sigma=S2,df=2)+mu[2,]

dataset[(72*(i-1)+49):(72*(i-1)+54),8:10]<-rmsn(6,xi=mu[1,],Omega=S1,

alpha=rep(5,p))

dataset[(72*(i-1)+55):(72*(i-1)+60),8:10]<-rmsn(6,xi=mu[2,],Omega=S1,

alpha=rep(5,p))

dataset[(72*(i-1)+61):(72*(i-1)+66),8:10]<-rmsn(6,xi=mu[1,],Omega=S2,

alpha=rep(5,p))

dataset[(72*(i-1)+67):(72*(i-1)+72),8:10]<-rmsn(6,xi=mu[2,],Omega=S2,

alpha=rep(5,p))

dataset[(120*(i-1)+1+36*B*C):(120*(i-1)+10+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S1)

dataset[(120*(i-1)+11+36*B*C):(120*(i-1)+20+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S1)

dataset[(120*(i-1)+21+36*B*C):(120*(i-1)+30+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S2)

dataset[(120*(i-1)+31+36*B*C):(120*(i-1)+40+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S2)

dataset[(120*(i-1)+41+36*B*C):(120*(i-1)+50+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[1,]

dataset[(120*(i-1)+51+36*B*C):(120*(i-1)+60+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[2,]

dataset[(120*(i-1)+61+36*B*C):(120*(i-1)+70+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[1,]

dataset[(120*(i-1)+71+36*B*C):(120*(i-1)+80+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[2,]

dataset[(120*(i-1)+81+36*B*C):(120*(i-1)+90+36*B*C),8:10]<-rmsn(10,
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xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(120*(i-1)+91+36*B*C):(120*(i-1)+100+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(120*(i-1)+101+36*B*C):(120*(i-1)+110+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(120*(i-1)+111+36*B*C):(120*(i-1)+120+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(240*(i-1)+1+96*B*C):(240*(i-1)+20+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S1)

dataset[(240*(i-1)+21+96*B*C):(240*(i-1)+40+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S1)

dataset[(240*(i-1)+41+96*B*C):(240*(i-1)+60+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S2)

dataset[(240*(i-1)+61+96*B*C):(240*(i-1)+80+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S2)

dataset[(240*(i-1)+81+96*B*C):(240*(i-1)+100+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[1,]

dataset[(240*(i-1)+101+96*B*C):(240*(i-1)+120+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[2,]

dataset[(240*(i-1)+121+96*B*C):(240*(i-1)+140+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[1,]

dataset[(240*(i-1)+141+96*B*C):(240*(i-1)+160+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[2,]

dataset[(240*(i-1)+161+96*B*C):(240*(i-1)+180+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(240*(i-1)+181+96*B*C):(240*(i-1)+200+96*B*C),8:10]<-rmsn(20,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(240*(i-1)+201+96*B*C):(240*(i-1)+220+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(240*(i-1)+221+96*B*C):(240*(i-1)+240+96*B*C),8:10]<-rmsn(20,
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xi=mu[2,],Omega=S2,alpha=rep(5,p))

}

if (C==3){

dataset[(108*(i-1)+1):(108*(i-1)+6),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S1)

dataset[(108*(i-1)+7):(108*(i-1)+12),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S1)

dataset[(108*(i-1)+13):(108*(i-1)+18),8:10]<-rmvnorm(6,mean=mu[3,],sigma=S1)

dataset[(108*(i-1)+19):(108*(i-1)+24),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S2)

dataset[(108*(i-1)+25):(108*(i-1)+30),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S2)

dataset[(108*(i-1)+31):(108*(i-1)+36),8:10]<-rmvnorm(6,mean=mu[3,],sigma=S2)

dataset[(108*(i-1)+37):(108*(i-1)+42),8:10]<-rmvt(6,sigma=S1,df=2)+mu[1,]

dataset[(108*(i-1)+43):(108*(i-1)+48),8:10]<-rmvt(6,sigma=S1,df=2)+mu[2,]

dataset[(108*(i-1)+49):(108*(i-1)+54),8:10]<-rmvt(6,sigma=S1,df=2)+mu[3,]

dataset[(108*(i-1)+55):(108*(i-1)+60),8:10]<-rmvt(6,sigma=S2,df=2)+mu[1,]

dataset[(108*(i-1)+61):(108*(i-1)+66),8:10]<-rmvt(6,sigma=S2,df=2)+mu[2,]

dataset[(108*(i-1)+67):(108*(i-1)+72),8:10]<-rmvt(6,sigma=S2,df=2)+mu[3,]

dataset[(108*(i-1)+73):(108*(i-1)+78),8:10]<-rmsn(6,xi=mu[1,],Omega=S1,

alpha=rep(5,p))

dataset[(108*(i-1)+79):(108*(i-1)+84),8:10]<-rmsn(6,xi=mu[2,],Omega=S1,

alpha=rep(5,p))

dataset[(108*(i-1)+85):(108*(i-1)+90),8:10]<-rmsn(6,xi=mu[3,],Omega=S1,

alpha=rep(5,p))

dataset[(108*(i-1)+91):(108*(i-1)+96),8:10]<-rmsn(6,xi=mu[1,],Omega=S2,

alpha=rep(5,p))

dataset[(108*(i-1)+97):(108*(i-1)+102),8:10]<-rmsn(6,xi=mu[2,],Omega=S2,

alpha=rep(5,p))

dataset[(108*(i-1)+103):(108*(i-1)+108),8:10]<-rmsn(6,xi=mu[3,],Omega=S2,

alpha=rep(5,p))

dataset[(180*(i-1)+1+36*B*C):(180*(i-1)+10+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S1)
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dataset[(180*(i-1)+11+36*B*C):(180*(i-1)+20+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S1)

dataset[(180*(i-1)+21+36*B*C):(180*(i-1)+30+36*B*C),8:10]<-rmvnorm(10,

mean=mu[3,],sigma=S1)

dataset[(180*(i-1)+31+36*B*C):(180*(i-1)+40+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S2)

dataset[(180*(i-1)+41+36*B*C):(180*(i-1)+50+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S2)

dataset[(180*(i-1)+51+36*B*C):(180*(i-1)+60+36*B*C),8:10]<-rmvnorm(10,

mean=mu[3,],sigma=S2)

dataset[(180*(i-1)+61+36*B*C):(180*(i-1)+70+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[1,]

dataset[(180*(i-1)+71+36*B*C):(180*(i-1)+80+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[2,]

dataset[(180*(i-1)+81+36*B*C):(180*(i-1)+90+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[3,]

dataset[(180*(i-1)+91+36*B*C):(180*(i-1)+100+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[1,]

dataset[(180*(i-1)+101+36*B*C):(180*(i-1)+110+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[2,]

dataset[(180*(i-1)+111+36*B*C):(180*(i-1)+120+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[3,]

dataset[(180*(i-1)+121+36*B*C):(180*(i-1)+130+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(180*(i-1)+131+36*B*C):(180*(i-1)+140+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(180*(i-1)+141+36*B*C):(180*(i-1)+150+36*B*C),8:10]<-rmsn(10,

xi=mu[3,],Omega=S1,alpha=rep(5,p))

dataset[(180*(i-1)+151+36*B*C):(180*(i-1)+160+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(180*(i-1)+161+36*B*C):(180*(i-1)+170+36*B*C),8:10]<-rmsn(10,
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xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(180*(i-1)+171+36*B*C):(180*(i-1)+180+36*B*C),8:10]<-rmsn(10,

xi=mu[3,],Omega=S2,alpha=rep(5,p))

