
SET COVERING PROBLEM: A COMPUTATIONAL STUDY

OF DIFFERENT APPROACHES WITH CPLEX

SUPERVISOR: PROF. DOMENICO SALVAGNIN

CANDIDATE: MASSIMO MENEGHELLO

ACADEMIC YEAR: 2018-2019

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

SECOND CYCLE DEGREE IN COMPUTER ENGINEERING

SET COVERING PROBLEM: A

COMPUTATIONAL STUDY OF

DIFFERENT APPROACHES WITH

CPLEX

SUPERVISOR: PROF. DOMENICO SALVAGNIN

CANDIDATE: MASSIMO MENEGHELLO

Padua, December 16th, 2019

Academic Year: 2018-2019

ii

Table of Contents

Abstract 1

1 Introduction 3

1.1 Instances Description . 5

1.2 Concerning the Tests . 5

2 Preprocessing 7

2.1 Dominance Preprocessing . 7

2.2 Preprocessing Results . 8

3 The Balas’ Framework 15

3.1 The Cut Generation Procedure . 15

3.2 The Branch Generation Procedure . 17

3.3 Implementation Notes . 18

4 Computational Results 25

5 Conclusions 37

A Helpful Resources 39

A.1 Software Description . 39

A.2 CPLEX Set Up . 40

iii

Abstract

Il presente lavoro tratta dell’implementazione di alcuni metodi per la pre-elaborazione e la

risoluzione esatta del Set Covering Problem (SCP) con tecniche di Mixed-Integer Linear Pro-

gramming (MILP).

Viene inizialmente fornita la descrizione formale del SCP (Capitolo 1). A questa si aggiun-

gono alcuni esempi di applicazioni del SCP e la descrizione delle istanze che verranno utilizzate

per provare le tecniche descritte in seguito.

Il Capitolo 2 espone un metodo originale per la pre-elaborazione di istanze del SCP. Nello

stesso, vengono anche riportati i risultati sperimentali ottenuti con tale metodo i quali sono

messi a confronto con i risultati ottenuti dalle procedure di pre-elaborazione di CPLEX.

Nel Capitolo 3 vengono descritti i metodi utilizzati da E. Balas e A. Ho [1] [2] per risolvere il

SCP. Questi vengono quindi rielaborati e adattati per operare con un moderno risolutore MILP.

Vengono infine riportati (Capitolo 4) i risultati sperimentali ottenuti con i metodi descritti nel

precedente capitolo.

Chapter 1

Introduction

The Set Covering Problem (SCP) is a classical problem in mathematical optimization and it is

one of the 21 Karp’s problems shown to be NP-Complete in the Reducibility Among Combina-

torial Problems [15].

Intuitively, the problem can be expressed by considering a ground set U , containing m items,

and a collection S = {S1, . . . , Sn} of subsets of U . The problem is solved by providing a minimal

subcollection Ŝ of S such that

U =
⋃
Si∈Ŝ

Si (1.1)

Another way to represent the SCP uses an intuition from graph theory. Let G = (V1 ∪ V2, E)

be a bipartite graph, in which each edge (u, v) belongs to the graph if and only if (u ∈ V1 ∧ v ∈ V2)∨
(u ∈ V2 ∧ v ∈ V1). The vertices in V2 represents the elements of the universe set U while an edge

(u, v) indicates that the element v is included in subset u.

Defining the M = {1, . . . ,m} and N = {1, . . . , n} sets, the SCP can be formulated as an

integer programming model:

min e · x (1.2)

Ax ≥ f (1.3)

xj ∈ {0, 1} ∀j ∈ N (1.4)

where A is am×n 0−1matrix, e = [1, . . . , 1] is a row vector with n components and f = [1, . . . , 1]

is a column vector with m components.

However, the variant of the problem used throughout the present work is a common extension

of the SCP and provides a costs vector c, which assign a cost to each column (or subset). In

this way, equation 1.2 is substituted with

min c · x (1.5)

3

Let Ai and Aj denote the i-th row and the j-th column of A, respectively. It is beneficial to

define

Mj = {i ∈M | aij = 1} , j ∈ N (1.6)

Ni = {j ∈ N | aij = 1} , i ∈M (1.7)

We say that a vector x ∈ {0, 1}n is a cover if it satisfies all the constraints imposed by

Ax ≥ f . The set

S(x) = {j ∈ N | xj = 1} (1.8)

is called the support of vector x.

A solution that includes all the columns of the problem is always admissible (otherwise, the

problem would be infeasible). This solution can be used to get the first upper bound for a given

instance.

Usually, we are interested in solutions not including redundant columns, and we call these

prime covers. In these solutions, none of the columns can be removed and this means that each

of them covers at least one row not covered by others. For a given cover x it is useful to define

the set

T (x) =
{
i ∈M | ai = 1

}
(1.9)

containing all the row indices of A covered by only one column of x.

The SCP has many important applications in several domains. As Bellmore and Ratliff

reported in [7], in the past the SCP was used in a wide range of contexts like network attack

and defense [5] [6], information retrieval [11] and truck dispatching [10].

However, one of the most relevant utilisation of the SCP is the crew scheduling for railway

and flight companies.

For example, considering a set of m trips and a record of valid pairings (a pairing is a

sequence of trips that can be achieved by a single crew), one can use the SCP to compute the

minimum number of crews required to comprise all the trips.

The general approach consists of providing the starting set of trips and a process to generate a

huge number of possible pairings. As a result, the models for these applications can be extremely

large, counting more than 1 million columns and several thousands of rows [13].

An optimal approach for such instances is impractical, therefore, sophisticated heuristic

approaches are used instead. Classical greedy algorithms for the SCP were proposed since

the ’80 [2] and although they are certainly fast in practice, they actually produce low-quality

solutions.

Therefore, the most effective strategies to solve large SPC instances are based on Lagrangian

relaxation and subgradient optimization, as reported in [8].

4

In more recent years, the SCP found new terrain in rapidly growing fields such as machine

learning and data mining.

For example, in data quality, one can be interested in retrieving a minimal set of rules

(without redundancy) that provides such data. Similarly, in data mining and machine learning,

data are usually composed of a large number of binary features or attributes and we are interested

in finding a small fraction of items that cover all these features [9].

In the era of the Big Data, it is clear as the procedures to solve for such problems must

be reliable but essentially they must be fast. These are the main motivations why nowadays

most SPC related researches deal with heuristic approaches while works that deal with exact

strategies that are somewhat rare.

The present work is structured as follow.

In Chapter 2, we present a new approach to preprocess SPC instances. This results to be

more effective that the preprocessing routines implemented by the CPLEX solver.

In Chapter 3, we describe our strategy to solve the SCP based on the works of E. Balas and

A. Ho [1] [2]. The main idea is to apply such concepts on modern MILP solvers.

Chapter 4 deals with the computational results collected from the experiments.

1.1 Instances Description

The instances used throughout this work represent a subset of the well-known instances collected

by J.E. Beasley in his online repository OR-Library [4].

In particular, we used the same instances used by Beasley in his work A Lagrangian heuristic

for set-covering problems [3]. Table 1.1 collects the main information concerning such instances.

The repository created by J.E. Beasley also contains most of the instances used by E. Balas

and A. Ho in [1] and [2].

1.2 Concerning the Tests

These are the parameters that must be taken into account when interpreting the data (unless

otherwise stated).

