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Introduction

The Brownian motion was first introduced by botanist Robert Brown who observed the random
movement of pollen particles due to water molecules under a microscope. It was in the 1900s
that the French mathematician Louis Bachelier applied the concept of Brownian motion to as-
set price behavior for the first time, and this led to Brownian motion becoming one of the most
important fundamental of modern quantitative finance. In Bachelier’s theory, price fluctuations
observed over a small time period are independent of the current price along with historical be-
havior of price movements: they form a random pattern. The prices fluctuate everyday resulting
from market forces like supply and demand, company valuation and earnings, and economic factors
like inflation, liquidity, demographics of country and investors, political developments, etc. Mar-
ket participants try to anticipate stock prices using all these factors and contribute to make price
movements random by their trading activities as the financial and economics worlds are constantly
changing. This led to the development of the Random Walk Hypothesis or Random Walk Theory,
as it is known today in modern finance, which is a statistical phenomenon wherein stock prices
move randomly. When the time step of a random walk is made infinitesimally small, the random
walk becomes a Brownian motion which follows a Gaussian distribution: the random behavior of
prices can be said to be represented by a normal distribution.
The Brownian motion plays a fundamental role also in pricing of derivatives and this is a con-
sequence of their definition. A derivative can be defined as a financial instrument whose value
depends on (or derives from) the values of other underlying variables, usually stocks. The Black-
Scholes pricing model is a continuous time model widely used to build up their price. As we will
see, derivatives can be used for hedging, speculation, and they also play a key role in transfer-
ring a wide range of risks in the economy from one entity to another. Through years, derivatives
became effective financial instruments for managing credit risk, namely the risk that arises from
the possibility that counterparties may default in repaying their debt. Before the introduction of
these financial instruments, once a banks or other financial institutions had assumed a credit risk,
they could just wait. Now they can manage their portfolios protecting themselves entering into
credit derivative contracts. The most popular credit derivative is a Credit Default Swap, that is a
contract that provides insurance against the risk of a default by a certain company.
There are many factors that can lead a company to default, one of the most relevant nowadays
surely is the transformation required to achieve net-zero emissions targets. Changes in climate
policy, technology, and market sentiment during the adjustment to a low-carbon economy could
generate significant losses in firms’ cash-flows and extreme lowering in their valuation, leading to
an economic situation which could undermine their ability to repay debts and could lead to a high
probability of default and credit risk. In order to understand the impact of these transformations
we need measure firms’ carbon risk exposure, which is encoded into their carbon emission data.

The purpose of this thesis is to highlight importance of the Brownian motion in Finance. The
Brownian motion was developed in Physics to model the irregular random motion of a particle
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suspended in fluid under the impact of collisions with the molecules of the fluid. In the first part
we will show the analogies between the motion of these so called ”Brownian particles” and the
trend of stock prices in financial market. We will see that, according to the Black-Scholes model,
Brownian motion plays a crucial role in pricing financial stocks and derivatives. Then we will move
on introducing the Merton model, in which the Brownian motion is used to estimate the default
probability of a company. In the final part we will present a real study case in which derivatives
can be implemented to manage firms’ credit risk arising from carbon exposure.
In Chapter 1 we will introduce basic financial notions: interest rates and derivatives. In particular,
we will present different definitions of interest rates, including the fundamental ”risk-free rate”, and
their role in financial market to price bonds and investment projects. Subsequently we will give the
definition of derivatives, with all the features needed to describe them. We will introduce different
types of derivatives, such as futures and options. We will concentrate on the latter, defining their
payoff and their fundamental properties.
In Chapter 2 we will introduce the concept of Brownian motion. Firstly, we will describe it from a
stochastic point of view, paying attention to its implementation on the so called stochastic differen-
tial equation. We will present some mathematical features that will be useful, such as the famous
Itô’s Formula, and finally we will conclude with the Geometric Brownian Motion, a particular
stochastic differential equation, which turns out to be the perfect tool for the description of stock
prices. Furthermore, we will introduce Brownian motion in physics. We will present Einstein’s
theory for the probabilistic description of a sample of Brownian particles, and Langevin’s imple-
mentation, aimed to describe the trajectory of a single Brownian particle starting from Newton’s
first law of dynamics. Finally, we will deal with Brownian motion in finance. Starting from the
analogies between the motion of Brownian particles and the stock price trends, we will end up with
the definition of random walk, which plays a fundamental role in modeling stock prices behaviour.
In Chapter 3 we will introduce the Black-Scholes model for derivatives pricing. After a brief in-
troduction concerning the evolution of a discrete time model (binomial model) to a continuous
time model (Black-Scholes model), we will deal with the question: ”Does it exist a self-financing
dynamic portfolio that can replicate the payoff of a derivative?”. Solving this so called hedging
problem, we will be able to obtain the Black–Scholes partial differential equation. Throughout a
particular solution of it, we will deduce the Black–Scholes pricing formula, which will give us the
price of option derivatives. Finally, we will present another way to obtain the Call option pricing
formula, starting from the Fokker-Planck equation.
In Chapter 4 we will briefly see an application of the Black-Scholes pricing formula. We will intro-
duce the ”Greek Letters”, defined starting from partial derivatives of the pricing formula, showing
their role in managing the market risk of a company.
In Chapter 5 we will introduce credit risk, a risk that arises from the possibility that counterparties
may default in repaying their debt. We will present three ways to estimate default probabilities:
from historical data, from bond yield spreads, and the Merton model for default probabilities. In
particular, we will concentrate on the latter. After some specifications on the definition of debt in
case of default, we will show how the Black-Scholes pricing formula for Call options is a suitable
tool for calculating the default probability of a company.
In Chapter 6 we will present credit derivatives: contracts where the payoff depends on the cred-
itworthiness of one or more companies or countries. We will focus on the most famous credit
derivatives, namely the credit default swaps, which are contracts that provide insurance against
the risk of a default by a certain company. After a brief introduction aimed to describe their
properties and uses, we will show how, starting from the default probability, is possible to achieve
their the correct valuation under the no-arbitrage assumption. In particular, we will deal with all
the theoretical calculations that lead to the definition of CDS spreads, namely the total amount of
money paid per year to buy protection.
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Introduction

In Chapter 7 we will present a real study case in which, using CDS spreads, we will construct a car-
bon risk factor, and we will prove how carbon risk, estimated via firms’ carbon emission, can affect
firms’ credit spread. We will show that all the transformations concerning the de-carbonization
affect firms’ portfolio enhancing their credit risk. We will appreciate that this phenomenon results
to be larger for European firms than North American ones and varies across industries, suggesting
that the market recognizes where and which sectors are more favorable to a low-carbon economy
transition. Furthermore we will report that the effect of carbon risk on CDS spread in stronger
during times of heightened attention to climate changes. In this final chapter, after an introductive
part, we will show how to implement carbon risk into Merton model for credit risk, we will create
a carbon risk factor starting from firms’ CDS spreads, and we will introduce the quantile regres-
sion model in order to describe our framework. After exploiting this powerful mathematical tool,
through some tables, we will have the tangible proof that carbon risk exposure is regional, sectoral,
and depends also on climate change attention.
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Chapter 1

Preliminary Financial Notions

References: [9] [1] [6]

In this first chapter we will introduce very briefly some financial features which will be fundamental
for the treatment of all the arguments of this paper: Interest Rates and Financial Derivatives.
In particular, we will introduce different types of interest rates and their compounding frequency,
we will see their role in bond pricing and how they are related to bond yields. Finally we will
give the definition of a derivative, showing their most important properties. In particular we will
introduce futures and options, and we will deal with the very famous call and put options.

1.1 Interest Rates

The main role of interest rates is to establish how much should be the net cash-flow of a security
at different points in time.
Interest rates tell us how to measure the monetary value of time, how to price fixed-income securi-
ties such as bonds, and how to value investment projects that are delivering cash-flows in the future.

1.1.1 Types of Interest Rates

In financial markets there are different type of real-world interest rates, the most known ones are:

• Treasury Rates: This is the rate on instruments issued by the government in its own
currency. This represents the rate at which the government can borrow money for a certain
period of time, and traditionally they are considered to be risk-free.

• Interbank Rates: This is the rate at which primary financial institutions can borrow money
from each other for a certain period of time. The most famous one is the LIBOR Rate (London
InterBank Offered Rate).

• Overnight Rates: Banks have to keep reserves at the central bank, depending on their
assets and liabilities. Banks can adjust their deposits by borrowing and lending at the end of
each day, at an overnight rate determined by the central bank.

There is another fundamental interest rate, which is not a real-world interest rate, called Risk-free
Interest Rate, and it will be crucial for the whole analysis presented in this paper.
The risk-free interest rate plays a key role in the valuation of derivatives, but it is also applicable
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Chapter 1. Preliminary Financial Notions

in situations involving credit risk, namely the risk that the borrower fails to repay interests and
principal amount to the lender. This because it is considered as independent of the risk preference
of the market participants.
Does the risk free rate exist? Surely not in reality, but some market rates are usually used as
proxies for a risk free rate:

• Treasury Rate: The rate at which a government bond is emitted.

• LIBOR Rate: No longer assumed to be risk-free after the financial crisis.

• Overnight Indexed Swap Rate: The most widely adopted proxy nowadays.

We will discuss in more details the risk-free rate in Chapter 3, when we will introduce some pricing
models.

1.1.2 Measurement of Interest Rates

Let us suppose that we are investing a certain amount of money in a bank account for one year,
we could ask ourselves how much money we will earn at the end of the year. The answer depends
on two factors:

• Interest Rate: Denoted by R, it is expressed in % and it is referred to a period of 1 year.

• Compounding Frequency: Denoted by m, describes how many times per year interests
are computed.

Let us make some examples to better understand what has been said.
Example 1. Suppose that we are investing an amount $A for 1 year at a rate R = 8% with annual
compounding frequency (m = 1). Then, if a time t = 0 we have an amount A, at time t = 1 we
will have an amount A(1 + 0.08).
Example 2. Suppose that we are investing an amount $A for 1 year at a rate R = 8% with
semiannual compounding frequency (m = 2). Then, if a time t = 0 we have an amount A, at time
t = 1 we will have an amount A(1 + 0.08

2 )2.

To generalize our result, suppose that we are investing an amount $A for T years at a rate R
with a compounding frequency m, then the terminal value of the investment at the maturity will
be given by the following formula:

A

(

1 +
R

m

)mT

(1.1)

It’s interesting to notice that this function is an increasing function of m, this because we are
receiving interests on the interests previously credited.

What happens if we let m → ∞? We have the so called continuous compounding. The con-
tinuous compounding is almost identical to a daily compounding, in fact if we insert m = 365 into
the previous formula we get a good approximation for m → ∞.
Remembering the expression of the Taylor expansion for the exponential, we obtain the following
relation:

lim
m→+∞

(

1 +
R

m

)mT

= eRT (1.2)

For mathematical tractability, from now on we will only use continuously compounded rates.

6



1.1. Interest Rates

1.1.3 Valuation of Bonds

In the previous subsection we have learnt how to compute the wealth generated by investing some
money in a bank account, now we may ask how to do the reverse operation, namely which is the
value today of future cash-flows.
In order to do this we introduce the discounting operation. Suppose that a certain amount of
money $A is received in T years at a continuously compounded rate R. The value today of the
future cash-flow A is:

Ae−T ·R (1.3)

The reason is simple: if we invest $Ae−T ·R today, in T years we will get $A.
Notice that in the previous formula we have assumed the total absence of risk, in the sense that
the rate R is not going to change over the time, so the future cash-flow is completely known: we
are using the risk-free rate.
Now we are going to exploit the discounting technique to price bonds.
Let us define firstly the T-year zero rate R0(T ) as the interest rate which is applied to an investment
that starts today and ends in T years from now, without any intermediate payments.
In our financial market bonds take two forms:

• Zero-coupon Bonds: They are securities that pay one unit of money at the maturity T
without intermediate payments. The price of a zero-coupon bond is given by:

P0 = e−T ·R0(T ) (1.4)

where P0(T ) represents the value today (at time t = 0) of a single cash-flow of the principal
amount (set equal to 1$ by convention) occurring at maturity (at time t = T ).

• Coupon Bonds: They are securities that pay one unit of money at the maturity T and
a fraction c

m
every 1

m
year. The variable c is called coupon rate, while m is the payment

frequency. The price of a coupon bond is given by:

P0(T, c,m) =
c

m

mT∑

k=1

e−
k
m
·R0(

k
m
) + e−T ·R0(T ) (1.5)

where P0(T, c,m) represents the value today (at time t = 0) of the sum of:

1. A series of coupon payments. The amount of each coupon is constant and equal to c
m
.

In total, there are mT coupon payments (m coupons every year), each taking place at
time t = k

m
(measured in years) and discounted with the corresponding rate R0(

k
m
).

2. A cash flow of the principal amount, by convention set equal to 1, occurring at the
maturity (at time t = T ).

Another important feature when discussing about bonds is the bond yield.
In (1.5) we showed how to compute coupon bonds prices, but we may ask if does exist a single
indicator which measures the return on investing in a bond.
We define the bond yield as the single discount rate that, if applied to all the cash-flows of the
bond, gives a bond value equal to its market price. We call it y, and defining P0(T, c,m) the coupon
bond price it is the solution to the equation:

c

m

mT∑

k=1

e−
k
m
·y + e−T ·y = P0(T, c,m) (1.6)
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Chapter 1. Preliminary Financial Notions

For the sake of completeness we give the definition of Net Present Value which will be useful in the
following chapters.
Suppose that we want to compute the value today of an investment project which generates cash-
flows (c1...cn) at dates (T1...Tn) and requires an initial capital, an investment K, today. We define
the Net Present Value as:

NPV = PV − Investment cost (1.7)

where PV is the present value of future cash-flows and can be computed similarly to the price of
a coupon bond:

PV =
n∑

i=1

cie
−Ti·R0(Ti) (1.8)

Therefore, in the end we have:

NPV =
n∑

i=1

cie
−Ti·R0(Ti) −K (1.9)

and the investment project is said to be profitable if NPV > 0.

1.2 Financial Derivatives

Derivatives will be the link between all the chapters of this thesis. They represent a widely used
class of securities implied as hedging instruments as well as investment instruments.
A derivative is an asset whose payoff is defined based on another asset called underlying, in most
of the cases, but not always, the underlying is a traded security: a stock, a market index, a foreign
currency and so on and so forth.
Derivatives are completely described starting from the following fundamental features:

• Maturity: the termination date of the derivative contract.

• Underlying: the asset from which the derivative gets its definition.

• Payoff: the cash-flow, typically delivered at the maturity, generated by the derivative and
expressed as a function of the value of the underlying.

• Price: the market value of the derivative at a certain time t.

We will denote by St the price of a traded asset, the underlying, at time t, for t g 0.
In this section we will only introduce Futures and Options which are most common derivatives in
the financial market.

1.2.1 Futures

Futures are standardized contract to buy or sell something at a predetermined price for delivery at
a specified time in the future. Futures are available in an Exchange-Traded market, accessible
to everybody, which differs from Over-the-Counter (OTC) market, which consists of bilateral
transactions between two entities (typically large banks, investment founds, corporations). The
asset transacted is usually a commodity or financial instrument. The predetermined price of the
contract is known as the forward price or delivery price. Upon signing the contract there is no
exchange of money, the specified time in the future when delivery and payment occur is known as

8



1.2. Financial Derivatives

the delivery date.
A Future contract with maturity T and delivery price K is a contract with the following payoff at
T :

Πfut.
T (K) = ST −K (1.10)

where ST in the value of the underlying at the maturity T . As one can see the interpretation is
that we enter into an agreement to buy the underlying at a future date T for the predetermined
price K.
We now define the Forward Price Ft(T ) at time t for one unit of underlying with delivery at T as

the value of K such that Πfut.
T (K) = 0. Under absence of arbitrage, which means a strategy which

generates money with no risk, it holds that:

Ft(T ) = Ste
(T−t)Rt(T−t) (1.11)

where Rt(T − t) is the zero rate prevailing in the market at time t for an investment length (T − t).
Under absence of arbitrage, it is easy to demonstrate that the price of a future contract can be
written as:

Πfut.
t (K) = e−(T−t)Rt(T−t)(Ft(T )−K) = St −Ke−(T−t)Rt(T−t) (1.12)

which is nothing else than the discounted value of the payoff. Note. The forward price is actually
defined as the price of Forward Contracts. Like futures, forward contracts are agreements to buy
the underlying at a future date for a predetermined price, but they are typically traded over-the-
counter.

1.2.2 Options

An option is a contract which gives to its owner, the holder, the right, but not the obligation, to
buy or sell a specific quantity of an underlying asset at a specified strike price K > 0 on or before
a specified date, depending on the style of the option. An option is completely specified by the
following features:

• Exercise date: the time at which you decide whether to exercise the right to buy or sell the
underlying.

• Payoff: the cash-flow at the exercise date.

• Strike price: a fixed quantity, predetermined in the contract of the option, which is part of
the option’s payoff.

• Option’s price: the market price of the option prior to exercise. It can never be negative
since the option gives a right and not an obligation.

While Futures are called linear derivatives, because their payoff is a linear function of the value of
the underlying, options are called non-linear derivatives.
Options can be divided into two big sub-groups:

• European options: the exercise date coincides with the maturity T , so the option’s payoff
is always paid only at the maturity.

• American options: the exercise date Ä can be freely chosen, as long as it is before the
maturity (Ä f T ). If the option is exercised at Ä than its payoff will be a function of the
underlying price at Ä . They are always more valuable than their European version, because
you can always choose the exercise date.

In this thesis we will deal only with European options.
The most widely used options are called (European) Call and Put options.

9



Chapter 1. Preliminary Financial Notions

Call Option A Call option with maturity T and strike price K gives the right to buy one unit
of the underlying at maturity T at a predetermined and fixed price K. Its payoff is given by:

ΠCall
T = (ST −K)+ =

{

ST −K if ST > K

0 otherwise
(1.13)

Put Option A Put option with maturity T and strike price K gives the right to sell one unit of
the underlying at maturity T at a predetermined and fixed price K. Its payoff is given by:

ΠPut
T = (K − ST )

+ =

{

K − ST if K > ST

0 otherwise
(1.14)

One of the principal objectives of quantitative finance is the pricing of options. In Chapter 3 we
will present a couple of models proposed to solve this problem, namely the multi-period binomial
model and the more important Black-Scholes-Merton model. Both these models are constructed
by assuming the absence of arbitrage principle.

Definition 1. (Arbitrage opportunity): An arbitrage opportunity is defined as a strategy with:

1. zero cost at the initial time;

2. no risk of losses at any time;

3. strictly positive probability of having strictly positive profits at some future time.

The no-arbitrage principle states the financial market does not admit arbitrage opportunity.
We end this section giving two useful lemmas that will be used later on: the Law of One Price
and the Put-Call Parity.

Lemma 1. (Law of One Price): Let X and Y be two random variables representing the values
at some maturity T of two portfolios and let us denote by ΠX

t and ΠY
t their prices at time t ∈ (0, T ).

Suppose that P(X = Y ) = 1. If the no-arbitrage principle holds, then:

ΠX
t = ΠY

t for all t ∈ [0, T ] (1.15)

Hence, if two portfolios yield the same payoff at maturity, then their market values should always
coincide.

Lemma 2. (Put-Call Parity): Let K > 0 and T > 0. If the no-arbitrage principle holds, then:

ΠCall
t (K)−ΠPut

t (K) = St −KPt(T ) for all t ∈ [0, T ] (1.16)

where St denotes the value of the underlying at time t and Pt(T ) = e−(T−t)Rt(T−t) is a discount
factor from time t to T .

The Put-Call parity relation is valid only for European options.

10



Chapter 2

Brownian Motion

References: [6] [3] [5] [12] [7] [11] [13] [15]

In this second chapter we will introduce the concept of Brownian motion. In particular, we will
deal with its different definitions, from a stochastic, physical, and financial point of view.

2.1 Probability Spaces

Definition 2. (Probability space) A probability space is a triplet (Ω, F, P), where:

• Ω is the set of all the possible states;

• F is a Ã-algebra on Ω;

• P is a probability measure on (Ω,F), i.e. a function P : F → [0, 1].

Let us give an interpretation fore these objects: an element É ∈ Ω represents a specific state of the
world; F contains all the relevant events for a certain event A ∈ F, P(A) measures the probability
that event A occurs.
Given a Borel sigma-algebra B(R) on R, a Random Variable X is a measurable function from
(Ω,F) to (R,B(R)), namely a mapping X: Ω → R such that for every set B ∈ B(R), we have
X−1(B) ∈ F. A random variable is therefore a function which maps the whole structure of the
probability space on R.

Definition 3. (σ-algebra) A Ã-algebra F on Ω is a family of subsets of Ω such that:

• Ω ∈ F;

• if A ∈ F, than Ac ∈ F;

• if (An)n∈N is a countable family of elements of F, than ∪n∈NAn ∈ F.

Basically, a Ã-algebra represents the ”information” we have (or we are interested in) on the random
experiment whose possible results are collected in Ω. If we can study the event A, then we can also
study the event Ac. If we can study each individual event An for some n ∈ N , then we can also
study the event that at least one of An occurs.

Definition 4. (Probability measure) On (Ω, F, P), a probability measure P is a function
P : F → [0, 1] such that P(Ω) = 1 and, if (An)n∈N is a family of disjoint events belonging to F,
than:

11



Chapter 2. Brownian Motion

P

(
⋃

n

An

)

=
∑

n

P(An) (2.1)

2.2 Stochastic Processes

Definition 5. Stochastic process Let (Ω, F, P) be a probability space. A Stochastic Process
X = (Xt)t∈[0,T ] is a family of random variables Xt: Ω → R, indexed by t ∈ [0, T ].

Let us give an interpretation:

• X = (Xt)t∈[0,T ] describes the random evolution of a phenomenon over time;

• Xt is the value of the process X at time t, for t ∈ [0, T ];

• for each É ∈ Ω, the map t → Xt(É) denotes the trajectory (or path) of X associated to a
specific state of the world É.