dataset[(360*(i-1)+1+96*B*C):(360*(i-1)+20+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S1)

dataset[(360*(i-1)+21+96*B*C):(360*(i-1)+40+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S1)

dataset[(360*(i-1)+41+96*B*C):(360*(i-1)+60+96*B*C),8:10]<-rmvnorm(20,

mean=mu[3,],sigma=S1)

dataset[(360*(i-1)+61+96*B*C):(360*(i-1)+80+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S2)

dataset[(360*(i-1)+81+96*B*C):(360*(i-1)+100+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S2)

dataset[(360*(i-1)+101+96*B*C):(360*(i-1)+120+96*B*C),8:10]<-rmvnorm(20,

mean=mu[3,],sigma=S2)

dataset[(360*(i-1)+121+96*B*C):(360*(i-1)+140+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[1,]

dataset[(360*(i-1)+141+96*B*C):(360*(i-1)+160+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[2,]

dataset[(360*(i-1)+161+96*B*C):(360*(i-1)+180+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[3,]

dataset[(360*(i-1)+181+96*B*C):(360*(i-1)+200+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[1,]

dataset[(360*(i-1)+201+96*B*C):(360*(i-1)+220+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[2,]

dataset[(360*(i-1)+221+96*B*C):(360*(i-1)+240+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[3,]

dataset[(360*(i-1)+241+96*B*C):(360*(i-1)+260+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(360*(i-1)+261+96*B*C):(360*(i-1)+280+96*B*C),8:10]<-rmsn(20,
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xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(360*(i-1)+281+96*B*C):(360*(i-1)+300+96*B*C),8:10]<-rmsn(20,

xi=mu[3,],Omega=S1,alpha=rep(5,p))

dataset[(360*(i-1)+301+96*B*C):(360*(i-1)+320+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(360*(i-1)+321+96*B*C):(360*(i-1)+340+96*B*C),8:10]<-rmsn(20,

xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(360*(i-1)+341+96*B*C):(360*(i-1)+360+96*B*C),8:10]<-rmsn(20,

xi=mu[3,],Omega=S2,alpha=rep(5,p))

}

if (C==4){

dataset[(144*(i-1)+1):(144*(i-1)+6),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S1)

dataset[(144*(i-1)+7):(144*(i-1)+12),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S1)

dataset[(144*(i-1)+13):(144*(i-1)+18),8:10]<-rmvnorm(6,mean=mu[3,],sigma=S1)

dataset[(144*(i-1)+19):(144*(i-1)+24),8:10]<-rmvnorm(6,mean=mu[4,],sigma=S1)

dataset[(144*(i-1)+25):(144*(i-1)+30),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S2)

dataset[(144*(i-1)+31):(144*(i-1)+36),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S2)

dataset[(144*(i-1)+37):(144*(i-1)+42),8:10]<-rmvnorm(6,mean=mu[3,],sigma=S2)

dataset[(144*(i-1)+43):(144*(i-1)+48),8:10]<-rmvnorm(6,mean=mu[4,],sigma=S2)

dataset[(144*(i-1)+49):(144*(i-1)+54),8:10]<-rmvt(6,sigma=S1,df=2)+mu[1,]

dataset[(144*(i-1)+55):(144*(i-1)+60),8:10]<-rmvt(6,sigma=S1,df=2)+mu[2,]

dataset[(144*(i-1)+61):(144*(i-1)+66),8:10]<-rmvt(6,sigma=S1,df=2)+mu[3,]

dataset[(144*(i-1)+67):(144*(i-1)+72),8:10]<-rmvt(6,sigma=S1,df=2)+mu[4,]

dataset[(144*(i-1)+73):(144*(i-1)+78),8:10]<-rmvt(6,sigma=S2,df=2)+mu[1,]

dataset[(144*(i-1)+79):(144*(i-1)+84),8:10]<-rmvt(6,sigma=S2,df=2)+mu[2,]

dataset[(144*(i-1)+85):(144*(i-1)+90),8:10]<-rmvt(6,sigma=S2,df=2)+mu[3,]

dataset[(144*(i-1)+91):(144*(i-1)+96),8:10]<-rmvt(6,sigma=S2,df=2)+mu[4,]

dataset[(144*(i-1)+97):(144*(i-1)+102),8:10]<-rmsn(6,xi=mu[1,],Omega=S1,

alpha=rep(5,p))

dataset[(144*(i-1)+103):(144*(i-1)+108),8:10]<-rmsn(6,xi=mu[2,],Omega=S1,
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alpha=rep(5,p))

dataset[(144*(i-1)+109):(144*(i-1)+114),8:10]<-rmsn(6,xi=mu[3,],Omega=S1,

alpha=rep(5,p))

dataset[(144*(i-1)+115):(144*(i-1)+120),8:10]<-rmsn(6,xi=mu[4,],Omega=S1,

alpha=rep(5,p))

dataset[(144*(i-1)+121):(144*(i-1)+126),8:10]<-rmsn(6,xi=mu[1,],Omega=S2,

alpha=rep(5,p))

dataset[(144*(i-1)+127):(144*(i-1)+132),8:10]<-rmsn(6,xi=mu[2,],Omega=S2,

alpha=rep(5,p))

dataset[(144*(i-1)+133):(144*(i-1)+138),8:10]<-rmsn(6,xi=mu[3,],Omega=S2,

alpha=rep(5,p))

dataset[(144*(i-1)+139):(144*(i-1)+144),8:10]<-rmsn(6,xi=mu[4,],Omega=S2,

alpha=rep(5,p))

dataset[(240*(i-1)+1+36*B*C):(240*(i-1)+10+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S1)

dataset[(240*(i-1)+11+36*B*C):(240*(i-1)+20+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S1)

dataset[(240*(i-1)+21+36*B*C):(240*(i-1)+30+36*B*C),8:10]<-rmvnorm(10,

mean=mu[3,],sigma=S1)

dataset[(240*(i-1)+31+36*B*C):(240*(i-1)+40+36*B*C),8:10]<-rmvnorm(10,

mean=mu[4,],sigma=S1)

dataset[(240*(i-1)+41+36*B*C):(240*(i-1)+50+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S2)

dataset[(240*(i-1)+51+36*B*C):(240*(i-1)+60+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S2)

dataset[(240*(i-1)+61+36*B*C):(240*(i-1)+70+36*B*C),8:10]<-rmvnorm(10,

mean=mu[3,],sigma=S2)

dataset[(240*(i-1)+71+36*B*C):(240*(i-1)+80+36*B*C),8:10]<-rmvnorm(10,

mean=mu[4,],sigma=S2)

dataset[(240*(i-1)+81+36*B*C):(240*(i-1)+90+36*B*C),8:10]<-rmvt(10,
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sigma=S1,df=2)+mu[1,]

dataset[(240*(i-1)+91+36*B*C):(240*(i-1)+100+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[2,]

dataset[(240*(i-1)+101+36*B*C):(240*(i-1)+110+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[3,]

dataset[(240*(i-1)+111+36*B*C):(240*(i-1)+120+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[4,]

dataset[(240*(i-1)+121+36*B*C):(240*(i-1)+130+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[1,]

dataset[(240*(i-1)+131+36*B*C):(240*(i-1)+140+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[2,]

dataset[(240*(i-1)+141+36*B*C):(240*(i-1)+150+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[3,]

dataset[(240*(i-1)+151+36*B*C):(240*(i-1)+160+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[4,]

dataset[(240*(i-1)+161+36*B*C):(240*(i-1)+170+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(240*(i-1)+171+36*B*C):(240*(i-1)+180+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(240*(i-1)+181+36*B*C):(240*(i-1)+190+36*B*C),8:10]<-rmsn(10,

