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river subtracted for its 

own presence a river run 

aground secretly working 

as all rivers the double 

edge of every beginning 

blacked out in concrete pipes 

where flood is defenceless 

where water level the difference 

digging the foundation it’s 

as though no-one remembers 

the water the ground is full 

of it pumped out only to 

rise up through the mud alive. 

By Skoulding (2019)



iv 
 

INDEX 

LIST OF FIGURES ............................................................................................................... vi 

LIST OF TABLES ................................................................................................................. vi 

1. INTRODUCTION .......................................................................................................... 1 

1.1. Background and motivation ................................................................................................... 1 

1.2. Problem statement ................................................................................................................. 3 

1.3. Objectives and significance of the research .......................................................................... 4 

1.4. Scope and limitations of the research ................................................................................... 5 

1.5. State of the art ........................................................................................................................ 6 

4.2.3. An Overview of Flood Hazard Mapping ......................................................................... 6 

1.5.2. Multi-Criteria Decision Analysis ..................................................................................... 9 

1.5.3. Case Studies .................................................................................................................. 13 

2. GEOGRAPHICAL AND HISTORICAL CONTEXT .............................................................. 19 

2.1. The study area: a brief geographical description ................................................................ 19 

2.2. Flood pattern in the Upper Nile plain and history of floods ............................................... 23 

2.2.1. Flood Pattern in the Upper Nile Plain .......................................................................... 23 

2.2.2. History Of Floods: A Geohistorical and Anthropological Perspective ........................ 24 

3. DATA ACQUISTATION AND ANALYSIS METHODS ....................................................... 29 

3.1. Criteria identification and data sources .............................................................................. 29 

3.3.1. Flood Influencing Factors ............................................................................................. 31 

3.2. Analytical hierarchy process ................................................................................................ 37 

3.3.1. Aggregation of Experts’ Judgements and the Pairwise Comparison Matrix .............. 37 

3.2.2. Matrix Consistency ....................................................................................................... 39 

3.3. Weighted overlay analysis and flood hazard index ............................................................. 41 

3.3.1. Classification of Thematic Layers ................................................................................. 41 

3.3.2. Flood Hazard Index ....................................................................................................... 42 

3.4. Validation of flood hazard index .......................................................................................... 43 

4. RESULTS ................................................................................................................... 47 

4.1. Flood Hazard mapping .......................................................................................................... 47 

4.2. Flood influencing factors ...................................................................................................... 47 

4.2.1. Distance to Rivers ......................................................................................................... 47 

4.2.2. Topographic Wetness Index ......................................................................................... 48 

4.2.3. Drainage Density........................................................................................................... 48 

4.2.4. Land-coverage (LULC) ................................................................................................... 50 

4.2.5. Rainfall .......................................................................................................................... 50 



v 
 

4.2.6. Elevation ....................................................................................................................... 52 

4.2.7. Slope .............................................................................................................................. 52 

4.2.8. Soil Type ........................................................................................................................ 53 

4.3. Flood hazard index ............................................................................................................... 54 

4.4. Validation results .................................................................................................................. 55 

4.5. Flood hazard zones (FHZ) ..................................................................................................... 56 

5. DISCUSSION .............................................................................................................. 61 

6. CONCLUSION ............................................................................................................ 65 

7. BIBLIOGRAPHY ......................................................................................................... 67 

8. WEBLIOGRAPHY ....................................................................................................... 77 

ACKNOWLEDGEMENT...................................................................................................... 78 

ABSTRACT ....................................................................................................................... 79 

SOMMARIO ..................................................................................................................... 80 

APPENDIX ....................................................................................................................... 81 



vi 
 

 

LIST OF FIGURES 

FIGURE 1. A SCHEMATIC GRAPHIC DEPICTING FLOOD HAZARD MODELLING TECHNIQUES. ............................................................. 9 
FIGURE 2. GEOGRAPHICAL LOCATION OF THE STUDY AREA. .................................................................................................. 20 
FIGURE 3.   LAND COVER TYPES OF UPPER NILE STATE ........................................................................................................ 22 
FIGURE 4. LOCATION MAP OF METEOROLOGICAL STATIONS WITHIN THE STUDY AREA. ............................................................... 31 
FIGURE 5. DISTRIBUTION OF HYDROLOGICAL BASINS AND HYDROGRAPHY IN THE STUDY AREA. .................................................... 34 
FIGURE 6. FLOWCHART OF THE ADOPTED METHODOLOGY FOR FLOOD HAZARD SUSCEPTIBILITY MAPPING. ..................................... 36 
FIGURE 8. THEMATIC MAPS OF CRITERIA USED TO GENERATE FLOOD HAZARD INDEX FOR THE STUDY AREA. .................................... 49 
FIGURE 9. THEMATIC MAPS OF CRITERIA USED TO GENERATE FLOOD HAZARD INDEX FOR THE STUDY AREA. .................................... 51 
FIGURE 10. THEMATIC MAPS OF CRITERIA USED TO GENERATE FLOOD HAZARD INDEX FOR THE STUDY AREA. .................................. 53 
FIGURE 11. DIGITAL MAP OF THE FLOOD HAZARD INDEX. .................................................................................................... 55 
FIGURE 12. FLOOD HAZARD SUSCEPTIBILITY AND ZONING MAP FOR UPPER NILE STATE. ............................................................ 58 
FIGURE 13.  SATELLITE IMAGERY BASED HISTORICAL INUNDATION MAP .................................................................................. 59 

LIST OF TABLES 

TABLE 1. LITERATURE ON DIFFERENT FLOOD HAZARD MODELLING TECHNIIGUES ....................................................................... 17 
TABLE 2. CHRONOLOGICAL ORDER OF MAJOR HISTORICAL FLOOD EVENTS............................................................................... 24 
TABLE 3. CONVENTIONAL (VECTOR) AND REMOTE SENSING (RASTER) DATA SOURCES. ............................................................... 29 
TABLE 4. 1- 9 SCALE OF IMPORTANCE ............................................................................................................................. 37 
TABLE 6. CONSOLIDATED GEOMETRIC WEIGHTED MEANS OF THE EXPERT’S JUDGEMENT. ........................................................... 38 
TABLE 7. NORMALISED PAIRWISE COMPARISON MATRIX OF FLOOD INFLUENCING FACTORS (CRITERIA). ......................................... 39 
TABLE 8. NON-NORMALISED AND NORMALISED PRINCIPAL EIGENVECTOR WEIGHTS OF EACH FLOOD INFLUENCING FACTOR. ............. 39 
TABLE 9. COMPUTATION OF THE PRINCIPAL EIGENVALUE 𝝀𝒎𝒂𝒙 TO DETERMINE THE INFLUENCE OF EACH CRITERION. .................... 40 
TABLE 10. RANDOM  INDICES FOR VARYING SET OF CRITERIA ............................................................................................... 40 
TABLE 11. WEIGHTS, CLASSES WIDTH AND RANKS ASSIGNED TO FLOOD INFLUENCING FACTORS (CRITERIA) .................................... 42 
TABLE 12. CLASSIFICATION OF FLOOD HAZARD ZONES ........................................................................................................ 56 
TABLE 13. VULNERABILITY OF LAND USE /LANDCOVER CLASSES IN EACH FLOOD HAZARD ZONE. .................................................. 58 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. INTRODUCTION 

1.1. Background and motivation 

Floods1 are among the most ruinous of all natural hazards, conceded to have devastating, 

immeasurable, and often irreversible impacts. Accounting for one-third of all global natural 

disasters both in terms of frequency and economic effects (Berz, 2000), floods do inflict severe 

damages to physical, social, and economic structures, resulting in the disruption of livelihoods 

around the globe. Statistics from the Emergency Events Database (EM-DAT) curated by the 

Centre for Research on the Epidemiology of Disasters (CRED) in Brussels shows that, over the 

last decade alone, there were a total of 1,733 flood events globally (www.emdat.be), 

impacting an average of 69.43 million individuals (Ritchie et al., 2022). Analysis of trends has 

further revealed that the number of major flood events has increased significantly over the 

past decades (Milly et al., 2002; Najibi & Devineni, 2018). Moreover, future projections suggest 

that the present trend is likely to take an upward trajectory toward more frequent and intense 

flood events throughout the twenty-first century (Hirabayashi et al., 2008; Kundzewicz et al., 

2014; Hirabayashi et al., 2021). 

While it is evident that the count of fatalities resulting from flood disasters has exhibited 

decreased when contrasted with figures recorded per flood event during the  1980s and 1990s 

(Kourgialas & Karatzas, 2011), the current increase in the frequency and severity of flood 

disaster, mainly due to climate change-induced climate variations and extreme weather events 

(Visser et al., 2014), as well as anthropogenic interventions; these are, change in land use, 

urban growth, and alteration of water courses among other interventions,  have raised alarms 

about the complex impacts floods disasters can have on health, the environment, and socio-

economic development, particularly of vulnerable nations and communities as well as the 

pressing need for initiative to reduce these adverse effects and the possible dangerous 

consequences. To mitigate the possible dangerous consequences of flood disasters, it becomes 

important to recognise that the present trend and future flood hazards scenarios necessitates 

a comprehensive spatial and temporal information regarding the inherent risk associated with 

flooding (Ouma & Tateishi, 2014).  

 
1 “The unusual accumulations of the water above the ground caused by high tide, heavy rain, melting snow or 
rapid runoff from artificially paved areas” (Michael, 2006, p.205).  

https://www.emdat.be/
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Many countries possess a well-defined legislative framework and legal provision governing 

the practice of flood hazard and risk mapping (Degiorgis et al., 2012). The oldest known among 

these legislative measures is the Flood Disaster Protection Act of 1975, which acknowledged 

the significance of flood hazards and mandated the delineation of floodplains and associated 

hazard zones in the United States of America. Contemporary examples include the EU Floods 

Directive (2007/60/EC), which mandates member state to produce maps detailing flood 

hazards and risks, the South African Disaster Management Act No. 57 of 2002–to mention a 

few. These forms of regulatory framework represent an indispensable component of flood risk 

management. They encompass not just the creation and a regular upkeep of flood hazard and 

risk maps but also establish standardised methodologies, data sources, and reporting 

mechanisms. These measures are vital in upholding the precision, reliability and comparability 

of flood hazard and risk maps in facilitating well-informed decision-making (Cirillo & Albrecht, 

2015), taking into account the three main components of flood risk management – risk 

analysis, risk assessment, and risk reduction (Schanze, 2006). 

However, while flood hazard mapping and modelling is an integral part of an integrated 

flood risk management that addresses both the probability and consequence of floods and is 

widely applied in most developed countries, the situation differs significantly in developing 

countries. “Flood disaster management in developing countries is mostly reactive responding 

to prevailing disaster situations–emergency response and recovery” (Islam et al., 2016, p. 31). 

Despite the growing recommendation for integrated risk-based management that entails a 

thorough understanding of flood hazards and vulnerabilities, in general sense, investments in 

developing countries tend to emphasis on post-disaster recovery rather than the 

establishment of proper adaptive capacities (Mirza, 2003). 

Flood hazard mapping remains relatively less prevalent in developing countries–a 

circumstance attributed to many factors. One of these factors as highlighted in the  literature, 

is the absence of quality dataset (Nkwunonwo et al., 2020). Although the advancement in 

geospatial and remote sensing technologies exemplified by the lunch of sentinel-1 satellite 

that provides radar-based images for flood hazard mapping along other functions, globally 

available topographic data such as Shuttle Rader Topographic Mission (SRTM), and particularly 

for Africa, the African Regional Data Cube2, offers viable remedies to address the challenge of 

 
2 The African Regional Data Cube is an initiative launched in 2018 and overseen by the Global Partnership for 
Sustainable Development Data (GPSDD) to confront the challenge of data scarcity through the support and 
provision of quality geospatial data and capacity building in five African countries: Ghana, Kenya, Senegal, Sierra 
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data paucity, “the limited availability of data and limited access to data are still prevailing issues 

which now prompt the need for enterprise investment and political discussions” (Nkwunonwo 

et al., 2020, p. 4). Furthermore, accompanying these challenges is the deficiency in technical 

expertise and the inadequate infrastructure to efficiently access and harness the potential 

advantage offered by these datasets–obstacles that are caused  by multitude of factors ranging 

from insufficient funding to political influence (ActionAid, 2006).  

Similar to many developing nations, South Sudan faces a significant absence of institutional 

directives concerning flood hazard mapping.  The lack of flood hazard maps stems from factors 

such as deficiency in technical expertise, limited access to or lack of high-quality dataset, and 

inadequate resources allocation. These factors collectively have negatively impacted the 

effectiveness of flood risk mitigation strategies in the country.   

To this end, this study addresses this critical challenge with specific focus on the Upper Nile 

state in the northeastern part South Sudan. This study adopts an integrated approach that 

harnesses the capabilities of geographic information system (GIS), analytical hierarchy process, 

remote sensing derived parameters, conventional data, and experts’ judgment for flood 

hazard susceptibility mapping. The primary objective of the study is to gain a clear 

understanding of the spatial distribution of flood hazard and the various contributing factors 

that underlie flood occurrence in the Upper Nile state. Seeking to bridge the existing 

knowledge gab, the generated map is anticipated to provide invaluable insights for improved 

flood risk management strategies for Upper Nile state.  

1.2. Problem statement  

South Sudan has experienced a variation in climatic pattern in the past years, ranging from 

severe drought to periods of above-average rainfall. According to a recent report from the 

Greater Horn of Africa Climate Outlook Forum,  there has been a notable increase in annual 

average rainfall across the Horn of Africa, with all regions anticipated to continue  experiencing 

above average rainfall in the years ahead (GHOACOF, 2023). The increase in rainfall, both in 

neighbouring countries and in local context, exerts a substantial influence on the annual 

 
Leone, and Tanzania. At present, the initiative is under transition from country-specific–donating the five 
countries mentioned above–to a broader continental scale known as Digital Earth Africa. Through this transition, 
the initiative is anticipated to deliver a wide array of solutions encompassing high quality geospatial data, advance 
tools, and the acquisition of essential skills to achieve the sustainable development goals in African countries 
(www.digitalearthafrica.org).  

https://www.digitalearthafrica.org/african-regional-data-cube#:~:text=The%20ARDC%20was%20a%20prototype,the%20application%20of%20this%20technology.
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discharge of the River Nile (Moon & Hannachi, 2021). Consequently, this intensifies the 

occurrence of seasonal fluvial and pluvial floods.  

Indeed, the last three years have witnessed unusual incidence of flood throughout South 

Sudan, with the Upper Nile Region (Jonglei State, Unity, Upper Nile, and Pibor Administrative 

Area) experiencing the most substantial impact. The increase in the frequency and magnitude 

of flood events has resulted in considerable upheavals within the local communities, causing 

substantial population displacement. Moreover, the adverse impacts of flooding have been 

exacerbated due to the absence of holistic flood risk reduction strategies.  The existing 

measures aimed at addressing the challenges of flood disaster are primarily reactive in nature, 

concentrating on responding to ongoing disaster scenarios.  

Although it is acknowledged that the occurrence of flood hazards cannot be prevented, as 

Rahman et al. (2019) noted, the resultant damages and the adverse effects of flooding can be 

mitigated, or at the very least substantially reduced through the precise pre-identification of 

flood-prone areas before the onset of flooding events. As such, it is fundamental to assess the 

susceptibility of Upper Nile state to flood hazards and identify the levels of risk associated with 

flooding in various areas within Upper Nile state.  This assessment is a crucial component upon 

which to formulate measures and strategies aimed at mitigating flood-related risks. 

1.3. Objectives and significance of the research  

This study focuses on the understanding of the geographic extent of floods and the impact of 

various factors contributing to flood events in the Upper Nile state. Its primary goal is to 

meticulously evaluate and identify areas within the study that probabilistically may experience 

inundation in the event of flood occurrence. In other words, the study examines the potential 

spatial extent of floodwater within the boundaries of study area during flood scenarios. 

Through a cartographic approach, the study specifically aims to delineate the study area into 

five distinctive zones contingent upon their probability of being submerged during flood 

events. Herein, and depending on the unaccounted variable of flood water volume, the study 

classifies areas that may experience inundation with minimal increase in the volume of water 

inflow, mainly due to its localised topographical, hydrological, and climatic characteristics as 

very highly and highly susceptible to flood hazard; and conversely, areas that may not 

experience inundation as having a very low or low susceptibility rate. Therefore, using GIS-
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Based multi-criteria decision-making and the analytical hierarchy process, the study addresses 

several key inquiries, including: 

• Identification of factors influencing flooding events in the Upper Nile state; 

• determination of the relative importance of the factors in flood hazard mapping; 

• determination of flood susceptibility level in the Upper Nile state of South Sudan, 

ranging from very low to very high susceptibility level to flood hazards (FHZs); 

• and the examination of the type of land use/land cover that falls within various zones 

with different susceptibility level to flood hazards.  