If [0, T ] ¢ N we will say that X is a discrete time process, otherwise we will say that it is a
continuous time process.
From now on we shall work in continuous time, so the time horizon is T (for T > 0), and the
possible time points are all the real numbers t ∈ [0, T ].

Definition 6. (Filtration) Let Ω be the set of the states of the world. A Filtration F = (Ft)t∈[0,T ]

is an increasing family of Ã-algebras on Ω, so that Fs ¦ Ft, for all 0 f s f t f T .

F represents the information flow of the market, as time passes by one collects more and more
information (from the market prices and other sources).

• For a random variable · and t ∈ [0, T ], the conditional expectation

E[·|Ft] (2.2)

represents the expectation of · given the information available at date t

• We say that · is independent of Ft whenever the information collected up to time t is useless
to forecast the value of ·. In this case:

E[·|Ft] = E[·] (2.3)

• If · is Ft-measurable then:

E[·|Ft] = · (2.4)

• For any time 0 f s f t f T , we have the tower property:

E[E[·|Ft]|Fs] = E[E[·|Fs]|Ft] = E[·|Fs] (2.5)

Definition 7. (Adaptability) A stochastic process (Xt)t∈[0,T ] is adapted to the filtration (Ft)t∈[0,T ]

if every Xt is Ft-measurable.

A stochastic process is adapted to the filtration if at each time the available information is as much
as the information obtained observing the process up to that time.

12



2.3. What is a Brownian Motion

Definition 8. (Martingale) On a probability space (Ω, F, P), endowed with a filtration F, an
adapted stochastic process X = (Xt)t∈[0,T ] is a Martingale if it is adapted with respect to the
filtration and:

E[Xt|Fs] = Xs for all 0 f s f t f T (2.6)

A martingale is a stochastic process that on average remains constant. Let us make an example
in order to understand it better: consider a man who is playing head or tail with a coin, let us
suppose that he will earn 1£ if head comes out, while he will lose 1£ otherwise. Let X0, X1, X2, ...
the total amount of money owned by the man respectively before the the first toss (X0), after the
first toss (X1) and so on and so forth.
The expectation value of Xn, after n tosses, will be X0, that is to say the total amount of money
initially owned by the man. But if we discover that after m tosses the man owns x£, then the
most reasonable amount of money he will own after n tosses (with n > m will be x. This is a
martingale.

Definition 9. (Supermartingale and Submartingale) Let (Xn)n≥0 be an adapted stochastic
process. We say that X is a:

• supermartingale if E[Xt|Fs] f Xs for all t g s.

• submartingale if E[Xt|Fs] g Xs for all t g s.

Definition 10. (Markov process) On a probability space (Ω, F, P), endowed with a filtration
F, an adapted stochastic process X = (Xt)t∈[0,T ] is a Markov Process if:

E[f(Xt)|Fs] = E[f(Xt)|Xs] for all 0 f s f t f T. (2.7)

A Markov process is a stochastic process in which the transition probability to a specific state
of the system depends only on the immediately preceding state, and not on how we get into this
preceding state. The future evolution of a Markov process depends only on the current value Xs

of the process and not on its past values (Xu with u < s).

2.3 What is a Brownian Motion

Definition 11. (Brownian motion) On a probability space (Ω, F, P), endowed with a filtration
F, a stochastic process W = (Wt)t∈[0,T ] starting from W0 = 0 is a Brownian Motion if:

• (Wt −Ws) is independent of Fs, for all 0 f s f t f T ;

• (Wt −Ws) ∼ N(0, t− s), which means that Wt −Ws has a Gaussian distribution with mean
0 and variance (t− s), for all 0 f s f t f T ;

• W has continuous trajectories.

A Brownian motion is also defined as Weirner process

Basic properties of the Brownian motion, for any 0 f s f t f T :

• E[Wt] = 0;

• V ar[Wt] = t and consequently V ar[Wt −Ws] = t− s;

• Cov[Ws,Wt] = s;

• If W is a Brownian motion, then W is a martingale;

13



Chapter 2. Brownian Motion

• If W is a Brownian motion, then W is a Markov process;

• The trajectories t ∈ [0, T ] → Wt of a Brownian motion are continuous functions of time,
but not nowhere differentiable. This implies that dWt

dt
is not well-defined (i.e. the Brownian

motion is not differentiable).

Figure 2.1: Trajectories of Brownian motion. [6]

2.4 Stochastic Differential Equation

We want to model asset prices as continuous time stochastic processes, and the most complete and
elegant theory is obtained if we use diffusion processes and stochastic differential equations as our
building blocks.
Let us take a stochastic process (Xt)t∈[0,T ] with a starting position X0 = x ∈ R which is assumed
to be known. This process is called a diffusion if its evolution over a small amount of time ∆t is
driven by the following stochastic difference equation:

Xt+∆ −Xt = ³(t,Xt)∆t+ ´(t,Xt)
√
∆tZ (2.8)

where:

• ³(t,Xt) is a locally deterministic velocity, called drift term.

• ´(t,Xt) is a locally deterministic diffusion term.

•
√
∆tZ is a Gaussian disturbance term. It is a normally distributed variable proportional to

N(0,∆t) (remember that Z ∼ N(0, 1)).

Exploiting the property of the Brownian motion according to which (Wt+∆t −Wt) ∼ N(0,∆t), we
can rewrite the difference equation as:

Xt+∆t −Xt = ³(t,Xt)∆ + ´(t,Xt)(Wt+∆t −Wt) (2.9)
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2.4. Stochastic Differential Equation

What happens if we consider shorter and shorter time increments ∆t? One could be tempted to
divide by ∆t and let ∆t → 0 obtaining:

dXt

dt
= ³(t,Xt) + ´(t,Xt)

dWt

dt
(2.10)

But as we already said the derivative dWt

dt
does not exist.

A possible way to solve the problem is rewriting the stochastic difference equation in terms of sums:

Xtn = x+

n−1∑

k=0

³(k,Xk)∆t+

n−1∑

k=0

´(k,Xk)∆Wtk+1
(2.11)

where tn := n∆, for n = 0, 1, ..., T
∆ .

Now we can let ∆t → 0 and replace sums with integrals:

Xt = x+

∫ t

0
³(u,Xu) du+

∫ t

0
´(u,Xu) dWu (2.12)

However we still have a problem: the integral
∫ t

0 ´(u,Xu) dWu can not be defined in a standard
way, because the trajectories t → Wt have infinite variation. In order to give a mathematical sense
to the previous equation we have to redefine

∫ t

0 ´(u,Xu) dWu as a Stochastic Integral (Itô’s
Integral).

Definition 12. (Itô’s Integral) An Itô’s Integral is an integral of the form:
∫ t

0
´u dWu for t ∈ [0, T ] (2.13)

where:

• The integrator W = (Wt)t∈[0,T ] is a Brownian motion.

• The integrand (´t)t∈[0,T ] is a stochastic process such that E[
∫ T

0 ´2
u du] < ∞.

Let us see now some properties of the stochastic integral:

1. The stochastic integral (
∫ t

0 ´u dWu)t∈[0,T ] is a martingale

2. The following property, named Itô’s isometry, holds:

E





(
∫ t

0
´u dWu

)2


 = E

[
∫ t

0
´2
u du

]

for each t ∈ [0, T ] (2.14)

3. If ´ is deterministic, then
∫ t

0 ´u dWu has a normal distribution, namely:

∫ t

0
´u dWu ∼ N

(

0,

∫ t

0
´2
u du

)

for each t ∈ [0, T ] (2.15)

Finally we are able to give a proper sense to the equation Xt = x+
∫ t

0 ³(u,Xu) du+
∫ t

0 ´(u,Xu) dWu,
where we have understood that the second integral has to be interpreted as a Itô’s Integral.
The latter is often written in a less cumbersome notation as:

dXt = ³(t,Xt)dt+ ´(t,Xt)dWt with X0 = x (2.16)

called Stochastic Differential Equation (SDE).
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Chapter 2. Brownian Motion

From an intuitive point of view, the SDE is a much more natural object to consider than the cor-
responding integral expression, this because it gives us the infinitesimal dynamics of the stochastic
process Xt.
Suppose now to have a stochastic process X = (Xt)t∈[0,T ] that is a solution of the SDE. Let
f : [0, T ] × R → R be a function of time and space; consider the the transformation f(t,Xt), we
could ask ourselves which is the SDE satisfied by f(t,Xt).
The answer is provided by the following definition.

Definition 13. (Itô’s Formula) Let f : [0, T ] × R → R be a function of class C1,2 and X =
(Xt)t∈[0,T ] a stochastic process solving the stochastic differential equation (2.16). Then (f(t,Xt))t∈[0,T ]

satisfies the following SDE:

df(t,Xt) =

(

ft(t,Xt) + fx(t,Xt)³(t,Xt) +
1

2
fxx(t,Xt)´

2(t,Xt)

)

dt+ fx(t,Xt)´(t,Xt)dWt (2.17)

where:

ft(t,Xt) =
∂f(t,Xt)

∂t
fx(t,Xt) =

∂f(t,Xt)

∂Xt
fxx(t,Xt) =

∂2f(t,Xt)

∂X2
t

(2.18)

The fact that f ∈ C1,2 means that the partial derivatives are all well-defined and continuous
functions.
The initial value of the function can be written as: f(0, X0) = f(0, x).

2.4.1 Geometric Brownian Motion

We conclude this section introducing the Geometric Brownian Motion.
Geometric Brownian Motion is one of the fundamental building blocks for the modeling of asset
prices. It can be viewed as the solution X to a linear ordinary differential equation with a stochastic
term driven by a volatility coefficient:

dXt = Xtµdt+XtÃdWt (2.19)

where:

• µ is the drift coefficient;

• Ã is the volatility coefficient.

Suppose the stochastic process X = (Xt)t∈[0,T ] to be a positive solution to (2.20). In order to
obtain the explicit form of X we can apply Itô’s formula to the function f = logXt. By integrating
and taking the exponential, we get:

Xt = xe(µ−
σ2

2
)t+σWt for all t ∈ (0, T ) (2.20)

The Geometric Brownian Motion will be the starting point for the Black-Scholes-Merton model
which will be presented in Chapter 3.

2.5 Brownian Motion in Physics

Part of probability theory is used to describing the macroscopic picture emerging in random systems
defined as the result of microscopic random effects. Brownian motion is the macroscopic picture
emerging from a particle moving randomly in d-dimensional space. On the microscopic level, at
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2.5. Brownian Motion in Physics

any time step, the particle receives a random displacement, caused for example by other particles
hitting it, so that, if its position at time zero is S0, its position at time T is given as:

St = S0 +
t∑

i=1

Xi (2.21)

where the displacements X1, X2, X3, ... are assumed to be independent, identically distributed ran-
dom variables with values in R3. The process {St : t g 0} is a random walk, and each displacement
represents a well defined fraction of the path.
It can be demonstrated that, if they exist, only the mean and covariance of the displacements
define the macroscopic picture: all random walks whose displacements have the same mean and
covariance matrix give rise to same macroscopic process.
This effect is called universality, and the macroscopic process is often called a universal object.

2.5.1 Einstein’s Theory

Einstein in 1905 introduced the first mathematical treatment describing the movement of Brownian
particles. Rather than focusing on the trajectory of a single particle, Einstein introduced a proba-
bilistic description valid for an ensemble of Brownian particles. The chaotic motion of a Brownian
particle is the result of its collisions with the molecules of the surrounding fluid (remember that
the Brownian particles are much bigger and heavier than the colliding molecules of the fluid). The
superposition of these interactions produces an observable effect. The agitated motion of Brownian
particle is then the result of random and rapid collisions due to density fluctuations in the fluid: it
is a macroscopic manifestation of microscopic processes.
Firstly, Einstein introduced the concept of a coarse-grained description defined by a time Ä such that
different parts of the path separated by a time Ä can be considered independent. Subsequently, he
introduced a probability density function f(∆) for the three-dimensional distance∆ = (∆x,∆y,∆z)
travelled by the Brownian particle in a fixed time interval Ä .
The only assumption he made about f(∆) came from the fact that the collisions of the fluid
molecules and the Brownian particle occur with the same probability in any direction. The ab-
sence of preferred directions translates to a symmetry condition for f(∆):

f(∆) = f(−∆), ∀∆ ∈ R3 (2.22)

Finally, he considered an ensemble of N Brownian particles in a large enough system. Also, he
focused on large spatial scales, much larger than the size of a Brownian particle, as a consequence
we can define the particles density n(x, t) such that n(x, t)dx is the number of particles in the
interval spatial interval (x,x+ dx) at time t.
From the assumption that the parts of the trajectories separated by Ä are statistically independent
and the conservation of particle number, it follows that the number of particles at location x at
time t + Ä will be given by the number of particles at location x −∆ at time t multiplied by the
probability that the particle jumps from x−∆ to x in a time step Ä , which is f(∆), and integrated
over all the possible values of ∆:

n(x, t+ Ä) =

∫

R3

n(x−∆, t)f(∆)d∆ (2.23)

This represents the evolution equation for the number density n(x, t). It is a continuity equation
expressing particle conservation: Brownian particles can neither be created, nor can they disappear
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Chapter 2. Brownian Motion

as a result of the collisions with the fluid molecules.
By Taylor expanding the above expression, namely:

n(x, t+ Ä) ∼ n(x, t) + Ä
∂n(x, t)

∂t
(2.24)

n(x−∆, t) ∼ n(x, t)−∆ ·∇n(x, t) +
∆2

2
∇

2n(x, t) (2.25)

and making use of the normalization of the pdf f(∆) and the symmetry relation f(∆) = f(−∆),
one can obtain the diffusion equation for the particles density:

∂n(x, t)

∂t
= D∇

2n(x, t) (2.26)

where D is called Diffusion Coefficient and it is given in terms of the pdf as:

D =
1

2Ä

∫

R3

∆2f(∆)d∆ (2.27)

To solve this partial differential equation, we need an initial condition. If we suppose that initially
all Brownian particles are located at the origin, we thus have n(x, 0) = N¶(x). Exploiting the
Fourier transform one can obtain:

n(x, t) =
N

(4ÃDt)
3
2

e−
x
2

4Dt (2.28)

which is a Gaussian function of the position x.
From (2.28) Einstein was able to calculate the average value over many trajectories

〈
x2(t)

〉
of the

squared displacement of a (single) Brownian particle at time t:

〈

x2(t)
〉

=
1

(4ÃDt)
3
2

∫

|x|2e− x
2

4Dtdx3 (2.29)

Doing all the calculations, the latter gives:
〈

x2(t)
〉

= 6Dt (2.30)

This prediction was successfully confirmed by experiments and contributed decisively to the accep-
tance of the atomic/molecular theory of matter.
If we consider a one-dimensional system with only one particle we will have:

n(x, t) =
1√
4ÃDt

e−
x2

4Dt (2.31)

and 〈

x2(t)
〉

= 2Dt (2.32)

2.5.2 Langevin’s Theory

Einstein’s approach was successful and incomplete at the same time, it couldn’t yield, for instance,
an explicit expression for the diffusion coefficient in terms of microscopic quantities.
Langevin initiated a different approach which, in some ways, can be considered complementary to
the previous one. In his approach, Langevin focused on the trajectory of a single Brownian particle
and wrote down Newton’s first law of dynamics.
The trajectory of the Brownian particle is highly erratic and therefore its description would demand
a particular kind of force. He considered Newton’s first law with two types of forces acting on the
Brownian particle:
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2.5. Brownian Motion in Physics

• a friction force Fd;

• a fluctuating force ζ(t)

Since the particle under consideration is much larger than the particles of the surrounding fluid,
the collective effect of the interaction between the Brownian particle and the fluid’s particles may
be considered as a hydrodynamical frictional force. The friction force exerted by a fluid on a small
sphere immersed in it can be determined from Stokes’ law, which states that the drag force acting
on a spherical particle of radius a is given by:

Fd = M
dv

dt
= −µv, µ = 6Ã¸a (2.33)

where M is the mass of the Brownian particle and ¸ is the fluid viscosity coefficient. Furthermore,
Langevin made two more assumptions on the fluctuating force ζ(t):

• it has mean equal to 0, namely:
〈
ζ(t)

〉
= 0 (2.34)

meaning that collisions do not push the Brownian particle in any preferred direction;

• it is uncorrelated to the actual position of the Brownian particle, namely:

〈
x · ζ(t)

〉
= ïxð ·

〈
ζ(t)

〉
= 0 (2.35)

meaning that the action of the molecules of fluid on the Brownian particle is the same no
matter the location of the Brownian particle.

Said so, the equation of motion of the Brownian particle becomes:

M
dv

dt
= −6Ã¸av + ζ (2.36)

Multiplying both sides by x, and knowing that v = dx
dt
, with some algebra one gets:

m

2

d2x2

dt2
−m

(
dx

dt

)2

= −3Ã¸a
dx2

dt
+ x · ζ (2.37)

Taking the averages, and exploiting (2.34) (2.35), one gets:

m

2

d2
〈
x2
〉

dt2
= m

〈

v2
〉

− 3Ã¸a
d
〈
x2
〉

dt
(2.38)

which is an equation for the average square position of the Brownian particle.
Note. We neglected the time dependence in order to a have a sloppier notation.
Finally, Langevin assumed that the system was in a regime in which thermal equilibrium between
the Brownian particle and the surrounding fluid has been reached. In particular, this implies that,
according to the equipartition theorem, the average kinetic energy of the Brownian particle is:

〈

mv2

2

〉

=
3

2
kBT (2.39)

where kB is the Boltzmann’s constant and T is the fluid temperature.
Solving the previous equation one can find that the mean square displacement is given by:

〈

x2
〉

=
kBT

Ã¸a
t (2.40)
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Chapter 2. Brownian Motion

This is nothing but Einstein’s diffusion law (2.30) and now we have an explicit expression for the
diffusion coefficient in terms of other macroscopic variables:

D =
kBT

6Ã¸a
(2.41)

This last equation is known as Stokes-Einstein relation.
Langevin’s equation is an example of stochastic differential equation, and Langevin’s random force
ζ is an illustration of a stochastic process. The solutions x̂ can be seen as the collection of all the
possible trajectories of the Brownian particle.
The random force ζ gives the effect of background noise due to the fluid on the Brownian particle.
If we would neglect this force, the Langevin equation would become:

M
dv

dt
= −µv (2.42)

which has the familiar solution:

v(t) = e−
γ
M

tv(0) (2.43)

According to this, the velocity of the Brownian particle is predicted to decay to zero at long times.
This cannot be true since in equilibrium we must have (in one dimension):

〈

v2
〉

=
kBT

M
(2.44)

which is different from zero. The random force is therefore necessary to obtain the correct equilib-
rium. One can obtain an explicit formal solution of (2.34) as:

v(t) = e−
γ
M

tv(0) +
1

M

∫ t

0
e−

γ
M

(t−s)ζ(s)ds (2.45)

Now we rewrite (2.36) as:

dv = − µ

M
v(t)dt+

1

M
dU(t) (2.46)

where

dU(t) = ζ(t)dt −→ U(t) = U(0) +

∫ t

0
ζ(t)dt (2.47)

Since a Brownian particle in a liquid solution undergoes many random collisions per second with the
particles of the environment, we can assume that these numerous impacts destroy all correlations
between what happens during the time interval [ti, ti−1] and what happened before ti−1. This
implies that U(t) is a Markov process. From this discussion we also argue that the increments
are independent, stationary and identically distributed with zero mean, therefore, it has all the
requirements for being a Wiener process:

U(t) = W (t) (2.48)

then, (2.45) becomes:

v(t) = e−
γ
M

tv(0) +
1

M

∫ t

0
e−

γ
M

(t−s)dW (s) (2.49)
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2.5.3 Random Walk

The most well-known example of a stochastic process is that of the random walk. Moreover,
the continuum limit, on large scale, of a 3-dimensional random walk offers a good description of
Brownian motion. It also represents a simple model to understand financial markets.
For simplicity we will focus only on the one-dimensional random walk. The probabilistic experiment
can be represented as a repetition of coin tosses. Let us consider that the tossing takes place at given
discrete times {0, Ä, 2Ä, ...}, to the outcome of this set of probabilistic experiments, we associate a
one-dimensional function x(t) which starts at x(0) = 0 and that moves to the right (left) at time
kÄ an amount +a(−a) if the k-th result of the tossed coin was +1(−1), namely head(tail).
The random walk constitutes an example of a Markov process, as the probability of having a
particular value of the position at time (k+ 1)Ä depends only on the particle’s location at time kÄ
and not on the way it got to this location.
Starting at x = 0 at time t = 0, the location of the random walker after tossing the coin n times is
given by the number of steps n+ of increasing x (”heads”) minus the number of steps of decreasing
x, n− = n− n+ (”tails”), namely:

x(t) = x(nÄ) = (n+ − n−)a = (2n+ − n)a (2.50)

The probability of having n+ ”heads” after n throws is given by a binomial distribution:

P(n+) =

(
n

n+

)

pn+(1− p)n−n+ (2.51)

where p is the probability of having a ”head”, namely p = 1
2 .

Using the binomial distribution properties we have that:

• E[x(nÄ)] = 0

• V ar[x(nÄ)] = E[x2(nÄ)]− (E(x(nÄ)))2 = E[(x(nÄ))2] = na2

It can be easily demonstrated that in the limit n >> 1 the binomial distribution can be approxi-
mated by a Gaussian distribution, consequently, if we take the continuum limit n → ∞ the random
walk process converges to the so-called Brownian Motion W (t), characterized by a Gaussian
probability distribution function with mean zero and variance 2Dt, namely

f(x, t) =
1√
4ÃDt

e−
x2

4Dt (2.52)

One can appreciate that the variance is:

V ar[x(t)] = 2Dt = E[x2(nÄ)] (2.53)

which is exactly the expression (2.32), solution of the diffusion equation in Einstein’s theory of
Brownian motion in one dimension.

