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Introduction 

  

 

 

Among neurological diseases, sleep disorders are those commonly considered to be less serious 

and disabling. For this widespread belief, often people are poorly inclined to report their sleeping 

problems to their personal health-care provider. However these disturbances affect a large 

segment of world’s population. Their prevalence has been estimated to be approximately 10%.  

The causes of sleep problems are different and often are consequences of other clinical 

conditions. Whatever the causes are, it has been demonstrated that sleep deprivation affects the 

overall life quality, resulting in impaired memory and cognitive functions and compromising both 

productivity and wellness. Sleep disturbances constitute therefore a substantial socio-economic 

burden and, for this reason, the appropriate diagnosis and treatment of these pathologies represent 

great challenges for clinicians and pharmaceutical companies. The latter have made huge 

investments in this research field, trying to develop safer and more effective drugs (hypnotics) 

able to regulate the sleep-wake alternation. Sleep is not a homogeneous state of unconsciousness, 

but it is characterized by an internal structure, called ‘sleep architecture’, described by different 

sleep stages (awake, stage 1, stage 2, deep sleep, REM) and transitions among them. It has been 

demonstrated that sleep architecture follows specific patterns during the night and that the 

maintenance of such structure is important to guarantee a restorative sleep.  

Sleep stages are commonly assessed through ‘polysomnography’, a multi-channel diagnostic 

technique which consists in the simultaneous recording of electroencephalogram, 

electrooculogram, electromyogram and other relevant features. On the basis of the characteristics 

of these recordings, international regulatory authorities provided indications on the endpoints to 

be evaluated for assessing the severity of the sleep conditions and the effect of drugs for the relief 

of these conditions. In this context, aggregated variables characterizing each patient’s sleep, such 

as the 'Wake After Sleep Onset', (WASO, the amount of time during the night spent in the awake 

state after being fallen asleep), or the ‘Latency to Persistent Sleep’, (LPS, the time spent in the 

awake state before falling asleep), are typically used. In the clinical practice, sleep disorders and, 

in turn, the effect of hypnotics are described on the basis of these aggregated parameters which, 

anyway, reflect only the overall trend of sleep during the night. Transforming the PSG data into 

these aggregate parameters implies however a substantial loss of information regarding the sleep 

architecture. On the contrary, the recent research has demonstrated that the maintenance of a 

physiological sleep architecture is just as important as the total sleeping time, so that this is an 

important differentiation criteria for new drugs used for the treatment of sleep disturbances.  
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In the effort of better understanding the sleep-wake cycle, mathematical models should be 

considered as a natural way to properly and quantitatively integrate complex information obtained 

from brain and sleep studies. In particular, it would be suitable to describe the sleep architecture 

through a mathematical model, to correctly describe and/or predict the sleep stages time-course 

along the night. In this respect, the polysomnograghic data can be described using a finite discrete 

stochastic process assuming values in a finite discrete set (the sleep stages). One of the most 

interesting approaches proposed in the literature to describe such data [1] is the ‘Markov-chain 

model’, which assumes the sequence of sleep stages to be governed by the following property: the 

probability of transition from state m to state k at a certain time of the night depends only on the 

state of departure m and not on the entire past history of the states.  

Recently, this model has been further developed including multinomial random variables for 

simultaneously characterizing all the possible transitions from a specific stage at a certain time. 

Multinomial logistic functions have been then introduced for describing the corresponding 

transition probabilities [2].  

The aim of this thesis is to evaluate whether the multinomial model proposed in [2] adequately 

describes the underlying system. Data from a clinical study conducted in patients with a diagnosis 

of primary insomnia are used for this analysis. 

Different diagnostic methods to investigate the adequacy and the performance of a categorical 

model are proposed and implemented in this thesis. I mainly focus my attention on those methods 

based on stochastic simulations considered more appropriate for categorical type of data as 

suggested in several papers in the literature [3, 4 ,5]. In addition, the model assessment includes 

also the evaluation of the estimation method adopted to identify multinomial model parameters. 

For this reason, I introduce in this thesis a diagnostic method derived by a recently proposed [6,7] 

approach for checking both model and estimation method performance. The key contribution of 

this work is to translate complex diagnostic methods based on simulations and statistics of re-

estimated parameters in a visual evaluation of the relevant model characteristics: in particular, the 

transition probabilities between sleep stages. This kind of visual comparison – applied for the first 

time in categorical models - has been called ‘Visual Estimation Check’ (VEC).  

This thesis is structured as follows: Chapter 1 provides some background on sleep physiology and 

its regulation mechanisms, including an overview on the instrumentation and the guidelines for 

assessing sleep stages. Chapter 2 describes different estimation methods, with particular emphasis 

on the population approach, adopted in our analyses, and its application to categorical data. 

Chapter 3 presents the Markov-chain model used for describing sleep architecture, including 

some details of the basic theory. Results are presented in Chapter 4 where the validation of the 

model and the outcome of the different diagnostic methods applied in this work are described. 

Finally, a critical discussion, also on possible further developments of this research project, is 
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provided in the Conclusions. Code implementing models using a non-linear mixed effect 

(NONMEM) approach and methods for validation analysis (in R) are reported in Appendix. 
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Chapter 1 

Sleep: physiology fundamentals, 

treatment of insomnia and quantitative 

methods for its assessment 

  

 

 

Sleep is a complex, highly organized physiological process that is fundamental to life. It is a 

natural state of bodily rest characterized by total or partial unconsciousness and the inactivity of 

nearly all voluntary muscles. Both sensory and motor activities are suspended implying reduced 

response to stimuli and minimal movement. However, the responsiveness to endogenous and 

exogenous stimuli is not completely absent during sleep and the condition of unconsciousness is 

reversible.  

Sleep is not a homogeneous state of unconsciousness but it is characterized by an internal 

structure, called ‘sleep architecture’, defined by different stages and the transition between them. 

It has been demonstrated that the maintenance of such architecture is fundamental to determine 

sleep quality and, therefore, the physical and mental well-being.  

On the other hand, disorders in the natural pattern of sleep may lead to adverse consequences and 

may seriously affect patients’ health, productivity and life quality [8,9,10]. 

The prevalence of sleep disturbances indicates that it is a very common problem affecting both 

men and women, elderly and young population. The causes of sleep problems are different and 

often are related to other clinical pathologies. For these reasons, the appropriate diagnosis  and the 

treatment of sleep disorders is becoming more and more relevant.  

However, the purposes and mechanisms regulating sleep are not completely clear and the deep 

understanding of sleep architecture and patterns represents a great challenge to clinicians and 

pharmaceutical companies, that are leading an intense research in this field. 

The first attempt to describe human sleep was made in 1930 by Berger, the father of 

electroencephalography [11]. He obtained the first sleep recording and noted that the alpha 

rhythm disappeared when his subject fell asleep. A second important achievement was made in 

1937 when Loomis et al. [12] published the first continuous overnight EEG sleep recording in 

humans and proposed a scheme, the so called ‘sleep staging’, to summarize the EEG recording in 
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a reduced dataset. They proposed a classification of the EEG activity recorded during sleep into 5 

stages: A, B,  C, D and E, on the basis of the predominant EEG rhythm in a fixed time domain. 

In 1953 Aserinsky and Kleitmain [13] discovered episodic electro-oculagraphic (EOG) activity 

occurring during sleep stage B every 90-120 minutes. Initially this activity was supposed to be an 

artifact due to instrumentation, but subsequent studies demonstrated that these episodes were 

actually occurring. These events were called ‘Rapid Eye Movements’ (REMs). 

The authors tried also to establish the relation existing between REM stage and dreaming.  It was 

noted that dreaming happened in 20 of the 27 instances after the awakening from REM sleep 

stage. In 1957 Dement and Kleitman [14] suggested a new classification for sleep stages: sleep 

stages were divided into four Non-REM (NREM) stages and a REM stage. 

The next major improvement on sleep architecture description was made in 1959 when Jouvet 

[15] observed by the electromyography (EMG) technique muscular atonia related to the REM 

stage. He also introduced the concept that REM stage was a state in which the brain was ‘active’. 

The staging criteria were standardized in 1968, when Rechtschaffen and Kales developed and 

published ‘A Manual of Standardized Terminology, Techniques and Scoring System for Sleep 

Stages of Human Subjects’, [16], establishing the major rules for classifying sleep stages during a 

standardized sleep recording. This manual, generally reported as the ‘R & K Manual’, received a 

general consensus and became a gold standard in sleep measurements. In the ‘R & K Manual’, 

NREM sleep was divided into four stages (stages 1, 2, 3 , 4), with slow-wave sleep or deep sleep 

comprising stages 3 and 4 and, for contrast, light-sleep comprising stages 1 and 2. REM sleep was 

sometimes reported as stage 5. 

In 2004, the American Academy of Sleep Medicine (AASM) proposed several changes in the 

scoring system indicated by the ‘R & K standard’, the most significant being the combination of 

stages 3 and 4 into a unique stage, called Stage N3. These proposed changes were published in 

2007 in ‘The AASM Manual for the Scoring of Sleep and Associated Events’ [17].  

 

 

1.1. Sleep stages 

 

Sleep stages and the other features related to sleep are commonly assessed by polysomnography 

in a specialized sleep laboratory. Polysomnography is a worldwide standardized procedure used 

for the diagnosis of sleep disorders. As a result of such a technique, it is possible (a) to recognize 

some important features/pathologies accompanying/affecting sleep (apneic episodes, restless leg 

syndrome, etc), (b) to exactly assess the sequence of sleep stages occurring during the night 

according to the ‘Standard manual’s rules’ and (c) to assess some important aggregated 

parameters that help in quantifying the severity of the pathology under examination. 
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1.1.1. Instrumentation: Polysomnography 

Plysomnography, abbreviated PSG, is a multi-channel tool that allows to simultaneously record 

relevant activities occurring during sleep. On the basis of these recorded parameters, the rules 

established by the ‘Standard manual’ permit to assess for each time interval of the night the 

corresponding sleep stage.  

A polysomnogram typically records a minimum of eleven channels requiring a minimum of 22 

wires attached to the patient. A computer system is used for recording, storing and displaying the 

data obtained by each channel. During sleep the computer monitor can display multiple channels 

continuously. In addition, sleep laboratories have video camera installed in the patient’s room in 

order to record also sleep-related behavioral features, as sleep-talking, snoring etc. 

The recording must be carried out with the least discomfort for the patient, hence it must be 

conducted in a quiet room similar to comfortable bedroom. Recording tools should be physically 

separated from the patient and wires and electrodes must disturb the patient as less as possible. 

Light and noises should be appropriately shielded. After the application of the electrodes and the 

calibration of the system, the lights should be turned off approximately at patient’s usual bed-

time. It should be taken note of any episode of snoring, sleep-vocalization or other activities 

occurring during sleep. In a standardized clinical study aimed to investigate any potential drug 

effect, the registration of the PSG measurement occurs during a predefined time interval (from the 

“light off” to the “light on” time that typically lasts 8 hours). 

Measurements include many recordings [18] listed below. 

 

• EEG: Electroencephalography of brain waves   

The EEG remains the primary variable for staging the sleep. A single central channel is 

considered  sufficient for basic sleep staging. However, it is recommended to provide 

redundancy to permit adequate assessments of other EEG characteristics. Consequently, 

six or more channels of cortical activity are typically used, with electrodes preferentially 

attached to the scalp near the frontal (Fp1, Fp2), central (C3, C4) and occipital (O3, O4) 

portions of the brain.  

 

• EOG: Electrooculography of eye movements 

Electrooculography provides important information regarding sleep onset and REM 

recognition. At least two electrodes are recommended: one positioned one centimetre 

above the outer canthus of the right eye and the other placed one centimetre below the 

outer canthus of the left eye.  
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• EMG: Electromyography of skeletal muscle activity 

Submental EMG activity is used to determine the level of muscle tone, which 

significantly decreases during REM sleep. This channel is relevant   to determine both 

sleep onset and REM occurrence. This channel also provides information regarding 

patient movements. A single channel is considered enough: electrodes are placed under 

the chin, in the submental region. 

 

• ECG: Electrocardiography of heart functions 

Electrocardiography allows to control heart functions during sleep. In fact, it can assess  

the severity of some cardiorespiratory disfunctions, such as in sleep apnea. A single ECG 

channel is sufficient for PSG recording. Typically, two electrodes are placed one in the 

sternal area and the other at a lateral chest location. 

  

• Respiratory Effort and Airflow 

The monitoring of respiration during PSG is necessary for the detection of apneas and 

hypopneas. It is important to record at least 2 key parameters: (a) air exchange through 

both the mouth and nose; (b) expansion and relaxation of the thorax and abdomen 

indicating respiratory effort. 

Air exchange can be measured by using different types of transducers. The measurement 

of the expansion and relaxation of thorax and abdomen may be accomplished by 

measuring intercostal EMG and thoracic/abdominal impedance or using strain gauge 

devices. Respiratory pauses are considered apneic episodes when persist at least 10 sec. 

The absence of respiratory effort and, consequently, of airflow indicates the presence of a 

‘central apnea’, while the presence of respiratory effort without air exchange represents 

an  ‘obstructive apnea’. Oxygen saturation may drop significantly, usually in a direct 

relationship with the lengths of apneas. 

 

• Blood Oxygenation (���  or �� saturation) 

The measurement of blood oxygen in the PSG system facilitates detecting apneas 

episodes and other respiratory difficulties. Monitoring of blood oxygenation indicates the 

severity of breathing disfunctions. Pulse oxymetry, a noninvasive technique, is 

recommended. The sensors of this tool can be easily attached to the patient’s fingertips or 

earlobs and can also be easily interfaced with polygraphic recorder. It is also possible to 

measure transcutaneous P�� using a Clark oxygen electrode attached directly to the skin.  
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• Expired ��� 

Quantifying expired amount of CO�  is another useful tool for monitoring respiratory 

functions. During expiration, the partial pressure of CO� approximates the intra-alveolar P��� and this type of information can be considered as a marker of air exchange enabling 

the evaluation of some respiratory pathologies, as pulmonary disease, that modify the 

respiratory variables. 

A small diameter tube connecting the instrumentation to patient’s mouth or nostrils is 

often used to  measure air flow. 

 

• Body/Limb Movements 

Some sleep disturbances are caused by the restless legs syndrome (RLS) or the periodic 

myoclonus in sleep (PMS). These pathologies imply movements compromising a good 

sleep. These movements are easily detectable in a sleep laboratory videotaping the patient 

or measuring muscular activity by means of EMG or accelerometers. 

 

• Behavioral Observation 

An integral part of PSG procedure is the observation of patient’s behavior, noting any 

vocalization or snoring during sleep. This is easily implemented through a system 

composed by a video-camera, a microphone and a monitor carefully observed by the 

assigned technician.  

 

 

Figure 1.1: Typical polysomnographic installation.  
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In addition to recorded trace, the results of sleep monitoring procedure are typically reported with 

few additional information: (a) patient’s information for his/her identification; (b) patient’s 

history, including any existing pathology and relevant drugs assumed in the preceding 30 days; 

(c) recording conditions, including beginning and ending time of recording, list of recorded 

channels (each being labeled), and, when relevant,  anatomic location of sensors; (d) a summary 

of polygraphic characteristics such as sleep statistics (aggregated parameters as sleep latency, 

total sleep time, etc), respiratory characteristics (presence/absence of snoring, number of apneic 

episodes, etc), heart rate values, movements (frequency of occurrence, etc), behavioral 

observations, EEG characteristics (basic characterization of the awake and sleep patterns and a 

description of any other feature). 

The ‘Standard manual’ provides the rules for staging the sleep according to the obtained 

physiological parameters of interest. Night time, that is the recording time, is divided into 30-

second intervals and  the corresponding sleep stage is assessed for each interval, in an automatic 

computer-based way according to those rules. 

 

1.1.2. Stage classification 

The first step in the automatic sleep analysis is signals pre-processing. This step is necessary to 

reduce the enormous amount of raw data and remove artefacts affecting signals. This allows 

automatic statistical tools to analyze the data. As a result of this process, it is possible to clearly 

distinguish specific features necessary to discriminate sleep stages as follows: 

 

• EEG: it is possible to recognize the amplitude and power of regular waves (beta, alpha, 

theta and delta waves) and specific patterns overlapped to the basic rhythm: K-

complexes, sleep spindles, and vertex sharp waves. 

K-complexes are specific waveforms occurring during sleep and distinguishing a specific 

sleep stage (stage 2). They are characterized by a brief negative high-voltage peak, 

usually greater than 100 µV, followed by a slower positive complex at around 350 to 550 

ms and a final negative peak at 900 ms. K-complexes occur spontaneously or as a 

response to exogenous or endogenous stimuli. A sleep spindle is a burst of brain activity 

visible on an EEG. It consists of 12-16 Hz waves that occur for 0.5 to 1.5 seconds. Vertex 

sharp waves are particular waveforms occurring during sleep but not characterizing any 

single stage. Their amplitude is 50-150 µV. 

 



 

Figure 1.2: EEG specific feature

• EOG: the specific patterns are rapid eye movements and slow eye movements which have 

to be distinguished from each 

 

The second step is the combination of these extracted features and waveforms in order to assess 

the correct sleep stage. The ‘

categorized as AWAKE (A

criteria. 

 

• AWAKE (AW)  

(a) EEG: Wakefulness with eyes closed is characterized by an EEG rhythm 

predominantly in the alpha range (

a significant mental task diminishes or block

determined when alpha activity decreases to duration of less than 50% of an epoch or 

when a sleep spindle, K

wakefulness is scored.

(b) EMG: Moderately muscle activ

(c) EOG: Eye movements may occur, both rapid and slow

 

 

Figure 1.3

 

 

EEG specific feature that help in assessing sleep stages: K-complex and Sleep Spindle.

 

EOG: the specific patterns are rapid eye movements and slow eye movements which have 

to be distinguished from each other. 

The second step is the combination of these extracted features and waveforms in order to assess 

the correct sleep stage. The ‘Standard manual’ establishes that each 30-second interval should be 

AW) or sleep stage 1, 2, 3, 4 or REM, according to the following 

EEG: Wakefulness with eyes closed is characterized by an EEG rhythm 

predominantly in the alpha range (from 8 Hz to 12 Hz). Opening the eyes or engaging 

a significant mental task diminishes or blocks alpha activity. Sleep onset epoch is 

determined when alpha activity decreases to duration of less than 50% of an epoch or 

when a sleep spindle, K-complex, vertex wave or theta activity occurs; otherwise 

wakefulness is scored. 
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• STAGE 1 (ST1) 

(a) EEG: Stage 1 marks the transition from alpha waves to theta waves (ranging from 4 

Hz to 7 Hz). This sleep stage is transitional and does not last long. Often this state is 

not perceived as sleep when a person is asked; it is also referred to as ‘somnolence or 

drowsy sleep’. There are no K-complexes or spindles. 

(b) EMG: Loss of some muscle tone. 

(c) EOG: Slow eye movements. 

 

 

 

Figure 1.4: Typical EEG, EOG and EMG activities related to STAGE 1 sleep. 

 

 

• STAGE 2 (ST2) 

(a) EEG: Stage 2 is characterized by the presence of sleep spindles and K-complexes 

overlapping on a theta range EEG rhythm. Both patterns are clearly recognizable 

from the background activity.  

(b) EMG: Muscle tone is slightly lower than during stage 1 sleep. 

(c) EOG: Usually there are no more eye movements. 

 

 

 

Figure 1.5: Typical EEG, EOG and EMG activities related to STAGE 2 sleep. 
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• STAGE 3 (ST3) 

(a) EEG: Stage 3 is designated when there is 20% to 50% of high amplitude (more than 

75 µV ) delta activity in an epoch. 

(b) EMG: Muscle tone is much lower. 

(c) EOG: No eye movements. 

 

 

 

Figure 1.6: Typical EEG, EOG and EMG activities related to STAGE 3 sleep. 

 

 

• STAGE 4 (ST4) 

(a) EEG: Stage 4 is scored when high amplitude delta activity covers more than 50% of 

an epoch. To awake a person from stage 3 or stage 4 is very difficult and usually it 

takes a few minutes to regain full consciousness. They are also called ‘slow-wave 

sleep’ or ‘deep sleep’. Slow wave sleep has a restorative function, resulting more 

copious after physical works or sleep deprivation.  

(b) EMG: Muscle tone is much lower. 

(c) EOG: No eye movements. 

 

 

 

Figure 1.7: Typical EEG, EOG and EMG activities related to STAGE 4 sleep. 
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• REM (REM) 

(a) EEG: During REM sleep the EEG shows mixed frequencies (theta and alpha range). 

Saw-tooth theta waves may occur. REM sleep may be split into 2 different phases: 

periods when eye movement activity is high, and period when REM background 

activity continues without phasic activity. These two phases are called ‘phasic REM 

activity’ and ‘tonic REM activity’. REM stage is often accompanied by dreaming 

activity [13]. The particular EEG recorded during REM indicates high cerebral 

activity. This high cerebral activity has been confirmed by cerebral blood flow during 

REM activity measured with positron emission tomography technique.  

(b) EMG: Muscle tone is the lowest, presumably to protect from possible self-damage 

caused as a consequence of dreaming activity. 

(c) EOG: Rapid eye movements 

 

 

 

 

 

Figure 1.8: Typical EEG, EOG and EMG activities related to Tonic REM sleep and Phasic REM sleep. 
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1.1.3. Sleep statistics  

Some important characteristics of sleep can be derived from plysomnographic data. Such 

characteristics are in the clinical practice used for quantifying both the severity of sleep disorders 

and hypnotics efficiency. These parameters are also called ‘aggregated parameters’ because they 

reflect the overall trend of sleep during the night. The following definitions of sleep parameters 

are listed for reference: 

- Total recording time (TRT): the duration of time from the start to the end of a recording, 

usually 8 hours. 

- Time in bed (TIB): the duration of time from ‘light off’ to final awakening. 

- Sleep onset (SO): the first epoch followed by 19 epochs of ‘non awake’ stages. 

- Sleep period time (SPT): the duration of time from SO to final awakening. 

- Latency to persistent sleep (LPS): the duration of time from ‘light off’ to SO. 

- Wake after sleep onset (WASO): the total time spent awake during SPT. 

- Total sleep time (TST): the amount of actual sleep time in a recording. 

- Sleep efficiency (SE): the ratio of total sleep time to time in bed, i.e. TST/TIB*100. 

- Time spent in each of the sleep stages (tAW, tST1, tST2, tST3, tST4, tREM). 

- Number of transition to each stage (nAW, nST1, nST2, nST3, nST4, nREM). 

- Mean extension of each stage (meanAW, meanST1, meanST2, meanST3, meanST4, 

meanREM). 

 

1.1.4. Normal Sleep Pattern 

The sequence of sleep stages across the night is called ‘sleep architecture’ and usually follows a 

particular structure made by repeated ‘sleep cycles’ of alternated REM and Non-REM sleep, each 

lasting approximately 90-120 minutes. These cycles are repeated three to six times each night. 

Sleep stage 2 is the predominant stage, covering more than half of the night, and REM stage 

counting for another 20% to 25%. Stage 1 sleep is a transitional state, consequently it covers a 

minimal part of the night, approximately 1% to 5%, essentially in the phase of sleep onset and in 

the transition to light sleep. Slow wave sleep predominates the first third of the night, while REM 

sleep predominates in the last half of the night.  

Spontaneous arousals and brief awakenings are common during or after REM sleep. Awakenings 

are defined as prolonged arousals implying cardiovascular activation [19,20,21].  

Total duration of sleep varies from 7.5 and 8.5 hours in the majority of healthy persons. Mental 

and physical tasks preceding sleep time seriously influence sleep architecture: physical work 

increases deep-sleep, while mental work increases REM sleep percentages.  

As mentioned above, the maintenance of such pattern is fundamental to preserve sleep quality. 
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Figure 1.9: Normal sleep pattern. On the left a normal sequence of sleep stages during the night. On the right 

a diagram showing the total time spent in each stage. 

 

 

 

1.2. Mechanisms regulating sleep 

 

Maintaining a dynamic balance between wakefulness and sleep is necessary to preserve the 

overall wellness and restore mental and physical capabilities. The mechanisms regulating this 

balance are not completely known but many papers in literature [20,22] suggest that three key 

drives influence this process: (a) the autonomic nervous system, (b) the homeostatic system, (c) 

the circadian rhythm. These mechanisms are independent but clearly are involved to coordinate 

the sleep and wakefulness periodicity, allowing for adaptation to sudden circumstances provoking 

shifts in the time and duration of sleep.  