Given these considerations, this study aims at providing a clear information on the 

potential flooding zones in the Upper Nile state, with the ultimate objective of [1] developing 

flood hazard map for Upper Nile state, that [2] assesses the risk level of various areas and [3] 

provides a detailed analysis of the various land use types at the risk of flood hazards. By 

implementing the first component of flood risk assessment–identification of areas prone to 

flood hazards and level of exposure–, the outcome of the study is expected to be an invaluable 

instrument for the formulation of pre-flood preparedness measures and risk mitigation 

strategies. 

1.4.  Scope and limitations of the research 

An in-depth comprehension of flood hazards constitutes a fundamental component in 

addressing flood-related disasters and associated risks. A thorough apprehension of flood 

hazards and the development of impactful mitigation and adaptation strategies thus requires 

a detail information on the spatial and temporal dimensions of the hazard. These entails the 

examination of the geographic extent of the hazards, including scope and boundaries of 

inundation; topographical, hydrological, and anthropogenic factors influencing flood 

occurrence; frequency and depth of flood hazard, including the intensity and volume of 

Surface runoff; as well as the exposure and vulnerability level of various entities. 

Although these elements are interconnected and all together forms the basis of integrated 

flood risk management, the current study is centred solely on assessing the potential 

geographic extent of flooding in the study area, with specific emphasis on delineating areas 

susceptible to flood hazards. 

The study lacks an incorporation of the temporal dimension in evaluating flood hazards, 

specifically, the identification of elements such as frequency, intensity, depth, and volume of 
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surface runoff. These have been excluded from the analysis due to their dependence on 

extensive datasets such as annual peak discharge records and flood flow frequency guidelines 

both which are lacking for the area under investigation mainly due to limited historical 

observational data, and institutional constraints.  

Despite the attempt to encompass the vulnerability and exposure components within the 

evaluation of flood hazard in this study, it is crucial to acknowledge that this attempt is 

particularly without depth and is centred only on the different types of land use/ land-cover 

that are potentially susceptible to inundation during flood scenarios. Therefore, it is imperative 

to view this study as a guide for future research endeavours that systematically account for 

the temporal dimension of flood hazards as well the vulnerability of the local population to 

flood disaster and related risks in the Upper Nile state.  

1.5. State of the art 

4.2.3. An Overview of Flood Hazard Mapping  

In flood risk management3, the basic and yet crucial element of evaluating flood hazards 

involves drawing upon historical flood records, hydrological, meteorological, and 

topographical information, a comprehensive spatial and temporal details on the potential risk 

of flooding. This processes known as flood susceptibility mapping and flood frequency analysis 

4 is an integral component of flood risk analysis5 within the broader frame of flood risk 

management. The first aspect known as flood hazard mapping, facilitates the precise 

delineation of the spatial extent of potential flood hazards, and the spatial distribution of 

related risk. Recognising its critical importance, the identification of the spatial extent of flood 

hazards, coupled with the implementation of appropriate mitigation measures, has the 

potential to greatly reduce the impact of flood events. As such, flood hazard mapping and 

flood hazard maps play a crucial role in various management practices, including land use 

 
3 “A holistic and continuous societal analysis, assessment and reduction of flood risk” (Schanze, 2006 p.4). 
4 “Flood susceptibility mapping can be defined as a quantitative or qualitative assessment of the classification, 
area, and spatial distribution of flood, which exists or potentially may occur in an area” (Rahman et al., 2019). 
Whereas flood frequency analysis is “a technique commonly used to relate the magnitude of extreme runoff or 
river flow events to their frequency of occurrence through the use of probability distribution functions” (Moges 
& Taye, 2019, p. 386). 
5  Flood risk is defined as the likelihood of adverse outcomes resulting from floods and is contingent upon the 
exposure of elements at risk to flood hazards. flood risk analysis on the other hand, is the determination of past, 
current or – based on proposed activities or uncontrollable trends (global change) – future risks (Schanze, 2006). 
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planning, water resources planning, the development of early warning systems, and the design 

of emergency response strategies in the event of flooding (Naulin et al., 2013; Zhang & Chen, 

2019; Allafta & Opp, 2021).  

Over the past and in recent years, significant efforts have been devoted to understanding, 

forecasting, and analysing flood hazards and the underlie adverse effects across various scales, 

spanning from a single structure to neighbourhoods, cities, regions and even the global scale. 

The systematic effort within the research community have resulted into the development of a 

variety of modelling techniques, significantly improving the capability of flood hazard mapping 

(Teng et al., 2017). Various types of models have been proposed by researchers to assess flood 

hazards and according to Mudashiru et al. (2021), these models can be classified into three 

broad categories: namely, the physically-based, physical modelling, and empirical methods,  

illustrated in Figure 1.  

1.5..1. Physically-Based Modelling 

The Physically-based modelling are numerical techniques that reproduce the physical process 

of water flow using various data inputs, such as hydrological parameters, river network 

geometry, topographic information, and remote sensing data to stimulate hydrological 

processes contributing to flood events (Mudashiru et al., 2021). Physical-based modelling 

consist of numerical models, often referred to as hydrodynamic models that uses measurable 

variables and variables defined by time and space to solve flow equation in 1-, 2-, and 3-D 

dimensions by applying the principles of physics–mass, energy, and momentum. Numerical 

models are widely use in stimulating flood dynamics, flood forecasting and scenario analysis, 

and can mitigate numerous limitations associated with the physical and empirical models due 

to their utilisation of inputs having physical interpretation (Devia et al., 2015). For instance, 

unlike empirical models, physically-based models offer the flexibility to adjust their input 

variables, enabling the evaluation of impacts resulting from changes in initial conditions, 

boundary conditions or topographic data, thereby integrating changes in hydraulic features or 

structures (Teng et al., 2017). However,–a challenge commonly encountered when modelling 

physical processes–there is empirical evidence indicating error and uncertainty associated 

with physically-based models in deriving model parameters from terrain (Y. Chen et al., 2016), 

and substantial differences in modelling outcomes (Neelz & Pender, 2013), as well as the 

limitation of these models in reproducing the intricate dynamics of complex flows (Carmo, 

2020). 
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1.5.1.1. Physical Modelling 

Physical modelling represents resource-intensive experimental techniques with the capacity 

to retrospectively analyse historical flood events and predict the extent of future flood events 

(Mudashiru et al., 2021). This is achieved through the application of precise equations that are 

systematically solved to stimulate real-world flood scenarios experimentally. Physical 

modelling methods were widely used in flood hazard mapping up until the 1970s. However, 

the high cost implication, time, and experimental demands of this modelling techniques 

coupled with the advancement of robust numerical models capable of replicating the physical 

aspect of fluid flow have driven the transition from physical models to numerical models 

(Bellos, 2012). The application of numerical models to depict physical processes have greatly 

diminished the necessity for physical models. The shift to numerical models, however, does 

not signify the abandonment of physical modelling. As Bellos (2012) noted, a numerical model 

cannot be deemed validated unless it has been subjected to comparison with at least one 

experiment. As such, physical models are still in use as benchmark test for numerical models 

as well as for practical aspect where the studied phenomenon cannot be stimulated 

numerically.  

1.5.1.1. Empirical Methods 

Empirical modelling techniques represents data-driven models that exclusively relies on 

observational data (Devia et al., 2015). These models use mathematical equations derived 

from simultaneous input and output time series, as opposed to the physical process within a 

catchment, and their applicability is limited to the catchment boundaries. Based on their 

respective approaches, empirical models can be classified into quantitative and qualitative 

methods. The quantitative empirical models are based on the numerical expression between 

flood occurrence and flood controlling/contributing factors (Wang et al., 2011), while 

qualitative models depends on experts’ opinion.  Conversely, certain qualitative approaches, 

such as the Multi-Criteria Decision Analysis that involve the empirical derivation of ranks and 

weights can become semi-quantitative in nature. further classification of empirical models 

encompasses the statistical methodologies which includes bivariate (Costache, 2019) and 

multivariate (Tien Bui et al., 2019) models, machine learning (Rahman et al., 2019) and the 

artificial intelligence approaches, and the Multi-Criteria Decision (Allafta & Opp, 2021) 

Analysis, which is utilised in this study and will be extensively elaborated upon in the next 

subsection. “Flood prediction through empirical modelling strives to create a connection 

between the physical processes which encompasses flood generation through regression 
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equations and parameters that are capable of evaluating flood frequency analysis or flood 

spatial extent” (Mudashiru et al., 2021, p. 8). This is accomplished through the utilisation of 

wide range of data sources, including hydrological, topographical, geomorphological and 

Digital Elevation Models (DEM), often obtained using remote sensing techniques and 

subsequently processed within Geographic Information System (GIS) environment (Wang et 

al., 2018).  

 

Figure 1. A schematic graphic depicting the methodological process encompassing the three categories of flood 
hazard modelling techniques. 

1.5.2. Multi-Criteria Decision Analysis  

Multi-Criteria Decision Analysis (MCDA) is a collection of decision-making approaches that 

involves set of alternatives used in solving complex decision problems of conflicting and 

incommensurate evaluation criteria (Malczewski, 2006; Malczewski & Rinner, 2015; de Brito & 

Evers, 2016).  MCDA enables decision-makers to integrate multiple information thereby easing 

decision-making processes, typically resulting in a set of weights linked to range of objectives. 

A multicriteria decision problem relies on three fundamental components; these are, 

‘decision-making entity’ which holds the responsibility of making decision and can be an 

individual, a collective group or an organisation, ‘criteria’ that have properties (comprising of 

attributes and objectives) to depict the multifaceted nature of the decision context, and 
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‘decision alternatives’, which present different courses of action from which the decision-

making entity is obliged to select. These components along with other fundamental principles, 

– value scaling, criterion weighting, and combination rule6 – serves as foundational elements 

upon which the methodologies for addressing spatial and non-spatial multicriteria problems 

are constructed.  

The development of GIS-MCDA paradigm, related methods, and models, find it origin in 

two distinct research traditions (Malczewski & Rinner, 2015). These research traditions are 

Operation Research, a discipline known for the application of mathematical-based problem-

solving methods and approaches in decision making, and landscape architecture and spatial 

planning, a discipline characterised by its systematic approach in examining physical and non-

physical conditions, and the application of scientific principles in the planning, designing, and 

managing of natural and built environments. Within Operation Research tradition, the 

contributions of F.Y. Edgeworth and V. Pareto i.e., the introduction of an approach for 

combining conflicting criteria into a single evaluation index, and Pareto’s introduction of the 

notion ‘efficiency’ as pointed out by Malczewski and Rinner (2015),  serves as the early 

foundation of today’s GIS-MCDA. Furthermore, Von Neumann and Morgenstern (1947) 

introduction of ‘expected utility theory’ and ‘axiom of rationality’, Churchman et al. (1957) 

application of simple additive weighting methods in solving multicriteria problem, Roy (1968) 

and related associates’ development of  MCDA method based on the idea of outranking 

relations,  set a foundation for early MCDA Approaches.  

In the field of landscape architecture and spatial planning, the earliest contributions can 

be attributed to American architects, notably, C. Eliot and W. Manning during the later part of 

nineteenth century and earlier decades of the twentieth century (Collins et al., 2001). Their 

exposition of the overlay technique, along with the application of the method on hand-drawn 

maps, which was later advanced by McHarg (McHarg, 1969) through the use of transparent 

map overlay approach to land-use suitability analysis constitute the foundational stages in the 

development of complex GIS-MCDA methodologies.  

 
6 In MCDA methods, the criteria used for evaluating alternatives are required to be standardized. This is achieved 
through a process known as ‘value scaling’ in which row data is converted into comparable units. Once each 
criterion has been transformed, it is assigned a weight (criterion weighing) that represents its relative importance. 
Following ‘combination rule’, these weighted criteria are then integrated with information about the alternatives 
and the deciding entity’s preference, resulting in an overall assessment of the alternatives (Malczewski & Rinner, 
2015). 
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Throughout the course of 1960s, multitude of MCDA methods were developed (Mendoza 

& Martins, 2006) and by 1990s, - GIS-MCDA solidified its status as a distinct research domain 

within the GIScience literature, a pivotal progress that laid the groundwork for the emergence 

of spatial decision support paradigm (Malczewski, 1999). This decade was followed by  years 

of proliferation in the application of GIS-MCDA approaches across a diverse range of decision-

making and management scenarios, including the selection of optimal strategies for flood risk 

mitigation (Tkach & Simonovic, 1997), and the assessment of index-based flood hazards, with 

an emphasis on the factors that influence flood occurrence (Kourgialas & Karatzas, 2011; 

Kazakis et al., 2015; Arabameri et al., 2019a).  

1.5.2.1. GIS-MCDA Methodologies in Flood Hazard Mapping 

This sub-section provides a brief description of various multi-criteria decision methodologies 

used in the context of flood hazard mapping. It is crucial to emphasise that the methods briefly 

represented herein does not encompass the entire array of available MCDA methodologies for 

flood hazard mapping. Selection of the approaches outlined here is based on the prevalence 

and significance of these approaches in flood hazard mapping, as substantiated by existing 

body of literature provided in Table 1. 

A. Analytical Hierarchy Process (AHP) 

Among the multitude  of MCDA methods, the analytical hierarchy process stands out as one 

of the most widely used method in flood hazard mapping (Mahmoud & Gan, 2018). This 

method is based on three fundamental principles: (1) decomposition, a procedure 

necessitating a systematic breakdown of a decision problem into a hierarchical structure that 

effectively captures the fundamental components inherent to the problem; (2) comparative 

judgment, referring to a pairwise comparison of the components within a specific level of the 

hierarchical structure, taking into account the components at the high level of the structure; 

and (3) synthesis of priorities, entailing a  construction of an overall priority rating. Studies that 

have examined the MCDA literature have reveal that, a predominant trend among studies 

utilising MCDA methodology usually involves the integration of MCDA with the analytical 

hierarchy process method (Wang et al., 2011; de Brito & Evers, 2016).  Indeed, the analytical 

hierarchy process method prove to be an effective technique especially when integrated with 

GIS based multicriteria analysis in solving complex spatial problems.  

B. Analytical Network Process (ANP) 

This method represents an extension and a generalised form of the analytical hierarchy 

process (Malczewski & Rinner, 2015). Introduced by Saaty (1996), this methodology addresses 
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decision problems in the context of dependencies among the constituent components of 

decision situation. The underlying assumption is that real-world spatial decisions encompass 

intricate pattern of interaction and interdependence among component of the decision 

problem and therefore, an emphasis on the interdependencies among the evaluation criteria 

is necessary in assessing decision alternatives. While this methodology adheres to the same 

principles of the analytical hierarchy processes, it diverges from AHP in terms of its approach 

to the principle of decomposition; i.e., decomposition in analytical network process entails the 

structural organisation of decision problem through network framework rather than a 

hierarchical one. Dano et al. (2019) reported a high reliability of the analytical network process 

in discerning the interconnections among real-world factors such as those influencing flood 

occurrences.  

C. Fuzzy-AHP 

The Fuzzy AHP is a technique introduced to reduce the uncertainty associated with the 

Analytical Hierarchy Process due to its subjective nature. “It enables expert’s judgment to be 

defined through means of fuzzy numbers based on the concept that decision-making by 

humans is associated with uncertainties that are difficult to explain by single numbers” 

(Mudashiru et al., 2021, p. 9). Among the various types of Fuzzy AHP, the trapezoidal fuzzy AHP 

and the Triangular Fuzzy AHP are commonly used in flood hazard mapping.  

D. TOPSIS 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a method based 

on the concept that the preferred alternative is distinguished by its closest proximity to the 

most immediate positive ideal solution and its furthest distance from the negative ideal 

solution. According to Moghadas et al. (2019), this method is a valuable instrument for 

decision-makers as it facilitates the effective integration of flood mitigation planning by means 

of a comprehensive flood hazard analysis, particularly for Urban areas. 

E. Fuzzy-TOPSIS 

Initially, this approach was conceived based on the theoretical underpinnings of fuzzy set 

theory, with the specific aim of providing resolutory insights to the intricate issue of supplier 

selection within the field of supply chain management (Chen et al., 2006). Subsequently, Kim 

et al. (2019) drew attention to the viability of using a hybrid fuzzy TOPSIS approach for flood 

hazard mapping, taking into account the uncertainties involved when developing  flood hazard 

maps for levee failure. Their findings suggest that the approach is significantly advantageous, 

particularly in terms of enhancing accuracy in the classification of flood-prone areas. This was 
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further substantiated by research that ascertained the efficacy of  fuzzy TOPSIS approach in 

the context of  decision-making related to flood and water resources management (see; Lee 

et al., 2014).  

F. DEMATEL 

Decision-making trial and evaluation laboratory (DEMATEL) is designed for a comprehensive 

and systematic analysis of complex decision problems that are interconnected and 

interdependent (Wang et al., 2018). This approach facilitates a thorough examination of the 

complexities inherent in any multifaceted decision scenario, enabling a comprehensive 

understanding of the underlying intricacies and interactions. According to Kanani-Sadat et al. 

(2019), this method is a preferable in mapping flood hazards, particularly for data-scarce and 

ungauged regions due to its networking and interdependencies of criteria.  