2.6 Brownian Motion in Finance

Brownian motion, in particular Geometric Brownian Motion is a mathematical approach for stock
price modelling. It is a stochastic process, which assumes that returns, profits and losses on the
stock are independent and normally distributed.
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2.6.1 From Physics to Finance

Financial market dynamics is rigorously studied via the generalized Langevin equation.
We recall that the Brownian motion was developed in statistical mechanics to model the irregular,
random motion of a particle (usually called Brownian particle) suspended in fluid under the impact
of collisions with the molecules of the fluid.
The situation in economics and finance is analogous: the price of an asset depends on many factors
and for this reason it continuously changes. The analogy between the buffeting effect of molecules
on a particle in the statistical mechanics context on the one hand, and that of this continuous flood
of new price-sensitive information on the other, is highly suggestive. Despite these similarities,
Brownian motion itself is inadequate for modelling prices, this because:

1. it attains negative levels;

2. one should think in terms of return, rather than prices themselves.

One can allow for both of these by using Geometric Brownian Motion, rather than the ordinary
Brownian motion. Recalling some definitions, introducing the standard Brownian motion as W (t),
we define the Brownian motion with drift as:

dX(t) = ³dt+ ´dW (t) (2.54)

and the GBM as:

dX(t) = µX(t)dt+ ÃX(t)dW (t) or
dX(t)

X(t)
= µdt+ ÃdW (t) (2.55)

Let us see how to interpret it: X(t) is the stock price at time t, dX(t) = X(t + dt) −X(t) is the

change in X(t) over a small time interval dt, dX(t)
X(t) is the gain per unit of value, namely the return.

The latter is a sum of two components:

• a deterministic component µdt, equivalent to investing risk-free money in a bank account at
interest-rate µ > 0, called the underlying return rate for the stock;

• a random noise component ÃdW (t), with volatility parameter Ã > 0 and driving Brown-
ian motion W (t), which models the market uncertainty. Note that dW (t) is a Brownian
increment, so is normally distributed. Therefore returns are normally distributed.

2.6.2 Stock Price Behaviour

In financial markets the dynamics of stock prices are reflected by uncertain movements of their
value over time. One possible reason for the random behavior of the asset price is the efficient
market hypothesis which states two things:

1. The past history of a stock price is fully reflected in present prices.

2. The markets respond immediately to any new information about the stock.

These two assumptions imply that the stock price, that is a stochastic process, is a Markov process.
This means that the expected future value of a stock depends only on its current price. Predictions
remain uncertain and may be only expressed in term of probability distribution.
If one looks to the price behaviour of stocks, it will be easy to see that it shows the same behaviour
as the Brownian motion. Consequently, some properties of the stock price process can be derived
from those of the Brownian motion process.
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2.6. Brownian Motion in Finance

The Random Walk is the first step in understanding the Brownian motion. A random walk
is a formalization of the intuitive idea of taking successive casual steps. The simplest random walk
is a path constructed such that for an integer n > 0 we define the random walk process as Wn(t),
with t ∈ [0, n]. The random walk presents the following features:

• The initial value of the process is Wn(0) = 0

• The layer spacing between two successive jumps is equal to 1
n

• The “up” and “down” jumps are equal and of size 1√
n
, with equal probability.

Basically, if we consider a sequence of independent binomial variable Xi taking values +1 or −1
with equal probability 1

2 , then the value of the random walk at the i-th step is defined as:

Wn

(
i

n

)

= Wn

(
i− 1

n

)

+
Xi√
n

for all i ∈ [0, n] (2.56)

In the following figure we show the first two steps of a random walk Wn(t).

Figure 2.2: First two steps of the random walk. [5]

One can easily calculate the expectation value and the variance of the random walk at each step,
for example for the first step we will have:

E

[

Wn

(
1

n

)]

= 0.5 · 1√
n
+ 0.5 · −1√

n
= 0 (2.57)

V ar

[

Wn

(
1

n

)]

= E

[

W 2
n

(
1

n

)]

−



E

[

Wn

(
1

n

)]




2

= . . . =
1

n
(2.58)

The same can be done for the second step, namely:

E

[

Wn

(
2

n

)]

= 0.25 · 2√
n
+ 0.5 · 0 + 0.25 · −2√

n
= 0 (2.59)

V ar

[

Wn

(
2

n

)]

= . . . =
2

n
(2.60)

But what does the random walk look like if n gets larger and larger, or equivalently, the time
intervals become smaller and smaller?
It can be proved that, according to central limit theorem, for n large the random walk process Wi(t)
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Chapter 2. Brownian Motion

tends to a normal distribution with mean zero and variance t, namely N(0, t). The mathematical
model used to describe random movements it this scaling limit is the so called Brownian motion.
Hence, the random walk tends to a Brownian motion when the number of steps in the random path
is very large, or equivalently, the time intervals go to zero.

The generalized random walk, also called Brownian motion with drift, is a stochastic process X(t)
such that:

X(t) = ³t+ ´W (t) (2.61)

where t represents the time, and W (t) represents a random walk in the limit in which the number
of steps tend to infinity. One can easily appreciate that:

E[X(t)] = E[³t] + E[´W (t)] = ³t+ ´E[W (t)] = ³t (2.62)

V ar[X(t)] = E[X2(t)]− (E[X(t)])2 = . . . = t (2.63)

Figure 2.3: Generalized Brownian motion process with positive drift. [5]

Figure 2.4: S&P 500 stock price between 2018 and 2021. [5]

The figure 2.3 shows the generalized Brownian process given by (2.59) with its components. It
consists of a random walk process with a drift, and the result is an increasing process if the drift
term is positive or a decreasing one if it is negative.
The figure 2.4 shows the S&P 500 stock price trend from 2018 to 2021. S&P 500 is an index
referring to a basket of 500 stock titles representing the 80% of the whole market capitalization.
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2.6. Brownian Motion in Finance

If we compare the two figures above, we can easily conclude that the two processes show the same
behavior in time. This statement is the first step towards the mathematical modelling of stock
prices.

2.6.3 Stock Price Modeling

In the previous subsection we presented similarities between the Brownian motion and the stock
price process. However there is a misgiving about Brownian motion as a global model for stock
behavior. This because of the property of the Brownian motion which states that the process is
normally distributed with mean equal zero, meaning that stock prices could have negative values,
and this is in general not true. One way to solve this problem is to model the stock price as a sum
of a deterministic function of time and a Brownian motion.
In the real world of financial markets, investors and financial analysts are generally more interested
in the profit or loss of the stock over a period of time i.e. the increasing or decreasing of the price,
than in the price itself, this will be our starting point.
Note. In this subsection we will change the notation. We will write X(t) as Xt in order to highlight
the fact that X is a stochastic process.

Like a Brownian particle being hit in its Brownian motion, stock prices deviate from a steady
state as a result of being jolted by trades i.e. ask and bid in financial markets. If we consider the
stock price as a stochastic process St at time t, then the return or relative change in its price during
the next period of time dt can be decomposed into:

• A predictable and deterministic part that is the expected return from the stock during a
period of time dt. This term is the equal to:

µStdt (2.64)

where µ is called drift term.

• A stochastic and unexpected part, which reflects the random changes in stock price during
the time interval dt, as response to external effects such as unexpected news on the stock. A
reasonable assumption is to take this contribution as proportional to the stock, namely:

ÃStdWt (2.65)

where Ã is called volatility and Wt is the random walk.

This definition of the daily return leads to the stochastic differential equation for the stock price,
which is nothing else than a Geometric Brownian Motion:

dSt = µStdt+ ÃStdWt (2.66)

or
dSt

St
= µdt+ ÃdWt (2.67)

which highlights the instantaneous rate of return on St.
The solution for the latter can be found by applying Itô’s formula, let us remind it:
Let f : [0, T ] × R → R be a function of class C1,2 and S = (St) a stochastic process solving the
stochastic differential equation (2.64). Then f(t, St) satisfies the following SDE:

df(t, St) =

(

ft(t, St) + fx(t, St)µSt +
1

2
fxx(t, St)(ÃSt)

2

)

dt+ fx(t, St)ÃStdWt (2.68)
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where:

ft(t, St) =
∂f(t, St)

∂t
fx(t, St) =

∂f(t,XSt)

∂St
fxx(t, St) =

∂2f(t, St)

∂S2
t

(2.69)

If we now consider the function f(t, St) = ln(St), then:

∂f(t, St)

∂t
= 0

∂f(t,XSt)

∂St
=

1

St

∂2f(t, St)

∂S2
t

= − 1

S2
t

(2.70)

By inserting them into Itô’s formula, one can get the solution for the GBM:

St = S0e

(

µ−σ2

2

)

t+σWt

(2.71)

which can be adapted to any period of time.
It is easy to demonstrate that:

• E[St] = S0e
µt

• V ar[St] = E[S2
t ]− (E[St])

2

We could appreciate that in the expression of the stock price there are two fundamental parameters.
These parameters are supposed to be known. If for some reason there is no available information
about the drift and the volatility of the stock, they need to be estimated form historical data.
The volatility Ã is a constant characteristic of a stock, usually expressed as an annual percentage. It
gives an idea about the stability of stock price. Relatively high volatility means that the stock price
varies continuously within relatively large interval. The value most usual method of measuring the
stock volatility is the standard deviation of the price returns.
The rate of return µ is the gain (or loss) compared to the cost of an initial investment, typically
expressed in the form of a percentage. When it is positive, it is considered a gain, and when the it
is negative, it reflects a loss on the investment. This term will have a central role in the discussion
of Chapter 3.
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Chapter 3

The Black-Scholes-Merton Model

References: [9] [1] [6]

In the following section we will present the Black-Scholes-Merton model, which is a stochastic model
for the dynamics of a financial market containing derivative investment instruments, using various
assumptions.
The starting point will be to solve the so called hedging problem: Does it exist a self-financing
dynamic portfolio that can replicate the payoff of a European derivative? Once solved it, we will
be able to obtain the Black–Scholes partial differential equation (Black-Scholes PDE). Through
a particular solution of the latter, we will deduce the Black–Scholes pricing formula, which
will give us a theoretical estimate of the price of European-style options and will show us that the
options have a unique price.

3.1 From Binomial Model to Black-Scholes-Merton Model

In this section we will discuss the multi-period binomial model, an easy discrete time pricing model
which will lead us to the more complicated continuous time pricing model known as Black-Scholes-
Merton model.
The model is assumed to have a discrete time structure of N periods. t = 0 represents the current
time when we compute prices and construct portfolios, t = N represents the end of the investment
horizon, when we receive payoffs, called maturity.
In the Binomial model the market consists of a risky asset (a stock), and a risk-free asset (a bond):

• The Risk-free asset has value Bt, for t ∈ (0, 1, ..., N), with:

Bt = (1 + rf )
t (3.1)

where rf is the risk-free rate over the period [t− 1, t], and it is assumed to be independent on
time, than it is the same for all time intervals. The starting point is assumed to be B0 = 1.

• The Risky asset has value St, for t ∈ (0, 1, ..., N), with:

St = s
t∏

i=1

Zi (3.2)
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Chapter 3. The Black-Scholes-Merton Model

where s is the price of the stock at time t = 0, and Z1, ..., ZN is a family of identically
distributed random variables such that:

Zi =

{

u with probability pu

d with probability pd = 1− pu
(3.3)

Zi represents the random return in the period [i− 1, i] for i = 1, ..., N :

1. Z = u represents a move up.

2. Z = d represents a move down.

Generally, we will have a certain number ”n” of move up, and ”N − n” move down.

Let us now introduce a dynamic portfolio.

Definition 14. (Dynamic portfolio) A Dynamic portfolio is a couple ¹ = (¹B, ¹S) such that:

• ¹0 = (¹B0 , ¹
S
0 ) is the portfolio initially created at time t = 0 which has value:

V0(¹) = ¹B0 B0 + ¹S0 s (3.4)

• ¹t = (¹Bt , ¹
S
t ) is a stochastic process, which represents the portfolio rebalanced at time t,

function of the random returns Z1, ..., Zt, whose value is:

Vt(¹) = ¹Bt Bt + ¹St St (3.5)

Suppose that a dynamic portfolio is created at t = 0, its initial value, equal to its cost, is:

V0(¹) = ¹B0 B0 + ¹S0 S0 (3.6)

At time t = 1 the portfolio yields a value equal to:

V1(¹) = ¹B0 B1 + ¹S0 S1 (3.7)

At time t = 1 we are able to rebalance our portfolio depending on the realization of Z1. The new
portfolio requires a capital equal to:

V1+(¹) = ¹B1 B1 + ¹S1 S1 (3.8)

and it will lead, at t = 2, to a value:

V2(¹) = ¹B1 B2 + ¹S1 S2 (3.9)

Definition 15. (Self-financing portfolio) A portfolio is said self-financing if V1(¹) = V1+(¹).
This means that the value of the previous portfolio (created at t = 0) is equal to the cost of setting
up the new rebalanced portfolio at time t = 1.
At generic time t, the self-financing condition can be written as:

¹Bt−1Bt + ¹St−1St = ¹Bt Bt + ¹St St (3.10)

Definition 16. (Arbitrage portfolio) A dynamic self-financing portfolio ¹ is said to be an ar-
bitrage portfolio if:
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3.1. From Binomial Model to Black-Scholes-Merton Model

• V0(¹) = 0.

• P(VN (¹) g 0) = 1.

• P(VN (¹) > 0) > 0.

No-arbitrage holds if arbitrage portfolios do not exist.
It is straightforward to demonstrate that in the multi-period binomial model, the no-arbitrage
condition holds if and only if:

d < 1 + rf < u (3.11)

Let us now consider a derivative with a risky asset as the underlying, the payoff of the derivative
can be represented as a function of the identically distributed random variables g(Z1, ..., ZN ), where
g : [u, d]N → R.
If the market is complete, like in the binomial case, it is always possible to find a dynamic self-
financial portfolio such that, at time t = N , its value replicates the payoff of the derivative, namely:

VN (¹) = g(Z1, ..., ZN ) (3.12)

Our main goal it to find a price for this derivative at time t = 0.
By the Law of One Price and the No-Arbitrage condition one can easily conclude that its
price Π0(g) at t = 0 is:

Π0(g) = V0(¹) (3.13)

Let us take as an example the single period binomial model, given a derivative with payoff g(Z) we
want to determine a self-financing portfolio ¹ = (¹B, ¹S) such that V1(¹) = g(Z), this is equivalent
to solve the following system: {

¹B(1 + rf ) + ¹Ssu = g(u)

¹B(1 + rf ) + ¹Ssd = g(d)
(3.14)

which has the following solution:

¹B =
1

1 + rf

ug(d)− dg(u)

u− d
¹S =

1

s

g(u)− g(d)

u− d
(3.15)

Resuming what we have seen, holding a portfolio ¹ = (¹B, ¹S) =
(

1
1+rf

ug(d)−dg(u)
u−d

, 1
s
g(u)−g(d)

u−d

)

leads

to the same payoff g(Z) of the derivative at t = 1. By now we do not know the price Π0(g) of the
derivative at time t = 0, but we know the value V0(¹) of the hedging portfolio at time t = 0. Under
no-arbitrage and by the law of one price we must have that:

Π0(g) = V0(¹) =
1

1 + rf

ug(d)− dg(u)

u− d
+

1

s

g(u)− g(d)

u− d
· s (3.16)

With some basic algebra one can rewrite it as:

Π0(g) =
1

1 + rf








(1 + rf )− d

u− d
︸ ︷︷ ︸

qu

·g(u) + u− (1 + rf )

u− d
︸ ︷︷ ︸

qd

·g(d)








(3.17)

Let us now focus on qu and qd.
Under no-arbitrage condition we know that d < (1 + rf ) < u, so qu, qd > 0. Furthermore it is easy
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to see that qu + qd = 1.
We could interpret qu and qd as new probabilities for {Z = u} and {Z = d} under a new probability
measure Q called Risk-neutral probability.
This new probability measure Q, is different from the Statistical probability P = {pu, pd} defined
at the beginning. Q is said to be a risk-neutral measure, while P is said to be a physical, real-world,
measure.
Where does the name Risk-neutral come from?
Once one defines the risk-neutral probabilities qu and qd, the previous formula becomes:

Π0(g) =
1

1 + rf
[qu · g(u) + qd · g(d)] (3.18)

which is nothing else than an expectation under the new probability measure Q:

Π0(g) =
1

1 + rf
EQ[g(Z)] (3.19)

The name risk-neutral comes exactly form this fact: under the assumption of this new
probability measure Q the price of the derivative can be seen as a discounted expected
value of the payoff, which is independent of investors’ attitude towards risk.
This feature will be resumed later on, in the Black-Scholes-Merton model price valuation.

Going back to the general case of a multi-period binomial model, given a derivative with pay-
off g(Z1, ..., ZN , its arbitrage-free risk-neutral price is:

Π0(g) =
1

(1 + rf )N
EQ[g(Z1, ..., ZN )] (3.20)

We can consider two types of payoff function now:

• A path-dependent payoff which depends on the precise succession of ”up” and ”down”
moves.

• A path-independent payoff which only depends on the total number of ”up” and ”down”
moves, and not on their distribution.

Under the risk-neutral probability measure Q, the distribution of the total number of ”up” and
”down” moves, without taking into account their succession, is given by the binomial distribu-
tion.
The probability of having n ”up” and (N − n) ”down” can be written as:

Q({n ”up” and (N − n) ”down”} =
N !

n!(N − n)!
qnuq

N−n
d (3.21)

Consequently, giving a path-independent derivative with payoff g(Z1, ..., ZN ) = g(s
∏N

i=1 Zi), its
arbitrage-free risk-neutral valuation price Π0(g) is given by:

Π0(g) =
1

(1 + rf )N
EQ[g(s

N∏

i=1

Zi)] (3.22)

=
1

(1 + rf )N
·

N∑

n=0

g(s · un · dN−n)
N !

n!(N − n)!
qnuq

N−n
d (3.23)

where:

30



3.2. The Model

•
∑N

n=0 indicates that we are summing over all possible payoff scenarios that depend on the
number of ”up” and ”down”.

•
N !

n!(N−n)! is the binomial coefficient, usually written as
(
N
n

)
. It indicates the number of paths

that leads to the same payoff.

• qnuq
N−n
d indicates the risk neutral probability of having n ”up” moves and N − n ”down”

moves.

• g(s · un · dN−n) indicates the payoff associated to each path.

As we have seen in this section, the binomial model is a discrete time model, but what happens if
we consider a continuous time evaluation? The Black-Scholes-Merton model represents a suitable
answer to this question.

3.2 The Model

The Black–Scholes model is a continuous time model that assumes the financial market to consist
of at least one risky asset, usually called the stock, and one risk-free asset, usually called the bank
account.

• Bank Account: it is a risk-free asset with a continuously compounded risk-free rate r > 0.
Its value comes from the solution of the following ordinary differential equation:

dBt = Btrdt (3.24)

with B0 = 1. The solution of such ordinary differential equation is:

Bt = ert for all t ∈ (0, T ) (3.25)

Notice that here the absence of risk is reflected by the absence of Brownian motion, which
makes the value of Bt a deterministic function of time.
Note. r and rf defined before are the same thing, we changed notation in order to have a
sloppier one.

• Stock: it is a risky asset, whose value comes from the solution of the following stochastic
differential equation of a geometric Brownian motion:

dSt = Stµdt+ StÃdWt (3.26)

with S0 = s > 0. In the latter, µ is the drift and Ã is the volatility.
Notice that the asset is risky because its evolution is random (due to the Brownian motion).
Knowing that (Wt)t∈(0,T ) is a Markov process, also the the price (St)t∈(0,T ) of the risky asset
is a Markov process.
Remark. A Markov process is a stochastic process in which the transition probability to a
specific state of the system depends only on the immediately preceding state, and not on how
we get into this preceding state.
Exploiting Itˆo’s formula, one can find the solution of such stochastic differential equation:

St = se(µ−
σ2

2
)t+σWt for all t ∈ (0, T ) (3.27)

As one can easily see, the risky asset price St has a log-normal distribution. All the properties
of St have been described in Chapter 2.
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Finally we list here the market assumptions on which the Black-Scholes model is based:

• No arbitrage opportunity: there is no way to make a risk-free profit.

• It is always possible to borrow and lend any amount, even fractional, of cash at the risk-free
rate.

• It is always possible to buy and sell any amount, even fractional, of the stock, this includes
short selling.

• The above transactions do not incur any fees or costs.

3.3 From Hedging to Pricing

As already said the Black-Scholes-Merton model is a continuous-time model, and this gives us the
possibility of continuously rebalancing our portfolio over a certain time period [0, T ].

Definition 17. (Dynamic portfolio) A Dynamic portfolio in continuous time is a couple
¹ = (¹B, ¹S), where the two components ¹B = (¹Bt )t∈[0,T ] and ¹S = (¹St )t∈[0,T ] are continuous-time
stochastic processes. At every time t ∈ [0, T ], the value of the portfolio ¹ is given by:

Vt(¹) = ¹Bt Bt + ¹St St (3.28)

Here, ¹Bt can be interpreted as the number of risk-free asset units held at time t, while ¹St can be
interpreted as the number of risky asset units held at time t.
For a multi-period binomial model we have seen that at generic time t, the self-financing condition
can be written as:

¹Bt−1Bt + ¹St−1St = ¹Bt Bt + ¹St St (3.29)

The value of a portfolio can be in general written as:

Vt(¹) = V0(¹) +

t∑

k=1

∆Vk(¹) (3.30)

= V0(¹) +
t∑

k=1

(Vk(¹)− Vk−1(¹)) (3.31)

= V0(¹) +

t∑

k=1

(¹Bk Bk + ¹SkSk − ¹Bk−1Bk−1 − ¹Sk−1Sk−1) (3.32)

= V0(¹) +
t∑

k=1

(¹Bk−1Bk + ¹Sk−1Sk − ¹Bk−1Bk−1 − ¹Sk−1Sk−1) (3.33)

= V0(¹) +
t∑

k=1

¹Bk−1∆Bk +
t∑

k=1

¹Sk−1∆Sk ∀t = 1...N (3.34)

where we used the self-financing condition.
Suppose that we have N intervals [k, k − 1]. If we let N → ∞ we can replace summations with
integrals, obtaining:

Vt(¹) = V0(¹) +

∫ t

0
¹Bu dBu +

∫ t

0
¹SudSu (3.35)
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The last term
∫ t

0 ¹
S
udSu must be considered as a stochastic integral because of the presence of the

Brownian motion inside the definition of St.
The latter can be written in its infinitesimal form as a stochastic differential equation:

dVt(¹) = ¹Bt dBt + ¹St dSt (3.36)

inserting the dynamics:
{

dBt = Btrdt

dSt = Stµdt+ StÃdWt

(3.37)

we finally obtain:

dVt(¹) = (¹Bt Btr + ¹St Stµ)dt+ ¹St StÃdWt (3.38)

= (¹Bt Btr + ¹St Str)
︸ ︷︷ ︸

Vt(θ)r

dt+ ¹St St(µ− r)dt+ ¹St StÃdWt (3.39)

= Vt(¹)rdt+ ¹St StÃ(
µ− r

Ã
dt+ dWt) (3.40)

which is the self-financing condition for a continuously rebalanced portfolio.