 

1.2.1. Autonomic nervous system 

In general, a drop in the sympathetic activation accompanied by a simultaneous increase of the 

parasympathetic activity favourites sleep. Consequently, anything, exogenous or endogenous, that 

increases sympathetic outflow can disturb sleep. For example, assuming caffeine or nicotine 

(exogenous) or being in particular states of anxiety (endogenous) are well known factors to 

disturb sleep.  

During stressful periods, increased sympathetic activation results in higher levels of cortisol and 

adrenocorticotrophic hormone which increase wakefulness and inhibit restorative slow-wave 

sleep resulting in a ‘unrestorative’ sleep.  
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The autonomic mechanism is responsible of a ‘survival function’ in case of necessity during the 

night: it promotes quick response and sustained alertness. However, when this mechanism does 

not properly work, it may contribute to sleep disturbances.  

 

1.2.2. Homeostatic control 

The homeostatic process is determined by the amount of sleep and wakefulness. It has been 

demonstrated that the longer the sleep deprivation lasts the stronger the need to sleep becomes. 

Many sleep-deprivation studies have been conducted to determine the effects produced by sleep 

loss: sleep deprivation negatively affects attention, cognitive abilities and behavioural attitudes, 

entailing irritability and more easily (potential) demoralization. 

Reduction of sleep time the previous night linearly increases the speed of falling asleep the 

following day: this can be quantified using a standardized measure of daytime sleepiness: the 

Multiple Sleep Latency Test (MSLT) [23].  

Since the slow-wave sleep has a fundamental restorative function, partial or total sleep 

deprivation increases the amount of slow wave sleep rate during recovery sleep [19,22]. 

Physiologically, sleep deprivation results in increased cortisol levels, thyroid activity and 

catecholamine turnover [24,25]. 

 

1.2.3. Circadian rhythm 

Independently of the homeostatic process, a circadian process influences  the sleep-wake 

alternation according to the 24-hours light-dark cycle. The Central Nervous System CNS area 

involved with this mechanism is the suprachiasmatic nucleus (SCN), which is considered to be a 

biological clock. SCN controls a variety of biological functions, including the core body 

temperature. For this reason, the core body temperature is often used as a monitoring marker for 

circadian clock’s period, phase and amplitude.   

In general, in humans, the body temperature is characterized by: 

• a nadir early in the morning (between 3 AM and 5 AM) 

• a peak in the early evening (between 5 PM and 8 PM) 

• a decline after midday (between 1 PM and 3 PM)  

 

It has been demonstrated [26,27] that, according to this rhythm: 

• maximum sleepiness occurs when body temperature reaches nadir 

• maximum alertness occurs at body temperature peak 

• drowsiness appears when temperature starts to fall 
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A variety of hormonal and metabolic functions are strictly related to the circadian process: blood 

levels of cortisol, prolactin, growth hormone, thyroid stimulating hormone and melatonin are 

driven by this daily clock.  

 

 

1.3. Functions related to sleep  

 

In addition to obvious physical and mental restorative functions, it is possible to attribute to sleep 

two further roles: (a) the capability to restore/maintain the immunologic system and (b) memory 

consolidation.  

It has been demonstrated, in fact, that a low quality sleep or sleep deprivation seriously affects the 

immune system. For example, in [28] the authors proved that a group of 24-hour sleep-deprived 

rats had a 20% decrease in white blood cell count, compared with a control group. 

It is also well demonstrated that sleep deprivation negatively affect memory functions, 

compromising cognitive tasks as decision making, reasoning, etc [29].   

 

1.3.1. Memory and learning 

A variety of studies have tried to clarify the relationship existing between sleep and memory 

consolidation. The mechanisms involved in the memory process consist of brain structure’s 

reorganization into new neuronal connections on the basis of nerve cell dendrites’ 

information/stimuli. This process needs to be fulfilled during the absence of continuous stimuli 

and this is the likely reason  for which memory consolidation is accomplished during sleep. 

There are essentially two types of learning and associated memory.  

 

• The ‘declarative memory’ which is tested through a series of pairs of related terms, such 

as hand-glove, leaf-tree etc. This type of memory is involved in learning foreign 

languages.  

 

•  The ‘procedural memory’ which is tested through the learning of mirror-writing. This 

test consists on writing some sentences while the writing-hand is hidden being helped by 

a mirror only. Procedural memory is necessary for all types of task involving movements 

learning, such as car driving, skiing, etc. 

 

Several studies have shown that not only REM sleep, but also NREM sleep is important for 

memory functions. In particular, in [30] it has been demonstrated that memory is influenced 
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differentially by certain sleep stages: subjects tested in the early night, in which slow wave sleep 

activity is prevalent, demonstrated a better declarative memory with respect to a control group, 

while subjects tested at the end of the night, when REM sleep is prevalent, performed better in the 

procedural memory test. This implies that improvements of declarative memory can be attributed 

to NREM sleep (SWS in particular) while those of procedural memory to REM sleep.  

 

 

1.4. Sleep disorders 

 

As mentioned above, disruptions in the correct maintenance of sleep architecture and sleep-wake 

balance may lead to serious consequences for individuals and society in general, compromising 

both productivity and wellness. 

Sleep disorders are very common complaints affecting a large segment of world’s population. The 

prevalence of such disorders is estimated to be approximately the 10% [31,32].  

Sleep disorders consequences represent a substantial economic burden and, for this reason, it is a 

major objective for clinicians properly diagnosing and treating this kind of pathology.  

The guidelines for diagnosing sleep disorders are listed in the ‘Diagnostic and Statistical Manual 

of Mental Disorders-Fourth Edition-Text Revision’ (DSM-IV-TR) [33].  

Pharmaceutical companies have invested a lot of resources to develop new hypnotic drugs with a 

more safe and effective profile for the treatment of insomnia.  

 

1.4.1. Classification/Definitions 

According to the ‘Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition-Text 

Revision’ (DSM-IV-TR) [33], sleep disorders can be divided into two main categories.  

 

• ‘Insomnia’: defined as difficulty in falling asleep (sleep onset), difficulty in staying asleep 

(sleep maintenance) or low quality of sleep (non-restorative sleep). These symptoms may 

occur simultaneously or affect differentially some individuals, causing for example 

exclusively early morning awakenings.  

Duration of insomnia can be transient (from 1 to several nights), short term (from several 

days to a month) or chronic (lasting for months or years). Transient and short term 

insomnia often may be caused by changes in the sleep environment or by acute stressful 

experiences. Chronic insomnia, instead, may be of primary nature or secondary to other 

conditions/pathologies. When insomnia is secondary to another pathology, often it is not 
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possible to establish whether insomnia is the cause or the effect, but any specific 

treatment should take into account the coexistence of these pathologies.  

There are six major categories in which chronic insomnia can be classified: medical 

(related to medical diseases), psychiatric (following or preceding psychiatric disorders), 

circadian (disordered circadian rhythm), behavioural, pharmacologic (due to drugs’ 

undesired effects) and primary (not conditioned, independent disorder).   

Transient and chronic insomnia obviously entail different therapeutic approaches. One of 

the most important objective in treating transient insomnia is to prevent its evolution to 

chronic insomnia.  

Furthermore, it emerges from several studies [31,32] that risk factors exist for chronic 

insomnia, such as age, gender, medical disease, psychiatric disease and shift work. 

 

• ‘Disorders associated with excessive sleepiness’, for example narcolepsy: these are 

chronic sleep disorders characterized by excessive daytime sleepiness (EDS) which 

involves extreme daytime fatigue and that may lead to fall asleep at inappropriate times. 

Narcoleptics usually experience disturbed nocturnal sleep and an abnormal daytime sleep 

pattern, which is often confused with insomnia.  

 

1.4.2. Consequences of insomnia 

Consequences associated to transient or short term insomnia are similar to those already 

highlighted about sleep deprivation studies: there is an increase in daytime sleepiness and an 

impairment of psychomotor function. Daytime sleepiness can be quantified using the MSL test, 

while psychomotor impairment can be assessed by performing different psychomotor tests, such 

as reaction time test, vigilance test etc. Furthermore, transient/short term insomnia affect 

significantly the ability of sustain attention, resulting in increased daytime lapses, that are periods 

of lack of responsivity (most likely effects of  the so called ‘microsleep’). 

Chronic insomnia is more complex and its consequences vary significantly from case to case. 

Some of the consequences attributable to chronic insomnia may be daytime fatigue and 

sleepiness, as in the case of rheumatoid arthritis and other medical diseases provoking 

fragmentation of sleep. However, in most cases people suffering of chronic insomnia do not show 

daytime sleepiness, but rather a greater alertness as shown by the higher mean latency in MSL test 

when compared to a control group without insomnia. 

Many papers in literature [34,35] have also shown that often insomnia is a precursor for 

depression, reducing subject’s quality of life. 

It has been demonstrated that consequences of insomnia for the society in general are 

economically relevant. People affected by this pathology are more likely to absenteeism and have 
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higher rates of accidents, decreased productivity and quality of life [32]. Direct costs, those of 

medical care, have been estimated to be around $14 billion [36]. There are also relevant indirect 

costs due to decreased economic output attributable to insomnia; these have been quantified in 

around $100 billion [37]. 

 

1.4.3. Treatment of insomnia  

In our culture, there is the tendency to not consider insomnia as a true medical disease, but rather 

as a minor problem, and people often do not report their sleeping difficulties to the general 

practitioner. There is also a general concern about long term use of hypnotic drugs, regarding in 

particular potential addiction and abuse liability. Some physicians, in fact, are reluctant to 

prescribe hypnotic drugs because they are considered symptomatic drugs without solving the real 

causes of insomnia. 

However, physicians are now more experienced in treating such problems and are now available 

new hypnotic agents more safety and effective.   

The purpose of insomnia treatment is obviously to improve patient’s quality of life. In doing so, it 

is necessary to identify and remove any existing problem that may cause insomnia. This goal may 

be achieved through an appropriate treatment consisting in pharmacologic therapy combined to 

educational and behavioural approaches.  

In the past, bromides, barbiturates, paraldehyde and methaqualone have been used as hypnotics, 

but although they have proved sedating properties, they also have significant toxicity problems. 

For this reason, their use is no more recommended. Current hypnotic drugs indicated in treating 

insomnia include traditional benzodiazepines and non-benzodiazepines. The non-benzodiazepines 

are positive allosteric modulators of the GABA-A receptor. Like the benzodiazepines, they exert 

their effects by binding to and activating the benzodiazepine site of the receptor complex.  

 

• Traditional benzodiazepines have been available since the 1960s. These types of 

medications vary significantly in their elimination half-lives and subsequent duration of 

action. The half-life times range from few hours to few days, and this is the major 

concern about their use. The longer half-life time, in fact, may have daytime undesired 

effects after drug’s intake, compromising daytime impairment and increasing the risk of 

accidents and falls. Among the benzodiazepines approved for the treatment of insomnia, 

the fast acting ones with short half-lives such as estazolam, triazolam, and temazepam are 

recommended. Longer-acting benzodiazepines such as nitrazepam and diazepam have 

residual effects that may persist into the next day and are, in general, not recommended.  
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• Newer nonbenzodiazepines, (zolpidem and zaleplon, zopiclone, eszopiclone) are available 

since 1990s. These medications have a shorter half-life time (1-2 hours), so there is a very 

little risk of morning residual effect. Their action implies a rapid sleep onset, so the 

patient can take them just before going to bed. Serious adverse reactions are infrequent. 

The short term safety and efficacy of these new hypnotics have been well proved [38,39] 

and clinical experience supports safety in long-term intermittent use. Continuous long 

term use is not recommended as tolerance, dependence and addiction can occur. 

 

Hypnotics’ efficacy, as already mentioned, is generally determined on the basis of the effect they 

exert on the aggregated parameters. Hypnotic medications currently in use are demonstrated to 

positively influence the Latency to Persistent Sleep (LPS), inducing a rapid sleep onset [38,40]. 

Integrated to the pharmacologic approach, it is of relevant importance the evaluation of specific 

behaviours and circumstances that favourite insomnia. For this reason it is indispensable the 

continuous monitoring and the constant support of the patient. 

 

 

1.5. Aim of this work 

 

Sleep disorders are commonly assessed through ‘polysomnography’, a quantitative diagnostic 

technique that consists in the simultaneous recording of the principal electrophysiological 

activities involved in the sleep process.  

Currently, the clinical use of polysomnography is mainly related to assess sleep aggregated 

characteristics (WASO, LPS, etc.). However, averaging  PSG data into these  parameters implies 

a substantial loss of information regarding the sleep architecture considered as a time-course 

pattern among specific sleep stages. The maintenance of this internal structure has been 

demonstrated to be of significant importance.  

A Multinomial Mixed-Effect Markov-chain model has been recently proposed to properly 

describe the sleep architecture.   

The aim of the work presented in this thesis is to assess the appropriateness of this Markov-chain 

model, evaluating whether the proposed model adequately describes the underlying system, 

provides precise predictions for the parameters of interest and avoids biased estimates. 
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Chapter 2 

Model identification methods  

  

 

 

2.1. Introduction 

 

As described in the previous chapter, the main objective of this thesis is to evaluate a recent 

multinomial proposed for analyzing polisomnography data [2]. However, bias and imprecision in 

the model estimations and predictions may depend not only on possible model misspecifications 

but also on weaknesses in the estimation methods. When dealing with data from clinical studies 

the key objectives of any modeling analysis is to establish both population mean and individual 

responses, since the drug under development has to be effective and safe for the whole 

population. 

Let the gathered data arise from M subjects participating in a certain clinical study and let X be the 

data matrix, where each row contains individual data on N different times: 
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Suppose such data need to be described through a mathematical model. Classical approaches, e.g. 

Least Squares (LS), Weighted Least Squares (WLS), Maximum Likelihood (ML) estimate, 

Bayesian approach, etc., are generally designed for individual fitting: 

 
� =  �!", $�% + '�, 
 

where 
�  are the individual data,  �  the corresponding model prediction, z the independent 

variable, $� the individual parameters and '� the vector of the random error affecting individual 

data. The random error is generally due to measurement errors and noise and it is supposed to be 

drawn from a Gaussian distribution with zero mean and covariance matrix equal to Σ, '�~)!0, +%.  
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These approaches present some identification problems in case of noisy or sparse individual data: 

individual estimates in certain cases may be not accurate or impossible to obtain. Furthermore, 

information at the mean and individual levels are often needed. Consequently, when working in 

similar contexts, it is suitable to build models and identify the corresponding parameters using the 

so called ‘population approaches’.  

Let the individual parameters of the population under examination belong to a certain distribution 

(gaussian, lognormal, etc.), characterized by mean , and covariance Ω: 

  $�~./012!,, Ω%. 
 

It is then possible to think that individual data are realizations of such distribution. The population 

approach allows to investigate, with varying levels of precision, both the mean parameter and the 

variability in the population, i.e. the first two moments of the parameters distribution, 3 = !,, Ω%. 

In this chapter, population approaches are illustrated in detail with particular emphasis on the 

‘mixed-effect modelling approach’ and its application in the case of categorical data.  

 

 

2.2. Naїve average data approach 

 

When clinical studies are performed with the same drug administration and sampling schedules 

for all the subjects in a population, the simplest method for analyzing data is to use a ‘Naїve 

Average Data’ (NAD) approach, which allows to obtain an estimate, ,4, of the mean population 

parameter, θ. 

This approach consists in: 

(a) computing the average value of the data for each sampling time:  

 

�56 = 18 9 ��6
�

�:� ,        1 = 1, . . . , ) 

 

where t indicates the sample number, i the subject number, N the total number of sampling         

times and M the total number of subjects (the resulting mean vector is 
;� = [�5�, �5�, … , �5�]); 
 

(b) fitting a model to the mean data vector: 
; =  !", ,4% + '. 
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This approach is very easily implementable, but it is rather poor in terms of performance and it 

can be very misleading (i.e., leading to wrong models). Imagine, for example, to have gathered 

data which can be described with a mono-exponential decay law:  

 
� = > ?�@!−B�"% + '� . 
 

The mean curve used by NAD approach seems to exhibit a bi-exponential decay, as shown in 

Figure 2.1. That is, data averaging produces a distorted picture of the underlying model. 

 

 

Figure 2.1: Naïve average data approach applied to mono-exponential data. Figure obtained from ‘Models and control 

of Biological Systems 2’ course 2007-2008. 

 

Furthermore, such approach cannot provide any information on the individual behaviour: all 

sources of variability disappear with the computation of the mean response.  

 

 

2.3. Naїve pooled data approach 

 

The ‘Naїve Pooled Data’ (NPD) method was proposed by Sheiner and Beal in [41]. Unlike the 

NAD approach, the NPD approach is far more general: it considers all data as belonging to one 

unique individual. The subscript i disappears and the subscript t indexes all the available (z, x) 

pairs:  

 �6 =  !"6 , $�CD% + '6 , 
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where f is the model prediction for the ‘reference subject’. The latter is characterized by a set of 

parameters, $�CD  , which can be estimated using, for example, the LS method, where the 

following global ‘objective function’ (OF) is minimized: 

 

�E!$�CD% = 9 9!��6 −  !"6 , $�CD%%%��
6:�

�
�:� . 

 

The resulting value is therefore an estimate of the mean population parameters, ,4.  

This approach performs well in case of small variations between subjects but cannot provide any 

information on the individual behaviour: all sources of variability are confounded together.   

 

 

2.4. Standard two-stage approach 

 

The ‘Standard Two-Stage’ (STS) approach consists in: 

(a) estimating individual parameters, $�, by individually fitting each subject data (through for 

example a classical ML approach or a WLS method as in the following formula): 

 $F� = G2HI/JKL[
� −  �!", $�%%]�+M�[
� −  �!", $�%], 
 

where + is the covariance matrix of the residual errors; 

(b) computing population mean and covariance as empirical mean and covariance on the $F�, 
as follows: 

,4 = 18 9 $F�
�

�:� , 
ΩN = 18 9O$F� − ,4PO$F� − ,4P��

�:� , 
where ,4 and ΩN are the estimated  population mean and covariance, respectively.  

The advantage of the STS approach is its simplicity, but the STS estimator is demonstrated to be 

polarized. Ideally, it would be suitable to estimate the true population variability only, by using 

the true individual residuals, 2�: 
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Ω = Q[2�2��] = 18 9!$�∗ − ,∗%!$�∗ − ,∗%��
�:�  , 

where $�∗, ,∗  are the true individual and mean parameters. But using the STS approach the 

individual residuals are instead: 

 2� = O$F� − ,4P =  $F� − $�∗ + $�∗ − ,∗ + ,∗ −  ,4 

 

                                                 Error on the                  Population                Error on the  

                                             individual estimate           variability              mean estimation 

 

 
Moreover, population parameters are obtained in a second step, non influencing individual 

estimates. For this reason, individual estimates are not improved with respect to the estimates 

obtained with the traditional approaches. Furthermore, individual fitting in the first step needs 

‘rich data’ to be correctly performed, otherwise it tends to over-estimate parameters dispersion. 

 

 

2.5. Iterative two-stage approach 

 

The ‘Iterative Two-Stage’ (ITS) approach is an iterative method which consists in the following 

steps. 

 

(a) Individual parameters, $�, are estimated by individually fitting each subject data. 

(b) Population mean and covariance are computed as empirical mean and covariance, as in 

the STS approach, ,4S�S and ΩNS�S. 

(c) ,4S�S and ΩNS�S are used as initial estimates for ,4 and ΩN: ,4!T% = ,4S�S,   ΩN!T% = ΩNS�S. 

(d) Individual parameters at k-th iteration, $F�!U%
, are estimated with a Bayesian approach, 

for example a MAP approach, using as prior for the estimands the parameters obtained 

at the previous iteration: 

 $F�!U% = G2HI/JKL[
� −  �!", $�%]�+M�[
� −  �!", $�%] + +[$� − ,4!UM�%]�{ΩN!UM�%}M�X$� − ,4!UM�%Y. 
 

(e) Individual parameters obtained at the previous step are therefore used to re-estimate 

population parameters, ,4!U%,  ΩN!U%, where k indicates the number of iterations: 
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,4!U% = 18 9 $F�!U%�
�:� , 

ΩN!U% = 18 9!$F�!U% − ,4!U%%!$F�!U% − ,4!U%%��
�:� . 

 

(f) Steps (d) and (e) are repeated until convergence. 

 

This method allows the estimation of the population parameters, , and Ω, to be estimated. It also 

provides individual parameter values, estimated using information derived not only from 

individual data but also from population parameters distribution (priors). However, ITS method, 

being an iterative method, involves a certain computational burden and may produce polarized 

estimates when the number of iterations is excessive.   

 

 

2.6. Non-linear mixed-effect approach: theory 

 

The ‘Non-linear Mixed-Effect’ (NLME) approach is one of the most interesting for population 

analysis, and it is particularly well suited for biological and medical data, which display 

heterogeneity of responses to stimuli and treatments. This approach is based on the assumption 

that the (unknown) process to be described is characterized by a typical behaviour which is 

common to the whole population and by some sources of variability that make the individual 

behaviours differ from the typical one. The latter is determined by the so called ‘fixed effects’, 

while the identified sources of variability are of two different types and are called ‘random 

effects’. The first source of variability is the intrinsic difference that exists among subjects: one 

individual is obviously different from another one. This is called ‘inter-individual’ or ‘between 

subject’ variability. Mostly in the medical field, to understand the variability between subjects is 

as important as to understand the characteristics of the typical individual. The second source of 

variability is the ‘residual error’ (also called ‘noise or ‘intra-individual error’): this is the 

difference between the prediction of the model for the individual and individual measured 

observations. It is also called ‘intra-individual’ or ‘within subject’ variability. For taking into 

account all of these assumptions, the mixed-effect approach specifies the model in a hierarchical 

fashion, integrating an ‘individual’ model and a ‘population’ one. In this way, it allows to 

estimate both the vector of population characteristics, 3 = !,, Ω%, and the individual parameters, $�. 
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Individual model  

The individual model is aimed to describe individual data specifying the relationship between the 

dependent variables, independent variables and individual parameters.  

Let 

      "     be the independent variable, for example ‘time’ in a time series; 

      "6    be the t-th value of the independent variable, t = 1, …, N; 

      ��6   be the t-th observation of the i-th individual, t = 1, …, N and i = 1, …, M; 

      $�    be the vector of model parameters of subject i.  

 

Each individual measure, ��6, can be described by the individual model in this way: 

 ��6 =  �!"6, $�% + '�6 ,     ∀1 = 1, … , ), 
 

where  �!"6, $�% is the individual model prediction and '�6 is the residual error.  

Using a vector notation: 

 

�������⋮���
� = 
� =  �!", $�% + '� = � �!"�, $�% �!"�, $�%⋮ �!"� , $�%� + �'��'��⋮'��

�. 
 

Classical assumptions for the residual errors '�6, or  are that they 

(a) have zero mean, 

(b) are uncorrelated, 

(c) are normally distributed. 

 

Therefore,  '�6 are independently normally distributed with 

 [['�|$�] = 0, �]'!'�|$�% = ^�!$�, _%, 
 

where ^� is a diagonal matrix depending on _ (a constant characteristic across individuals) and 

possibly on the individual parameters (according to the error model structure). In practice,  

 '�~)O0, ^�!$� , _%P. 
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Population model  

A model for $� is also needed in order to account for inter-individual variability among the $�. In 

particular, the population model relates the individual parameters to the covariate vector, the fixed 

effects and the inter-individual random effects.  

Let G�    be the covariate vector, i.e. the set of individual values for weight, age, etc., `�    be the vector of inter-individual random effects associated with the subject i, ,     be the vector of fixed effects. 

 

A general population model is given by 

 $� = a!,, `�, G�%, 
 

where a  is a multi-dimensional function, and `�  are supposed to be drawn from a normal 

distribution having zero mean and Ω covariance matrix, i.e. 

 `�~)!0, Ω%. 

 

Eventually, the model can be expressed as follows: 

 
� =  �!", a!,, `�, G�%% + '� ,     `�~)!0, Ω%,     '�~)O0, ^�!$� , _%P. 

 

Most of the non-linear mixed-effect modelling methods estimate the parameters using a ML 

approach: the data probability is given by a function of the model parameters and parameter 

estimates are chosen to maximize this probability. 