All the data presented throughout the present work were collected by mean of a device

equipped with 4 Intel Xeon X5670 2.93 GHz (6 cores each) CPUs and 144 GB RAM. The

experiments are usually carried out using a single thread and they are repeated 5 times.

The MILP solver used for this work is CPLEX, version 12.8 [14]. In the following, when we

mention CPLEX we do not refer the stand-alone solver but the core library instead.

5

Instance Rows Cols Non-zero Density Costs range

scpnre1 500 5000 249448 0.0998 1-100

scpnre2 500 5000 249367 0.0997 1-100

scpnre3 500 5000 249371 0.0997 1-100

scpnre4 500 5000 249341 0.0997 1-100

scpnre5 500 5000 249393 0.0998 1-100

scpnrf1 500 5000 499314 0.1997 1-100

scpnrf2 500 5000 499275 0.1997 1-100

scpnrf3 500 5000 499250 0.1997 1-100

scpnrf4 500 5000 499302 0.1997 1-100

scpnrf5 500 5000 499336 0.1997 1-100

scpnrg1 1000 10000 199471 0.0199 1-100

scpnrg2 1000 10000 199451 0.0199 1-100

scpnrg3 1000 10000 199498 0.0199 1-100

scpnrg4 1000 10000 199456 0.0199 1-100

scpnrg5 1000 10000 199450 0.0199 1-100

scpnrh1 1000 10000 499163 0.0499 1-100

scpnrh2 1000 10000 499167 0.0499 1-100

scpnrh3 1000 10000 499126 0.0499 1-100

scpnrh4 1000 10000 499149 0.0499 1-100

scpnrh5 1000 10000 499179 0.0499 1-100

Table 1.1: Description of the instances used in this work.

6

Chapter 2

Preprocessing

As can be noted, in the instances we presented in the previous chapter, the number of the

columns is 10 times the number of the rows. Despite these are artificial problems, in real-world

configurations, this proportion can be even higher.

One can ask if all these columns are evenly useful or, in the same way, if they are all

likely to appear in a solution. CPLEX can answer this question. Once the preprocessing phase

completes, CPLEX will try to solve a different model, with the same number of rows but many

fewer columns.

2.1 Dominance Preprocessing

The first step we implemented in solving our SCP instances is a preprocessing routine we de-

nominated Dominance Finder (or simply Dominance). The approach is quite elegant and it

occurred to be more effective than the preprocessing routines applied by CPLEX.

The following three points illustrate the central aspects of this method, leaving the formal

description to Algorithm 1.

1. At the start, we keep all the columns of an instance with unitary cost, removing the other

ones. Let Ñ = {j ∈ N | cj = 1}, we can define Ã = [Aj1 , . . . , Ajk] and c̃T = [cj1 , . . . , cjk]

with ji ∈ Ñ , which are, respectively, the matrix and the relative cost vector obtained in

this way. We should also consider the set N̂ = N \ Ñ .

2. The procedure iterates until the set N̂ is empty. At each step, we extract the column

̂ ∈ N̂ with the minimum cost, updating N̂ ← N̂ \ ̂.

7

Then we try to solve the problem defined as

min c̃T · x (2.1)

Ãx ≥ Â (2.2)

xj ∈ {0, 1} ∀j ∈ Ñ (2.3)

3. Clearly, there exist two possible results regarding the previous routine: the problem is

infeasible or it has a solution. However, in the latter case, we should consider the cost (or

the objective value) of the solution such obtained. In fact, if this solution is strictly greater

than the cost of the Â column, we must keep the column (we update Ñ ← Ñ ∪ {̂}). We

act in the same way also when the problem is infeasible. Otherwise, we are allowed to

remove the column from the original model.

The meaning of this preprocessing routine is the following. Considering the subproblem

defined by the columns in Ñ and column ̂, if we can find a solution S ⊆ Ñ for this problem and

the objective value is lower or equal than the cost ĉ, this means we can substitute column ̂ with

the columns in S. With the term substitute, here we indicate that the columns in S cover all

the rows covered by Aj (and possibly more) for the same costs (or less). Consequently, column

̂ is unlikely to appear in a solution of the starting problem, because each row in the set M̂ can

be covered by S. In addition, we can demonstrate that removing ̂ does not change the model

and that is a valid operation.

However, it looks clear how this procedure works well only with a wide costs range. On the

other hand, it does not affect instances with unitary costs, as for example, the Seymour problem

[12].

From a practical perspective, we can notice that at line 8 of Algorithm 1 we have to solve a

MILP problem. Therefore, if we have n columns the procedure must solve approximately n of

such problems. This step is a really time-consuming one, making the entire procedure.

Nevertheless, as we said at the beginning of this chapter, CPLEX can remove a high number

of columns in a very short amount of time by using its strong and performant preprocessing

routines. Once we obtain the reduced model by CPLEX, we can provide it to the Dominance

algorithm.

2.2 Preprocessing Results

As can be observed from Table 2.1, the time required to execute the Dominance routine on the

original instances is significant. In particular, for the smaller instances e and f the time is even

higher than the time needed by CPLEX to find the optimal solution.

8

This could be sufficient to demonstrate that the procedure (without the CPLEX preprocess-

ing phase) is not suitable for practical applications. Furthermore, several variables cannot be

removed by only applying the dominance procedure. This phenomenon appears more evident in

the e and f instances.

On the other side, the CPLEX reduced g and h instances present a large number of variables

that the Dominance procedure is still able to remove. This number varies from 256 (g2) to 1174

(g3) for the g instances and from 103 (h5) to 366 (h2) for the h instances. The discrimination

between g and h instances became necessary in this case due to the visible difference in the two

ranges.

Furthermore, the average number of columns removed by the Dominance procedure in the g

instances is 749 while for the h instances this number is 253. Considering the average number of

columns in the reduced instances (1561 for g and 1506 for h) it can be noted how the difference

is not significant. Moreover, these values are quite comparable for the instances not processed

by CPLEX (1572 for g and 1511 for h).

Based on this evidence, we might ask whether the preprocessing routines adopted by CPLEX

are less effective in less dense instances.

We can now consider Table 2.2. The first thing one can observe is the drastic reduction in

the cost ranges. We can also provide a simple rule of thumb: the greater the density, the smaller

the cost range.

Besides, as we can expect, the density of the matrices is increased in all the g and h in-

stances. This is a consequence of the preprocessing phase: a column with less non-zero elements

has more chances to be removed from the model.

As the last analysis for this approach, we have tried to solve the instances that are most

affected by the preprocessing phase. Table 2.3 and Table 2.4 report the results obtained with

the instances g and h: in Table 2.3 CPLEX applied its preprocessing routines to the original

instances while in Table 2.4 the reduced instances described in Table 2.2 were supplied in the

input. The duration of the experiments was set at 5 hours, a time deemed appropriate to avoid

data noise.

From the results, we note that the reduced instance g2 is resolved on average faster than the

instance to which the Dominance has not been applied. The same can similarly be said for the

instance g1.

However, by comparing the values of the MIP gap, there are no significant discrepancies

between Table 2.3 and Table 2.4.

9

Input : a set covering problem composed by a matrix A and a costs vector c.

Output: Ñ , a set containing the indeces of the columns that must be included

in the reduced problem.