Definition 18. (Payoff) The payoff of a path-independent European derivative with maturity T
written on the risky asset is defined as G(St), where G : R+. → R

Let us now focus on the initial question: Does there exist a self-financing dynamic portfolio such
that VT (¹) = G(ST ) with probability 1?.
Recalling that (St)t∈[0,T ] is a Markov process, the price of an European derivative with payoff G(ST )
is given by a function of t and the current price St of the underlying. Let us denote Πt(G) the price
of the derivative at time t for t ∈ [0, T ], it is reasonable to assume that:

Πt(G) = F (t, St) for all t ∈ [0, T ] (3.41)

for some function F : [0, T ]× R+ → R.

We are ready to determine a self-financing portfolio (¹t)t∈(0,T ) composed by ¹t = (¹Bt , ¹
S
t ), such

that VT (¹) = G(ST ) with probability 1.
Knowing that for self-financing dynamic portfolio holds:

dVt(¹) = (¹Bt Btr + ¹St Stµ)dt+ ¹St StÃdWt (3.42)

and knowing that if we apply Itô’s formula to a certain F (t, St) representing the price of the
derivative, function of time t and underlying price St, we get:

dF (t, St) = (Ft(t, St) + Fx(t, St)Stµ+
1

2
Fxx(t, St)S

2
t Ã

2)dt+ Fx(t, St)StÃdWt (3.43)

where Ft(t, St) =
∂F (t,St)

∂t
, Fx(t, St) =

∂F (t,St)
∂St

, Fxx(t, St) =
∂2F (t,St)

∂S2
t

.

Remark. (Law of One Price): Let X and Y be two random variables representing the pay-
offs at some maturity T of two portfolios and let us denote by ΠX

t and ΠY
t their prices at time

t ∈ [0, T ]. Suppose that P(X = Y ) = 1, if the no-arbitrage principle holds, then:

ΠX
t = ΠY

t (3.44)
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Hence, if two portfolios yield the same payoff at maturity, then their market values should always
coincide.
This means that if VT (¹) = G(ST ) at the maturity T , than the hedging portfolio and the derivative
should have the same value also at each generic time t.

We are led to conclude that dVt(¹) = dF (t, St).
Comparing (3.42) with (3.43) we are able to determine ¹Bt and ¹St :

¹St = Fx(t, St); ¹Bt =
Ft(t, St) +

1
2Fxx(t, St)S

2
t Ã

2

Btr
(3.45)

Again, from the law of one price we must have that Vt(¹) = F (t, St):

Vt(¹) = ¹Bt Bt + ¹St St =
Ft(t, St) +

1
2Fxx(t, St)S

2
t Ã

2

Btr
Bt + Fx(t, St)St = F (t, St) (3.46)

which, with some basic algebra, leads to the famousBlack-Scholes partial differential equation
(PDE):

{

Ft(t, St) +
1
2Fxx(t, St)S

2
t Ã

2 + Fx(t, St)Str − rF (t, St) = 0

F (T, ST ) = G(ST ).
(3.47)

By solving this equation we are able to determine the pricing function F (t, St) of the derivative we
are dealing with.

3.4 Pricing of Derivatives

For some payoff functions G(ST ) the Black-Scholes PDE can be explicitly solved. When an explicit
solution cannot be found, one can apply numerical schemes in order to obtain an approximate
solution for F (t, St).
We recall here the Black-Scholes PDE:

{

Ft(t, St) +
1
2Fxx(t, St)S

2
t Ã

2 + Fx(t, St)Str − rF (t, St) = 0

F (T, ST ) = G(ST )
(3.48)

One can notice that, by construction, the drift parameter µ does not appear in the equation, and
this is crucial.
The fact that the Black-Scholes-Merton PDE is independent of µ means that does not involve risk
preferences. The drift parameter represent the expected return on the stock, the higher the level
of investors’ risk aversion is, the higher µ will be for any given stock.
Since µ is not relevant, one can substitutes it with the risk-free rate r in the stochastic differential
equation of the risky asset, but if the risky asset has drift r, then the market participants are
risk-free. If the market participants are risk-free, we are living in a Risk-neutral World, then prices
are given by discounted expectations of future payoffs: Risk-neutral Valuation.

Definition 19. (Feynman-Kac formula): Let the function F : [0, T ]×R+ → R be the solution
of the Black-Scholes partial differential equation:

{

Ft(t, St) +
1
2Fxx(t, St)S

2
t Ã

2 + Fx(t, St)Str − rF (t, St) = 0

F (T, ST ) = G(ST )
(3.49)

Then, the function F (t, St) satisfies:

F (t, St) = e−r(T−t)EQ[G(ST )|St] (3.50)
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where Q is a probability measure under which (St)t∈[0,T ] satisfies the following stochastic differential
equation:

dSt = Strdt+ StÃdW
Q
t with S0 = s (3.51)

where we replaced µ with r. (WQ
t )t∈[0,T ] is a Brownian motion under the probability measure Q.

Once again we can appreciate that with the assumption of a new probability measure
Q under which µ is replaced with r, the price of the derivative can be seen as a
discounted expected value of the payoff, which is independent of investors’ attitude
towards risk.
Let us now focus on the risk-neutral probability Q.
Until now we have seen that the stochastic differential equation for St can appear in two different
ways:

dSt = Stµdt+ StÃdWt under P (3.52)

dSt = Strdt+ StÃdW
Q
t under Q (3.53)

where Wt = (Wt)t∈[0,T ] is the Brownian motion under the probability P, while WQ
t = (WQ

t )t∈[0,T ]

is the Brownian motion under the risk-neutral probability Q.
Clearly, the two quantities must have the same value, then:

Stµdt+ StÃdWt = Strdt+ StÃdW
Q
t (3.54)

From this equation we can determine the relationship between the two different Brownian motions:

dWQ
t =

µ− r

Ã
dt+ dWt (3.55)

where the factor µ−r
σ

is called market price of risk.
Observe that in our model we are not assuming that agents are risk-neutral, the formula only says
that the price of derivatives is calculated as if we live in a risk neutral world. Agents are allowed to
have any attitude to risk, but prices remain preference free, namely independent of risk attitudes.
Note. For the change of probability measure we exploited the Girsanov theorem.

3.5 Black-Scholes pricing formula for Call & Put options

In this subsection we present a particular example of pricing formula with its complete derivation.
This will be useful later on, when we will present the pricing formula for Credit Default Swaps.
Let us now consider a Call option with maturity T and strike price K. For the sake of complete-
ness, we recall the definition of a Call option:

Definition 20. (Call option) A Call option with maturity T and strike price K is a financial
derivative instrument which gives the right to buy one unit of the underlying at maturity T at a
pre-fixed price K. The corresponding payoff is:

G(ST ) = max[ST −K; 0] = (ST −K)+ (3.56)

Now, we fix an arbitrary time t ∈ [0, T ], by risk-neutral valuation we have that:

ΠCall
t = e−r(T−t)EQ[(ST −K)+|St] (3.57)

= e−r(T−t)EQ[(ST −K)I(ST>K)|St] (3.58)

= e−r(T−t)(EQ[ST I(ST>K)|St]
︸ ︷︷ ︸

B

−K EQ[I(ST>K)|St]
︸ ︷︷ ︸

A

) (3.59)

Let us evaluate the two pieces separately:
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• A. From the definition of expected value we get:

EQ[I(ST>K)|St] =1×Q(ST > K|St) + 0×Q(ST f K|St) (3.60)

= Q(ST > K|St) (3.61)

Recalling that the Geometric Brownian Motion dSt = Strdt+ StÃdW
Q
t has solution:

St = S0e
(r−σ2

2
)t+σW

Q
t (3.62)

then:

ST = Ste
(r−σ2

2
)(T−t)+σ(WQ

T
−W

Q
t ) (3.63)

Replacing this inside the conditional probability we get:

Q(ST > K|St) = Q(Ste
(r−σ2

2
)(T−t)+σ(WQ

T
−W

Q
t ) > K|St) (3.64)

= Q(logSt + (r − Ã2

2
)(T − t) + Ã(WQ

T −WQ
t ) > logK|St) (3.65)

= Q(WQ
T −WQ

t >
1

Ã
[log

K

St
− (r − Ã2

2
)(T − t)]|St) (3.66)

= Q

(

WQ
T −WQ

t√
T − t

>
log K

St
− (r − σ2

2 )(T − t)

Ã
√
T − t

|St

)

(3.67)

By recalling the properties of Brownian motion, we can state that the left side of the inequality

follows a Gaussian distribution, namely
W

Q
T
−W

Q
t√

T−t
∼ N(0, 1). Renaming it as Z :=

W
Q
T
−W

Q
t√

T−t
, and

defining a new variable d2 :=
− log K

St
+(r−σ2

2
)(T−t)

σ
√
T−t

in order to have a more compact notation,
we get:

Q(ST > K|St) = Q(Z > −d2) = Q(Z < d2) (3.68)

=
1√
2Ã

∫ d2

−∞
e−

Z2

2 dZ =: Φ(d2) (3.69)

Φ(d2), which is nothing else than the probability that the random variable Z takes value
below d2, represents the risk-neutral probability of exercising the Call option.

• B. Starting from the solution of Geometric Brownian Motion we get:

EQ[ST I(ST>K)|St] = EQ[Ste
(r−σ2

2
)(T−t)+σ(WQ

T
−W

Q
t ) · I

[Ste
(r−σ2

2 )(T−t)+σ(W
Q
T

−W
Q
t

)
>K]

|St] (3.70)

= Ste
r(T−t)EQ[e−

σ2

2
(T−t)+σ(WQ

T
−W

Q
t ) · I[

W
Q
T

−W
Q
t√

T−t
>−d2

]|St] (3.71)

As before, we can introduce a random variable Z :=
W

Q
T
−W

Q
t√

T−t
which follows a gaussian distribu-

tion. Furthermore, we can remove the conditioning with respect to St because the Brownian
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motion WQ
T −WQ

t is independent of St, hence:

EQ[ST I(ST>K)|St] = Ste
r(T−t)EQ[e−

σ2

2
(T−t)+σ

√
T−tZ · I[Z>−d2]] (3.72)

= Ste
r(T−t)

∫ +∞

−∞
e−

σ2

2
(T−t)+σ

√
T−tZ · I[Z>−d2]

1√
2Ã

e−
Z2

2 dZ (3.73)

= Ste
r(T−t)

∫ +∞

−d2

e−
σ2

2
(T−t)+σ

√
T−tZ−Z2

2
1√
2Ã

dZ (3.74)

= Ste
r(T−t)

∫ +∞

−d2

e−
1
2
(Z−σ

√
T−t)2 1√

2Ã
dZ (3.75)

Note. In the above derivation we have exploited the fact that, by definition, the expectation
value of a normally distributed random variable X is:

E[X] =

∫ +∞

−∞
xf(x2)dx with probability density function f(x2) =

1√
2Ã

e−
x2

2 (3.76)

Making a change of variable in the integral: y := Z − Ã
√
T − t, we get:

EQ[ST I(ST>K)|St] = Ste
r(T−t)

∫ +∞

−d2−σ
√
T−t

e−
y2

2
1√
2Ã

dy

︸ ︷︷ ︸

density function of a normal distribution ∼ N(0, 1)

(3.77)

Notice that the integral is nothing else than the probability that a normally distributed
random variable takes values above −d2 − Ã

√
T − t.

By symmetry arguments, this is equal to the probability that a normally distributed random
variable takes values below d2 + Ã

√
T − t:

∫ +∞

−d2−σ
√
T−t

e−
y2

2
1√
2Ã

dy =

∫ d2+σ
√
T−t

−∞
e−

y2

2
1√
2Ã

dy =: Φ(d2 + Ã
√
T − t) (3.78)

Finally, we obtain:

EQ[ST I(ST>K)|St] = Ste
r(T−t)Φ(d2 + Ã

√
T − t

︸ ︷︷ ︸

d1

) (3.79)

which represents the value at time t of one unit of the underlying in case of exercise.

Summing the two contributions A and B, we end up with the pricing formula for a Call option:

ΠCall
t = StΦ(d1)−Ke−r(T−t)Φ(d2) (3.80)

Recalling the Put-Call parity relation:

ΠCall
t (K)−ΠPut

t (K) = St −KPt(T ) for all t ∈ [0, T ] (3.81)

one is able to find the pricing formula for a Put option:

ΠPut
t (K) = ΠCall

t (K)− St +Ke−r(T−t) (3.82)

= StΦ(d1)−Ke−r(T−t)Φ(d2)− St +Ke−r(T−t) (3.83)

= Ke−r(T−t)(1− Φ(d2))− St(1− Φ(d1)) (3.84)

= Ke−r(T−t)Φ(−d2)− StΦ(−d1) (3.85)

where in the last step we exploited the symmetry properties of a normal distribution.
Similarly as before, Φ(−d2) represents the risk-neutral probability of exercising the Put option,
while StΦ(−d1) represents the value at time t of one unit of the underlying in case of exercise.
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3.6 Pro & Cons of the Black-Scholes Model

Pro

• Provides a Framework: The Black-Scholes model provides a theoretical framework for
pricing options. This allows investors and traders to determine the fair price of an option
using a structured and defined methodology that has been tested.

• Allows for Risk Management: By knowing the theoretical value of an option, investors
can use the Black-Scholes model to manage their risk exposure to different assets. The Black-
Scholes model is therefore useful to investors not only in evaluating potential returns but
understanding portfolio weakness and deficient investment areas.

• Allows for Portfolio Optimization: The Black-Scholes model can be used to optimize
portfolios by providing a measure of the expected returns and risks associated with different
options. This allows investors to make smarter choices better aligned with their risk tolerance
and pursuit of profit.

• Streamlines Pricing: On a similar note, the Black-Scholes model is widely accepted and
used by practitioners in the financial industry. This allows for greater consistency and com-
parability across different markets and jurisdictions.

Cons

• Limits Usefulness: As stated previously, the Black-Scholes model is only used to price
European options and does not take into account that American options could be exercised
before the expiration date.

• Lacks Cash-flow Flexibility: The model assumes dividends and risk-free rates are constant,
but this may not be true in reality. Therefore, the Black-Scholes model may lack the ability
to truly reflect the accurate future cash-flow of an investment due to model rigidity.

• Assumes Constant Volatility: The model also assumes volatility remains constant over
the option’s life. In reality, this is often not the case because volatility fluctuates with the
level of supply and demand.

• Misleads Other Assumptions: The Black-Scholes model also leverages other assumptions.
These assumptions include that there are no transaction costs or taxes, the risk-free interest
rate is constant for all maturities, short selling of securities with use of proceeds is permitted,
and there are no risk-less arbitrage opportunities. Each of these assumptions can lead to
prices that deviate from actual results.

3.7 Black Scholes Pricing Formula from Fokker-Planck Equation

The Fokker-Planck equation is an equation that describes the time evolution of the probability
density of a Brownian particle.
Let us consider a single Brownian particle in one dimensional space. We define the probability
density function for the particle to have a certain position x at a certain time t as f(x, t). The
probability to find the Brownian particle in the interval (x, x + dx) at time t is f(x, t)dx. Let us
now consider the following stochastic differential equation:

dXt = µ(t,Xt)dt+ Ã(t,Xt)dWt (3.86)
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3.7. Black Scholes Pricing Formula from Fokker-Planck Equation

The solution of such a stochastic differential equation provides a description of the possible tra-
jectories or paths that the Brownian particle can follow over time, each with a certain associated
probability density.
The probability density associated with each of these possible trajectories over time is given by the
solution of the Fokker-Planck equation:

∂

∂t
f(x, t) = − ∂

∂x

(
µ(x, t)f(x, t)

)
+

∂2

∂x2
(
D(x, t)f(x, t)

)
(3.87)

where as we saw for Einstein’s theory D = σ2

2 . The solution of the Fokker-Planck equation would
provide a function that describes the probability of finding the Brownian particle in a specific state
x at time t.
Let us now try to derive the Black-Scholes pricing formula for Call options starting from the Fokker-
Planck equation instead of the Black-Scholes partial differential equation. Before, we solved Black-
Scholes PDE, where we derived with respect to t and St, through Feynman-Kac formula in order
to find the Call option pricing formula. Now we will find another partial differential equation, this
time involving partial derivatives with respect to K and T , that if solved will lead us to the same
Call option pricing formula.
As we already mention many times, stock price’s trend is often modelled by the Geometric Brownian
Motion, namely:

dSt = Strdt+ StÃdWt (3.88)

Its associated Fokker-Planck equation becomes:

∂

∂t
f(St, t) = − ∂

∂St

(
rStf(St, t)

)
+

∂2

∂S2
t

(

Ã2

2
S2
t f(St, t)

)

(3.89)

Let us assume the Call option price at time t is determined, as always, by the present value of the
risk-neutral expected payoff:

F (t, St) = e−r(T−t)EQ[max(ST −K; 0)|St] (3.90)

Also consider f(St, t, ST , T ) to be the transition probability density for the risk-neutral random
walk where St is the asset price at time t. Being K the strike price and T the maturity, the price
of the Call option at time t is given by:

F (t, St) = e−r(T−t)EQ[max(ST −K; 0)|St] (3.91)

= e−r(T−t)

∫ +∞

0
max(ST −K; 0)f(St, t, ST , T )dST (3.92)

= e−r(T−t)

∫ +∞

K

(ST −K)f(St, t, ST , T )dST (3.93)

Differentiating with respect to K we get:

∂

∂K
F (t, St) = −e−r(T−t)

∫ +∞

K

f(St, t, ST , T )dST (3.94)

If we derive another time with respect to K, we obtain the following expression for the probability
density function:

f(St, t, ST , T ) = er(T−t) ∂2

∂K2
F (t, St)

∣
∣
∣
ST=K

(3.95)

39



Chapter 3. The Black-Scholes-Merton Model

If we now derive the pricing formula F (t, St) with respect to the maturity T , we get:

∂

∂T
F (t, St) = −rF (t, St) + e−r(T−t)

∫ +∞

K

(ST −K)
∂f(St, t, ST , T )

∂T
dST (3.96)

Inserting the Fokker-Planck equation:

∂f

∂t
= − ∂

∂ST
(rST f) +

∂2

∂S2
T

(

Ã2

2
S2
T f

)

(3.97)

where we have omitted the dependence on t and St in order to have a sloppier notation, we obtain:

∂

∂T
F (t, St) = −rF (t, St)+e−r(T−t)

∫ +∞

K

(ST−K)



− ∂

∂ST
(rST f) +

∂2

∂S2
T

(

Ã2

2
S2
T f

)

 dST (3.98)

Integrating by parts twice we get:

∂

∂T
F (t, St) = −rV +

1

2
e−r(T−t)Ã2K2f + re−r(T−t)

∫ +∞

K

ST fdST (3.99)

After some algebra one can obtain:

∂

∂T
F (t, St) =

1

2
Ã2K2 ∂2

∂K2
F (t, St)− rK

∂

∂K
F (t, St) (3.100)

Once solved, this partial differential equation results in the same Call option pricing formula we
obtained after solving the Black-Scholes partial differential equation through Feynman-Kac formula.
This method is rarely used to find Call option prices, but is widely used to find Ã, the stock volatility,
knowing the pricing formula as a function of K and T .
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Chapter 4

Greek Letters

References: [9] [1] [6]

A financial institution that sells an option to a client in the over-the-counter markets is faced with
the problem of managing its risk. If the option is the same as one traded on an exchange, the
institution can easily manage the risk buying the same option it has sold. But in case the option
does not have a counterpart in the standardized products traded in the exchanges, manage its
exposure is more difficult.
Some alternative solutions to this problem are called ”Greek Letters”. Each Greek Letter measure
a different dimension to the risk in an option position and the aim of a trader is to manage the
”Greeks” in such a way that the risk is acceptable.
Greek Letters are partial derivatives representing the sensitivity of the price of a derivative in-
strument (such as options) to changes in one or more underlying parameters on which the value
of an instrument or a portfolio is dependent. The Greeks in the Black-Scholes-Merton model are
relatively easy to calculate and they are particularly useful for hedging. The most common Greek
letters are delta, gamma, vega, theta, and rho.

Delta Let us consider a derivative with maturity T with the risky asset as underlying, and let us
denote by F (t, St) its price in the Black-Scholes model, for t ∈ (0, T ).
Delta (∆) is defined as the rate of change of the option price with respect to the price of the
underlying asset. It represents the slope of the curve that relates the option price to the underlying
asset price:

∆t =
∂

∂St
F (t, St) (4.1)

In the Black-Scholes model, for all t ∈ (0, T ), it holds that:

• For a Call option:

∆Call
t =

∂

∂St
FCall(t, St) (4.2)

=
∂

∂St
(StΦ(d1)−Ke−r(T−t)Φ(d2)) (4.3)

= Φ(d1) (4.4)
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• For a Put option:

∆Put
t =

∂

∂St
FPut(t, St) (4.5)

=
∂

∂St
(FCall(t, St)− St +Ke−r(T−t)) (4.6)

=
∂

∂St
FCall(t, St)

︸ ︷︷ ︸

=∆Call
t

− ∂

∂St
St

︸ ︷︷ ︸

=1

+
∂

∂St
Ke−r(T−t)

︸ ︷︷ ︸

=0

(4.7)

= ∆Call
t − 1 (4.8)

= Φ(d1)− 1 (4.9)

by using the Put-Call parity relation.