G. VIKOR 

VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje), a multi-criteria optimisation 

and compromise solution is an approach that “uses aggregating function and focuses on 

determining compromising solutions for a prioritisation problem with conflicting criteria” 

(de Brito & Evers, 2016, p. 4). In essence, the method enhances multi-criteria decision-making, 

particularly when faced with the complex task of assigning priorities to various alternatives 

while taking into account the inherent conflicts among the criteria used in any given analysis. 

In an study that evaluates predictive capacity of multi-criteria decision methods and other 

machine learning methods, Khosravi et al. (2019) found that VIKOR, similar to other MCDM 

has  flood prediction capabilities greater than 95 %, indicating the promising nature of this 

method in the assessment of areas susceptible to flood events.  

1.5.3. Case Studies  

Herein, several studies that conducted flood hazard mapping using GIS-based Multicriteria 

decision analysis and the Analytical hierarchy process (AHP) are briefly discussed.  Although 

the scope of the discussion is not exhaustive and limited to include only studies that have 

integrated GIS-MCDA with the analytical hierarchy process (AHP), in the interest of providing 

a relatively comprehensive overview of the literature, Error! Reference source not found. 

present a concise list of studies that utilised different GIS-MCDA methodologies together with 

other modelling techniques in mapping flood hazards. The literature presented in Error! 

Reference source not found. shows the application of MCDA and other flood hazard mapping 

techniques in different parts of the globe. The Methods applied in those studies are diverse in 
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nature, including: AHP = Analytical hierarchy process; ANP = Analytical network process; WLC 

= Weighted Linear combination; F’AHP = Fuzzy analytical hierarchy process; TOPSIS = Technique 

for Order of Preference by Similarity to Ideal Solution; F’TOPSIS = Fuzzy Technique for Order of 

Preference by Similarity to Ideal Solution. Methods that weren’t specified and generically 

labelled as others in Error! Reference source not found. encompasses MCDA techniques such 

as Decision-making trial and evaluation laboratory, which accounts for the complexities 

inherent in any multifaceted decision scenario; VlseKriterijumska Optimizacija I Kompromisno 

Resenje, which aggregates functions and is based on compromising solutions for a 

prioritisation problem with conflicting criteria. Furthermore, the literature provided in Error! 

Reference source not found. also utilised  non-MCDA techniques as those mentioned in 

subsection 4.2.3. Notably, machine learning and artificial intelligence approaches; statistical 

approaches such as bivariate and multivariate models in flood hazard mapping.  

One of the earliest application of multicriteria decision analysis in flood-related studies can 

be attributed to Levy (2005). The researcher introduced a decision support system based on 

the analytical network process to address flood planning and management problem in the 

middle reaches of the Yangtze River, China. The finding from his investigation stressed the 

considerable potential of Decision Support System and Multi-Criteria Decision Analysis in 

improving flood risk planning and management, particularly in scenarios characterized by 

uncertainties and complexities. Similarly, Le Cozannet et al. (2013) assess the suitability and 

utility of multi-criteria decision analysis, specifically the analytical hierarchy process in 

mapping the physical vulnerability of coastal areas to flooding and erosion through its 

application in two coastal areas in France–Languedoc-Roussillon and the island of La Réunion. 

The result of analysis aligned with researchers’ initial assumptions, revealing a heightened 

vulnerability in both areas as well as the effectiveness of the analytical hierarchy process in 

providing a flexible and transportable framework to support long-term coastal zone planning 

and adaptation measures to flood events. 

 Chen et al. (2014) employed the analytical hierarchy process to assign relative weights to 

indices derived from climate, hydrological, topographical, vegetation, and soils data, with the 

ultimate objective of creating a spatial multi-criteria decision making (SMCDM) framework 

designed for the assessment of flooding risk at regional scale using part of the Bowen Basin in 

Queensland, Australia as a study area. The regional flood map they developed was validated 

through a comparison with satellite-derived inundation map. The analytical hierarchy process 

as the researchers noted, produced a highly accurate results and efficient in the assessment 
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of flooding risk on a regional scale. Similarly, Kazakis et al. (2015) adopted the MCDA-AHP  

approach to assign weights to seven distinctive and conflicting criteria influencing flood 

occurrence. The values they attained and related individual maps were superimposed in GIS, 

resulting into flood hazard map for Rhodope–Evros region, Greece. To further assess the 

accuracy of the method, the researchers conducted a sensitivity analysis using ‘effective 

weight’ technique. The sensitivity analysis substantiated the accuracy and reliability of MCDA-

AHP approach as well as the identified flood influencing factors in flood hazard mapping at 

larger (regional) scale. 

Elkhrachy (2015) on the other hand, applied MCDA-AHP approach to generate flash flood 

map for Najran city, Saudi Arabia. Using GIS-based remote sensing and conventional data 

analysis, Elkhrachy produced flood hazard maps which as he noted, has a crucial role as a 

reference for carrying out a more detailed examination of flash flood phenomena in Najran 

city, and the implementation of proper flood risk reduction measures. Gigović et al. ( 2017)  

conducted a similar study–urban flood hazard assessment–for Palilula Municipality in 

Belgrade, Serbia using the analytical hierarchy process. To account for uncertainties in experts’ 

decision, the researchers further applied three different methodologies of the analytical 

hierarchy process concurrently in different scenarios. Notably, when compared against 

historical flood inundation data for validation, one of the methodologies the researchers 

applied–interval rough analytical hierarchy process (IR’AHP)–, exhibited a higher level of 

compatibility in comparison to the Fuzzy AHP and the conventional crisp AHP. However, it is 

crucial to emphasise that the other two methodologies–F’AHP and AHP–demonstrated a 

satisfactory consistency with the spatial distribution and extent of historical flood hazards. 

Franci et al. (2016) used the analytical hierarchy process to assign weights to five flood 

influencing factors in an effort to generate flood susceptibility map for Yialias river basin in 

Nicosia, Cyprus. The result of their study stresses the efficacy of the MCDA/AHP in flood hazard 

assessment, particularly in cases where data is limited as well as for conducting a 

comprehensive analysis over large geographic areas. Similarly, Hagos et al. (2022) identified 

flood-prone areas in Ethiopia’s Teji watershed and upper Awash River basin using GIS based 

multicriteria-decision method. Their approach involved the application of analytical hierarchy 

process in assigning weights to seven flood influencing factors selected based on the literature. 

Their analysis revealed that approximately 55 % of the total areas of the basin fell within the 

high and extremely high classification of flood hazard zones. To validate their findings, the 

researchers compared the results of the study with historical maps documenting previous 
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instance of flood observed in the watershed. The validation analysis showed that, the 

produced flood hazard map has a high degree of consistency with the previous flood affect 

areas, thus indicating the reliability and efficiency of MCDA/AHP method in assessing flood 

prone areas.  

Khaleghi and  Mahmoodi (2017) generated flood hazard map for Lighvan catchment, Iran. 

Using MCDA-AHP approach, they examined the complex dynamics of the catchment, taking 

into consideration various parameters influencing flood risk and vulnerability. The findings 

from their study subsequently evolved into set of guidelines, providing invaluable guidance for 

managers and planners in making informed decision concerning management of catchment 

area to mitigate flood hazard. Similarly, in an effort to developed flood hazard model assessing 

the susceptibility of the  Shatt Al- basin to flooding, Allafta and Opp ( 2021) adopted multi-

criteria decision approach, utilising the analytical hierarchy process to assign relative weights 

determined by experts to various factors influencing flood events. These factors encompassed 

rainfall, distance to the river, digital elevation model, slope, land use/land cover, drainage 

density, soils, and lithology. The researchers further pointed out that the utilisation of GIS-

based spatial multi-criteria evaluation framework in conjunction with the analytical hierarchy 

process can prove to be an effective approach in delineating flood hazard zones. This method’s 

effectiveness as they noted, is evident in its flexibility, ease application, and cost-effectiveness, 

rendering it a viable method for assessing flood hazards, particularly in regions characterised 

by scarcity or limited access to data and information. 

N. Literature APPLICATION LOCALE AHP ANP WLC F’AHP TOPSIS F’TOPSIS Other 

1  Levi (2005) Yangtze river, China  x     x 
2 Raaijmakers et al. (2008) Ebro Delta, Spain x      x 
3 Lim and Lee (2009) South Korea       x 
4 Kourgialas & Karatzas (2011) Koiliaris basin, Greece   x     
5 Fernández & Lutz (2010) Tucumán, Argentina x  x     
6 Yang et al. (2013) Yangtze River, China    x   x 
7 Le Cozannet et al. (2013) France x       
8 Mondlane et al. (2013) Mozambique x       
9 Lee et al. (2014) Han River basin, Korea      x  
10 Chen et al. (2014) Australia x       
11 Elkhrachy (2015) Najran, Saudi Arabia x       
12 Kazakis et al. (2015) Rhodope–Evros, Greece x       
13 Arianpour & Jamali (2015) Omidieh, Iran x   x   x 
14 Franci et al. (2016) Nicosia, Cyprus x       
15 Khaleghi & Mahmoodi (2017) Lighvan catchment, Iran x       
16 Gigović et al. (2017) Belgrade, Serbia x   x   x 
17 Chundeli & Kranthi (2018) Chennai, India       x 
18 Hong et al. (2018) Poyang County, China    x   x 
19 Hategekimana et al. (2018) Mombasa, Kenya    x   x 
20  Sonmez & Bizimana (2018) Waverly City, Iowa, USA   x    x 
21 Liu et al. (2019) Angkor, Cambodia x      x 
22 Arabameri et al. (2019b) Kiasar watershed, Iran x    x  x 
23 Khosravi et al. (2019) Ningdu, China     x  x 
24 Moghadas et al. (2019) Tehran, Iran x    x   
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Table 1. Literature on the different flood hazard modelling techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 Rahman et al. (2019) Bangladesh x      x 
26 Dano et al. (2019) Perlis, Malaysia  x      
27 Kim et al. (2019) Gam river, South Korea     x x  
28 Kanani-Sadat et al. (2019) Kurdistan province, Iran  x  x   x 
29 Feloni et al. (2020) Attica region, Greece x   x    
30 Dash & Sar (2020) India x       
31 Souissi et al. (2020) Southeastern Tunisa x       
32 Morea and Samanta (2020) Papua New Guinea x       
33 Abdrabo et al. (2020) Hurghada, Egypt x      x 
34 Ogato et al. (2020) Ambo Town, Ethiopia   x     
35 Aladejana (2021) Owena basin, Benin    x    
36 Vojtek et al. (2021) Topla basin, Slovakia x      x 
37 Hamlat et al. (2021) M'zi wadi basin, Algeria x       
38 Ekmekcioğlu et al. (2021) Istanbul, Turkey x     x  
39 Allafta & Opp (2021) Irak-Iran x       
40 Ajibade et al. (2021) Ibadan city, Nigeria x      x 
41 Öztürk et al. (2021) Corum, Turkey x       
42  Borzi et al. (2021) Pampean, Argentina x       
43 Vaddiraju & Talari (2022) India x       
44 Mothapo et al. (2022) Limpopo, South Africa x       
45 B. Mudashiru et al. (2022) Penang, Malaysia x   x    
46 Gupta & Dixit (2022) Assam, India x       
47 Hagos et al. (2022) Awash basin, Ethiopia x       
48 Agustina et al. (2023) Bandung, Indonesia x       
49 Enomah et al. (2023) Limbe, Cameroon x      x 
50 Corvacho-Ganahín et al. (2023) Acha–Arica, Chile x      x 
51 Wijesinghe et al. (2023) Neluwa, Sri Lanka x       
52 Ha et al. (2023) Quang Binh, Vietnam x      x 

Table 1. 
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2. GEOGRAPHICAL AND HISTORICAL CONTEXT 

2.1. The study area: a brief geographical description 

The study Area is located in the most northeastern part of South Sudan: known as Upper Nile 

state, it shares a border Sudan to the north and Ethiopia to the east. Characterised by a vast 

floodplain, the study area covers an area of about 78,347 square kilometres (Country report, 

2015), and forms the northeastern edge of the Upper Nile ecoregion (www.feow.org). To the 

west of the study, lies the White Nile River stretching from the southwestern corner of the 

state northward. The White Nile is one of the two main tributaries of the Nile River (the other 

being the Blue Nile) that originates from Lake Victoria, draining via lake Kyoga to lake Alberta 

and then Bahr al Jabal, forming at ‘Lake No’ – the convergence of Bahr al Jabal and Bahr al 

Ghazal River. The study area is traversed by multiple rivers, a vast network of streams, a large 

number of minor tributaries, and seasonal watercourses which at times feed and are fed by 

the main river systems (Johnson, 1986). One of the principal tributary is the Sobat River, a well-

known tributary of the White Nile “which draws its water from the Ethiopian plateau and the 

Pibor river system” (Johnson, 1989, p. 465), stretching for 354 kilometres and pouring into the 

White Nile at Doleib Hill 16 kilometres south of the city of Malakal (Goes, 2022).  

While the topography in the eastern segment–bordering Ethiopia–is mainly composed of 

highland areas and plateaus, the predominant topographical scenery of the study area is 

characterized by flatlands with an average elevation of 400 meters above sea level. In terms of  

physiographic classification, approximately 90 % of the terrain is a part of the eastern flood 

plain (Acted & Reach, 2013) and the southwestern edges constitutes the Nile-Sobat river which 

is part of the Sudd swamp. “Most of the soils are clay, virtually impervious to water at the 

height of the rains, but there are some outcrops of sandier soil, slightly elevated above the 

plains, where woodland can be found, permanent villages built and cultivation undertaken” 

(Johnson, 1989, p. 465). The second largest sedimentary basin of the  central  African rift 

system lies within the delineated of the study area (Zhao et al., 2020).  

The geological aspect on the other hand, is mainly distinguished by three major formations: 

quaternary-Tertiary unconsolidated sedimentary deposit, Tertiary-quaternary  Um Ruwaba 

formation, and Precambrian crystalline basement rocks (Persits et al., 1997). Unconsolidated 

sedimentary deposits are composed of well-sorted silts and clays with occasional sandy strata 
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Figure 2. Geographical location of the study area depicting the boundaries of study area, the main administrative 
boundaries within the state, main waterbodies, and major road networks.  

 and are extensively deposited along the White Nile River, major tributary such as Sobat River 

and other minor tributaries. The Um Ruwaba formation on the other hand, is unconsolidated 

superficial sediments formed at Late Tertiary to Quaternary with limited stratification 

consisting of sands, clays, and gravels. “Overlaying the Um Ruwaba sediments are late 

Pleistocene and Holocene deposits, forming the extensive clay plains of the sudd swamps and 
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the seasonally flooded areas” (Harvey, 1982, p. 8).  Additionally, especially to the southeast 

part of the study area are undifferentiated basement with granitic intrusions and basic volcanic 

rocks, which are associated with tectonic activity that formed the Kenyan and Ethiopian rift 

valleys and the Ethiopian plateau (www.bgs.ac.uk).  

According to the Koppen-Geiger classification, the study area is under the influence of two 

climates, namely Arid Steppe (BSh) and tropical savannah (AW) (Peel et al., 2007). The Arid 

Steppe (hot) climate is essentially predominant in the north and western part of the study 

area, characterised by annual mean temperature above 18o C and annual mean rainfall ranging 

from 250 mm to 600 mm (www.uea.ac.uk). The south and eastern part on the other hand, 

which is characterised by tropical savannah climate, experiences an annual average rainfall 

between 800 – 1600 mm annually.  

Based on the map produced by the Food and Agriculture Organisation of the United 

Nations (Figure 3), the landcover pattern within the study area is primarily characterised by 

natural and semi-natural vegetation areas (FAO, 2011) . The prevailing ecological habitats 

encompasses grasslands  and rangelands with close-to-sparse vegetation such as Herbaceous 

(HCO: Figure 3) which covers 41.49 % of the entire study area and shrubs (SCO: Figure 3) which 

accounts for 38.88 % of the study area (FAO, 2011).  Other vegetation such as woody perennial 

plants (TCO: Figure 3) account for 12.75%, followed by agricultural land (denoted as AG: 

Agriculture in terrestrial and aquatic/regularly flooded land in Figure 3) which represent 6.20 

% of the landcover. Approximately, 0.43 % of the land in the study area is covered by seasonal 

and perennial water (presented as WAT in Figure 3) bodies, 0.17 % by bare rocks and soil or 

unconsolidated materials  (BS: Figure 3), and 0.10 % by artificially built environment – human 

settlements (URB: Figure 3). 

The study area is estimated to have a population of approximately 1.5 million people. The 

eastern flood plain zone which represents 90 percent of the study area is peculiar for agro-

pastoral economy. From an agricultural perspective, the Upper Nile state is one of the largest 

croplands in South Sudan, accounting for 63 percent of the national cropland area. The 

principal produce are crops such as Sorghum, maize, cowpeas, and pumpkin seeds. Cattle, 

goats and sheep are also reared in the zone (Acted & Reach, 2013). The Nile and Sobat Rivers 

zone on the other hand, have an economy that is primarily based on agriculture and 

supplemented with fishing, gathering and livestock production (acted & Reach, 2013).
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Figure 3.   Land cover types of Upper Nile state 
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2.2. Flood pattern in the Upper Nile plain and history of 

floods 

2.2.1. Flood Pattern in the Upper Nile Plain 

The geographical region under investigation is situated within the boundaries of the Upper 

Nile plain, a locale that has exhibited vulnerability to naturally occurring environmental 

catastrophes spanning millennia. One of these environmental catastrophes is recurring floods. 