The overall likelihood is the product of all individual likelihoods b� and since the likelihood must 

account for the random effects on the individual level, the individual likelihood is expressed as 

the integral over all possible values of `�: 
 

 b = ∏ b���:� = ∏ d e!
�|,, `� , G�%ℎ!`�|Ω%a`���:�  [2.1] 

 

where ℎ is a multivariate normal density function with zero mean and covariance matrix g. 
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2.7.  Non-linear mixed-effect approach: NONMEM as 

software platform 

 

NONMEM version VI (Icon Development Solutions) [42] is a software platform that allows to 

perform population analysis with mixed-effect models and whose name stands for ‘NON linear 

Mixed Effect Modeling’.  

The basic steps for running NONMEM are: 

 

(a) to organize data input, 

(b) to write the control file, which specifies the mixed-effect model, 

(c) to run the model and obtain model parameter estimates. 

  

(a) NONMEM needs ‘data input’ files organized into records with some pre-defined items as 

follows. The subject number, called ‘ID’, is the first item in each record. The records appear in 

subject order and, within a subject, they are organized by time if a time series is being analyzed. 

Time specification, called ‘TIME’, is usually the second item in each record. The dependent 

variable, called ‘DV’, is the third one. Additional items can be added if the model requires so, for 

example subject covariates, such as weight, height, gender, etc.  

 

(b) Once data are organized, the model is specified in the ‘control file’, or ‘control stream’, which 

for an estimation problem typically contains the following control elements. 

 

$PROB States the problem being solved. 

$DATA Specifies the name of the data file (created at step (a)). 

$INPUT 
List the names of the data records in the input file, in the exact order of data 

file columns. 

$PRED 
Describes ta routine that predicts the observations. It is the main part of the 

control stream in which the mixed effect model is specified. 

$THETA List the initial estimates of the fixed effects parameters.  

$OMEGA List the initial estimates of the variance of the inter-individual random effects 

(called ETA’s). Note that if they are all fixed to zero the estimation method 
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becomes NAD. 

$SIGMA 
List the initial estimates of the variance of the intra-individual random effects 

(called EPS’s). 

$EST 

Provides the parameters that control the estimation process. Typically 

includes: METHOD (indicating which estimation method has to be applied), 

MAX (maximum number of iterations), LIKELIHOOD (indicating whether 

the likelihood is defined by the modeller; this option is necessary in case of 

categorical data modelling). 

$COVARIANCE 

Implies the estimation of the full variance-covariance matrix of the parameter 

estimates. This step is useful to get standard errors of the estimated 

parameters. 

$TABLE Produces an output table of the results. 

 

 

NONMEM needs specific keywords for each feature of a mixed-effect model, in particular: 

 

(i) THETA is a fixed effect parameter, i.e. an element of ,.; 

(ii) ETA is an inter-individual random effects, i.e. an element of `�; 
(iii) EPS is an intra-individual random errors, i.e. an element of '�; 
(iv) F is the individual model prediction,  �!"6 , $�%; 

(v) Y is an observation, ��6 ., or the correspondent user-defined likelihood (if 

LIKELIHOOD is specified in $EST). 

 

NONMEM only deals with normally distributed random variables (ETA’s and EPS’s). However, 

in the $PRED field it is possible to implement three different individual parameter distributions 

(see VAL) and error structures (see Y):  

 

(i) additive model: 

                 VAL=THETA+ETA 

                 Y=F+EPS 

(ii) constant coefficient of variation model: 

                VAL=THETA* (1+ETA) 

                 Y=F*(1+EPS) 

(iii) log-normal model: 

                VAL=THETA*EXP(ETA) 
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                 Y=F*EXP(EPS) 

 

 where VAL stands for the value for the specific individual parameter of interest. 

 

(c) NONMEM estimates model parameters with a ML approach. However, the likelihood of non-

linear mixed-effect models, Equation 2.1, is often difficult to compute in a close form because of 

non-linearity of the random effects. To deal with these problems, three methods have been 

implemented in NONMEM, all of them based on likelihood approximations: the ‘First Order’, 

the ‘First Order Conditional Estimation’ and the ‘Laplace’ methods. 

 

 

 

2.7.1. First order 

The First Order (FO) method is the simplest approximation method that can be applied when 

dealing with ML estimation in non-linear mixed-effect modelling. It consists in linearizing the 

mixed-effect model,  

 
� =  �!", a!,, `�, G�%% + '� ,     `�~)!0, Ω%,     '�~)O0, ^�!$� , _%P. 

 

(in which the dependency from z has been omitted for simplicity), through a first order Taylor 

expansion around the mean random effects of the population, 5̀� = 0: 

 
� =  �{a!,, `� , G�%} + '� 
 


� ≃  �{a!,, 0, G�%} + i �{a!,, 0, G�%}i$�
ia!,, 0, G�%i`� !`� − 0% + '� 

 

                                                                                 j�!,, 0% 

 
� ≃  �{a!,, 0, G�%} + j�!,, 0%`� + '�. 
 

In this way, the random effects '� and the individual errors `�, (assumed to be independent) enter 

the approximation in a linear way. Since they are normally distributed, also the marginal 

distribution of 
� is normally distributed, with the following first two moments: [[
�] =  �{a!,, 0, G�%}, 
                           �]'!
�% ≃ [X
�
��Y = [[!j�!,, 0%`�!j�!,, 0%`�%�] + [['�'��] = 



. 
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                                          = j�!,, 0%[[`�`��]j�!,, 0%� + [['�'��] = 

                                          = j�!,, 0%Ωj�!,, 0%� + ^�!a!,, 0, G�%, _% = k�!,, 0, Ω%. 
 

Therefore, for each subject the likelihood is 

 

 b�!,, Ω% = �
O!�l%m nopOqrs!tL%PPu� exp y− �� X
� − [[
�]Y��]'!
�%M�X
� − [[
�]Yz = 

          = �O!�l%m nopO{L!|,T,}%PPu/� exp y− �� [
� −  �{a!,, 0, G�%}]�k�!,, 0, Ω%M�[
� −  �{a!,, 0, G�%}]z 

 

and the overall likelihood is given by the product of all the individual likelihoods:  

 

b!,, Ω% = � b�!,, Ω%�
�:� . 

 

The population parameters 3 = !,, Ω%  can be estimated by maximizing b!,, Ω%  or, similarly, 

minimizing the following objective function: 

 �E = −2 logOb!,, Ω%P. 
 

For simplifying the notation, let’s call  �{a!,, 0, G�%} =  �. The objective function becomes: 

 

�E = −2 log � � 1
O!2�%� detOk�!,, 0, Ω%PP��  exp �− 12 [
� −  �]�k�!,, 0, Ω%M�[
� −  �]��

�:�  � 

 

Individual parameters $� are estimated in a second step. In particular, the inter-individual random 

effects are estimated with a ‘Maximum A Posteriori’ (MAP) approach using as prior for the their 

distribution  `�~)O0, ΩNP, 
 

where ΩN is the previously estimated population variability. 

In particular, calling ^�!$� , _% = ^�, `� estimates are obtained by minimizing: 

 `̂� = G2HI/J�LX
� −  ��aO,4, `�, G�P�Y�^�M�X
� −  ��aO,4, `�, G�P�Y + `��ΩNM�`� 
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Once the inter-individual random effects are computed, the individual parameters can be obtained 

according to the population model: 

 $F� = aO,4, `̂� , G�P 

 

This step is called the ‘Posthoc Step’ and the estimates obtained through it are also called 

‘Posthoc estimates’ or ‘Empirical Bayes Estimates’ (EBE’s).  

The First Order approximation method guarantees quick computational times. However, 

especially for models that are nonlinear in the parameters, the approximation about the 

expectation of the random effects, 5̀� = 0, might be rather poor, resulting in inconsistent estimates 

of the fixed effects: 

 ,4�� →  ,6��� +  �/G0. 
 

2.7.2. First order conditional estimation 

The ‘First Order Conditional Estimation’ (FOCE) method is a more accurate algorithm. The 

FOCE algorithm approximates `�  by an individualized estimate, `�∗ , defined by a second 

optimization problem: 


� ≃  �{a!,, `�∗, G�%} + i �{a!,, `�∗, G�%}i$�
ia!,, `�∗, G�%i`� !`� − `�∗% + '�∗ 

 

                                                                                 j�!,, `�∗% 

 
� ≃  �{a!,, `�∗, G�%} +  j�!,, `�∗%!`� − `�∗% + '�∗ 

  
� ≃  �{a!,, `�∗, G�%} +  j�!,, `�∗%`� − j�!,, `�∗%`�∗ + '�∗, 
 

where '�∗~)!0, ^�!a!,, `�∗, G�%, _%%. 

The approximate marginal distribution of 
� is therefore characterized by the following mean and 

covariance: 

 [[
�] =  �{a!,, `�∗, G�%} − j�!,, `�∗%`�∗ 

                           �]'!
�% ≃ j�!,, `�∗%Ωj�!,, `�∗%� + ^�!a!,, `�∗, G�%, _% = k�!,, `�∗, Ω% 
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The overall likelihood, obtained as in the FO approximation method, can be used for estimating !,, Ω%. These population estimates can be subsequently used to update the estimates for `�. 
 

2.7.3. Laplace approximation 

Laplace method is based on the Laplacian approximation of the exact marginal likelihood 

specified by the hierarchical nonlinear model: 

 

b = � b�
�

�:� = � � e!
�|,, `� , G�%ℎ!`�|Ω%a`�
�

�:� . 
 

Given a complex integral, d �!�%a�, �!�% can be re-expressed as ?�r��!�% = ?�!�% and H!�% can 

be approximated by a second-order Taylor expansion around a point �T as: 

 

H!�% ≃ H!�T% + !� − �T%H�!�T% + !� − �T%�2! H��!�T%. 
 

The approximated integration is the first order Laplacian approximation to the true integration: 

 

 d �!�%a� = d ?�!�%a� = d ?�!��%�!�M��%��!��%�!� ��%��! ���!��%a�. [2.2] 

 

The Laplacian approximation given by Equation 2.2, considering `�  as �  and therefore e!
�|,, `�, G�%ℎ!`�|Ω% as �!�%, allows to compute the approximated likelihood in close form. The 

approximation implemented in NONMEM is around the conditional estimates of  `� for the non-

linear model. The conditional estimates or the empirical Bayes estimates (EBE) of `� are the best 

predictors of the random effects `�. 
  

 

2.8. Categorical data likelihood 

 

Data can be considered as continuous or categorical. Continuous data consist of variables with an 

infinite number of values, while categorical data consist of variables taking values in a finite set 

and can therefore be placed into mutually exclusive categories.  

Categorical data can be further divided into nominal or ordinal. The nominal ones are unordered 

and can be classified by ‘names’, while the ordinal ones have a natural order and can be organized 

into ‘levels’, even if the exact distance between the levels is generally unknown. Examples of 
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nominal categorical variables are race or sex, while examples of ordinal categorical variables are 

age or pain intensity (e.g., absent, mild, moderate, severe). 

Sleep data can be considered as categorical data: sleep data derived from PSG recordings can be 

‘categorized’ into 6 mutually exclusive categories (AW, ST1, ST2, ST3, ST4, REM), according to 

the criteria illustrated in Chapter 1. Such categories do not have a recognized natural order, 

therefore sleep data can be considered as nominal categorical data.  

Modeling categorical data is slightly more complex than modeling continuous ones. There are two 

major differences between models for continuous and categorical data analysis: 

(a) the probability of a certain outcome, rather than the values of the outcome itself, is 

modeled; 

(b) consequently, no residual error is defined in the model. 

 

The model for categorical data becomes: 

 @�6 =  �!"6, a!,, `� , G�%%,       `�~)!0, Ω%, 
 

where @�6 is the probability of a certain outcome for the i-th subject at time "6.  

Consequently, each observation’s likelihood is the probability of the observation itself as it is 

modeled, and the likelihood of Equation 2.1, e!��|,, `�%, can be expressed by the product of the 

probabilities of the outcomes. Such likelihood is said ‘user-defined’, because it is explicitly 

defined in the model. In this case the only estimation method which can be adopted with 

NONMEM VI is the Laplace one. A more detailed explanation on likelihood expression in case of 

categorical data and in the specific Markov-chain model context is provided in Chapter 3.2.8.  

 

 

2.9. Conclusion 

 

In this chapter we have provided an overview of different estimation methods with a primary 

focus on the mixed-effect approach in a context of categorical data. In the next chapter a full 

description of the key features of the Multinomial Markov-Chain model for the analysis of 

polisomography data will be presented together with relevant information about data collected in 

a recent clinical study in primary insomnia.  

 



. 
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Chapter 3 

A Markov-chain model

polysomnographic signals

 

 

 

3.1. Transitions between sleep stages and Markov chains: 

state of art 

 

As mentioned in the first chapter, polysomnography 

parameters (LPS, WASO, etc) characterizing patients’ sleep quality. The clinical efficacy of an 

hypnotic compound is usually evaluated on the basis of its effects on these aggregated parameters. 

However, this kind of approach 

under examination and provide

Besides supplying values for the aggregated parameters, polysomnography 

assessment of the sleep stages occurring during the 8

is determined on a 30-second temporal grid and is therefore made of 960 ‘samples’, one for each 

‘epoch’ (30 second interval). Each sequence can be considered as

stochastic process assuming values in a finite discrete set, i.e. the sleep stages.

appropriate mathematical model

stages time-courses over the night.

Figure 3.1. A realization of sleep stochastic process.

chain model for the study of 

polysomnographic signals 

Transitions between sleep stages and Markov chains: 

As mentioned in the first chapter, polysomnography allows to evaluate some relevant clinical 

parameters (LPS, WASO, etc) characterizing patients’ sleep quality. The clinical efficacy of an 

hypnotic compound is usually evaluated on the basis of its effects on these aggregated parameters. 

roach brings mainly to the evaluation of the overall effect of the drug 

under examination and provides only few insights on the internal structure of sleep. 

esides supplying values for the aggregated parameters, polysomnography 

the sleep stages occurring during the 8-hour night time (Figure 3.1)

second temporal grid and is therefore made of 960 ‘samples’, one for each 

econd interval). Each sequence can be considered as a realization of a finite discrete 

stochastic process assuming values in a finite discrete set, i.e. the sleep stages.

mathematical models can describe sleep structure allowing to predict feasible sleep 

courses over the night. 

Figure 3.1. A realization of sleep stochastic process. 
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for the study of 

Transitions between sleep stages and Markov chains: 

to evaluate some relevant clinical 

parameters (LPS, WASO, etc) characterizing patients’ sleep quality. The clinical efficacy of an 

hypnotic compound is usually evaluated on the basis of its effects on these aggregated parameters. 

the evaluation of the overall effect of the drug 

on the internal structure of sleep.  

esides supplying values for the aggregated parameters, polysomnography enables the 

(Figure 3.1). Their sequence 

second temporal grid and is therefore made of 960 ‘samples’, one for each 

ion of a finite discrete 

stochastic process assuming values in a finite discrete set, i.e. the sleep stages. Therefore 

sleep structure allowing to predict feasible sleep 
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Since, as illustrated in paragraph 1.1.4, there are specific sleep patterns with some preferential 

transitions, sleep stages can be considered as a sequence of stochastic variables with some 

dependency among each other. 

A mathematical model able to describe this feature is the ‘Markov chain model’, whose basic 

concepts are those of state and state transition. The ‘Markov-chain model’ determines the 

probabilities of transitioning between different states based on the recent and the present states or, 

in the less general case, on the present state only. Such model is adaptable to a large variety of 

situations: for example, it can be applied to the classic stochastic problem of the Drunkard’s 

Walk, in which the position reached in the next step only depends on the present position and not 

on the way this present position was reached. It can be also used to predict weather conditions 

given the weather on the previous days or to describe all the board games played with dice 

(Monopoly for example), in which the future position on the board depends only on the current 

state and the next roll of the dice. 

Some attempts to apply a Markov-chain model for describing sleep data are reported in the 

literature: in 2002 Gregory and Cabeza [43] used this approach for describing the internal 

architecture of sleep in rats. However, they modeled sleep as a two-state process, considering only 

REM and non-REM sleep. Kemp et al. [44] modeled rates of transition among the various sleep 

stages, but either assumed constant rates throughout the night or estimated their dynamics by 

smoothing observed transition frequencies by hand. More recently, Karlsson et al. [1] and 

Kjellsson et al. [3] proposed a Markov-chain model using a mixed-effect approach and modeling 

the transition probabilities among different stages as binary logistic functions. Finally, the model I 

validate here [2] is a refinement of the latter model, which considers the transition probabilities as 

multinomial logistic functions. 

This chapter provides some mathematical background on Markov-chain models, the description 

of the sleep data used for its implementation and the presentation of specific features adopted in 

order to maximize the data likelihood. 

 

 

3.2. Markov-chains: mathematical definitions 

Let a random process be a finite sequence 
 = {
6}6¡� = {
�, 
�, … } of random variables taking 

values in a discrete set ¢. The elements of ¢ are called ‘states’ of the system and thus ¢ the ‘state 

space’. 

The index t of 
6 is usually thought as a ‘time index’, even though it is not necessarily related to 

the concept of time, but rather expressing the ordered evolution of the process. Consequently, 
6 

represents the state of the process at ‘time’ zt, where z is the ‘time’ vector. 
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The process 
 = {
�, 
�, … } is called ‘Markov chain’ if it the conditional probability between the 

outcomes at different times satisfies the ‘Markov property’. 

 

Definition 3.1. The sequence {
�, 
�, … } of random variables taking values in ¢ is said to have 

the Markov property if 

 �!
6�� = �6��  | 
6 = �6 ,  
6M� = �6M� , … ,  
� = ��% = �!
6�� = �6�� | 
6 = �6% 

 

for every sequence ��, … , �6 , �6��  of elements of ¢ and for every 1 ≥ 1. 

 

This property states that the probability of an event one step into the future conditioned on the 

entire past up to the present time t is equal to the conditional probability of the future event given 

just the present one. In particular, a sequence of such random variables is said to be a ‘First-order 

Markov chain process’ because each outcome depends exclusively on the previous state.  

Definition 3.2. The process 
 is an ‘Nth-order Markov chain process’ if the dependency between 

the random variables constituting the process involves N successive steps in the sequence, that is 

if the probability of the future outcome is conditioned on the N previous states: 

 �!
6�� = �6��  | 
6 = �6, … ,  
� = ��% = �!
6�� = �6�� | 
6 = �6 , … ,  
6M� = �6M�%. 

 

Definition 3.3. Given a First-order Markov chain process 
 = {
�, 
�, … }  with k and m in its 

state space ¢, the conditional probability 

 @U¤!1% = �!
6�� = I | 
6 = ¥% ≥ 0 

 

is called the ‘transition probability’ from k to m at time zt. If the transition probabilities do not 

depend on time, i.e. @U¤!1% = @U¤!1 + ℎ% = @U¤, ∀1 ∊ ℕ�, ∀ℎ ∊ ℕ� , the Markov chain is said 

to be ‘time-homogeneous’.  

 

Assuming a finite state space ¢, that is ¢ = {0, 1, … , ¨};, it is useful to collect the transition 

probabilities from/to the states of ¢ in a matrix: 

 

�!1% = �@TT!1% @T�!1%@�T!1% @��!1% ⋯ @TS!1%⋯ @�S!1%⋮ ⋮@ST!1% @S�!1% ⋮ ⋮⋯ @SS!1%�,, 
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which is called ‘transition probability matrix’. Each row of �!1% represents all the transition 

probabilities from a single state of ¢: therefore, the probabilities in each row must sum up to 1:  

 

9 @U¤!1% = 1S
¤:T , ∀ / ∈ ¢.   

 

Assuming to observe M independent realizations of the process of the same length N: 

 
!�% = {���, ���, ��«, … , ���} 
!�% = {���, ���, ��«, … , ���} … … 
!�% = {���, ���, ��«, … , ���}, 

 

it is possible to define some statistics depending on the data: 

• )U¤ ≜ number of transitions from state k to state m in all the realizations, 

• )U ≜ number of transition starting from state k, 

• ­^ ≜ total number of transitions in the data, 

• ¨�U ≜ number of occurrences of state k in the data. 

 

Once these statistics are available, the frequency of occurrence of each stage is computed as: 

 

 ®FU = S�¯∑ S�¯±̄²� , ∀ ¥ ∊ ¢, [3.1] 

, 

and the 'transition frequencies' between stages are calculated as: 

 

  ³U¤ = �¯´�¯ , ∀ ¥, I ∊ ¢ [3.2] 

 

Every single realization of the process can be considered as a path in time through the state space, 

and its probability 

 �!!
�, … , 
6% = !��, … , �6%% 

 

is just the joint probability of !
�, … , 
6%. It is possible to demonstrate that, according to the 

Markov property characterizing the process, such joint probability can be expressed in terms of 

the transition probabilities and the probability mass function of 
�: 
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Theorem 3.1. For a Markov chain 
  and for any path {��, ��, �«, … , �6} , the conditional 

probability of the path conditioned on the first value is the product of the transition probabilities 

between successive states of the path: 

 

 �O!
�, … , 
6% = !��, … , �6%µ
� = ��% = @�u��@���¶ ⋯ @�· u�· [3.3] 

 

and consequently the probability (not-conditioned) of the path is: 

 

 �!!
�, … , 
6% = !��, … , �6%% = �!
� = ��% @�u��@���¶ ⋯ @�· u�· [3.4] 

           

 

3.3. Implementation of Markov-chains is sleep data 

modeling 

 

As already mentioned, sleep data can be considered as realizations of a Markov-chain process 

with S = (AW, ST1, ST2, ST3, ST4, REM). 

The model developed in [2] is a time-non-homogeneous Markov-chain model which uses 

multinomial logistic functions for describing transition probabilities between states and uses a 

mixed-effect approach for describing their parameters. 

The following paragraphs present the clinical data obtained from PSG together with the specific 

model features applied to the Markov-chain model as proposed by Bizzotto et al. [2]. 

 

3.3.1. Clinical study 

Data were obtained from a polysomnograghic multi-centre, randomized, double-blind, placebo-

controlled, parallel three-arm study designed to investigate a new candidate drug [Fig 3.2]. Male 

and female subjects (18-64 years of age) diagnosed with primary insomnia were chosen as 

feasible candidates for the study. The eligibility of the subjects was determined on the basis of 

specific PSG variables (e.g., LPS, WASO) obtained after a screening period consisting of a first 

clinical screening visit followed by a 2-night PSG recording in a sleep laboratory. After a week of 

daily placebo administration, subjects were randomized in the study, each arm assuming placebo 

or two different doses of the drug for 28 days before bedtime. PSG was recorded in three 

occasions in two consecutive days (1-2, 13-14 and 27-28) for each arm of the study. 

Subjects taking part in the selection for this study had a diagnosis of primary insomnia and 

insomnia symptoms for at least three months, according to the 'Diagnostic and Statistical Manual 
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of Mental Disorders - Fourth Edition - Text Revision (DSM - IV - TR)', [33] criteria 307.42. For 

being included in the study, the mean of PSG variables obtained after the two screening nights 

had to fall within the following ranges: 

 

• mean TST: between 240 and 390 minutes, 

• mean LPS: more than 30 minutes and not less than 20 minutes on either night, 

• mean WASO: more than 60 minutes and neither night less than 45 minutes. 

 

 

 

Figure 3.2: Clinical study protocol. 

 

The model was developed based only on the first night of the double-blind treatment nights, from 

M=116 patients treated with placebo. Since few epochs of stages 3 and 4 were reported, they were 

merged in a single stage called ‘slow wave sleep’ stage. 

Therefore the stages considered are the awake stage (AW), stage 1 sleep (ST1), stage 2 sleep 

(ST2), slow wave sleep (SWS) and REM sleep (REM) and the state space is ¢ = {AW, ST1, ST2, 

SWS, REM}. 

The sequence of sleep stages can be thought as: 

 
!�% = {���, ���, ��«, … , ���} 
!�% = {���, ���, ��«, … , ���} … … 
!�% = {���, ���, ��«, … , ���}, 

 

where N = 960 is the number of samples for each subject and M = 116 is the number of subjects. 
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3.3.2. Multinomial logistic function 

Let ��6 represent the state (i.e. the sleep stage) of the i-th patient at epoch t and let each single 

realization of the process (i.e. each patient’s sequence) obey to a first-order Markov-chain, 

according to Definition 3.1. 

Let then the binary variable ¸�U¤6 represent the transition of the i-th individual from state k at 

epoch (t-1) to state m at epoch t, that is: 

 

                                                        1   if  ��!6M�% = ¥ and ��6 = I, with ¥, I ∊ ¢ 

                                 ¸�U¤6 = 

                                                        0   otherwise 

 

Then, for given values of k ∊ ¢ (i.e. the starting state of a transition) and for a given time t ∊ {1, 2, 

… , N} the vector 

 ;̧�U6 = [¸�U¹º6 , ¸�US��6 , … , ¸�U»¼�6] 
 

is a multinomial random variable representing all the possible transitions from state k at time t. 

