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It can scarcely be denied that the supreme goal of all theory is
to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate
representation of a single datum of experience.

Albert Einstein, 1933





Riassunto

Il lavoro di Tesi si è svolto nell’ambito della fisica dei sistemi attivi e più in
generale dei sistemi complessi. Motivati dal crescente numero di esperimenti e
simulazioni di tali sistemi, abbiamo intrapreso lo studio di sistemi binari di particelle
attive. In particolare, abbiamo fatto uso dell’equazione di Boltzmann per sistemi
non in equilibrio: le due specie analizzate sono contraddistinte da diverse densità e
diverso rumore stocastico. Abbiamo inoltre ipotizzato che sia per le interazioni tra
particelle della stessa specie, che per quelle appartententi a due specie diverse, la
regola di collisione fosse di tipo polare.

Dopo aver ricavato le equazioni del moto che governano il sistema binario, le
abbiamo linearizzate attorno all’ovvia soluzione corrispondente ad una fase isotropa
ed omogenea. La scelta del sistema autovalore-autovettore adatto a descrivere una
miscela di particelle polari, ci ha consentito di ricavare il diagramma di fase e di
evidenziare altresì le sue peculiarità.

Considerando termini fino al terz’ordine nelle equazioni del moto, siamo stati
in grado di ricavare le equazioni nonlineari dell’Idrodinamica che governano tale
sistema. Vista l’impossibilità di risolverle analiticamente, abbiamo suggerito alcune
possibili implicazioni di queste e auspichiamo che una futura analisi più dettagliata
possa portare a maggiori risultati.

Abbiamo infine utilizzato un algoritmo numerico (SNAKE) per risolvere l’Equazio-
ne di Boltzmann e analizzare le strutture spaziali (patterns) emergenti nel nostro
sistema. Ritroviamo le ben note onde di densità, oltre a confermare la suddetta
analisi lineare. Anche in questo caso mettiamo in evidenza come il comportamento
delle due specie sia fortemente correlato: i diagrammi di fase coincidono e le onde di
densità hanno sempre la stessa direzione e velocità; i profili sono tuttavia differenti.
Tale comportamento può essere verosimilmente spiegato tenendo conto che ciò che
differenzia i due sistemi non sono proprietà spaziali (come potrebbero essere diversa
curvatura (chiralità) o velocità), quanto piuttosto proprietà statistiche come il rumore
stocastico o di bulk come la densità.
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1 Introduction

1.1 Soft active matter

Entities capable of converting locally at particle level, an external energy input into
persistent motion are commonly referred to as active matter [2929, 3939]. These units
can move by means of molecular motors at cellular level [4343, 5555], using their cilia
and flagella if we think of bacterial suspensions [44, 5555] or by fluttering their wings
if we look at flocks of birds [4545, 5050, 5151, 5555]. Interestingly, even in two-dimensions
these systems are able to organize themselves into ordered structures evolving from
a disordered state: notably, this wouldn’t be possible for an equilibrium system
since for the latter the Mermin-Wagner theorem holds [3131]. This property makes
the study of active matter phenomena even more appealing. This ordered motion
of many individuals behaving as one is usually referred to as "flocking". Biologists
have been studying why animals flock together for many years now: experiments
on locusts, birds, schools of fish have been carried out and have yielded interesting
insights into how interactions between the individuals or between an individual
an its surroundings work [22, 55, 2424, 2727, 4242]. From a physicist’s perspective many
questions regarding these systems can arise: are these patterns model-specific or do
a few general fundamental rules for collective behaviour exist? How can they be
implemented into a physical model? How does this nonequilibrium disorder⇔ order
transition happen and what are the main differences with an equilibrium one?

Left: Colony of ants forming a bridge-like structure to help other ants reach the leaf. Center: A school
of fish organizes into a toroidal shape in order to confuse predators. Right: Birds flying in a complex
butterfly-shaped flock in the sky above Rome.

The great success of this research field in physics is mostly due to the fact that,
remarkably, the main properties of flocking can be reproduced by easily-implemented
experiments for example on vibrated rods or disks [1414, 1515, 5757] and that very simple
theoretical models of self-propelled units with a few "rules" are capable of reproducing
collective behaviour when implemented in simulations. Before describing the first
physical model proposed by Vicsek [5454], we introduce some general concepts of

1



active matter theory that will be useful to classify the different phenomena.

Elongated active particles or rods can be divided into two classes, according to
their mean direction of motion and their intrinsic symmetries: head-tail asymmetric
rods that move in a definite direction with non-zero mean velocity are called polar,
while head-tail symmetric ones that have zero mean velocity are called apolar. A
sketch of the two classes is given in Fig. 11.

This self-propelled particles can form different ordered states, among which the
most studied in literature are: polar states and nematic states. An illustration of these
two possibilities is given in Fig. 22. We would like to stress the difference between the
classification of single active units and the possible phases that elongated particles
can form: a nematic state can be constituted by both polar and apolar units, while a
polar phase is only made up of polar rods.

Figure 1: Elongated particles are classified according to their direction of motion and head-tail symmetry.
Left: polar rod. Right: apolar rod.

Figure 2: Left: Polar order of polar rods. Center: Nematic order of polar rods. Right: Nematic order of
nematic rods.

In real systems, particles move on a substrate (2-D) or they are surrounded
by fluid (3-D): depending on the interaction system ⇔ surroundings an active
system is called "dry" if the overall momentum of the particles is not conserved.
Their motion is overdamped and momentum is dissipated through friction with the
substrate: the only conserved quantity is the particle number [5757]. For these systems
it is a frequently used approximation to neglect the hydrodynamic interactions
active particle⇔ substrate [2121]. The problem is usually further simplified and all
particles regarded as moving with constant speed, completely forgetting about their
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surroundings. Examples of "dry" systems are suspensions of bacteria on a surface
[3838, 5959], driven actin filaments [4343, 4444], animals moving on land [5050] or vibrated
polar disks [1414, 5656].

Systems in which long-range hydrodynamic interactions cannot be neglected are
called "wet". A good example of such a system is a population of bacteria swimming
in bulk [44, 2626, 2828].

Now that we have generally defined what exactly these "moving spins" or self-
propelled particles (SPPs) are, how their ordered phases look like and how we
describe their interaction with the medium, we can be a little bit more precise
and re-adapt the concept of order parameter, already introduced in the theory of
equilibrium phase transitions, to nonequilibrium ones. This helps us to describe in
a more mathematical sense what we intuitively regard as ordered and disordered
states. Having in mind a system of N active entities equal to one another and moving
with the same speed v0, the order parameter can be defined as [5555]

ϕ =
1

Nv0

N∑
i=1

vi . (1.1)

The first thing we notice is that this vectorial quantity is dimensionless and its
magnitude smaller or equal to one. In particular, the closer it is to one the more
"ordered" the phase is, since all particles have roughly the same velocity. Usually the
state of a system is determined by one or more control parameters that can vary and
thus change the configuration of the system (temperature, density etc.).

Top: school of fish swimming in a
polarized state. Bottom: fishes inter-
acting with one another to form a
swirl.

For its fundamental role in the development of
models describing active matter and for being the ref-
erence for all our work, we outline the basic features
of the Vicsek model (VM) for self propelled particles
[5454]. All units are equal in shape, have the same
speed v0 and move on a plane. The fundamental
"rule" is: at each time step the direction of motion
of a particle is determined by the average of the di-
rections of all particles within a certain interaction
radius r, plus a small noise randomly extracted from
a uniform distribution on a predefined interval.

It is interesting to relate this model to an equi-
librium one describing a paramagnetic⇔ ferromag-
netic transition: in a VM aligning spins are replaced
by aligning velocities on a plane and random fluctu-
ations due to temperature effects are modelled via
uniform noise.
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The fundamental difference between the two model is that in the VM we deal with
"moving spins" that break rotational symmetry via a kinetic non-equilibrium phase
transition, whereas in the case of magnetic spins everything is in equilibrium and
can be described by a Hamiltonian theory, based on the principle of conservation
of energy. It is an intrinsic property of active SPP systems that the order parameter
coincides with the average velocity (aside from a factor v0 for dimensions), so that
the "spin" of each particle is precisely its velocity [2929, 5050].

As already remarked, two-dimensional equilibrium systems cannot exhibit flock-
ing, as the Mermin-Wagner theorem [3131] prohibits spontaneous breaking of continu-
ous symmetries at finite temperature in systems with dimension d ≤ 2. Therefore,
this kinetic disorder-order transition already reproduced by a simple model like the
VM, is an exclusive feature of out-of-equilibrium systems. An explicit proof of this
fact by symmetry considerations can be found in [5151].

A different approach to active matter is the one proposed by Toner and Tu:
their analysis starts directly by writing down the equations of motion for the "slow"
(compared to microscopic dynamics) coarse-grained variables velocity and density
[5050]. Their equation for the velocity resembles Navier Stokes hydrodynamic equation
with a few fundamental differences. What they discover is that the fluctuations in
the velocity v at long wavelengths are suppressed compared to the magnetic case:
this leads to an increase of the alignment between individuals and thus renders
long-range order. Another phenomenon detected for the first time in systems of
elongated rods [3434], but already present in simulations of nematic particles [1111],
are giant number fluctuations (GNF): the fluctuation of the number of self-propelled
units in an increasing area of the system scales linearly with the number of units
in this area [3939, 5252]. Again this phenomenon is characteristic of out-of-equilibrium
systems: equilibrium fluctuations are shown to scale as the square root of the number
of particles.

In most SPP models the interactions between the particles are modelled via a
collision rule: the cartoons of Fig. 33, 44 explain graphically what is meant by polar and
antipolar collision rules. A nematic collision rule is a combination of a polar and an
antipolar one (see App. AA): if the angle between the two species is smaller than π/2
the interaction is polar, otherwise antipolar. Particularly important for our purposes
is the approach that Bertin et al. [66] introduced. They consider a dry system of polar
self-propelled particles on a plane, with an explicit polar collision rule (see Fig. 33)
and analyse it through a Boltzmann approach, thus retaining only binary collisions.

Remarkably, in most physical models for active matter including the ones listed
above, the active particles are indistinguishable from one another and all share
the same speed. This is a physical simplification that is practically never realized in
nature, since heterogeneities are present at different levels in most biological systems.
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Figure 3: Two polar rods colliding via a polar interaction rule: the direction after the collision is the
same and the outgoing angle is assumed to be the average of the two incoming ones (other
choices are possible [1717]).

Figure 4: Polar rods colliding with an antipolar collision rule: if the angle between the two rods is
smaller than some constant Ψ, the two particles don’t interact and follow their previous
trajectories (left). If the difference of the incoming angles is instead bigger than Ψ, the two
particles interact: they exit the collision with opposite directions (right). In our example
Ψ = π/2.

1.2 Binary mixtures of self-propelled particles

In the cytoskeleton [1818], as well as in herds of mammals [1212] or in schools of fish
[3333], many species are usually present that differ e.g. in number, in shape, or that
move with different speeds. Heterogeneous active systems have not been studied
extensively so far, but their relevance is evident both in physics and biology.

In this work, we simplify this problem as much as possible and consider a binary
mixture composed of two species of SPPs. We ask ourselves whether a simple
difference in their alignment noise or in their density already leads to new interesting
collective behaviours.

To be explicit, the main questions that we ask are:

1. We know that in single species we observe an order ⇔ disorder phase tran-
sition by varying the density and/or the noise, but is this also the case for a
heterogeneous mixture?

2. If a phase transition is observed, what are the main differences? Is order
promoted/suppressed?

3. Do spatial patterns arise and, if yes, how do they look like?
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Three examples of heterogeneous biological systems. Left: two species of sheep forming a swirl. Center:
schooling behaviour of a "binary mixture of fishes". Right: dolphins and their babies swimming together.

4. Under which circumstances are the two species bound together in their collec-
tive behaviour and under which other conditions do they separate in distinct
phases?

The two most intuitive possibilities are illustrated in Fig. 55.

Figure 5: Left: Two ensembles of different (blue-red) self propelled particles moving in a disordered
phase.They can for example differ by noise and/or density. Right: Two possible stationary
states of the binary mixture formed by blue and red particles: homogeneous disorder or polar
order.