1 Ñ ← {j ∈ N | cj = 1}
2 N̂ ← N \ Ñ
3 Ã← [Aj1 , . . . , Ajk] ,∀ji ∈ Ñ

4 c̃T ← [cj1 , . . . , cjk] ,∀ji ∈ Ñ

5 While N̂ 6= ∅ do

6 ̂← argminj∈N̂ {cj}
7 N̂ ← N̂ \ {̂}
8 solve problem min

{
c̃Tx | Ãx ≥ Â, xj ∈ {0, 1}

}
9 If not

(
previous problem has a solution x̄ and c̃Tx̄ ≤ ĉ

)
then

10 Comment: ̂ is must be included in the reduced model

11 Ñ ← Ñ ∪ {̂}

12 Return Ñ

Algorithm 1: The Dominance Finder pseudocode.

10

Instance Cols (1) Time (s) (2) Time (s) (3) Time (s)

scpnre1 5000 395 3.24 477 650.44 395 11.53

scpnre2 5000 490 3.72 563 710.66 486 22.25

scpnre3 5000 352 2.77 521 690.02 352 12.30

scpnre4 5000 406 3.59 518 681.69 406 13.82

scpnre5 5000 386 3.51 554 659.86 386 11.36

scpnrf1 5000 277 4.17 386 2491.36 277 71.09

scpnrf2 5000 254 4.32 375 2036.07 254 51.65

scpnrf3 5000 295 4.27 393 2209.60 294 66.87

scpnrf4 5000 276 3.94 356 2645.95 276 72.56

scpnrf5 5000 308 3.36 350 3332.33 308 117.65

scpnrg1 10000 2157 8.59 1641 1190.90 1633 43.00

scpnrg2 10000 1752 7.09 1543 1343.70 1496 30.47

scpnrg3 10000 2727 6.60 1553 1144.53 1553 56.26

scpnrg4 10000 2399 7.77 1555 1316.04 1555 49.61

scpnrg5 10000 2519 7.09 1569 1142.68 1569 52.57

scpnrh1 10000 1922 9.85 1602 2542.16 1601 99.28

scpnrh2 10000 1882 9.23 1517 2576.38 1516 85.27

scpnrh3 10000 1772 9.18 1508 2740.46 1506 88.90

scpnrh4 10000 1676 7.27 1469 2488.34 1465 82.32

scpnrh5 10000 1543 8.29 1458 2498.75 1440 74.35

Table 2.1: (1) indicates the number of columns obtained after the CPLEX preprocessing

routines. (2) reports the number of columns in the model after applying the Dominance

procedure on the original instances. (3) indicates the number of left columns after exe-

cuting the Dominance procedure on the instances obtained with (1). Aside are listed the

average execution times of such methods (average on 5 runs with different seeds).

11

Instance Rows Cols Non-zero Density Costs range

scpnre1_red 500 395 19777 0.1001 1-10

scpnre2_red 500 486 24185 0.0995 1-11

scpnre3_red 500 352 17466 0.0992 1-9

scpnre4_red 500 406 20098 0.099 1-10

scpnre5_red 500 386 19107 0.099 1-9

scpnrf1_red 500 277 27802 0.2007 1-6

scpnrf2_red 500 254 25408 0.2001 1-7

scpnrf3_red 500 294 29264 0.1991 1-8

scpnrf4_red 500 276 27462 0.199 1-7

scpnrf5_red 500 308 30789 0.1999 1-7

scpnrg1_red 1000 1633 33995 0.0208 1-28

scpnrg2_red 1000 1496 30873 0.0206 1-21

scpnrg3_red 1000 1553 32315 0.0208 1-26

scpnrg4_red 1000 1555 32415 0.0208 1-27

scpnrg5_red 1000 1569 32845 0.0209 1-27

scpnrh1_red 1000 1601 81071 0.0506 1-20

scpnrh2_red 1000 1516 76797 0.0507 1-20

scpnrh3_red 1000 1506 76210 0.0506 1-19

scpnrh4_red 1000 1465 74124 0.0506 1-19

scpnrh5_red 1000 1440 72761 0.0505 1-17

Table 2.2: Description of the reduced instances used in the present work.

12

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnrg1 18000.00 176.0 172.97 1.72 991658.6 425638.2

scpnrg2 3147.41 154.0 154.00 0.00 199706.6 0.0

scpnrg3 18000.00 166.6 161.82 2.87 1260491.6 739138.0

scpnrg4 18000.00 168.8 164.10 2.78 1181769.4 639052.6

scpnrg5 18000.00 168.0 162.78 3.11 1090322.8 688329.6

scpnrh1 18000.00 64.4 55.65 13.58 1246697.2 1088933.0

scpnrh2 18000.00 63.8 56.26 11.81 1326751.0 1124598.6

scpnrh3 18000.00 60.2 52.59 12.64 1345568.6 1150378.0

scpnrh4 18000.00 58.4 51.23 12.27 1331430.0 1121670.4

scpnrh5 18000.00 55.0 49.98 9.12 1360743.0 1021025.2

Table 2.3: Results for the CPLEX solver on original g and h instances with 18000 seconds

time limit (average on 5 runs).

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnrg1_red 18000.00 176.00 174.24 1.00 1188044.2 205718.6

scpnrg2_red 2716.78 154.00 154.00 0.00 211023.8 0.0

scpnrg3_red 18000.00 166.80 162.00 2.88 1348762.4 829312.4

scpnrg4_red 18000.00 168.20 164.28 2.33 1251243.0 661292.0

scpnrg5_red 18000.00 168.00 162.96 3.00 1198035.0 734644.6

scpnrh1_red 18000.00 64.00 55.60 13.12 1154111.6 995073.4

scpnrh2_red 18000.00 63.80 56.31 11.73 1386090.8 1172214.8

scpnrh3_red 18000.00 60.00 52.61 12.30 1347406.0 1125535.0

scpnrh4_red 18000.00 58.80 51.24 12.85 1381447.0 1158221.8

scpnrh5_red 18000.00 55.00 50.01 9.07 1328002.8 995723.6

Table 2.4: Results for the CPLEX solver on reduced g and h instances with 18000 seconds

time limit (average on 5 runs).

13

Chapter 3

The Balas’ Framework

The central concept in the works of E. Balas is the conditional bound [1]. We considered this

idea for the approach discussed in the present dissertation.

A conditional bound is a suitable restriction for the original feasible set derived from an avail-

able solution. It is possible to use the conditional bound to iteratively produce cuts, obtaining a

cutting-planes procedure, or to generate disjunctions in a different (and stronger) way than the

usual dichotomy on a single variable. Using both the previous strategies, one can implement a

Branch-and-Cut algorithm. The procedure is suitably explained in [2].

In the present work, we attempt to accommodate those techniques for a modern MILP solver

like CPLEX.

First, we introduce the E. Balas procedure to generate cuts derived from conditional bounds.

In a second moment, we present the entire method to produce nodes in a Branch-and-Cut

environment and some notes regarding the implementation.

3.1 The Cut Generation Procedure

To obtain a conditional bound for the SCP, the fundamental problem in [1] (Theorem 2) consists

in finding a set of column indices S = {j(1), ..., j(p)} with ∅ 6= S ⊆ N such that∑
j∈S

sj ≥ zu − u · e (3.1)

where zu is the current upper bound (the cost of the best solution found so far). Hence, for any

set of p rows indeces h(i) ∈ M , with i = 1, . . . , p and any collection of p subsets Qi ⊆ N with

i = 1, . . . , p satisfying ∑
i|j∈Qi

sj(i) ≤ sj , j ∈ N (3.2)

15

every cover x such that c · x < zu satisfies the inequality∑
j∈W

xj ≥ 1 (3.3)

where

W =

p⋃
i=1

(
Nh(i) \Qi

)
(3.4)

From this central theorem, E. Balas developed the main procedure to produce his cutting-

plane algorithm, here reported as Algorithm 2.