This multinomial random variable is characterized by its probability vector: 

 

 @5�U!1% = [@�U¹º!1%, @�US��!1%, … , @�U»¼�!1%] [3.5] 

 

where  @�U¤!1% = �!��6 = I|��!6M�% = ¥% ≥ 0 is the probability of moving from k to m at time t.  

Since @5�U!1% is the k-th row of the transition probability matrix characterizing the process at time 

t, 

9 @�U¤!1%¤∈¢ = 1. 
 

The model for the transition from the state k of the chain is therefore 

 

 ! ;̧�U6|@5�U!1%% ∼ 8¾e1/J]I/Ge!@5�U!1%%. [3.6] 

 

In our context, the transition probabilities represent the model parameters to be estimated 

according to the sleep data. To avoid estimates constrained between 0 and 1, it is often useful to 

describe such parameters as logistic functions [3]. 



. 

 

50             

 

The logit of a probability p describing a random variable is defined as the logarithm of its odds, 

that is the logarithm of the probability of achieving a favorable outcome divided by the 

probability of failing: 

 

¿ = e]H @!1 − @% 

 

The logit function allows therefore to transform a probability into a not constrained variable, as 

shown in figure 3.3. 

 

 

Figure 3.3: The binary logit function. 

 

Since the transitions from a single state of ¢ come from a multinomial distribution (Equation 3.6), 

they are transformed into multinomial logit functions. For each subject i, each starting state k and 

each epoch t the logits for the model are defined as: 

 H�U¤!1% = e]H ÀL¯´!6%ÀL¯¯!6% , 

 

where m takes all the values in ¢. 

In such a way, it is possible to define for each triple (i, k, t) 5 different logit functions, one of 

which is equal to zero. Taking, for example, the transitions from the AW state at time t, it is 

possible to define the following logits: 
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                                                              H�¹º¹º!1% = e]H ÀLÁÂÁÂ!6%ÀLÁÂÁÂ!6%  
                                                              H�¹ºS��!1% = e]H ÀLÁÂ±Ãu!6%ÀLÁÂÁÂ!6% 
                                                              H�¹ºS��!1% = e]H ÀLÁÂ±Ã�!6%ÀLÁÂÁÂ!6% 
                                                             H�¹ºSºS!1% = e]H ÀLÁÂ±Â±!6%ÀLÁÂÁÂ!6%  

                                                             H�¹º»¼�!1% = e]H ÀLÁÂÄÅÆ!6%ÀLÁÂÁÂ!6%  

 

The corresponding transition probabilities can be therefore obtained as multinomial logistic 

functions: 

 

                                                  ?� @!H�¹º¹º!1%% = ÀLÁÂÁÂ!6%ÀLÁÂÁÂ!6% 
                                                   ?� @!H�¹ºS��!1%% = ÀLÁÂ±Ãu!6%ÀLÁÂÁÂ!6%                               
                                                                      … 

 

                                                 ?� @!H�¹º»¼�!1%% = ÀLÁÂÄÅÆ!·%ÀLÁÂÁÂ!·%  

 

 

                                                  @�¹º¹º!1% = @�¹º¹º!1% 

                                                  @�¹ºS��!1% =  ?� @!H�¹ºS��!1%% · @�¹º¹º!1% 

                                                                         … [3.7] 

 

                                                  @�¹º»¼�!1% = ?� @!H�¹º»¼�!1%% · @�¹º¹º!1% 

 

Recalling then that their sum must be equal to 1: 

 @�¹º¹º!1% + @�¹ºS��!1% + @�¹ºS��!1% + @�¹ºSºS!1% + @�¹º»¼�!1% = 1 @�¹º¹º!1% + ?� @!H�¹ºS��!1%% · @�¹º¹º!1% + ⋯ + ?� @!H�¹º»¼�!1%% · @�¹º¹º!1% = 1 

 @�¹º¹º!1% = 1/!1 + ?� @!H�¹ºS��!1%% + ?� @!H�¹ºS��!1%% + ?� @!H�¹ºSºS!1%%+ ?� @!H�¹º»¼�!1%%% 

 

it is possible to compute all the transition probabilities from AW substituting @�¹º¹º6   in 

Equations 3.7. 

Therefore the probability of the transition from k to m at time t is given by: 



. 
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 @�U¤!1% = �� À!�L¯´!6%%∑ �� À!�L¯´!6%%´∊¢   [3.8] 

 

Hence, instead of the probability vectors @5�U!1% defined in equation 3.5 the parameters of the 

model are the corresponding logit vectors: 

 

 H5�U!1% = [H�U¹º!1%, H�US��!1%, … , H�U»¼�!1%], ¥ ∊ ¢, i ∊ {1, … , 8}, 1 ∊ {1, … , )} [3.9] 

 

which fully characterize the model. Note that if no correlation is assumed between logits with 

different values for k, i.e. for different stages of departure, the model can be divided into five 

different smaller models. Each sub-model, referred to as ’sub-model k’, describes the transitions 

from a specific sleep stage and its parameters can be identified separately from the others. 

Each sub-model is estimated using a non-linear mixed-effect approach for taking the variability of 

the population into consideration. That is, each individual logit  H�U¤!1% is thought to be normally 

distributed around its typical value: 

 H�U¤!1%~)!HU¤!1%, É�U¤!1%%, 

 

where HU¤!1% is the typical value for the logit and É�U¤!1% is the variance of the inter-individual 

distribution. Considering the vector-matrix notation 

 

 H5�U!1%~)!H5U!1%,ΩU!1%% [3.10] 

 

where H5�U!1% is the vector of Equation 3.9 and is assumed normally distributed around the vector 

of population values for the logit functions H5U!1% with covariance matrix ΩU!1%. 

 

 

3.3.3. Time dependence of model parameters 

As introduced in the first chapter, sleep physiology varies over night time. Consequently, it is 

logical to assume that the transition probabilities of our model depend on time, this means that the 

Markov-chain model is non-homogeneous. The temporal dependence of logit functions H5�U!1% 

with respect to night time is modeled as a piecewise linear function with three break-points BP = 

(BPA, BPB, BPC).  BPA and BPC are selected at the beginning and at the end of the night 

window, while BPB is estimated according to the maximum likelihood principle and is assumed 

to be common to the whole population (no inter-individual variability on it). 
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The parameters of the model defined so far are the logit population values at the 3 break-points, 

the associated inter-individual variability and BPB. The population logits are expressed by the 

following vectors: 

 H5U¹ = [HU¹º¹, HUS��¹, … , HU»¼�¹ ] H5UÊ = [HU¹ºÊ, HUS��Ê, … , HU»¼�Ê ] H5Uq = [HU¹ºq , HUS��q , … , HU»¼�q  ], 
 

in which the letters A, B, C refer to the night time break-points BPA, BPB, BPC.  The individual 

deviation of a specific logit function from its typical value is constrained to be constant at the 

different break-points, meaning that the individual logits in BP can be expressed by: 

 

                                           H5�U¤ = [H�U¤¹, H�U¤Ê, H�U¤q  ] [3.11] 

                                                    = [!HU¤¹ + HF�U¤%, !HU¤Ê + HF�U¤%, ! HU¤q + HF�U¤%] 
 

where HU¤¹, HU¤Ê, HU¤q  are the typical population values of the logit characterizing the 

transition from k to m at times BP = [BPA, BPB, BPC] and HF�U¤ is the individual deviation from 

this logit. 

The individual deviation HF�U¤ is assumed to be drawn from a normal distribution having zero 

mean and variance É�U¤, that is: HF�U¤~)!0, É�U¤%. 

Once H5�U¤ are known, ∀i ∊{1, ..., M}, k ∊ ¢ and m ∊ ¢-{k}, each logit time-course over the night, H�U¤!1%, is given by linear interpolation of the logit values at two adjacent break-points.  

Going back to the vector-matrix notation, Equation 3.10 becomes 

 

 H5�U!1%~)!H5U!1%,ΩU% [3.12] 

 

where the covariance matrix  ΩU is supposed to be not time-depending. 

Finally, the transition probabilities profiles are calculated as anti-logit, as described in Equation 

3.8. The typical probability profiles estimated from the available dataset for the transitions from 

ST1 are shown in Figure 3.4. This plot highlights the property of the Markov-chain model built on 

multinomial logistic functions: by construction, probabilities sum up to one for each time of the 

night. Figure 3.5 shows the probability profile for the specific transition from ST1 to ST2 with the 

corresponding 90% prediction interval for the population distribution. 



. 
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Figure 3.4: All the typical transition probabilities from ST1 estimated from the available dataset 

 

 

 

 

Figure 3.5: Typical transition probability from ST1 to ST2 with the corresponding 90% prediction interval on the 

between subject variability. 
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3.3.4. Stage time effect 

According to the sleep physiology, as presented in Chapter 1, the probability of moving from or 

staying in a specific stage k is influenced by the duration of contiguous time spent in stage k. This 

duration, also defined as the time elapsed since the last change in sleep stage, is called ‘stage 

time’, (1Ë  or STT). The stage time has been introduced in the model as a predictor for the 

parameter values and is supposed to modify the logits at the night-time break-points according to 

an additive law. A temporal grid is defined on the stage time and three break-points, BPs = [BPsa, 

BPsb, BPsc] are defined on it:  

• BPsa, the first break-point, at t = 1 epoch, that is the minimum stage time that can be 

observed  

• BPsc, the last break-point, at the maximum stage time observed in the data with respect to 

the particular stage of departure 

• BPsb, the central one, to be estimated as a parameter of the model.  

The temporal grid is therefore divided into two segments on which the ‘stage time effect’ (STE) is 

modeled as a piecewise linear function of stage time. Considering a generic stage ¥ ∊ ¢  of 

departure new vectors are introduced ∀m ∊ ¢-{k} : 

 

 05U¤ = [0U¤Ì, 0U¤�, 0U¤Í] [3.13] 

 

where 0U¤Ì, 0U¤� , 0U¤Í are the additive effects that stage time has on the logit defined on the 

transition from k to m for 1Ë = BPsa, 1Ë = BPsb and 1Ë = BPsc, respectively. Obviously, no effect 

is assumed for 1Ë  = BPsa, (0U¤Ì = 0,   ∀¥, I ∊ ¢ ). In each segment of the temporal grid the 

deviation from the logit predicted by the model is therefore calculated by linear interpolation as: 

 

       if  Î�0G ≤ 1Ë ≤ Î�0� 

                  0U¤!1Ë% = 0U¤Ì  · !Î�0� − 1Ë%/!Î�0� − Î�0G% + 0U¤� · !1Ë − Î�0G%/!Î�0� − Î�0G% 

                                  = 0U¤� · !1Ë − Î�0G%/!Î�0� − Î�0G% 

      endif 

 

       if  Î�0� < 1Ë ≤ Î�0Ñ 

                  0U¤!1Ë% = 0U¤�  · !Î�0Ñ − 1Ë%/!Î�0Ñ − Î�0�% + 0U¤Í · !1Ë − Î�0�%/!Î�0Ñ − Î�0�% 

      endif 

 

being 0U¤!1Ë%  the stage time effect for stage time equal to 1Ë. 

No inter-individual variability is assumed, so that the stage time influences the whole population 

in the same manner. Moreover, each stage time effect 0U¤!1Ë% is supposed to equally modify the 
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corresponding logit values H5�U¤ at the three night time break-points BP = [BPA, BPB, BPC]. 

New vectors including the stage time effect are therefore defined in place of those of Equation 

3.1: 

 ¿5�U¤!1Ë% = [¿�U¤¹!1Ë%, ¿�U¤Ê!1Ë%, ¿�U¤q!1Ë% ] [3.14]                                  

                = [!HU¤¹ + HF�U¤ + 0U¤!1Ë%%, !HU¤Ê + HF�U¤ + 0U¤!1Ë%%, ! HU¤q + HF�U¤ + 0U¤!1Ë%%] 
 

Once ¿5�U¤!1Ë% are known, ∀i ∊{1, ..., M}, k ∊ ¢ and m ∊ ¢-{k}, each logit time-course over the 

night (¿�U¤!1, 1Ë%, function of 1Ë and 1) is given by linear interpolation of the logit values at two 

adjacent break-points. 

Figure 3.6 exemplifies how the stage time effect (red line) modifies an individual logit (blue line). 

 

 

Figure 3.6: An illustrative example on how the individual deviation from the typical behavior and the stage time effect 

(STE) can affect a logit profile over the night time. 

 

The stage time effects estimated on the available data over the stage time are shown as 

exponential terms in Figure 3.7. The choice to report an exponential value is related to the logit 

transformation properties. In this way the additive effect of the STE on the logits is equivalent to a 

multiplicative effect on probabilities ratios. For example, ‘AW / REM’ in the ‘REM’ plot 

indicates the multiplicative STE on 
ÀLÄÅÆÁÂ!6%ÀLÄÅÆÄÅÆ!6% obtained as the exponential for the additive STE 

on H�»¼�¹º!1% = e]H ÀLÄÅÆÁÂ!6%ÀLÄÅÆÄÅÆ!6%. 
 The night time profiles of the transition probabilities are again calculated as anti-logit from ¿�U¤!1, 1Ë%, as in Equation 3.8. 
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Figure 3.7: Exponential of the stage time effects estimated on the available dataset for all the logits. 

 

Figure 3.8 presents the estimated probability profiles for the transitions from ST1, ST2, SWS and 

REM at different stage times. In particular, the left column shows the probability profiles 

estimated for 1Ë eqaul to 0.5 minutes (i.e. 1 epoch, when no stage time effect is considered), while 

the right one shows those obtained for 1Ë equal to the median stage time over the whole night 

time. The left and right plots for transitions from ST1 are equal, since the median stage time in 

this case is 1 epoch only (reflecting the fact that stage 1 sleep is a rapid transitional state in sleep). 

Differently from the plots that illustrates the transition probabilities along the night time, the stage 
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time appears to be an informative predictor as shown by the dynamic relation between it and the 

STE (Figure 3.7). Plots for transitions from awake are shown in Paragraph 3.2.7, after the 

inclusion of an additional model feature.  

 

Figure 3.8: Typical transition probabilities for the stage1, stage2, sws and rem sub-models. In the left column the 

profiles are computed for stage time = 0.5 minutes, while in the right one they are computed for the median stage time 

observed in the data. 
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3.3.5. Transition probabilities fixed to zero 

It is known that some of the 25 hypothetically possible transitions between sleep stages occur 

very hardly. The available dataset confirms this statement, as shown by the 'transition 

frequencies', computed as in Equation 3.1, and here reported: 

 

FROM\TO AW ST1 ST2 SWS REM 

AW 0.8303 0.1246 0.0321 0.0006 0.0125 

ST1 0.1350 0.4183 0.3471 0.0006 0.0990 

ST2 0.0399 0.0381 0.8737 0.0362 0.0121 

SWS 0.0207 0.0046 0.1418 0.8324 0.0005 

REM 0.0522 0.0540 0.0132 0 0.8806 

 

Table 3.1: Transition frequencies computed from data. 

 

Some transition frequencies are very low and are therefore fixed to zero in order to simplify 

model identification. The chosen frequency threshold is 0.1% so that the transition frequencies 

highlighted in red are assumed equal to zero. 

This implies that the sub-models awake, stage1, sws and rem need one less logit each. 

Summarizing, the logits considered for each sub-model are shown in table 3.2. 

 

logit\sub-model awake stage1 stage2 sws rem 

1 ¿�¹ºS��!1, 1Ë% ¿�S��¹º!1, 1Ë% ¿�S��¹º!1, 1Ë% ¿�SºS¹º!1, 1Ë% ¿�»¼�¹º!1, 1Ë% 

2 ¿�¹ºS��!1, 1Ë% ¿�S��S��!1, 1Ë% ¿�S��S��!1, 1Ë% ¿�SºSS��!1, 1Ë% ¿�»¼�S��!1, 1Ë% 

3 ¿�¹º»¼�!1, 1Ë% ¿�S��»¼�!1, 1Ë% ¿�S��SºS!1, 1Ë% ¿�SºSS��!1, 1Ë% ¿�»¼�S��!1, 1Ë% 

4 
  

¿�S��»¼�!1, 1Ë% 
  

 

Table 3.2: Logits for the different sub-models. 

 

 

3.3.6. Inter-individual variability 

The assumption explained in the previous paragraph implies that the covariance matrices ΩU of 

awake, stage1, sws and rem sub-models have dimension 3x3, while the covariance matrix for 

stage2 sub-model has dimension 4x4. Full covariance matrices were initially assumed. 

The statistical significance of each element of these matrices was assessed according to 'log 

likelihood ratio test'. Only correlations that achieved statistical significance were included in the 

final model and are here reported: 
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• awake, using an inter-individual covariance between: 

(i) ¿�¹ºS��!1, 1Ë%  and ¿�¹ºS��!1, 1Ë%  when 1Ë = 0, 

 

• stage1, using an inter-individual covariance between: 

(i) ¿�S��¹º!1, 1Ë%  and ¿�S��S��!1, 1Ë%, (1Ë = 0), 

(ii) ¿�S��S��!1, 1Ë% and ¿�S��»¼�!1, 1Ë%, (1Ë = 0), 

(iii) ¿�S��¹º!1, 1Ë% and ¿�S��»¼�!1, 1Ë% , (1Ë = 0). 

 

Using the following notation for expressing the covariance elements of ΩU: 

 É�U¤Ò = Ñ]'O¿�U¤!1, 1Ë%, ¿�UÒ!1, 1Ë%P    !1Ë = 0%, 

 

the corresponding covariance matrices are: 

 

Ω¹º = Ó É�¹ºS��É�¹ºS��S��0   É�¹ºS��S��É�¹ºS��0   00É�¹º»¼�Ô, 
 

ΩS�� = Ó É�S��¹ºÉ�S��S��¹ºÉ�S��»¼�¹º
  É�S��¹ºS��É�S��S��É�S��»¼�S��

  É�S��¹º»¼�É�S��S��¹ºÉ�S��»¼�
Ô. 

 

Furthermore, it was found that also the between subject variability on the logit ¿5�»¼�¹º6Õ of the 

rem sub-model can be fixed to zero, resulting in the following covariance matrix: 

 

Ω»¼� = Ö   000    0É�»¼�S��0   00É�»¼�S��×. 
 

 

3.3.7. Initial sleeplessness 

One additional feature has been introduced in the model to differentiate the sleep physiology 

time-course between initial sleeplessness and rest of the night. Consequently, the 8-hour night 

time is divided into 2 parts: the first ranging from t = 2 epochs to t = IS, where IS ('Initial 

Sleeplessness') is the first epoch in which a non-awake state is observed in a specific subject, and 

the second one filling the remaining part of the night. In the second time interval the logits are 
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modeled as previously described changing only the position of the first break point of the night 

time: BPA=IS. 

The logits in the first part of the night are modeled again as piecewise linear functions, but no 

inter-individual variability or stage-time effects are considered. Therefore, the logits in this time 

interval are simply estimated as population parameters. In particular, three additional break-points 

are defined, Bpi = [BP1, BP2, BP3], where: 

• BP1 is the first one at t = 2 epochs  

• BP3 is the last one at the maximum IS observed in the data 

• BP2 is the central one and it is considered as an additional parameter to be estimated. 

Figure 3.9 shows the estimated typical transition probabilities for the awake sub-model: in the left 

plot no stage time effect is considered, while in the right one stage time effect is considered and 

fixed to the value estimated for the median awake time observed in the data. The discontinuity in 

the profiles for t = BPA is due to the introduction of the Initial Sleeplessness feature. 

 

 

Figure 3.9: Typical transition probabilities for the awake sub-model. In the left column the profiles are computed for 

stage time = 0.5 minutes, while in the right one for the median stage time. 

 

In conclusion, Figure 3.10 shows all the typical transition probabilities with their 90% prediction 

interval on the between subject variability according to the final model. Note that the profiles for 

the transitions from AW show inter-individual variability in the second part of the night only, 

according to model assumptions. 

AW
STT = 0.5 minutes STT = median = 3 minutesSTT=1

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

STT=median

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

Time [hours]

P
ro

b
a

b
il

it
y Transition to

AW
ST1
ST2
SWS
REM



. 

 

62             

 

 

Figure 3.10: All the typical transition probabilities with the corresponding 90% prediction interval on the between 

subject variability. 

 

 

3.3.8. Likelihood  

Each sub-model was identified using a maximum likelihood approach. As introduced in Chapter 

2.5, the individual likelihood is expressed as the integral over all possible values of `�: 
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where �� = data from individual i, , = population parameters, `� = random effects on i and ℎ is a 

multivariate normal density function with zero mean and covariance matrix g(covariates are not 

considered in this model). In our case, i.e. categorical data, the Markov-chain model describes 

transition probabilities between observations, instead of actual observation values as with 

continuous data. The probability of a whole realization for the individual i is therefore given by 

the product of the probabilities of the transitions occurred along the night, as stated in Theorem 

3.1, considering as first state of the chain the AW state (�!
� = >Ø% = 1). Therefore, e!��|,, `�% 

can be expressed as a product of transition probabilities, the ones which actually occurred, so that 

maximizing the likelihood is equivalent to maximizing the probability of the actually occurred 

path. Each transition probability is defined in the model as function of various logits, that is 

 @�U¤!1% = @�U¤!6%O¿5�U!1, 1Ë%P,         ∀ triple (i, k, t). 

 

Here, m(t) indicates that m depends on t and is equal to ��6, and  

 ¿5�U!1, 1Ë% = [¿�U¹º!1, 1Ë%, ¿�US��!1, 1Ë%, ¿�US��!1, 1Ë%, ¿�USºS!1, 1Ë%, ¿�U»¼�!1, 1Ë%], 
 

with ts equal to the stage time observed at night time t for the subject i (¿5�U!1, 1Ë% depends on , 

and `� according to the model structure). 

Considering sub-model k, the likelihood contribution from individual i is, therefore, defined by 

 

b�U = � Ó � @�U¤!6%O¿5�U!1, 1Ë%P6:�L!· u%:U Ô ℎ!`�|g%a`� . 
 

The overall likelihood function Lk for sub-model k is then the product of the contributions from all 

the individuals. Each likelihood Lk is maximized using the Laplace method in NONMEM version 

VI (ICON Development Solutions.) [42].  

 

 

3.4. Conclusions 

 

The Multinomial Mixed-Effect Markov-chain model presented in detail in this Chapter has been 

developed [2] with the precise intent of providing a useful tool for analyzing sleep data in their 

dynamic behaviour along the night. This model therefore can be extensively applied in the 

analysis of clinical studies that investigate the efficacy of sleep promoting drugs. A proper 
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evaluation of model performances is therefore of particular importance. Different diagnostic 

methods to evaluate model adequacy are discussed in Chapter 4 with particular emphasis on those 

based on stochastic simulation. 
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Chapter 4 

Assessment of the model against data 

   

 

 

4.1. Introduction to diagnostic methods 

 

Mixed-effect models are increasingly used in the pharmaceutical field to analyze and interpret 

clinical data in a context of population framework and to perform clinical trial simulations. The 

latter, when properly performed, constitute a valid alternative to extensive studies, since they 

allow the evaluation of the individual responses to a specific treatment, and consequently the drug 

efficacy and safety in the whole population.  

The Markov-model built for describing sleep architecture and characterized in the previous 

chapter has been mainly developed with the intent of providing a useful tool for clinical trial 

simulations. The aim of this thesis is therefore to investigate its performance, evaluating model 

robustness and potential model misspecifications. In practice, we are interest to understand if the 

proposed model adequately interprets the underlying process, providing precise predictions for the 

parameters of interest and avoiding biased estimates.  

Statistical theory indicates several diagnostic methods to check model adequacy, most of them 

involving graphics. In 2007, Karlsson and Savic [4] published a detailed overview of the different 

model diagnostics to be used in the context of mixed-effect modeling, highlighting for each of 

them pros and cons. The authors divided such methods into five categories: 

 

(a) typical individual prediction-based methods, 

(b) individual parameter estimates-based methods, 

(c) residual-based diagnostics, 

(d) numerical diagnostics, 

(e) simulation-based diagnostics. 

 

The (a) and (b) methods are essentially based on graphics: their aim is to visually evaluate 

whether there is agreement between the dependent variable (DV), i.e. the observations we want to 

describe, and population or individual model predictions, respectively. The first method can be 

misleading when applied to non-linear mixed-effect models and often indicates misspecified 
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models even when they are adequate. The second one suffers from the opposite drawback: in case 

of sparse information in the individual data, it becomes difficult to recognize misspecified models 

since excellent predictions are usually produced (‘perfect fit’ phenomenon). The residual based 

diagnostics (c), consisting in checking population or individual residual, are strictly connected to 

the latter methods and substantially have the same flaws.  