The physical characteristic and the climate of plain, along with those of adjoining territories 

are known to be the primary elements that leads the plain’s susceptibility to flooding.  

A comprehensive understanding of the historical context of flood and flood pattern in the 

Upper Nile plain requires a reconstruction of historical climatic conditions and thorough 

investigation of the factors contributing to the plain’s susceptibility to flooding. However, due 

to limited historical data, most of the attempts made by researchers to understanding climatic 

conditions that contributed to flooding in the past were based on inference derived from 

recorded condition in adjoining territories (Johnson, 1992).  

Flood occurrence in the Upper Nile plain and thus Upper Nile state, and the pattern of 

flooding in general can be ascribe to multitude of factors within the plain and in adjacent 

regions. Johnson (2019) has noted this, pointing out that the occurrence of flood is less 

dependent on local rainfall than on rainfall in other parts of northeast Africa. Precipitation 

regimes in Ethiopian highlands, East African lakes and East Equatorian mountains, coupling 

with local rains lead to episodic variations in the Sobat River system and the Nile’s discharge. 

These changes, adding to it the flat topography and impermeable clay soil of the plain, along 

with the poorly defined and low banks of the Bahr al-Jabal that connect at Bahr al-Ghazal to 

form the White Nile, spills easily into the Sudd Swamp where vegetation blockage hinders flow 

and redirect it into shifting channels, thereby influences the occurrence and pattern of floods 

within the Upper Nile plain and thus the study area. During wet season (May - October), a 

period of high Nile discharge and heavy rainfall leads to pluvial and fluvial flooding. “River 

flooding combines with rain flooding (standing water on the clay plain) and in years of 

exceptionally high rivers and heavy rains there can be the added hazard of a ‘creeping 

flood’[…].” (Johnson, 1986, p. 133;134) 
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2.2.2. History Of Floods: A Geohistorical and Anthropological Perspective 

Records of flood occurrences found in historical documents, anthropological  commentaries 

and related literature for Upper Nile plain (Lyons, 1907; Hurst, 1920; J. I. Team, 1953; S. D. I. 

Team, 1954; Johnson, 1986, 1989, 1992; Hassan, 2007) provides extensive and systematic 

details of flood dating back as far the 18th century. These records were derived from oral 

testimonies, Egyptian Nile records, local administrative reports, and more recent methodical 

measurement of the Nile’s discharge inside Sudan, initiated in the late twentieth century. 

These documented records are indispensable source of information concerning extreme 

climatic events such as floods and drought in the Upper Nile plain. However, it is imperative to 

also acknowledge that, since these literary sources encompass the entire Upper Nile plain 

which relatively corresponds to present-day Upper Nile region, presents a challenge in 

precisely determining the geographical context of historical and anthropological records of 

flood for the designated research area (Upper Nile state). Therefore, the brief accounts derived 

from these literary sources and presented here are only tentative and concentrated solely on 

incidence of flooding along Bahr al-Zaraf, the Sobat River and the White Nile, hypothesised to 

have exerted influence on the research area. A brief account on major flooding from the 

nineteenth century up to date is provided below the descriptive Table 2.  

Period Time scale Local names of flood Meaning 

19th Century 
1820 - 1830 Amol Magook Flood of Magook 
1878 - 1880 Nyoc Bor The White flood 

20th Century 
1916 - 1917 Pibor The white water 
1917 - 1919 Pilual The red water 
1962 - 1970 Nyotch The year of big flood 

21st Century 

2017 - 2018 Luwar The year of small flood 
2018 - 2019 Luwar The year of small flood 
2019 - 2020 Luwar The year of small flood 
2020 - 2021 Nyotch The year of big flood 
2021 - 2022 Ruonjiek The year of the worst flood 

Table 2. Chronological order of major historical flood events 

2.2.2.1. The period between 1800 -1900 

This period as most of the historical documents and related literature suggest, is known for 

the occurrence of two major floods, Amol Magook and Nyoc Bor. Inhabitants residing near 

Khor Atar and Fulluth, watercourses adjacent to the White Nile River recalled a major flood 

that happened during the rule of the Shilluk monarch (1820 – 1830) Akwot Nyakwac (Johnson, 

1992). This flood referred to as Amol Magook, denoted in the memory of tribal man named 

Magook who tragically perished is known to have originated from the eastern direction, the 

Sobat River.  Hence, this implies a period of above average rainfall in Ethiopian region, which 

in turn led to the inundation of the Sobat River. The impact of the flood was severe, resulting 
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into extensive destruction of agricultural yields, grazing lands, livestock, human livelihood, and 

triggering emigration of the surviving population to higher grounds – Duk Ridge. As illustrated 

in Table 2, perhaps the most severe of all the flooding event that took place in the 19the century 

occurred in the year 1878. During this period in time, the Upper Nile plains was hit by a flood 

that, in term of magnitude, surpassed the flood that began in 1820 (Amol Magook). This flood 

has come to be known as Nyoc Bor meaning the white flood. The name was later changed to 

Nyoc Bor Mogogh donating a famous battle that took place right after the flood. “The flood of 

1878, though tremendous, dropped quickly and had no lasting effect on the Nuer settlement” 

(Johnson, 2019, p. 185). The following decade (1880 – 1890), although characterised by 

decline in the water level of Lake Victoria, due to severe blockage in the Sudd swamp, there 

were still series of small floods affecting the plains. 

2.2.2.2. The Period Between 1900 – 2000 

During the first half of the twentieth century, notably the period from 1916 to 1919 as 

indicated in Table 2, the Upper Nile flood plain experienced another severe flooding of 

unparalleled magnitude. Two waves of floods – called Pibor and Pilual – began on the October 

of 1916 and persisted for a duration of eighteen months, submerging entire districts from Bor 

to Malakal and extending from Kongor to Pibor river. These waves of floods were caused by 

the combination of two factors: the prevailing hydrological and climatic conditions at that time. 

Hurts’ (1920) observations shows that, the rise in the level of East African lakes including Lake 

Victoria that began a year prior to the floods and maintained a consistent high state until 1918, 

heavy precipitation in Ethiopian regions that raised the level of Sobat river to the  highest ever 

recorded level, along with intense local rainfalls, substantially contributed to the level of 

standing water and leading  to ‘creeping flood’.  The first wave of flood, referred to as Pibor 

was observed to be approaching from western direction. And although the first wave exhibited 

a less destructive impact, before water could fully recede, a second wave of flood – Pilual (the 

red water) – came, exacerbating the effects of the first flood. The entire Area between Bahr 

al-Zaraf and Duk ridge was submerge for two years, causing mass movement of local 

communities to higher grounds. There was a wide spread of rinderpest and other cattle 

disease especially in the area along Fangak – southwestern border of the study area. According 

to Johnson (Johnson, 1989), Pibor and Pilual were understood to be the most disastrous of all 

the floods the occurred in the first half of the twentieth century in the entire Upper Nile 

Region.  Furthermore, Oral accounts from participants in a focus group discussions carried out 
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in line with shock verification mission for Fangak county7,  a county in the lower reaches of the 

White Nile shows that, the second half of the twentieth century (period between 1962 – 1970) 

had witnessed the longest ever recorded period of inundation. Named locally as Nyotch (a year 

of the big flood), this flood was marked by extensive inundation and higher level of damages 

(Table 2), comparable in magnitude only to the recent flood of 2021.  

2.2.2.3. Recent Flood Events 

Seasonal flooding is a recognized naturally occurring disaster in the Upper Nile state. In the 

past, there have been structural measures and adaptation strategies to minimize the impact 

of flood hazards (i.e., construction of dykes, channelisation, seasonal emigration, the 

development of livelihoods base on ‘common economy’8, and the like). In recent years 

however, (despite the measures in place or therefore, lack of) the gradual increase in both the 

frequency and extent of flood phenomenon which to some extent resembles the deleterious 

flood of 1962, and the existing social and political conflict which Tiitmamer et al. (2018) 

suggested could have been exacerbated by climate change since conflicts occurs after the 

occurrence of environmental disasters in itself, have strongly affected the resilience of local 

communities. 

The wave of seasonal flooding in the last decade that began in 2017, had primarily 

impacted Maban county in the eastern part of the study area. The inundation resulted in 

displacement of hundreds of people, and extensive damage to road infrastructure and 

farmlands causing food insecurity. Subsequently, the flood experienced in 2017, as well as in 

the ensuing years namely the flood of 2018 and 2019 which affected several counties in the 

southeastern part of the study area (Maban, Longochuk, Maiwut, Nasir, and Ulang) with 

Maban being affect the most, earned the local name ‘years of small flood’. This name is mainly 

attributed to the extend and magnitude of these floods which closely aligned with local 

precipitation pattern. Notably these flood events, are caused by torrential rains in wet seasons 

and exhibited a relatively rapid recession during the dry seasons. In 2020, however, before a 

complete recession of waters from previous year’s flood, heavy rains caused rivers to breach 

dykes and banks, leading to protracted period of inundation of vast areas and settlements. 

 
7 ACTED & REACH. (2021) “Fangak Shocking Verification Mission: Jonglei State, South Sudan, June 2021” 
https://reliefweb.int/organization/reach-0  
8 ‘Common economy’ is a form of social and economic network that was identified by Evans-Pritchard while 
investigating the mode of livelihood and political institution of the Nilotic people. This type of social and economic 
network which in its essence is applied during times of environmental disasters such as floods, is a survival 
strategy that relies on common consumption and reciprocal assistance between larger communities, guided by 
factors such as familial ties, affinity and membership within specific age group (Evans-Pritchard, 1940). 

https://reliefweb.int/organization/reach-0
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About 30,000 people were reported to have been impacted in Renk county – northern part of 

the study area (ECHO, 2020). Official from World Food Programme (WFP) characterised this 

flooding as potentially the most severe in six decades (Mayen et al., 2022). Certain aspects of 

the 2020 – 2021 flooding, such as elevated water levels and unusually accelerated water flow, 

surpassed the severity observed during the 1962 flood event. The recurrent flood pattern, 

stemming from substantial rainfall during wet seasons in both downstream and upstream, 

coupled with the prolonged presence of floodwater from prior years, endured throughout 

2021 and 2022. In the year 2021, vast areas in the Upper Nile state experienced two instances 

of inundation and this has placed considerable strain on local coping mechanisms, affecting 

more than 50,000 individuals across three counties in Upper Nile state, namely Ulang, 

Fashoda, and Longechuk county (IRNA,2021). 
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3. DATA ACQUISTATION AND ANALYSIS 

METHODS 

3.1. Criteria identification and data sources 

This study is based on the application of multi-criteria decision analysis and the analytical 

hierarchy process in flood hazard mapping. The initial phase in the research involves the 

identification of flood influencing factors; these are, meteorological and physical 

characteristics of the study area which to enhance the area’s susceptibility to flooding. The 

successful application of the MCDA-AHP method to identify flood-prone areas is highly 

contingent upon the recognition of these factors and their inter-relation with the mechanisms 

contributing to flood occurrence. Moreover, these factors serves as  the criteria within the 

MCDA model applied for analysing  areas susceptible to flood (Mudashiru et al., 2021). 

Data source 
Resolution / 

scale 
Dates Role / Function Citation 

Rivers of Sudan - AFRICOVER 1: 250 000 
Vector data: 
2003-05-30 

River network www.data.apps.fao.org 

Shuttle Radar Topography 
Mission (SRTM)digital 
elevation model (DEM) 

30 metres 
31 images:  
2014-09-23 

Topographic 
wetness index; 
drainage density; 
slope; elevation 

NASA (2013) 

ESA Sentinel – 2 10m land 
uses/ land cover time-series 
layer 

10 metres 
4 images: 
2021-01-01 
 

Land use / land 
cover 

Karra et al. (2021) 

Climate Research Unit (CRU) 
TS v4.06 Annual mean 
rainfall 2010-2021 

0.5°x 0.5° 2022-05-26 
Annual average 
rainfall (2010-2021) 

Harris et al. (2020) 

The digital soil map of the 
world 

1:5.000.000 
Vector data: 
2003-01-01 

Soil types FA0 (1974) 

Visible Infrared Imaging 
Radiometer Suite (VIIRS) 

375 metres 

Images: 
2020-10-19 
2021-10-19 
2022-10-21 

Inundation extent 
map 

www.ladsweb.modaps
.eosdis.nasa.gov  

Table 3. Conventional (vector) and remote sensing (raster) data sources. 

Numerous studies have used a wide range of flood influencing factors in delineating flood 

hazard zones. Although there is no uniformity regarding the selection of these factors and their 

relative importance as Allafta and Opp (2021) pointed out, researchers often determine their 

selections either on the literature or the physical and natural characteristics of the area under 

investigation or sometimes both. In the current study, drawing upon existing literature as 

foundational basis (Danso et al., 2020; Ogato et al., 2020; Ajibade et al., 2021) and the physical 

https://data.apps.fao.org/map/catalog/static/api/records/e409bb6b-2e65-435a-8d6c-73e48706e413
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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characteristic of the study area, eight flood influencing factors have been chosen: namely, (1) 

distance to the river, (2) topographic wetness index, (3) drainage density, (4) land coverage, (5) 

precipitation, (6) slope, (7) elevation, and (8) soil type. Raster and vector datasets for the 

selected factors were obtained from different web sources, re-projected, analysed, and 

subsequently reclassified into standardised form in ArcGIS Pro (Figure 3). This preparatory 

phase holds a considerable importance as it enables the overlay analysis resulting in the 

generation of the flood hazard index. 

The distance to the river layer was derived from Sudan’s primary rivers vector dataset 

produced by the Food and Agriculture Organisation (Table 3). Using ‘Distance Accumulation’ 

function in ‘Spatial Analyst Tools’, distances to the major perennial rivers; namely, White Nile, 

the Sobat and its tributaries within the study area (river Pibor and Baro), Doleib, Bibban, El-

Samaa, Wehfet, Adar, Yale, Tombak, Yabus, Daga, and river Nyanding were measured and 

subsequently classified into five classes based on the distance range. Topographic wetness 

index (TWI) layer was obtained from the Shuttler Radar Topography Misson (SRTM) Digital 

Elevation Model (Table 3). ‘Hydrology’ and ‘Map Algebra’ functions in ‘Spatial Analyst Tools’ 

were applied to combine the catchment and slope of the study area, which yielded an index 

that describes the propensity of water accumulation in the study area. Furthermore, and using 

the same SRTM digital elevation model, layers depicting drainage density, slope, and elevation 

properties of the study area were generated. The generated additional three layers were 

reclassified into a standardised in same cell size as the prior two layers.  The land-coverage 

layer on the other hand, was obtained from Esri’s global land use/ landcover data (Table 3). 

The downloaded scenes – 35N, 35P, 36N, 36P – were mosaicked into one raster dataset, and 

each land use/land cover class was relabelled and reclassified accordingly. For computation of 

the annual average rainfall layer, rainfall data for the period between 2020 to 2021 was 

retrieved from the Climate Research Unit database (www.uea.ac.uk). Essentially,  the Climatic 

Research Unit gridded Time Series (CRU TS) climate dataset is generated through the 

interpolation of monthly climate anomalies extrapolated from comprehensive networks of 

weather station observations around the globe (Harris et al., 2020). In the study area, two 

weather stations that actively collected rainfall data – Renk and Malakal weather stations 

(Figure 4). The obtained data from the Climate Research Unit was transformed into raster layer 

using ‘Multidimensional Tools’ and ‘Make NetCDF Raster Layer’, and subsequently converted 

to points using ‘Conversion Tools’, ‘From Raster’ and ‘Raster to Points’.  The points were 

interpolated using ‘Kriging’ function in ‘Spatial Analysts Tools’ generating annual average 

http://www.uea.ac.uk/
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rainfall layer. This layer was further reclassified using equal interval classification method in 

ArcGIS Pro into a map with five classes. Lastly, the soil type map was obtained from the Food 

and Agriculture Organisation digital soil map of the world (www.livingatlas.arcgis.com). The 

soil type data for the study area was extracted from the digital soil map of the world using 

‘Pairwise Clip’ function in ‘Analysis Tools’.  The Attained layer was reprojected, and each soil 

type was geo-coded to the lithology of the study area. Subsequently, the polygon soil layer 

was transformed into raster using ‘Conversion Tools’ and ‘Polygon to Raster’ and reclassified 

into standardised format.  

 

Figure 4. Location map of meteorological stations within the study area. 