xi=mu[3,],Omega=S1,alpha=rep(5,p))

dataset[(240*(i-1)+191+36*B*C):(240*(i-1)+200+36*B*C),8:10]<-rmsn(10,

xi=mu[4,],Omega=S1,alpha=rep(5,p))

dataset[(240*(i-1)+201+36*B*C):(240*(i-1)+210+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(240*(i-1)+211+36*B*C):(240*(i-1)+220+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(240*(i-1)+221+36*B*C):(240*(i-1)+230+36*B*C),8:10]<-rmsn(10,

xi=mu[3,],Omega=S2,alpha=rep(5,p))

dataset[(240*(i-1)+231+36*B*C):(240*(i-1)+240+36*B*C),8:10]<-rmsn(10,

xi=mu[4,],Omega=S2,alpha=rep(5,p))
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dataset[(480*(i-1)+1+96*B*C):(480*(i-1)+20+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S1)

dataset[(480*(i-1)+21+96*B*C):(480*(i-1)+40+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S1)

dataset[(480*(i-1)+41+96*B*C):(480*(i-1)+60+96*B*C),8:10]<-rmvnorm(20,

mean=mu[3,],sigma=S1)

dataset[(480*(i-1)+61+96*B*C):(480*(i-1)+80+96*B*C),8:10]<-rmvnorm(20,

mean=mu[4,],sigma=S1)

dataset[(480*(i-1)+81+96*B*C):(480*(i-1)+100+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S2)

dataset[(480*(i-1)+101+96*B*C):(480*(i-1)+120+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S2)

dataset[(480*(i-1)+121+96*B*C):(480*(i-1)+140+96*B*C),8:10]<-rmvnorm(20,

mean=mu[3,],sigma=S2)

dataset[(480*(i-1)+141+96*B*C):(480*(i-1)+160+96*B*C),8:10]<-rmvnorm(20,

mean=mu[4,],sigma=S2)

dataset[(480*(i-1)+161+96*B*C):(480*(i-1)+180+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[1,]

dataset[(480*(i-1)+181+96*B*C):(480*(i-1)+200+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[2,]

dataset[(480*(i-1)+201+96*B*C):(480*(i-1)+220+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[3,]

dataset[(480*(i-1)+221+96*B*C):(480*(i-1)+240+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[4,]

dataset[(480*(i-1)+241+96*B*C):(480*(i-1)+260+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[1,]

dataset[(480*(i-1)+261+96*B*C):(480*(i-1)+280+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[2,]

dataset[(480*(i-1)+281+96*B*C):(480*(i-1)+300+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[3,]
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dataset[(480*(i-1)+301+96*B*C):(480*(i-1)+320+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[4,]

dataset[(480*(i-1)+321+96*B*C):(480*(i-1)+340+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(480*(i-1)+341+96*B*C):(480*(i-1)+360+96*B*C),8:10]<-rmsn(20,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(480*(i-1)+361+96*B*C):(480*(i-1)+380+96*B*C),8:10]<-rmsn(20,

xi=mu[3,],Omega=S1,alpha=rep(5,p))

dataset[(480*(i-1)+381+96*B*C):(480*(i-1)+400+96*B*C),8:10]<-rmsn(20,

xi=mu[4,],Omega=S1,alpha=rep(5,p))

dataset[(480*(i-1)+401+96*B*C):(480*(i-1)+420+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(480*(i-1)+421+96*B*C):(480*(i-1)+440+96*B*C),8:10]<-rmsn(20,

xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(480*(i-1)+441+96*B*C):(480*(i-1)+460+96*B*C),8:10]<-rmsn(20,

xi=mu[3,],Omega=S2,alpha=rep(5,p))

dataset[(480*(i-1)+461+96*B*C):(480*(i-1)+480+96*B*C),8:10]<-rmsn(20,

xi=mu[4,],Omega=S2,alpha=rep(5,p))

}

if (C==5){

dataset[(180*(i-1)+1):(180*(i-1)+6),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S1)

dataset[(180*(i-1)+7):(180*(i-1)+12),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S1)

dataset[(180*(i-1)+13):(180*(i-1)+18),8:10]<-rmvnorm(6,mean=mu[3,],sigma=S1)

dataset[(180*(i-1)+19):(180*(i-1)+24),8:10]<-rmvnorm(6,mean=mu[4,],sigma=S1)

dataset[(180*(i-1)+25):(180*(i-1)+30),8:10]<-rmvnorm(6,mean=mu[5,],sigma=S1)

dataset[(180*(i-1)+31):(180*(i-1)+36),8:10]<-rmvnorm(6,mean=mu[1,],sigma=S2)

dataset[(180*(i-1)+37):(180*(i-1)+42),8:10]<-rmvnorm(6,mean=mu[2,],sigma=S2)

dataset[(180*(i-1)+43):(180*(i-1)+48),8:10]<-rmvnorm(6,mean=mu[3,],sigma=S2)

dataset[(180*(i-1)+49):(180*(i-1)+54),8:10]<-rmvnorm(6,mean=mu[4,],sigma=S2)

dataset[(180*(i-1)+55):(180*(i-1)+60),8:10]<-rmvnorm(6,mean=mu[5,],sigma=S2)



APPENDIX A. R CODES USED FOR THE ANALYSES 125

dataset[(180*(i-1)+61):(180*(i-1)+66),8:10]<-rmvt(6,sigma=S1,df=2)+mu[1,]

dataset[(180*(i-1)+67):(180*(i-1)+72),8:10]<-rmvt(6,sigma=S1,df=2)+mu[2,]

dataset[(180*(i-1)+73):(180*(i-1)+78),8:10]<-rmvt(6,sigma=S1,df=2)+mu[3,]

dataset[(180*(i-1)+79):(180*(i-1)+84),8:10]<-rmvt(6,sigma=S1,df=2)+mu[4,]

dataset[(180*(i-1)+85):(180*(i-1)+90),8:10]<-rmvt(6,sigma=S1,df=2)+mu[5,]

dataset[(180*(i-1)+91):(180*(i-1)+96),8:10]<-rmvt(6,sigma=S2,df=2)+mu[1,]

dataset[(180*(i-1)+97):(180*(i-1)+102),8:10]<-rmvt(6,sigma=S2,df=2)+mu[2,]

dataset[(180*(i-1)+103):(180*(i-1)+108),8:10]<-rmvt(6,sigma=S2,df=2)+mu[3,]

dataset[(180*(i-1)+109):(180*(i-1)+114),8:10]<-rmvt(6,sigma=S2,df=2)+mu[4,]

dataset[(180*(i-1)+115):(180*(i-1)+120),8:10]<-rmvt(6,sigma=S2,df=2)+mu[5,]

dataset[(180*(i-1)+121):(180*(i-1)+126),8:10]<-rmsn(6,xi=mu[1,],Omega=S1,

alpha=rep(5,p))

dataset[(180*(i-1)+127):(180*(i-1)+132),8:10]<-rmsn(6,xi=mu[2,],Omega=S1,

alpha=rep(5,p))

dataset[(180*(i-1)+133):(180*(i-1)+138),8:10]<-rmsn(6,xi=mu[3,],Omega=S1,

alpha=rep(5,p))

dataset[(180*(i-1)+139):(180*(i-1)+144),8:10]<-rmsn(6,xi=mu[4,],Omega=S1,

alpha=rep(5,p))

dataset[(180*(i-1)+145):(180*(i-1)+150),8:10]<-rmsn(6,xi=mu[5,],Omega=S1,

alpha=rep(5,p))