However, these methods (a, b and c), often referred to as 'goodness of fit inspection methods’, are 

very easily implementable but not applicable in the categorical data context, in which only 

probability of observations is estimated and, consequently, residuals are not considered. For this 

reason, they are not used in this thesis.    

Several types of numerical diagnostics (d) can be implemented for checking models adequacy in 

case of categorical data. These methods are essential importance for model comparison 

(Loglikelihood ratio test), for the evaluation of model robustness (bootstrap) and for the detection 

of possible overfit (standard errors for the parameters). Most of them were used during model 

building procedure, but are not part of this thesis. 

Finally, the simulation based methods (e) are considered the most interesting diagnostics in the 

current use: when dealing with categorical data. In fact, these methods appear very attractive 

because they preserve the same pros of the classical 'goodness of fit inspection methods’ without 

being affected by their cons. Such diagnostics consist in comparing a desired statistic derived 

from raw data with a reference distribution obtained trough stochastic simulation.  

A stochastic simulation is a methodology which aims to re-produce a desired set of data from one 

model through random sampling from probability distributions defined by the model. When 

repeated many times, this procedure becomes a useful tool to show potential model 

misspecifications. In fact, when the model is adequate the simulations should mimic real data 

behavior.  

In this Chapter such methods together with their application to the final model are discussed in 

details. However, it is important to highlight that their application, in addition to that of numerical 

diagnostics, played an essential role also during the whole model building process, allowing to 

achieve significant model improvements. 

In particular, our aim in applying stochastic simulation-based methods to the final model is not 

only to check its capabilities in predicting the aggregated parameters (WASO, LPS, etc.) used in 

the clinical practice for quantifying the severity of sleep disorders, but mainly to evaluate its 

predictability of sleep physiological pattern whose maintenance has been demonstrated to be 

relevant. The two inspections were performed through the implementation of ’Posterior 

Predictive Check’ (PPC) on the aggregated parameters and ’Visual Predictive Check‘ (VPC) on 

specific statistics derived from data, as the transition frequencies and the stage frequencies.  

However, bias and imprecision in the desired predictions may depend not only on possible model 

misspecifications but also on non robust estimation methods. In the case of the Markov chain 
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model, which is complex, highly non-linear and dealing with categorical data, this issue could 

become very relevant. 

For this reason, a recent approach [6,7] for checking both model adequacy and estimation method 

performance is implemented in this thesis: the ‘Stochastic Simulations followed by Estimation’ 

(SSE) based diagnostics. SSE is a two-stage method which consists in the following steps:  

1. to simulate a data set from a model with the parameter values estimated  

from the observed data, 

                               2.    to re-estimate the same model on the simulated data, 

                               3.    to repeat steps 1 and 2 many times. 

 

In addition to the evaluation of model robustness and misspecifications, simulation followed by 

re-estimation has been proposed for the assessment of the performance of the estimation method. 

This is particular critical in our specific case where the estimation method (ML approach) is based 

on the likelihood as defined by the user and its approximation according to the Laplacian method, 

as implemented in NONMEM VI. These complexities related to the estimation method should be 

clearly considered in the validation procedure. SSE is used here for the visual comparison 

between the transition probabilities estimated from raw data and the confidence intervals on the 

correspondent transition probabilities estimated during SSE procedure. At the best of my 

knowledge, this kind of visual comparison was never implemented before. We propose to call it 

‘Visual Estimation Check’ (VEC), that reflects the similarity with ‘VPC’ relative to the evaluation 

of the ‘estimation’ procedure.  

 

 

4.2. Simulation-based diagnostics: theory 

 

The theory of Bayesian inference is now recalled in order to give an adequate theoretical basis to 

the simulation-based validation methods implemented here. In general, statistical inference 

consists in making conclusions from numerical data about quantities that are not directly 

observable or quantities potentially observable but not yet observed. In the Bayesian framework, 

the model for describing such quantities is a 'full probability model' which combines the 

information derived from data and a priori knowledge on parameters. 

Let 
  be the matrix of the observed data, in which each row contains, for example, scores 

belonging to a single subject at different times (��6 , / ∈ [1, … , 8], 1 = 1, … , )). 
Ú is the unknown 

but potentially observable matrix of future outcomes. Let 3  be the vector of unobserved 

parameters of interest, where 3 = !,, g%,  with , = population parameters and g  = variance-

covariance matrix for between-subject variability. 
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In order to make inferences about 3 given a realization of the process, 
, a model providing a 

joint probability distribution for 3 and 
 is needed: 

 

 @!3, 
% = @!3%@!
|3% [4.1] 

 

where the joint probability density function is given by the 'Bayes rule': it is the product of two 

densities referred to as 'prior distribution', @!3%, and 'likelihood distribution', @!
|3%. The prior 

distribution reflects the a priori expectations about the parameters before seeing the data), while 

the likelihood quantifies the probability that the data are generated by that set of parameters.  

The inference on parameters is provided by their 'posterior distribution', that is the probability 

distribution of the unknown parameters conditioned on the observed realization: 

 

 @!3|
% = À!Û,t%À!t% = À!Û%À!t|Û%À!t%  [4.2] 

 

Here, it is possible to omit @!
%  (which does not depend on 3 ) and rewrite the posterior 

distribution as:  

 

 @!3|
% ∝ @!3%@!
|3% [4.3] 

 

A similar objective is to make inferences about future potentially observable outcomes 
Ú, after a 

single realization of the process, 
, is available. Before the data 
 are considered, the distribution 

of the unknown but observable 
 is:  

 

 @!
% = d @!
, 3%a3 = d @!3%@!
|3%a3 [4.4] 

 

which is the marginal distribution of 
  ,also referred to as the 'prior predictive distribution', 

reflecting the a priori expectation on the outcome. Once the data have been observed, the 

unknown observable outcome 
Ú can be predicted from the same process. The distribution of 
Ú 

given 
 is called the 'posterior predictive distribution': 

 

 @O
Úµ
P = d @O
Ú, 3µ
Pa3 = d @O
Úµ3, 
P@!3|
%a3 = d @O
Úµ3P@!3|
%a3 [4.5] 

 

and is given by an average of conditional predictions, @O
Úµ3P, over the posterior distribution 

of 3. 
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The inference just introduced on 
Ú (in the form of [4.5]), can be used to assess model adequacy. 

In fact, let consider ­  a specific statistic on the data, i.e. a function from data space to real 

numbers. As suggested by Gelman [45], the ‘posterior predictive check’ consists in the 

comparison between the observed value of ­!
% and the distribution of ­!
Ú% induced by the 

posterior predictive distribution [4.5]. This comparison provides a measure of the plausibility of 

the realization 
.  

Let consider now to repeat J times the experiment that produced the current data 
 using the 

same model, Ý, and the same unknown value of 3. Let 
Þ��À, ß = 1, … , J be the set of replicated 

data. The desired posterior distribution [4.5] can be therefore approximated with the distribution 

obtained by 
Þ��À, ß = 1, … , J. 

 

                                                               
                     ­!
%     

                                                                                     

                                                              
���À               ­! 
���À%    

                                Ý           3             
���À               ­! 
���À% 

                                                                     ⋮                            ⋮           reference distribution 

                                                              
Ò��À               ­! 
Ò��À% 

 

 

In practice, the posterior distribution of 
Ú is obtained through simulation of new data using the 

model, Ý . Because 3  is unknown, but assumed to have the same value that generated 
 , 

simulations can be done using draws from its posterior distribution given 
, @!3|
%. Finally, the 

observed statistic, ­!
%, can be compared to the reference distribution obtained computing ­ for 

each replicated dataset. 

In a non Bayesian context, the posterior distribution for the parameters, @!3|
%, is not provided 

by the estimation method: in such cases an approximation to this distribution is needed. In 

particular, since a maximum likelihood (ML) approach is adopted for the estimation step (see 

Chapter 2), the approximation is based on the ML estimate 34 . Then the ‘degenerate distribution’ 3 = 34  with probability equal to 1 is used to simulate new datasets. 

 

 

4.3. Stochastic simulations 

 

Once each different sub-model (awake, stage1, stage2, sws and rem) is identified using the 

maximum likelihood approach implemented in NONMEM VI, a set of population parameters, 

including both typical parameters (,) and inter-individual variance-covariance (Ω), is available 

for the simulation step, to be repeated n times (n is chosen equal to 100).  
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The aim of this procedure is to generate from the developed model and its estimated parameters a 

new dataset composed by the polysomnogram outcome for M = 116 (as in the observed dataset) 

new patients. A model that includes all the 5 sub-models is therefore needed in order to produce a 

new sequence of sleep stages for each potential patient. This model is written for NONMEM VI 

and its code is presented in Appendix A. The code can be summarized through the following 

procedure: 

 

1. The AW state is assumed at the beginning of the night for subject i: ��6= AW for t = 1 

epoch, and the starting state k is equal to AW. 

2. t is increased by 1 and a k-sub-model, sm, is chosen according to k value (sm = awake if k 

= AW, stage1 if k = ST1, stage2 if k = ST2, sws if k = SWS, rem if k = REM,) 

3. The transition probabilities at time t are simulated through the sub-model sm: the ML 

estimates obtained from the estimation step on sub-model sm are used to sample and re-

construct the individual logits at time t and thereafter the corresponding individual 

transition probabilities (pAW, pST1, pST2, pSWS and pREM).  

4. The 5 transition probabilities are placed side by side in a probability scale ranging from 0 

to 1, as shown in Figure 4.1 on the x-axis. 

5. A random variable, called R, is drawn from a uniform distribution in [0, 1]. 

6. On the basis of the position of R in the probability scale of Figure 4.1, one of the 5 

possible transitions is supposed to occur: if, for example, R falls into the pST1 interval as 

shown in Figure 4.1, the transition to ST1 is then assumed: ¸�U¤6 = 1, m = ST1, and, 

having consequently ��6 = ST1. 

7. Variables providing stage times for each sleep stage and initial sleeplessness length (if a 

non-awake state has already occurred) are updated according to the value of ��6. 

8. k assumes ��6 value. 

9. Steps 2 to 8 are repeated until t = 960 epochs. 

10. Steps 1 to 9 are repeated for i in [1, …, M]. 

 

  
Figure 4.1: Sampling for a multinomial variable with probability vector [pAW, pST1, pST2, pSWS,  pREM].  
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4.3.1. Dataset for simulation 

A brief explanation of the datasets used as input files for the simulation model is provided below. 

Each dataset (real and simulated) is initially formed by four columns indicating the subject 

identification number (ID), the PSG recording visit (Visit), the night time expressed in epochs 

(Time) and the corresponding sleep stage (STAGE), taking values in {0, 1, 2, 3, 5} !0 for AW, 1 for ST1, 2 for ST2, 3 for SWS, 5 for REM%. Each column length is therefore M x N = 116 x 960. 

 

ID Visit Time STAGE 

1 3 1 0 

1 3 2 0 

1 3 3 1 ⋮ ⋮ ⋮ ⋮ 
1 3 960 3 

2 3 1 0 ⋮ ⋮ ⋮ ⋮ 
 

 

Five more columns called MDV0, MDV1, MDV2, MDV3 and MDV5 (‘MDV’ stands for 

‘missing data value’), indicating whether the previous stage is 0, 1, 2, 3, 5 or not, are added to the 

dataset. For example, MDV0 is equal to 0 if the previous state is AW, and 1 otherwise. 

Furthermore, five binary columns called AW, ST1, ST2, ST3 and REM are added for indicating if 

the current state is 0, 1, 2, 3 or 5, respectively. For example, AW is equal to 1 if the current state 

is AW, and 0 otherwise. 

 

ID Time STAGE MDV0 MDV1 … MDV5 AW ST1 … REM STT SL IS 

1 1 0 1 1  1 1 0  0 0 0 4 

1 2 0 0 1 … 1 1 0 … 0 1 0 4 

1 3 1 0 1  1 0 1  0 2 1 4 

1 4 0 1 0  1 1 0  0 1 1 4 ⋮  ⋮      ⋮     ⋮ 
2 1 0 1 1  1 1 0  0 0 0 30 

 

 

These columns are useful during the estimation step for extracting relevant data for each single 

sub-model, and during the validation process for easily computing the statistics of interest. 

Furthermore, a column counting for the individual stage time (the number of epochs since the last 

transition) is added and called STT. Finally, due to the introduction of the Initial Sleeplessness 

feature for the awake sub-model, two more columns are needed: a binary column called SL 
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(’sleep’), which is 1 from the epoch of first non-awake state up to the last epoch for each subject, 

and one called IS (’Initial Sleeplessness’), that reports the number of awake epochs before the 

first episode of non-awake (IS including also the first non-awake epoch). 

 

 

4.4. Posterior predictive check (PPC) 

 

The model performance in the prediction of the aggregated parameters (WASO, LPS, etc) was 

tested through the implementation of the 'posterior predictive check' (PPC). Since these 

parameters (or at least some of them) are usually considered as the ‘efficacy endpoints’ of clinical 

studies aimed to test efficacy of hypnotic drugs, this term will also be used as synonymous of 

‘aggregated parameters’. 

The individual values for each of these parameters, derived from the observed data, are compared 

to the corresponding values computed from the simulated data. In particular, considering a 

specific endpoint, the median of the individual values is computed in each dataset (observed or 

simulated) and the relative deviations of medians is calculated as follows: 

 ^?eG1/'?.?'/G1/]J = ��ë�ÌÒ¼ÒëÀr�Ò6ìL´íîï·ðñM��ë�ÌÒ¼ÒëÀr�Ò6òóìðÕôðñ��ë�ÌÒ¼ÒëÀr�Ò6òóìðÕôðñ . 

 

For each endpoint, the distribution of relative deviations is computed and plotted in a box-whisker 

plot (Figure 4.2) using the R package (R 2.10.0 from the R Development Core, 2009). If the 

model is adequate, relative deviations need to be distributed around the zero line. 

The parameters of interest represented in Figure 4.2 are the following: Latency to Persistent Sleep 

(LPS), Wake After Sleep Onset (WASO), Total Sleep Time (TST), time spent in each stage 

(tAW, tST1, tST2, tSWS, tREM), time spent in non-REM sleep (tNREM), sleep efficiency in 0-2 

hours of bed time (SE1), 2-4 hours of bed time (SE2), 4-6 hours of bed time (SE3), 6-8 hours of 

bed time (SE4), mean extension of each sleep stage (meanAW, meanST1, meanST2, meanSWS, 

meanREM),  number of transitions to each stage (nAW, nST1, nST2, nSWS, nREM). 

 

4.4.1. PPC results 

Posterior predictive check indicates a good agreement between simulated and observed efficacy 

endpoints in most cases (Fig. 4.2). Only 1 out of 23 median aggregated parameters computed 

from the real study fall outside the range of the median values computed from the simulated 

studies: this parameter is the time spent in SWS (tSWS), which is under-predicted. Figure 4.3 

shows the histogram of the relative deviations for the simulated tSWS medians, together with the 
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corresponding density function (darkgreen line) and confidence interval (red dashed lines) 

computed as in the box-whisker plots, i.e.: 

 

[Q1 – 1.5 * (Q3-Q1), Q3 + 1.5 * (Q3-Q1)], 

 

where Q1 and Q3 are the first and the third quartile of the distribution, respectively. It is notable 

to observe that the zero relative deviation (vertical black line) falls outside the latter confidence 

interval. This bias is probably due to the low frequency of appearance of SWS during the night, 

and the consequent low number of observations available for the transitions from this sleep stage. 

Other PPC plots were produced considering statistics different from the median: they are not 

reported in this thesis but they were all considered relevant in judging the model predictive 

performance, in terms of both typical outcomes and variability extent in the population. 

The PPC outcome presented here can be compared with the one presented in [2], where the 

Markov model with multinomial logistic functions is introduced but not fully implemented with 

all the new features presented in Chapter 3. Although, the aim of this thesis is not related to the 

model development, it is worth to mention that the PPC for the revised model shows a general 

improvement in the predictive performance on the aggregated parameters. In particular, a 

significant improvement in LPS and nAW predictions is obtained, which can be associated to the 

introduction of the ‘Initial Sleeplessness’ feature in the awake sub-model. 

In conclusion, an example of the use of PPC has been provided to show how the proposed model 

is suitable to predict aggregated characteristics of PSG data in a patient population. 

 

Figure 4.2: Results from posterior predictive check: distributions of the relative deviations of median efficacy endpoints 
in 100 simulated clinical studies from the medians in the real study. 

Posterior Predictive Checks on Efficacy Endpoints
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Figure 4.3: Distribution of relative deviations of median tSWS in simulated populations from the observed values. 

 

 

4.5. Visual predictive check (VPC)  

 

Since the model was built with the aim to properly describe the sleep internal architecture, it is 

important in the validation process to verify whether the model adequately describes sleep time-

course along the night .  

Visual predictive check (VPC) allows to test model capability to properly describe sleep stage and 

transition frequencies and therefore should be considered complementary to PPC, which mainly 

focus on parameters of clinical interest. 

The concept governing this type of diagnostic method is the one which has been introduced in the 

theory section and applied for PPC: a statistic of interest is compared to a reference distribution 

obtained through simulation. However, in the VPC procedure the statistics under examination 

obtained from both raw and simulated data are evaluated over the independent variable, in this 

case the night time (the same procedure can be repeated over stage time, but night time is 

considered more relevant for a physiological perspective). The observed statistic and the 

corresponding confidence interval derived from simulations are therefore plotted against the 

independent variable in order to have a ‘visual check’ on the predictive model performance. This 

diagnostic is very helpful to evaluate potential model misspecifications over the independent 

variable.  

The VPC implemented in this thesis regards two different statistics evolving with night time and 

obtainable from data:  

 

a) stage frequencies, ®FU,  ∀ ¥ ∊ ¢, 
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b) transition frequencies,  ³U¤,  ∀ ¥, I ∊ ¢, 

 

according to Equations 3.1 and 3.2 in paragraph 3.1, respectively.  

The 8-hour night time is divided into 10 intervals of equal width (48 minutes) and both transition 

and stage frequencies are computed on each of them. The choice of 10 intervals is based on two 

key features: to adequately follow sleep physiological variations across the night and to include a 

significant amount of data in each interval for computing confident frequencies.  

VPC implementation was performed using the R package and some relevant code is presented in 

Appendix B.A brief explanation of this code is presented below. 

Let’s consider a specific dataset as presented in paragraph 4.2.1. The number of subjects in each 

stage is calculated for each epoch of the night: a summary dataset is created merging a ‘Time’ 

column (from 1 to 960) to the ‘AW’, ‘ST1’, ‘ST2’, ‘SWS’ and ‘REM’ columns, indicating the 

number of subjects in each of the sleep stages in each epoch.  The number of transitions relative 

to each couple of sleep stages is also calculated over all the subjects at each epoch. As a result, 25 

more columns are added to the summary dataset (‘TRaw1’, for example, indicates the number of 

subjects transitioning from AW to ST1 at every single epoch). 

 

Time AW ST1 ST2 … TRawaw TRaw1 TRaw2 … TRR3 TRRR 

1 116 0 0 … 114 1 1 … 0 0 

2 114 1 1 … 112 0 0 … 0 0 ⋮           

959 44 17 36 … 2 0 … … 0 0 

960 49 14 34 … 2 0 … … 0 0 

 

The ‘Time’ column is thereafter divided into 10 parts of equal length and all variables are 

summed together in correspondence to each interval. In this way, the number of transitions from k 

to m and the number of occurrence of k (∀ ¥, I ∊ ¢) are computed on the 10 night time intervals 

together with the final statistics (median and 95% confidence interval). 

 

4.5.1. VPC: results 

Figure 4.4 shows the results for the visual predictive check implemented on stage frequencies, ®FU. 

The plots show a general good agreement between the observed and the simulated statistics: the 

observed profiles computed on the 48-minute intervals of the night (red solid lines) fall within the 

confidence intervals (C.I.) obtained from the simulations (light blue areas) with very few 

exceptions (outliers). Both in the observed and simulated data, ST2 is the predominant stage all 

night long except for the first ~50 minutes; ST1, being a transitional state, covers a minimal part 

of the night; SWS mostly occurs between the second hour and the fourth hour, while it almost 
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disappears afterwards; REM sleep mainly occurs in the second half of the night; AW is strongly 

predominant in the first ~50 minutes and slightly regain importance in the last hours. 

 

Figure 4.4: Results from visual predictive check on stage frequencies. 
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Figures 4.5, 4.6, 4.7, 4.8, 4.9 illustrate the predictive performance of the Markov-chain model 

with respect to the transition frequencies,  ³U¤, for the transitions from AW, ST1, ST2, SWS and 

REM respectively. A very good match is obtained between observed and simulated frequencies 

for all the sub-models: the observed frequencies (red solid lines) fall outside their simulated 

confidence interval (light blue areas) in very few occasions. 

It is interesting to note the width of the confidence intervals. The transition frequencies from ST2 

are those with the narrowest confidence intervals: in fact, a great amount of data is available for 

estimating transition probabilities from ST2. The awake, stage1 and stage2 sub-models are 

characterized by confidence intervals with approximately constant width, while the sws and rem 

sub-models present time-dependent confidence intervals. This is in agreement with the observed 

predominance of SWS in the first part of the night and of REM sleep in the second one: where 

data are more sparse a higher degree of uncertainty is shown, resulting in larger confidence 

intervals. 

The plots also confirm that fixing some of the transition probabilities to zero in the model was an 

appropriate choice: in fact, their observed values (red solid lines) are actually very close to zero 

during the whole night time period.  

In conclusion, the model seems appropriate to describe the physiological evolution of the 

considered sleep transitions along the night and VPC confirms to be a valuable tool for checking 

model adequacy to the observed process in its temporal domain. 
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Figure 4.5: Results from visual predictive check on frequency of transitions from the AW state. 
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Figure 4.6: Results from visual predictive check on frequency of transitions from the ST1 state. 
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Figure 4.7: Results from visual predictive check on frequency of transitions from the ST2 state. 
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Figure 4.8: Results from visual predictive check on frequency of transitions from the SWS state. 
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Figure 4.9: Results from visual predictive check on frequency of transitions from the REM state. 
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4.6. Visual estimation check (VEC) 

 

Visual estimation check (VEC) is introduced in this thesis for the purpose to analyze the 

estimation of temporal profiles of typical and individual transition probabilities: profiles estimated 

from raw data are compared with the corresponding profiles estimated from the simulated 

datasets. 

Differently from VPC where some statistics on the simulated datasets 
Þ��À are produced, the 

simulated data are used for re-estimating the same Markov model, thus obtaining new estimates 

of the parameters, called 3Þ. This method has been already proposed as a validation approach 

where the distribution of 3Þ  is compared with the original set of  3  [6,7]. The further 

implementation of this method proposed in this thesis is to transform the estimated parameters in 

the form of transition probabilities. In this way, we can still use a visual approach for the model 

validation (as in PPC and VPC) based on a meaningful parameters representation, as the transition 

probabilities are.  

 

 

 

 

 

 

 

 

An automatic procedure is implemented for identifying each of the 5 sub-models on all the 100 

simulated datasets. Five different summary datasheets are created by this procedure, in which 

population and inter-subject variability parameters are obtained for a specific sub-model using 

NONMEM software. In our case population parameters include the values of the typical logits at 

the night time break-points, the values of the stage time effects and the values for the internal 

break-points of night time and stage time. Between subject variability is estimated from 

covariance matrix and represents the individual deviations from the typical logits.         

The transition probability profiles are then computed from the estimated parameters. In particular, 

the typical logit profiles for each sub-model are re-built from the population estimates. The 

individual deviations from the typical logits are drawn from Gaussian distributions with zero 

mean and covariance matrix estimated from the specific sub-model. Both typical and individual 

transition probability profiles are then computed according to Equation 3.8 from typical and 

individual logit profiles. The 5th and 95th percentiles of the individual transition probability 

profiles are therefore computed. Such procedure is followed for the original and all the simulated 

SIMULATION 
of n=100 datasets, 
Þ��À,  

from the previously 

estimated parameters 3 = !,,Ω% 

RE-ESTIMATION 
of the model parameters 

for each simulated dataset 3Þ = !,Þ,ΩÞ% 

COMPUTATION 
of the transition 

probabilities profiles from 

the estimated parameters 
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datasets, producing an observed and n = 100 simulated profiles for the typical transition 

probabilities and the 5th and 95th percentiles on the BSV. The 95% confidence intervals for each 

of them are therefore computed from the simulated profiles. 