A critical concept in Algorithm 2 regards the avoidance of duplicated cuts. In fact, the way

E. Balas conceived his procedure does not allow that a cut to appears twice. This prevents the

algorithm to be trapped in a cycle.

The description made by E. Balas of Algorithm 2 requires a deep understanding of his work.

In the following, we report some relevant aspects that should make it clearer.

In order to operate, the procedure needs a feasible primal solution x, a feasible dual solution

u and the reduced costs vector s associated to u. Both the primal and the dual solution can

be obtained running appropriate heuristic algorithms. Alternatively, one can directly solve the

dual problem

maxu · f (3.5)

uA ≤ c (3.6)

ui ≥ 0 ∀i ∈M (3.7)

to obtain u. A smarter way to get the u vector is to apply the dual simplex on the primal

problem (1.3) - (1.5). This is exactly what CPLEX does and we can take advantage of this by

directly requiring the u vector to CPLEX.

Once gain those vectors, the reduced costs vector s is provided by

s = c− uA (3.8)

The initialization phase of the algorithm demands to define several sets. The S set is the

subset of the support of vector x, as defined in (1.8), containing only the columns with a strictly

positive reduced cost. The T (x) set includes the rows that are minimally covered by the current

solution x (there is only 1 column in x that cover each row in T (x)). The W set is empty at

the beginning and this will be the support of the new generated cut at the end of Algorithm 2.

The goal of the algorithm is to produce a strong cut, this means to produce a new constraint,

in the SCP form (3.3) containing as less non-zero elements as possible. In the procedure, this is

equivalent to minimize the size of the W set. This process is performed at line 11 of Algorithm

2.

16

Another relevant point to notice is that none of the columns in the current solution x appears

in set W . During iteration t, the procedure examines column j(t) ∈ J (a subset of S). At line

13, it subtracts set Q (whom J is a subset) from W . In this way, none of the columns in S

appears in W .

This is the most important part of the cycle avoidance mechanism: once the new cut is

appended to the model, the primal heuristics have to find a new solution valid for the new

extended model. This solution is necessarily different from the previous ones.

Algorithm 2 can be iteratively applied to a SCP instance until the condition

zl = u · f ≥ c · x = zu (3.9)

is met. However, this approach is not effective in practice due to the huge number of cuts re-

quired to complete.

3.2 The Branch Generation Procedure

The procedure for producing new branches for the Branch and Bound routine differs a bit from

the cut-generation one. Both in [1] and [2] E. Balas and A. Ho do not provide an explicit

description of the algorithm but they suggests that the procedure does not differ much from

Algorithm 2.

Therefore, in the following, we will explain our interpretation of this procedure. The pseudo-

code is reported in Algorithm 3.

The main difference from Algorithm 2 is that we no longer need the W set to store the

indices of the columns. Instead, we want to return a collection R containing the sets of the

variables required to generate each branch.

Once we obtain the collection R, the rule developed by E. Balas and A. Ho in [2] is the

following

p∨
i=1

xj = 0, j ∈ R[i] |
∑

j∈R[k]

xj ≥ 1, k = 1, . . . , i− 1

 (3.10)

where R[i] is the i-th set in collection R. We reported (3.10) as pseudo-code in Algorithm 4.

Due to the nonhomogeneous performances of the current branch rule, E. Balas also developed

a method to decide in which cases to apply his rule. This method can be derived from the

following 3 points:

17

1.
p∑

i=1

|R[i]| > p log2 p (3.11)

2. there exist at most 1 singleton (a set containing exactly 1 element) among the sets R[i], i =

1, . . . , p

∃! 1 ≤ i ≤ p | |R[i]| = 1 (3.12)

3. p does not exceed a specific constant

p ≤Mbranches (3.13)

In the case in which all these conditions are not met, an alternative branch rule is proposed.

This rule (BR2) is less complex than the previous one and it is obtained by a dichotomy on a

single variable. The pseudo-code of this approach is reported in Algorithm 5.

As reported by the author, the cardinality of the set Nk∩Ni usually equals to 1. This means

that most of the times the method branches on a single variable. In this way, the BR2 does not

differ from other branching rules that select a single variable (differently from BR1 and BR2

that can use multiple variables to branch instead). Nevertheless, due to its performances and

its simplicity, this is considered by E. Balas and A. Ho the best branching rule to adopt when

BR1 fails.

In the present work, we performed experiments substituting BR2 with the branches com-

puted by CPLEX (CPLEX Branch Rule, CBR).

3.3 Implementation Notes

The first critical step in the realization of this project was the implementation of Algorithm 2.

This procedure required a long testing phase.

The first version of Algorithm 2 was realized with the Python programming language [17].

This approach allowed rapid prototyping and the finding of the main implementation obstacles.

Several tests were performed on this version, however, large instances could not have experi-

mented. Besides, the CPLEX interface for Python is limited and it does not support several

operations that are permitted only by directly accessing the CPLEX library.

For example, working with the Python interface, inside the body of a branch callback, it is

not possible to require the matrix of the model.

Without this necessary component, this first testing phase was limited to a framework not

dissimilar to the one described in [2]. Consequently, the heuristic procedures there defined were

18

also implemented and tested in the same instances reported in that study.

The next step consisted in the translation and the adaptation of the software for the C

language and the CPLEX native library.

The algorithms presented in the current chapter were developed either in dense and sparse

form. Inside a callback body, the user can request the CPLEX native library to provide the

matrix of the current problem. CPLEX store the matrix in a sparse structure and a developer

can require this structure to be arranged by rows or by columns.

Since CPLEX does not allow the user to generate more than 2 children for a single node, we

developed the following recursive solution to generate as many nodes as we needed.

Once the procedure decides to use the BR1 rule, we generate the first node as in the first

iteration of Algorithm 4.

Then we generate the second node and we supply it a structure containing

• an index i ← 2, indicating that we pass the first level and we are ready for the second

one,

• the collection R,

• the integer p, indicating the number of elements in R.

When our branch callback is newly called, we check if the index i is lower or equal than p: in

this case, we generate the node corresponding to the i-th element of the collection R. Otherwise,

the procedure advances to the branch generation step.

19

Input : a primal solution x and a dual solution u for the SCP, the reduced

costs vector s associated to u, the upper bound zu provided by x.

Output: a valid cut for the SCP.

1 W ← ∅
2 S ← {j ∈ S(x) | sj > 0}
3 T (x)← {i ∈M | Ai · x = 1}
4 y ← u · e
5 t← 0

6 While True do

7 vt ← min {maxj∈S sj, minj∈S {sj | sj ≥ zu − y}}
8 J ← {j ∈ S | sj = vt}
9 Q← {j ∈ N | sj ≥ vt}

10 MJ ←
⋃

j∈J Mj

11 i(t)← argmini∈T (x)∩MJ
| Ni \Q ∩W |

12 j(t)← J ∩Ni(t)

13 W ← W ∪
(
Ni(t) \Q

)
14 y ← y + sj(t)

15 If y ≥ zu then

16 Break

17 S ← S \ {j(t)}
18 sj ← sj − sj(t) ∀j ∈ Ni(t) ∩Q

19 t← t+ 1

20 Return
∑

j∈W xj ≥ 1

Algorithm 2: Balas cut generation (BCG) procedure.