dataset[(180*(i-1)+151):(180*(i-1)+156),8:10]<-rmsn(6,xi=mu[1,],Omega=S2,

alpha=rep(5,p))

dataset[(180*(i-1)+157):(180*(i-1)+162),8:10]<-rmsn(6,xi=mu[2,],Omega=S2,

alpha=rep(5,p))

dataset[(180*(i-1)+163):(180*(i-1)+168),8:10]<-rmsn(6,xi=mu[3,],Omega=S2,

alpha=rep(5,p))

dataset[(180*(i-1)+169):(180*(i-1)+174),8:10]<-rmsn(6,xi=mu[4,],Omega=S2,

alpha=rep(5,p))

dataset[(180*(i-1)+175):(180*(i-1)+180),8:10]<-rmsn(6,xi=mu[5,],Omega=S2,

alpha=rep(5,p))
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dataset[(300*(i-1)+1+36*B*C):(300*(i-1)+10+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S1)

dataset[(300*(i-1)+11+36*B*C):(300*(i-1)+20+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S1)

dataset[(300*(i-1)+21+36*B*C):(300*(i-1)+30+36*B*C),8:10]<-rmvnorm(10,

mean=mu[3,],sigma=S1)

dataset[(300*(i-1)+31+36*B*C):(300*(i-1)+40+36*B*C),8:10]<-rmvnorm(10,

mean=mu[4,],sigma=S1)

dataset[(300*(i-1)+41+36*B*C):(300*(i-1)+50+36*B*C),8:10]<-rmvnorm(10,

mean=mu[5,],sigma=S1)

dataset[(300*(i-1)+51+36*B*C):(300*(i-1)+60+36*B*C),8:10]<-rmvnorm(10,

mean=mu[1,],sigma=S2)

dataset[(300*(i-1)+61+36*B*C):(300*(i-1)+70+36*B*C),8:10]<-rmvnorm(10,

mean=mu[2,],sigma=S2)

dataset[(300*(i-1)+71+36*B*C):(300*(i-1)+80+36*B*C),8:10]<-rmvnorm(10,

mean=mu[3,],sigma=S2)

dataset[(300*(i-1)+81+36*B*C):(300*(i-1)+90+36*B*C),8:10]<-rmvnorm(10,

mean=mu[4,],sigma=S2)

dataset[(300*(i-1)+91+36*B*C):(300*(i-1)+100+36*B*C),8:10]<-rmvnorm(10,

mean=mu[5,],sigma=S2)

dataset[(300*(i-1)+101+36*B*C):(300*(i-1)+110+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[1,]

dataset[(300*(i-1)+111+36*B*C):(300*(i-1)+120+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[2,]

dataset[(300*(i-1)+121+36*B*C):(300*(i-1)+130+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[3,]

dataset[(300*(i-1)+131+36*B*C):(300*(i-1)+140+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[4,]

dataset[(300*(i-1)+141+36*B*C):(300*(i-1)+150+36*B*C),8:10]<-rmvt(10,

sigma=S1,df=2)+mu[5,]

dataset[(300*(i-1)+151+36*B*C):(300*(i-1)+160+36*B*C),8:10]<-rmvt(10,
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sigma=S2,df=2)+mu[1,]

dataset[(300*(i-1)+161+36*B*C):(300*(i-1)+170+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[2,]

dataset[(300*(i-1)+171+36*B*C):(300*(i-1)+180+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[3,]

dataset[(300*(i-1)+181+36*B*C):(300*(i-1)+190+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[4,]

dataset[(300*(i-1)+191+36*B*C):(300*(i-1)+200+36*B*C),8:10]<-rmvt(10,

sigma=S2,df=2)+mu[5,]

dataset[(300*(i-1)+201+36*B*C):(300*(i-1)+210+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(300*(i-1)+211+36*B*C):(300*(i-1)+220+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(300*(i-1)+221+36*B*C):(300*(i-1)+230+36*B*C),8:10]<-rmsn(10,

xi=mu[3,],Omega=S1,alpha=rep(5,p))

dataset[(300*(i-1)+231+36*B*C):(300*(i-1)+240+36*B*C),8:10]<-rmsn(10,

xi=mu[4,],Omega=S1,alpha=rep(5,p))

dataset[(300*(i-1)+241+36*B*C):(300*(i-1)+250+36*B*C),8:10]<-rmsn(10,

xi=mu[5,],Omega=S1,alpha=rep(5,p))

dataset[(300*(i-1)+251+36*B*C):(300*(i-1)+260+36*B*C),8:10]<-rmsn(10,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(300*(i-1)+261+36*B*C):(300*(i-1)+270+36*B*C),8:10]<-rmsn(10,

xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(300*(i-1)+271+36*B*C):(300*(i-1)+280+36*B*C),8:10]<-rmsn(10,

xi=mu[3,],Omega=S2,alpha=rep(5,p))

dataset[(300*(i-1)+281+36*B*C):(300*(i-1)+290+36*B*C),8:10]<-rmsn(10,

xi=mu[4,],Omega=S2,alpha=rep(5,p))

dataset[(300*(i-1)+291+36*B*C):(300*(i-1)+300+36*B*C),8:10]<-rmsn(10,

xi=mu[5,],Omega=S2,alpha=rep(5,p))

dataset[(600*(i-1)+1+96*B*C):(600*(i-1)+20+96*B*C),8:10]<-rmvnorm(20,
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mean=mu[1,],sigma=S1)

dataset[(600*(i-1)+21+96*B*C):(600*(i-1)+40+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S1)

dataset[(600*(i-1)+41+96*B*C):(600*(i-1)+60+96*B*C),8:10]<-rmvnorm(20,

mean=mu[3,],sigma=S1)

dataset[(600*(i-1)+61+96*B*C):(600*(i-1)+80+96*B*C),8:10]<-rmvnorm(20,

mean=mu[4,],sigma=S1)

dataset[(600*(i-1)+81+96*B*C):(600*(i-1)+100+96*B*C),8:10]<-rmvnorm(20,

mean=mu[5,],sigma=S1)

dataset[(600*(i-1)+101+96*B*C):(600*(i-1)+120+96*B*C),8:10]<-rmvnorm(20,

mean=mu[1,],sigma=S2)

dataset[(600*(i-1)+121+96*B*C):(600*(i-1)+140+96*B*C),8:10]<-rmvnorm(20,

mean=mu[2,],sigma=S2)

dataset[(600*(i-1)+141+96*B*C):(600*(i-1)+160+96*B*C),8:10]<-rmvnorm(20,

mean=mu[3,],sigma=S2)

dataset[(600*(i-1)+161+96*B*C):(600*(i-1)+180+96*B*C),8:10]<-rmvnorm(20,

mean=mu[4,],sigma=S2)

dataset[(600*(i-1)+181+96*B*C):(600*(i-1)+200+96*B*C),8:10]<-rmvnorm(20,

mean=mu[5,],sigma=S2)

dataset[(600*(i-1)+201+96*B*C):(600*(i-1)+220+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[1,]

dataset[(600*(i-1)+221+96*B*C):(600*(i-1)+240+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[2,]

dataset[(600*(i-1)+241+96*B*C):(600*(i-1)+260+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[3,]

dataset[(600*(i-1)+261+96*B*C):(600*(i-1)+280+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[4,]

dataset[(600*(i-1)+281+96*B*C):(600*(i-1)+300+96*B*C),8:10]<-rmvt(20,

sigma=S1,df=2)+mu[5,]

dataset[(600*(i-1)+301+96*B*C):(600*(i-1)+320+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[1,]
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dataset[(600*(i-1)+321+96*B*C):(600*(i-1)+340+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[2,]