3.3.1. Flood Influencing Factors 

3.1.1.1. Distance to rivers 

Proximity to perennial water bodies such as rivers and stream exerts a great degree of effect 

on the spatial distribution of flood occurrence. As evidenced in the existing literature, the 

https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/search?resultType=details&sortBy=relevance&any=digital%20soil%20map&fast=index&_content_type=json&from=1&to=50
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incidence of flood disaster is closely linked to the river distribution network (Allafta & Opp, 

2021). Moreover, the extent  and intensity of a flood, particularly in the case of pluvial flood, 

is more severe in areas close to perennial water bodies (Glenn et al., 2012). As distance to river 

diminishes, a region’s exposure to flood events increases, hence acknowledging the influence 

of river proximity and including it as a factor within flood hazard model holds a considerable 

significance. Numerous studies examining flood hazard susceptibility using the multi-criteria 

decision method have integrated distance to the river as one of the key factors, assigning a 

high weight as evidenced in Kazakis et al. (2015); Khaleghi & Mahmoodi, (2017). In this study, 

distance to the river was used as one of the evaluated flood influencing factors with a relative 

weight determined by experts.  

3.1.1.2. Topographic Wetness Index 

Topographic Wetness Index (TWI) assesses the effect of topographical characteristics on the 

degree of soil wetness and how slope affects hydrological processes. It “describes water 

accumulation trend at a particular location, and the local slope shows the influence of 

gravitational forces on the water flow” (Parsian et al., 2021, p. 8). Computation of TWI is based 

on two factors; these are, slope and elevation of the terrain. An elevated value of TWI signifies 

high level of surface moisture, whereas a low value indicates a dry surface. TWI have a wide 

range of applications, such as modelling hydrological and biological processes, vegetation 

patterns, flooding modelling, and mapping areas susceptible to flood. The application of TWI 

in flood hazard mapping can be achieved using two distinct approaches. On  one hand, TWI 

can be employed as a sole tool in delineating flood-prone areas, as demonstrated in Pourali et 

al. (2016); Kelleher & McPhillips (2020); and Saputra et al. (2023), on the other hand, it can be 

integrated with other relevant parameters within one model to generate flood hazard index 

(Fernández & Lutz, 2010; Arabameri et al., 2019). In the current study, the slope and Digital 

Elevation model were used to calculate Topographic wetness index of the study area using 

equation (1). 

(1) TWI = 𝐼𝑛 (
𝑆𝐶𝐴

𝑡𝑎𝑛𝛽
) 

Where SCA donates specific catchment area which is an in integration of surface and 

subsurface drainage per unit contour width – equation (2), and tanβ is percent slope.  

(2) SCA = (
𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎(𝑚2)

𝑢𝑛𝑖𝑡 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑤𝑖𝑑𝑡ℎ
) 
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3.1.1.3 Drainage density 

Generally, drainage density is a measurement that assesses the capacity of stream channels to 

drain a catchment (Horton, 1945). Defined as the cumulative length of all stream networks 

divided by catchment area, a drainage density of a catchment affects the temporal dynamics 

and concentration of surface runoff, and this has implications in the spatial distribution of 

flood. An elevated drainage density leads to high volume of water transportation downstream. 

Consequently, yielding an earlier culmination of peak flow in response to rainfall. This, in turn, 

exert a proportional influence on the extent and duration of flood disaster. In the current study, 

drainage density was used a s proportional criterion and calculated using equation (3). The 

study area is comprised of 24 basins of varying sizes. The most diminutive basin encompasses 

an area of 2 kilometres square, whereas the largest basin covers an area of 11,667 kilometres 

square (Figure 5).  

(3) Dd =
Σ𝐿

𝐴
 

Where Dd = drainage density; ΣL = total stream length of all order; A = the study area 

3.1.1.4. Land-coverage (Land uses/land cover) 

Various categories of land-coverage exert varying effect on both infiltration rates and debris 

flow (Kazakis et al., 2015). The impact of land-coverage on the intricate relationship between 

surface and ground water has significant implication for the occurrence of flood events. For 

instance, while bare land favours surface water runoff, an area with thick vegetation cover 

supports infiltration. The presence of substantial vegetation cover improves surface roughness 

which has the effect of diminishing surface water runoff and increasing infiltration rate. 

Impervious surfaces like buildings and surfaces that have been inundated for long period of 

time on the other hand, exhibit an almost negligible capacity to absorb water, consequently 

elevating the volume of water runoff. As such, an area with dense vegetation exhibits relatively 

low vulnerability to flood incidents due to high infiltration rate, whereas urban and pasture 

areas are more exposed to flood incidents due to low infiltration rate and high surface runoff 

in response to rainfall. Considering this aspect, the land use/land cover classes of the study 

area were integrated into the flood hazard model. The rank of each land use/land cover class 

within the model was based their influence on filtration rate and surface water runoff.   
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Figure 5. Distribution of hydrological basins and hydrography in the study area. 

3.1.1.5. Rainfall 

Rainfall plays a major role in the evolution of flood hazards, and it is the most and critical 

trigger of flood disasters (L. Liu et al., 2022). Increase in the intensity, frequency, and duration 

of rainfall, coupled with topographical and hydrological characteristics of a region, can 

augment that region's vulnerability to flood events. A sudden intense rainfall that persists for 

a long period of time has the potential to exhaust the natural drainage system within a region, 

consequently influencing the volume of discharge into rivers and streams. This, in turn, may 

surpass the carrying capacity of stream and river networks in a region, resulting into overflow 

of rivers and ultimately flood events. As such, the assessment of a region’s vulnerability to 

flood hazards, particularly in the case of flash flood hinges significantly on the consideration 

of rainfall patterns. Numerous research endeavours focused on examining flood-prone areas 

predominantly incorporated this factor as a crucial evaluation criterion (see: Kazakis et al., 

2015; L. Liu et al., 2022; Vaddiraju & Talari, 2022; Bagyaraj et al., 2023). In contrast to the 
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prevalent use of monthly average rainfall periods, predominantly considered in flood 

frequency analysis, the present study adopts an annual average rainfall dataset spanning the 

period from 2010 to 2021.  This is mainly due to the study’s objective to delineate the 

probabilistic geographic extent of a flood hazard, taking in to account the influence of the 

pattern of annual rainfall periods on the evolution of flood hazards. 

3.1.1.6. Digital Elevation Model (DEM) 

Elevation represents a crucial parameter widely use in studies evaluating flood hazards. Low-

lying areas are more exposed to water overflow originating from steep, elevated terrains, 

rendering them more susceptible to accumulation of flood waters as opposed to areas 

characterised by higher elevation. “Water flows from higher to lower elevations and therefore 

slope influences the amount of surface runoff and infiltration; [and] flat areas in low elevation 

may flood quicker than areas in higher elevation with a steeper slope” (Kazakis et al., 2015, p. 

4). Consequently, the elevation of an area plays a pivotal role as a determinant factor in 

assessing its vulnerability to flood hazards. Data depicting the absolute elevation of study area 

was used among the criteria to identify areas with an increased susceptibility to water 

accumulation within the flood hazard model. 

3.1.1.7. Slope 

The occurrence of flood is closely linked to the slope of terrain, primarily influence by the 

speed at which surface runoff travels and accumulates downstream. Hence, slope gradient and 

elevation of an area are interrelated factors that jointly shape the spatial distribution of floods. 

For instance, in an area with high elevation and steep slope, water flows at a high speed 

therefore reducing the possibility of standing water. This surface runoff from highlands, 

however, accumulates downstream in flat areas with low elevation resulting into difference in 

the spatial distribution of flooding. The steeper the slope of terrain is, the potential of flood 

occurrence diminishes, whereas the lower the slope, the proneness of area to flood hazard 

increases (Wu et al., 2015).  

3.1.1.8. Soil type 

The major role of soil in flood occurrence is inherently related the type of a soil and the 

capacity of soil to retain water. Different soil types exhibit varying degree of infiltration capacity 

which can remarkably influence the volume of standing water. Intense rainfall in general 

results in faster and greater runoff in clay and loam soils in comparison to sandy soil. Hence 

accounting for soil types and their effect on infiltration rate and surface runoff is crucial in 

delineating flood hazard zones.  



36 
 

 

Figure 6. Flowchart of the adopted methodology for flood hazard susceptibility mapping. Note: DTR = Distance 
to the river; TWI = Topographic wetness index; DD = Drainage density; DEM = Digital elevation model; WOA = 
Weighted overlay analysis. 
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3.2. Analytical hierarchy process 

Following the preliminary stage of generating and standardising thematic layers, the analytical 

hierarchy process was applied to assign weights9 to each flood influencing factor based on its 

relative significance in the evolution of flood hazards. The analytical hierarchy process is a 

semi-quantitative methodology that facilitates the estimation of criteria weights by drawing 

upon experts’ opinions regarding the relative significance of each criterion (Dash & Sar, 2020). 

In this context, the development of the weights to determine the relevance of each criteria in 

the process of delineating areas susceptible to flood hazard was therefore, accomplished using 

Saaty’s (1990) 1 – 9 scale (Table 4). A structured questionnaire was sent to 15 professional 

encompassing experts in climatology, geomorphology, Hydrology, urban planning, and GIS 

analysis. The objective was to collect their judgement regarding the weight of each criteria. 

Among the 15 experts, eight experts actively participated by providing their considered 

judgments and opinions. The questionnaire table was made up of eight weight flood 

influencing factors (distance to the river, Topographic Wetness Index, drainage density, land-

coverage, rainfall, slope, Digital elevation Model, and soil type). Each expert was asked to 

compare each criterion against another criterion and assigned to it a value based on its level 

of importance on flood occurrence using  Saaty’s (1990) 1 -9  scale.  

Level of importance  Definition Explanation 

1 Equal Importance  
Two activities contribute equally to the 
objective  

3 
Moderate Importance of one 
over the other  

Slight preference for one activity based 
experience and judgment  

5 Essential or strong importance 
Significant preference for one activity based 
experience and judgment 

7 Very strong importance 
An activity is strongly favoured, and its 
dominance is demonstrated in practice 

9 Extreme importance 
The evidence of favouring one activity over 
another is of the highest order of affirmation  

2,4,6,8 
Intermediate values between 
the two adjacent judgments 

Used when compromise is need 

Table 4. 1- 9 scale of importance (T. L. Saaty, 1989, 1990) 

3.3.1. Aggregation of Experts’ Judgements and the Pairwise Comparison 

Matrix 

The ratings obtained from the survey with the experts were incorporated in an AHP  Excel 

Spreadsheet established by Goepel (2013). Within this excel spreadsheet, a pairwise 

 
9 “A weight can be defined as a value assigned to an evaluation criterion indicative of its importance relative to 
other criteria under consideration” (Drobne & Lisec, 2009). 
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comparison matrix was formulated for every expert, expressing their individual judgement. 

Subsequently, the principal eigenvector and corresponding eigenvalue for each decision matrix 

was computed, and the consistency ratio of each was determined. This process facilitates the 

derivation of priority vector for each expert. The priority vectors, derived for each of the expert 

participating in this study, were then aggregated using weighted geometric mean to construct 

a consolidate pairwise comparison matrix expressing the collective judgement of the experts 

(Table 5).  

To normalise the consolidate pairwise comparison matrix score, each entry in the column 

of the matrix was divided by its column sum using equation (4), yielding a normalised pairwise 

comparison Matrix with the sum of 1 for each column in the matrix (Table 6) – equation (4). 

(4) W = (𝑤1, 𝑤2, … , 𝑤𝑗 , 𝑤𝑛 ), and ∑ 𝑤𝑗  = 1 

The sum of the normalised score for each row was divided by the number of criteria, 

yielding an average score for elements in each row. These computed averages offer an 

approximation of the relative weights of the relevant criteria as illustrated in Table 7 (Drobne 

& Lisec, 2009).  

(5) wn =  (
𝐺𝑀𝑛

∑ 𝐺𝑀𝑛
𝑛𝑖
𝑛=1

⁄ ) 

 

Criteria Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage 

Rainfall Slope 
Digital 

Elevation 
Model 

Soil 
type 

Distance to rivers  1.08 1.17 1.78 1.26 1.63 3.6 4.26 
Topographic Wetness Index 0.93  1.14 1.37 1.74 1.66 1.72 2.89 
Drainage density 0.85 0.88  0.82 1.3 1.54 2.33 2.97 
Land-coverage 0.56 0.73 1.21  1.54 1.46 1.74 2.3 
Rainfall 0.79 0.57 0.77 0.65  1.39 1.94 3.6 
Slope 0.62 0.6 0.65 0.69 0.72  3.39 2.76 
Digital Elevation Model 0.28 0.58 0.43 0.57 0.51 0.3  2.02 
Soil type 0.23 0.35 0.34 0.43 0.28 0.36 0.5  

Table 5. Consolidated geometric weighted means of the expert’s judgement. 

Criteria Distance 
to the 
river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage 

Rainfall Slope 
Digital 

Elevation 
Model 

Soil 
type 

Distance to rivers 0.19 0.19 0.17 0.24 0.15 0.17 0.22 0.20 
Topographic Wetness Index 0.18 0.17 0.17 0.19 0.21 0.18 0.11 0.13 
Drainage density 0.16 0.15 0.15 0.11 0.16 0.17 0.14 0.14 
Land-coverage 0.11 0.13 0.18 0.14 0.18 0.16 0.11 0.11 
Rainfall 0.15 0.10 0.11 0.09 0.12 0.15 0.12 0.17 
Slope 0.12 0.10 0.10 0.09 0.09 0.11 0.21 0.13 
Digital Elevation Model 0.05 0.10 0.06 0.08 0.06 0.03 0.06 0.09 
Soil type 0.04 0.06 0.05 0.06 0.03 0.04 0.03 0.05 
Sum 1 1 1 1 1 1 1 1 
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Table 6. Normalised pairwise comparison matrix of flood influencing factors (Criteria). 

Criteria Non-normalised 
values (EVM) 

Error +/- Normalised 
values (EVM) 

Influence (%) 

Distance to rivers 0.192 0.031 0.19 19.19% 

Topographic Wetness Index 0.166 0.033 0.17 16.63% 

Drainage density 0.147 0.020 0.15 14.73% 

Land-coverage 0.138 0.035 0.14 13.83% 

Rainfall 0.126 0.028 0.13 12.61% 

Slope 0.118 0.044 0.12 11.81% 

Digital Elevation Model 0.067 0.020 0.07 6.71% 

Soil type 0.045 0.009 0.04 4.49% 

Sum 1 0.219 1 100.00% 

Table 7. Non-normalised and Normalised principal Eigenvector weights of each flood influencing factor. 

3.2.2. Matrix Consistency 

After creating the eigenvector for the analytical hierarchy process pairwise matrix which 

contains the relative weight of each criterion, it is crucial to assess the consistency ratio of the 

matrix. This necessity arises due to the fact that the computed averages only provide an 

estimate of the relative weights of the relevant criteria. These weights, construed as the 

average outcomes across all conceivable pairwise comparisons of criteria, denote the 

aggregate preferences of experts. Given that the complete ratio matrix encompasses multiple 

paths through which the relative significance of criteria can be assessed, it is significant to 

examine whether the path determined by experts manifests coherence and validity in the 

context of the decision problem under consideration (Drobne & Lisec, 2009). 

The consistency ratio quantifies the likelihood that a matrix scorings were generated 

randomly, and a matrix consistency is established only when the consistency ratio falls within 

the range of less than or equal to 0.1. In cases where the consistency ratio exceeds 0.1, it is 

imperative to re-evaluated the initial scoring  of the matrix (Saaty, 1990). 

In order to compute the consistency ratio, the initial procedure involves the calculation of 

the principal eigenvalue  (𝝀𝒎𝒂𝒙). The principal eigenvalue  (𝝀𝒎𝒂𝒙), is used to measure the degree 

to which the matrix deviates from state of consistency. A principal of eigenvalue equal to or 

greater than the total number of evaluated criteria signifies the matrix’s consistency, thus 

enabling the computation of consistency ratio. Conversely, a principal eigenvalue  (𝝀𝒎𝒂𝒙) that 

is less than the total number of evaluated criteria signals inconsistency in the matrix, thus 

indicating the need for re-evaluation of the initial pairwise matrix (Saaty, 1977;Saaty & Vargas, 

2012).  
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Criteria Sum of Pairwise decimal 
matrix Table 5 (A) 

Normalised weight  
Table 7 (B) 

Criteria Rank 
(A)*(B) 

Distance to rivers  5.27 0.19 1.01 
Topographic Wetness Index 5.79 0.17 0.96 
Drainage density 6.71 0.15 0.99 

Land-coverage 7.31 0.14 1.01 
Rainfall 8.36 0.13 1.05 
Slope 9.34 0.12 1.10 

Digital Elevation Model 16.23 0.07 1.09 
Soil type 21.79 0.04 0.98 

Sum (𝝀𝒎𝒂𝒙)   8.20 

Table 8. Computation of the principal Eigenvalue (𝝀𝒎𝒂𝒙) to determine the influence of each criterion. 

To determine the principal eigenvalue  (𝝀𝒎𝒂𝒙), the weight of the first criterion was multiplied 

by the sum of the first column of the original pairwise. A similar procedure was applied to the 

second criterion, where its weight was multiplied by the sum of the values in the second 

column, and so forth, for all the criteria. Upon executing this procedure for each criterion, a 

principal eigenvalue of 8.20 was derived from a matrix of 8*8 (Table 8), which exceeds the 

number of evaluated criteria, and therefore, was deemed acceptable. Subsequently, the 

principal eigenvalue was used to compute the consistency ratio of the pairwise matrix. 