Figure 4.1: Delta of a Call and Put options with K = 50, r = 0, Ã = 0.25 T = 2. [6]

Gamma Let us consider a derivative with maturity T with the risky asset as underlying, and let
us denote by F (t, St) its price in the Black-Scholes model, for t ∈ (0, T ).
Gamma (Γ) is defined as the rate of change of the portfolio’s Delta with respect to the price of the
underlying asset. It is the second partial derivative of the portfolio with respect to asset price:

Γt =
∂2

∂S2
t

F (t, St) =
∂

∂St
∆t (4.10)

In the Black-Scholes model, for all t ∈ (0, T ), it holds that:

ΓCall
t = ΓPut

t =
∂2

∂S2
t

FCall(t, St) (4.11)

and considering a Call option we have:

ΓCall
t =

∂

∂St
Φ(d1) = Φ

′
(d1)

∂

∂St
d1 (4.12)

=
1√
2Ã

e−
d21
2

∂

∂St
d1 =

1√
2Ã

e−
d21
2

1

St

1

Ã
√
T − t

(4.13)
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Figure 4.2: Gamma of a Call/Put option with K = 50, r = 0, Ã = 0.25 T = 2. [6]

Theta Let us consider a derivative with maturity T with the risky asset as underlying, and let
us denote by F (t, St) its price in the Black-Scholes model, for t ∈ (0, T ).
Theta (Θ) is defined as the rate of change of the value of the portfolio with respect to the passage
of time with all else remaining the same. Theta is sometimes referred to as the time decay of the
portfolio:

Θt =
∂

∂t
F (t, St) (4.14)

Usually, when theta is quoted, time is measured in days, so that Theta is the change in the portfolio
value when one day passes with all else remaining the same.
In the Black-Scholes model, for all t ∈ (0, T ), it holds that:

ΘCall
t = − 1√

2Ã
e−

d21
2

S0Ã

2
√
T − t

− rKe−r(T−t)Φ(d2) (4.15)

ΘPut
t = − 1√

2Ã
e−

d21
2

S0Ã

2
√
T − t

− rKe−r(T−t)Φ(−d2) (4.16)

Theta is usually negative for an option. This because, as time passes with all else remaining the
same, the option tends to become less valuable. When the stock price is very low, Theta is close
to zero.

Vega Let us consider a derivative with maturity T with the risky asset as underlying, and let us
denote by F (t, St) its price in the Black-Scholes model, for t ∈ (0, T ).
Vega (V ) is defined as the rate of change of the value of the portfolio with respect to the volatility
of the underlying asset:

V =
∂

∂Ã
F (t, St) (4.17)

If Vega is highly positive or highly negative, the portfolio’s value is very sensitive to small changes
in volatility. If it’s close to zero, then volatility changes have relatively little impact on the value
of the portfolio.
For a Call/Put option, Vega assumes the same form, which is:

V = S0

√
T − t

1√
2Ã

e
−d21
2 (4.18)

Vega is typically expressed as the amount of money per underlying share that the option’s value
will gain or lose as volatility rises or falls by 1 percentage point. All options (both calls and puts)
will gain value with rising volatility.
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Rho Let us consider a derivative with maturity T with the risky asset as underlying, and let us
denote by F (t, St) its price in the Black-Scholes model, for t ∈ (0, T ).
Rho (Ä) is defined as the rate of change of the value of the portfolio with respect to the interest rate,
it measures the sensitivity of the portfolio to a change in the interest rate when all else remains
the same:

Ä =
∂

∂r
F (t, St) (4.19)

In the Black-Scholes model, for all t ∈ (0, T ), it holds that:

ÄCall
t = K(T − t)e−r(T−t)Φ(d2) (4.20)

ÄPutt = −K(T − t)e−r(T−t)Φ(−d2) (4.21)

Delta and Gamma Hedging Let us consider a portfolio with value V (t, St), which depends
only on one type of underlying, and suppose that we want to immunize it against changes in the
underlying price. If the portfolio is already delta neutral then its value is not sensible to changes
in underlying price, in formulas:

∆V =
∂V

∂St
= 0 (4.22)

but what if ∆V ̸= 0?
The main idea is to add a certain number of units of an option or underlying itself to the portfolio in
order to make it delta neutral. We denote the pricing function of the chosen derivative as F (t, St),
and the number of units of that derivative as xF . At this point the value of the portfolio is given
by:

P (t, St) = V (t, St) + xF · F (t, St) (4.23)

In order to make this portfolio delta neutral we have to choose xF in such a way ∂P
∂St

= 0, this is
given by the following equation:

∂V

∂St
+ xF · ∂F

∂St
= 0 (4.24)

which gives the solution:

xF = −∆V

∆F
(4.25)

We provide here an example to make things more clear. Assume that we are a financial institution
and we have sold a particular derivative with price Ft,St , we want to hedge it buying a certain
amount of the underlying asset in order to have a delta equal to zero, we get the following equation:

∂

∂St
[−F (t, St) + xs] · St = 0 (4.26)

with solution:

xs = ∆F =
∂F (t, St)

∂St
(4.27)

which gives us the number of units of the underlying that we need to buy in order to manage the
risk incoming from exercising this option. It is crucial to see that a delta hedge works well only
for a short time interval. As time goes by, the value of St will change and so does the ∆. To have
a well-hedged portfolio we should rebalance our portfolio as soon as delta changes.
Clearly, if we rebalance it often we will have a good hedging but we could face high transaction
costs. For this reason we should take into account another greek letter, gamma.
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Gamma is defined as the second derivative of the option price with respect to that underlying
asset price, as well as the first derivative of the delta with respect to the underlying asset price:

Γ = ∂∆
∂St

= ∂2F (t,St)
∂S2

t

. If gamma is high we will have to rebalance often, while for low gamma we

can keep our initial delta hedge for a longer period of time. In the end, we would like to form a
portfolio both gamma and delta neutral.
In order to do this we need two different derivatives in our hedge, with pricing function F (t, St)
and G(t, St). The value of the portfolio will be:

P (t, St) = V (t, St) + xF · F (t, St) + xG ·G(t, St) (4.28)

In order to have a portfolio gamma and delta neutral we need to solve the following system of
equations: {

∆V + xF ·∆F + xG ·∆G = 0

ΓV + xF · ΓF + xG · ΓG = 0
(4.29)

Sometimes it is useful to exploit the fact that the stock itself has zero gamma, so we could choose
a portfolio consisting in V (t, St) and F (t, St) gamma neutral (notice that in general this portfolio
won’t be delta neutral) and subsequently add the underlying stock in order to make it delta neutral,
in this case the gamma neutrality will be maintained by the fact that the stock is gamma neutral.
Formally we will have the following equation:

P (t, St) = V (t, St) + xF · F (t, St) + xs · St (4.30)

and the following system has to be solved:

{

∆V + xF ·∆F + xs = 0

ΓV + xF · ΓF = 0
(4.31)

The solutions are:

xF = −ΓV

ΓF
(4.32)

xs =
ΓV ∆F

ΓF
−∆V (4.33)

In an ideal world, traders working for a financial institution would be able to re-balance their
portfolios very frequently in order to maintain all Greeks equal to zero. In practice this is not
possible. When managing a large portfolio dependent on a single underlying asset, traders usually
make Delta zero, or close, at least once a day by trading the underlying asset. Unfortunately, a
zero Gamma and a zero Vega are less easy to achieve because it’s difficult to find options or other
nonlinear derivatives that can be traded in the volume required at competitive prices.
Maintaining Delta neutrality for a small number of options on an asset by trading daily is usually
not economically feasible because of trading cost. But when a derivatives dealer maintains Delta
neutrality for a large portfolio of options on an asset, the trading costs per option hedged are likely
to be much more reasonable.
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Chapter 5

Credit Risk

References: [9] [1] [8] [16]

In the following chapter we will consider an important risk for financial institutions: Credit Risk.
Credit risk arises from the possibility that counterparties may default in repaying their debt. This
chapter will discuss the different approaches to estimating the probability that a certain company
will default and will explain the differences between risk-neutral and real world probabilities of
default.

5.1 Estimating Default Probabilities from Historical Data

In our financial system, an important role is covered by Rating Agencies, such as Moody’s, Stan-
dard & Poor’s, and Fitch. They are institutions that assess the financial strength of companies
and government entities, especially their ability to meet principal and interest payments on their
debts. The rating assigned to a given debt shows an agency’s level of confidence that the borrower
will honor its debt obligations as agreed. Each agency uses unique letter-based scores to indicate
if a debt has a low or high default risk and the financial stability of its issuer.
In the following table we provide the cumulative default rates (in %), over a 20-year period, of
bonds that had a particular rating, which is emitted by Moody’s in this specific case, at the begin-
ning of the period.

Figure 5.1: Average cumulative default rates from Moody’s. [9]

The probability of a bond defaulting during a particular year can be calculated from the table, for
example for a ”Baa” rated bond the default probability during the second year is 0.495%−0.177% =
0.318%.
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As one can easily see, the default probability is an increasing function of time. This because the
bond issuer is initially considered to be creditworthy, but as the time goes on the possibility that
its financial health will decline grows. Viceversa, for bonds with low credit rating the default prob-
ability is a decreasing function of time. The reason behind this fact is that for this type of bonds
the earlier years may be the most critical, the longer the issuer survives, the greater is the chance
that its financial health improves.

Let us now define the cumulative default rate at a certain time t as C(t), we can see that the
unconditional default probability Pdefault(∆t) during a certain time period ∆t = tf − ti is given by:

Pdefault(∆t) = C(tf )− C(ti). (5.1)

For example the unconditional default probability for a ”Caa” rating bond during the third year
is given by C(3)− C(2) = 36.908%− 27.867% = 9.041%.
Following the same reasoning, we can define the cumulative probability that a bond will survive by
the end of a certain period of time as:

Psurvive(t) = 100%− C(t). (5.2)

For example the cumulative probability of surviving at the end of the second year for a ”Caa”
rating bond is given by 100%− 27.867% = 72.133%.
Finally the probability that a bond will default during a certain time period conditional on no
earlier default can be defined as:

P cond.
default(∆t) =

Pdefault(∆t)

Psurvive(ti)
=

C(tf )− C(ti)

100%− C(ti)
(5.3)

Let us consider a shorter period of time ∆t. We define the hazard rate ¼(t) at time t as a
time dependent coefficient such that ¼(t)∆t is the default probability between time t and t + ∆t
conditional on no earlier default.
Remembering that Psurvive(t) = 100%−C(t) is the cumulative probability that a bond will survive
until time t, then the conditional default probability between time t and t+∆t is:

P cond.
default(∆t) =

C(t+∆t)− C(t)

100%− C(t)
=

Psurvive(t)− Psurvive(t+∆t)

Psurvive(t)
= ¼(t)∆t (5.4)

From which:
Psurvive(t+∆t)− Psurvive(t) = −¼(t)∆tPsurvive(t) (5.5)

Taking the limit ∆t → 0 we have:

dPsurvive(t)

dt
= −¼(t)Psurvive(t) (5.6)

Integrating and defining Q(t) as the probability of default by time t, we finally have:

Q(t) = 1− e−
∫ t

0 λ(τ)dτ = 1− e−λa(t)t (5.7)

where ¼a(t) is the average hazard rate between time 0 and t.
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5.2 Estimating Default Probabilities from Bond Yield Spreads

Another approach to estimate the default probabilities is to look at the bond yield spreads.
A bond yield spread is defined as the excess of the promised yield on the bond over the risk-free
rate. The usual assumption is that the excess yield is a compensation for the possibility of default.

Remark. A coupon bond with maturity T, coupon rate c and payment frequency m is a security
which pays one unit of money in T years and c/m amount of money every 1/m year. We call
maturity the termination date of the contract and c is a proportion of the principal amount, which
by convention is set equal to 1.
Let us call P0(T, c,m) the value today (at time t = 0) of a coupon bond, which depends on the
maturity, the coupon rate, and the payment frequency. It is the sum of:

• A series of coupon payments. The amount of each coupon is constant and equal to c/m.
In total there are mT coupon payments (m coupon every year), each taking place at time
t = k/m and discounted with the corresponding zero rate R0(k/m). R0(T ) is the interest
rate applied to an investment that starts today and ends in T years from now, without any
intermediate payment.

• A cash flow of the principal amount, occurring at maturity T

In formula:

P0(T, c,m) =
c

m

mT∑

k=1

e−
k
m
·R0(

k
m
) + e−T ·R0(T ) (5.8)

As one could easily guess, R0(
k
m
) ̸= R0(T ), because they are evaluated at different times. We may

ask if there exists a synthetic indicator which measures the return on investing in a bond. One
possibility is the bond yield.

Definition 21. (Bond Yield) the bond yield is the single discount rate that, if applied to all
cash flows of the bond , gives a bond value equal to its market price. Mathematically, the bond yield
y associated to a coupon bond with price P0(T, c,m) is the solution to the equation:

c

m

mT∑

k=1

e−
k
m
·y + e−T ·y = P0(T, c,m) (5.9)

Suppose now that the bond yield spread for a T-year bond is s(T ) per year. This means the average
loss rate on the bond between time 0 and time T should be approximately s(T ) per year. Another
expression for the average loss rate is ¼a(T )(1 − R), where R is the estimated recovery rate (the
recovery rate is defined as the bond’s market value a few days after a default, as a percent of its
face value).
This means that it is approximately true that:

¼a(T )(1−R) = s(T ) (5.10)

or

¼a(T ) =
s(T )

1−R
. (5.11)

This approximation mimics the behaviour of s(T ) very well.
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The method we have just presented for calculating default probabilities depends on the choice of a
risk-free rate because bond yields spreads are calculated starting from its value.
Another extremely useful credit spread estimate is provided by Credit Default Swap (CDS)
spread that does not depend on the risk-free rate chosen.
CDS spreads will be discussed in detail in the next chapter and will be crucial for the evaluation
of a carbon risk factor, which is the main core of this essay.

5.3 Comparison of Default Probability Estimates

The default probabilities estimated from historical data are usually much less than those derived
from bond yield spreads. Why do we see such big differences between those hazard rates?

Figure 5.2: Average hazard rate per year (in %). [9]

Hazard rates implied from bond yield spreads are dependent on the choice of a risk-free rate, so
they are risk-neutral estimates. They can be used to calculate expected cash flows in a risk-neutral
world whenever there is a credit risk. The value of cash-flows is obtained exploiting a risk-neutral
valuation by discounting the expected cash-flows at a risk-free rate. Treasury rates are usually used
as risk-free rates.
Hazard rates implied from historical data are, instead, real-world default probabilities because they
are calculated starting from real data from the past.
The different results shown in the table above arises directly from the difference between real world
and risk-neutral default probabilities.
One possible reason advanced to explain this results could be that bond traders may be allowing
for depression scenarios much worse than anything seen during the period covered by historical
data. Anyway, the most important reason is that bonds prices depend on the financial health of a
certain period: if the prices of bonds decrease (during a crisis for example), they become riskier.
To bear the risk usually investors demand for a higher yields, resulting in an increased bond yield
spreads and so an increased hazard rates.
At this stage it is natural to ask whether we should use real-world or risk-neutral default probabil-
ities in the analysis of credit risk. The answer depends on the purpose of the analysis.
For valuing credit derivatives or estimating the impact of default risk on the pricing of instruments,
risk-neutral default probabilities should be used. This because the analysis calculates the present
value of future cash-flows and this should be independent from risk preferences (as shown for the
Black-Scholes-Merton model) and this involves a risk-neutral valuation.
When carrying out analyses to calculate the potential future losses from defaults, real-world default
probabilities should be used.
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5.4 Merton Model for Default Probabilities

Until now we have estimated a company’s real-world probability of default through credit ratings.
Unfortunately, credit ratings are revised relatively infrequently, and this led some analysts to argue
that equity prices can provide a more efficient way for estimating default probabilities.
The firm issues two classes of securities: asset and zero-coupon bond. The equity receives no
dividends. The bonds represent the firm’s debt obligation maturing at time T with principal value
D. If at time T the firm’s asset value exceeds the promised payment D, the lenders are paid the
promised amount and the shareholders receive the residual asset value. If the asset value is lower
than the promised payment, the firm defaults, the lenders receive a payment equal to the asset
value, and the shareholders get nothing. The model assumes that a company will default if its
assets’ value at the maturity falls below the debt. Let us suppose, for simplicity, that the firm has
only one asset. We define:

• V0 as the value of the company’s asset today.

• VT as the value of the company’s asset at maturity T.

• ÃV as the volatility of the company’s asset (constant).

• D as the debt repayment due at maturity T.

When the debt matures on date T, if there is enough value in the firm to meet this payment, which
means that VT > D, debtholders will receive the full face value D, while equityholders receive the
balance VT − D. However, if the value of the firm’s assets on date T is insufficient to meet the
debtholders claims, which means VT < D, the debtholders receive the total assets value, and the
equityholders receive nothing. Thus, the amount DT received by the debtholders on maturity T
can be expressed with:

DT =

{

D if VT g D

VT otherwise
(5.12)

The payoff received by the debtholders at the maturity T may also be expressed with the expression:

DT = D −max{D − VT ; 0} (5.13)

where:

• The first term D represents the payoff from investing in a risk-free zero coupon bond maturing
at time T with a face value D.

• The second term max{D − VT ; 0}, is the payoff from a short position in a put option on the
firm’s assets with a strike price D and maturity date T .

Figure 5.3: Decomposition of debt value at the time T . [8]
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The decomposition illustrated above defines a procedure to valuate the present value of risky
debt, consisting of two steps:

1. Identifying present value D of the risk-free debt.

2. Subtracting the present value of the Put option.

The first step of the procedure is straightforward, typically the formula of continuous compounding
of interest is used, while the second step is clearly valuing the put option, for which we use the
Black-Scholes option pricing model.

ΠPut
0 = De−rTΦ(−d2)− V0Φ(−d1) (5.14)

where

d1 =
ln V0

D
+ (r +

σ2
V

2 )T

ÃV
√
T

(5.15)

d2 = d1 − ÃV
√
T . (5.16)

The value of the Put option determines the price differential between today’s risky and risk-free
value of the debt, so the market value of debt D0 can be identified as:

D0 = De−r·T −ΠPut
0 . (5.17)

The significant problem appearing while attempting a practical implementation of the Merton’s
model of debt valuation is that both the firm’s asset value V0 and its volatility ÃV are usually
unobservable, but it is possible to use prices of traded securities issued by the firm to identify these
quantities implicitly.
Let us define the Equity as the amount of money that would be returned to a company’s share-
holders if all of the assets were liquidated and all of the company’s debt was paid off in the case of
liquidation. Suppose that the firm is publicly traded with observable equity prices, we define:

• E0 as the value of the company’s equity today.

• ET as the value of the company’s equity at maturity T.

• ÃE as the volatility of the company’s equity.

A company’s equity, which is its assets’ value minus its liabilities, can be considered as a call option
on the value of its assets, with debt acting as a strike price:

ET = (VT −D)+ =

{

VT −D if VT g D

0 otherwise
(5.18)

If VT < D at the maturity T, it is reasonable that the company declares default. Then the value
of the equity is zero.
If VT > D at the maturity T, the company should make the debt repayment, and the value of the
equity is VT −D.
Using the Black-Scholes-Merton pricing formula for call options, the value today of the equity is:

E0 = V0Φ(d1)−De−rTΦ(d2) (5.19)

where

d1 =
ln V0

D
+ (r +

σ2
V

2 )T

ÃV
√
T

(5.20)
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d2 = d1 − ÃV
√
T . (5.21)

From the Black-Scholes-Merton pricing formula we got that Φ(d2) is the risk-neutral probability of
exercising the call option at the maturity. In our case this is translated into the probability that,
at time T, VT > D, which means no default. By the parity property of the Gaussian distribution,
the probability of not exercising the call option at the maturity (VT < D), which is a synonymous
of default, will be Φ(−d2).
To calculate this, we require V0 and ÃV . As we already said, none of them is directly observable,
however if the company is traded we can observe E0.
Then, from the Itô’s formula, one can derive the following relation:

ÃEE0 = Φ(d1)ÃV V0 (5.22)

where ÃE can be estimated from historical data, and Φ(d1) is the probability that the random
variable Z takes values below d1.
Finally solving the system of two equations with two variables:

{

E0 = V0Φ(d1)−De−rTΦ(d2)

ÃEE0 = Φ(d1)ÃV V0

(5.23)

one can get the values V0 and ÃV for the calculation of the risk-neutral default probability Φ(−d2).
The Merton’s model provides a good ranking of default probabilities. Then, we can assume Φ(−d2),
which is a risk-neutral default probability calculated from an option pricing model, as the best in-
strument for providing a real-world default probability.

Let us define D0 as the market price of the debt at time zero. The value of the asset is equal
to total value of the two sources of financing: equity and debt, so that the present value of the debt
can be expressed as:

D0 = V0 − E0 (5.24)

Substituting what we have found, we obtain:

D0 = V0 − V0Φ(d1) +De−rTΦ(d2) (5.25)

= V0(1− Φ(d1)) +De−rTΦ(d2) (5.26)

= V0Φ(−d1) +De−rTΦ(d2) (5.27)

We could ask ourselves which could be the yield to the maturity for the risky debt. By definition
we have:

D0 = De−y·T (5.28)

where we have used D instead of DT because the present value of the risky debt must be calculated
starting from the hypothetical bond debt D, not the real one DT which will be effectively repaid.
Comparing the two expressions we can get the yield for the risky debt:

De−y·T = V0Φ(−d1) +De−rTΦ(d2) (5.29)

y = − 1

T
ln

(
V0

D
Φ(−d1) + e−rTΦ(d2)

)

(5.30)

Finally, the credit spread, defined as the difference between the yield on the risky debt and the
risk–free rate, can be simply calculated as:

s = y − r. (5.31)
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Credit Derivatives

References: [9] [8] [1]

In this chapter we introduce an important development in derivatives market: Credit Derivatives.
Credit derivatives are contracts where the payoff depends on the creditworthiness of one or more
companies or countries. Here we will explain how credit derivatives work and how they are valued.
Credit derivatives allow companies to trade credit risk. Before the introduction of these financial
instruments, once a banks or other financial institutions had assumed a credit risk, they could just
wait. Now they can manage their portfolios protecting themselves entering into credit derivative
contracts. Banks have historically been the biggest buyers of credit protection and insurance
companies have been the biggest sellers.
Credit derivatives can be categorized into two groups:

• Single-name credit derivatives: The most popular one is a Credit Default Swap. There
are two sides to the contract: buyers and sellers of protection on a company/country; the
payoff depends on the creditworthiness of the company/country and it is emitted in case the
underlying defaults.