Our system is composed of point-like particles that move in a well-defined direc-
tion on a plane, i.e. polar particles (see Fig. 11): both for intra-species collision and
for inter-species ones a polar collision rule is retained. Note that this is a fundamental
property of our system that affects all our following statements and results. Different
collision rules would presumably lead to a different behaviour, already studied in the
single species case [1717, 2020, 3535].

After the definition of the Boltzmann approach to active matter and of our model,
respectively in Sec. 22 and in Sec. 33, we derive the evolution equation of the two
order parameters: one for each species.

To answer questions 1. and 2. we derive in Sec. 44 the phase diagram for the
binary mixture with the two species being characterized by different density and
noise. Linear stability reveals a net difference between the behaviour of two separated
species and a binary mixture: we observe that by varying the noise of one of the two
species, the other can undergo a non equilibrium phase transition. Order is enhanced
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if one of the two species is already in an ordered state, otherwise the transition line
is shifted to higher density values and disorder occupies most of the phase diagram.
In this latter case we find that a density threshold has to be overcome to go from a
disordered phase to an ordered one.

Motivated by the possibility of finding other analytical solutions of the equations
of motion and thus other phases of our systems, we derive in Sec. 55 the hydrodynamic
equations and show the non-existence of states where one species has zero average
momentum and the other does not.

Finally, referring to question 3. and 4.we numerically solve in Sec.66 the Boltzmann
equation for both species. We verify that spatial patterns (density waves) do arise
close to the onset of order and that no demixing behaviour is present in our system.
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2 The Boltzmann Equation

The whole kinetic theory relies on the assumption that a large number of particles
(N ≈ NA) can be described by means of a statistical theory based on simple as-
sumptions, namely: the system is sufficiently diluted, all particles have the same
characteristics, they collide with each other and diffuse due to the collisions between
much smaller particles of the fluid in which they are suspended. As we will see, a
great advantage of kinetic equations is that they describe mesoscopic particles at an
intermediate scale between the microscopical and the hydrodynamical ones.

The usual approach starts from a Hamiltonian description of the system of N
particles and with an equation for the one-particle density distribution function: the
Boltzmann transport equation. Our derivation follows substantially the one given by
D. Tong in [5353] and is limited to the classical version devised by L. Boltzmann in 1872
[99]. It is again key to recall that a rigorous derivation of the Boltzmann equation is
possible only for conservative systems: we will explicitly show in Sec. 2.32.3 that if the
Boltzmann equation holds the system must evolve towards equilibrium. What we
will indicate as the kinetic Boltzmann equation is more properly a heuristic ansatz
verified a posteriori by simulations and experiments to be a correct description for
this class of active systems.

2.1 Hamiltonian description and the BBGKY hierarchy

The Hamiltonian function for N identical particles is of the form

H =

N∑
i=1

[
p2
i

2m
+ U(ri)

]
+
∑
i<j

V(ri − rj) . (2.1)

On each particle acts an external force field F = −∇U and a force due to a two-body
interaction potential that we have assumed to be dependent just on the mutual
distance vector V(ri − rj). The Hamilton equations of motion for each particle read

ṙi =
∂H

∂pi

ṗi = −∂H
∂ri

(2.2)

but what we are mostly interested in is an evolution equation for the probability
density function f(r,p, t), where we have defined the N -dimensional vectors r =
(r1, · · · , rN ) and p = (p1, · · · ,pN ). The function f is defined in such a way that
f(r,p, t) drdp is the probability that the system is in a state between (r,p) and
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(r + dr,p + dp) at time t. Normalization of f over the whole 6N -dimensional phase
space is also required ∫

f(r,p, t) dr dp = 1 . (2.3)

The derivative along the flow " ddt " of the probability density is given by (using Einstein
summation convention)

d

dt
f =

∂f

∂t
+
∂f

∂ri
· ṙi +

∂f

∂pi
· ṗi (2.4)

and as probability has to be conserved as the Liouville theorem states, then

d

dt
f = 0 → ∂f

∂t
= −{f,H} = {H, f} , (2.5)

where we have substituted the Hamilton equations Eq. (2.22.2) into Eq. (2.42.4), we have
used the definition of the Poisson bracket and its anticommutativity property

{f,H} =
∂f

∂ri
· ∂H
∂pi
− ∂f

∂pi
· ∂H
∂ri

, (2.6)

{f,H} = −{H, f} . (2.7)

This equation for all N particles is not really much of a help since the dependence is
on all particle variables, so we concentrate on the one-particle distribution function
defined by

f1(r1,p1, t) = N

∫
dr2 · · · drN dp2 · · · dpN f(r1, r2, · · · rN ,p1,p2 · · ·pN ) (2.8)

and since all particles are identical we can take r1 = r, p1 = p. This function gives
the probability that the system finds itself around the point (r,p), where now the
phase space is the single particle one (i.e. 6 dimensional). Eq. (2.32.3) together with
Eq. (2.82.8) yields ∫

dr dp f1(r,p) = N . (2.9)

The evolution in time of f1 is obtained by relating it to the evolution equation for f
Eq. (2.42.4)

∂f1

∂t
= N

∫ N∏
i=2

dridpi
∂f

∂t
= N

∫ N∏
i=2

dridpi {H, f} ; (2.10)
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substituting the Hamiltonian in Eq. (2.12.1) and calculating the Poisson bracket, we can
write (again in Einstein notation)

∂f1

∂t
= N

∫ N∏
i=2

dridpi

[
−pj
m
· ∂f
∂rj

+
∂U(rj)

∂rj
· ∂f
∂pj

+
∑
l<m

∂V(rl − rm)

∂rj
· ∂f
∂pj

]
.

Now whenever j = 2, · · · , N we can integrate by parts and move the derivatives of f
to the factors at their left. All of these vanish since they don’t depend on the variable
they are derived with respect to. The rest is a boundary term that vanishes because f
itself has to be zero at ±∞. Finally, we are left just with j = 1 terms

∂f1

∂t
= N

∫ N∏
i=2

dridpi

[
−p1

m
· ∂f
∂r1

+
∂U(r1)

∂r1
· ∂f
∂p1

+
N∑
m=2

∂V(r1 − rm)

∂r1
· ∂f
∂p1

]
,

so that recalling the definition Eq. (2.82.8)

∂f1

∂t
= {H1, f1}+N

∫ N∏
i=2

dridpi

N∑
m=2

∂V(r− rm)

∂r
· ∂f
∂p

, (2.11)

where we have defined the one-particle Hamiltonian

H1 =
|p|2

2m
+ U(r) (2.12)

and renamed r1 = r, p1 = p. At this point a natural question arises: how do we deal
with the second term, since it seems that we cannot express it as a function of f1

only? It is customary to rewrite Eq. (2.112.11) as

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

, (2.13)

{H1, f1} being the streaming term and
(
∂f1

∂t

)
coll

the collisional term. We can explicitly

show that this second term is dependent on the two-particle distribution function(
∂f1

∂t

)
coll

= N(N − 1)

∫
dr2dp2

∂V(r− r2)

∂r

· ∂
∂p

∫ N∏
i=3

dridpi f(r, r2, · · · ,p,p2, · · · , t)

=

∫
dr2dp2

∂V(r− r2)

∂r
· ∂f2

∂p
,

(2.14)
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with the definition

f2(r1, r2,p1,p2, t) = N(N − 1)

∫ N∏
i=3

dridpi f(r1, r2, r3, · · · ,p1,p2,p3, · · · , t) .

(2.15)
It is easy to see that the hierarchy is not closed and the equation for f2 has a
contribution from f3, the one for f3 from f4 and so on. In general the n-particle
density function, defined by

fn(r1, r2, · · · , rn,p1,p2, · · · ,pn, t) =

N !

(N − n)!

∫ N∏
i=n+1

dridpi f(r1, r2, · · · , rn, · · · , rN ,p1,p2, · · · ,pn, · · · ,pN , t)
(2.16)

obeys

∂fn
∂t

= {Hn, fn}+
n∑
i=1

∫
drn+1dpn+1

∂V(ri − rn+1)

∂ri
· ∂fn+1

∂pi
, (2.17)

which is known as the BBGKY hierarchy. The n-particle Hamiltonian including all
interactions in between the n particles, reads

Hn =
n∑
i=1

[
|pi|2

2m
+ U(ri)

]
+
∑
i<j≤n

V(ri − rj) . (2.18)

Eq. (2.172.17) tells that the evolution of the n-particle density function has a Liouville
streaming term and a collisional term that includes interaction with one of the
particles outside the group of n. The form of this hierarchy of equations looks
nevertheless ready to implement different kind of approximations, one of these is the
Boltzmann equation.

2.2 Motivation and derivation

As explained in the preceding section, we must rely on precise assumptions in order
to reduce the BBGKY hierarchy to a closed set of equations. The first and easiest
possible is the one that Ludwig Boltzmann suggested in 1872: his main idea was to
separate two different time scales that appear in the system. The first is the mean-free
time τ between collisions and the second is the collision time τc i.e. the time during
which a collision occurs. The first assumption is

τ � τc (2.19)

so that the majority of the particles follow the hamiltonian flow for most of the time
and occasional collisions occur within a much smaller time interval. We write down
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the BBGKY hierarchy equations for f1 and f2:

one-particle distribution function[
∂

∂t
+

p1

m
· ∂
∂r1

]
f1 =

∫
dr2dp2

∂V(r− r2)

∂r
· ∂f2

∂p
(2.20)

two-particle distribution function

[
∂

∂t
+

p1

m
· ∂
∂r1

+
p2

m
· ∂
∂r2
− ∂V(r1 − r2)

∂r1

(
∂

∂p1
− ∂

∂p2

)]
f2 =

∫
dr3dp3

[
∂V(r1 − r3)

∂r1
· ∂

∂p1
+
∂V(r2 − r3)

∂r2
· ∂

∂p2

]
f3

(2.21)

where the single particle potential U has been set to zero (in our particular case there
will in fact be no external field acting on the particles). Each term in the equations
scales as an inverse-time, so that we can distinguish between dominant terms and
negligible ones. For example it is clear by looking at the assumption (2.192.19) that a
term like

∂V
∂r
· ∂
∂p
∼ 1

τc
(2.22)

will be dominant in the evolution of the density distributions. In Eq. (2.202.20) there
is only one factor of this type, the one on the right side. Furthermore in Eq. (2.212.21)
the term on the right is negligible: the integral is in fact non-zero only over the
interaction range d� λ (λ is the mean free path) of V due to Eq. (2.192.19). This means
that since ∫

dr3dp3 f3 ∼ Nf2 ,

the collision term on the right of Eq. (2.212.21) is reduced by a factor of Nd3/V with
respect to the one on the left. In our "dilute gas" assumption (see Eq. (2.192.19) or
equivalently d� λ) we can then ignore it and obtain[

∂

∂t
+

p1

m
· ∂
∂r1

+
p2

m
· ∂
∂r2
− ∂V(r1 − r2)

∂r1

(
∂

∂p1
− ∂

∂p2

)]
f2 ≈ 0 . (2.23)

For the same reason the right side of Eq. (2.202.20) is reduced by Nd3/V with respect to
the left one, meaning that f1 varies on the larger time scale τ . If we consider larger
time scales than the one over which f2 varies (τc), then we can assume that f2 has

13



already reached equilibrium and set ∂tf2 = 0. This is justified by the fact that we
want to look at the evolution of f1 that varies much more slowly[

p1

m
· ∂
∂r1

+
p2

m
· ∂
∂r2
− ∂V(r1 − r2)

∂r1

(
∂

∂p1
− ∂

∂p2

)]
f2 = 0 . (2.24)

Moreover, since the collision term in Eq. (2.242.24) affects only the relative position of
the two particles, it is convenient to perform a linear canonical transformation to
relative and center of mass coordinates, defined by

R = (r1 + r2)/2

r = r1 − r2

for position, and for momentum by

P = p1 + p2

p = (p1 − p2)/2

that clearly preserves the elementary Poisson brackets.
Eq. (2.242.24) transformed to the new coordinate system reads[

p

2m
· ∂R +

2p

m
· ∂r −

∂V(r)

∂r
· ∂p
]
f2(r,R,p,P, t) = 0

that, with the assumption ∂Rf2 � ∂rf2, yields the useful form

∂V(r)

∂r
· ∂f2

∂p
=

2p

m
· ∂f2

∂r
. (2.25)

We can finally rewrite the collision integral as(
∂f1

∂t

)
coll

=

∫
dr2 dp2

∂V(r1 − r2)

∂r1
· ∂f2

∂p1

=

∫
dr dp2

∂V(r)

∂r
·
[
∂

∂p1
− ∂

∂p2

]
f2

=
1

m

∫
|r|<d

dr dp2 (p1 − p2) · ∂f2

∂r
,

(2.26)

where we used integration by parts in the second line and Eq. (2.252.25) in the third
one. In order to find an equation in which only f1 appears, it is first convenient to
use cylindrical coordinates defined such that the direction parallel to |v1 − v2| is

14



parametrized by x and the plane orthogonal to it by the radius-angle variables (ρ, θ).
Because of the scalar product, in these new coordinates Eq. (2.262.26) becomes(

∂f1

∂t

)
coll

=

∫
dp2|v1 − v2|

∫
ρ dρ

∫
dθ

∫ x2

x1

dx
∂f2

∂x

=

∫
dp2|v1 − v2|

∫
ρ dρ

∫
dθ [f2(x2)− f2(x1)] .