21

Input : a primal solution x and a dual solution u for the SCP, the reduced

costs vector s associated to u, the upper bound zu provided by x.

Output: a collection R of branching sets.

1 S ← {j ∈ S(x) | sj > 0}
2 R← ∅
3 T (x)← {i ∈M | Ai · x = 1}
4 y ← u · e
5 t← 0

6 While True do

7 vt ← min {maxj∈S sj, minj∈S {sj | sj ≥ zu − y}}
8 J ← {j ∈ S | sj = vt}
9 Q← {j ∈ N | sj ≥ vt}

10 MJ ←
⋃

j∈J Mj

11 i(t)← argmini∈T (x)∩MJ
| Ni \Q |

12 j(t)← J ∩Ni(t)

13 y ← y + sj(t)

14 R← R ∪ {Q}
15 If y ≥ zu then

16 Break

17 S ← S \ {j(t)}
18 sj ← sj − sj(t) ∀j ∈ Ni(t) ∩Q

19 t← t+ 1

20 Return R

Algorithm 3: Balas Branch Generation (BBG) procedure.

22

Input : a collection R of branching sets (as provided by Algorithm 3), a parent

subproblem P from a Branch and Bound tree.

Output: a Branch and Bound subtree derived from R.

1 Nodes← ∅
2 For i← 1, . . . , p do

3 Let Ci be a copy of problem P

4 In subproblem Ci, set variables xj = 0, j ∈ R[i]

5 If i 6= 1 then

6 W ← ∅
7 For k ← 1, . . . , i− 1 do

8 W ← W ∪ R[k]

9 Append constraint
∑

j∈W xj ≥ 1 to Ci

10 Nodes← Nodes ∪ {Ci}

11 Return Nodes

Algorithm 4: Balas Branch Rule 1 (BR1) procedure.

Input : a parent subproblem P from a Branch and Bound tree.

Output: a set Branch and Bound nodes.

1 i← last element of the ordered set M

2 k ← argminh∈M\{i} |Nh ∩Ni|

3 Let C1 be a copy of problem P

4 In subproblem C1, set variables xj = 0, j ∈ Nk ∩Ni

5 Let C2 be a copy of problem P

6 Append constraint
∑

j∈Nk∩Ni
xj ≥ 1 to C2

7 Return {C1, C2}

Algorithm 5: Balas Branch Rule 2 (BR2) procedure.

23

Input : a subproblem P from a Branch and Bound tree (P.c indicates the costs

vector of P , P.A refers to the matrix of the subproblem), an integer

constant Mbranches limiting the maximum number of branches, a default

branch rule.

Output: a set containing the subproblems generated from P .

1 x← a primal solution for P

2 u← a dual solution for P

3 s← P.c− uP.A

4 zu ← P.c · x
5 R← BalasBranchGeneration(P,x,u, s, zu)

6 p← |R|
7 If

∑p
i=1 |R[i]| > p log2 p and ∃! 1 ≤ i ≤ p | |R[i]| = 1 and p ≤Mbranches then

8 Return nodes generated with BR1

9 Else

10 Return nodes generated with the default branch rule

Algorithm 6: The complete branch procedure.

24

Chapter 4

Computational Results

In this chapter, we report the data collected by means of the software developed in the present

work. The tables show

• the time taken to find the optimal solution (or, alternatively, the set time limit),

• the value of the best integer solution found (before the time limit expires),

• the value of the objective value (or lower bound),

• the Mixed Integer Programming (MIP) gap calculated by means of the two previous values,

• the number of nodes generated in total and

• the number of unprocessed nodes.

All the previous values are the result of the average on 5 computations obtained with different

seeds. For this reason, even values usually represented as integers (such as the total number of

nodes) can have decimal values.

In Table 4.1 we reported the results obtained with CPLEX using the default parameters

while in Table 4.2 we reported the results of the same solver but disabling all the cuts. The cuts

made by CPLEX are also disabled in all the following experiments.

Tables 4.3, 4.4, 4.5 show the data collected applying the BR1 branching rule and by respec-

tively setting the Mbranches parameter to the values 4, 6, 8.

Using the BR1 in this context indicates performing the procedure described in Algorithm 3

thus obtaining the collection R. If all the conditions (3.11) - (3.13) are satisfied, then the nodes

are generated as described in Algorithm 4. Otherwise, the nodes generated by CPLEX are used.

25

Similarly, in Tables 4.6, 4.7, 4.8 the values collected using the BR1 are reported as a branch-

ing rule but using functions that implement sparse structures.

In Table 4.9 we explore a bit of BR2. The first point one can notice is the extremely great

number of nodes required to solve even the smallest instances.

Therefore, it is clear that the branching rule used by CPLEX is a more desirable alternative

than BR2.

A more accessible consultation of the collected data is provided by the Tables 4.10 and 4.11.

In Table 4.10 it is possible to compare the times obtained from the described solvers in

instances e and f while in Table 4.11 we can examine the MIP gaps of instances g and h. The

best result (for both time and MIP gap) in each row is displayed in bold.

It is therefore very clear to see how CPLEX is always the best solver. The only exception is

the instance e4.

The reason for this event is given by the choice of a relatively low value of the parameter

Mbranches = 4 and by the dimensions of the considered instance. As a result, the nodes generated

with the BR1 branching rule must not have been on sufficient numbers to compromise the

CPLEX computation.

26

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 77.76 29.0 29.00 0.00 26629.0 0.0

scpnre2_red 666.22 30.0 30.00 0.00 197333.6 0.0

scpnre3_red 73.32 27.0 27.00 0.00 21104.4 0.0

scpnre4_red 209.86 28.0 28.00 0.00 55721.6 0.0

scpnre5_red 71.36 28.0 28.00 0.00 17741.8 0.0

scpnrf1_red 74.90 14.0 14.00 0.00 27196.4 0.0

scpnrf2_red 47.04 15.0 15.00 0.00 18821.2 0.0

scpnrf3_red 18.83 14.0 14.00 0.00 5260.2 0.0

scpnrf4_red 118.06 14.0 14.00 0.00 49586.6 0.0

scpnrf5_red 946.24 13.0 13.00 0.00 410140.6 0.0

scpnrg1_red 3600.00 176.0 170.82 2.94 197675.0 121286.8

scpnrg2_red 2622.58 154.0 154.00 0.00 179330.4 0.0

scpnrg3_red 3600.00 166.6 159.35 4.35 220745.2 138591.8

scpnrg4_red 3600.00 168.8 161.35 4.41 196260.6 120852.4

scpnrg5_red 3600.00 168.0 159.97 4.78 207402.6 137877.0

scpnrh1_red 3600.00 64.60 53.93 16.51 204673.2 168508.2

scpnrh2_red 3600.00 64.80 54.80 15.43 254589.4 212189.8

scpnrh3_red 3600.00 60.20 51.18 14.96 247778.8 191524.8

scpnrh4_red 3600.00 58.60 49.98 14.71 253733.8 199092.6

scpnrh5_red 3600.00 55.20 48.71 11.76 251290.6 189100.8

Table 4.1: Results for the CPLEX solver on reduced e, f , g and h instances (3600 seconds

time limit, 1 thread, average on 5 runs).