• Multi-name credit derivatives: The most popular is the CDO (Collateralized Debt Obli-
gation) which is a portfolio of debt instruments with a complex structure where the cash-flows
are channelled to different categories of investors.

This chapter will explain how credit default swaps work and how they are valued, finally we will
introduce collateralized debt obligations.

6.1 Credit Default Swaps

The most popular credit derivative is a Credit Default Swap. It is a contract that provides
insurance against the risk of a default by a certain company. The company is called reference
entity and the default of it is called credit event.
The buyer of insurance obtain the right to sell bonds issued by the company for their face value
when a credit event occurs (i.e., it has defaulted). The total face value of the bonds that can be
sold is know as the credit default swap’s notional principal.

Remark. A bond (or obligation) is a credit title issued by a country, a financial institution,
or a private company in order to accumulate liquidity.
Whoever emits a bond is committed to returning the face value of the title at the maturity of the
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bond, plus and additional amount of money, which is a fraction of the face value, pre-established
by an interest rate. The quality of a bond is measured by rating agencies who emit a specific rate,
indicator of its degree of solvency.

The buyer of a CDS makes periodic payments to the seller until the end of the life of the CDS
or until a credit event occurs. These payments are typically made every 3 months and they are
measured in basis points (1 basis points = 0.01% of the principal amount).
Let us make an example to illustrate how the deal is structured.
Example. Suppose that two parties enter into a 5-year credit default swap with notional principal
of $100 million at 90 basis points per year for protection against default by the reference entity,
with payments being made every 3 months.
Two scenarios can present:

• The reference entity does not default: in this case, the buyer pays 22.5 basis points each
quarter of year until the maturity of the CDS. The amount payed every 3 months is the
0.225% of $100 million, so $225, 000, for a total of $0.9 million per year. At the maturity
(5-years), the buyer does not receive any payoff and has payed $4.5 million.

• The reference entity defaults: there is a credit event.
Suppose that the credit event occurs 2 months into the fourth year, the buyer has the right
to sell bonds issued by the reference entity for $100 million. The final payment to close the
3 months cycle is required, but no further payments will be required. At the end, the buyer
receives $100 million and has payed $3.825 million.

Figure 6.1: How a Credit Default Swap works. [9]

The total amount payed per year, as a percentage of the notional principal, to buy protection (90
basis points in our example) is called CDS spread . This indicator will be crucial for the last part
of this elaborate.

6.2 Hedging with Credit Default Swaps

Credit default swaps are often used to manage the risk of default that arises from holding debt.
A bank, for example, may hedge its risk that a borrower may default on a loan by entering into
a CDS contract as the buyer of protection. If the loan goes into default, proceeds from the CDS
contract cancel out the losses on the underlying debt.
Suppose that an investor buys a 5-year corporate bond with yield 7% per year. For the sake of
completeness we remind that a bond yield is the single discount rate that, if applied to all cash-flows
of the bonds, gives a bond value equal to its market price. If we call the market price as P0(T, c,m),
the bond yield is the solution of the following equation:

c

m

mT∑

k=1

e−
k
m
·y + e−T ·y = P0(T, c,m) (6.1)
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In order to manage the default risk, the investor can enter into a 5-year CDS with the same face
value to buy protection against the issuer of the bond.
Suppose that the CDS has a CDS spread of 2% (i.e 200 basis points). If the bond issuer does not
default, the investor earns 5% of the bond’s face value per year, this because the bond yields of 7%
is compensated by a CDS spread of 2%. If the bond does default, the investor earns 5% up to the
time of the default, and then is allowed to sell the bond for its initial face value.
Doing this we simply turned our financial investment into a risk-free investment. In fact it is easy to
see that buying a risky bond with yield 7% and managing its risk using a credit default swap with
CDS spread 2% is exactly the same that investing into a riskless bond with risk-free rate at 5%.
This shows that the spread of the yield on an n-year bond issued by a company over the risk-free
rate should be equal to the company’s n-year CDS spread. If it is not, arbitrage opportunities
appear

CDS spread = y − rf . (6.2)

We finally define the CDS bond basis as the difference between the CDS spread and the bond
yield spread:

CDS bond basis = CDS spread− Bond yield spread (6.3)

In absence of arbitrage, the CDS bond basis should be as close as possible to zero.

6.3 Valuation of Credit Default Swaps

The CDS spread for a particular reference entity can be calculated from default probability esti-
mates.
Suppose that the average hazard rate ¼a of the reference entity is 2% per year.
Recalling that the probability of default by time t is given by

Q(t) = 1− e−λa(t)t (6.4)

then the probability of survival by time t can be written as

S(t) = 1−Q(t) = e−λa(t)t. (6.5)

According to the fact that the probability of default during a year is the probability of survival to
the beginning of the year (S(ti−1)) minus the probability of survival to the end of the year (S(ti)),
we can write:

Q(ti) = S(ti−1)− S(ti) (6.6)

where Q(ti) is the probability of default during the year ti.
Remark. Before we defined the probability of default by the time t as Q(t) = 1 − e−λa(t)t, now
we are defining something different, Q(ti) gives us the probability of default during a single year i,
not until the year i. This can be written as:

Q(ti) = S(ti−1)− S(ti) = e−λa(ti−1)ti−1 − e−λa(ti)ti (6.7)

Let us take a range of 5-years, knowing that the probability of surviving at time t is given by e−0.02t

(average hazard rate of 2%), and again the probability of default during a year can be taken as the
difference, we can define the following table:
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Figure 6.2: Default probabilities and survival probabilities. [9]

Let us take a 5-years Credit Default Swap. We will make the following assumptions:

• Defaults always happen halfway through a year.

• Payments on the credit default swap are made once a year, at the end of the year.

• The risk-free interest rate is 5% per year with continuous compounding.

• The recovery rate is at 40%.

For a notional principal of $1, indicating the CDS spread as s, and recalling that the probability
of survival by the end of the year t is S(t) = e−λa(t)t, the Expected Payment by the end of the year
t is:

Epayment(t) = S(t) · s (6.8)

Therefore, its Present Value is nothing else than the Expected Payment discounted by a Discount
Factor which in our case is:

D = Ne−rf t (6.9)

where rf = 5% is the risk-free rate, while N = $1 is the notional principal.
We collected all the data in the following table.

Figure 6.3: Present value of expected payments. [9]

The total present value of expected payments PVpayments is simply the sum of all the present value
of the last column.
As already mentioned above, we set the recovery rate, which is the value of the bonds after the
default, at 40%. This means that in case of default the owner of a CDS must be repaid for the
60% of the initial value of the notional principal. Furthermore, assuming that defaults always
occur halfway through a year, the default probability during a certain year, which is given by the
difference between two consecutive survival probabilities, is also the probability that a payoff occurs
halfway through a year.
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The owner’s Expected Payoff at this time can be calculated as:

Epayoff = Q(ti) · (1−R) ·N (6.10)

where:

• Q(ti) = S(ti−1)− S(ti) is the default probability through a year.

• (1−R) is the percentage repayment of the notional principal.

• N is the notional principal (in our case equal to 1).

As before, the Present Value of the Expected Payoff can be thought as the Expected payoff mul-
tiplied by a Discount Factor Ne−rf t, but in this case t is a semi-integer number, because again we
are assuming that defaults happen halfway through a certain year.
The following table resumes all the calculations:

Figure 6.4: Present value of expected payoff. [9]

The total present value of expected payoff PVpayoff is simply the sum of all the present value of
the last column.
As a final step, we consider also the accrual payment made in the event of a default. Considering
that we have assumed that defaults only occur halfway through year, the accrual payment will
always be 0.5s, where s again is the CDS spread. Multiplying it by the probability of default
halfway during a certain year (Q(ti)), we obtain the Expected Accrual Payment :

Eaccrual = 0.5s ·Q(ti) (6.11)

For its present value we just have to multiply it by a discounted factor in which t is semi-integer.
The following table resumes all the calculations:

Figure 6.5: Present value of expected accrual payments. [9]
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The total present value of expected accrual payment PVaccrual is simply the sum of all the present
value of the last column.
The total expected payments PVtotal is given by the sum of the two payment contributions:

PVtotal = PVpayments + PVaccrual (6.12)

By equating the present value of the total expected payments (which is proportional to s as can be
seen from the tables) and the present value of the expected payoff one can get the value of s which
is the CDS spread for the 5-years CDS on a certain reference entity.

s =
PVpayoff

PVtotal
(6.13)

In this specific case we obtained s = 0.0123, that is to say 123 basis points.
Note that the previous calculation has been made assuming that defaults can happen only in the
middle of the year, this gives us a good approximation, but for a better result more default times
must be taken in consideration.

The default probabilities used to value a CDS should be risk-neutral default probabilities, not
real-world probabilities, in this way we don not take into account risk-preferences in our valuation
formula. Risk-neutral probabilities can be estimated as presented in Chapter 6.
Suppose we do not know the default probabilities, but we know the CDS spread for a 5-years CDS
on a certain reference entity. We could reverse the process presented here, in order to obtain the
implied average hazard rate per year.

6.4 CDS Forwards and Options

Once the CDS market was established, it was natural for derivatives dealers to trade forward and
options on CDS spreads.

1. A Forward Credit Default Swap is the obligation to buy or sell a particular credit default
swap on a reference entity at a certain future time T . The forward contract ceases to exist if
the reference entity defaults before the maturity of the contract.

2. A Credit Default Swap Option gives the right to buy or sell a particular credit default
swap on a reference entity at a certain future time T . The option contract ceases to exist if
the reference entity defaults before the maturity of the contract.

For example, a trader could negotiate the right to buy a 5-years protection on a company starting
in 1 year for a predetermined value of CDS spread (in basis points) entering into a Call option.
If the 5-year CDS spread for the company in 1 year turns out to be more than the predetermined
value, the option will be exercised, otherwise it will not.
Similarly, a trader could negotiate the right to sell a 5-years protection on a company starting in 1
year for a predetermined value of CDS spread (in basis points) entering into a Put option. If the
5-year CDS spread for the company in 1 year turns out to be less than the predetermined value,
the option will be exercised, otherwise it will not.
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Chapter 7

Carbon Default Swap

References: [2] [10] [14] [4] [8]

In this last chapter we present a study case in which, using credit default swap spreads, we construct
a carbon risk factor and we show that carbon risk affects firms’ credit spread.
With carbon risk we refer to the negative impact of de-carbonization on corporations and equity
portfolios. It results to be larger for European firms than North American ones and varies across
industries, suggesting that the market recognizes where and which sectors are more favorable to a
low-carbon economy transition.
As a consequence of this, from a credit risk point of view, lenders will demand more credit protection
for those borrowers perceived to be more exposed to carbon risk.

7.1 Low-Carbon Transition

The transformation required to companies to achieve net-zero targets could generate sizable costs
for those sector which are unprepared and deeply carbon-dependent. This could generate significant
losses in firms’ cash-flows, leading to an economic situation which could undermine their ability to
repay debts and, in the most dramatic cases, which could lead to a high probability of default.
There are already many evidences that transition risk influences credit risk. With transition risk we
mean the risk resulting from changes in climate policy, technology, and market sentiment during
the adjustment to a low-carbon economy, and it could be codified looking to the firms’ current
carbon emission data.
It is easy to appreciate that the speed and the efficiency of this economic transition varies across
sectors, countries, and time, and so does its associated credit risk.
In particular we find that the exposure to carbon risk:

• is more prominent in Europe than in North America;

• varies substantially across industries’ sectors;

• is stronger during times in which the attention to climate change is particularly heightened;

• is more peculiar for shorter time horizons, especially in Europe, confirming that lenders expect
faster carbon improvements in Europe because of a stricter net-zero policy. Faster changes
mean larger costs, and higher firms’ credit risk.

In the following chapters we will concentrate on the carbon component of transition risk, briefly
called carbon risk, being it the most relevant one by far. Understanding the full impact of the tran-
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sition will require the measurements of entire carbon profiles as well as firms’ emissions reduction
plans. We will provide all these data for different countries and sectors.
We will finally construct a market-implied, high-frequency, forward-looking proxy for carbon risk
exposure, showing how the carbon risk affects firms’ credit spread, namely the difference between
the interest rate on the debt and the risk-free rate.
Although there is no comprehensive theoretical framework linking the low-carbon policy transi-
tion to credit dynamics, markets are already recognizing that carbon policies are causing relevant
changes in global economies, and this manifests in increased default risk or lower asset values for
firms that are pore exposed to transition risks.
Credit risk does not depend only on transition’s costs, but also on firms’ goals. A huge number of
the world’s biggest companies have committed to reach a low-carbon economy by setting emissions
intensity targets or time limits for reaching net-zero emissions. Clearly, the failure to fulfill those
self-imposed commitments may lead to reputational risks and subsequently become a credit risk.
Equally, unambitious emissions reduction strategies might become a transition risk.
To conclude, we state that markets recognize that firms’ low-carbon transition may occur at dif-
ferent times and different speeds, and this affects their valuation between the lenders.

7.2 The Strategy

The goal of this final part of the thesis is to develop a theoretical argument able to provide us a
connection between carbon risk and credit risk. In order to achieve this goal we will use the Merton
model which will illustrate us the effects of carbon transition costs on the credit spread: higher
carbon costs imply higher default probabilities and higher credit spreads.
To construct a market-implied, high-frequencies and forward-looking carbon risk factor we will use
the information contained in the daily Credit Default Swaps (CDS) spreads.
Let us remind briefly what a CDS, and a CDS spread is:
A CDS is a contract that provides insurance against the risk of a default by a certain company.
The buyer of a CDS makes periodic payments to the seller until the end of the life of the CDS or
until a credit event occurs. These payments are measured in basis points (1 basis points = 0.01%
of the principal amount).
The total amount payed, as a percent of the notional principal, to buy protection is called CDS
spread. CDS spreads are usually calculated as the difference in value between the yield y on an
n-year bond issued by a company and the risk-free rate:

CDS spread = y − rf (7.1)

We could ask ourselves why should we use CDS spreads to create a carbon risk factor. Credit De-
fault Swaps offer several advantages over other commonly used credit risk indicators like corporate
bonds or ratings. We list the most important here below:

• Credit Default Swaps respond more quickly to changes in financial market conditions than any
other debt and credit product. The reason behind this is that CDS are traded on standardized
terms: pre-specified maturity, default event, and debt seniority.

• Credit Default Swaps are more liquid than corporate bonds

• Credit Default Swaps are contracts with high tenors, even up to 30 years, as a consequence
they allow lenders to have long forward-looking considerations.

The carbon risk factor will be constructed as the difference between the daily median CDS spreads
of high-emission-intensity firms, considered as polluting, and low-emission-intensity firms, consid-
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ered as clean (emission intensity is a commonly used measure for firms carbon dependence). This
difference is extremely useful because it works as an indicator of how the market perceives the
differential exposure of polluting and clean firms to carbon risk.
When policy events (e.g. amendments or regulations) are emitted, lenders to more exposed firms
may demand for more protection. At the same time lenders to less exposed firms may demand for
less protection, and these opposite requests will widen the distance between the price of default
protection, the CDS spread, for polluting and clean companies. This kind of difference is usually
called CDS wedge. Conversely, a loosening of regulation will narrow the CDS wedge. Because of
its construction, the carbon risk factor mimics a lending portfolio in which default protection is
bought for a polluting firm and sold for a clean firm.

In the following analysis we will propose three hypothesis to study how, when, and where car-
bon risk affect more firms’ creditworthiness. In order to do so, using daily CDS data, which reflects
firms’ exposure to carbon risk, we will investigate how firms’ CDS spread returns change in response
to the carbon risk factor. We will observe this for a large number of European and North American
firms for a period from 2013 to 2019.
Subsequently, we will be able to show that under ordinary conditions carbon risk is a determinant
of credit risk, and since the carbon risk factor reflects the collective expectation of carbon risk, an
increase in the carbon risk is accompanied by more credit protection demanded by lenders.
To examine the effect of carbon risk under extraordinary conditions, namely when firms experience
large shifts in their credit spreads, we will use quantile regressions. As we expected, we will find
that the effect of carbon risk is amplified at the tails of the credit spread distribution.

In addition, further analyses to test for geographical and sectoral dependencies have been con-
ducted.
For what concerns geographical dependencies, in Europe, where climate policies are more stringent,
there is a very strong relationship between carbon risk exposure and the increase cost of default
protection. The same effect is consistently weaker in North America, where climate policies are
less stringent and more ambiguous. For example, if we consider a 5-years CDS, a one standard
deviation increase in the carbon risk factor for an European firm leads to a rise on 15 basis points
in CDS spread.
For what concerns the sectoral level, we will find out that, obviously, carbon-intensive sectors are
more affected than less carbon-intensive industries. Limiting our attention to Europe, if we again
consider a 5-years CDS, a one standard deviation increase in the carbon risk factor leads to a rise
of 84 basis points in CDS spread for an energy firm; while the same increase in the carbon risk
factor leads to an increase of 5 basis points in CDS spread for a healthcare firm. This suggest that
market recognise which sectors are better positioned for a transition to a low-carbon economy.
Another important observation we will make is that the effect of carbon risk on CDS is stronger
during times of heightened public attention to climate change. In fact, lenders appear to be more
sensitive to carbon risk when market-wide concern about climate change risk is elevated.

Finally we will provide an analyses of the temporal dimension of carbon risk, extending our un-
derstanding of when carbon risk affects firms’ creditworthiness. In particular, using information
deriving from the CDS spread curve, we will show that a shift in the expected temporal material-
ization of carbon risk, known also as carbon risk slope, positively affects the steepness of the CDS
curve slope. Also in this case we have geographical differences. In Europe, the effect on CDS spread
is particularly salient for shorter time horizons, suggesting that the market perceives carbon risk
to be a short/medium term risk. In North America we will not see the same effect, this is due to
the weak and ambiguous current climate change policies.

63



Chapter 7. Carbon Default Swap

To conclude, this last chapter will study the amplifying effect of a climate related transition on
credit risk: changes induced by a transition to a net-zero economy will cause adjustments in firms’
valuations which may contribute to the deterioration of firms’ creditworthiness, translating to higher
credit risk.
Resuming what we are going to analyze, we will show that:

• Firms with an emission-intensive business model have higher transition costs than low-carbon
firms, which lead us to conclude that carbon risk is concentrated in specific sectors, like
construction materials, fossil fuels, and utilities.

• Carbon risk can vary substantially across regions. This crucially depends on the local regu-
lations and climate change policy.

• Carbon risk is also sector-specific. After all, decarbonizing the economy will involve large-
scale structural changes. There will be sectors for which this transformation will be rapid and
will not involve high transition costs, while other sectors that will have to entirely transform
their technological basis, or alternatively disappear.

• Carbon risk perception continually changes as climate attentions evolve.

Using news and concern indexes related to carbon risk, we will empirically test in which situa-
tions lenders demand more credit protection, advancing our understanding of the effect of market
awareness and carbon risk.

7.3 From Carbon Risk to Credit Risk

The risks related to the transition to a low-carbon economy arise from uncertainties regarding the
characteristics and nature of the transformation, like the time frame of the transformation and the
speed of greenhouse gas emissions reductions.
Since the transition path cannot be observed, but can only be inferred, it is not clear which proxies
are the most appropriate.
To date, firms’ exposure to carbon risk is almost always codified using firms’ emission data. In
particular, finance literature has focused on government policies and regulations to limit carbon
emissions, approaching the pricing of carbon risk by focusing on how financial assets reflects market
concerns about the above mentioned policies.
Measuring financial effects of carbon policies is intricate. Carbon policies can affect firms in multiple
ways, both directly and indirectly. Here we list some of them:

• Carbon emissions are tied to fossil fuels, so carbon abatement regulations often translate into
higher energy costs for firms.

• High energy prices translate into higher operating costs, so lower cash-flows.

• Firms may increase their investment in research an development to reducing operating costs
in the future, but this will provide lower cash-flows in the present.

• Firms may incur greater costs through product modifications in response to changes in carbon
restrictions and consumer preferences.

Without questions, these costs could significantly affect firms’ cash-flows and financial health, un-
dermining their capacity to generate profits to repay their debt, possibly leading them to higher
probabilities of default.
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Firms’ transition to a low-carbon model can occur at different times and different speeds, depend-
ing on firms’ size, sector, geographical location, and other characteristics. Basically, firms can face
many different challenges, and carbon risk will affect them differently depending on how and where
they do their business.
To illustrate how carbon risk is connected to credit risk, we use Merton’s model for credit risk, let
us briefly remind how this model acts.

Merton proposed a model where a company’s value, which is its assets’ value minus its liabili-
ties, can be considered as a call option on the value of its assets, with debt acting as a strike price.
The firm issues two classes of securities: equity and zero-coupon bond. The equity receives no divi-
dends. The bonds represent the firm’s debt obligation maturing at time T with principal value D. If
at time T the firm’s asset value exceeds the promised payment D, the lenders are paid the promised
amount and the shareholders receive the residual asset value. If the asset value is lower than the
promised payment, the firm defaults, the lenders receive a payment equal to the asset value, and
the shareholders get nothing. The model assumes that a company will default if its assets’ value at
the maturity falls below the debt. Defining ET , VT , and D as the equity value, asset value and debt
repayment, respectively, at the maturity, we get:

ET = (VT −D)+ =

{

VT −D if VT > D

0 otherwise
(7.2)

• If VT < D at the maturity T , it is reasonable that the company declares the default. Then the
value of the equity is zero.