At this point we consider the third fundamental assumption, that is usually called
molecular chaos. What we require is that the two colliding particles are uncorrelated
before and after the collision or in other words that we can write

before the collision

f2(x1) = f1(r,p1, t)f1(r,p2, t) (2.27)

after the collision

f2(x2) = f1(r,p′1, t)f1(r,p′2, t) . (2.28)

Note that both one-particle functions are evaluated at the same point in space since
f1 varies only on scales much bigger than the interaction range of the V potential.
Using the definition of differential cross-section dσ/dΩ

I

∣∣∣∣ dσdΩ

∣∣∣∣ dΩ = Iρ dρ dθ (2.29)

where I is the beam intensity
(

[I] = particles
area·time

)
and dΩ the solid angle, we can obtain

the final form of Eq. (2.132.13)[
∂

∂t
+

p1

m
· ∂
∂r1

]
f1 =

∫
dp2 dΩ

∣∣∣∣ dσdΩ

∣∣∣∣ |v1 − v2|

×
[
f1(r1,p

′
1, t)f1(r1,p

′
2, t)− f1(r1,p1, t)f1(r1,p2, t)

]
.

(2.30)

The Boltzmann equation can also be derived using a more euristic and intuitive
procedure: the rate at which the scattering process occurs, namely the probability
that, per unit time, two particles with momenta p and p2 emerge from the collision at
position r with momenta p′1 and p′2, will be proportional to the two particle density
function

∆ = ω(p′1,p
′
2;p,p2) f2(r, r,p,p2) dp2 dp

′
1 dp

′
2 ; (2.31)

we also need to consider that collisions not only deflect particles into a state with
momentum p, but they can deflect them out of such a state into one with a different
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momentum p′. There will then be a gain term and a loss term in the collision integral(
∂f1

∂t

)
coll

=

∫
dp2dp

′
2dp

′
1[ω(p,p2;p′1,p

′
2)f2(r, r,p′1,p

′
2)

−ω(p′1,p
′
2;p,p2)f2(r, r,p,p2)] .

(2.32)

Invariance of the rate under time reversal and parity (r,p)→ (−r,−p) transforma-
tions implies that the scattering rate must be invariant under exchange of incoming
and outgoing momenta

ω(p,p2;p′1,p
′
2) = ω(p′1,p

′
2;p,p2) ; (2.33)

furthermore the molecular chaos assumption

f2(r, r,p,p2) = f1(r,p)f1(r,p2) (2.34)

allows us to rewrite Eq. (2.322.32) as(
∂f1

∂t

)
coll

=

∫
dp2dp

′
2dp

′
1ω(p,p2;p′1,p

′
2)
[
f1(r,p′1)f1(r,p′2)− f1(r,p)f1(r,p2)

]
.

This is exactly equal to Eq. (2.302.30) if we set ω(p,p2;p′1,p
′
2) = |v − v2|

∣∣ dσ
dΩ

∣∣ dΩ. This
derivation has the advantage of being much more intuitive and less intricate than
the formal one; nevertheless the latter has a direct connection with the Hamiltonian
description and thus is mathematically more justified.
Even if it already relies on more than one assumption, the Boltzmann equation is
a nontrivial integro-differential equation that apart from some simple cases is not
easily solvable. Nonetheless it is one of the most successful and used equations
in statistical physics: it correctly predicts the thermodynamics of a Maxwell gas, a
slightly modified "semiclassical" version of it is able to describe transport of electrons
in a metal and, last but not least, it provides a connection between the microscopic
(time reversal symmetric) picture and the macroscopic one (where a "time arrow" is
present). This bridge between macroscopic and microscopic world becomes evident
when in the next section we prove that all systems that obey the Boltzmann equation,
relax to equilibrium in an irreversible fashion. Note that this also means that if the
system is a non-equilibrium one, then the Boltzmann equation doesn’t hold: this is
why our ansatz to employ a slightly modified version of this equation to describe our
non equilibrium system is a heuristic one.

2.3 The H-theorem

The fundamental quantity introduced by Boltzmann is the H-function, defined by

H(t) =

∫
dr dp f1(r,p, t) log f1(r,p, t) , (2.35)
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which is related to the entropy S = −kBf1 log f1 via S = −kBH. The H-theorem
proves that the H-function is non-increasing in time, i.e. d

dtH(t) ≤ 0. We first take
the time derivative of Eq. (2.352.35)

dH
dt

=

∫
dr dp (log f1 + 1)

∂f1

∂t
=

∫
dr dp log f1

∂f1

∂t

where we have dropped the +1 term since
∫
dr dp ∂tf1 = ∂t

∫
dr dp f1 = 0. We then

substitute the Boltzmann equation(2.132.13)

dH
dt

=

∫
dr dp log f1

[
∂U

∂r
· ∂f1

∂p
− p

m
· ∂f1

∂r
+

(
∂f1

∂t

)
coll

]
;

the first two terms vanish just integrating by parts twice∫
drdp log f1

∂U

∂r
· ∂f1

∂p
= −

∫ ∫
drdp

∂U

∂r
· ∂ log f1

∂p
f1 =

∫
drdp∇p ·

(
∂U

∂r

)
f1 = 0

where we have dropped all contour terms that vanish at infinity because of the
normalization condition of f1.
In the end what governs the evolution of the H-function is only the collision term

dH
dt

=

∫
drdp log f1

(
∂f1

∂t

)
coll

=

∫
drdp1dp2dp

′
2dp

′
1ω(p1,p2;p′1,p

′
2) log f1(p1)

[
f1(p′1)f1(p′2)− f1(p1)f1(p2)

]
.

(2.36)

We can make Eq. (2.362.36) more symmetric in the indices 1⇔ 2 just by switching the
dummy integration variable p2 ⇔ p2

dH
dt

=

∫
drdp1dp2dp

′
2dp

′
1ω(p1,p2;p′1,p

′
2) log f1(p2)

[
f1(p′1)f1(p′2)− f1(p1)f1(p2)

]
(2.37)

and then sum the two to obtain
dH
dt

=
1

2

∫
drdp1dp2dp

′
2dp

′
1 ω(p1,p2;p′1,p

′
2) log(f1(p2)f1(p1))

×
[
f1(p′1)f1(p′2)− f1(p1)f1(p2)

]
.

(2.38)

If we now swap the primed variables and the non-primed ones p′ ⇔ p, we are just
exchanging incoming and outgoing momenta so that the scattering rate remains the
same as assured by the property Eq. (2.332.33)

dH
dt

= −1

2

∫
drdp1dp2dp

′
2dp

′
1 ω(p1,p2;p′1,p

′
2) log(f1(p′2)f1(p′1))

×
[
f1(p′1)f1(p′2)− f1(p1)f1(p2)

]
;
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finally we sum the last two equations

dH
dt

= −1

2

∫
drdp1dp2dp

′
2dp

′
1 ω(p1,p2;p′1,p

′
2)

× log(f1(p′2)f1(p′1)− f1(p2)f1(p1))
[
f1(p′1)f1(p′2)− f1(p1)f1(p2)

]
.

Since the function (log x− log y)(x−y) is always non-negative and so is the scattering
rate, we have proved that

dH
dt
≤ 0 . (2.39)

As already noted, this is equivalent to state that ∂tS ≥ 0; this means that we have
introduced a time arrow in our equations, such that now we are able to distinguish
between a system that is evolving further in time and one that is evolving backwards.
But where exactly did we introduce irreversibility in our derivation of the Boltzmann
equation, since we started from an Hamiltonian theory that is fully invariant under
time reversal symmetry? The answer is to be found in one of our assumptions, in
particular in the molecular chaos assumption Eq. (2.342.34): there we required the two
particles to be uncorrelated before the collision and so we took f2 ∼ f1f1.

To summarize, we list all assumptions that led to the Boltzmann equation in the
form[

∂

∂t
+

p

m
· ∂
∂r
− ∂U

∂r
· ∂
∂p

]
f1 =

∫
dp2dp

′
2dp

′
1ω(p,p2;p′1,p

′
2)

×
[
f1(r,p′1)f1(r,p′2)− f1(r,p)f1(r,p2)

] (2.40)

• the system is sufficiently dilute so that only binary collisions occur (time scale
separation);

• particles move with constant velocity between collisions and undergo classical
scattering events;

• molecular chaos: f2(r, r,p,p2) = f1(r,p)f1(r,p2) .

18



3 Model Definition

The purpose of this section is first to define the model that is customarily used to
describe two-dimensional dry active systems via the Boltzmann equation [66, 77, 3737]
and to extend it to binary mixtures of particles. We will first extensively describe
how the model is constructed for a single species of particles and then in Sect. 3.53.5 we
will naturally extend it to a system of two interacting species. The first simplifying
assumption of this model (and of many others) is to look at particles on a plane.
We will see that making use of Fourier series and the correspondence between two
dimensional vectors and complex numbers allows for a great simplification of the
equations.

3.1 The kinetic Boltzmann equation for dry active systems

While constructing the model we need to take into account the fact that we are
describing particles that, if collisions and diffusion are removed, are ballistic ones,
meaning that they move on a straight line with constant speed. Fixing the velocity
means breaking the Galilean invariance of the equations of motion and non conserva-
tion of momentum during collisions. Given the spatial "resolution" of the Boltzmann
equation (remember that the interaction range is considered to be much smaller
than the typical distance over which the distribution function varies appreciably)
we will model our collisions using aligning "collision rules" that almost completely
forget about microscopic details. The one particle density distribution f1(r, θ, t) is a
function of the two spatial variables r = (x, y), an angular one and of course of time.
The particles of our systems don’t move in vacuum, but on a substrate that is able to
absorb momentum (as already anticipated in the introduction these systems where
momentum is not conserved are called "dry", while a system where momentum is
conserved is called "wet" [2929]); the collisions of our suspended particles with the
much smaller particles of the substrate introduce random noise called "external".
Furthermore our particle can undergo random fluctuations because of some source
of internal noise. We introduce random noise onto the angular variable to take these
two effects into account. We thus consider the so called self-diffusion events where
the angle θi of the velocity vi of a particle changes with constant rate λ during each
time step

θ
λ−→ θ′ = θ + η ,

where η is a random variable distributed according to a Gaussian distribution Pd(η)
with variance σ2

d.

Since the momentum dependence has reduced to an angular dependence, we
also need to modify the collision integral: the gain term is due to particles that
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are scattered into the θ direction, whereas the loss term has contributions from all
particles that, from the θ direction are scattered into any other. Furthermore we
will introduce a stochastic noise on top of the post-collisional angle to simulate our
uncertainty on the outcome of a collision. The angles of two particles are then
modified in a collision

θ1 → Ψ(θ1, θ2) + η1 , θ2 → Ψ(θ1, θ2) + η2

η1 and η2 being two independent Gaussian variables with variance σ2
c , whereas

Ψ(θ1, θ2) is the outgoing angle according to some pre-defined interaction rule. The
form and periodicity of Ψ depend on the type of collision we are looking at: polar,
antipolar or nematic (for a precise definition of all collision rules see App. AA). One
important feature of Ψ is that it only depends on the difference of the two angular
variables, due to the isotropy of the system. If we rotate both angles by the same
amount φ

Ψ(θ1 + φ, θ2 + φ) = Ψ(θ1, θ2) + φ+ kπ, k ∈ Z (3.1)

so that by choosing φ = −θ1 and ∆ = θ2 − θ1

Ψ(θ1, θ2) = θ1 + Ψ(0,∆) + kπ. (3.2)

From now on we will choose Ψ(0,∆) = Ψ(∆) = ∆/2 so that the outgoing angle is
defined to be the average of the two incoming ones

ψ(θ1, θ2) = θ1 + ∆/2 = (θ1 + θ2)/2 . (3.3)

Another interesting property of Ψ that holds in the case of non-chiral particles is the
invariance for exchange of the two variables (θ1 ⇔ θ2)

Ψ(θ1, θ2) = Ψ(θ2, θ1) or Ψ(−∆) = Ψ(∆). (3.4)

For a polar or an antipolar collision rule Ψ is 2π periodic in both angles θ1 and θ2

(modulo 2π) or in the unique variable ∆, whereas for a nematic collision, periodicity
is π. We will from now on consider polar collisions, unless explicitly stated otherwise.