No. Random Indices No. Random Indices No. Random Indices 

1 0.00 6 1.24 11 1.51 
2 0.00 7 1.32 12 1.54 
3 0.58 8 1.41 13 1.56 
4 0.90 9 1.45 14 1.57 
5 1.12 10 1.49 15 1.59 

Table 9. Random  Indices for varying set of criteria (Saaty, 1977) 

A consistency ratio is the division of the consistency index by Random Index, denoted as: 

(6) CR =
𝐶𝐼

𝑅𝐼
 

Where RI is a Random Index and CI is a Consistency Index. On the one hand, a Random 

Index signifies the consistency index of the pairwise comparison matrix that is generated 

randomly and its value is contingent upon the number of criteria under evaluation. Different 

Random Indices for different number of criteria is presented in Table 9. Since the study 

evaluated 8 different criteria, the standard Random Index for the evaluated criteria is 1.41. 

Consistency Index on the other hand, provides a measure of departure from consistency based 

on the principal eigenvalue; denoted as (7).  

(7) CI =  
𝜆𝑚𝑎𝑥 − 𝑛𝑖

𝑛1 − 1
 

The Consistency Index of the matrix equates to 0.029 as shown in computation 8, and the 

Consistency Ratio is determined to be 2.0 % as indicated in computation 9. Hence, given that 
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the Consistency ratio is 2.0 %, a value lower  than the recommended threshold of  10 %  as 

proposed by  (Saaty, 1977), it is deemed appropriate to proceed with the overlay analysis to 

derive the flood hazard index and produced flood hazard susceptibility map for the study area.  

(8) CI =
8.20 − 8

8−1 
 = 0.029 

(9) CR =
0.029

1.41
= 0.020 = 2.0 % 

3.3. Weighted overlay analysis and flood hazard index 

3.3.1. Classification of Thematic Layers 

The underlying assumption with the linear combination method is that each factor has an 

interval range which are clustered on a ratio scale. As such the value range of thematic raster 

layers used in this study were each normalised on a scale of 1 to 5. The classes for the value 

range of the thematic layers were established using different approaches, including equal 

intervals, natural breaks, and lithological units among others, with the aim of enhancing 

objectivity (Dash & Sar, 2020). The selection of these methods was driven by two specific 

objectives: (1) first to ensure that the variance with each class is minimised to an acceptable 

threshold, while the variance between classes is maximised; (2) and secondly, to ensure a 

classification scheme that aligned with, and takes into account the inherent physical 

characteristics of the study area and the pattern of flooding occurrence.  

Quantitative criteria were clustered into categories through the application of two distinct 

classification method. Equal intervals were applied to group criteria such as distance to rivers, 

drainage density, and annual average rainfall. In contrast, natural were utilised for criteria such 

as Topographic Wetness index, slope, and DEM. This approach allowed for a tailored and 

effective classification strategy based on the specific nature of each criterion. While the equal 

interval method produces an equal class width with varying frequency of observation, the 

natural break method account for non-uniform distributions, giving an unequal class width 

with varying frequency of observation per class. 

Qualitative criteria on the other hand, were grouped according to the specific local 

topographical characteristics of the study area. The classification of soil types was contingent 

upon the prevailing properties of the predominant soil types that makes up the terrain of the 

study area. Additionally, the categorisation of land-coverage was determined by employing 
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Esri’s detailed land use/ landcover classes, which were derived through the utilisation of 

artificial intelligence model (www.livingatlas.arcgis.com).  

Considering the influence of each criterion in flooding, the pixels within each criterion were 

assigned values ranging from one (minimum influence in flood occurrence) to 5 (maximum 

influence in flood occurrence).  

Criteria Unit 
Classification 

method 
Class width 

Flood hazard 
influence 

Criteria 
weight (%) 

Rank 

Distances to 
rivers 

Metres Equal interval 

≤ 14,000 Very high 

19.19 % 

5 
14,000 - 28,000 High 4 
28,000 - 42,000 Moderate 3 
42,000 - 56,000 Low 3 
≥ 56,000 Very Low 1 

Topographic 
Wetness 
Index 

Level 
Natural 
breaks 

≤ 12.5 Very low 

16.63 % 

1 

12.5 - 14.5 low 2 
14.5 - 16. 5 moderate 3 

16.5 - 18.5 high 4 

≥ 18.5 Very high 5 

Drainage 
Density 

Km/Km2 Equal interval 

≤ 0.60 Very Low 

14.73 % 

5 
0.60 - 0.90 Low 4 

0.90 - 1.20 Moderate 3 
1.20 - 1.50 High 2 
≥ 1.50 Very high 1 

Land-
coverage 
(LULC) 

Type 
AI based 

unsupervised 
classification 

Dense vegetation Extremely low 

13.83 % 

1 

Crop land Very low 2 

Bare land Low 3 

Pastureland Moderate 3.5 

Built area High 4 

Flooded vegetation Very High 4.5 

Water Extremely high 5 

Rainfall Mm/yr. Equal interval 

≤ 680 Very low 

12.61 % 

1 
680 - 810 Low 2 
810 - 940 Moderate 3 
940 - 1070 High 4 
≥ 1070 Very high 5 

Slope Degree 
Natural 
breaks 

≤ 1 Very high 

11.81 % 

5 

1 - 6 High 4 

6 - 11 Moderate 3 

11- 22 Low 2 

≥ 22 Very Low 1 

Digital 
Elevation 
Model 

Metres 
Natural 
breaks 

≤ 420 Very high 

6.71 % 

5 
420 - 480 High 4 
480 - 640 Moderate 3 
640 - 970 Low 2 

≥ 970 Very low 1 

Soil type Type 
Lithological 
unit 

water Very High 

4.49 % 

5 

clay High 4 

Clay loam Moderate 3 

Loam Low 2 

Table 10. weights, classes width and ranks assigned to flood influencing factors (criteria) 

3.3.2. Flood Hazard Index 

The flood hazard index for the study area was derived from the selected criteria and computed 

through the application of the weighted linear combination technique in ArcGIS environment. 

https://livingatlas.arcgis.com/landcover/
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This technique is grounded on the principle of a weighted average, wherein criteria with 

continuous attributes are first standardised to a uniform numeric scale and subsequently 

combined through the utilisation of weighted averages (Drobne & Lisec, 2009). Weights of 

each criterion are determined based on their relative importance on the investigated 

phenomenon. To compute the total score of each criterion, the assigned weight of relative 

importance of each criterion is multiplied by the scale value assigned to the criterion. These 

weighted values are then summed across all criteria. These process is applied for all criteria 

using equation (10): 

(10) FHI = ∑ 𝑊𝑖 ∗  𝑋𝑖  

Where, FHI = flood hazard index, 𝑊𝑖 = normalised weight of criterion 𝑖, and 𝑋𝑖 =  rank 

score of each class in criterion 𝑖. Hence, using the ‘weighted sum’ function of the ‘overlay 

analysis’ tools in ‘spatial analyst tools’, a flood susceptibility map for the study area was 

generated as the layer of flood hazard index. Equation below: 

FHI = 0.1919 * (distance to the river) + 0.1663 * (topographic wetness index) 

+ 0.1473 * (drainage density) + 0.1383 * (land-coverage) + 0.1261 * (rainfall) 

+ 0.1181 * (slope) + 0.0671 * (digital elevation model) + 0.0449 * (soil type) 

The generate flood hazard index layer and values derived from the index were group in five 

qualitative classes, each representing a varying degree of study’s area susceptibility to flood 

hazards, ranging from very low to very high susceptibility zones. The clustering of pixels into 

this categories was executed by the applying the ‘natural break function’ in ArcGIS 

environment to identify breakpoints that effectively delineate the qualitative classes. This 

method optimises the arrangement of data cluster by minimising the average deviation within 

class from its respective mean while simultaneously maximising the deviation between the 

mean of each class and the means of the other classes (Stefanidis & Stathis, 2013). 

Furthermore, cumulative frequency of the flood hazard index and   standard deviation of each 

class from its mean were computed to determine optimal breaking point and delineating flood 

hazard zones.  

3.4. Validation of flood hazard index 

Precision in the information presented on flood hazard maps plays a vital role in activities 

associated with flood disaster mitigation and management (Mudashiru et al., 2021). Thus, it is 
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essential to assess the predictive capabilities of flood hazard maps in accurately depicting 

inundation scenarios. Various studies have employed different approaches to analysis 

uncertainties; and validate flood hazard maps. While some studies  utilised location-based 

historical flood data, focusing on flood events in specified areas  (Kazakis et al., 2015; Wang et 

al., 2011), others have relied on spatial maps derived from satellite imagery depicting  

historical flood events (Dash & Sar, 2020; Allafta & Opp, 2021), and physical  models 

((Elkhrachy, 2015)) to verify generated flood hazard maps. Although all of the above 

approaches possess inherent strength and limitation in term of validating the forecasting 

capacity of flood hazard maps, spatial maps of historical flood events derived from satellite 

imagery proved to effective for validating flood hazard maps, particular for regions 

characterised by limited local flood extent observations, spatial data scarcity and thus 

unavailability of inundation maps. The application of satellite remote sensing in flood 

detection traces its origin to the 1970s, and imagery captured by satellites and imaging 

systems such as NOAA (National Oceanic and Atmospheric Administration), VHRR (Very High 

Resolution Radiometer),  AVHRR (Advanced Very High Resolution Radiometer), MODIS 

(Moderate Resolution Imaging Spectroradiometer) Radarsat, SAR (Synthetic-aperture radar), 

TerraSAR-X and Sentinel-1 have consistently served as invaluable source of data for detecting 

flood water and analysing inundation extent (S. Li et al., 2018).  

In the current study, satellite imagery from Visible Infrared Imaging Radiometer Suite 

(VIIRS) have been used to extract surface water and maximum inundation extent for the study 

area. VIIRS proved to be superior to other satellite such as MODIS, particularly its robust 

flooding detection capability (www.nesdis.noaa.gov).  

By applying one of the functions in imagery gallery in ArcGIS Pro, the Modified Normalised 

Difference Vegetation Index (MNDVI) for the study area was computed using the following 

satellite Imagery: NOAA-20/VIIRS (1.9.10.2020/19.10.2021/21.10.2022). the Modified 

Normalised Difference Vegetation Index is defined by “MNDVI = (c.NIR-Red)/(c.NIR+Red). c is 

a real number, which generally takes values between 0.1 and 10. NIR and Red are the 

reflectance at the Near Infrared and Red channels, respectively” (Skianis et al., 2009). This 

index is particularly efficient and useful in extracting surface water detected by satellite 

sensors. Therefore, by selecting the green band index and the shortwave infrared band index 

from of the satellite images of the study area for each of three period mentioned, the surface 

water extent was targeted. Consequently, using unsupervised classification technique, 

different pixels values were transformed into binary form with inundated areas equating to 1, 

https://www.nesdis.noaa.gov/our-satellites/currently-flying/joint-polar-satellite-system/visible-infrared-imaging-radiometer-suite-viirs
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and areas not inundated equating to 0. The results obtained was converted into vector layer. 

Following the exclusion of permanent water bodies, the inundations maps for the three 

different years were integrated together forming a cumulative inundation map. The integration 

of the three years inundation maps and generation of a cumulative map was undertaken using 

a straightforward technique, whereby area that have experienced inundation at least once in 

either 2020, 2021 or 2022 are marked as flooded areas in the cumulative, while areas that 

haven’t experienced inundation in any of the three years are marked as non-flood areas. 

Subsequently, the composite layer showcasing maximum flood extent was cross tabulated 

with the flood hazard map wherein, the overlap between the two layers–flood hazard 

susceptibility map and maximum flood extent–was computed and cross-tabulated, taking in 

to account the flood extent within each zone outlined flood susceptibility map. 
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4. RESULTS 

4.1. Flood Hazard mapping 

Flood hazard mapping is an approach used to determine the spatial extent of inundation under 

flood scenarios. This is accomplished through the analysis of multiple parameters recognised 

as influential in flood occurrence based on their contributions to flood phenomena. This study 

examines the potential geographic extent of flood hazard in Upper Nile state, taking into 

account eight different flood influencing factors i.e., distance to rivers, topographic wetness 

index, drainage density, land-coverage, rainfall, digital elevation model, slope, and soil types. 

These factors were evaluated and mapped using  ArcGIS Pro 3.1 software to illustrate that: 

distance to rivers, which determines the effective infiltration zones (Vaddiraju & Talari, 2022); 

topographic wetness index, which determines water accumulation trend; drainage density, 

which dictates the partition of surface runoff and infiltration rate (Allafta & Opp, 2021); land-

coverage, which influences recharge processes; rainfall, a principal water source; elevation, 

which mainly influences the direction of overflow and water depth; slope, which regulates the 

intensity of surface runoff; and soil type, which dictates infiltration rate, have a notable 

influence on the evolution of flood hazards and can be holistically analysed to determine the 

potential geographic extent of flood hazards.  

4.2. Flood influencing factors 

4.2.1. Distance to Rivers 

The occurrence of flood is proportionately linked to drainage channels overflow, mainly due to 

capacity issue of channels. Based on the distribution of channel networks, areas in close 

proximity to the channels becomes more vulnerable to flood hazards and easily flooded in 

comparison to remote regions. In the survey conducted, the criterion ‘distance to rivers’ was 

found to be the most important flood influencing factor, assigned a relative weight of 

significance which equates to 19.19%. According to the classification of the thematic layer, 

areas within a range of 0 – 14 and 14 – 28 kilometres from perennial river networks in the 

study area have a high potential of flooding. Conversely, areas situated at a range between 42 

– 56, and beyond 56 kilometres from the river networks have a lower probability of 
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experiencing inundation during flood events (Figure 7 (a & b)). Approximately 54% of the study 

area is situated within the proximity range of 0 – 14 kilometres from perennial water bodies, 

specifically, the White Nile, the Sobat and its tributaries within the study area (river Pibor and 

Baro), Doleib, Bibban, El-Samaa, Wehfet, Adar, Yale, Tombak, Yabus, Daga, and river Nyanding; 

28% in the 14 – 28 kilometres range; 14% in the 28 – 42 kilometres range; 3% in the 42 – 56 

kilometres range; and 1% in range exceeding 56 kilometres (Table 10).  

4.2.2. Topographic Wetness Index 

Topographic wetness index describes water accumulation trend in a particular region and the 

spatial distribution of wet and dry areas based on terrain’s slope, elevation, and the availability 

of water courses. In general, a high topographic wetness index corresponds to an increased 

presence of surface moisture, thereby amplifying a region’s vulnerability to inundation due to 

a reduced rate of infiltration on wet terrain. Conversely, a low topographic wetness index 

donates a drier surface and therefore, a low vulnerability to inundation in the event of flooding 

due to the capacity of drier surface to facilitate water infiltration. Based on experts’ opinion, 

the TWI layer was assigned a relative weight of importance that equates to 16.63%. Using 

natural breaks, the TWI layer was classified into 5 distinctive classes (Table 10). The first class 

spanning on a range between 07.25 and 12.5 donates low influence on flood occurrence. 

Subsequently, the range extending from 12.5 to 14.5 indicates a low influence, followed by the 

interval between 14.5 and 16.5, which signifies a moderate influence on flood occurrence. The 

subsequent range, 16.5 to 18.5 indicates a high influence, while the last range, 18.5 to 34.14 

indicates a very high influence on flood occurrence (Figure 7(c & d)).  About 46% of the study 

area have a topographic wetness index value that equates to the very low-class range, i.e., 

07.25 to 12.5; 23% in the low range; 14% in the moderate range; 10% in the high range’ and 

7% in the very high range.  

4.2.3. Drainage Density  

An elevated surface runoff rate mostly leads to flood occurrence, a correlation that is closely 

linked to high value of drainage density in a given basin. Flood occurrences are notably 

associated with drainage areas and peak discharge, both which are regulated by the density 

of the drainage systems. A high-density value of drainage system indicates more excess surface 

runoff, consequently amplifying the likelihood of flood incident. Conversely, a low value has a 

low influence on the occurrence of flood events. The study area was found to have drainage 
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density value ranging from 0.28 to 1.85 kilometres2 which was classified into five categories 

(Table 10).  Areas corresponding to very high drainage density (1.50 – 1.85 km/km2) constitute 

17% of the study area; high (1.20 - 1.50 km//km2) covers 54%; moderate (0.90 - 1.20 km/km2) 

accounts for 22%; low (0.60 - 0.90 km/km2) represents 5%; and very low (0.28 - 0.60 km/km2) 

covers 2% of the entire study area (Figure 7 (e & f)).  