• If VT > D at the maturity T , the company should make the debt repayment, and the value of
the equity is VT −D.

Using the Black-Scholes-Merton pricing formula we get that the today value of the equity is:

E0 = V0Φ(d1)−De−rTΦ(d2) (7.3)

where

d1 =
ln V0

D
+ (r +

σ2
V

2 )T

ÃV
√
T

(7.4)

d2 = d1 − ÃV
√
T (7.5)

Defining D0 as the market price of the debt at time zero. The value of the asset is equal to total
value of the two sources of financing: equity and debt, so that the present value of the debt can be
expressed as:

D0 = V0 − E0 (7.6)

= V0Φ(−d1) +De−rTΦ(d2) (7.7)

Note. For a complete derivation see ”Merton Model for Default Probabilities” in Chapter
6.

Integrating carbon costs into Merton’s model we get a theoretical foundation for a straightfor-
ward translation of carbon risk into credit risk.
In presence of carbon regulations, firms’ cash-flows are reduced due to restrictions on carbon emis-
sions. As a consequence, we introduce the Carbon Tax Rate and we label it ¶: our working
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assumption is that each firm, depending on their exposure to carbon risk, pays a certain amount
¶ per unit of time, where 0 < ¶ < r. Assuming that the value of the firm’s asset Vt follows a
Geometric Brownian Motion, the dynamics of the firm value are:

dVt = Vt(r − ¶)dt+ VtÃdW
Q
t (7.8)

where WQ is a Brownian motion under the risk-neutral probability measure Q.
As we already did, under the risk-neutral probability measure Q we can use the risk-neutral pricing
valuation: today’s price of the equity can be seen as the discounted expectation value of Call
option’s future payoff. In our case:

E0 = e−r·TEQ[(VT −D)+] (7.9)

= e−r·T
[

EQ[VT · IVT>D]−DEQ[VT · IVT>D]
]

(7.10)

By evaluating separately the two pieces, exactly as we did in Chapter 3 but substituting r with
(r − ¶), we obtain:

EQ[VT · IVT>D] = V0e
(r−δ)TΦ(d1) (7.11)

EQ[VT · IVT>D] = Q[VT > D] =: Φ(d2) (7.12)

where now:

d1 =
ln V0

D
+ (r − ¶ +

σ2
V

2 )T

ÃV
√
T

(7.13)

d2 = d1 − ÃV
√
T (7.14)

Putting all together we get the relation:

E0 = e−r·TEQ[(VT −D)+] (7.15)

= e−r·T
[

EQ[VT · IVT>D]−DEQ[VT · IVT>D]
]

(7.16)

= e−r·T
[

V0e
(r−δ)TΦ(d1)−DΦ(d2)

]

(7.17)

= V0e
−δ·TΦ(d1)−De−r·TΦ(d2) (7.18)

Once again is important to remark the fact that:

• Φ(d2) := 1√
2π

∫ d2
−∞ e−

Z2

2 dZ is nothing else than the probability that the random variable Z

takes value below d1, represents the risk-neutral probability of exercising the Call option.

• V0e
−δ·TΦ(d1) is the value at time t = 0 of one unit of the asset in case of exercise, in which

we take into account the losses due to the carbon tax rate.

The market price of the debt at time zero D0 is equal to the sum of equity and debt, so its present
value can be expressed as:

D0 = V0 − E0 (7.19)

= V0 − V0e
−δ·TΦ(d1) +De−r·TΦ(d2) (7.20)

= V0(1− e−δ·TΦ(d1)) +De−r·TΦ(d2) (7.21)

= V0e
−δ·TΦ(−d1) +De−r·TΦ(d2) (7.22)
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We define the yield on the firm’s risky debt as the solution of the following equation:

D0 = De−y·T (7.23)

Equating (7.22) with (7.23) we obtain:

De−y·T = V0e
−δ·TΦ(−d1) +De−r·TΦ(d2) (7.24)

Recalling that D is the face value at the maturity of the zero-coupon bond issued by the firm,
defining D∗ its value at time t = 0, then:

D = D∗er·T (7.25)

The credit spread at time t = 0 is defined as the difference between the yield on the firm’s risky
debt and the risk-free interest rate, namely s = y − r, so by inserting the (8.25) into (8.24) we can
obtain the value of s, which is clearly dependent on ¶:

D∗e(−y+r)·T = V0e
−δ·TΦ(−d1) +De−r·TΦ(d2) (7.26)

s(¶) = y − r = − 1

T
ln

(
V0

D∗ e
−δ·T +Φ(d2)

)

(7.27)

We can now express the conditional probability of default as a function of the carbon tax rate ¶:

PD(¶) := Q(VT < D) = Φ(−d2) (7.28)

and observe that, when higher carbon-related costs materialize, firms may respond by increasing
carbon risk, in fact:

∂PD(¶)

∂¶
=

ϕ(−d2)
√
T

Ã
> 0 (7.29)

where ϕ(−d2) is a certain function of d2 after the derivation.
It is not difficult to understand that high-emitting firms (polluting firms, P) may incur greater costs
compared to low-emitting firms (clean firms, C). This is due to the fact that the first ones have to
suffer greater technological implementations, ending with the relation ¶C f ¶P .
Combining the latter with the fact that default probabilities have a monotonic relation with the
carbon tax rate, we find a link between the carbon risk exposure and the credit spread. The higher
is the carbon tax rate, which reduces the firm’s cash flow, the higher is the default probability, and
consequently higher is the demand of protection by the lenders, increasing the credit spread.
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7.4 Measuring Carbon Risk

Examining how the market perceives the firms’ exposures to carbon risk requires a measurement
of firms’ carbon profiles. The latter is commonly proxied by firms’ current emissions and emission
intensity, although it should be supplemented by firm-specific future emissions reduction targets
and strategies.
Once determined a theoretical relationship between carbon risk and credit spreads, we will analyze
the changes in the credit spreads, which reflect the evolution of market’s perception, to measure
the carbon risk. In order to do this, we will utilize the information contained in the spreads of
Credit Default Swaps contracts.
As we already mentioned, CDS contracts have three main advantages:

• CDS are traded on standardized terms (maturity, payoff, spread);

• CDS spreads respond quickly to changes in credit and market conditions;

• CDS are contracts with maturity up to 30-years, and this allows lenders to take into account
forward-looking considerations on carbon risk within different time horizons.

Example. In order to visualize what we have just said, we provide data on two polluting firms
(ConocoPhillips and Holcim AG) and two clean firms (Deere & Company and Philips NV) in North
America and Europe. For what concerns North American firms, ConocoPhillips is a multinational
corporation ranked as the 21st World’s Top 100 Polluters, while Deere & Company, the world’s
largest agricultural equipment manufacturer, has demonstrated leading practice in controlling and
reducing their emissions in recent years. For what concerns European firms, Holcim AG is a global
manufacturer of construction materials, considered as an emissions-intensive firm, while Philips
NV is a healthcare company that boasts emissions reductions through an increased use of renewable
energy.

Figure 7.1: Evolution of the 5Y-CDS spreads of ConocoPhillips (blue) and Deere & Co (orange) on the
left diagram, and Holcim AG (blue) and Koninklijke Philips NV (orange) on the right diagram. The time
period spans from 02 November 2015 to 29 February 2016. The gray-shaded area indicates the time period
of COP21 (30th Nov 2015 – 12th Dec 2015) [2].

In Figure 7.1, the CDS spreads for two pairs of companies before and after the Conference of the
Parties in Paris in 2015 (culminated with the Paris Agreement) have been plotted. It illustrates
that the difference in CDS spreads is approximately constant until the policy event. Post Paris
Agreement, the spreads diverge. This could be interpreted as the result of lenders expecting higher
carbon impacts for high-emitting firms. They demand more protection, namely more CDSs, over
the more exposed firms, ultimately paying higher spreads.
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In most studies, firms’ exposure to carbon risk is codified using their emission intensity data and
argues that high-emitting firms may incur greater costs from changes in policy and product changes
in response to changes in consumer preferences. Clearly, the size of these costs and the consequent
size of carbon risks are proportional to the size of firms’ emissions, and their rate of growth.

Following this argument, we use the information contained in the CDS spreads to construct a
proxy that reproduces firms’ carbon risk.
Our approach to construct a carbon risk factor is based on how firms’ exposure to carbon risk
changes, and it can change because of:

• changes in lenders’ expectations about the carbon exposure of different firms;

• changes in lenders’ perception of carbon risk for a specific firm over time.

Specifically, we partition the universe of firms into different groups according to their emission
intensity profile, then we subdivide them into quintiles.

Definition 22. A quintile is a statistical value of a data set that represents 20% of a given popu-
lation, so the first quintile represents the lowest fifth of the data (1% to 20%); the second quintile
represents the second fifth (21% to 40%) and so on.

Figure 7.2: Quintile representation.

We then define firms below the first quintile as clean and we collect their CDS spreads in the set:

µmt = {cm1,t; cm2,t; ...; cmn,t} (7.30)

Analogously, we define firms above the last quintile as polluting and we collect their CDS spreads
in the set:

Ãm
t = {pm1,t; pm2,t; ...; pmn,t} (7.31)

where:

• m is the tenor (maturity) of CDS contract, in our case we selected m = {1, 3, 5, 10, 30}.
• t is the in which we are looking at the data.

• {1, 2, ...n} is the number of firms we are taking into account: equal for both the set because
we divided our sample into quintiles and this implies the same number of events for each
quintile.

We obtain the median cost of default protection of clean and polluting firms by calculating
the median m-years CDS spread level for each tenor m at every time t

Cm
t = Med(µmt ) (7.32)
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Pm
t = Med(Ãm

t ) (7.33)

Finally, we introduce theCarbon Risk Factor (CR) for a given tenorm at time t as the difference
between the median CDS spreads of polluting and clean firms:

CRm
t = Pm

t − Cm
t . (7.34)

This difference represents the differential credit risk exposure of polluting versus clean firms, essen-
tially it mimics the dynamics of a portfolio in which default protection is bought for a representative
polluting company and sold for a representative clean company.
Note.We are calling it ”representative” because we are considering sets of different firms’ CDS
spreads and we are calculating its median, this is similar to have a single firm with a single CDS
spread equal to the median value.
When policy events occur, the demand for protection of more (less) exposed firms increases (de-
creases), widening the CDS wedge, which is the distance between price of default protection for
polluting and clean companies. Conversely, if the market expects a loosening of regulation, the is
a narrowing of the wedge.
These changes in perceived exposure to carbon risk are represented by the behavior of CR. We are
allowed to consider CR as a reliable proxy for lenders’ perception of carbon risk exposure.

To illustrate the relevance of CR, in Figure 7.3 and Figure 7.4 we display the evolution of CR
over time, for tenors of 1, 5, and 30 years for the universe of CDS of 34 (35) clean (polluted) firms
listed in Europe and 82 (73) clean (polluting) firms listed in North America.

Figure 7.3: Evolution of CR over time for tenors of 1 (blue), 5 (orange) and 30 (red) years for Europe. The
vertical lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively [2].
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Figure 7.4: Evolution of CR over time for tenors of 1 (blue), 5 (orange) and 30 (red) years for North America.
The vertical lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively [2].

We first examine the European case, and we observe that all CR time series (which we will call
CRs) are non-negative: lenders continually demand more (less) protection for European firms that
are perceived to be more (less) exposed to carbon risk. In this case the polluting-minus-clean credit
protection portfolio, constructed using CR, would have delivered a positive premium. Furthermore,
the graph reflects changes in lenders’ demand for default protection in response to policy-relevant
events, such as COP21, which called for more ambitious policies and plans to reduce emissions. It is
reasonable to argue that policies following this event can increase expected costs for firms that are
less prepared for a transition to a low-carbon economy, and benefit firms that are more adequately
prepared.
Observing the North American case, we can appreciate that the situation is clearly different. Until
the COP21, all CRs were continuously swinging between positive and negative values, denoting an
unclear situation in which the carbon behaviour of firms seems to not affect their creditworthiness,
probably due to a less rigid carbon regularization. Only after the COP21 the CRs turn positive,
indicating a surge in perceived exposure to carbon risk. However, this trend reverts almost imme-
diately after the election of Donald Trump, famous for being a climate change denier, indicating
that this event is associated with a decline in carbon risk. As we can see this election impacted
principally North American CRs, reflecting the limited effect of US climate policy on European
firms. As one can see, the trend of the trajectory for 30-years tenor is very unregular if compared to
the one for 1-year tenor. This reflect higher market’s concerns about new policies and regulations
for the future.

Another valuable information about carbon risk can be extracted by considering the difference
between a long and a short tenor CR over a specific time horizon t, we call it CRslopemn

t :

CRslopemn
t = CRm

t − CRn
t with m > n (7.35)
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This difference constitutes the slope of the CR factor. Conceptually, starting from a carbon risk
exposure for year n, CRslopemn

t provides information describing how the exposure to carbon risk
will be perceived over the remaining m− n years.
CRslopemn

t can take take positive and negative values, depending on how the market’s perception
of carbon risk evolves. A positive CRslopemn

t reflects expectations of a stricter carbon regulatory
framework in the next m − n years, while a negative CRslopemn

t reflects expectations of a more
permissive carbon regulatory framework.

Figure 7.5: Evolution of CR slope over time for 5-1 years (blue) and 30-5 years (orange) for Europe. The
vertical lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively [2].

Figure 7.6: Evolution of CR slope over time for 5-1 years (blue) and 30-5 years (orange) for North America.
The vertical lines refer to the Paris Agreement (dark green) and Trump election (brown), respectively [2].

The plots in Figure 7.5 and Figure 7.6 again suggest distinct conditions for Europe and North
America. The CR slope is always positive in Europe, indicating a perception of continuously
growing exposure to carbon risk: the longer the time horizon, the larger the perceived exposure to
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carbon risk in Europe. Conversely, the perceived future exposure to carbon risk in North America
varies continuously and is less clear.

Hypothesis We end up this section listing a theory-motivated series of testable hypotheses:

• Hypothesis 1 There is a positive relationship between carbon risk and CDS spread returns
In the current section, we argued that CR represents the general perception of carbon risk
exposure, such that a higher CR corresponds to a higher perceived carbon risk. We also
noticed that a firm with high exposure to carbon risk can see a decline in its valuation, a
higher probability of default, and a higher CDS spread.

• Hypotheses 2 The effect of carbon risk on CDS spread returns is stronger in Europe than
in North America
We could appreciate that carbon risk differs across regions due to the different environmental
regulations and restrictions on carbon emissions. While Europe has generally been considered
a leader in the implementation of strict carbon policies, North American countries result to
be more permissive. Consequently, one would expect firms in Europe to face higher costs.
Applying this to the Merton model, we are allowed to assume that ¶EU > ¶NA, yielding higher
expected CDS spreads for firms located and operating in Europe.

• Hypotheses 3 The effect of carbon risk on CDS spread returns is stronger during times of
heightened attention to climate change
Climate policies continually evolve within a rapidly changing social and policy environment.
As new information arrives in the market, lenders update their expectations accordingly.
Specifically, during times of heightened attention to climate change in the news, lenders will
demand more credit protection, thus increasing CDS spreads.

7.5 Data

In the following section we describe our CDS data, we introduce the variables to control for the
effects of known determinants of CDS spread return, in order to isolate the impact of carbon risk
on CDS spreads, and we report some summary statistics.

7.5.1 Credit Default Swap Spreads

We obtained [2] CDS spread data from Refinitiv for the period January 1, 2013 - December 31,
2020. The dataset covers CDS spreads for tenors of 1, 3, 5, 10, and 30 years for European and
North American companies. Each CDS was valuated in US dollars.
We adjusted our data sample excluding:

1. Firms that defaulted during the sample period;

2. Firms that exhibited illiquid CDSs, that are contracts for which no spread movement is
recorded for a minimum of 245 consecutive training days;

3. The year 2020 from our sample, in order not to have possible distorting effects due to the
COVID-19 pandemic;

4. Financial firms from the sample because of their special business model.

Conversely, we retain firms with large CDS spreads. In total our sample contains 137 European
firms and 281 North American firms.
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In order to have a more compact range of values, we took into account the log of CDS spread,
in particular we calculated the daily CDS spread log returns as:

smi,t = log
(

CDSm
i,t

)

− log
(

CDSm
i,t−1

)

(7.36)

where CDSm
i,t is the m-year CDS spread of firm i at day t.

smi,t quantifies the daily relative change in a firm’s CDS spread. The relative change
consents a straightforward comparison of credit improvement, or deterioration, across
all firms.

7.5.2 Control Variables

To isolate the impact of carbon risk on CDS spreads, we employ a series of control variables that
have been identified as determinants of CDS spreads. They can be divided into two categories:

• Firm-specific variables: stock return and stock volatility.

• Market-specific variables: general market conditions, interest rates, and term structure of
interest rates,

Remark.(control variable) Experiments attempt to assess the effect of manipulating one or more
independent variables on one or more dependent variables. To ensure the measured effect is not
influenced by external factors, other variables must be held constant. The constant variables during
an experiment are referred to as control variables.
By controlling these variables, we can isolate the carbon risk effect on firms’ default probabilities.

Stock Return: It is calculated as the difference of the log of daily stock prices:

ri,t = log
(
Si,t

)
− log

(
Si,t−1

)
(7.37)

where Si,t denotes the stock price of firm i at time t. Stock return is considered to be one of the
main explanatory variables of a firm’s probability of default. Higher is the stock return, lesser is
the firm default probability. Consequently, we expect a negative relationship between CDS spread
and stock return ri,t.

Stock Volatility: It is measured as the annualized standard deviation of a firm’s returns. The
volatility of a firm’s assets captures the general business risk of a firm and provides crucial infor-
mation about the firm’s probability of default. A higher stock return volatility means a higher
default probability. Hence we expect a positive relationship between CDS spread and changes in
stock volatility ∆Ãi,t.

Median Rated Index (MRI): It is a market condition variable that gives us information about
CDS market, in particular the perceived general economic climate. The general assumption is that
improvements in market conditions decrease firms’ probability of default and automatically lead to
lower credit spreads. In order to measure the market climate we look at the changes in the MRI,
namely the ∆MRImi,t. The MRI is defined as the median CDS spread of all firms in the S&P rating
categories (Galil et al., 2014). The MRI has a positive relationship with CDS spreads.

Carbon Risk Factor (CR): It is considered as the difference between the median CDS spreads
of polluting and clean firms. When policy events occur, the demand for protection of more (less)
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exposed firms increases (decreases), for this reason we expect a positive relationship between CDS
spread and the CR factor.

In Figure 7.7 and Figure 7.8, we present a descriptive statistics for all dependent and independent
variables under consideration in both regions. The ∆ indicates that we are calculating differences
between successive times.

Figure 7.7: Mean, 1st quartile, median, 3rd quartile, standard deviation, minimum, maximum, skewness,
kurtosis for all independent and dependent variables (no term structure variables) for Europe.[2]

Figure 7.8: Mean, 1st quartile, median, 3rd quartile, standard deviation, minimum, maximum, skewness,
kurtosis for all independent and dependent variables (no term structure variables) for North America.[2]
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7.6 Methodological Framework: Panel Quantile Regression

Linear regression has been the workhorse for many financial empirical studies, however this frame-
work turned out to give ambiguous results and to not adequately describe the relationship between
CDS spread returns and firms’ carbon exposure (Collin-Dufresne et al., 2001; Pereira et al., 2018;
Kolbel et al., 2022). For this reason we use a quantile regression (QR) approach, which allows us
to:

1. provide a more complete description of how carbon risk is linked to the conditional distribution
of CDS spread returns;

2. capture the impact of carbon risk beyond known determinants.

Quantile regression extends the classical conditional mean model (linear regression) to a model for
different conditional quantile functions, allowing us to analyze the effect of different independent
variables on the conditional distribution of the dependent variable. This is especially relevant for
credit risk, where understanding the effects on the tails of the distribution is essential.

7.6.1 Linear Regression

Linear regression is a statistical tool which estimates the linear relationship between a dependent
variable and one or more independent variables. The case of one independent variable is called
simple linear regression; for more than one, the process is called multiple linear regression.
In linear regression, the expectation value of the dependent variable is related to the independent
variables through some coefficients, called model parameters, that are estimated from the data.
Linear regression models are often fitted using the least squares approach, but they may also be
fitted in other ways.

Simple Linear Regression Given a single independent variable X, we are interested in its
influence on the expectation value of a dependent variable Y . If the relation is linear, we will have:

E[Y |X] = ´0 + ´1X + ϵ (7.38)

where ´0, ´1 are the parameters of our model, in particular:

• ´0 is the intercept of our model.

• ´1 is the angular coefficient of our model.

• ϵ is the error.

The presence of an error term can be justified by three different reasons:

1. The relation could not be perfectly linear.

2. There may be other independent variables acting on Y which we may not know.

3. There might be errors on independent variables estimation.

The most common method used to obtain those coefficients is the Ordinary Least Squares
(ODS).
Let us suppose we have N observations on yi, for every i ∈ {1, ..., N} and let us assume we believe
in model (7.42)

yi = a+ bxi + ϵi (7.39)
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with the assumption that E(yi) = a+ bxi.
Suppose that we know also the predicted values of the dependent variables ŷi, which give an
estimation of E(yi), namely:

ŷi = ˆ́
0 + ˆ́

1xi (7.40)

In the least squares approach, we seek the estimators ˆ́
0, ˆ́

1 that minimize the sum of squares of
the deviation yi − ŷi of the N observed yi from their predicted values ŷi:

S :=

N∑

i=1

ϵ2i =
N∑

i=1

(yi − ŷi)
2 =

N∑

i=1

(yi − ˆ́
0 − ˆ́

1xi)
2. (7.41)

To find the values of ˆ́
0 and ˆ́

1 that minimize S, we differentiate with respect to ˆ́
0 and ˆ́

1 and set
the result equal to zero:

∂S

∂ ˆ́0
= −2

N∑

i=1

(yi − ˆ́
0 − ˆ́

1xi) = 0 (7.42)

∂S

∂ ˆ́1
= −2

N∑

i=1

(yi − ˆ́
0 − ˆ́

1xi) = 0 (7.43)

Solving the system, we get the following relations:

ˆ́
1 =

∑N
i=1(xi − x̄)(yi − ȳ)
∑N

i=1(xi − x̄)2
(7.44)

ˆ́
0 = ȳ − ˆ́

1x̄ (7.45)

where we introduced x̄ and ȳ, namely the mean values of the dependent and independent variables.