It’s worth noting that effectively, what we are describing are particles performing
a persistent random walk (a random walk where the walker has a definite probability
of continuing in the same direction as the previous step) and abruptly colliding with
each other.

Taking all these facts into account, we can rewrite the Boltzmann equation in the
following generalized way[

∂

∂t
+ v0eθ ·

∂

∂r

]
f(r, θ, t) = Id[f ] + Ic[f ] , (3.5)
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where Id accounts for self-diffusion events and Ic for binary collisions. These two
integrals are of the form

Id[f ] = −λf(θ) + λ

∫ π

−π
dθ′
∫ ∞
−∞

dηP0(η)δ2π(θ′ + η − θ)f(θ′) ; (3.6)

Ic[f ] = −f(θ)

∫ π

−π
dθ′R(θ′, θ)f(θ′) +

∫ π

−π
dθ1dθ2R(θ1, θ2)f(θ1)f(θ2)

×
∫ ∞
−∞

dηP (η)δ2π(Ψ(θ1, θ2) + η − θ) .
(3.7)

where we used the short notation δ2π(θ) instead of
∑

m∈Z δ(θ + 2mπ) to indicate the
dirac delta modulo 2π. In the collision term we have inserted the so called collision
kernel R. In metric models, where the interaction takes place if the distance between
particles is smaller than a certain range, collisions can be modelled as scattering
processes and the collision kernel or cross section can be expressed as we explain in
the next section.

3.2 Cross section

The rate of collision between two particles with momentum in direction θ1 and θ2

is given by R(θ1, θ2). Its meaning is straightforward: the gain in particles (or in the
function f) at point (r, θ, t) is given by the fraction of particles that enter the collision
range with momentum in direction θ′ i.e. f(r, θ′, t), times the probability of being
scattered into direction θ i.e. R(θ, θ′)f(θ) summed over all possible initial directions
θ′. The analytic expression of R can in general depend both on the different shape of
the incoming particles and on their direction: here due to isotropy reasons R = R(∆)
and our collisions will be between rod-shaped particles, defined via the aspect ratio
ξ i.e. the ratio between the particle’s length and its diameter (more precisely the
diameter of the cylinder, if we think of a rod as being composed by a cylindrical
shape with rounded ends).

ξ = l/d (3.8)

and for spherical particles (the only case we considered so far) ξ = 1.

As already pointed out in the derivation of the equilibrium Boltzmann equation,
the cross section can be thought of as being the area of collision between the two
particles per infinitesimal time step dt. It is easier to figure out what the collisional
area is, if we go to the rest frame of particle 1. We can convince ourselves that in
order to collide with particle 1, particle 2 has to be inside the area A which has three
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separate contributions, namely S1, S2, S3 as indicated in Fig. 66

S2 = lvrel| sin(∆)|dt

S1 + S3 = d vreldt

∫ π−∆

−∆
dφ sin(φ+ ∆) = 2dvreldt

(3.9)

∆

−∆

π −∆

vrel
dt

d/2d

l

S1

S2

S3

Figure 6: Sketch of the cross sectional area in the rest frame of particle 1.

Going back to the rest frame of the laboratory we have ∆ = θ2 − θ1 and vrel =
v0|eθ2 − eθ2 |, thus the cross section reads

R(∆) = v0|eθ2 − eθ1 |(l| sin(∆)|+ 2d) (3.10)

that can be rewritten using the definitions eθ2 = (cos θ2, sin θ2), eθ1 = (cos θ1, sin θ1),
ξ = (l + d)/d and the trigonometric relation sin2(∆/2) = (1− cos ∆)/2

R(∆) = 4v0d| sin(∆/2)|
(

1 +
ξ − 1

2
| sin ∆|

)
. (3.11)

Note that if we are dealing with spherical particles ξ = 1 so thatR(∆) = 4v0d| sin(∆/2)|.
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3.3 Expansion in Fourier series

Since f(r, θ, t) is a periodic function of the angular variable θ, it is more convenient
to study the evolution of its Fourier modes defined by

f̂k(r, t) =

∫ +π

−π
dθ eikθf(r, θ, t) θ ∈ (−π, π], k ∈ Z (3.12)

instead of looking at the evolution of the real function f(r, θ, t). Particularly important
are the first three modes: the zero moment is nothing but the particle density as can
be immediately seen from its definition

f̂0(r, t) =

∫
dθf(r, θ, t) = ρ(r, t) ; (3.13)

the polar order field P is instead defined by

P =

(
〈cos θ〉
〈sin θ〉

)
=

∫
dθf(r, θ, t) eθ , (3.14)

eθ = (cos(θ), sin(θ))T being the "polar" unit vector. We can immediately relate the
first moment of the probability density distribution

f̂1 =

∫
dθ eiθf(θ) (3.15)

to the polar order field via

ρP =

(
Ref̂1

Imf̂1

)
(3.16)

or equivalently to the momentum field via

p(r, t) = ρ(r, t)P(r, t) . (3.17)

Finally, the second mode of the Fourier expansion

f̂2 =

∫
dθ e2iθf(θ) (3.18)

corresponds to the nematic tensor field since the factor ei2θ is π periodic. Nematic
order is particularly important in the theory of liquid crystals [1616]: adapted to our
"probabilistic" approach, the nematic tensorial field is defined as

ρQ =
1

2

(
〈cos(2θ)〉 〈sin(2θ)〉
〈sin(2θ)〉 −〈cos(2θ)〉

)
. (3.19)
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It is straightforward to relate the definition Eq. (3.193.19) to the second Fourier mode

ρQ =
1

2

(
Ref̂2 Imf̂2

Imf̂2 −Ref̂2

)
. (3.20)

By inverting Eq. (3.123.12), the probability density can be expanded in Fourier series

f(r, θ, t) =
1

2π

∞∑
k=0

f̂k(r, t)e
−ikθ , (3.21)

where following properties hold for all modes:∫
dθeikθ = 2πδk,0 (3.22)

and
∞∑
k=0

e−ikθ = 2πδ(θ) , (3.23)

that assure consistency with Eq. (3.213.21) and Eq. (3.123.12).
We would like to stress that expressing the density function via its Fourier modes

is a fundamental point of the whole analysis, since it allows many simplifications
(especially in the diffusion and in the collision integrals) and moves the attention to
the polar order vector field, which is the one that ultimately determines whether a
polar system like ours is ordered or not (it is in practice the order parameter for the
system). From now on we will always work in Fourier space, except when we will
describe the numerical solver for the Boltzmann equation (SNAKE). This algorithm
solves the Boltzmann equation in real space, via a discretization of time and space.

We will now apply these definitions to the Eq. (3.53.5), transforming it in an
evolution equation for each Fourier mode:

1. ∫
dθeikθ∂tf = ∂t

∫
dθeikθf = ∂tf̂k ; (3.24)

2. ∫
dθeikθv0eθ · ∂rf = v0∂r ·

∫
dθeikθ

(
cos θ
sin θ

)
f(r, θ, t)

= v0∂x

∫
dθeikθ cos θf + v0∂y

∫
dθeikθ sin θ f(r, θ, t)

=
1

2
v0∂x

∫
dθeikθ(eiθ + e−iθ)f − i

2
v0∂y

∫
dθ(eiθ − e−iθ)f

=
1

2
v0(∂x − i∂y)f̂k+1 +

1

2
v0(∂x + i∂y)f̂k−1 ;

(3.25)
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3. ∫
dθeikθId[f ] = −λ

∫
dθeikθf + λ

∫ π

−π
dθ′
∫ ∞
−∞

dηP0(η)

×
∫
dθeikθδ2π(θ′ + η − θ)f

= −λf̂k + λ

∫ π

−π
dθ′
∫ ∞
−∞

dηP0(η)

∫
dθeikθ

× δ2π(θ′ + η − θ)f(θ′)

= −λf̂k + λ

∫ π

−π
dθ′
∫ ∞
−∞

dηP0(η)eik(θ′+η)f(θ′)

= −λf̂k + λ

∫ ∞
−∞

dηP0(η)eikη
∫ π

−π
dθ′f(θ′)

= λ(P0,k − 1)f̂k ,

(3.26)

where
P0,k =

∫ ∞
−∞

dηP0(η)eikη = e−k
2σ2
d/2 (3.27)

is the Fourier transform of the Gaussian distribution P0(η);

4. ∫
dθeikθIc[f ] =

∫
dθeikθ

[
− f(θ)

∫ π

−π
dθ′R(θ′, θ)f(θ′)

+

∫ π

−π
dθ1dθ2R(θ1, θ2)f(θ1)f(θ2)

∫ ∞
−∞

dηP (η)

× δ2π(Ψ(θ1, θ2) + η − θ)
]
.

(3.28)

We calculate Eq. (3.283.28) in two different steps: first the loss term (L)

ILc,k = −
∫
dθeikθf(θ)

∫ π

−π
dθ′R(θ′ − θ)f(θ′)

= −
∫
dθeikθ

1

2π

∑
p

f̂pe
−ipθ

∫ π

−π
dθ′R(θ′ − θ) 1

2π

∑
q

f̂qe
−iqθ′

= − 1

(2π)2

∫
dθeikθ

∑
p

f̂pe
−ipθ

∫ π

−π
dθ′
∑
q

f̂qe
−iqθ′R(θ′ − θ) ,
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and use the substitution θ′ − θ = ∆, paying attention to the fact that ∆ ∈
(−π − θ, π − θ] = (−π, π] because we are dealing with angular variables on a
circle.

− 1

(2π)2

∑
p,q

f̂pf̂q

∫
dθeikθe−ipθe−iqθ

∫ π

−π
d∆e−iq∆R(∆)

= − 1

(2π)2

∑
p,q

f̂pf̂q

∫
dθei(k−p−q)θ︸ ︷︷ ︸

=2πδk−p−q,0

∫ π

−π
d∆e−iq∆R(∆)

= − 1

2π

∑
q

f̂k−qf̂q

∫ π

−π
d∆e−iq∆R(∆) ,

and
∫ π
−π d∆e−iq∆R(∆) =

∫ π
−π d∆ cos(q∆)R(∆) because of the symmetry of the

integration range and the odd parity of the integrand function.

The loss term is then

ILc,k = − 1

2π

∑
q

f̂k−qf̂q

∫ π

−π
d∆ cos(q∆)R(∆) . (3.29)

The gain term (G) involves also the collision rule and since its Fourier transform
involves some lines of calculations, we will give here the final result and
postpone the complete calculation to App. AA. Furthermore, as already remarked,
we will consider only polar collisions where both R and Ψ are 2π periodic. 11

IGc,k =
1

2π

∑
q

f̂qf̂k−qPk

∫
d∆R(∆) cos((q − k/2)∆) . (3.30)

By summing the two contributions given by Eq. (3.293.29) and Eq. (3.303.30) we can
express the result in the following form

Ic,k = ILc,k + IGc,k =

∞∑
q=−∞

Iq,kf̂qf̂k−q , (3.31)

with
Iq,k =

∫ π

−π

d∆

2π
R(∆) [Pk cos((q − k/2)∆)− cos(q∆)] (3.32)

and
Pk =

∫ ∞
−∞

dηP (η)eikη = e−k
2σ2/2 . (3.33)

1In the App. AA a short derivation is given in the case of antipolar and nematic collision rules.
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Collecting all transformed terms, we can write down the evolution equation for each
Fourier mode f̂k

∂tf̂k +
1

2
v0(∂x − i∂y)f̂k+1 +

1

2
v0(∂x + i∂y)f̂k−1 = λ(P0,k − 1)f̂k +

∑
q

Iq,kf̂qf̂k−q .