Since this procedure implies computational burden it was applied only to the final model. 

 

 

4.6.1. VEC: results 

Figures 4.10, 4.11, 4.12, 4.13 and 4.14 illustrate the results from VEC performed on transition 

probabilities, for the transitions from AW, ST1, ST2, SWS and REM respectively. The black 

solid line represents the typical transition probability estimated from raw data and the pink area 

corresponds to the 95% confidence interval (C.I.) on the typical transition probability as derived 

from simulations. The dashed black lines represent the 5th and 95th percentiles of the inter-

individual distribution and the blue area their 95% confidence intervals. Mixed color (violet) areas 

come from the superimposition of pink and blue confidence intervals (note that there is 

superimposition on the typical and 5th and/or 95th confidence intervals for the awake, sws and rem 

sub-models). 

In general, a good agreement between profiles estimated from raw and simulated data is shown in 

these plots, with exception for the transitions from REM to ST2 and from REM to REM at the 

beginning of the night. Even though the observations of REM sleep in the first part of the night 

are almost absent (see Fig. 4.4), it is difficult to understand for which reason the transition 

probabilities estimated from observed data are different from the transition probabilities re-

estimated from simulated data. One possible explanation is related to the estimation method in 

presence of shrinkage effect. In fact, the Laplacian method is less robust when high ‘η-shrinkage’ 

is revealed [3]. A full description of the “shrinkage phenomena” was not an objective of this 

thesis and detailed information can be found in literature [46]. 

In nonlinear mixed-effect modeling, the estimated individual deviations from a typical parameter 

value are called ‘Empirical Bayes Estimates’ (EBEs) as described in Chapter 2. EBEs of a 

specific inter-individual random effect η are used for computing η-shrinkage as follows: 

 

1 – (SD (EBEs))/ω, 

 

where ω is the population model estimate of the SD in η.  

In case of shrinkage the EBEs are biased and therefore the Laplace estimation method can suffer 

from this effect. According to literature [46] η-shrinkage higher than ~25%, is considered 

relevant. 
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The stage transitions mostly affected by shrinkage in the proposed Markov-chain model are those 

leaving SWS and REM sleep (see Table 4.1): η-shrinkage results ~50% for the logit value defined 

on the ratio between the probability of moving from SWS to ST1 sleep and the probability of 

staying in SWS, and > 25% for the logit value defined on the ratio between the probability of 

staying in REM sleep and the probability of moving to SWS.  

 

Sub-model\logit logit1 logit2 logit3 logit4 

awake 0.17 0.14 0.23 . 

stage1 0.17 0.10 0.18 . 

stage2 0.17 0.10 0.08 0.28 

sws . 0.49 0.12 . 

rem 0.15 0.14 0.27 . 

 

Table 4.1: η-shrinkage values for all the sub-models. 

 

Consequently, the only case in which high η-shrinkage could be considered a potential issue in the 

Laplacian method is the transition from REM to ST2 sleep. However, other high η-shrinkage 

effect as in the SWS stage did not result in any bias on VEC . 

It is interesting to note that also the amplitude of confidence intervals on the transition 

probabilities is related to the amount of available information: where data are sparser their 

amplitude is larger. This can be seen for transitions of sws and rem sub-models: they show very 

similar time-dependency between amplitude of confidence intervals and amount of SWS and 

REM observations; moreover, their confidence interval width is higher, for example, than that 

computed for stage2 sub-model, for which observations are much more abundant. 

Furthermore, it is interesting to notice that confidence intervals in proximity of probability equal 

to 0 or 1 are generally narrower than those in proximity of probability = 0.5 (see, for example, the 

transitions from ST2 to ST1 or from SWS to ST2). This is due to the non-linear behavior of the 

logit transformation implemented in the model: an interval in the logit scale (-∞, +∞) will be 

squashed in the probability scale [0, 1]. Therefore larger C.I. will appear in case of logit values 

near zero, while narrower C.I. will be present with logit values belonging to the higher and lower 

parts of the (-∞, +∞)  interval. 

Concluding, the performed VEC allows to state once more that the model is suitable for 

describing the available sleep data, but also that the adopted estimation method is robust enough 

for estimating such model. VEC shows to be an appealing and meaningful visual diagnostics to 

apply with models on categorical data (but not only) and to put side by side to other indicators of 

potential estimator inadequacy (like the η-shrinkage computation). 
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Figure 4.10: Results from visual estimation check on transitions from the AW state. 
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Figure 4.11: Results from visual estimation check on transitions from the ST1 state. 
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Figure 4.12: Results from visual estimation checks on transitions from the ST2 state. 
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Figure 4.13: Results from visual estimation checks on transitions from the SWS state. 
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Figure 4.14: Results from visual estimation checks on transitions from the REM state. 
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4.7. Conclusions 

 

In this Chapter different diagnostic methods were proposed to investigate the adequacy and the 

performance of the proposed Multinomial Markov-chain model [2] for describing sleep data. 

Firstly, diagnostic methods based on stochastic simulation were implemented to assess the 

capacity of the model to describe some important characteristics of the polysomnograpghic (PSG) 

data. In particular, ‘Posterior Predictive Check’ on the aggregated parameters (WASO, etc) and 

‘Visual Predictive Check’ on the transition frequencies and the frequencies of occurrence of each 

stage were implemented. The results from both these methodologies showed that the proposed 

model is sufficiently robust for describing these data characteristics and the dynamic behaviour of 

the sleep process. 

However, bias and imprecision in the desired predictions may also depend on weaknesses in the 

estimation methods. Therefore, A new diagnostic method derived by a recently proposed [6,7] 

approach for checking both model and estimation method performance has been introduced: the 

‘Stochastic Simulations followed by Estimation’ (SSE) based diagnostics. The peculiarity of the 

method based on SSE as implemented in this thesis is that it allowed to perform a visual check on 

the characteristics of interest: in particular, the transition probabilities between sleep stages. This 

kind of visual comparison – applied for the first time in categorical models - has been called 

‘Visual Estimation Check’ (VEC). The results from the implementation of such diagnostic 

corroborated the adequacy of the multinomial Markov-Chain model to describe sleep architecture 

and provided a valuable tool to evaluate the goodness of the proposed estimation method.  
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Discussion and Final Remarks 

  

 
 
Polysomnography is a key measurement to objectively assess and properly diagnose different 

types of sleep disorders. Currently, the clinical use of polysomnography is mainly related to 

assess sleep aggregated characteristics (WASO, LPS, etc.). However, there is growing evidence 

suggesting that the maintenance of the sleep architecture is one of the critical aspects for sleep 

quality.  

Clearly, mathematical models can be of great help when trying to quantify complex physiological 

processes and a Multinomial Mixed-Effect Markov-chain model approach has been proposed in 

this thesis to properly quantify the sleep architecture considered as a time-course pattern among 

specific sleep stages.  

The aim of this thesis was therefore to evaluate the appropriateness of such Markov-chain model. 

The application of this model, in fact, is considered a valuable methodology for the analysis and 

interpretation of clinical studies in the insomnia indication and a proper evaluation of model 

performances was therefore considered of particular importance.  

The analysis conducted in this work was focused, in particular, on the evaluation of model 

performances in predicting both the sleep aggregated parameters (LPS, WASO, etc.) used in the 

clinical practice to quantify the severity of sleep disorders and the sleep physiological pattern, 

whose maintenance has been demonstrated to be critical. It is worth mentioning that the novel 

mechanisms in the treatment of sleep disorders are aimed to reduce sleep onset and increase sleep 

maintenance preserving the physiological sleep architecture.  

In addition, the ability of this model to properly describe the time-course of sleep can be a very 

helpful tool for clinical trial simulations, where the effect of different doses and treatment periods 

can be predicted. 

Three different diagnostic methodologies have been presented and implemented in this thesis for 

checking the adequacy of the proposed model: the ‘Posterior Predictive Check’(PPC) and the 

‘Visual Predictive Check’(VPC) based on stochastic simulation and the ‘Visual Estimation 

Check’(VEC), introduced with this thesis, derived by the ‘stochastic simulation followed by 

estimation’ (SSE) method. Such methodologies provided evidence of the good properties of the 

proposed Markov-chain model and their implementation in this thesis illustrates their usefulness 

for checking model adequacy. In particular, the PPC was demonstrated to be an important 

simulation-based diagnostic showing that the proposed model is suitable for predicting the 

aggregated characteristics of PSG data in a population of subjects. Furthermore, through the 

implementation of the VPCs on the transition frequencies and the stages frequencies of 
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occurrence, the model was demonstrated to be appropriate for describing the physiological 

evolution of the considered statistics along the night. The VPC method therefore confirms to be a 

good tool for checking model adherence to the observed data and to the process temporal 

dynamics. Finally, the results from the performed VEC allow to state once more that the model is 

suitable for describing the available sleep data, but also that the adopted estimation method is 

robust enough. Such diagnostics allow the evaluation of both model and estimation method 

performances in an easily understandable visual form. To my knowledge, this work is the first to 

implement the SSE in this way. The implemented VEC seems to be an appealing and meaningful 

visual diagnostics to apply with models on categorical data (but not only) and to put side by side 

to other indicators of potential estimator inadequacy (like the η-shrinkage computation).  

In summary, the validation proposed in this thesis indicates that the proposed model can be 

considered a robust modeling framework for describing and predicting sleep architecture. This 

analysis has been conducted on data from a population of insomniac patients treated with placebo, 

but the natural future development will be to extend this model (and the related validation 

approach) to include the terms related to the drug effect to allow simulating complete clinical 

trials.  
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Appendix A 

NONMEM code 

  

 

A.1. ‘Awake sub-model’ 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; AWAKE sub-model 

; NONMEM model file for the transition from awake 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

$PROB trAW 

 

$INPUT ID VIS TIME DV=STAG MDV0 MDV1 MDV2 MDV3 MDV5 MDV 

       DROP DROP DROP DROP DROP STT EVID BPS0 DROP DROP DROP DROP MED  

       DROP DROP DROP DROP SL DROP IS MIS 

 

  ; TIME = epoch number (between 1 and 960) 

  ; STT = stage_time (number of epochs)  

  ; BPS0 = max_stage time observed in the data 

  ; MED = median_stage time observed in the data 

  ; SL = 0 if first sleep stage has not occurred yet, 1 otherwise 

  ; IS = first epoch with SL==1 

  ; MIS = maximum Initial Sleeplessness observed in the data 

   

 

$DATA tr0Visit33MAD103894forNONMEMallTimes34tSTevidSLIS.csv IGNORE=@ 

   

  IGNORE=(MDV0.EQ.1) 

  IGNORE=(STAG.GT.5) 

  IGNORE=(STAG.EQ.3) 

 

  ;dataset contains only observations immediately preceded by awake 

   stage 

 

$PRED                   

   

  TVG1A=THETA(1) 

  TVG2A=THETA(2) 

  TVG3A=THETA(3) 

  TVG1B=THETA(4) 

  TVG2B=THETA(5) 

  TVG3B=THETA(6) 

  TVG1C=THETA(7) 

  TVG2C=THETA(8) 

  TVG3C=THETA(9) 

 

  STE1b=THETA(10) 

  STE2b=THETA(11) 

  STE3b=THETA(12) 
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  STE1c=THETA(13) 

  STE2c=THETA(14) 

  STE3c=THETA(15) 

 

  BPA=IS 

  BPC=960 

  BPB=(BPC-BPA)*THETA(16)+BPA 

 

  BPsa=1 

  BPsc=BPS0 

  BPsb=(BPsc-BPsa)*THETA(17)+BPsa 

  

  BP1=2 

  BP3=MIS    ;MAX initial sleeplessness (max(IS)-1)  

  BP2=(BP3-BP1)*THETA(18)+BP1 

 

 

  TVG11=THETA(19) 

  TVG21=THETA(20) 

  TVG31=THETA(21) 

  TVG12=THETA(22) 

  TVG22=THETA(23) 

  TVG32=THETA(24) 

  TVG13=THETA(25) 

  TVG23=THETA(26) 

  TVG33=THETA(27) 

 

;-------------------------------- 

; stage_time effect interpolation 

;-------------------------------- 

 

  IF (STT.LE.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+ETA(1))*(BPsb-STT)/(BPsb-BPsa)+(TVG1A+ETA(1)+STE1b)*(STT- 

BPsa)/(BPsb-BPsa) 

    G2A=(TVG2A+ETA(2))*(BPsb-STT)/(BPsb-BPsa)+(TVG2A+ETA(2)+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3A=(TVG3A+ETA(3))*(BPsb-STT)/(BPsb-BPsa)+(TVG3A+ETA(3)+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1B=(TVG1B+ETA(1))*(BPsb-STT)/(BPsb-BPsa)+(TVG1B+ETA(1)+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2B=(TVG2B+ETA(2))*(BPsb-STT)/(BPsb-BPsa)+(TVG2B+ETA(2)+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3B=(TVG3B+ETA(3))*(BPsb-STT)/(BPsb-BPsa)+(TVG3B+ETA(3)+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1C=(TVG1C+ETA(1))*(BPsb-STT)/(BPsb-BPsa)+(TVG1C+ETA(1)+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2C=(TVG2C+ETA(2))*(BPsb-STT)/(BPsb-BPsa)+(TVG2C+ETA(2)+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3C=(TVG3C+ETA(3))*(BPsb-STT)/(BPsb-BPsa)+(TVG3C+ETA(3)+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

  ENDIF 

 

  IF (STT.GT.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+ETA(1)+STE1b)*(BPsc-STT)/(BPsc-BPsb)+(TVG1A+ETA(1)+STE1c) 

*(STT-BPsb)/(BPsc-BPsb) 

    G2A=(TVG2A+ETA(2)+STE2b)*(BPsc-STT)/(BPsc-BPsb)+(TVG2A+ETA(2)+STE2c) 

*(STT-BPsb)/(BPsc-BPsb) 

    G3A=(TVG3A+ETA(3)+STE3b)*(BPsc-STT)/(BPsc-BPsb)+(TVG3A+ETA(3)+STE3c) 

*(STT-BPsb)/(BPsc-BPsb) 
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    G1B=(TVG1B+ETA(1)+STE1b)*(BPsc-STT)/(BPsc-BPsb)+(TVG1B+ETA(1)+STE1c) 

*(STT-BPsb)/(BPsc-BPsb) 

    G2B=(TVG2B+ETA(2)+STE2b)*(BPsc-STT)/(BPsc-BPsb)+(TVG2B+ETA(2)+STE2c) 

*(STT-BPsb)/(BPsc-BPsb) 

    G3B=(TVG3B+ETA(3)+STE3b)*(BPsc-STT)/(BPsc-BPsb)+(TVG3B+ETA(3)+STE3c) 

*(STT-BPsb)/(BPsc-BPsb) 

 

    G1C=(TVG1C+ETA(1)+STE1b)*(BPsc-STT)/(BPsc-BPsb)+(TVG1C+ETA(1)+STE1c) 

*(STT-BPsb)/(BPsc-BPsb) 

    G2C=(TVG2C+ETA(2)+STE2b)*(BPsc-STT)/(BPsc-BPsb)+(TVG2C+ETA(2)+STE2c) 

*(STT-BPsb)/(BPsc-BPsb) 

    G3C=(TVG3C+ETA(3)+STE3b)*(BPsc-STT)/(BPsc-BPsb)+(TVG3C+ETA(3)+STE3c) 

*(STT-BPsb)/(BPsc-BPsb) 

  ENDIF 

 

;-------------------------------- 

; logits interpolation before IS 

;-------------------------------- 

 

  IF (TIME.GE.BP1.AND.TIME.LE.BP2.AND.SL.EQ.0) THEN 

     

    ; individual logits 

    G1=(TVG11+ETA(4))*(BP2-TIME)/(BP2-BP1)+(TVG12+ETA(4))*(TIME-

BP1)/(BP2-BP1) 

    G2=(TVG21+ETA(5))*(BP2-TIME)/(BP2-BP1)+(TVG22+ETA(5))*(TIME-

BP1)/(BP2-BP1) 

    G3=(TVG31+ETA(6))*(BP2-TIME)/(BP2-BP1)+(TVG32+ETA(6))*(TIME-

BP1)/(BP2-BP1) 

 

    ; population logits 

    G1p=TVG11*(BP2-TIME)/(BP2-BP1)+TVG12*(TIME-BP1)/(BP2-BP1) 

    G2p=TVG21*(BP2-TIME)/(BP2-BP1)+TVG22*(TIME-BP1)/(BP2-BP1) 

    G3p=TVG31*(BP2-TIME)/(BP2-BP1)+TVG32*(TIME-BP1)/(BP2-BP1) 

  ENDIF 

 

  IF (TIME.GT.BP2.AND.TIME.LE.BP3.AND.SL.EQ.0) THEN 

     

   ; individual logits 

   G1=(TVG12+ETA(4))*(BP3-TIME)/(BP3-BP2)+(TVG13+ETA(4))*(TIME-

BP2)/(BP3-BP2) 

    G2=(TVG22+ETA(5))*(BP3-TIME)/(BP3-BP2)+(TVG23+ETA(5))*(TIME-

BP2)/(BP3-BP2) 

    G3=(TVG32+ETA(6))*(BP3-TIME)/(BP3-BP2)+(TVG33+ETA(6))*(TIME-

BP2)/(BP3-BP2) 

 

    ; population logits 

    G1p=TVG12*(BP3-TIME)/(BP3-BP2)+TVG13*(TIME-BP2)/(BP3-BP2) 

    G2p=TVG22*(BP3-TIME)/(BP3-BP2)+TVG23*(TIME-BP2)/(BP3-BP2) 

    G3p=TVG32*(BP3-TIME)/(BP3-BP2)+TVG33*(TIME-BP2)/(BP3-BP2) 

  ENDIF 

 

;-------------------------------- 

; logits interpolation after IS 

;-------------------------------- 

 

  IF (TIME.GE.BPA.AND.TIME.LE.BPB.AND.SL.EQ.1) THEN 

 

    ; individual logits 

    G1=G1A*(BPB-TIME)/(BPB-BPA)+G1B*(TIME-BPA)/(BPB-BPA) 

    G2=G2A*(BPB-TIME)/(BPB-BPA)+G2B*(TIME-BPA)/(BPB-BPA) 



. 

 

98             

 

    G3=G3A*(BPB-TIME)/(BPB-BPA)+G3B*(TIME-BPA)/(BPB-BPA) 

     

    ; population logits 

    G1p=TVG1A*(BPB-TIME)/(BPB-BPA)+TVG1B*(TIME-BPA)/(BPB-BPA) 

    G2p=TVG2A*(BPB-TIME)/(BPB-BPA)+TVG2B*(TIME-BPA)/(BPB-BPA) 

    G3p=TVG3A*(BPB-TIME)/(BPB-BPA)+TVG3B*(TIME-BPA)/(BPB-BPA) 

  ENDIF 

 

  IF (TIME.GT.BPB.AND.TIME.LE.BPC.AND.SL.EQ.1) THEN 

 

    ; individual logits 

    G1=G1B*(BPC-TIME)/(BPC-BPB)+G1C*(TIME-BPB)/(BPC-BPB) 

    G2=G2B*(BPC-TIME)/(BPC-BPB)+G2C*(TIME-BPB)/(BPC-BPB) 

    G3=G3B*(BPC-TIME)/(BPC-BPB)+G3C*(TIME-BPB)/(BPC-BPB) 

 

    ; population logits 

    G1p=TVG1B*(BPC-TIME)/(BPC-BPB)+TVG1C*(TIME-BPB)/(BPC-BPB) 

    G2p=TVG2B*(BPC-TIME)/(BPC-BPB)+TVG2C*(TIME-BPB)/(BPC-BPB) 

    G3p=TVG3B*(BPC-TIME)/(BPC-BPB)+TVG3C*(TIME-BPB)/(BPC-BPB) 

  ENDIF 

 

  ;----------------------------------------------- 

  ; typical transition probabilities as anti-logit 

  ;----------------------------------------------- 

 

  PAWp=1/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

  P1p=EXP(G1p)/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

  P2p=EXP(G2p)/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

  P3p=0 

  PRp=EXP(G3p)/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

 

  ;-------------------------------------------------- 

  ; individual transition probabilities as anti-logit 

  ;-------------------------------------------------- 

 

  PAW=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  P1=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  P2=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  P3=0 

  PR=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

   

  ;-------------------------------- 

  ; likelihood 

  ;-------------------------------- 

 

  Y=0 

  IF (STAG.EQ.0) Y=PAW 

  IF (STAG.EQ.1) Y=P1 

  IF (STAG.EQ.2) Y=P2 

  IF (STAG.EQ.5) Y=PR 

 

  IWRES=1 

 

$THETA                ;LOGIT:1,2,3  BP:A,B,C  BP_TIME:a,b,c 

 

  -1; TVG1A 

  -5; TVG2A 

  -10 FIX ; TVG3A 

 

  -1; TVG1B 

  -1; TVG2B 
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  -4; TVG3B 

 

  -.1; TVG1C 

  -2; TVG2C 

  -2; TVG3C 

 

  -2; STE1b 

  -3; STE2b 

  -5; STE3b 

 

  -5; STE1c 

  -10 FIX; STE2c 

  -10 FIX; STE3c 

 

  (0,.1,1);  REL BPB 

 

  (0,.1,1);  BPsb      

  (0,.4,1);  REL BP2      

 

  -5; TVG11 

  -10 FIX; TVG21 

  -10 FIX; TVG31 

 

  -5; TVG12 

  -5; TVG22 

  -10 FIX; TVG32 

 

  -1; TVG13 

  -10 FIX; TVG23 

  -10 FIX; TVG33 

 

$OMEGA BLOCK(2) 

 

  .1   ;G1i 

  -.02 .5   ;G2i 

 

$OMEGA 

 

  .5  ;G3i 

  0 FIX  ;G1aw 

  0 FIX  ;G2aw 

  0 FIX  ;G3aw 

 

$ESTIMATION METHOD=COND LAPLACE LIKE MSFO=msf1 

 

$COVARIANCE MATRIX=R PRINT=E 

 

$TAB ID VIS TIME STAG 

     ETA(1) ETA(2) ETA(3) 

     PAWp P1p P2p P3p PRp PAW P1 P2 P3 PR PAWpm P1pm P2pm P3pm PRpm 

     ONEHEADER NOPRINT NOAPPEND FILE=sdtab1 

 

$TAB ID ETA(1) ETA(2) ETA(3) 

     ONEHEADER NOPRINT NOAPPEND FILE=patab1 

 

 

 



. 
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A.2.’Simulator’ 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; NONMEM control file for the simulation of new datasets 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

$PROB SHmf_296_292_288_297_290p1_34 

 

$INPUT ID DV=VIS TIME DROP DROP DROP DROP DROP DROP MDV 

       DROP DROP DROP DROP DROP DROP EVID 

   

  ; TIME = epoch number (between 1 and 960)   

 

$DATA treatment0Visit33MAD103894forNONMEMallTimes34tSTevid.csv IGNORE=@ 

 

$ABBREVIATED DERIV2=NO 

 

$PRED                  ;LOGIT:1,2,3  BP:A,B,C  BP_STT:sa,sb,sc 

                       ;STT=stage_time  STE=stage_effect 

  REP=IREP 

 

  AA=THETA(1)+ETA(1)+ETA(2)+ETA(3)+ETA(4)+ETA(5)+ETA(6)+ETA(7)+ETA(8) 

  AA=AA+ETA(9)+ETA(10)+ETA(11)+ETA(12)+ETA(13)+ETA(14)+ETA(15)+ETA(16) 

   

  MDV0=1 

  MDV1=1 

  MDV2=1 

  MDV3=1 

  MDV5=1 

 

  IF (TIME.EQ.1) THEN 

    PST=-1                     ;previous stage 

    PSTT=-10                   ;previous stage time 

    PSL=0                      ;previous sleep 

    SL=0                       ;sleep 

    IS=0                       ;prima epoca con SL==1 

  ENDIF 

   

  SL=0 

  IF (PSL.EQ.0.AND.PST.GT.0) SL=1 

  IF (PSL.EQ.1) SL=1 

  IF (PSL.EQ.0.AND.SL.EQ.1) IS=TIME 

 

  STT=PSTT+1      ; stage_time     

         

  IF (PST.EQ.0) MDV0=0 

  IF (PST.EQ.1) MDV1=0 

  IF (PST.EQ.2) MDV2=0 

  IF (PST.EQ.3) MDV3=0 

  IF (PST.EQ.5) MDV5=0 

 

  ; break-points 

  BPA=2 

  BPB=960 

  BPC=960 

  BPsa=1 

  BP1=1 

  BP2=2 
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  BP3=1 

 

  ; stage_time effect 

  STE4b=1 

  STE4c=1 

   

  ; for stage2 sub-model 

  TVG4A=1 

  TVG4B=1 

  TVG4C=1 

  DEV4=1 

 

  ; for awake sub-model 

  TVG11=1 

  TVG21=1 

  TVG31=1 

  TVG12=1 

  TVG22=1 

  TVG32=1 

  TVG13=1 

  TVG23=1 

  TVG33=1 

    

  ;------------------------------------------------------------- 

  ;  if the current state is AW the awake sub-model is taken 

  ;  into account. 