27

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 70.71 29.00 29.00 0.00 24730.4 0.0

scpnre2_red 388.94 30.00 30.00 0.00 180884.4 0.0

scpnre3_red 60.30 27.00 27.00 0.00 17950.0 0.0

scpnre4_red 127.12 28.00 28.00 0.00 40329.2 0.0

scpnre5_red 35.26 28.00 28.00 0.00 11785.6 0.0

scpnrf1_red 79.07 14.00 14.00 0.00 29603.0 0.0

scpnrf2_red 50.13 15.00 15.00 0.00 18529.0 0.0

scpnrf3_red 36.36 14.00 14.00 0.00 10982.4 0.0

scpnrf4_red 132.68 14.00 14.00 0.00 49942.8 0.0

scpnrf5_red 493.57 13.00 13.00 0.00 308797.2 0.0

scpnrg1_red 3600.00 176.00 171.01 2.84 193197.8 112009.6

scpnrg2_red 2886.31 154.00 153.70 0.20 203194.0 5025.6

scpnrg3_red 3600.00 167.00 159.41 4.54 228072.6 159140.4

scpnrg4_red 3600.00 170.20 161.32 5.22 207796.4 142896.2

scpnrg5_red 3600.00 168.00 160.43 4.51 217112.8 142887.6

scpnrh1_red 3600.00 64.00 54.16 15.37 208974.8 164743.0

scpnrh2_red 3600.00 64.20 54.81 14.62 241695.4 189153.0

scpnrh3_red 3600.00 60.20 51.16 15.00 241911.6 186912.4

scpnrh4_red 3600.00 59.00 49.89 15.42 239950.0 185396.8

scpnrh5_red 3600.00 55.00 48.66 11.52 236905.8 173051.0

Table 4.2: Results for the CPLEX solver on reduced e, f , g and h instances, with cuts

disabled (3600 seconds time limit, 1 thread, average on 5 runs).

28

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 164.79 29.00 29.00 0.00 47974.6 0.0

scpnre2_red 798.47 30.00 30.00 0.00 278730.6 0.0

scpnre3_red 113.49 27.00 27.00 0.00 26559.8 0.0

scpnre4_red 123.24 28.00 28.00 0.00 29339.8 0.0

scpnre5_red 44.72 28.00 28.00 0.00 10556.8 0.0

scpnrf1_red 154.81 14.00 14.00 0.00 60912.4 0.0

scpnrf2_red 113.54 15.00 15.00 0.00 45221.6 0.0

scpnrf3_red 150.39 14.00 14.00 0.00 59600.0 0.0

scpnrf4_red 344.91 14.00 14.00 0.00 143987.2 0.0

scpnrf5_red 2368.40 13.00 13.00 0.00 1550872.4 0.0

scpnrg1_red 3600.01 176.00 169.97 3.42 91335.0 60209.6

scpnrg2_red 3600.00 155.00 151.01 2.58 112815.0 69566.0

scpnrg3_red 3600.02 167.00 156.99 6.00 85395.4 69928.4

scpnrg4_red 3600.01 170.60 158.96 6.82 73034.4 59184.4

scpnrg5_red 3600.01 168.80 158.35 6.19 86656.0 68098.2

scpnrh1_red 3600.01 65.00 53.33 17.96 78488.6 69554.0

scpnrh2_red 3600.02 64.00 54.10 15.47 89514.4 74078.0

scpnrh3_red 3600.01 60.60 50.41 16.79 92861.0 79194.4

scpnrh4_red 3600.01 58.40 49.14 15.85 101327.0 86350.0

scpnrh5_red 3600.01 56.20 47.88 14.79 102984.0 86475.2

Table 4.3: Results for the CPLEX solver on reduced e, f , g and h instances using BR1

and Mbranches = 4 (3600 seconds time limit, 1 thread, average on 5 runs).

29

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 190.69 29.00 29.00 0.00 86729.2 0.0

scpnre2_red 1960.90 30.00 30.00 0.00 1083208.0 0.0

scpnre3_red 90.38 27.00 27.00 0.00 22023.6 0.0

scpnre4_red 134.54 28.00 28.00 0.00 41029.2 0.0

scpnre5_red 68.74 28.00 28.00 0.00 27748.2 0.0

scpnrf1_red 245.22 14.00 14.00 0.00 168383.4 0.0

scpnrf2_red 106.39 15.00 15.00 0.00 65470.0 0.0

scpnrf3_red 101.24 14.00 14.00 0.00 43370.2 0.0

scpnrf4_red 678.97 14.00 14.00 0.00 488393.6 0.0

scpnrf5_red 3073.02 13.80 12.48 9.45 2566319.2 359237.2

scpnrg1_red 3600.01 176.00 170.41 3.18 118756.6 75902.8

scpnrg2_red 3600.01 154.80 151.21 2.32 154678.6 83600.2

scpnrg3_red 3600.00 167.00 157.38 5.76 112174.0 92202.0

scpnrg4_red 3600.00 168.00 159.3 5.18 93332.0 53506.0

scpnrg5_red 3600.01 168.40 158.45 5.91 96405.4 71390.4

scpnrh1_red 3600.00 65.00 53.36 17.91 81866.8 71481.4

scpnrh2_red 3600.01 64.60 54.06 16.31 90747.6 77679.2

scpnrh3_red 3600.00 60.80 50.38 17.13 90341.8 76717.6

scpnrh4_red 3600.01 58.80 49.12 16.46 103517.0 90105.6

scpnrh5_red 3600.01 56.00 47.97 14.32 110160.2 92256.8

Table 4.4: Results for the CPLEX solver on reduced e, f , g and h instances using BR1

and Mbranches = 6 (3600 seconds time limit, 1 thread, average on 5 runs).

30

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 509.01 29.00 29.00 0.00 259270.0 0.0

scpnre2_red 1768.17 30.20 29.81 1.25 817920.4 67061.6

scpnre3_red 126.96 27.00 27.00 0.00 40393.8 0.0

scpnre4_red 307.00 28.00 28.00 0.00 136325.6 0.0

scpnre5_red 176.62 28.00 28.00 0.00 106428.0 0.0

scpnrf1_red 159.62 14.00 14.00 0.00 106680.8 0.0

scpnrf2_red 67.52 15.00 15.00 0.00 39772.6 0.0

scpnrf3_red 92.29 14.00 14.00 0.00 52526.4 0.0

scpnrf4_red 330.85 14.00 14.00 0.00 231312.4 0.0

scpnrf5_red 2702.13 13.60 12.48 7.99 2554692.8 262469.0

scpnrg1_red 3600.01 176.00 170.05 3.38 99506.2 64136.8

scpnrg2_red 3600.00 154.40 151.76 1.71 193753.6 57422.8

scpnrg3_red 3600.00 167.00 157.32 5.80 125925.0 92922.0

scpnrg4_red 3600.00 169.25 159.69 5.64 117335.25 86499.5

scpnrg5_red 3600.01 168.80 158.28 6.23 84697.2 63875.4

scpnrh1_red 3600.00 64.20 53.31 16.96 83938.2 67028.2

scpnrh2_red 3600.01 64.20 54.07 15.77 94082.2 73929.0

scpnrh3_red 3600.02 61.00 50.37 17.41 91135.0 75517.8

scpnrh4_red 3600.01 58.80 49.10 16.50 105531.6 89843.4

scpnrh5_red 3600.00 55.60 47.95 13.76 106726.8 85340.8

Table 4.5: Results for the CPLEX solver on reduced e, f , g and h instances using BR1

and Mbranches = 8 (3600 seconds time limit, 1 thread, average on 5 runs).