(3.34)

3.4 Dimensionless variables

It is convenient to remove dimensions from the equations, i.e. to measure quantities
in units given by suitable combinations of the parameters defining our model. For
this purpose we define new dimensionless variables (and rename them with the
original label for simplicity)

t̃ = λt→ t (time)

x̃ = λx/v0 → x (space)

f̃ = f/ρ→ f ([density] = 1/m2) .

Recalling the dimensions of the cross section from Eq. (3.113.11), we also make the
following choice [1717]

ρ̂ = ρdv0/λ = 1 (3.35)

which means measuring density by the inverse of the area that the diameter of a
particle spans between two diffusion events (λ is in fact the diffusion rate).

Employing this scheme the dimensionless equation for the Fourier modes reads

∂tf̂k +
1

2
∇∗f̂k+1 +

1

2
∇f̂k−1 = (P0,k − 1)f̂k +

∞∑
q=−∞

Iq,kf̂qf̂k−q , (3.36)

with the definition of the complex operator ∇ := ∂x + i∂x and its complex conjugate
∇∗ := ∂x − i∂y.
The dimensionless integral coefficient is

Iq,k =
2

π

∫ π

−π
d∆ |sin (∆/2)| [Pk cos(∆(q − ωk))− cos(q∆)] . (3.37)

3.5 Boltzmann equation for two species of particles

In this section we want to generalize the Boltzmann equation to a system where two
different species of particles are mixed; we will assume that the two can differ by
density and diffusion/collision noise. We then have a system of coupled Boltzmann
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equations with a completely new term due to the collisions between particles be-
longing to species A and B respectively. The system of equations in real space reads


A :

[
∂
∂t + v0eθ · ∂∂r

]
fA(r, θ, t) = IAd [fA] + IAc [fA] + IA−Bc [fAfB]

B :
[
∂
∂t + v0eθ · ∂∂r

]
fB(r, θ, t) = IBd [fB] + IBc [fB] + IB−Ac [fBfA]

(3.38)

where both single-species diffusion and collisional integrals look the same as before,
just with their respective parameters. The additional term due to inter-species
collision has the same form as the previously defined collision integral but it involves
both distribution functions and a new collisional noise σA−B

IAc [fAfB] = −fA(θ)

∫ π

−π
dθ′RA−B(θ′, θ)fB(θ′)

+

∫ π

−π
dθ1dθ2R

A−B(θ1, θ2)fA(θ1)fB(θ2)

×
∫ ∞
−∞

dηPA−B(η)δ2π(θ̄A−B + η − θ) .

(3.39)

As before we expand the distribution functions in Fourier modes:

Species A

∂tf̂
A
k +

1

2
v0∇∗f̂Ak+1 +

1

2
v0∇f̂Ak−1 = λ(PA0,k − 1)f̂Ak

+
∞∑

q=−∞
(IA−Aq,k f̂Aq f̂

A
k−q + IA−Bq,k f̂Aq f̂

B
k−q)

(3.40)

Species B

∂tf̂
B
k +

1

2
v0∇∗f̂Bk+1 +

1

2
v0∇f̂Ak−1 = λ(PB0,k − 1)f̂Bk

+

∞∑
q=−∞

(IB−Bq,k f̂Bq f̂
B
k−q + IB−Aq,k f̂Bq f̂

A
k−q)

(3.41)

with

IAq,k =

∫ π

−π

d∆

2π
RA(∆)

[
PAk cos(∆(q − ωk))− cos(q∆)

]
(3.42)

IA−Bq,k =

∫ π

−π

d∆

2π
RA−B(∆)

[
PA−Bk cos(∆(q − ωk))− cos(q∆)

]
. (3.43)
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The same holds for species B with its own parameters, just by exchanging A ⇔ B.
In our derivation we have applied the same nondimensionalization scheme as in Eq.
(3.43.4) for each one of the two distributions.
Furthermore we set ρA dAvAλA

= 1 and ρB dBvB
λA

.

Throughout the whole discussion on binary mixtures, we will consider collisional
and diffusion noise to be equal within each single species

σA = σd,A = σc,A (3.44)

σB = σd,B = σc,A . (3.45)

The inter-species collisional noise will be set equal to the average of the two

σA−B =
1

2
(σA + σB) . (3.46)

3.6 Zero mode equation

According to Eq. (3.123.12) the k = 0 mode coincides with the particle density and its
evolution equation reads

∂tf̂
A
0 +

1

2
∇∗f̂A1 +

1

2
∇f̂A−1 = 0 , (3.47)

since IA−Aq,0 = IA−Bq,0 = 0 and PA0,0 = 1.
Observing that f is a real-valued function so that f̂Ak = (f̂A−k)

∗ and that f̂A0 = ρA Eq.
(3.473.47) reads

∂tρ
A +

1

2
∇∗f̂A1 +

1

2
∇(f̂A1 )∗ = 0 , (3.48)

which is the typical form of a continuity equation if we map vectors of the plane onto
complex numbers. Note that in Eq. (3.483.48) no coupling due to inter-species collisions
is present. This appears only in the evolution equation for the first mode.

3.7 First mode equation

∂tf̂
A
1 +

1

2
∇∗f̂A2 +

1

2
∇f̂A0 = (PA0,1 − 1)f̂A1 +

∞∑
q=−∞

(IA−Aq,1 f̂Aq f̂
A
1−q + IA−Bq,1 f̂Aq f̂

B
1−q),

(3.49)

where PA0,1 = e−σ
2
A/2.
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From Eq. (3.493.49) it is clear that (f̂A0 = const. = ρ0, f̂
A
k = 0 ∀k > 1) is a

homogeneous and isotropic solution or fixed point of Eq. (3.493.49).
We will refer to it as the Homogeneous-Isotropic-Phase (HIP).
Since Eq. (3.493.49) involves an infinite sum, it is impossible to find a close set of
equations for the Fourier modes and hence a general solution for the problem. This
is obviously a consequence of the Fourier expansion of the density function. This
means that we must eventually rely on truncation schemes: as customary in this kind
of problems we will first try to extract some interesting information by linearising
the equations around the fixed point.

We will thus focus on the (space-homogeneous) perturbation of the HIP, consid-
ering only O(δf̂A1 ) terms in Eq. (3.493.49).
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4 Linear Stability Analysis

Now that we have found a stationary and homogeneous solution of Eq. (3.493.49), we are
particularly interested in its stability against small perturbations. It is a well known
fact that nonequilibrium systems exhibit instability regions of isotropic solutions in
parameter space, where many different patterns could arise [5555]. This is a very
general approach that usually consists of two steps: linearization of the equation of
motion around the fixed point and analysis of the eigenvalues (eigenvectors) arising
from the first order linear system [1313, 4646]. With such a procedure we will be able to
derive the phase diagram for a binary mixture [11, 3030, 3333] for uniform perturbation of
the HIP and to analyse the dispersion relation in the case of wave-like perturbations
[66, 1313, 1717, 2929].

4.1 Homogeneous perturbation of the homogeneous and isotropic phase

The simplest form of linear analysis is the one were the small displacement around
the critical point are space independent, i.e. they have infinite wavelength. In
this section we retain first order terms in the perturbation of the HIP solution
ρA = const, ρB = const, f̂A1 = 0, f̂B1 = 0 and study the eigenvalues problem for the
Jacobian matrix.
Eq. (3.493.49) linearised in the homogeneous perturbation reads

∂tf̂
A
1 = (e−σ

2
A/2 − 1)f̂A1

+ (IA−A0,1 f̂A0 f̂
A
1 + IA−B0,1 f̂A0 f̂

B
1 )

+ (IA−A1,1 f̂A1 f̂
A
0 + IA−B1,1 f̂A1 f̂

B
0 )

(4.1)

and in addition to the single species terms it contains inter-species coupling terms
that will largely modify the single-species phase diagram [66].
The linear system of equations for both species is

∂t

f̂A1
f̂B1

 = J

f̂A1
f̂B1

 (4.2)

where the first column of the linearisation matrix J is (and the other is obtained
simply swapping A⇔ B)

J1,1 = e−σ
2
A/2 − 1 + (IA−A0,1 ρA + IA−A1,1 ρA + IA−B1,1 ρB)

J1,2 = IA−B0,1 ρA.
(4.3)
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We would like to stress the fact that f̂1 is a complex field, so that if we want to relate
it to the two-dimensional momentum vector we should always refer to its real (x
component) and imaginary (y component) part.

Comparing Eq. (4.14.1) to the linearised equation derived from the hydrodynamic
equations by Bertin et al. [66, 77, 3737] we observe that two additional terms are present:

IA−B1,1 ρB (4.4)

that couples the momentum field of species A to the density of species B via the IA−B1,1

coefficient, and
IA−B0,1 ρA (4.5)

that instead couples f̂A1 to fB1 via the density-dependent coefficient IA−B0,1 ρA. The
form of these two integrals is the same, independent of the species

I0,1 =
2

π

∫ π

−π
d∆ |sin (∆/2)| [P1 cos(∆/2)− 1]

=
4

π

∫ π

0
d∆ sin (∆/2)

[
e−σ

2
A/2 cos(∆/2)− 1

]
=

4

π

(
e−σ

2
A/2 − 2

) (4.6)

where we have used the parity of the cosine function and the fact that the sine is
positive between 0 and π.

I1,1 =
2

π

∫ π

−π
d∆ |sin (∆/2)| [P1 cos(∆/2)− cos(∆)]

=
4

π

∫ π

0
d∆ sin (∆/2)

[
e−σ

2
A/2 cos(∆/2)− cos ∆

]
=

4

π

(
e−σ

2
A/2 + 2/3

) (4.7)

4.1.1 The limit of two identical species

As a preliminary check of our linearisation scheme, we want to obtain system of
two identical species of particles and thus reproduce the same transition density and
phase diagram (σ vs ρ) as in [66]. For this reason we set

σA = σB = σ

ρA = ρB = ρ

σA−B =
1

2
(σA + σB) = σ .

(4.8)
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The two species are now effectively the same, the only difference being a factor 2 in
front of the density, due to the fact that now the number of particles has doubled.

The matrix J reduces to(
e−σ

2/2 − 1 + ρ(I0,1 + 2I1,1) I0,1ρ

I0,1ρ e−σ
2/2 − 1 + ρ(I0,1 + 2I1,1)

)
(4.9)

where all the subscripts referring to the two different species have been removed.
To obtain the correct phase diagram we have to pay attention to the form of the
matrix

J ∼
(
a+ b b
b a+ b

)
(4.10)

where b = I0,1ρ < 0. The two eigenvalues are respectively λ1 = a, λ2 = a + 2b, so
that the larger eigenvalue would be λ1. However if we look at the eigenvectors we
find that the one associated with λ1 is

v1 =

(
1
−1

)
(4.11)

which has no physical meaning since a small positive perturbation (say Ref > 0 so
that the system is perturbed in the positive x direction) would give both a positive and
a negative contribution to the polar field. This cannot happen since we are dealing
with a single species and the behaviour must be unique. The correct eigenvector to
consider is then (1, 1)T , corresponding to the second eigenvalue λ2 = a+ 2b.

The condition λ2 = 0 gives the same transition line as obtained analytically in [66]
(a part from a factor of 2 due to the double amount of total particles in the system)

ρt =
1− e−σ2/2

2(I0,1 + I1,1)
(4.12)

Fig. 77 is the phase diagram for the single species system [66, 77, 88, 1010, 4747, 4848]:
the region of "high noise" above the transition line is where the homogeneous and
isotropic solution is stable (i.e. λ2 < 0). The lower part of the (σ, ρ) phase plane, is
the ordered region, where the homogeneous and isotropic phase becomes unstable
and polar order is predicted to arise (λ2 > 0).

One of the main features of this phase diagram is that the transition line is always
an increasing function of the density, so that a disorder-order transition is possible
either via increasing the density or via decreasing the noise. It is a general property of
these self-propelled particle systems that by increasing the density the system moves
toward order, whereas an increase in noise drives the system away from it [2222, 3636].