dataset[(600*(i-1)+341+96*B*C):(600*(i-1)+360+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[3,]

dataset[(600*(i-1)+361+96*B*C):(600*(i-1)+380+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[4,]

dataset[(600*(i-1)+381+96*B*C):(600*(i-1)+400+96*B*C),8:10]<-rmvt(20,

sigma=S2,df=2)+mu[5,]

dataset[(600*(i-1)+401+96*B*C):(600*(i-1)+420+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S1,alpha=rep(5,p))

dataset[(600*(i-1)+421+96*B*C):(600*(i-1)+440+96*B*C),8:10]<-rmsn(20,

xi=mu[2,],Omega=S1,alpha=rep(5,p))

dataset[(600*(i-1)+441+96*B*C):(600*(i-1)+460+96*B*C),8:10]<-rmsn(20,

xi=mu[3,],Omega=S1,alpha=rep(5,p))

dataset[(600*(i-1)+461+96*B*C):(600*(i-1)+480+96*B*C),8:10]<-rmsn(20,

xi=mu[4,],Omega=S1,alpha=rep(5,p))

dataset[(600*(i-1)+481+96*B*C):(600*(i-1)+500+96*B*C),8:10]<-rmsn(20,

xi=mu[5,],Omega=S1,alpha=rep(5,p))

dataset[(600*(i-1)+501+96*B*C):(600*(i-1)+520+96*B*C),8:10]<-rmsn(20,

xi=mu[1,],Omega=S2,alpha=rep(5,p))

dataset[(600*(i-1)+521+96*B*C):(600*(i-1)+540+96*B*C),8:10]<-rmsn(20,

xi=mu[2,],Omega=S2,alpha=rep(5,p))

dataset[(600*(i-1)+541+96*B*C):(600*(i-1)+560+96*B*C),8:10]<-rmsn(20,

xi=mu[3,],Omega=S2,alpha=rep(5,p))

dataset[(600*(i-1)+561+96*B*C):(600*(i-1)+580+96*B*C),8:10]<-rmsn(20,

xi=mu[4,],Omega=S2,alpha=rep(5,p))

dataset[(600*(i-1)+581+96*B*C):(600*(i-1)+600+96*B*C),8:10]<-rmsn(20,

xi=mu[5,],Omega=S2,alpha=rep(5,p))

}

}

dataset[,8:10]<-round(dataset[,8:10])
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for (i in 1:B){

dataset$X[(36*C*(i-1)+1):(36*C*(i-1)+36*C)]<-dataset$X[(36*C*(i-1)+1)

:(36*C*(i-1)+36*C)]+round(rep(runif(6,-1.5,1.5),6*C))

dataset$X[(60*C*(i-1)+1+36*C*B):(60*C*(i-1)+60*C+36*C*B)]<-

dataset$X[(60*C*(i-1)+1+36*C*B):(60*C*(i-1)+60*C+36*C*B)]+

round(rep(runif(10,-1.5,1.5),6*C))

dataset$X[(120*C*(i-1)+1+96*C*B):(120*C*(i-1)+120*C+96*C*B)]<-

dataset$X[(120*C*(i-1)+1+96*C*B):(120*C*(i-1)+120*C+96*C*B)]+

round(rep(runif(20,-1.5,1.5),6*C))

dataset$Y[(36*C*(i-1)+1):(36*C*(i-1)+36*C)]<-dataset$Y[(36*C*(i-1)+1)

:(36*C*(i-1)+36*C)]+round(rep(runif(6,-1.5,1.5),6*C))

dataset$Y[(60*C*(i-1)+1+36*C*B):(60*C*(i-1)+60*C+36*C*B)]

<-dataset$Y[(60*C*(i-1)+1+36*C*B):(60*C*(i-1)+60*C+36*C*B)]+

round(rep(runif(10,-1.5,1.5),6*C))

dataset$Y[(120*C*(i-1)+1+96*C*B):(120*C*(i-1)+120*C+96*C*B)]<-

dataset$Y[(120*C*(i-1)+1+96*C*B):(120*C*(i-1)+120*C+96*C*B)]+

round(rep(runif(20,-1.5,1.5),6*C))

dataset$Z[(36*C*(i-1)+1):(36*C*(i-1)+36*C)]<-dataset$Z[(36*C*(i-1)+1)

:(36*C*(i-1)+36*C)]+round(rep(runif(6,-1.5,1.5),6*C))

dataset$Z[(60*C*(i-1)+1+36*C*B):(60*C*(i-1)+60*C+36*C*B)]<-

dataset$Z[(60*C*(i-1)+1+36*C*B):(60*C*(i-1)+60*C+36*C*B)]+

round(rep(runif(10,-1.5,1.5),6*C))

dataset$Z[(120*C*(i-1)+1+96*C*B):(120*C*(i-1)+120*C+96*C*B)]<-

dataset$Z[(120*C*(i-1)+1+96*C*B):(120*C*(i-1)+120*C+96*C*B)]+

round(rep(runif(20,-1.5,1.5),6*C))

}

dataset[,1]<-factor(dataset[,1])

dataset[,4]<-factor(dataset[,4])

dataset[,5]<-factor(dataset[,5])
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pv1<-double(B)

pv2<-double(B)

pv3<-double(B)

pv4<-double(B)

pv5<-double(B)

pv6<-double(B)

pv7<-double(B)

pv8<-double(B)

pv9<-double(B)

pv10<-double(B)

pv11<-double(B)

pv12<-double(B)

pv13<-double(B)

pv14<-double(B)

pv15<-double(B)

pv16<-double(B)

pv17<-double(B)

pv18<-double(B)

for (i in 1:B){

a1<-adonis(dataset[((36*C)*(i-1)+1):((36*C)*(i-1)+(6*C)),8:10]˜

ID_blocco[((36*C)*(i-1)+1):((36*C)*(i-1)+(6*C))]+

ID_tratt[((36*C)*(i-1)+1):((36*C)*(i-1)+(6*C))],

method="euclidean",data=dataset,permutations=np)

a2<-adonis(dataset[((36*C)*(i-1)+6*C+1):((36*C)*(i-1)+12*C),8:10]˜

ID_blocco[((36*C)*(i-1)+6*C+1):((36*C)*(i-1)+12*C)]+

ID_tratt[((36*C)*(i-1)+6*C+1):((36*C)*(i-1)+12*C)],

method="euclidean",data=dataset,permutations=np)

a3<-adonis(dataset[((36*C)*(i-1)+12*C+1):((36*C)*(i-1)+18*C),8:10]˜

ID_blocco[((36*C)*(i-1)+12*C+1):((36*C)*(i-1)+18*C)]+
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ID_tratt[((36*C)*(i-1)+12*C+1):((36*C)*(i-1)+18*C)],

method="euclidean",data=dataset,permutations=np)

a4<-adonis(dataset[((36*C)*(i-1)+18*C+1):((36*C)*(i-1)+24*C),8:10]˜

ID_blocco[((36*C)*(i-1)+18*C+1):((36*C)*(i-1)+24*C)]+

ID_tratt[((36*C)*(i-1)+18*C+1):((36*C)*(i-1)+24*C)],

method="euclidean",data=dataset,permutations=np)

a5<-adonis(dataset[((36*C)*(i-1)+24*C+1):((36*C)*(i-1)+30*C),8:10]˜

ID_blocco[((36*C)*(i-1)+24*C+1):((36*C)*(i-1)+30*C)]+

ID_tratt[((36*C)*(i-1)+24*C+1):((36*C)*(i-1)+30*C)],

method="euclidean",data=dataset,permutations=np)