Multiple Linear Regression We now attempt to predict the expectation value of a dependent
variable Y on the basis of an assumed linear relationship with several independent variables X1,
X2, ..., Xk, namely:

E[Y |X] = ´0 + ´1X1 + ´2X2 + ...+ ´kXk + ϵ (7.46)

To estimate the ´’s, we use a sample of N observations, indexed with the index i, on the dependent
variable and the associated independent variables.

yi = b0 + b1xi1 + b2xi2 + ...+ bkxik + ϵi (7.47)

with the assumption that E(yi) = a+ bxi.
Having N observations, we will end up with N equations for the dependent variable. We can
shortly write this system of linear equations in matrix notation as:









y1
y2
...
yN









=









1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

. . .
...

1 xN1 xN2 . . . xNk









·









b0
b1
...
bk









+









ϵ1
ϵ2
...
ϵN









(7.48)

or

y = X · b+ ϵ (7.49)
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Suppose that we know also the predicted values of the dependent variables ŷi, which give an
estimation of E(yi), namely:

ŷi = ˆ́
0 + ˆ́

1xi1 + ˆ́
2xi2 + ...+ ˆ́

kxik (7.50)

As before, using the least squares approach we seek the estimators ˆ́
0, ˆ́1, ..., ˆ́k by minimizing the

sum of squares of the deviation yi − ŷi of the N observed yi from their predicted values ŷi:

S :=

N∑

i=1

ϵ2i =

N∑

i=1

(yi − ŷi)
2 =

N∑

i=1

(yi − ˆ́
0 − ˆ́

1xi1 − ˆ́
2xi2 − ...− ˆ́

kxik)
2 (7.51)

Remember that ˆ́
0, ˆ́

1, ..., ˆ́
k give the best estimation for ´0, ´1, ..., ´k parameters in (8.50).

To find the values of ˆ́
0, ˆ́

1, ..., ˆ́
k that minimize (8.55), we could differentiate S with respect to

each ˆ́
j , set the results equal to zero, and solve the system. However, the procedure can be carried

out in more compact form with matrix notation:

ˆ́ = (XTX)−1XTy (7.52)

where ˆ́ = ( ˆ́0, ˆ́1, ..., ˆ́k).
The latter result can be obtained from an algebra theorem whose proof is not reported in this
thesis.

7.6.2 Quantile Regression

Quantile regression is a type of regression deeply used in statistics and econometrics. If linear
regression, with the method of least squares, estimates the conditional mean (the conditional
expectation value) of the dependent variable across values of the independent variables, quantile
regression estimates the conditional median (or other quantiles) of the dependent variable.
Quantile regression is an extension of linear regression used when the conditions of linear regression
are not met.
A quantile of order ³ or ³-quantile (with ³ a real number in the interval [0, 1]) is a value qα that
divides the population into two parts, proportional to ³ and 1 − ³ and characterized by values
respectively smaller and larger than qα. The quantile of order ³ is the smallest mode qα for which
the cumulative relative frequency, i.e. the sum of the relative frequencies, calculated up to qα is at
least ³. The cumulative relative frequencies following that mode will not exceed 1− ³.
In the case of a continuous probability density with cumulative distribution function F , the quantile
of order ³ is defined by F (qα) = ³. For this value, the distribution is correctly divided into two
parts proportional to ³ and 1− ³.
In the case of a discrete probability density, the quantile of order ³ is a value qα in which the sum
of the discrete probabilities is greater than or equal to ³, and the sum of the discrete probabilities
from that value onwards is greater than or equal to 1− ³.
Examples:

1. quantile of order ³ = 0.1 is that value of the distribution for which the cumulative relative
probability up to and including that value is greater than or equal to 0.1, and the cumulative
relative probability from that value, included, onwards is greater than or equal to 0.9.

2. The quantile of order ³ = 0.5 is that value of the distribution for which the cumulative
relative probability up to and including that value is greater than or equal to 0.5, and the
cumulative relative probability from that value, inclusive, in then it is greater than or equal
to 0.5.
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In general, we can called tham with different names:

• The Median is the quantile of order 1
2 , which divides the population into two equally popu-

lated parts.

• The Quartiles are the quantiles of order 1
4 ,

2
4 ,

3
4 , which divide the population into four equally

populated parts.

• The Quintiles, of order m
5 with m ∈ {1, 2, 3, 4}, are the quantiles that divide the population

into 5 equal parts.

• ...

• The Centiles, of order m
100 with m ∈ {1, ..., 99}, are the quantiles that divide the population

into 100 equal parts.

Quantile regression expresses the conditional quantiles of a dependent variable as a linear func-
tion of the independent variables. As for the conditional mean in linear regression, the conditional
quantiles can be expressed as the solution of a minimization problem.
For our purposes, we adopt the Quantile regression framework for a panel setup with firm-specific
fixed effects.
Let yi,t be the response of firm i at time t (dependent variable) and xi,t the m-dimensional vector
containing the independent variables, where i = 1, ..., N and t = 1, ..., T . We have the following
relation:

yi,t = ai + xT
i,tb+ ϵi,t (7.53)

where ai are the firm-specific fixed effects parameters and ϵi,t the error terms.
Plotting an histogram, we should be able to see the frequency with which each value of the response
of a firm yi,t appears, namely its distribution.
Let us suppose that we are interested in a fixed quantile level Ä ∈ (0, 1) of our distribution, the
conditional quantile of yi,t given xi,t can be written in the same form of (7.57), but this time
the coefficients of the regression depends on the quantile level we have chosen:

Qyi,t
(Ä |xi,t) = ³τ,i + xT

i,t´τ + ϵi,t (7.54)

Numerous estimation techniques have been established, we follow Zhang et al. (2019) and imple-
ment a two-stage approach to estimate the parameter vector ´τ . In a first stage, we run a quantile
regressions to estimate the fixed effects ³τ,i:

(

³̃τ,i, ˜́τ

)

= argmin
α̃i∈Aτ,i,β̃∈Θτ

1

T

T∑

t=1

Äτ (yi,t − ³̃i − xT
i,t

˜́) (7.55)

where Aτ,i ∈ R, Θτ ∈ Rm and Äτ = u(Ä − I{u<0}) denotes the quantile loss function. Provided T
sufficiently large, it can be demonstrated that ³̃τ,i gives the best estimation for ³τ,i. In a second
stage, we then estimate:

´τ = argmin
β∈Θτ

1

NT

T∑

t=1

N∑

i=1

Äτ (yi,t − ³τ,i − xT
i,t´τ ) (7.56)

³τ,i and ´τ obtained with this methodology provide the best estimation for the parameters of the
conditional quantile of yi,t given xi,t.

79



Chapter 7. Carbon Default Swap

7.7 Empirical Results

In this subsection, we examine the relationship between the carbon risk factor and CDS spread
returns.
Following the formalism of quantile regression, we set the CDS spread returns as the dependent
variable and we include key known determinants of CDS spread returns as the independent vari-
ables:

Qsmi,t
(Ä |xi,t) = ³τ,i + ´τ,1ri,t + ´τ,2∆Ãi,t + ´τ,3∆MRIi,t + ´τ,4∆CRt + ϵi,t (7.57)

where, for the CDS issued by firm i at time t, we took into consideration:

• firm-specific factors, namely the stock return ri,t and the volatility ∆Ãi,t;

• a common factor concerning the market condition ∆MRIi,t;

• a proxy for the carbon risk exposure ∆CRt, which stems for all the changes in carbon
related sector.

The regression was run for every decile Ä ∈ 0.1, ..., 0.9 to highlight the effect of each independent
variable on the entire conditional distribution of CDS spread returns. In this way, we are able to
model the relationship between CDS spread returns and the CR factor for firms that overperform,
underperform or behave according to the median of the conditional distribution. Basically, the
quantile regression allows us to distinctly examine the effect of each independent variable along the
entire distribution of credit spread returns and to investigate the impact of carbon risk over these
independent variables.
Firstly, we can easily observe a positive relationship between CDS spread returns and the CR
factor. This means that an increase in market’s perception of carbon risk generates a rise in the
CDS spread returns.
Then, starting from the median (Ä = 0.5) we can observe that the coefficients or the CR factor
are increasing as we move toward the first and the ninth decile. Basically, the more the state of
the firms credit deteriorates or improves, the larger the effect of CR. The effect increases almost
symmetrically. Going toward the ninth decile of the CDS spread returns distribution we can
appreciate a higher value of ∆CR coefficient, this makes sense because if CR is increasing, ∆CR is
positive, leading to an extreme positive CDS spread shock linked to the exposure to carbon risk.
Going toward the first decile we still find higher coefficients with respect to the one of the median
decile, this because if CR decrease, then ∆CR is negative, and this helps firms experiencing a
negative CDS spread shock.
We tested Hypothesis 1: there is a positive relationship between carbon risk and CDS spread
returns. In Figure 7.9 we reported the various coefficients at any different decile for tenors of 1, 3,
5, 10, and 30 years. The investigation was held in Europe and includes data of 137 European firms
from 01/01/2013 to 31/12/2019 in daily frequency.
Estimates ´τ,1, ´τ,2, ´τ,3, ´τ,4 and their errors, reported in brackets, have been calculated for all the
nine deciles and have been scaled by a factor 103.
In Figure 7.9 we reported the various coefficients at any different decile for tenors of 1, 3, 5, 10,
and 30 years. The investigation was held in Europe and includes data of 137 European firms from
01/01/2013 to 31/12/2019 in daily frequency.
Estimates ´τ,1, ´τ,2, ´τ,3, ´τ,4 and their errors, reported in brackets, have been calculated for all the
nine deciles and have been scaled by a factor 103.

80



7.7. Empirical Results

Figure 7.9: Estimation of the coefficients from the quantile regression model for 1, 3, 5, 10, and 30 years
CDS spread returns. The sample includes data of 137 European firms from 01/01/2013 to 31/12/2019 in
daily frequency. Estimates and errors (brackets) are reported for all nine deciles. All estimates are scaled
by factor 103. [2]

7.7.1 Regional Impact of Carbon Risk

Now we test Hypothesis 2: the effect of carbon risk on CDS spread returns is stronger in Europe
than in North America.
A sample of 281 North American firms from 01/01/2013 to 31/12/2019 in daily frequency has
been taken into account. Consistent with the prediction, Figure 7.10 shows a substantially weaker
relationship between CDS spread returns and the CR factor for North American firms.
For example, considering the 5Y tenor, the coefficient of CR for the median CDS spread return
(0.00004) is nearly 2,400 times smaller than its European counterpart (0.0943). Not only are
estimates considerably smaller, but also the symmetry in the effect of CR breaks off in the North
American sample. In fact, excluding the 10-years tenor, the effect on the ninth decile is at least
twice as high as the effect on the first decile, which is occasionally negative, suggesting that in
North America, credit risk exposure is particularly relevant when firms’ credit spreads deteriorate
and not when they improve.
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Figure 7.10: Estimation of the coefficients from the quantile regression model for 1, 3, 5, 10, and 30 years
CDS spread returns. The sample includes data of 281 North American firms from 01/01/2013 to 31/12/2019
in daily frequency. Estimates and errors (brackets) are reported for all nine deciles. All estimates are scaled
by factor 103. [2]

7.7.2 Sectoral Impact of Carbon Risk

Until now, we ran our quantile regressions being completely general, taking into account an Euro-
pean/North American average firm exposed to carbon risk. It is not easy to realize that certain
sectors of the economy may have a higher exposure. Empirical data identifies activities directly
related to the production of energy and emissions-intensive goods, especially steel and cement as
the most exposed categories.
In order to include these findings in our studies, we developed a more specific quantile regression
including sector representative terms and interaction terms. We regrouped firms using a
particular 9-sectors classification (Thomson Reuters Business Classification (TRBC) 2020), obtain-
ing:

Qsmi,t
(Ä |xi,t) = ³τ,i + ´τ,1ri,t + ´τ,2∆Ãi,t + ´τ,3∆MRIi,t + ´τ,4∆CRt + ϵi,t (7.58)

+

13∑

j=5

´τ,jSectorj,i +

22∑

k=14

´τ,kSectork,i∆CRm
t (7.59)
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where the terms Sectorj,i and Sectork,i indicate a specific firm i chosen among the firms belonging
to a specific sector j (or k) with j, k ∈ {0, ..., 9}.
In Figure 7.11 we report the coefficient estimates of the interaction terms for the 5-years sector
model of the European and North American samples, respectively. The 9-sectors chosen are:

• Basic Materials (BM): Companies that manufacture chemicals, building materials, and
paper products. This sector also includes companies engaged in commodities exploration and
processing.

• Consumer Cyclical (CCGS): This sector includes retail stores, auto and auto-parts man-
ufacturers, restaurants, lodging facilities, restaurants, and entertainment companies.

• Energy: Companies that produce or refine oil and gas, oilfield-services and equipment com-
panies, and pipeline operators. This sector also includes companies that mine thermal coal
and uranium.

• Healthcare: This sector includes biotechnology, pharmaceuticals, research services, home
healthcare, hospitals, long-term-care facilities, and medical equipment and supplies. Also
include pharmaceutical retailers and companies which provide health information services.

• Industrials: Companies that manufacture machinery, hand-held tools, and industrial prod-
ucts. This sector also includes aerospace and defense firms as well as companies engaged in
transportation services.

• Real Estate: This sector includes companies that develop, acquire, manage, and operate
real estate properties.

• Technology: Companies engaged in the design, development, and support of computer
operating systems and applications. This sector also includes companies that make computer
equipment, data storage products, networking products, semiconductors, and components.

• Utilities: Electric, gas, and water utilities.

Figure 7.11 shows that the coefficients ´τ,k on the interaction term between the sector and ∆CRt is
positive and highly significant for Basic Materials, Energy and Utilities. For the remaining sectors,
the coefficients are significantly smaller and, in the North American sample, can even be negative
or insignificant. These findings support what we already expected: carbon risk impacts firms’
valuation differently, and it is concentrated in specific sectors. Therefore, due to higher coefficients,
a growing difference in carbon risk exposure could translate into higher credit risk for firms in
carbon-intensive sectors. Conversely, businesses in sectors Industrials, Technology, and Healthcare
are seen as capable of providing the innovation and technologies necessary to facilitate a low-carbon
transformation, being less affected by a growing difference in carbon risk exposure.
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Figure 7.11: Estimation of the interaction terms coefficients ´τ,k from the quantile regression model for 5
years CDS spread returns. The sample includes data of 137 European firms and 281 North American firms
from 01/01/2013 to 31/12/2019 in daily frequency. Estimates and errors (brackets) are reported for all nine
deciles. All estimates are scaled by factor 103. [2]

7.7.3 Climate Change Attention

We test Hypothesis 3: The effect of carbon risk on CDS spread returns is stronger during times
of heightened attention to climate change.
For this discussion we exploited two indexes, one for Europe and one for North America:

• Transition Risk Concern (TRC) index: used for Europe, it scans Reuters News to detect
items with a European regional focus that relate to the introduction of new regulations to
curb emissions.

• Media Climate Change Concerns (MCCC) index: used for North America, it generates
an aggregate score based on the number of articles related to climate change in major US
newspapers and their tone. Because MCCC index includes news relating to physical climate
risk, we use a variant that only incorporates few topics belonging to our area of interest. The
adjusted MCCC index thereby provides daily information on the coverage and sentiment of
North American carbon-related news and excludes any physical climate component.

We then define a high-attention day for Europe (North America) as a day in which the value of the
TRC (MCCC) index is above its median.
In order to include climate change attention in our studies, we introduce a more specific quantile
regression, including a climate news term and an interaction term. To do this we construct a
new variable HCNAt (High Climate News Attention) wich takes the value 1 if the TRC (MCCC)
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is above its median at day t, indicating high attention to climate change for that day in Europe
(North America) and 0 otherwise, in formula:

HCNAt =

{

1 if TRC(MCCC) > Med{TRC(MCCC)}
0 otherwise

(7.60)

Finally, the adjusted quantile regression presents as:

Qsmi,t
(Ä |xi,t) = ³τ,i + ´τ,1ri,t + ´τ,2∆Ãi,t + ´τ,3∆MRIi,t + ´τ,4∆CRt + ϵi,t (7.61)

+ ´τ,5HCNAt + ´τ,6HCNAt∆CRm
t (7.62)

In Figure 7.12 we show up the coefficients ´τ,4 and ´τ,6 obtained for North America. As we

Figure 7.12: Estimation of ∆CR and HCNAt∆CRm
t from the quantile regression model for 1, 3, 5, 10,

and 30 years CDS spread returns. The sample includes data of 281 North American firms from 01/01/2013
to 29/06/2018 in daily frequency. Estimates and errors (brackets) are reported for all nine deciles. All
estimates are scaled by factor 103. [2]

expected, the table shows that the coefficient of the interaction term HCNAt∆CR is positive and
higher for 1-year tenor of CDS, indicating a strengthening effect of carbon risk when attention
to climate change is high. This observation is persistent across all deciles and clearly the effects
are more pronounced at the extremes of the conditional distribution. Viceversa, for tenors longer
than 3 years the coefficients start to decrease, and CDS spread returns seem to be less affected by
heightened attention to climate change. This is probably due to the general short-lived impact of
news, even though the effect of climate change attention does not completely vanish.
In Figure 7.13 we report the estimation results for Europe. What we found here is a little bit
unexpected and less clear. While attention to climate change seems to be relevant for higher
tenors (especially for 3-years and 10-years tenors), news about adjustments in European carbon
regulations seems to be irrelevant for 1-year tenor CDS spread returns. This contradicts the third
hypothesis, however it is consistent with the findings that the effect of carbon risk on CDS spread
returns for the 1-year tenor is substantially large. When market-wide concern about climate change
risk is elevated, lenders appear to only be more sensitive to carbon risk for longer tenors.
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Figure 7.13: Estimation of ∆CR and HCNAt∆CRm
t from the quantile regression model for 1, 3, 5, 10,

and 30 years CDS spread returns. The sample includes data of 137 European firms from 01/01/2013 to
31/12/2019 in daily frequency. Estimates and errors (brackets) are reported for all nine deciles. All estimates
are scaled by factor 103. [2]

7.8 Summary

The process of decarbonization due to net-zero carbon emissions policies surely requires a huge
economic transformation, and these changes can generate large costs with consequential risk of
default, especially for firms that are unprepared for the transition. In order to understand the
impact of these transformations we need measure firms’ carbon risk exposure.
Theoretical arguments indicate that firms’ exposure to carbon risk might be detected in their credit
spreads. Therefore, we exploited the information contained in CDS spreads to construct the CR
factor: a market-implied forward-looking proxy for carbon risk exposure. In this last chapter we
proposed a method for constructing this proxy for carbon risk exposure and studied how it affects
firms’ creditworthiness. In particular, we found out a positive relationship between this proxy
for exposure to carbon risk and firms’ cost of default protection. The observed relationship was
significantly stronger in Europe, more stringent in carbon regulations, than in North America.
Using quantile regressions, we showed that the magnitude (coefficients) of the exposure to carbon
risk differs considerably along quantiles of the distribution of CDS spread returns.
We found out that exposure to carbon risk also varies across industries. While we observed a
high sensitivity to carbon risk in the CDS spreads of carbon-intensive sectors (like Energy, Basic
Materials, Utilities), other sectors (like Industrials, Technology, Healthcare) seems to be better
suited to a low-carbon transformation.
Further analysis suggested us that the effect of carbon risk on CDS spread returns is stronger during
times of heightened attention to climate change news. During these periods, lenders demand more
credit protection for those borrowers perceived to be more exposed to carbon risk. These results
provide some quantitative assessment of carbon risk economic impact. In particular, they suggest
that an improvement in current carbon emissions disclosures and emissions reduction strategies
would facilitate better assessment of firms’ carbon and credit risk.
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[2] Alexander Blasberg, Rüdiger Kiesel, and Luca Taschini. Carbon default swap–disentangling
the exposure to carbon risk through cds. Available at SSRN 3856993, 2021.

[3] Giorgia Callegaro and Marzia De Donno. Stochastic calculus. Lecture Notes, 2015/2016.

[4] John Y Campbell. Some lessons from the yield curve. Journal of economic perspectives,
9(3):129–152, 1995.

[5] Abdelmoula Dmouj. Stock price modelling: Theory and practice. Masters Degree Thesis,
Vrije Universiteit, 2006.

[6] Claudio Fontana. Mathematics for financial risk and derivatives. Lecture Notes, 2021/2022.

[7] Erwin Frey and Klaus Kroy. Brownian motion: a paradigm of soft matter and biological
physics. Annalen der Physik, 517(1-3):20–50, 2005.

[8] John Hull, Izzy Nelken, and Alan White. Merton’s model, credit risk, and volatility skews.
Journal of Credit Risk Volume, 1(1):05, 2004.

[9] John C Hull and Sankarshan Basu. Options, futures, and other derivatives. Pearson Education
India, 2016.

[10] Roger Koenker. Quantile regression, volume 38. Cambridge university press, 2005.

[11] Francesco Mainardi and Paolo Pironi. The fractional langevin equation: Brownian motion
revisited. arXiv preprint arXiv:0806.1010, 2008.

[12] Albert P Philipse. Brownian motion. Undergraduate lecture notes in physics, 2018.

[13] Krishna Reddy and Vaughan Clinton. Simulating stock prices using geometric brownian mo-
tion: Evidence from australian companies. Australasian Accounting, Business and Finance
Journal, 10(3):23–47, 2016.

[14] Alvin C Rencher and G Bruce Schaalje. Linear models in statistics. John Wiley & Sons, 2008.

[15] Viktor Stojkoski, Trifce Sandev, Lasko Basnarkov, Ljupco Kocarev, and Ralf Metzler. Gen-
eralised geometric brownian motion: Theory and applications to option pricing. Entropy,
22(12):1432, 2020.
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