It is also worth noting that ρt(σ = 0) = 0 and that the curve has a divergent
derivative at the origin: this means that in the limit of infinitesimally small noise,
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Figure 7: Orange: stability region of the HIP (f̂A0 = const, f̂Ak = 0 ∀k > 1). Blue: instability region of
the HIP. In black is the transition line Eq. (4.124.12).

an infinitesimal increase in density would lead to an immediate transition towards
order. We can understand this behaviour simply realizing that reducing to zero the
noise means that our particles follow a ballistic motion (i.e. they move on a line with
constant speed) and they align perfectly with each other (without any "fuzziness"
in the outgoing angle) when they collide. We will see that most of these features
change substantially when we introduce another species into the system.

4.1.2 The binary case

We will here analytically calculate the general form for the eigenvalues of the matrix
J and find the conditions for the onset of instabilities in the homogeneous-isotropic
state. As already remarked the inter-species collisions yield another addictive term
on the diagonal (IA−B1,1 ρB), but also an off diagonal one (IA−B0,1 ρA).
We would intuitively expect that the introduction of a new species with low noise
(i.e. ordered) would increase polar order in the system, whereas introducing a really
"noisy" second species would promote a disordered stationary state.

For simplicity we will rewrite the matrix J in the form

J =

(
SA + I1,1ρ

B I0,1ρ
A

I0,1ρ
B SB + I1,1ρ

A

)
(4.13)

where for the sake of brevity SA = e−σ
2
A/2−1+(IA−A0,1 +IA−A1,1 )ρA is the single species

component and the cross-collision terms are I1,1 and I0,1. To be consistent with our
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previous notation, we remark that SA > 0 implies ρA > ρAt = (1− PA0,1)/(IA0,1 + IA1,1)
so that species A is in the ordered region (the same holds for B).

The two eigenvalues of the matrix J read

λ1,2 = (SA + I1,1ρ
B) + (SB + I1,1ρ

A)

±
√

[(SA + I1,1ρB) + (SB + I1,1ρA)]2 − 4[(SA + I1,1ρB)(SB + I1,1ρA)− I 2
0,1ρ

AρB ] .

(4.14)

The expression under the square root sign is always positive so that the eigenvalues
are real.
Before choosing the correct eigenvalue describing the system, we look first at the
associated eigenvectors: for this purpose we indicate with (λ1, e1) the pair eigenvalue-
eigenvector, λ1 being given by Eq. (4.144.14) with the "+" sign. Similarly we take λ2 to
be the eigenvalue with the "−" sign and e2 the corresponding eigenvector. The exact
expression for the two vectors is complicated and not really helpful to get an idea of
the behaviour we can easily plot the vector space associated with each eigenvector.

a) f̂1,B

f̂1,A

b) f̂1,B

f̂1,A

Figure 8: Left: various vector spaces associated to the pair (λ1, e1) for different values of the noise σB .
Right: vector spaces associated to (λ2, e2).

It is clear from Fig. 88 a) that the first eigenvector is of the form

e1 =

(
+
−

)
(4.15)

and lies in the second and in the fourth quadrant, while the second one lies in the
first and in the third one

e2 =

(
+
+

)
. (4.16)
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In Fig. 99 a) and b) we have drawn a polar and an antipolar collision between polar
rods, indicating the two eigen-directions given by e1 and e2. If we chose e1 to
describe our system, it is clear from Fig. 99 b) that this would mean enhancing an
alignment in the antipolar direction, whereas our collision rule is a polar one.
We then claim that our linearized system is described by

a)

e1

e 2

b)

e1

e 2

Figure 9: Left: collision with polar component only.
Right: collision with antipolar component only.
Dashed: the two orthogonal directions given by the eigenvectors. An alignment along e1

enhances the antipolar component of the momentum, whereas an alignment along e2 favours
the polar component consistently with our choice of the collision rule.

λ2 = (SA + I1,1ρ
B) + (SB + I1,1ρ

A)

−
√

[(SA + I1,1ρB)− (SB + I1,1ρA)]2 + 4I 2
0,1ρ

AρB
(4.17)

e2 =

(
+
+

)
. (4.18)

Eventually, our condition for the instability of the HIP is λ2 > 0 or by squaring Eq.
(4.174.17)

(SA + I1,1ρ
B)(SB + I1,1ρ

A) > I 2
0,1ρ

AρB (4.19)

that can be plotted while we vary the four different parameters of the system
(ρA, σA, ρB, σB).
To obtain a two dimensional phase diagram we have to fix two of these. We choose
to fix the density of species B and to plot the phase diagram for the whole mixture as
a function of the pair (σA, ρA), while varying σB through a prefixed range of discrete
values.
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Figure 10: Linear stability phase diagram (of the binary mixture A-B) for four different values of σB .
In orange the disordered region, in blue the ordered phase. The new transition line for the
binary mixture (i.e. the boundary between the orange and the blue region) is in black. For
comparison, the single species transition line is plotted in yellow. Black arrows in a) and d)
show possible phase transitions for constant noise and increasing density. The black circle
in c) points out the crossing of the single species line (yellow) and the one for the binary
mixture (black). The red dot is a possible choice of parameters for the mixture to be in an
ordered state while having already left the single species ordered phase (below the yellow
line).

What we obtain is an interesting phase diagram for the two-species system as the
noise of species B is increased going from a) to d): order seems to be promoted for
noise values below the transition line but for high values of the noise the most of our
phase diagram is occupied by the disordered phase. Physically this means that if we
mix two species, the former (B) being in an ordered state and the latter (A) being in a
disordered phase, we can obtain an ordered mixture (see Fig. 1010 a)). In this situation
a transition from order to disorder (and not viceversa) is possible by increasing the
density for σA large enough (dashed arrow in Fig. 1010 a)). This is due to the fact that
the transition line is decreasing with density for σB < σcrit.

For σB ≈ σcrit. the transition line becomes almost horizontal and eventually
changes discontinuously its concavity when the critical value is crossed. Looking at
Fig 1010 b) more carefully it seems that for noise values close to critical an inverse
transition disorder-order is possible at high densities: the transition line seems in
fact to reach the minimum around ρ ≈ 0.05 and then to increase. This suggests that
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Figure 11: Zoom of Fig. 1010 b): close to σB = σcrit the transition curve first decreases towards a
minimum and then increases again. The arrow indicates the possibility of a re-entrant phase
transition for σA ≈ 0.78. Here ρB = 0.4 and σB = 0.605 . σcrit.

a mixture with parameters tuned in the correct way would exhibit first an order-
disorder transition and then a disorder-order one as shown by the dashed arrow in
Fig. 1111; such a behaviour is usually called "re-entrant" [4141].

Moreover, according to our phase diagram it is possible to obtain an ordered
system by mixing two disordered ensembles of particles: this is shown in Fig. 1010 c)
where we observe that the single-species transition line (in yellow) crosses the new
one (in black). Thus if we choose our parameters (cf. the red point in Fig. 1010 c) )
so that the system is above the yellow line but below the black one, we end up with
an ordered mixture, despite the two separate species being singularly above their
transition line and thus disordered [11, 3030].

In Fig. 1010 d) the noise is way above criticality and the two transition lines don’t
cross each other any more (for densities smaller than one). The new density threshold
that appears around ρA ≈ 0.25 for σB � σcrit (Fig. 1010) is another interesting feature:
the density of species A always has to overcome a certain value for the system to be
ordered. Again a comparison with the single species case shows that the yellow line
always starts from the origin and such a threshold is not present.

Remarkably, our results are in agreement with what Ariel et al. found simulating
a binary mixture via a slightly modified SNM (Scalar Noise Model) [11, 5454]. In
particular their phase diagrams (cf. Fig. 4,5 and 6 of Ref. [11]) qualitatively shows
the same features as our linearised Boltzmann approach does: order is promoted and
even a density threshold for σB larger than the critical value (Fig. 1010 d) ) indirectly
appears. By indirectly we mean that they don’t explicitly point out a particular value
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that has to be overcome to promote order, but a careful comparison between Fig. 4
and 6 of Ref. [11] and our phase diagrams Fig. 1010 shows that this is indeed the case.

We obviously obtain the same results if instead of fixing the density of species B
we fix the noise and move horizontally to larger values of the density crossing the
"single-species" transition line.

4.2 Non-homogeneous perturbation of the homogeneous and isotropic
phase

Until now we have investigated the stability of the homogeneous-isotropic phase
against homogeneous perturbations. However we didn’t look at how our system
reacts to small finite-wavelength perturbations of the HIP [3232]. Patterns could in
fact arise if we perturb the uniform state of the system with small but now space-
dependent variations of our fields. We recall that in our homogeneous linear stability
analysis we found two distinct regions in phase space: one where perturbations of
the HIP decay exponentially (thus stable) and one where those instabilities grow
exponentially. In this section of the thesis we investigate if this is also true when tiny
perturbations of the form eλteiq·x are introduced. In Fig. 1212 the dispersion relation
for a type-III instability is drawn: on the y-axis lies the real part of the eigenvalue,
while on the x-axis the magnitude of q. Typically the system depends on a few
important parameters (in our case density and noise) that can modify the stability
diagram. In particular we see that a critical value of the density ρc indicates the
onset of instability; in other words for ρ > ρc there are values of q for which Re(λ)
is positive and the system becomes unstable. The fastest growing mode is the one
for which the growth rate λ is maximum and for a III-type instability it is always
the q = 0 one. In our specific case (that will not exhibit a type-III instability) the
control parameter is the critical density (or noise) for the binary mixture. For the
sake of brevity, we will from now on drop the "hat" symbol as well as the "1st order"
subscript of the first Fourier mode and when substituting into equations we don’t
indicate dependencies any more.

We rewrite our fields in the following way, emphasizing the small perturbations
around the fixed point

ρA(r, t) = ρA0 + δρA(r, t), fA(r, t) = δfA(r, t) (4.20)

ρB(r, t) = ρB0 + δρB(r, t), fB(r, t) = δfB(r, t) (4.21)

and we substitute into Eq. (3.483.48) and Eq. (3.493.49) for species A and B respectively.
Considering again only order one in the perturbations (and their complex conjugates),
we obtain
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Figure 12: Example of a dispersion relation for a type-III instability. The maximum of Reλ(q) occurs
always at q = 0. For ρ > ρc spatial instabilities arise, while for ρ ≤ ρc the fixed point is
stable.

Species A

∂tδρ
A +

1

2
∇∗δfA +

1

2
∇(δfA)∗ = 0 (4.22)

∂tδf
A +

1

2
∇δρA = (PA0,1 − 1 + IAA0,1 ρ

A
0 + IAA1,1 ρ

A
0 + IAB1,1 ρ

B
0 )δfA + IAB0,1 ρ

A
0 δf

B .

(4.23)

Species B

∂tδρ
B +

1

2
∇∗δfB +

1

2
∇(δfB)∗ = 0 (4.24)

∂tδf
B +

1

2
∇δρB = (PB0,1 − 1 + IBB0,1 ρ

B
0 + IBB1,1 f

B
0 + IBA1,1 ρ

A
0 )δfB + IBA0,1 ρ

B
0 δf

A .

(4.25)

Two more equations for the two complex conjugate fields (δfA)∗ and (δfB)∗ need to
be added to complete the linear system: they can be easily obtained by taking the
complex conjugate of the corresponding Eq. (4.234.23), Eq. (4.254.25) paying attention to
the complex nabla operators.
The ansatz we will make for the perturbation is a plane-wave one, namely

δρ(r, t) =
∑
q

δρq(t) eiq·r δf(r, t) =
∑
q

δfq(t) eiq·r , (4.26)

where the wave vector q is real whether the amplitudes δρq(t), δfq(t) are complex
and their modulus is assumed to be small. We recall that the time-dependent
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amplitudes can be obtained using the relations

δfq′(t) =
1

2π

∫
dr δf(r, t)e−iq

′·r , (4.27)

δρq′(t) =
1

2π

∫
dr δρ(r, t)e−iq

′·r , (4.28)

for the first moment and the density respectively. If we now substitute our expressions
into the three equations for species A and for species B, we can derive the linear
evolution equations for the amplitudes δfq(t) ∼ δfqe

λqt and δρq(t) ∼ δρqe
λqt. By

choosing the correct eigenvalue for the system we can then find the dispersion
relation and study for which values of the noise, instability occurs.