a6<-adonis(dataset[((36*C)*(i-1)+30*C+1):((36*C)*(i-1)+36*C),8:10]˜

ID_blocco[((36*C)*(i-1)+30*C+1):((36*C)*(i-1)+36*C)]+

ID_tratt[((36*C)*(i-1)+30*C+1):((36*C)*(i-1)+36*C)],

method="euclidean",data=dataset,permutations=np)

pv1[i]<-a1$aov.tab[2,6]

pv2[i]<-a2$aov.tab[2,6]

pv3[i]<-a3$aov.tab[2,6]

pv4[i]<-a4$aov.tab[2,6]

pv5[i]<-a5$aov.tab[2,6]

pv6[i]<-a6$aov.tab[2,6]

a7<-adonis(dataset[((60*C)*(i-1)+1+36*B*C):((60*C)*(i-1)+(10*C)+36*B*C),

8:10]˜ID_blocco[((60*C)*(i-1)+1+36*B*C):((60*C)*(i-1)+(10*C)+36*B*C)]+

ID_tratt[((60*C)*(i-1)+1+36*B*C):((60*C)*(i-1)+(10*C)+36*B*C)],

method="euclidean",data=dataset,permutations=np)

a8<-adonis(dataset[((60*C)*(i-1)+10*C+1+36*B*C):((60*C)*(i-1)+20*C+36*B*C),

8:10]˜ID_blocco[((60*C)*(i-1)+10*C+1+36*B*C):((60*C)*(i-1)+20*C+36*B*C)]+

ID_tratt[((60*C)*(i-1)+10*C+1+36*B*C):((60*C)*(i-1)+20*C+36*B*C)],

method="euclidean",data=dataset,permutations=np)

a9<-adonis(dataset[((60*C)*(i-1)+20*C+1+36*B*C):((60*C)*(i-1)+30*C+36*B*C),

8:10]˜ID_blocco[((60*C)*(i-1)+20*C+1+36*B*C):((60*C)*(i-1)+30*C+36*B*C)]+

ID_tratt[((60*C)*(i-1)+20*C+1+36*B*C):((60*C)*(i-1)+30*C+36*B*C)],
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method="euclidean",data=dataset,permutations=np)

a10<-adonis(dataset[((60*C)*(i-1)+30*C+1+36*B*C):((60*C)*(i-1)+40*C+36*B*C),

8:10]˜ID_blocco[((60*C)*(i-1)+30*C+1+36*B*C):((60*C)*(i-1)+40*C+36*B*C)]+

ID_tratt[((60*C)*(i-1)+30*C+1+36*B*C):((60*C)*(i-1)+40*C+36*B*C)],

method="euclidean",data=dataset,permutations=np)

a11<-adonis(dataset[((60*C)*(i-1)+40*C+1+36*B*C):((60*C)*(i-1)+50*C+36*B*C),

8:10]˜ID_blocco[((60*C)*(i-1)+40*C+1+36*B*C):((60*C)*(i-1)+50*C+36*B*C)]+

ID_tratt[((60*C)*(i-1)+40*C+1+36*B*C):((60*C)*(i-1)+50*C+36*B*C)],

method="euclidean",data=dataset,permutations=np)

a12<-adonis(dataset[((60*C)*(i-1)+50*C+1+36*B*C):((60*C)*(i-1)+60*C+36*B*C),

8:10]˜ID_blocco[((60*C)*(i-1)+50*C+1+36*B*C):((60*C)*(i-1)+60*C+36*B*C)]+

ID_tratt[((60*C)*(i-1)+50*C+1+36*B*C):((60*C)*(i-1)+60*C+36*B*C)],

method="euclidean",data=dataset,permutations=np)

pv7[i]<-a7$aov.tab[2,6]

pv8[i]<-a8$aov.tab[2,6]

pv9[i]<-a9$aov.tab[2,6]

pv10[i]<-a10$aov.tab[2,6]

pv11[i]<-a11$aov.tab[2,6]

pv12[i]<-a12$aov.tab[2,6]

a13<-adonis(dataset[((120*C)*(i-1)+1+96*B*C):((120*C)*(i-1)+(20*C)+96*B*C),

8:10]˜ID_blocco[((120*C)*(i-1)+1+96*B*C):((120*C)*(i-1)+(20*C)+96*B*C)]+

ID_tratt[((120*C)*(i-1)+1+96*B*C):((120*C)*(i-1)+(20*C)+96*B*C)],

method="euclidean",data=dataset,permutations=np)

a14<-adonis(dataset[((120*C)*(i-1)+20*C+1+96*B*C):((120*C)*(i-1)+40*C+96*B*C),

8:10]˜ID_blocco[((120*C)*(i-1)+20*C+1+96*B*C):((120*C)*(i-1)+40*C+96*B*C)]+

ID_tratt[((120*C)*(i-1)+20*C+1+96*B*C):((120*C)*(i-1)+40*C+96*B*C)],

method="euclidean",data=dataset,permutations=np)

a15<-adonis(dataset[((120*C)*(i-1)+40*C+1+96*B*C):((120*C)*(i-1)+60*C+96*B*C),

8:10]˜ID_blocco[((120*C)*(i-1)+40*C+1+96*B*C):((120*C)*(i-1)+60*C+96*B*C)]+

ID_tratt[((120*C)*(i-1)+40*C+1+96*B*C):((120*C)*(i-1)+60*C+96*B*C)],

method="euclidean",data=dataset,permutations=np)
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a16<-adonis(dataset[((120*C)*(i-1)+60*C+1+96*B*C):((120*C)*(i-1)+80*C+96*B*C),

8:10]˜ID_blocco[((120*C)*(i-1)+60*C+1+96*B*C):((120*C)*(i-1)+80*C+96*B*C)]+

ID_tratt[((120*C)*(i-1)+60*C+1+96*B*C):((120*C)*(i-1)+80*C+96*B*C)],

method="euclidean",data=dataset,permutations=np)

a17<-adonis(dataset[((120*C)*(i-1)+80*C+1+96*B*C):((120*C)*(i-1)+100*C+96*B*C),

8:10]˜ID_blocco[((120*C)*(i-1)+80*C+1+96*B*C):((120*C)*(i-1)+100*C+96*B*C)]+

ID_tratt[((120*C)*(i-1)+80*C+1+96*B*C):((120*C)*(i-1)+100*C+96*B*C)],

method="euclidean",data=dataset,permutations=np)

a18<-adonis(dataset[((120*C)*(i-1)+100*C+1+96*B*C):((120*C)*(i-1)+120*C+96*B*C),

8:10]˜ID_blocco[((120*C)*(i-1)+100*C+1+96*B*C):((120*C)*(i-1)+120*C+96*B*C)]+

ID_tratt[((120*C)*(i-1)+100*C+1+96*B*C):((120*C)*(i-1)+120*C+96*B*C)],

method="euclidean",data=dataset,permutations=np)

pv13[i]<-a13$aov.tab[2,6]

pv14[i]<-a14$aov.tab[2,6]

pv15[i]<-a15$aov.tab[2,6]

pv16[i]<-a16$aov.tab[2,6]

pv17[i]<-a17$aov.tab[2,6]

pv18[i]<-a18$aov.tab[2,6]

mpvnp<-c(mean(pv1<0.05),mean(pv2<0.05),mean(pv3<0.05),mean(pv4<0.05),

mean(pv5<0.05),mean(pv6<0.05),mean(pv7<0.05),mean(pv8<0.05),mean(pv9<0.05),

mean(pv10<0.05),mean(pv11<0.05),mean(pv12<0.05),mean(pv13<0.05),

mean(pv14<0.05),mean(pv15<0.05),mean(pv16<0.05),mean(pv17<0.05),

mean(pv18<0.05))

names(mpvnp)<-c("6normS1","6normS2","6tS1","6tS2","6nasimmS1","6nasimmS2",

"10normS1","10normS2","10tS1","10tS2","10nasimmS1","10nasimmS2","20normS1",

"20normS2","20tS1","20tS2","20nasimmS1","20nasimmS2")