31

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 176.19 29.00 29.00 0.00 39902.4 0.0

scpnre2_red 1886.76 30.00 30.00 0.00 424340.6 0.0

scpnre3_red 99.37 27.00 27.00 0.00 13258.6 0.0

scpnre4_red 139.65 28.00 28.00 0.00 27220.4 0.0

scpnre5_red 62.42 28.00 28.00 0.00 8270.8 0.0

scpnrf1_red 143.12 14.00 14.00 0.00 25114.2 0.0

scpnrf2_red 116.08 15.00 15.00 0.00 19205.6 0.0

scpnrf3_red 123.43 14.00 14.00 0.00 18789.4 0.0

scpnrf4_red 400.25 14.00 14.00 0.00 67269.8 0.0

scpnrf5_red 1275.33 13.00 13.00 0.00 264024.8 0.0

scpnrg1_red 3600.03 176.00 169.07 3.94 51942.8 32845.2

scpnrg2_red 3600.03 154.80 150.47 2.80 72958.2 41494.2

scpnrg3_red 3600.01 167.20 156.57 6.36 57570.0 46974.2

scpnrg4_red 3600.03 170.00 158.10 7.00 45750.6 32852.8

scpnrg5_red 3600.01 168.40 157.68 6.37 53510.0 40741.6

scpnrh1_red 3600.07 64.80 52.87 18.40 42319.2 36045.8

scpnrh2_red 3600.02 64.60 53.57 17.06 44536.8 37754.6

scpnrh3_red 3600.05 61.00 49.89 18.20 44286.2 36927.6

scpnrh4_red 3600.01 58.60 48.71 16.87 53176.6 46208.2

scpnrh5_red 3600.00 55.60 47.55 14.45 57995.4 47433.0

Table 4.6: Results for the CPLEX solver on reduced e, f , g and h instances using BR1

and Mbranches = 4 with sparse structures (3600 seconds time limit, 1 thread, average on

5 runs).

32

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 247.69 29.00 29.00 0.00 38841.4 0.0

scpnre2_red 2311.04 30.00 30.00 0.00 297641.6 0.0

scpnre3_red 174.91 27.00 27.00 0.00 23458.8 0.0

scpnre4_red 180.93 28.00 28.00 0.00 26730.6 0.0

scpnre5_red 60.52 28.00 28.00 0.00 8279.4 0.0

scpnrf1_red 134.10 14.00 14.00 0.00 24664.8 0.0

scpnrf2_red 116.01 15.00 15.00 0.00 19427.4 0.0

scpnrf3_red 102.34 14.00 14.00 0.00 14699.2 0.0

scpnrf4_red 353.92 14.00 14.00 0.00 65887.2 0.0

scpnrf5_red 1658.74 13.00 13.00 0.00 327632.0 0.0

scpnrg1_red 3600.03 176.00 169.04 3.96 51374.6 33833.4

scpnrg2_red 3600.03 154.60 150.44 2.69 73946.2 43766.0

scpnrg3_red 3600.03 167.60 156.28 6.75 55365.2 44862.6

scpnrg4_red 3600.06 170.80 158.13 7.42 44764.2 35219.6

scpnrg5_red 3600.03 168.80 157.50 6.69 48997.6 38422.6

scpnrh1_red 3600.03 65.20 52.91 18.83 45390.4 39639.4

scpnrh2_red 3600.03 64.60 53.60 17.02 45928.0 39620.6

scpnrh3_red 3600.02 60.60 49.96 17.55 49204.0 40120.2

scpnrh4_red 3600.03 59.00 48.76 17.34 56940.2 50737.8

scpnrh5_red 3600.02 55.80 47.49 14.87 57990.0 46045.6

Table 4.7: Results for the CPLEX solver on reduced e, f , g and h instances using BR1

and Mbranches = 6 (3600 seconds time limit, 1 thread, average on 5 runs).

33

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 216.83 29.00 29.00 0.00 38206.8 0.0

scpnre2_red 1820.35 30.00 30.00 0.00 364074.4 0.0

scpnre3_red 128.99 27.00 27.00 0.00 18927.2 0.0

scpnre4_red 164.38 28.00 28.00 0.00 25032.8 0.0

scpnre5_red 63.35 28.00 28.00 0.00 8270.8 0.0

scpnrf1_red 139.93 14.00 14.00 0.00 24664.8 0.0

scpnrf2_red 119.86 15.00 15.00 0.00 19427.4 0.0

scpnrf3_red 109.54 14.00 14.00 0.00 14699.2 0.0

scpnrf4_red 399.77 14.00 14.00 0.00 65887.2 0.0

scpnrf5_red 1701.49 13.00 13.00 0.00 327632.0 0.0

scpnrg1_red 3600.02 176.00 169.12 3.91 56097.8 35440.6

scpnrg2_red 3600.01 154.60 150.58 2.60 81699.6 45690.0

scpnrg3_red 3600.01 167.80 156.5 6.73 62684.2 51315.0

scpnrg4_red 3600.03 170.40 158.34 7.07 51763.4 39266.6

scpnrg5_red 3600.03 168.60 157.69 6.47 54118.0 41545.6

scpnrh1_red 3600.04 65.00 52.92 18.58 45013.8 39231.2

scpnrh2_red 3600.03 64.40 53.60 16.76 46199.0 38755.6

scpnrh3_red 3600.02 61.00 49.94 18.13 47034.6 40187.8

scpnrh4_red 3600.02 59.00 48.73 17.41 54182.6 48787.0

scpnrh5_red 3600.02 56.20 47.50 15.47 57942.8 48687.6

Table 4.8: Results for the CPLEX solver on reduced e, f , g and h instances using BR1

and Mbranches = 8 (3600 seconds time limit, 1 thread, average on 5 runs).

34

Instance Time (s) Best Int. Obj Val MIP Gap Nodes Nodes Left

scpnre1_red 1397.60 29.00 29.00 0.00 711816.8 0.0

scpnre2_red 3600.05 30.80 27.34 11.21 1529080.2 959051.4

scpnre3_red 554.43 27.00 27.00 0.00 212619.2 0.0

scpnre4_red 1128.05 28.00 28.00 0.00 500035.4 0.0

scpnre5_red 324.79 28.00 28.00 0.00 129196.6 0.0

scpnrf1_red 203.96 14.00 14.00 0.00 91477.0 0.0

scpnrf2_red 133.72 15.00 15.00 0.00 59029.6 0.0

scpnrf3_red 127.05 14.00 14.00 0.00 51472.8 0.0

scpnrf4_red 548.66 14.00 14.00 0.00 242715.4 0.0

scpnrf5_red 1447.60 13.00 13.00 0.00 641883.4 0.0

scpnrg1_red 3600.06 176.00 164.58 6.49 187268.2 146501.8

scpnrg2_red 3600.00 155.20 146.47 5.62 189623.6 141899.6

scpnrg3_red 3600.02 167.60 152.6 8.95 217498.8 178434.0

scpnrg4_red 3600.00 170.80 152.52 10.70 207629.8 175621.0

scpnrg5_red 3600.00 168.40 151.63 9.96 198831.4 169853.4

scpnrh1_red 3600.00 64.20 50.71 21.01 343996.4 320998.2

scpnrh2_red 3600.00 64.60 51.17 20.78 347998.0 324861.6

scpnrh3_red 3600.01 61.20 47.76 21.95 353973.6 328563.0

scpnrh4_red 3600.01 58.80 46.80 20.41 374854.0 343725.6

scpnrh5_red 3600.00 55.40 45.33 18.17 375063.0 336239.8

Table 4.9: Results for the CPLEX solver on reduced e, f , g and h instances using BR2

(3600 seconds time limit, 1 thread, average on 5 runs).