The linear system reads

∂t



δρA

δρB

δfA

δfA∗

δfB

δfB∗

 = J(q)



δρA

δρB

δfA

δfA∗

δfB

δfB∗

 , (4.29)

the rows of the linearisation matrix being given for (j = 1, · · · , 6) by

J1,j =

(
0, 0, −1

2
(iqx + qy),

1

2
(iqx − qy), 0, 0

)
,

J2,j =

(
0, 0, 0, 0, −1

2
(iqx + qy),

1

2
(iqx − qy)

)
,

J3,j =

(
−1

2
(iqx − qy), 0, (PA0,1 − 1) + (IAA0,1 + IAA1,1 )ρA0 + IAB1,1 ρ

B
0 , 0, IAB0,1 ρ

A
0 , 0

)
,

J4,j =

(
+

1

2
(iqx + qy), 0, 0, (PA0,1 − 1) + (IAA0,1 + IAA1,1 )ρA0 + IAB1,1 ρ

B
0 , 0, IAB0,1 ρ

A
0

)
,

J5,j =

(
0, −1

2
(iqx − qy), IBA0,1 ρ

B
0 , 0, (PB0,1 − 1) + IBB0,1 ρ

B
0 + IBB1,1 f

B
0 + IBA1,1 ρ

A
0 , 0

)
,

J6,j =

(
0, +

1

2
(iqx + qy), 0, IBA0,1 ρ

B
0 , 0, (PB0,1 − 1) + IBB0,1 ρ

B
0 + IBB1,1 f

B
0 + IBA1,1 ρ

A
0

)
.
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Figure 13: Dashed line: the dispersion relation Reλ(q) is evaluated for two different points on the phase
diagram, connected by a line. The one on the right side of the transition line is in the stable
regime, the other in the unstable. ρB = 0.4, σB = 0.9.
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Figure 14: Left: dispersion relation for non-homogeneous perturbation of the HIP in the orange region (Fig.
1313). The real part of the eigenvalue is always negative, thus confirming the stability of the fixed
point.
Right: dispersion relation for non-homogeneous perturbation of the HIP in the blue region (Fig.
1313). Here the eigenvalue’s real part is always positive, indicating that the homogeneous and
isotropic state is always unstable against wave-like perturbations.

Despite the analytic expression for each eigenvalue being too complicated, we can
numerically diagonalize the matrix and plot the results for different values of the parame-
ters as we have done in the homogeneous case. Similarly to what we did in Sect. 4.1.24.1.2
we look for the eigenvector "compatible" with our model and plot the corresponding
eigenvalue. For symmetry reasons, the dispersion relation depends only on the magnitude
of the wave vector |q| = q.
In order to relate our analytical results to the numerical ones that we will present
in Sect. 6.26.2, we vary ρA along the dashed arrow shown in Fig. 1313, while keeping
σB = 0.9, ρB = 0.4. As before, by varying the noise of species B we can change the
stability of a specific region: in orange is the disordered state, in blue the ordered one. In
Fig. 1414 a) the dispersion relation for the point in the orange region is displayed: for non
homogeneous perturbations, the real part of the eigenvalue is negative through the whole
q range. We can then conclude that this region of the phase diagram ρA < ρcrit is stable
against homogeneous (λ2 < 0, cf. Sect 4.14.1) and inhomogeneous perturbations for all values
of q [33, 66, 77, 3232]. Moving across the dashed line of Fig. 1313 we enter the blue region where
our homogeneous linear stability analysis returned a positive eigenvalue, indicating that
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the HIP is here unstable (λ2 > 0). Fig. 1414 b) tells us that here also space-dependent
perturbations grow exponentially, for all values of q. In addition, note that for q 6= 0 the
growth rate λ first decreases then stays constant and eventually increases again to reach
the same value as for q = 0. All the kinks present in Fig. 1414 are degenerate points where
two or more eigenvalues are equal.

After having studied the stability of the trivial homogeneous and isotropic solution
of the Boltzmann equation, both against uniform and non uniform perturbations, it is
natural to go one step further, try to find another solution of the equations of motion and
eventually study its stability. We will deal with the first task in the next section.

43





5 Hydrodynamic Equations

The advantage of an approach that makes use of the kinetic Boltzmann equation is
that it is particularly efficient in relating microscopic quantities like diffusional noise,
mean free path, size of particles etc. to macroscopic ones that appear in the statistical
description of the system. The approach that we describe now, characterizes the
whole system via two macroscopic fields: density ρ(x, t) and momentum p(x, t) or
equivalently f1(x, t). The nonlinear equations that determine their evolution are
called hydrodynamic equations. We will see that they are particularly suitable for
finding another non trivial fixed point of our binary ensemble and to study its stability,
as well as for numerical implementations.
We have already remarked that the nonlinearity of the equations and the presence
of an infinite series in Eq. (3.493.49) don’t allow for a general solution of the problem;
nevertheless this series form seems well suited for some kind of approximation
scheme. The one implemented by Bertin et al. [88] is a possible truncation in order to
obtain a (nonlinear) equation for the first mode (or equivalently for the momentum
field to which it is related via Eq. (3.173.17)).
Another way of looking at such an approach is in the spirit of the Ginzburg-Landau
theory [3737]: the evolution equation for the polar order field can be in general written
as

∂tf̂1 = G(ρ, σ)f̂1 , (5.1)

where G is a nonlinear operator depending both on the density and on the noise.
Close to the onset of instability an expansion of the operator to lowest order in ρ and
σ leads to a Ginzburg Landau equation.

In the next section we will shortly recapitulate the procedure conceived in [66],
starting from the Fourier transformed Boltzmann equation for a single species of
particles. In Sect. 5.25.2 we derive the hydrodynamic equations for a binary mixture
and employ them to find a non isotropic solution (Sec. 5.35.3).

5.1 Single species case

The underlying assumption of all the following derivation is that the system is in a
state which lies very close to the transition disorder-order or in other words that the
polarization field P (or also "average velocity") is small compared to the speed of the
particles. This quasi-ordered state can be mathematically expressed using the fact
that the density is independent from the momentum orientation or ρ(r, t) = O(1).
We recall that by definition the momentum field is related to f̂1 by ‖p‖ = v0ρ|f̂1|. It
follows that if the system is sufficiently close to an isotropic state, i.e. ‖p‖ = O(ε),
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we can set
f̂1 = O(ε), ε� 1 (5.2)

and since this is the mode that first becomes unstable in a polar system, we imply the
following scaling ansatz

f̂k = O(ε|k|) . (5.3)

Once again it is really important to remember that this approach is only justified
close to the transition line.

The first possibility is to retain terms until O(ε3), which is the first that accounts
for saturation. In [66] this ansatz was verified by numerically computing the spatially
homogeneous and stationary solution of the full Boltzmann equation for each k-mode.
It is observed that modes with k & 4 decay exponentially, thus corroborating the
hypothesis that the first three modes are sufficient to properly derive the hydrody-
namic equations. Furthermore nonlinearities in the polar order field are supposed to
saturate at order O(ε3), meaning that the coefficients in front of third order terms
should be negative. If this is not the case, we need to go to higher orders and
assure that there exist values of noise and density such that the coefficient of the
lowest-order symmetry-allowed nonlinear term is negative. By applying a third order
truncation we can express all f̂2 terms as a function of ρ and f̂1 and successively use
this result to substitute into the equation for f̂1, as we will now briefly show.

First of all we write down the evolution equations for the first three moments, as
prescribed by Eq. (3.363.36), to order ε3

∂tρ+∇f̂ ∗1 +∇∗f̂1 = 0 , (5.4)

∂tf̂1 +
1

2
∇ ∗f̂2 +

1

2
∇ρ = (P0,1 − 1)f̂1 + I0,1ρf̂1 + I1,1f̂1ρ

+ I−1,1f̂
∗

1 f̂2 + I2,1f̂2f̂
∗

1 ,
(5.5)

∂tf̂2 +
1

2
∇f̂1 = (P0,2 − 1)f̂2 + I0,2ρf̂2 + I1,2f̂

2
1 + I2,2f̂2ρ . (5.6)

We will consider the second mode f̂2 to have already relaxed to the stationary value,
since it varies on a much faster time scale than f̂1, so that we can set ∂tf̂2 = 0 (for a
more rigorous definition of the scaling ansatz see [66, 77, 3737]).
Eq. (5.65.6) then yields

f̂2 =
1
2∇f̂1 − I1,2f̂

2
1

P0,2 − 1 + (I0,2 + I2,2)ρ
. (5.7)
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Substituting this result into Eq. (5.55.5) we obtain

∂tf̂1 +
1

2
∇ ∗
(

1
2∇f̂1 − I1,2f̂

2
1

P0,2 − 1 + (I0,2 + I2,2)ρ

)
+

1

2
∇ρ = (P0,1 − 1)f̂1 + I0,1ρf̂1 + I1,1f̂1ρ

+ I−1,1f̂
∗

1

1
2∇f̂1 − I1,2f̂

2
1

P0,2 − 1 + (I0,2 + I2,2)ρ
+ I2,1

1
2∇f̂1 − I1,2f̂

2
1

P0,2 − 1 + (I0,2 + I2,2)ρ
f̂ ∗1 .

(5.8)

By defining the coefficients µ and ν

µ(ρ) = P0,1 − 1 + (I0,1 + I1,1)ρ (5.9)

ν(ρ) = [P0,2 − 1 + (I0,2 + I2,2)ρ]−1 (5.10)

we can rewrite Eq. (5.85.8) in the following way

∂tf̂1 +
1

4

∂ν

∂ρ
∇∗ρ∇f̂1 −

I1,2

4
ν∇2f̂1 −

I1,2

2
ν∇∗f̂ 2

1

= µf̂1 +
I−1,1

2
ν f̂∗1 ∇f̂1 − νI−1,1f̂

∗
1 f̂

2
1 + ν

I2,1

2
∇f̂1 f̂

∗
1 − νI2,1I1,2f̂

2
1 f̂
∗

1 .

(5.11)

The system of hydrodynamic equations is then given by Eq. (5.45.4) and Eq. (5.115.11)
coupled to one another. We could in principle also obtain an equation for the
momentum field p(r, t) defined in Eq. (3.173.17) that looks more similar to a Navier-
Stokes equation where additional terms due to the system being non conservative
appear (see for example [66]). We instead highlight the fact that a nontrivial solution
of the hydrodynamic equations can be found:

ρ = const , f̂1 = const 6= 0 . (5.12)

It is easy to see that if we plug this ansatz into our hydrodynamic equations, Eq. (5.45.4)
reduces to an identity and Eq. (5.115.11) to

µf̂1 − ν(I−1,1 + I2,1I1,2)f̂∗1 f̂
2

1 = 0 . (5.13)

Obviously f̂1 = 0 i.e. the isotropic phase is still a solution of Eq. (5.135.13) but now for
µ > 0 we find a second one, namely

|f̂1|2 =
µ

ν(I−1,1 + I2,1I1,2)
=
µ

ξ
, (5.14)

where we have defined a new ν (and thus ρ)-dependent coefficient

ξ =
8ν

15π

[
11 + 15

(
e−2σ2 − e−σ2/2

)]
. (5.15)

To conclude, for µ > 0 in addition to the trivial ρ = const, f̂1 = 0 solution a new
homogeneous and non-isotropic phase is found, given by ρ = const, f̂1 = eiθ

√
µ
ξ

that corresponds to an average momentum p with fixed magnitude and general
direction θ [66, 77].
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5.2 Binary mixture

In a binary system things are more complicated since we have to deal with another
nonlinear coupling term due to inter-species collisions. As we will now show, this
leads to long and complicated expressions before we can finally reduce the differential
system of six equations (modes 0, 1, 2 for both species) to four coupled hydrodynamic
equations for ρA, ρB and the two polarization fields fA1 , fB1 . Note that for the sake of
simplicity we will hereafter drop the "hat" indicating that we are working in Fourier
space. The same ansatz as for the single species case is applied, so that terms until
order three in epsilon are retained. This is again justified only close to the transition
line (of the phase diagram for binary mixtures) and should be proved numerically to
be a correct assumption. Furthermore we should once again check that the coefficient
of the highest order term (i.e. O(ε3)) is negative. We will derive the equations for
species A but a completely analogous derivation is valid for B.