 

Figure 7. Thematic maps of criteria used to generate flood hazard index for the study area. 
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4.2.4. Land-coverage (LULC) 

Land use and land cover exert a direct influence on the rate and pace of infiltration, shaping 

the dynamic interplay between surface and groundwater, evapotranspiration, surface runoff 

generation, and consequent flood events. “Impervious land cover results in infiltration 

capacity reduction, and runoff from such cover adds significantly to total runoff” (Allafta & 

Opp, 2021, p. 14). The built environment and areas characterised by prolong water presence 

play a notably significant role in this context. On the other hand, pervious land cover, 

exemplified by vegetated areas, enhances infiltration capacity, thereby establishing a negative 

correlation with flood occurrence. Bare land, however, exhibits a moderate influence on flood 

incidences, attributable to the impact of rainfall on bare land. Based on Esri’s global land use/ 

landcover imagery portraying the land use/landcover conditions in the year 2020, the study 

area is characterised by 7 distinctive land classes, each systematically ranked based their 

respective contribution to flood incidents (Table 10). Approximately, 36% of the study area is 

covered by dense vegetation, an attribute that has very low flood influencing occurrence; 

cropland, constituting 1% of the study area, scored as a low flood-influencing attribute. 

Subsequently, bare land (0.7%), and pastureland (57%) are ranked as moderate flood-

influencing attributes. The built environment, accounting for 0.7% of the entire study area 

emerges as high flood-influencing attribute due to its impact on infiltration rate and surface 

runoff generation. Lastly, flooded vegetation (4%) and permanent water bodies (0.6%), both 

ranked as having a very high influence on the occurrence of flood (Figure 8 (g & h)). 

4.2.5. Rainfall 

Rainfall serves as a crucial factor, directly associated with flood occurrence. The heightened 

intensity, frequency, and duration of precipitation, in conjunction with the topographical and 

hydrological attributes of a given area, have the potential to amplify the susceptibility of that 

region to occurrences of flooding. As shown in Table 10, the study area have a varying annual 

average rainfall and there is a clear distinction between the northeastern and south western 

part of the study (Figure 8 (j)). The general pattern of annual average rainfall in the study area 

shows the highest level in the western parts (1070 - 1200 mm), and the lowest level in northern 

parts (550 - 680 mm). Thus, the five annual average rainfall classes outlined I.e., 550 - 680, 680 

- 810, 810 - 940, 940 - 1070, and 1070 - 1200 were assigned ratio score consisting of very low, 

low, moderate, high, and very high in the ranking of flood-influencing factors.    
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Figure 8. Thematic maps of criteria used to generate flood hazard index for the study area. 
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4.2.6. Elevation 

Elevation exhibits an inverse correlation with flood hazards, whereby the gravitational flow of 

surface runoff from elevated terrain converges and gather in low-lying areas, thereby 

heightening their vulnerability to flood risk. The interplay of elevation significantly influences 

the direction, scope, and depth of flooding events. Areas characterised by lower elevations are 

more expose to inundation compared to areas with high elevations. This heightened exposure 

arises from the capacity of low-lying regions to be inundated even by floods of relatively low 

magnitude, attributable to the inflow of surface runoff originating areas characterised by 

elevated terrain. In the survey conducted with the experts, the criterion elevation was 

assigned a relative weight of importance amounting to 6.71% (Table 10). The terrain of the 

study area is primarily composed of flatland with the highest elevation reaching 2013 metres, 

representing a limited portion of the entire study area. In contrast, the lowest elevation is 382 

metres above sea level, constituting a substantial proportion of the study area (Figure 8 (k & 

I)). The classes assigned to the criterion elevation is based on the natural break function 

whereby the class width with very high influence on flood occurrence is between 382 to 420 

metres. High influence on flood occurrence is ascribe to elevations ranging from 420 to 640 

metres; moderate influence pertains to elevation within the of 480 - 640 metres; low influence 

encompasses elevation between 640 - 970 metres; and elevation exceeding 970 metres are 

ranked as having a very low influence on flood occurrence (Table 10). The eastern part of the 

study area has the highest elevation level, therefore less prone to inundation. The central, 

south-western, and north-western portion of the study area, however, possess low elevations 

and therefore prone to inundation (Figure 8(k & I)). 

4.2.7. Slope 

Slope gradient, a that criterion linked to elevation of a terrain, regulates the velocity and 

concentration of surface runoff. The probability of flood occurrence increases inversely with 

the decline in  the slope of region, thus rendering slope a reliable criterion in assessing the 

probabilistic extent of flood hazards (Rahman et al., 2019). The criterion slope was assigned a 

relative weight of significance that amounts to 11.81%. And similar to the rest of the criteria, 

the slope of the study area was classified into five distinctive classes, with each class having a 

varying degree of influence on the occurrence of floods, notably, areas with slope less than 1 

degree, 1 - 6 degrees, 6 - 11 degrees, 11- 22 degrees, and higher than 22 degrees (Table 10). 
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Areas with the highest slope value and less prone to inundation are situated in the eastern 

part of the study area, whereas areas with varying degrees of slope that are prone to 

inundation are located in the central, north-western, and south-western parts of the study 

area (Figure 9 (m & n)). 

 

Figure 9. Thematic maps of criteria used to generate flood hazard index for the study area. 

4.2.8. Soil Type 

Regardless of the landcover category, infiltration rate is significantly influenced by soil type. As 

such, soil type determines the proneness level of an area to inundation in flood scenarios. Soil 

properties such as layer thickness, permeability, and infiltration rate impose a direct impact on 

the rainfall-runoff processes (Rimba et al., 2017). And given that different soil types have 
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different infiltration capacity, the probability of flood risk increases with the decrease in soil 

infiltration capacity and vice versa. For instance, sandy soils possess a pronounce ratio of 

macropores, resulting in a higher infiltration capacity and lower surface runoff in comparison 

to loamy soil. Loamy soils on the other hand, are characterised by high ratios of medium-sized 

pores which possess higher infiltration rates and lower runoff when compared to clay soil 

which has the highest ratio of micropores.  The distribution of Soil pore size, the volume and 

connectivity of pores can substantially affect water transportation and the occurrence of flood. 

The criterion soil type for the area under investigation was categorised into four classes (i.e., 

clay, clay loam, loam, and water) based on the prevailing soil property of the terrain (Table 10). 

Approximately 18% of the study area’s soil texture is of loam soil which has a low influence on 

the occurrence of flood hazard; 1% loam clay, which have a moderate influence level when it 

comes to flood hazards; 80% clay, a soil type with low infiltration rate. Areas characterised is 

having a watery soil texture represents less than 1% percent of the study area and have a very 

high level of proneness to inundation in the event of flood.  

4.3. Flood hazard index 

Table 10 presents the relative weights of importance of all the eight criteria used in flood 

hazard mapping, derived through the analytical hierarchy process. Using weighted overlay 

analysis in an ArcGIS environment, the eight flood influencing factors and their corresponding 

weights were combined, yielding a flood hazard index map for Upper Nile state (Error! 

Reference source not found.). The determined flood hazard index values fall with the range of 

2.01 to 4.74. Pixels exhibiting high FHI values demonstrate greater susceptibility to flooding, 

whereas pixels with low FHI values exhibits low susceptibility to flooding. The FHI value were 

systematically classified into 5 distinct groups, each indicative of varying level of susceptibility 

to flood hazards (Figure 11). Pixels within the range of 2.007 to 3.046 donates areas 

characterised by very low susceptible level to flood hazards. Those within the range of 3.047 

to 3.346 represents low susceptibility level, while values between 3.347 and 3.614 are 

associate with moderate susceptibility level to flood hazards.  Furthermore, FHI values ranging 

from 3.615 to 3.914 correspond to areas exhibiting a high susceptibility level, and the range 

from 3.915 to 4.739 represents a notable elevation in proneness to flood hazards, signifying a 

very high level of susceptibility (Table 11).  
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Figure 10. Digital map of the flood hazard index. 

4.4. Validation results 

The validity of the flood hazard model developed for Upper Nile state using GIS-based 

multicriteria decision analysis and the analytical hierarchy process was assessed on the basis 



56 
 

of historical inundation map derived from satellite imagery. The generated flood hazard map 

was compared to a historical inundation map illustrating the cumulative extent of floodwater 

in the study area during October of 2020 2021, and 2022 (Figure 12). The comparative analysis 

of the composite layer, representing historical inundation, and the flood hazard maps revealed 

distinct distributions of historical inundation extent across different flood hazard zones 

illustrated in the flood hazard map. Specifically, about 4% of previously inundated areas were 

situated within the very low zone of the flood hazard map, 16% in the low zone, 26% in the 

moderate zone, 32% in the high zone, and 22% in the very high zone (Figure 11).  

As the validation outcomes of the flood hazard map revealed, a significant portion of the 

historical flood and inundation extent is concentrated within flood hazard zones classified as 

moderate, high, and very high susceptibility zones. About 80% of the total inundation extent 

observed in the preceding three years (2020, 2021, 2022) corresponds to these designated 

hazard zones. Consequently, the flood hazard model developed for Upper Nile state is 

considered satisfactory, effectively portraying areas prone to flooding and providing an 

accurate representation of the probabilistic extent of inundation under flood scenarios.  

FHI range Zone classification 
Area Number of cells 

(30x30) (km2) (%) 

2.007 - 3.046 Very low 7,222.62 9.38 7634344 
3.047 - 3.346 Low 17,124.63 22.25 18071308 
3.347 - 3.614 Moderate 22,548.82 29.29 23848822 
3.615 - 3.914 High 20,627.40 26.80 21827321 
3.915 - 4.739 Very High 9,450.65 12.28 10048305 

Table 11. Classification of flood hazard zones 

4.5. Flood hazard zones (FHZ) 

The flood hazard index for Upper Nile state was calculated and presented in the form of flood 

hazards map. Employing the natural breaks' technique, FHI values were classified into five 

distinct hazard zones, as illustrated in Figure 11. These zones illustrate varying levels of 

susceptibility to flood hazards, namely very high, high, moderate, low, and very low, covering 

approximately 12%, 27%, 29%, 22%, and 10% of the study area, respectively (Table 11). In 

absolute numbers, about 9,451 kilometres square of the study area falls within the zone with 

a very high susceptibility level to flood hazards, 20,628 kilometres square in the zone with high 

susceptibility level, 22,549 kilometres square in the moderate zone, 17,125 kilometres square 

in the low zone, and 7,223 kilometres square in the very low zone (Table 11). Typically, areas 

characterised by a heightened risk of flooding are found to align with locales exhibiting 
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elevated runoff rates, a circumstance influenced by diverse parameters (Allafta & Opp, 2021). 

In the current study, zones with very high and high susceptibility level to flood hazards are 

situated along the major water bodies and their tributaries, particularly the White Nile River, 

Sobat River, and the confluence point of both rivers. Areas close to these water bodies and 

areas in the central part of the study area  do exhibit moderate to high vulnerability to flooding, 

whereas the northeastern and lower-eastern part of the study area exhibit a very low and low 

susceptibility level to flood hazards (Figure 11). Areas characterised by a very high and high 

susceptibility level to flood hazards are positively affect by their proximity to perennial water 

bodies, elevation, slope, land use/landcover types, and the level of topographic wetness index.  

Upon superimposing the land use/land cover layer onto the flood hazard index map, a 

discernible trend emerged, revealing a substantial proportion of the built environment 

situated within the moderate, high, and very high flood hazard susceptibility zones (Table 12). 

Specifically, urban areas and human settlement sites encompass 16.64%, 47.99%, and 33.77% 

within the moderate, high, and very high flood hazard susceptibility zones, respectively. 

Furthermore, pasturelands demonstrate an elevated vulnerability to flood events, with 15.72% 

of the pastureland situated within areas classified as very highly susceptible to inundation, 

37.35% in the high susceptibility zone, 32.03% in the moderate zone, and 12.72% in the low 

susceptibility zone, accompanied by 2.15% in the very low zone. Other land use/land cover 

types exhibit a contrasting results in comparison to the built environment and pastureland 

classes. Whereby most of the bare land, agricultural areas and dense vegetation mostly 

situated in the very low and low flood susceptibility zones (Table 12). Precisely, 49.67% of the 

bare lands are within the zone classified as having a very low susceptibility level to flood 

hazards, while 16.13% occupies the low flood hazard susceptibility zone, 22.48% in moderate 

zone, 9.06% in the high, and only 2.63% in the zone with very low susceptibility level to flood 

hazards. On the other hand, agricultural areas in the very low, low, moderate, high, and very 

high flood hazards covers about 26.39%, 31.08%, 27.14%, 11.56%, and 3.80% of areas in the 

flood hazard index map, respectively. Similarly, the vegetation cover class is situated within 

21.51%, 39.76%, 28.02%, 9.86%, and 0.83% of the respective flood hazards susceptibility 

zones, namely, very low, low, moderate, high, and very high flood hazards susceptibility zones, 

respectively.  
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Figure 11. Flood hazard susceptibility and zoning map for Upper Nile state. 

Land use/land 
cover 

Vulnerability level 

Very low Low Moderate High Very high 
Km2 % Km2 % Km2 % Km2 % Km2 % 

Built environment 201 0.37 665 1.22 9,108 16.65 26,258 48.00 18,474 33.77 

Pastureland 957,427 2.16 5,641,668 12.72 14,208,925 32.04 16,568,977 37.36 6,972,723 15.72 

Bare land 27,279 49.68 8,859 16.13 12,347 22.48 4,980 9.07 1,446 2.63 

Agricultural areas 128,448 26.40 151,273 31.09 132,098 27.15 56,277 11.57 18,492 3.80 

Vegetation cover 6,107,151 21.51 11,289,673 39.76 7,956,724 28.02 2,800,845 9.87 237,295 0.84 

Table 12. Vulnerability of land use /landcover classes in each flood hazard zone.  
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Figure 12.  Satellite imagery based historical Inundation map
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5. DISCUSSION 

The Upper Nile state is characterised by recurrent inundation, a phenomenon documented in 

historical records dating as far back as the 18th century. The susceptibility of the area to 

flooding is heightened by its geographical positioning within a floodplain characterised by a 

notable variability in discharge. Additionally, the topographical attributes of the investigated 

area render it particularly susceptible to flooding. Consequently, this study sought out to 

delineate the probabilistic geographic extent of inundation under flood scenarios in the Upper 

Nile state, an attempt to develop flood hazard map that could be instrumental in mitigation 

measures to reduce the adverse effects of flooding. 

 Employing a methodological approach, the study utilised multicriteria decision analysis and 

the analytical hierarchy process, –a method deemed effective in existing literature (Kazakis et 

al., 2015; Ogato et al., 2020; Allafta & Opp, 2021) in delineating flood hazards zones, 

particularly for data-sparse, under-resourced regions of the world–in analysing and 

cartographically representing areas within Upper Nile state that are vulnerable to flood 

hazards. This was accomplished through the identification of flood influencing factors, 

determining their relative weight of importance in the occurrence of floods, and subsequently 

conducting a weighted overlay analysis in ArcGIS environment.  

A total of eight flood influencing factors were selected, and their weights were determined 

through a survey involving experts from various fields. Among the criteria used in the flood 

hazard model for the study area, five were signed the highest weights of relative importance: 

distance to rivers having a relative wight of importance equivalent to 19.19%, topographic 

wetness index (16.63%), drainage density (14.73%), land use/ landcover (13.83%), rainfall 

(12.61%), slope (11.81%). The remaining two criteria were each assigned relative weight of 

importance below 10% (Table 10). Prior to the weighted overlay analysis, an assessment of the 

pairwise matrix's consistency was conducted. The determined consistency ratio, amounting to 

2.0%, was found to be below the prescribed maximum consistency ratio of 10%, as proposed 

by Saaty (1990).  

Using different classification technique, each criterion's value range was normalized on a 

scale from 1 to 5 (Table 10). Given that a large portion of floods are caused by an increase in 

the volume of water entering from upstream sources, primarily the Ethiopian highlands and 

Lake Victoria, the equal interval  function was used to normalise the criterion distance to rivers 
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and drainage density in order to increase the number of pixels within class ranks that have a 

greater influence on the occurrence of floods (class rank 4 & 5), thereby partially offsetting the 

lack of criteria accounting for surface runoff volume and the Nile discharge.  

Consequently, the eight criteria representing flood influencing factors were superimposed, 

generating a flood hazard index for Nile state. The Flood index Value range between 2.007 and 

4.739, wherein higher values correspond to areas characterized by elevated susceptibility to 

flood hazards, whereas lower values denote regions less prone to such hazards. Following 

classification if the hazard index into five classes, each indicative of varying degrees of 

proneness to flood hazards, it was recognised that area along perennial water bodies more 

prone to flooding in comparison to areas far from water bodies. Particularly, the central and 

southwestern parts of the study area are represented by very high values of the flood hazard 

index (Figure 11). Here the effect of two criteria, namely distance to rivers and topographic 

wetness index is particularly revealing.  

Conversely, the eastern and northeastern portions of the study area demonstrate a 

relatively lower proneness to flood hazards. Despite the anticipation of high flood hazard index 

values in these regions due to their substantial drainage density and annual rainfall patterns, 

the influence of those criteria was offset by elevation, land use/landcover types and the 

topographic wetness index level of those areas. Consequently, elevation and slope play a major 

role, especially in regions classified as highly susceptible to inundation.  