  ;  Initialization using the previously estimated THETAs 

  ;------------------------------------------------------------- 

 

  IF (MDV0.EQ.0) THEN 

    BPA=IS       ; first epoch with SL==1 

     

     

    BPB=(BPC-BPA)*0.0679+BPA 

    BPsb==(BPsc-BPsa)*0.024+BPsa 
          BPsc=265   ; max stage_time           
 

    BP1=2 

    BP3=371             ;MAX initial sleeplessness  

    BP2=(BP3-BP1)*0.0298+BP1 

 

    STE1b=-2.49 

    STE2b=-3.59 

    STE3b=-5.67 

 

    STE1c=-6.63 

    STE2c=-10 

    STE3c=-10 

 

    TVG1A=-0.251 

    TVG2A=-2.66 

    TVG3A=-10 

    TVG1B=-0.209 

    TVG2B=-1.01 

    TVG3B=-2.86 

    TVG1C=-0.203 

    TVG2C=-2.08 

    TVG3C=-2.1 

 

    TVG11=-5.76 

    TVG21=-10 



. 
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    TVG31=-10 

    TVG12=-3.93 

    TVG22=-7.63 

    TVG32=-10 

    TVG13=-4.86 

    TVG23=-10 

    TVG33=-10 

 

    DEV1=ETA(1) 

    DEV2=ETA(2) 

    DEV3=ETA(3) 

  ENDIF  

 

  ; stage1 sub-model 

  IF (MDV1.EQ.0) THEN 

    BPB=268         

 

    BPsb=3.24 

    BPsc=20               

 

    STE1b=-0.447 

    STE2b=-0.52 

    STE3b=-0.463 

 

    STE1c=-0.634 

    STE2c=-0.246 

    STE3c=-3.31 

 

    TVG1A=-0.321 

    TVG2A=-0.0716 

    TVG3A=-4.15 

    TVG1B=-1.07 

    TVG2B=0.492 

    TVG3B=-1.01 

    TVG1C=-1.05 

    TVG2C=-0.251 

    TVG3C=-1.24 

 

    DEV1=ETA(4) 

    DEV2=ETA(5) 

    DEV3=ETA(6) 

  ENDIF   

 

  ; stage2 sub-model 

  IF (MDV2.EQ.0) THEN 

    BPB=676 

 

    BPsb=5.62 

    BPsc=143                

 

    STE1b=-0.905 

    STE2b=-0.894 

    STE3b=-1.19 

    STE4b=-0.993 

 

    STE1c=-1.79 

    STE2c=-6.44 

    STE3c=0.927 

    STE4c=-6.75 

 

    TVG1A=-2.46 
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    TVG2A=-2.52 

    TVG3A=-1.71 

    TVG4A=-4.07 

    TVG1B=-2.57 

    TVG2B=-2.6 

    TVG3B=-3.33 

    TVG4B=-3.34 

    TVG1C=-2.13 

    TVG2C=-2.33 

    TVG3C=-4.59 

    TVG4C=-3.16 

 

    DEV1=ETA(7) 

    DEV2=ETA(8) 

    DEV3=ETA(9) 

    DEV4=ETA(10) 

  ENDIF  

 

  ; sws sub-model 

  IF (MDV3.EQ.0) THEN 

    BPB=715 

 

    BPsb=5.9 

    BPsc=103              

 

    STE1b=-0.999 

    STE2b=-0.939 

    STE3b=-2.5 

 

    STE1c=0.761 

    STE2c=-3.53 

    STE3c=-3.73 

 

    TVG1A=-3.22 

    TVG2A=-4.83 

    TVG3A=-0.526 

    TVG1B=-3.31 

    TVG2B=-5.13 

    TVG3B=0.142 

    TVG1C=-1.65 

    TVG2C=-4.55 

    TVG3C=0.389 

 

    DEV1=ETA(11) 

    DEV2=ETA(12) 

    DEV3=ETA(13) 

  ENDIF  

 

  ; rem sub-model 

  IF (MDV5.EQ.0) THEN 

    BPB=640 

 

    BPsb=13.6 

    BPsc=100              

 

    STE1b=0.351 

    STE2b=-0.238 

    STE3b=-1.22 

 

    STE1c=0.566 

    STE2c=-1.22 



. 
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    STE3c=1.8 

 

    TVG1A=-3.12 

    TVG2A=-2.87 

    TVG3A=-3.11 

    TVG1B=-3.25 

    TVG2B=-3.02 

    TVG3B=-4.6 

    TVG1C=-2.96 

    TVG2C=-2.98 

    TVG3C=-4.56 

 

    DEV1=ETA(14) 

    DEV2=ETA(15) 

    DEV3=ETA(16) 

  ENDIF  

 

  G1A=0 

  G2A=0 

  G3A=0 

  G4A=0 

 

  ;-------------------------------- 

  ; stage time effect interpolation 

  ;-------------------------------- 

 

  IF (STT.GE.0.AND.STT.LE.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+DEV1)*(BPsb-STT)/(BPsb-BPsa)+(TVG1A+DEV1+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2A=(TVG2A+DEV2)*(BPsb-STT)/(BPsb-BPsa)+(TVG2A+DEV2+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3A=(TVG3A+DEV3)*(BPsb-STT)/(BPsb-BPsa)+(TVG3A+DEV3+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

    G4A=(TVG4A+DEV4)*(BPsb-STT)/(BPsb-BPsa)+(TVG4A+DEV4+STE4b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1B=(TVG1B+DEV1)*(BPsb-STT)/(BPsb-BPsa)+(TVG1B+DEV1+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2B=(TVG2B+DEV2)*(BPsb-STT)/(BPsb-BPsa)+(TVG2B+DEV2+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3B=(TVG3B+DEV3)*(BPsb-STT)/(BPsb-BPsa)+(TVG3B+DEV3+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

    G4B=(TVG4B+DEV4)*(BPsb-STT)/(BPsb-BPsa)+(TVG4B+DEV4+STE4b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1C=(TVG1C+DEV1)*(BPsb-STT)/(BPsb-BPsa)+(TVG1C+DEV1+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2C=(TVG2C+DEV2)*(BPsb-STT)/(BPsb-BPsa)+(TVG2C+DEV2+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3C=(TVG3C+DEV3)*(BPsb-STT)/(BPsb-BPsa)+(TVG3C+DEV3+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

    G4C=(TVG4C+DEV4)*(BPsb-STT)/(BPsb-BPsa)+(TVG4C+DEV4+STE4b)*(STT-

BPsa)/(BPsb-BPsa) 

  ENDIF 

 

  IF (STT.GT.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+DEV1+STE1b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG1A+DEV1+STE1c)*(STT-BPsb)/(BPsc-BPsb) 

    G2A=(TVG2A+DEV2+STE2b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG2A+DEV2+STE2c)*(STT-BPsb)/(BPsc-BPsb) 
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    G3A=(TVG3A+DEV3+STE3b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG3A+DEV3+STE3c)*(STT-BPsb)/(BPsc-BPsb) 

    G4A=(TVG4A+DEV4+STE4b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG4A+DEV4+STE4c)*(STT-BPsb)/(BPsc-BPsb) 

 

    G1B=(TVG1B+DEV1+STE1b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG1B+DEV1+STE1c)*(STT-BPsb)/(BPsc-BPsb) 

    G2B=(TVG2B+DEV2+STE2b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG2B+DEV2+STE2c)*(STT-BPsb)/(BPsc-BPsb) 

    G3B=(TVG3B+DEV3+STE3b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG3B+DEV3+STE3c)*(STT-BPsb)/(BPsc-BPsb) 

    G4B=(TVG4B+DEV4+STE4b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG4B+DEV4+STE4c)*(STT-BPsb)/(BPsc-BPsb) 

 

    G1C=(TVG1C+DEV1+STE1b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG1C+DEV1+STE1c)*(STT-BPsb)/(BPsc-BPsb) 

    G2C=(TVG2C+DEV2+STE2b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG2C+DEV2+STE2c)*(STT-BPsb)/(BPsc-BPsb) 

    G3C=(TVG3C+DEV3+STE3b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG3C+DEV3+STE3c)*(STT-BPsb)/(BPsc-BPsb) 

    G4C=(TVG4C+DEV4+STE4b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG4C+DEV4+STE4c)*(STT-BPsb)/(BPsc-BPsb) 

  ENDIF 

 

;-------------------------------- 

; logits interpolation 

;-------------------------------- 

 

  G1=G1A 

  G2=G2A 

  G3=G3A 

  G4=G4A 

 

  IF (TIME.GE.BPA.AND.TIME.LE.BPB.AND.SL.EQ.1) THEN 

    G1=G1A*(BPB-TIME)/(BPB-BPA)+G1B*(TIME-BPA)/(BPB-BPA) 

    G2=G2A*(BPB-TIME)/(BPB-BPA)+G2B*(TIME-BPA)/(BPB-BPA) 

    G3=G3A*(BPB-TIME)/(BPB-BPA)+G3B*(TIME-BPA)/(BPB-BPA) 

    G4=G4A*(BPB-TIME)/(BPB-BPA)+G4B*(TIME-BPA)/(BPB-BPA) 

  ENDIF 

  IF (TIME.GT.BPB.AND.TIME.LE.BPC.AND.SL.EQ.1) THEN 

    G1=G1B*(BPC-TIME)/(BPC-BPB)+G1C*(TIME-BPB)/(BPC-BPB) 

    G2=G2B*(BPC-TIME)/(BPC-BPB)+G2C*(TIME-BPB)/(BPC-BPB) 

    G3=G3B*(BPC-TIME)/(BPC-BPB)+G3C*(TIME-BPB)/(BPC-BPB) 

    G4=G4B*(BPC-TIME)/(BPC-BPB)+G4C*(TIME-BPB)/(BPC-BPB) 

  ENDIF 

 

  IF (TIME.GE.BP1.AND.TIME.LE.BP2.AND.SL.EQ.0) THEN 

    G1=(TVG11+DEV1)*(BP2-TIME)/(BP2-BP1)+(TVG12+DEV1)*(TIME-BP1)/(BP2-

BP1) 

    G2=(TVG21+DEV2)*(BP2-TIME)/(BP2-BP1)+(TVG22+DEV2)*(TIME-BP1)/(BP2-

BP1) 

    G3=(TVG31+DEV3)*(BP2-TIME)/(BP2-BP1)+(TVG32+DEV3)*(TIME-BP1)/(BP2-

BP1) 

  ENDIF 

  IF (TIME.GT.BP2.AND.SL.EQ.0) THEN 

    G1=(TVG12+DEV1)*(BP3-TIME)/(BP3-BP2)+(TVG13+DEV1)*(TIME-BP2)/(BP3-

BP2) 

    G2=(TVG22+DEV2)*(BP3-TIME)/(BP3-BP2)+(TVG23+DEV2)*(TIME-BP2)/(BP3-

BP2) 

    G3=(TVG32+DEV3)*(BP3-TIME)/(BP3-BP2)+(TVG33+DEV3)*(TIME-BP2)/(BP3-

BP2) 



. 
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  ENDIF 

 

  ;---------------------------------------- 

  ; transition probabilities as anti-logits 

  ;---------------------------------------- 

 

  PAW=2 

  P1=0 

  P2=0 

  P3=0 

   

  ; awake 

  IF (MDV0.EQ.0) THEN 

    PAW=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=0 

    PR=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  ENDIF 

 

  ; stage1 

  IF (MDV1.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=0 

    PR=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  ENDIF 

 

  ; stage2 

  IF (MDV2.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    P1=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    P2=1/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    P3=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    PR=EXP(G4)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

  ENDIF 

 

  ; sws 

  IF (MDV3.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    PR=0 

  ENDIF 

 

  ; rem 

  IF (MDV5.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=0 

    PR=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  ENDIF 

   

  ; probability scale 

  DEV1=PAW+P1 

  DEV2=DEV1+P2 

  DEV3=DEV2+P3 
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  ; Initialization of ST; first epoch is awake  

  ST=0    ;stage 

 

  AW=0 

  ST1=0 

  ST2=0 

  ST3=0 

  REM=0 

 

  ; random call for the simulation step 

  IF (ICALL.EQ.4) THEN 

    CALL RANDOM (2,R) 

 

    ; if R<PAW transition to AW is taken into account 

    ; and the following stage is AW(0) 

    IF (R.LT.PAW) THEN 

      ST=0 

      AW=1 

 

    ; if PAW<=R<PAW+P1 transition to ST1 is taken into account 

    ; and the following stage is ST1(1) 

    ELSEIF (R.LT.DEV1.AND.R.GE.PAW) THEN 

      ST=1 

      ST1=1 

 

    ; if PAW+P1<=R<PAW+P1+P2 transition to ST2 is taken into account 

    ; and the following stage is ST2(2) 

    ELSEIF (R.LT.DEV2.AND.R.GE.DEV1) THEN 

      ST=2 

      ST2=1 

 

    ; if PAW+P1+P2<=R<PAW+P1+P2+P3 transition to SWS is  

    ; taken into account and the following stage is SWS(3) 

    ELSEIF (R.LT.DEV3.AND.R.GE.DEV2) THEN 

      ST=3 

      ST3=1 

 

    ; if R>=PAW+P1+P2+P3 transition to REM is  

    ; taken into account and the following stage is REM(5) 

    ELSE 

      ST=5 

      REM=1 

    ENDIF 

  ENDIF 

 

  CH=1                        ;change 

  IF (ST.EQ.PST) CH=0              ; no change 

  PSTT=STT*(CH-1)**2 

 

  IF (TIME.EQ.1) STT=0 

  PSL=SL 

  PST=ST 

 

$THETA 1 

 

;AW 

$OMEGA BLOCK(2) .134 -0.142 .831 

$OMEGA 1.07 

;ST1 

$OMEGA BLOCK(3) .318 .18 .389 -0.0637 .138 .398 

;ST2 



. 
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$OMEGA .152 .456 .786 .239 

;ST3 

$OMEGA (0 FIX) 1.4 1.35 

;REM 

$OMEGA .584 .849 1.1 

 

$SIM (123456) (123 UNIFORM) ONLY SUBPROBS=100 NOPREDICTION 

 

$TAB ID VIS TIME ST MDV0 MDV1 MDV2 MDV3 MDV5 MDV 

     AW ST1 ST2 ST3 REM STT EVID SL IS REP 

     ONEHEADER NOPRINT NOAPPEND FILE=simulD1 

 

$TAB ID TIME REP ETA(1) ETA(2) ETA(3) ETA(4) ETA(5) ETA(6) ETA(7) ETA(8) 

    ETA(9) ETA(10) ETA(11) ETA(12) ETA(13) ETA(14) ETA(15) ETA(16) 

     ONEHEADER NOPRINT NOAPPEND FILE=simulE1 
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Appendix B 

R codes 

  

 

 

B.1. Posterior Predictive Check (PPC) 

 

DirData <- "F:\\eem52253\\tesi\\Dati\\"         

DirSim <- 'F:\\eem52253\\tesi\\Dati\\simulation\\' 

 

# raw dataset 

d<-read.csv(paste(DirData, 

            "treatment0Visit33MAD103894forNONMEMallTimes34.csv",sep='')) 

 

ID<-unique(d$ID) 

N<-length(ID) 

 

kmax<-100 

kmax<-kmax+1 

 

# Initialization 

LPS<-matrix(0,nrow=kmax,ncol=N) 

WASO<-matrix(0,nrow=kmax,ncol=N) 

TST<-matrix(0,nrow=kmax,ncol=N) 

tAW<-matrix(0,nrow=kmax,ncol=N) 

tREM<-matrix(0,nrow=kmax,ncol=N) 

tNREM<-matrix(0,nrow=kmax,ncol=N) 

tST1<-matrix(0,nrow=kmax,ncol=N) 

tST2<-matrix(0,nrow=kmax,ncol=N) 

tSWS<-matrix(0,nrow=kmax,ncol=N) 

SE1<-matrix(0,nrow=kmax,ncol=N) 

SE2<-matrix(0,nrow=kmax,ncol=N) 

SE3<-matrix(0,nrow=kmax,ncol=N) 

SE4<-matrix(0,nrow=kmax,ncol=N) 

meanAW<-matrix(0,nrow=kmax,ncol=N) 

meanST1<-matrix(0,nrow=kmax,ncol=N) 

meanST2<-matrix(0,nrow=kmax,ncol=N) 

meanSWS<-matrix(0,nrow=kmax,ncol=N) 

meanREM<-matrix(0,nrow=kmax,ncol=N) 

nAW<-matrix(0,nrow=kmax,ncol=N) 

nST1<-matrix(0,nrow=kmax,ncol=N) 

nST2<-matrix(0,nrow=kmax,ncol=N) 

nSWS<-matrix(0,nrow=kmax,ncol=N) 

nREM<-matrix(0,nrow=kmax,ncol=N) 

 

 

for (k in 1:kmax) { 

  if (k==kmax) 

 { 

 d<-read.csv(paste(DirData, 
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            "treatment0Visit33MAD103894forNONMEMallTimes34.csv",sep=''))  

 } 

else 

 { 

    d<-read.csv(paste(DirSim, 

            "trt0visit3simulatoForNONMEM34data",k,".csv",sep="")) 

  } 

 

  n<-nrow(d) 

  ID<-unique(d$ID) 

  N<-length(ID) 

 

  for (i in 1:N)  

    { 

    d1<-d[d$ID==ID[i],c(1,3,4)] 

    ll <- nrow(d1) 

     

    d1$SLEEP1<-NA                #=1 from LPS 

    d1$SLEEP<-rep(0,ll) 

 

    d1$STsucc1 <- rep(0,ll) 

    d1$STsucc2 <- rep(0,ll) 

    d1$STsucc3 <- rep(0,ll) 

    d1$STsucc4 <- rep(0,ll) 

    d1$STsucc5 <- rep(0,ll) 

    d1$STsucc6 <- rep(0,ll) 

    d1$STsucc7 <- rep(0,ll) 

    d1$STsucc8 <- rep(0,ll) 

    d1$STsucc9 <- rep(0,ll) 

    d1$STsucc10 <- rep(0,ll) 

    d1$STsucc11 <- rep(0,ll) 

    d1$STsucc12 <- rep(0,ll) 

    d1$STsucc13 <- rep(0,ll) 

    d1$STsucc14 <- rep(0,ll) 

    d1$STsucc15 <- rep(0,ll) 

    d1$STsucc16 <- rep(0,ll) 

    d1$STsucc17 <- rep(0,ll) 

    d1$STsucc18 <- rep(0,ll) 

    d1$STsucc19 <- rep(0,ll) 

 

    d1$STsucc1[1:(ll-1)] <- d1$STAGE[2:ll] 

    d1$STsucc2[1:(ll-2)] <- d1$STAGE[3:ll] 

    d1$STsucc3[1:(ll-3)] <- d1$STAGE[4:ll] 

    d1$STsucc4[1:(ll-4)] <- d1$STAGE[5:ll] 

    d1$STsucc5[1:(ll-5)] <- d1$STAGE[6:ll] 

    d1$STsucc6[1:(ll-6)] <- d1$STAGE[7:ll] 

    d1$STsucc7[1:(ll-7)] <- d1$STAGE[8:ll] 

    d1$STsucc8[1:(ll-8)] <- d1$STAGE[9:ll] 

    d1$STsucc9[1:(ll-9)] <- d1$STAGE[10:ll] 

    d1$STsucc10[1:(ll-10)] <- d1$STAGE[11:ll] 

    d1$STsucc11[1:(ll-11)] <- d1$STAGE[12:ll] 

    d1$STsucc12[1:(ll-12)] <- d1$STAGE[13:ll] 

    d1$STsucc13[1:(ll-13)] <- d1$STAGE[14:ll] 

    d1$STsucc14[1:(ll-14)] <- d1$STAGE[15:ll] 

    d1$STsucc15[1:(ll-15)] <- d1$STAGE[16:ll] 

    d1$STsucc16[1:(ll-16)] <- d1$STAGE[17:ll] 

    d1$STsucc17[1:(ll-17)] <- d1$STAGE[18:ll] 

    d1$STsucc18[1:(ll-18)] <- d1$STAGE[19:ll] 

    d1$STsucc19[1:(ll-19)] <- d1$STAGE[20:ll] 

     

    # at least 20 consecutive ‘non-awake’ stages 
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    d1$SLEEP1 <- (d1$STAGE>0)*(d1$STsucc1>0)*(d1$STsucc2>0)* 

            (d1$STsucc3>0)*(d1$STsucc4>0)*(d1$STsucc5>0)*(d1$STsucc6>0)* 

           (d1$STsucc7>0)*(d1$STsucc8>0)*(d1$STsucc9>0)*(d1$STsucc10>0)* 

        (d1$STsucc11>0)*(d1$STsucc12>0)*(d1$STsucc13>0)*(d1$STsucc14>0)* 

        (d1$STsucc15>0)*(d1$STsucc16>0)*(d1$STsucc17>0)*(d1$STsucc18>0)* 

        (d1$STsucc19>0) 

 

    #----------------------------- 

    # Latency to Persistent Sleep 

    #----------------------------- 

 

    LPS[k,i]<-min(min(which(d1$SLEEP1>0))-1,960) 

 

    if (LPS[k,i]<960)  

        { 

        d1$SLEEP1[(LPS[k,i]+2):ll]<-1 

        } 

    pos<-min((which(d1$STAGE>0)),961) 

     

    if (pos<=ll)  

        { 

        # SLEEP=1 from the first epoch of non-awake 

        d1$SLEEP[(pos):ll]<-1 

        } 

 

    #----------------------------- 

    # Wake After Sleep Onset 

    #----------------------------- 

 

    WASO[k,i]<-sum(d1$STAGE==0 & d1$SLEEP1==1) 

     

    #----------------------------- 

    # Total Sleep Time 

    #----------------------------- 

 

    TST[k,i]<-sum(d1$STAGE!=0) 

 

 

    #---------------------------------- 

    # Total time in each stage  

    #---------------------------------- 

 

    tAW[k,i]<-sum(d1$STAGE==0) 

    tNREM[k,i]<-sum(d1$STAGE<5 & d1$STAGE>0) 

    tREM[k,i]<-sum(d1$STAGE==5) 

    tST1[k,i]<-sum(d1$STAGE==1) 

    tST2[k,i]<-sum(d1$STAGE==2) 

    tSWS[k,i]<-sum(d1$STAGE==3) 

     

    #------------------------------------------------------- 

    # Sleep efficiency on 2-hour time intervals of the night  

    #------------------------------------------------------- 

 

    SE1[k,i]<-sum(d1$STAGE!=0 & d1$Time<241)/240 

    SE2[k,i]<-sum(d1$STAGE!=0 & d1$Time%in%(241:480))/240 

    SE3[k,i]<-sum(d1$STAGE!=0 & d1$Time%in%(481:720))/240 

    SE4[k,i]<-sum(d1$STAGE!=0 & d1$Time%in%(721:960))/240 

     

    # mean extension of awake (after sleep onset) 

    p<-which(d1$STAGE==0 & d1$SLEEP1==1) 

    if (length(p)>0){ 
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      p1<-c(0,1:nrow(d1),(nrow(d1)+1)) 

      p1<-p1[-(p+1)] 

      pdelta<-p1[2:length(p1)]-p1[1:(length(p1)-1)]-1 

      meanAW[k,i]<-mean(pdelta[pdelta!=0]) 

    } else { 

      meanAW[k,i]<-0 

    } 

 

    # mean extension of stage 1 

    p<-which(d1$STAGE==0 & d1$SLEEP1==1) 

    if (length(p)>0){ 

      p1<-c(0,1:nrow(d1),(nrow(d1)+1)) 

      p1<-p1[-(p+1)] 

      pdelta<-p1[2:length(p1)]-p1[1:(length(p1)-1)]-1 

      meanST1[k,i]<-mean(pdelta[pdelta!=0]) 