}

pv1a<-double(B)

pv2a<-double(B)

pv3a<-double(B)
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pv4a<-double(B)

pv5a<-double(B)

pv6a<-double(B)

pv7a<-double(B)

pv8a<-double(B)

pv9a<-double(B)

pv10a<-double(B)

pv11a<-double(B)

pv12a<-double(B)

pv13a<-double(B)

pv14a<-double(B)

pv15a<-double(B)

pv16a<-double(B)

pv17a<-double(B)

pv18a<-double(B)

for (i in 1:B){

a1a<-manova(as.matrix(dataset[((36*C)*(i-1)+1):((36*C)*(i-1)+(6*C)),

8:10])˜ID_blocco[((36*C)*(i-1)+1):((36*C)*(i-1)+(6*C))]+

ID_tratt[((36*C)*(i-1)+1):((36*C)*(i-1)+(6*C))],data=dataset)

a2a<-manova(as.matrix(dataset[((36*C)*(i-1)+6*C+1):((36*C)*(i-1)+12*C),

8:10])˜ID_blocco[((36*C)*(i-1)+6*C+1):((36*C)*(i-1)+12*C)]+

ID_tratt[((36*C)*(i-1)+6*C+1):((36*C)*(i-1)+12*C)],data=dataset)

a3a<-manova(as.matrix(dataset[((36*C)*(i-1)+12*C+1):((36*C)*(i-1)+18*C),

8:10])˜ID_blocco[((36*C)*(i-1)+12*C+1):((36*C)*(i-1)+18*C)]+

ID_tratt[((36*C)*(i-1)+12*C+1):((36*C)*(i-1)+18*C)],data=dataset)

a4a<-manova(as.matrix(dataset[((36*C)*(i-1)+18*C+1):((36*C)*(i-1)+24*C),

8:10])˜ID_blocco[((36*C)*(i-1)+18*C+1):((36*C)*(i-1)+24*C)]+

ID_tratt[((36*C)*(i-1)+18*C+1):((36*C)*(i-1)+24*C)],data=dataset)

a5a<-manova(as.matrix(dataset[((36*C)*(i-1)+24*C+1):((36*C)*(i-1)+30*C),

8:10])˜ID_blocco[((36*C)*(i-1)+24*C+1):((36*C)*(i-1)+30*C)]+
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ID_tratt[((36*C)*(i-1)+24*C+1):((36*C)*(i-1)+30*C)],data=dataset)

a6a<-manova(as.matrix(dataset[((36*C)*(i-1)+30*C+1):((36*C)*(i-1)+36*C),

8:10])˜ID_blocco[((36*C)*(i-1)+30*C+1):((36*C)*(i-1)+36*C)]+

ID_tratt[((36*C)*(i-1)+30*C+1):((36*C)*(i-1)+36*C)],data=dataset)

pv1a[i]<-as.numeric(unlist(summary(a1a))[53])

pv2a[i]<-as.numeric(unlist(summary(a2a))[53])

pv3a[i]<-as.numeric(unlist(summary(a3a))[53])

pv4a[i]<-as.numeric(unlist(summary(a4a))[53])

pv5a[i]<-as.numeric(unlist(summary(a5a))[53])

pv6a[i]<-as.numeric(unlist(summary(a6a))[53])

a7a<-manova(as.matrix(dataset[((60*C)*(i-1)+1+36*B*C):

((60*C)*(i-1)+(10*C)+36*B*C),8:10])˜ID_blocco[((60*C)*(i-1)+1+36*B*C):

((60*C)*(i-1)+(10*C)+36*B*C)]+ID_tratt[((60*C)*(i-1)+1+36*B*C):

((60*C)*(i-1)+(10*C)+36*B*C)],data=dataset)

a8a<-manova(as.matrix(dataset[((60*C)*(i-1)+10*C+1+36*B*C):

((60*C)*(i-1)+20*C+36*B*C),8:10])˜ID_blocco[((60*C)*(i-1)+10*C+1+36*B*C):

((60*C)*(i-1)+20*C+36*B*C)]+ID_tratt[((60*C)*(i-1)+10*C+1+36*B*C):

((60*C)*(i-1)+20*C+36*B*C)],data=dataset)

a9a<-manova(as.matrix(dataset[((60*C)*(i-1)+20*C+1+36*B*C):

((60*C)*(i-1)+30*C+36*B*C),8:10])˜ID_blocco[((60*C)*(i-1)+20*C+1+36*B*C):

((60*C)*(i-1)+30*C+36*B*C)]+ID_tratt[((60*C)*(i-1)+20*C+1+36*B*C):

((60*C)*(i-1)+30*C+36*B*C)],data=dataset)

a10a<-manova(as.matrix(dataset[((60*C)*(i-1)+30*C+1+36*B*C):

((60*C)*(i-1)+40*C+36*B*C),8:10])˜ID_blocco[((60*C)*(i-1)+30*C+1+36*B*C):

((60*C)*(i-1)+40*C+36*B*C)]+ID_tratt[((60*C)*(i-1)+30*C+1+36*B*C):

((60*C)*(i-1)+40*C+36*B*C)],data=dataset)

a11a<-manova(as.matrix(dataset[((60*C)*(i-1)+40*C+1+36*B*C):

((60*C)*(i-1)+50*C+36*B*C),8:10])˜ID_blocco[((60*C)*(i-1)+40*C+1+36*B*C):

((60*C)*(i-1)+50*C+36*B*C)]+ID_tratt[((60*C)*(i-1)+40*C+1+36*B*C):

((60*C)*(i-1)+50*C+36*B*C)],data=dataset)

a12a<-manova(as.matrix(dataset[((60*C)*(i-1)+50*C+1+36*B*C):
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((60*C)*(i-1)+60*C+36*B*C),8:10])˜ID_blocco[((60*C)*(i-1)+50*C+1+36*B*C):

((60*C)*(i-1)+60*C+36*B*C)]+ID_tratt[((60*C)*(i-1)+50*C+1+36*B*C):

((60*C)*(i-1)+60*C+36*B*C)],data=dataset)

pv7a[i]<-as.numeric(unlist(summary(a7a))[53])

pv8a[i]<-as.numeric(unlist(summary(a8a))[53])

pv9a[i]<-as.numeric(unlist(summary(a9a))[53])

pv10a[i]<-as.numeric(unlist(summary(a10a))[53])

pv11a[i]<-as.numeric(unlist(summary(a11a))[53])

pv12a[i]<-as.numeric(unlist(summary(a12a))[53])

a13a<-manova(as.matrix(dataset[((120*C)*(i-1)+1+96*B*C):

((120*C)*(i-1)+(20*C)+96*B*C),8:10])˜ID_blocco[((120*C)*(i-1)+1+96*B*C):

((120*C)*(i-1)+(20*C)+96*B*C)]+ID_tratt[((120*C)*(i-1)+1+96*B*C):

((120*C)*(i-1)+(20*C)+96*B*C)],data=dataset)

a14a<-manova(as.matrix(dataset[((120*C)*(i-1)+20*C+1+96*B*C):