35

Instance CPX1 CPX2 BR1 4 BR1 6 BR1 4 sp BR1 6 sp BR2

scpnre1_red 77.76 70.71 164.79 190.69 176.19 247.69 1397.60

scpnre2_red 666.22 388.94 798.47 1960.90 1886.76 2311.04 3600.05

scpnre3_red 73.32 60.30 113.49 90.38 99.37 174.91 554.43

scpnre4_red 209.86 127.12 123.24 134.54 139.65 180.93 1128.05

scpnre5_red 71.36 35.26 44.72 68.74 62.42 60.52 324.79

scpnrf1_red 74.90 79.07 154.81 245.22 143.12 134.10 203.96

scpnrf2_red 47.04 50.13 113.54 106.39 116.08 116.01 133.72

scpnrf3_red 18.83 36.36 150.39 101.24 123.43 102.34 127.05

scpnrf4_red 118.06 132.68 344.91 678.97 400.25 353.92 548.66

scpnrf5_red 946.24 493.57 2368.40 3073.02 1275.33 1658.74 1447.60

Table 4.10: Results comparison of the previous tables: time comparison for e and f

instances.

Instance CPX1 CPX2 BR1 4 BR1 6 BR1 4 sp BR1 6 sp BR2

scpnrg1_red 2.94 2.84 3.42 3.18 3.94 3.96 6.49

scpnrg2_red 0.00 0.20 2.58 2.32 2.80 2.69 5.62

scpnrg3_red 4.35 4.54 6.00 5.76 6.36 6.75 8.95

scpnrg4_red 4.41 5.22 6.82 5.18 7.00 7.42 10.70

scpnrg5_red 4.78 4.51 6.19 5.91 6.37 6.69 9.96

scpnrh1_red 16.51 15.37 17.96 17.91 18.40 18.83 21.01

scpnrh2_red 15.43 14.62 15.47 16.31 17.06 17.02 20.78

scpnrh3_red 14.96 15.00 16.79 17.13 18.20 17.55 21.95

scpnrh4_red 14.71 15.42 15.85 16.46 16.87 17.34 20.41

scpnrh5_red 11.76 11.52 14.79 14.32 14.45 14.87 18.17

Table 4.11: Results comparison of the previous tables: MIP Gap comparison for g and h

instances.

36

Chapter 5

Conclusions

The negative results of this research show how the technology in the field of MILP solvers has

advanced since the years in which [1] [2] were published. Although it is already possible to

observe the integrated use of branching and cutting plane techniques, it is worth remembering

that the publication of the Branch-and-Cut method by Padberg and Rinaldi [16] would have

taken place only a decade later.

As far as the SCP is concerned, even removing the cutting planes method, we notice how

the branching techniques implemented by CPLEX remain extremely competitive.

This could be due to the very nature of the problem. As reported in Chapter 1, since the

birth of linear programming, the SCP has always been one of the key problems of the discipline,

and it is straightforward to describe and extremely abstract.

Consequently, decades of research in the field of mathematical optimization have led to

an extremely complex and refined product, whose performance can hardly be improved when

general problems such as the SCP are treated.

37

Appendix A

Helpful Resources

A.1 Software Description

The software developed for this project is organized as reported here

• main.c contains the starting routines for reading the input file, parsing parameters passed

as an argument and to initialize the instance structure.

• aux.c contains the definition for the instance structure. This structure defines the data

we require to pass throughout the software.

• Inside sc.c is organized the central logic of the software. The SCMILPsolver function

executes the following phases:

1. the model is read from an .lp file or, alternatively, is built from a raw file (as described

in OR-Library [4]);

2. the subsequent phase is the pre-solver selection (this is an optional stage);

3. the next passage consists of deciding the solver as required by the user;

4. ultimately, we require CPLEX the solution and the information that we print out

for the user.

• In preprocessing.c is included the SCdominancepresolver function. The function is the

direct implementation of Algorithm 1 as reported in Chapter 2.

• callbacks.c contains the bodies of the main callback functions. These callbacks are direct

called by the solvers in sc.c. Several utility functions are included in the same file, such

us the SCgetmatrix function that processes the matrix provided by CPLEX.

• balas_dense.c contains the algorithms reported in [2].

39

• balas_sparse.c contains the algorithms reported in [2], implemented by means of sparse

data structures.

A.2 CPLEX Set Up

Using the CPLEX library with the C programming language can sometimes be complicated for

a novice.

The following online resource can be helpful if is required to adopt this approach and by

using CMake to manage the project. It can be used both for OSX and Linux systems.

https://github.com/ampl/mp/blob/master/support/cmake/FindCPLEX.cmake

40

References

[1] Egon Balas. Cutting planes from conditional bounds: A new approach to set covering, pages

19–36. Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.

[2] Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and

subgradient optimization: A computational study, pages 37–60. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1980.

[3] J. E. Beasley. A lagrangian heuristic for set-covering problems. Naval Research Logistics

(NRL), 37(1):151–164, 1990.

[4] J. E. Beasley. Or-library, 1990.

[5] M. Bellmore, H. J. Geenberg, and J. J. Jarvis. Multi-commodity disconnecting sets. Man-

agement Science, 16(6):B–427–B–433, 1970.

[6] Mandell Bellmore and H. Donald Ratliff. Optimal defense of multi-commodity networks.

Management Science, 18(4):B174–B185, 1971.

[7] Mandell Bellmore and H. Donald Ratliff. Set covering and involutory bases. Management

Science, 18(3):194–206, 1971.

[8] Alberto Caprara and Matteo Fischetti. A heuristic method for the set covering problem.

Operations Research, 47, 02 2000.

[9] Graham Cormode, Howard Karloff, and Anthony Wirth. Set cover algorithms for very

large datasets. In Proceedings of the 19th ACM International Conference on Information

and Knowledge Management, CIKM ’10, pages 479–488, New York, NY, USA, 2010. ACM.

[10] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Manage. Sci., 6(1):80–91,

October 1959.

[11] Richard H. Day. On optimal extracting from a multiple file data storage system: An

application of integer programming. Operations Research, 13(3):482–494, 1965.

[12] Michael Ferris. Solving the seymour problem. 2001.

41

[13] Matteo Fischetti. Lezioni di Ricerca Operativa. Libreria Progetto, Padova, 1995.

[14] Ibm. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, 2011.

[15] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,

Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[16] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution

of large-scale symmetric traveling salesman problems. SIAM Rev., 33(1):60–100, February

1991.

[17] G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde en

Informatica (CWI), Amsterdam, May 1995.

42

	Abstract
	Introduction
	Instances Description
	Concerning the Tests

	Preprocessing
	Dominance Preprocessing
	Preprocessing Results

	The Balas' Framework
	The Cut Generation Procedure
	The Branch Generation Procedure
	Implementation Notes

	Computational Results
	Conclusions
	Helpful Resources
	Software Description
	CPLEX Set Up