The flood hazard index map produced was validated using satellite based historical 

inundation map. Imagery produced by satellite-based water detection sensors and Earth 

Observation (EO) plays a crucial role in determining inundation extent particularly for data-

sparse regions. In this context, imagery obtained from the Visible Infrared Imaging Radiometer 

Suit (VIIRS) for the years 2020, 2021, and 2022, corresponding to instances of severe 

inundations in the study area were analysed and cross tabulated with the flood hazard index 

map (Figure 12). The results from the validation analysis revealed that a substantial proportion 

of the areas submerged in the October of 2020 2021 and 2022, approximately (80%) are within 

the moderate, high, and very high flood zones.  Conversely, only 20% of historical inundation 

were in the low, and very low hazard zones.  

Different land use/landcover types were found to have a varying degree of proneness to 

inundation (Table 12). Notably, 98% of areas denoted as built environment – representing 

urban areas and human settlements – are within the moderate, high, and very high flood 

hazard susceptibility zones. While this study did not incorporate an analysis of the population 
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exposed to the threat of flood hazards, from this results, this finding suggests that substantial 

proportion of the population within Upper Nile state are at a high risk of inundation in the 

event of flooding. Another category of land use at significant risk of inundation is pasture, with 

85% of pasture areas located in zones classified as exhibiting moderate, high, and very high 

susceptibility to flooding. This, therefore, indicates a major constraint on livelihood 

mechanism of the local population in the event of flooding since the most dominant economic 

activity in the study area revolves around animal husbandry, particularly livestock grazing. 

Conversely, areas characterized by vegetation cover and agricultural land exhibit lower 

susceptibility to inundation. The positive influence of vegetation cover on infiltration rates and 

its adverse impact on the correlation between surface and groundwater are inversely related 

to the occurrence of floods. 

The application of multicriteria decision analysis and the analytical hierarchy process in the 

current study demonstrated an accurate depiction of areas susceptible to flood hazards. This 

method is widely used by researchers mainly due to its capability to handle data scarcity and 

its effectiveness delineating flood zones of vast regions. Studies that applied this method (see 

section: 1.5.3) have identified its utility, attributing its value to its subjective adaptability, ease 

of application, and the generation of precise outcomes. 

However, it is essential to highlight that the effectiveness of this approach is predominantly 

contingent upon two factors: (1) accurate identification and selection of criteria, and (2) the 

allocation of weights to individual criteria. In the current study, the selected factors are partly 

based on the literature and partly on the topographical characteristics of the study area. While 

additional factors such as volume of surface runoff were considered in the initial phase of the 

research, the lack of accessible observational data on Nile discharge and other types of data 

has limited the criterion selection to dataset that can be freely accessed. Consequently, this 

limitation has significantly influenced the flood hazard modelling process. 

Secondly, the role of stakeholders in crucial in allocating various weights of the identified 

criteria. Since the weight assignment process is quite complex and necessitates a nuanced 

understanding of how each identified criterion influences the occurrence of flood hazards, it 

is imperative to identify and select stakeholders with expertise in specific domains to facilitate 

the pairwise assessment of each criterion. This however, the reliance on experts’ opinions, 

may be subjected to intellectual constraints due to the subjectivity and uncertainty.  

Therefore, While the flood hazard model generated for Upper Nile State is determined 

satisfactory based the positive validation results, its essential to outline that other modelling 
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techniques can be employed in conjunction with the existing model to enhance the 

optimization of the analysis results. This is absolute necessary for two reasons. firstly, the 

conventional AHP possess inherent limitation, wherein a singular numerical value is utilized to 

encapsulate the decision maker's inclination toward a particular alternative during pairwise 

comparisons (Li et al., 2013). This approach, however, falls short in adequately capturing the 

nuanced opinions of decision-makers (Kahraman et al., 2003). Therefore, a more sophisticated 

approach that considers the nuanced perspectives of experts can be employed. Secondly, and 

on the basis of the utility of the flood hazard model for formulating measures to mitigate flood 

hazards, a less intricate approach may be employed. Given the complexity of the analytical 

hierarchy process and the substantial reliance on institutional capacity for the implementation 

of its outcomes, decision-making bodies may find it advantageous to opt for a flood hazards 

model developed on the basis of more straightforward and uncomplicated techniques. 
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6. CONCLUSION 

The current study employed GIS-based multicriteria decision analysis and the analytical 

hierarchy process in analysing the phenomenon of flood hazard in Upper Nile state, an 

administrative delineate in South Sudan.  The objective of the study is to examines the 

potential spatial extent of floodwater within the boundaries of study area during flood 

scenarios and develop flood hazard map that illustrate the susceptibility level of the study area 

to flood hazards.  

The flood hazard map developed for Upper Nile state was compared against historical 

inundation map from satellite imagery, demonstrating effectiveness in accurately depicting 

areas prone inundation. In particular, high susceptible zones are located the central, south-

western, and western parts of the study area, along prominent water bodies.  Generally, this 

areas are characterised by dense network of river and stream, lowland topography, low level 

of topographic wetness index, and a gentle slope gradient. The comparison of the flood hazard 

index with land use/land cover classes showed a heightened vulnerability in built 

environments, including urban areas, human settlements, and pasturelands, to flood hazards. 

The flood hazard model developed and the AHP methodology used proved to be effective in 

accurately depicting the phenomenon of flood hazards in the study area. This success can be 

attributed to the method's inherent adaptability, straightforward application, and the 

generation of precise results. Hence, the flood hazard map develop is anticipated to be 

instrumental in developing pre-flood preparedness measures, strategies, and mitigation 

efforts, a judgement that is entirely contingent upon the preferences of responsible entities, 

particularly concerning the chosen methodology. 

While the developed flood hazard model accurately depicts the probabilistic geographic extent 

of flood hazard in the study area, it is essential to outline that the study in essence, is 

preliminary in nature. It falls shorts in incorporating other aspects of flood risk assessment 

such as the analysis of the frequency and depth of flood hazard, including the intensity and 

volume of Surface runoff, as well as a detailed exposure and vulnerability analysis, all of which 

are crucial components of integrated flood risk management. Consequently, the study should 

regarded as provisional, underscoring the need for supplementary research to address these 

gaps. Such additional investigations are crucial to optimise the obtained results and provide a 
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thorough understanding of the temporal and spatial dimensions of flood phenomena in the 

investigated area.    
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ABSTRACT 

Floods are among the most ruinous of all natural hazards. Its adverse effects include damages 

to the physical, social, and economic structures, and disruption of livelihoods.  contemporary, 

attributed to climate change-induced climate variations and extreme weather events, the 

frequency of flood occurrence has increased all around the globe. This has therefore, 

augmented the necessity to comprehend the spatial and temporal dimension of flood 

phenomena. The current study examines the spatial dimension of flood hazard in the Upper 

Nile state, South Sudan, a region acknowledged to be highly vulnerable to inundation, mainly 

due to is geographical position within a flood plain characterized by a notable variability in 

discharge. The objective of this investigation is to map the potential spatial extent of 

floodwater within the boundaries of study area under flood scenarios. 

The index-based flood hazard map was developed using GIS-based multicriteria decision 

analysis (MCDA), and the analytical hierarchy process (AHP). Eight flood influencing factors 

were used in this study, namely; distance to rivers, topographic wetness index, drainage 

density, land-coverage (LULC), annual average rainfall, slope, elevation, and soil types. The 

flood hazard map developed for study area consist of five flood hazard susceptibility zones: 

very high, high, moderate, low, and very low. These zones encompass proportions of 12%, 26%, 

29%, 22%, and 9% of the study area, respectively. The flood hazard map was further validated 

using satellite historical inundation map and determined to be satisfactory in depicting the 

probabilistic spatial extent of inundation. The flood hazard model developed is anticipated to 

be instrumental in pre-flood preparedness measures as well as a guide for future detailed 

investigations on the spatial–temporal dimension of flood incidents in the Upper Nile state. 
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SOMMARIO 

Le alluvioni sono tra i rischi naturali più rovinosi. I loro effetti avversi comprendono danni alle 

strutture fisiche, sociali ed economiche, ed un deterioramento dei mezzi di sussistenza. 

Allo stesso tempo, attribuito alle variazioni climatiche ed eventi estremi causati dal 

cambiamento climatico, è stato registrato un incremento nella frequenza di alluvioni a livello 

globale, aumentando la necessita di comprendere gli aspetti spazio-temporali di questi 

fenomeni.  

Questo studio esamina la dimensione spaziale del rischio di inondazione nell’Alto Nilo, Sudan 

del Sud, regione con una riconosciuta vulnerabilità verso le inondazioni, causata 

principalmente dal suo posizionamento geografico all’interno di una pianura alluvionale 

caratterizzata da una notevole variabilità della portata di piena. L’obiettivo di questa indagine 

è quello di mappare la potenziale estensione spaziale degli allagamenti all’interno dell’area di 

studio in uno scenario di inondazione. 

La mappa del rischio di inondazioni, fondata su diversi indici, è stata sviluppata utilizzando una 

decisione d’analisi multicriteriale (MCDA) basata su GIS, ed il analytical hierarchy process 

(AHP). Gli otto fattori d’influenza per le alluvioni utilizzati per lo studio sono: distanza da fiumi, 

indice di umidità topografica, densità di drenaggio, copertura del suolo (LULC), precipitazioni  

medie annue, pendenza, altitudine, e tipo di suolo. 

La mappa del rischio di inondazione sviluppata per l’area di studio è composta da cinque zone 

di suscettibilità: molto alta, alta, moderata, bassa, molto bassa. Queste zone coprono 

rispettivamente il 12%, 26%, 29%, 22%, e 9% dell’area di studio. La mappa è stata 

ulteriormente validata tramite un confronto con la mappa satellitare dello storico delle 

inondazioni, ed è risultata soddisfacente nello stimare la probabile estensione spaziale degli 

allagamenti. Il modello della mappa è potrà risultare strumentale per le misure di preparazione 

alle inondazioni, e come guida per future indagini specifiche nella dimensione spazio-

temporale di eventi alluvionali nella regione dell’Alto Nilo. 
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APPENDIX 

Appendix 1: Multiple Input Summary Sheet of the pairwise comparison. 

Expert judgement 1 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage 

Rainfall Slope 
Digital 

Elevation 
Model 

Soil 
type 

Distance to rivers 1 1/3 1/3 1 1 3 5 9 
Topographic Wetness Index 3 1 1 1 1 3 3 9 
Drainage density 3 1 1 1 1 3 3 9 
Land-coverage 1 1 1 1 1 1 3 9 
Rainfall 1 1 1 1 1 9 3 9 
Slope 1/3 1/3 1/3 1 1/9 1 1 5 
Digital Elevation Model 1/5 1/3 1/3 1/3 1/3 1 1 9 
Soil type 1/9 1/9 1/9 1/9 1/9 1/5 1/9 1 

Expert judgement 2 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 1 1 3 1 1 9 9 
Topographic Wetness Index 1 1 1/3 1 1/3 1 3 3 
Drainage density 1 3 1 3 1 3 9 9 
Land-coverage 1/3 1 1/3 1 1/3 5 9 9 
Rainfall 1 3 1 3 1 5 7 5 
Slope 1 1 1/3 1/2 1/5 1 7 3 
Digital Elevation Model 1/9 1/3 1/9 1/9 1/7 1/7 1 1 
Soil type 1/9 1/3 1/9 1/9 1/5 1/3 1 1 

Expert judgement 3 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 1 1 1/3 1 1 7 3 
Topographic Wetness Index 1 1 5 1 7 7 5 5 
Drainage density 1 1/5 1 1/7 1 3 5 5 
Land-coverage 3 1 7 1 7 7 7 7 
Rainfall 1 1/7 1/2 1/7 1 1 5 5 
Slope 1 1/7 1/3 1/7 1 1 3 3 
Digital Elevation Model 1/7 1/5 1/5 1/7 1/5 1/3 1 1 
Soil type 1/3 1/5 1/5 1/7 1/5 1/3 1 1 

Expert judgement 4 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 1 1 1 1 1 5 5 
Topographic Wetness Index 1 1 1/2 3 5 5 3 5 
Drainage density 1 2 1 1 5 7 5 5 
Land-coverage 1 1/3 1 1 1 3 1 3 
Rainfall 1 1/5 1/5 1 1 2 3 3 
Slope 1 1/5 1/7 1/3 1/2 1 3 3 
Digital Elevation Model 1/5 1/3 1/5 1 1/3 1/3 1 1 
Soil type 1/5 1/5 1/5 1/3 1/3 1/3 1 1 

Expert judgement 5 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 1 1 3 1 1 9 9 
Topographic Wetness Index 1 1 1/3 1 1/3 1 3 3 
Drainage density 1 3 1 3 1 3 9 9 
Land-coverage 1/3 1 1/3 1 1/3 2 9 9 
Rainfall 1 3 1 3 1 5 7 5 
Slope 1 1 1/3 1/2 1/5 1 7 3 
Digital Elevation Model 1/9 1/3 1/9 1/9 1/7 1/7 1 1 
Soil type 1/9 1/3 1/9 1/9 1/5 1/3 1 1 

Expert judgement 6 
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criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 1 9 7 5 5 1 1 
Topographic Wetness Index 1 1 3 3 5 3 1 1 
Drainage density 1/9 1/3 1 1/3 1 1/3 1/3 1/3 
Land-coverage 1/7 1/3 3 1 1 1 1/7 1/5 
Rainfall 1/5 1/5 1 1 1 1 1/3 1/7 
Slope 1/5 1/3 3 1 1 1 1 1 
Digital Elevation Model 1 1 3 7 3 1 1 3 
Soil type 1 1 3 5 7 1 1/3 1 

Expert judgement 7 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 1 1/3 8 3 2 5 7 
Topographic Wetness Index 1 1 1 3 5 1/3 1 5 
Drainage density 3 1 1 9 5 1 5 9 
Land-coverage 1/8 1/3 1/9 1 3 1/3 1/5 1 
Rainfall 1/3 1/5 1/5 1/3 1 1/9 1/9 9 
Slope 1/2 3 1 3 9 1 9 9 
Digital Elevation Model 1/5 1 1/5 5 9 1/9 1 5 
Soil type 1/7 1/5 1/9 1 1/9 1/9 1/5 1 

Expert judgement 8 

criteria 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage Rainfall Slope 

Digital 
Elevation 

Model 

Soil 
type 

Distance to rivers 1 5 3 1 1/3 1 1 3 
Topographic Wetness Index 1/5 1 1 1/3 1/6 1/3 1/3 1/2 
Drainage density 1/3 1 1 1/5 1/8 1/3 1/3 1/3 
Land-coverage 1 3 5 1 3 1 9 1 
Rainfall 3 6 8 1/3 1 1 9 9 
Slope 1 3 3 1 1 1 9 1 
Digital Elevation Model 1 3 3 1/9 1/9 1/9 1 1 
Soil type 1/3 2 3 1 1/9 1 1 1 

Appendix 2. Pairwise comparison matrix of flood influencing factors (Criteria). 

CRITERIA 
Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage 

Rainfall Slope 
Digital 

Elevation 
Model 

Soil 
type 

Distance to river 1 1 1 1/6 1 7/9 1 1/4 1 5/8 3 3/5 4 1/4 
Topographic Wetness Index 1 1 1 1/7 1 3/8 1 3/4 1 2/3 1 5/7 2 8/9 
Drainage density 6/7 7/8 1 5/6 1 2/7 1 1/2 2 1/3 3 
Land-coverage 4/7 3/4 1 1/5 1 1 1/2 1 1/2 1 3/4 2 2/7 
Rainfall 4/5 4/7 7/9 2/3 1 1 2/5 2 3 3/5 
Slope 3/5 3/5 2/3 2/3 5/7 1 3 2/5 2 3/4 
Digital Elevation Model 2/7 4/7 3/7 4/7 1/2 2/7 1 2 
Soil type 1/4 1/3 1/3 3/7 2/7 1/3 1/2 1 

Appendix 3. Pairwise comparison decimal matrix of flood influencing factors (Criteria). 

Criteria Distance 
to river 

Topographic 
Wetness 

Index 

Drainage 
density 

Land- 
coverage 

Rainfall Slope 
Digital 

Elevation 
Model 

Soil 
type 

Distance to river 1.00 1.08 1.17 1.78 1.26 1.63 3.60 4.26 
Topographic Wetness Index 0.93 1.00 1.14 1.37 1.74 1.66 1.72 2.89 
Drainage density 0.85 0.88 1.00 0.82 1.30 1.54 2.33 2.97 
Land-coverage 0.56 0.73 1.21 1.00 1.54 1.46 1.74 2.30 
Rainfall 0.79 0.57 0.77 0.65 1.00 1.39 1.94 3.60 
Slope 0.62 0.60 0.65 0.69 0.72 1.00 3.39 2.76 
Digital Elevation Model 0.28 0.58 0.43 0.57 0.51 0.30 1.00 2.02 
Soil type 0.23 0.35 0.34 0.43 0.28 0.36 0.50 1.00 

 