((120*C)*(i-1)+40*C+96*B*C),8:10])˜ID_blocco[((120*C)*(i-1)+20*C+1+96*B*C):

((120*C)*(i-1)+40*C+96*B*C)]+ID_tratt[((120*C)*(i-1)+20*C+1+96*B*C):

((120*C)*(i-1)+40*C+96*B*C)],data=dataset)

a15a<-manova(as.matrix(dataset[((120*C)*(i-1)+40*C+1+96*B*C):

((120*C)*(i-1)+60*C+96*B*C),8:10])˜ID_blocco[((120*C)*(i-1)+40*C+1+96*B*C):

((120*C)*(i-1)+60*C+96*B*C)]+ID_tratt[((120*C)*(i-1)+40*C+1+96*B*C):

((120*C)*(i-1)+60*C+96*B*C)],data=dataset)

a16a<-manova(as.matrix(dataset[((120*C)*(i-1)+60*C+1+96*B*C):

((120*C)*(i-1)+80*C+96*B*C),8:10])˜ID_blocco[((120*C)*(i-1)+60*C+1+96*B*C):

((120*C)*(i-1)+80*C+96*B*C)]+ID_tratt[((120*C)*(i-1)+60*C+1+96*B*C):

((120*C)*(i-1)+80*C+96*B*C)],data=dataset)

a17a<-manova(as.matrix(dataset[((120*C)*(i-1)+80*C+1+96*B*C):

((120*C)*(i-1)+100*C+96*B*C),8:10])˜ID_blocco[((120*C)*(i-1)+80*C+1+96*B*C):

((120*C)*(i-1)+100*C+96*B*C)]+ID_tratt[((120*C)*(i-1)+80*C+1+96*B*C):

((120*C)*(i-1)+100*C+96*B*C)],data=dataset)

a18a<-manova(as.matrix(dataset[((120*C)*(i-1)+100*C+1+96*B*C):

((120*C)*(i-1)+120*C+96*B*C),8:10])˜ID_blocco[((120*C)*(i-1)+100*C+1+96*B*C):
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((120*C)*(i-1)+120*C+96*B*C)]+ID_tratt[((120*C)*(i-1)+100*C+1+96*B*C):

((120*C)*(i-1)+120*C+96*B*C)],data=dataset)

pv13a[i]<-as.numeric(unlist(summary(a13a))[53])

pv14a[i]<-as.numeric(unlist(summary(a14a))[53])

pv15a[i]<-as.numeric(unlist(summary(a15a))[53])

pv16a[i]<-as.numeric(unlist(summary(a16a))[53])

pv17a[i]<-as.numeric(unlist(summary(a17a))[53])

pv18a[i]<-as.numeric(unlist(summary(a18a))[53])

mpvp<-c(mean(pv1a<0.05),mean(pv2a<0.05),mean(pv3a<0.05),mean(pv4a<0.05),

mean(pv5a<0.05),mean(pv6a<0.05),mean(pv7a<0.05),mean(pv8a<0.05),mean(pv9a<0.05),

mean(pv10a<0.05),mean(pv11a<0.05),mean(pv12a<0.05),mean(pv13a<0.05),

mean(pv14a<0.05),mean(pv15a<0.05),mean(pv16a<0.05),mean(pv17a<0.05),

mean(pv18a<0.05))

names(mpvp)<-c("6normS1","6normS2","6tS1","6tS2","6nasimmS1","6nasimmS2"

"10normS1","10normS2","10tS1","10tS2","10nasimmS1","10nasimmS2","20normS1",

"20normS2","20tS1","20tS2","20nasimmS1","20nasimmS2")

}

t<-list(mpvnp,mpvp)

names(t)<-c("NPManova","PManova")

t

}

a<-simula.adonis(mu=mu21,B=500,np=200)

write.table(a$NPManova,"a1.txt",sep="\t",row.names=F,col.names=F)

write.table(a$PManova,"a2.txt",sep="\t",row.names=F,col.names=F)

b<-simula.adonis(mu=mu22,B=500,np=200)

write.table(b$NPManova,"b1.txt",sep="\t",row.names=F,col.names=F)

write.table(b$PManova,"b2.txt",sep="\t",row.names=F,col.names=F)

c<-simula.adonis(mu=mu23,B=500,np=200)

write.table(c$NPManova,"c1.txt",sep="\t",row.names=F,col.names=F)
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write.table(c$PManova,"c2.txt",sep="\t",row.names=F,col.names=F)

d<-simula.adonis(mu=mu24,B=500,np=200)

write.table(d$NPManova,"d1.txt",sep="\t",row.names=F,col.names=F)

write.table(d$PManova,"d2.txt",sep="\t",row.names=F,col.names=F)

e<-simula.adonis(mu=mu31,B=500,np=200)

write.table(e$NPManova,"e1.txt",sep="\t",row.names=F,col.names=F)

write.table(e$PManova,"e2.txt",sep="\t",row.names=F,col.names=F)

f<-simula.adonis(mu=mu32,B=500,np=200)

write.table(f$NPManova,"f1.txt",sep="\t",row.names=F,col.names=F)

write.table(f$PManova,"f2.txt",sep="\t",row.names=F,col.names=F)

g<-simula.adonis(mu=mu33,B=500,np=200)

write.table(g$NPManova,"g1.txt",sep="\t",row.names=F,col.names=F)

write.table(g$PManova,"g2.txt",sep="\t",row.names=F,col.names=F)

h<-simula.adonis(mu=mu34,B=500,np=200)

write.table(h$NPManova,"h1.txt",sep="\t",row.names=F,col.names=F)

write.table(h$PManova,"h2.txt",sep="\t",row.names=F,col.names=F)

i<-simula.adonis(mu=mu41,B=500,np=200)

write.table(i$NPManova,"i1.txt",sep="\t",row.names=F,col.names=F)

write.table(i$PManova,"i2.txt",sep="\t",row.names=F,col.names=F)

j<-simula.adonis(mu=mu42,B=500,np=200)

write.table(j$NPManova,"j1.txt",sep="\t",row.names=F,col.n

ames=F)

write.table(j$PManova,"j2.txt",sep="\t",row.names=F,col.names=F)

k<-simula.adonis(mu=mu43,B=500,np=200)

write.table(k$NPManova,"k1.txt",sep="\t",row.names=F,col.names=F)

write.table(k$PManova,"k2.txt",sep="\t",row.names=F,col.names=F)

l<-simula.adonis(mu=mu44,B=500,np=200)

write.table(l$NPManova,"l1.txt",sep="\t",row.names=F,col.names=F)

write.table(l$PManova,"l2.txt",sep="\t",row.names=F,col.names=F)

m<-simula.adonis(mu=mu51,B=500,np=200)

write.table(m$NPManova,"m1.txt",sep="\t",row.names=F,col.names=F)
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write.table(m$PManova,"m2.txt",sep="\t",row.names=F,col.names=F)

n<-simula.adonis(mu=mu52,B=500,np=200)

write.table(n$NPManova,"n1.txt",sep="\t",row.names=F,col.names=F)

write.table(n$PManova,"n2.txt",sep="\t",row.names=F,col.names=F)

o<-simula.adonis(mu=mu53,B=500,np=200)

write.table(o$NPManova,"o1.txt",sep="\t",row.names=F,col.names=F)

write.table(o$PManova,"o2.txt",sep="\t",row.names=F,col.names=F)

p<-simula.adonis(mu=mu54,B=500,np=200)

write.table(p$NPManova,"p1.txt",sep="\t",row.names=F,col.names=F)

write.table(p$PManova,"p2.txt",sep="\t",row.names=F,col.names=F)
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