    } else { 

      meanST1[k,i]<-0 

    } 

  

    # mean extension of stage 2 

        p<-which(d1$STAGE==0 & d1$SLEEP1==1) 

    if (length(p)>0){ 

      p1<-c(0,1:nrow(d1),(nrow(d1)+1)) 

      p1<-p1[-(p+1)] 

      pdelta<-p1[2:length(p1)]-p1[1:(length(p1)-1)]-1 

      meanST2[k,i]<-mean(pdelta[pdelta!=0]) 

    } else { 

      meanST2[k,i]<-0 

    } 

 

    # mean extension of sws 

    p<-which(d1$STAGE==0 & d1$SLEEP1==1) 

    if (length(p)>0){ 

      p1<-c(0,1:nrow(d1),(nrow(d1)+1)) 

      p1<-p1[-(p+1)] 

      pdelta<-p1[2:length(p1)]-p1[1:(length(p1)-1)]-1 

      meanSWS[k,i]<-mean(pdelta[pdelta!=0]) 

    } else { 

      meanSWS[k,i]<-0 

    } 

 

    # mean extension of rem 

        p<-which(d1$STAGE==0 & d1$SLEEP1==1) 

    if (length(p)>0){ 

      p1<-c(0,1:nrow(d1),(nrow(d1)+1)) 

      p1<-p1[-(p+1)] 

      pdelta<-p1[2:length(p1)]-p1[1:(length(p1)-1)]-1 

      meanREM[k,i]<-mean(pdelta[pdelta!=0]) 

    } else { 

      meanREM[k,i]<-0 

    } 

 

 

    #------------------------------------- 

    # Number of transitions to each stage  

    #------------------------------------- 

 

    nAW[k,i]<-length(which(d1$STAGE!=0 & d1$STsucc1==0)) 

    nST1[k,i]<-length(which(d1$STAGE!=1 & d1$STsucc1==1)) 

    nST2[k,i]<-length(which(d1$STAGE!=2 & d1$STsucc1==2)) 

    nSWS[k,i]<-length(which(d1$STAGE!=3 & d1$STsucc1==3)) 
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    nREM[k,i]<-length(which(d1$STAGE!=5 & d1$STsucc1==5)) 

 

     

  } 

} 
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B.2. Visual Predictive Check (VPC) 

 

#-----------------------------------------------------------------------

# VPC: transition from AWAKE.   

#----------------------------------------------------------------------- 

 

library(lattice) 

library(vdi) 

 

DirData <- "F:\\eem52253\\tesi\\Dati\\"         

DirSim <- 'F:\\eem52253\\tesi\\Dati\\simulation\\' 

 

 

# samples per subject 

N <- 960 

 

# Time [hours] 

Time <- (1:N)/120 

 

# n=101 raw dataset 

for (n in (1:101)) 

      { 

      if (n==101) 

      { 

      s<-read.csv(paste(DirData, 

            "treatment0Visit33MAD103894forNONMEMallTimes34.csv",sep=''))  

      } 

      else 

      { 

      s<-read.csv(paste(DirSim, 

            "trt0visit3simulatoForNONMEM34data",n,".csv",sep="")) 

      } 

       

      #-----------------------------------     

      # Counting transitions at each epoch  

      #-----------------------------------    

 

      # shift(post) 

      p <- rbind(s[2:nrow(s),],s[1,]) 

 

      d1<-matrix(nrow=960,ncol=51) 

      d1 <- data.frame(d1) 

      names(d1)<- c("times","AW","ST1","ST2","ST3","REM","TRaw1", 

                    "TRaw2","TRaw3","TRawR","TR1aw","TR12","TR13", 

                    "TR1R","TR2aw","TR21","TR23","TR2R","TR3aw", 

                    "TR31","TR32","TR3R","TRRaw","TRR1","TRR2", 

                    "TRR3") 

 

      d1[,1]<-1:N 

 

      # columns d1  

      # 1 times       

      # 2:6 AW,ST1,ST2,SWS,REM: number of occurrences of each stage 

      # 7:26 number of transitions from each stage to each other 

       

 

      for (i in(1:5)) 

        { 

        d1[,1+i] <- tapply(s[,10+i],s$Time,sum) 
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        } 

 

      # temporary data.frame 

      d1t <- s[,c('Time','ID')] 

 

      d1t$TRaw1 <- 0 

      d1t$TRaw2 <- 0 

      d1t$TRaw3 <- 0 

      d1t$TRawR <- 0 

      d1t$TR1aw <- 0 

      d1t$TR12 <- 0 

      d1t$TR13 <- 0 

      d1t$TR1R <- 0 

      d1t$TR2aw <- 0 

      d1t$TR21 <- 0 

      d1t$TR23 <- 0 

      d1t$TR2R <- 0 

      d1t$TR3aw <- 0 

      d1t$TR31 <- 0 

      d1t$TR32 <- 0 

      d1t$TR3R <- 0 

      d1t$TRRaw <- 0 

      d1t$TRR1 <- 0 

      d1t$TRR2 <- 0 

      d1t$TRR3 <- 0 

 

      # transitions for each subject and each Time 

 

      d1t$TRaw1[s$AW==1 & p$ST1==1 & p$MDV==0] <- 1 

      d1t$TRaw2[s$AW==1 & p$ST2==1 & p$MDV==0] <- 1 

      d1t$TRaw3[s$AW==1 & p$ST3==1 & p$MDV==0] <- 1 

      d1t$TRawR[s$AW==1 & p$REM==1 & p$MDV==0] <- 1 

      d1t$TR1aw[s$ST1==1 & p$AW==1 & p$MDV==0] <- 1 

      d1t$TR12[s$ST1==1 & p$ST2==1 & p$MDV==0] <- 1 

      d1t$TR13[s$ST1==1 & p$ST3==1 & p$MDV==0] <- 1 

      d1t$TR1R[s$ST1==1 & p$REM==1 & p$MDV==0] <- 1 

      d1t$TR2aw[s$ST2==1 & p$AW==1 & p$MDV==0] <- 1 

      d1t$TR21[s$ST2==1 & p$ST1==1 & p$MDV==0] <- 1 

      d1t$TR23[s$ST2==1 & p$ST3==1 & p$MDV==0] <- 1 

      d1t$TR2R[s$ST2==1 & p$REM==1 & p$MDV==0] <- 1 

      d1t$TR3aw[s$ST3==1 & p$AW==1 & p$MDV==0] <- 1 

      d1t$TR31[s$ST3==1 & p$ST1==1 & p$MDV==0] <- 1 

      d1t$TR32[s$ST3==1 & p$ST2==1 & p$MDV==0] <- 1 

      d1t$TR3R[s$ST3==1 & p$REM==1 & p$MDV==0] <- 1 

      d1t$TRRaw[s$REM==1 & p$AW==1 & p$MDV==0] <- 1 

      d1t$TRR1[s$REM==1 & p$ST1==1 & p$MDV==0] <- 1 

      d1t$TRR2[s$REM==1 & p$ST2==1 & p$MDV==0] <- 1 

      d1t$TRR3[s$REM==1 & p$ST3==1 & p$MDV==0] <- 1 

       

      # number of transitions for each Time 

      for (i in (1:20)) 

        { 

        d1[,6+i] <- tapply(d1t[,2+i],s$Time,sum) 

        } 

 

     #-------------------------------- 

     # data.frame on 10 Time intervals 

     #-------------------------------- 

      

     # number of intervals 

     n <- 10 
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     # samples per interval 

     k <- N/n 

 

     # final data.frame 

     m <- matrix(nrow=10,ncol=51) 

     m <- data.frame(m) 

 

     # temporary data.frame 

     d1t <- d1[1:959,] 

      

     # factor indicating the interval number 

     f <- rep(1:10,each=k) 

     d1t$f <- f[-960] 

      

     # summing each column of transitions on the time intervals 

      for (i in (2:26)) 

        { 

        m[,i] <- tapply(d1t[,i],d1t$f,sum) 

        } 

 

      # interval number 

      m[,1] <- 1:10 

      names(m) <-  c("times","AW","ST1","ST2","ST3","REM","TRaw1", 

                     "TRaw2","TRaw3","TRawR","TR1aw","TR12","TR13", 

                     "TR1R","TR2aw","TR21","TR23","TR2R","TR3aw", 

                     "TR31","TR32","TR3R","TRRaw","TRR1","TRR2","TRR3",                  

                     "Paw1","Paw2","Paw3","PawR","P1aw","P12","P13", 

                     "P1R","P2aw","P21","P23","P2R","P3aw","P31","P32", 

                     "P3R","PRaw","PR1","PR2","PR3","Pawaw","P11", 

                     "P22","P33","PRR") 

 

      # columns m  

      # 1 times       

      # 2:6 AW,ST1,ST2,SWS,REM: number of occurrences on each interval 

      # 7:26 number of transitions from each stage to each other in each 

      #      interval 

      # 27:51 transition frequencies on the intervals 

 

# computing transition frequencies on the 10 intervals 

      m$tot<-1 

      for (i in (1:5)) 

        { 

        m$somma<-0 

        for (j in (1:4)) 

            { 

            k <- 2+4*i+j 

 

            m[,20+k]<-round((m[,k]/m[,1+i]),4) 

            m[is.nan(m[,20+k]),20+k]<-NA 

            m$somma<-m$somma+m[,20+k] 

            } 

        m[,46+i] <-round(m$tot-m$somma,4) 

         

        } 

      # … 

      # m is therefore memorized into a summary file 

      # and iterations continue    

 }# end for n 
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B.3. Visual estimation check(VEC) 

 

 

#-----------------------------------------------------------------------

# VEC on the transition probabilities. Model AWAKE 

#----------------------------------------------------------------------- 

 

library(MASS) 

 

# Linear interpolation 

lininterp <- function(v1,v2,graph=F) { 

 

  lin <- function(x) { 

    if (x[3]!=x[1]) { 

      m <- (x[4]-x[2])/(x[3]-x[1]) 

      k <- (x[3]*x[2]-x[1]*x[4])/(x[3]-x[1]) 

      return(m*(ceiling(x[1]):floor(x[3]))+k) 

    } else return(x[2]) 

  } 

 

  vv <- c(matrix(c(v1,v2),ncol=length(v1),byrow=TRUE)) 

  ww <- seq(from=1,by=2,length=length(v1)-1) 

  zz <- as.data.frame(mapply(':',ww,ww+3)) 

  tt <- lapply(zz,function(x) lin(vv[x])) 

   

  # only if piece-wise linear on two intervals 

  if (vv[zz[1,2]]==round( vv[zz[1,2]])) { 

   tt$V2<-tt$V2[-1] 

  } 

   

  names(tt) <- NULL 

  tt <- c(unlist(tt)) 

 

  return(tt) 

 

} 

 

 

## quantiles 

q25 <- function(x) 

    { 

    return(quantile(x,0.025)) 

    } 

 

q975 <- function(x) 

    { 

    return(quantile(x,0.975)) 

    } 

 

q5 <- function(x) 

    { 

    return(quantile(x,0.05)) 

    } 

 

q95 <- function(x) 

    { 

    return(quantile(x,0.95)) 

    } 
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## m = model number: 

  ## 1: AW 

  m <- 1 

 

  DirSim <- 'D:\\eem52253\\tesi\\Dati\\simulation\\'       

  DirDati <- "D:\\eem52253\\tesi\\Dati\\"         

   

  DF <- read.csv(paste(DirSim,'summary',m,'.csv',sep=''))  

   

  # successfully estimated datasets 

  Yes <- DF$n[DF$su=='Yes'] 

  n <- length(Yes) 

   

  # number of failed minimizations 

  No <- DF$n[DF$su=='No'] 

  NumNo <- length(No) 

   

  # initialization: thetas and omegas 

  nth <- length(grep('TH',names(DF)))/2 

  nom <- length(grep('OM',names(DF)))/2 

    

  TH <- matrix(0,nrow=n,ncol=nth) 

  OM <- matrix(0,nrow=n,ncol=nom) 

   

  # initialization: typical transition probabilities 

  PAp <- matrix(nrow=n,ncol=959) 

  P1p <- matrix(nrow=n,ncol=959) 

  P2p <- matrix(nrow=n,ncol=959) 

  P3p <- matrix(nrow=n,ncol=959) 

  PRp <- matrix(nrow=n,ncol=959) 

 

  # initialization: 95 th percentile on the BSV 

  PApi95 <- matrix(nrow=n,ncol=959) 

  P1pi95 <- matrix(nrow=n,ncol=959) 

  P2pi95 <- matrix(nrow=n,ncol=959) 

  P3pi95 <- matrix(nrow=n,ncol=959) 

  PRpi95 <- matrix(nrow=n,ncol=959) 

   

  # initialization: 5 th percentile on the BSV 

  PApi5 <- matrix(nrow=n,ncol=959) 

  P1pi5 <- matrix(nrow=n,ncol=959) 

  P2pi5 <- matrix(nrow=n,ncol=959) 

  P3pi5 <- matrix(nrow=n,ncol=959) 

  PRpi5 <- matrix(nrow=n,ncol=959) 

 

  

for (i in 1:n) 

{ 

 #i=n raw dataset 

    # index of the simulated dataset  

    ii <- Yes[i] 

            

    # theta 

    for (j in (1:nth)) 

        { 

        TH[i,j]<-DF[DF$n==ii,paste('TH',j,sep='')] 

        }# end for j 

 

    # omega 

    for (j in 1:nom) 
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      { 

      OM[i,j]<-DF[DF$n==ii,paste('OM',j,sep='')] 

      } # end for j 

 

    # night time BREAK-POINTS after the initial sleeplessness 

    BPA <- medIS    # where medIS is the median IS observed in the data 

    BPC <- 960 

    BPB <- (BPC-BPA)*TH[i,16]+BPA 

     

    BP <- c(BPA,BPB,BPC) 

     

    # Stage time BREAK-POINTS 

    BPsa <- 1 

    BPsc <- maxSTT # maxSTT is the maximum STT observed in the data 

    BPsb <- (BPsc-BPsa)*TH[i,17]+BPsa 

     

    BPs <- c(BPsa,BPsb,BPsc) 

     

    # Initial Sleeplessness BREAK-POINTS 

    BP1 <- 2 

    BP3 <- maxIS # where maxIS is the maximum IS observed in the data 

    BP2 <- (BP3-BP1)*TH[i,18]+BP1 

     

    BPi <- c(BP1,BP2,BP3) 

     

    # Logit 

    G1p <- matrix(0,nrow=1,ncol=959) 

    G2p <- matrix(0,nrow=1,ncol=959) 

    G3p <- matrix(0,nrow=1,ncol=959) 

     

     

    # Linear interpolation of the Stage time effect, MED is the median  

    # STT observed in the data     

    G1Ap <- 

lininterp(BPs,c(TH[i,1],(TH[i,1]+TH[i,10]),(TH[i,1]+TH[i,13])))[MED] 

    G1Bp <- 

lininterp(BPs,c(TH[i,4],(TH[i,4]+TH[i,10]),(TH[i,4]+TH[i,13])))[MED] 

    G1Cp <- 

lininterp(BPs,c(TH[i,7],(TH[i,7]+TH[i,10]),(TH[i,7]+TH[i,13])))[MED] 

     

    G2Ap <- 

lininterp(BPs,c(TH[i,2],(TH[i,2]+TH[i,11]),(TH[i,2]+TH[i,14])))[MED]  

    G2Bp <- 

lininterp(BPs,c(TH[i,5],(TH[i,5]+TH[i,11]),(TH[i,5]+TH[i,14])))[MED] 

    G2Cp <- 

lininterp(BPs,c(TH[i,8],(TH[i,8]+TH[i,11]),(TH[i,8]+TH[i,14])))[MED] 

     

    G3Ap <- 

lininterp(BPs,c(TH[i,3],(TH[i,3]+TH[i,12]),(TH[i,3]+TH[i,15])))[MED] 

    G3Bp <- 

lininterp(BPs,c(TH[i,6],(TH[i,6]+TH[i,12]),(TH[i,6]+TH[i,15])))[MED] 

    G3Cp <- 

lininterp(BPs,c(TH[i,9],(TH[i,9]+TH[i,12]),(TH[i,9]+TH[i,15])))[MED] 

     

    # Linear interpolation of the logits in the second part of the night 

    # (after IS) 

    G1p[(ceiling(BPA)-1):959] <- lininterp(BP,c(G1Ap,G1Bp,G1Cp)) 

    G2p[(ceiling(BPA)-1):959] <- lininterp(BP,c(G2Ap,G2Bp,G2Cp)) 

    G3p[(ceiling(BPA)-1):959] <- lininterp(BP,c(G3Ap,G3Bp,G3Cp)) 

     

    # linear interpolation if the logits in the first part of the night 
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    G1p[1:(ceiling(BPA)-2)] <- 

lininterp(BPi,c(TH[i,19],TH[i,22],TH[i,25]))[1:(ceiling(BPA)-2)] 

    G2p[1:(ceiling(BPA)-2)] <- 

lininterp(BPi,c(TH[i,20],TH[i,23],TH[i,26]))[1:(ceiling(BPA)-2)] 

    G3p[1:(ceiling(BPA)-2)] <- 

lininterp(BPi,c(TH[i,21],TH[i,24],TH[i,27]))[1:(ceiling(BPA)-2)] 

     

     

    # antilogit 

    PAp[i,] <- 1/(1+exp(G1p)+exp(G2p)+exp(G3p)) 

    P1p[i,] <- exp(G1p)/(1+exp(G1p)+exp(G2p)+exp(G3p)) 

    P2p[i,] <- exp(G2p)/(1+exp(G1p)+exp(G2p)+exp(G3p)) 

    P3p[i,] <- 0 

    PRp[i,] <- exp(G3p)/(1+exp(G1p)+exp(G2p)+exp(G3p)) 

     

                

    #-------------------------------------------------------- 

    ## Between subject variability: 95% prediction intervals 

    #-------------------------------------------------------- 

     

    # simulation of Ns individuals  

    Ns <- 1000 

     

    # covariance matrix 

    COV <- matrix(c(OM[i,1],OM[i,2],OM[i,2],OM[i,3]),nrow=2) 

     

    BSV1 <- mvrnorm(Ns,rep(0,2),COV)[,1] 

    BSV2 <- mvrnorm(Ns,rep(0,2),COV)[,2] 

    BSV3 <- rnorm(Ns,0,sqrt(OM[i,4])) 

    # BSV4 <- fixed to zero 

    # BSV5 <- fixed to zero 

    # BSV6 <- fixed to zero 

     

    BSV1m <- matrix(rep(BSV1,each=(960-(ceiling(BPA)-1)),times=1),  

                    nrow=Ns,byrow=T) 

    BSV2m <- matrix(rep(BSV2,each=(960-(ceiling(BPA)-1)),times=1),  

                    nrow=Ns,byrow=T) 

    BSV3m <- matrix(rep(BSV3,each=(960-(ceiling(BPA)-1)),times=1),  

                    nrow=Ns,byrow=T) 

 

     

    # individual logits: first part of the night 

    G11 <- matrix(rep(G1p[1:(ceiling(BPA)-2)],Ns),nrow=Ns,byrow=T) 

    G21 <- matrix(rep(G2p[1:(ceiling(BPA)-2)],Ns),nrow=Ns,byrow=T) 

    G31 <- matrix(rep(G3p[1:(ceiling(BPA)-2)],Ns),nrow=Ns,byrow=T) 

     

    # individual logits: second part of the night 

    G12 <- matrix(rep(G1p[(ceiling(BPA)-1):959],Ns), 

                 nrow=Ns,byrow=T)+BSV1m 

    G22 <- matrix(rep(G2p[(ceiling(BPA)-1):959],Ns), 

                 nrow=Ns,byrow=T)+BSV2m 

    G32 <- matrix(rep(G3p[(ceiling(BPA)-1):959],Ns), 

                 nrow=Ns,byrow=T)+BSV3m 

     

    # individual logits 

    G1 <- cbind(G11,G12) 

    G2 <- cbind(G21,G22) 

    G3 <- cbind(G31,G32) 

     

    # individual probabilities 

    PA <- 1/(1+exp(G1)+exp(G2)+exp(G3)) 
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    P1 <- exp(G1)/(1+exp(G1)+exp(G2)+exp(G3)) 

    P2 <- exp(G2)/(1+exp(G1)+exp(G2)+exp(G3)) 

    P3 <- matrix(0,nrow=Ns,ncol=959) 

    PR <- exp(G3)/(1+exp(G1)+exp(G2)+exp(G3)) 

     

    # Between subject variability distribution: 90% prediction interval 

    # 95th percentile 

    PApi95[i,] <-  apply(PA,2,q95) 

    P1pi95[i,] <-  apply(P1,2,q95) 

    P2pi95[i,] <-  apply(P2,2,q95) 

    P3pi95[i,] <-  apply(P3,2,q95) 

    PRpi95[i,] <-  apply(PR,2,q95) 

 

    # 5th percentile  

    PApi5[i,] <-  apply(PA,2,q5) 

    P1pi5[i,] <-  apply(P1,2,q5) 

    P2pi5[i,] <-  apply(P2,2,q5) 

    P3pi5[i,] <-  apply(P3,2,q5) 

    PRpi5[i,] <-  apply(PR,2,q5) 

 

} #end for i   

   

  #------------------------    

  ## confidence intervals 

  #------------------------ 

   

  # Typical transition probabilities  

  PAp_down <- apply(PAp[-n,],2,q25) 

  P1p_down <- apply(P1p[-n,],2,q25) 

  P2p_down <- apply(P2p[-n,],2,q25) 

  P3p_down <- apply(P3p[-n,],2,q25) 

  PRp_down <- apply(PRp[-n,],2,q25) 

 

  PAp_up <- apply(PAp[-n,],2,q975) 

  P1p_up <- apply(P1p[-n,],2,q975) 

  P2p_up <- apply(P2p[-n,],2,q975) 

  P3p_up <- apply(P3p[-n,],2,q975) 

  PRp_up <- apply(PRp[-n,],2,q975) 

  

  # median prediction 

  PAp_med <- apply(PAp[-n,],2,median) 

  P1p_med <- apply(P1p[-n,],2,median) 

  P2p_med <- apply(P2p[-n,],2,median) 

  P3p_med <- apply(P3p[-n,],2,median) 

  PRp_med <- apply(PRp[-n,],2,median) 

 

  # 95th percentile BSV  

  PAci95_down <- apply(PAci95[-n,],2,q25) 

  P1ci95_down <- apply(P1ci95[-n,],2,q25) 

  P2ci95_down <- apply(P2ci95[-n,],2,q25) 

  P3ci95_down <- apply(P3ci95[-n,],2,q25) 

  PRci95_down <- apply(PRci95[-n,],2,q25) 

 

  PAci95_up <- apply(PAci95[-n,],2,q975) 

  P1ci95_up <- apply(P1ci95[-n,],2,q975) 

  P2ci95_up <- apply(P2ci95[-n,],2,q975) 

  P3ci95_up <- apply(P3ci95[-n,],2,q975) 

  PRci95_up <- apply(PRci95[-n,],2,q975) 

  

  # median prediction 

  PAci95_med <- apply(PAci95[-n,],2,median) 



. 
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  P1ci95_med <- apply(P1ci95[-n,],2,median) 

  P2ci95_med <- apply(P2ci95[-n,],2,median) 

  P3ci95_med <- apply(P3ci95[-n,],2,median) 

  PRci95_med <- apply(PRci95[-n,],2,median) 

 

  # 5th percentile 

  PAci5_down <- apply(PAci5[-n,],2,q25) 

  P1ci5_down <- apply(P1ci5[-n,],2,q25) 

  P2ci5_down <- apply(P2ci5[-n,],2,q25) 

  P3ci5_down <- apply(P3ci5[-n,],2,q25) 

  PRci5_down <- apply(PRci5[-n,],2,q25) 

 

  PAci5_up <- apply(PAci5[-n,],2,q975) 

  P1ci5_up <- apply(P1ci5[-n,],2,q975) 

  P2ci5_up <- apply(P2ci5[-n,],2,q975) 

  P3ci5_up <- apply(P3ci5[-n,],2,q975) 

  PRci5_up <- apply(PRci5[-n,],2,q975) 

 

  # median prediction 

  PAci5_med <- apply(PAci5[-n,],2,median) 

  P1ci5_med <- apply(P1ci5[-n,],2,median) 

  P2ci5_med <- apply(P2ci5[-n,],2,median) 

  P3ci5_med <- apply(P3ci5[-n,],2,median) 

  PRci5_med <- apply(PRci5[-n,],2,median) 
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