We start out by writing down the equation for the second Fourier mode fB2 , where
we already discarded the time derivative ∂tf2 and all higher order terms for the same
reasons as in the single species case

fB2
(
IBB0,2 ρB + IBB2,2 ρB + IBA2,2 ρA + PB0,2 − 1

)
=

1

2
∇fB1 − IBA0,2 ρBf

A
2

− IBB1,2 (fB1 )2 − IBA1,2 f
B
1 f

A
1 .

(5.16)

From Eq. (5.165.16) we can write fB2 as a function of both densities, of fB1 , fA1 and of
fA2 . We then have to substitute this expression into the respective second moment
equation for species A to eliminate the field fB2

1

2
∇fA1 = (PB0,2 − 1 + IAA0,2 ρA + IAA2,2 ρA + IAB2,2 ρA)fA2

+ IAA1,2 (fA1 )2 + IAB1,2 f
B
1 f

A
1

+ IAB0,2 ρA

(
1
2∇f

B
1 − IBA0,2 ρB f

A
2 −IBB1,2 (fB1 )2 − IBA1,2 f

B
1 f

A
1

IBB0,2 ρB + IBB2,2 ρB + IBA2,2 ρA + PB0,2 − 1

)
.

(5.17)

We have highlighted in red the terms ∼ fA2 that can be isolated to give an ex-
pression where fA2 = FA(ρA, ρB, f

A
1 , f

B
1 ), F being a generic function replacing the

complicated expression given here below
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fA2

(
IAA0,2 ρA + IAA2,2 ρA + IAB2,2 ρB + PA0,2 − 1−

IAB0,2 I
BA
0,2 ρAρB

IBB0,2 ρB + IBB2,2 ρB + IBA2,2 ρA + PB0,2 − 1

)
=

1

2
∇fA1 − IAA1,2 (fA1 )2 − IAB1,2 f

A
1 f

B
1

− IAB0,2 ρA

(
1
2∇f

B
1 − IBB1,2 (fB1 )2 − IBA1,2 f

B
1 f

A
1

IBB0,2 ρB + IBB2,2 ρB + IBA2,2 ρA + PB0,2 − 1

)
.

(5.18)

To simplify Eq. (5.185.18) we define two coefficients, in analogy to the single species
case

νA =
[
IAA0,2 ρA + IAA2,2 ρA + IAB2,2 ρB + PA0,2 − 1

]−1
(5.19)

νB =
[
IBB0,2 ρB + IBB2,2 ρB + IBA2,2 ρA + PB0,2 − 1

]−1
(5.20)

and two functions depending on the polar fields

FA(fA1 , f
B
1 ) =

1

2
∇fA1 − IAA1,2 (fA1 )2 − IAB1,2 f

A
1 f

B
1 (5.21)

FB(fA1 , f
B
1 ) =

1

2
∇fB1 − IBB1,2 (fB1 )2 − IBA1,2 f

B
1 f

A
1 . (5.22)

With these new definitions Eq. (5.185.18) reads

fA2 =
νAFA − IAB0,2 ρA(νA)2FB

1− νAνB(IAB0,2 )2ρAρB
. (5.23)

Having simplified the expression for f̂2, we can write down the equation for fA1 to
order O(ε3) highlighting fA2 and fB2 terms in red and blue respectively

∂tf
A
1 +

1

2
∇∗ fA2 +

1

2
∇fA0 = (PA0,1 − 1)fA1 + (IA−A0,1 fA0 f

A
1 + IA−B0,1 fA0 f

B
1 )

+ (IA−A1,1 fA1 f
A
0 + IA−B1,1 fA1 f

B
0 ) + (IA−A−1,1 + IA−A2,1 ) fA2 (fA1 )∗

+ IA−B−1,1 (fA1 )∗ fB2 +IA−B2,1 fA2 (fB1 )∗ .

(5.24)

To make explicit the expression fB2 = FB(ρA, ρB, f
A
1 , f

B
1 ), we use Eq. (5.165.16) with

fA2 being replaced by Eq. (5.235.23):

fB2 = νB

[
1

2
∇fB1 − IBA0,2 ρB

νAFA − IAB0,2 ρA(νA)2FB

1− νAνB(IAB0,2 )2ρAρB

− IBB1,2 (fB1 )2 − IBA1,2 f
B
1 f

A
1

]
.

(5.25)
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From the expressions fA2 = FA(ρA, ρB, f
A
1 , f

B
1 ) and fB2 = FB(ρA, ρB, f

A
1 , f

B
1 ) we

can finally derive our equation for fA1 that contains only the fields ρA, ρB, fA1 , f
B
1

∂tf
A
1 +

1

2
∇∗
[
νAFA − IAB0,2 ρA(νA)2FB

1− νAνB(IAB0,2 )2ρAρB

]
+

1

2
∇ρA =

µAfA1 + IA−B0,1 ρAf
B
1 + (IA−A−1,1 + IA−A2,1 )(fA1 )∗

[
νAFA − IAB0,2 ρA(νA)2FB

1− νAνB(IAB0,2 )2ρAρB

]

+ IA−B−1,1 (fA1 )∗νB

[
1

2
∇fB1 − IBA0,2 ρB

νAFA − IAB0,2 ρA(νA)2FB

1− νAνB(IAB0,2 )2ρAρB

−IBB1,2 (fB1 )2 − IBA1,2 f
B
1 f

A
1

]
+IA−B2,1 (fB1 )∗

[
νAFA − IAB0,2 ρA(νA)2FB

1− νAνB(IAB0,2 )2ρAρB

]
.

(5.26)

Eq. (5.265.26) can be rewritten isolating linear, quadratic, cubic terms and those contain-
ing gradients of the fields. This is particularly useful if we are interested in finding
a spatially uniform solution with non zero polar order fields. For this purpose we
introduce new coefficients in front of each term of different order

∂tf
A
1 = µAfA1 + γAfB1 + αA(∇∗)(fA1 )2 + βA(∇∗)(fB1 )2 + αA−B(∇∗)fA1 fB1 +

ζA|fA1 |2fA1 + δA|fB1 |2fB1 +AA|fA1 |2fB1 +BA|fB1 |2fA1 +

CA(fA1 )∗(fB1 )2 +DA(fB1 )∗(fA1 )2 + · · ·
(5.27)

and we don’t explicitly write down terms that contain spatial derivatives of polar
fields. We observe that all kind of possible linear, quadratic and cubic terms allowed
by symmetry are present: we recall that under a rotation of angle φ each Fourier

mode transforms as fk
φ−→ eikφfk. Thus our equation for f1 can only consist of terms

that transform as the first mode does; in other words the only allowed combination
of polar fields are those which in total give a factor eiφ if a rotation of φ is applied.
To justify why terms like αA(fA1 )2 can be included, we have explicitly indicated the
dependence of the coefficient on the complex operator ∇∗: this in fact transforms as
e−iφ and rotational symmetry is preserved.
The complete expressions for all coefficients are given in App. BB.

5.3 Homogeneous polarized solution

Finding another solution for the Boltzmann equation (3.493.49) in addition to the trivial
HIP one is not an easy (if possible) task. Nevertheless since the HIP is unstable and a
transition towards order is observed, we ask ourselves whether the system reaches
another homogeneous stationary state where our order parameter (i.e. f1) is non
zero. To tackle this problem we employ the hydrodynamic equations that we have
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just derived for binary mixture to find a homogeneous (ρA = const, ρB = const)
but polarized solution (fA1 = const 6= 0, fB1 = const 6= 0) that we will call HPP
(Homogeneous Polarized Phase).

If we treat fA1 and fB1 as non zero constants we are left with Eq. (5.275.27) and with
the corresponding equation for species B that we didn’t write down. The equations
for the densities of species A and B are of the form Eq. (5.45.4) and thus identically
satisfied. Even if we have now reduced our problem to the solution of a system of
algebraic equations, it is clear that a simple expression, where both polar field are
different from zero, cannot be derived easily.
For this reason we first try to set to zero one of the two fields, say fA1 , and find a non
zero constant solution for fB1 . What remains of the hydrodynamic equations is

γAfB1 + δA|fB1 |2fB1 = 0 , (5.28)

from Eq. (5.275.27) for species A, while from the corresponding equation for species B
we obtain the condition

µBfB1 + ζB|fB1 |2fB1 = 0 . (5.29)

Note that βA(B)(∇∗) = 0 and αA(B)(∇∗) = 0, because we seek a uniform ρ = const.
solution. Since Eqs. (5.285.28) and (5.295.29) have to hold at the same time but the
coefficients in front of each term are in general different from one another, there are
only two possibilities: either fB1 = 0 or

|fB1 |2 = −γ
A

δA
= −µ

B

ζB
. (5.30)

The solution fB1 = 0 is consistent with our scaling ansatz: if fA1 ∼ O(ε) and also
fB1 ∼ O(ε); setting fA1 = 0 implies that the same must hold for fB1 . Furthermore
this means that fA1 6= 0→ fB1 6= 0. In other words if species A is in a homogeneous-
polarized state, also B must be in such a state. We will see that this is also in
accordance with the numerical simulations.

The second solution provides instead the nontrivial condition

γA

δA
=
µB

ζB
< 0 , (5.31)

that corresponds to restricting the 4-dimensional parameter space to a 3-surface[
γA

δA
− µB

ζB

]
(ρA, ρB, σA, σB) = 0 with the additional requirement that γA

δA
or equiva-

lently µB

ζB
, is negative. Even if the two conditions are satisfied on some 3-manifold

of R4, fixing ρB and σB like we’ve done before means that the solution exists on a
1-curve that has measure 0 in the 2-dimensional phase space (σA, ρA). Moreover a
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phase that exists only on a line in a two-dimensional space is not physically realizable:
infinitely small perturbations would immediately drag the system towards a different
critical point. We then claim that the only meaningful possibility is: fA1 = 0→ fB1 = 0
that is equivalent to fA1 6= 0→ fB1 6= 0. Numerical simulations are also in agreement
with this last statement (see Sect. 6.26.2).

In principle it should be possible to construct other kinds of ansatz for a solution
(for example a plane wave one), but introducing space dependence into an equation
like Eq. (5.265.26) complicates things even more. Nevertheless, space dependent terms
need to be retained if we wish to investigate the stability of a possible HPP solution
against non homogeneous perturbation [3232]. This is important as we will show in
the next chapter that in our numerical simulations spatial patterns arise close to the
transition line; however a complete analytical treatment is beyond the limits of this
work as it would imply finding a general HPP solution (where both polar fields are
non zero) and linearise the equations around this fixed point.
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6 Numerical Analysis

Our study of the collective behaviour of an active binary mixture is based on the
Boltzmann equation for the one-particle density function. The expansion in Fourier
modes and the successive truncation of high order terms has allowed us to infer
the phase diagram and to derive the hydrodynamic equations for the density and
momentum field. However, all these techniques rely on assumptions that restrict
their validity range. The numerical approach based on the SNAKE algorithm [4747, 4848]
solves the equations of motion and thus has the great advantage of being applicable
for all control parameter values (in our case density-noise) and of not relying on any
fundamental assumptions but the ones implicit in the Boltzmann equation itself.
We will first verify our results from linear stability analysis and then concentrate
on what happens at the transition order⇔ disorder. In particular, we will find that
co-moving wave-like patterns form at the onset of order.
In the last section we present our data graphically (Sect. 6.26.2) and discuss the meaning
of what we consider to be the main peculiarities of our system.

6.1 The SNAKE algorithm

In this section we will briefly outline the procedure conceived by F. Thüroff et al. in
[4747] to numerically solve the kinetic Boltzmann equation in real space

∂tf(r, θ, t) + eθ · ∇f(r, θ, t) = Id[f ] + ρ0Ic[f ] . (6.1)

The SNAKE (Solving Numerical Active Kinetic Equations) algorithm is a discretization
scheme for the Boltzmann equation in real space that makes use of a finite difference
method: time is increased through tiny intervals τ so that the partial derivative with
respect to time may be written (in the limit of small τ) in the following way

∂tf →
f(r, θ, t+ τ)− f(r, θ, t)

τ
, (6.2)

while the gradient-proportional term in (3.53.5) can be thought as a directional deriva-
tive along eθ

eθ · ∇f(r, θ, t)→ f(r, θ, t)− f(r− τeθ, θ, t)
τ

, (6.3)

so that f(r, θ, t) cancels in the two derivatives. We then project the spatial domain
on a two-dimensional square lattice of dimension L and constant ε.
The continuous angular interval (−π, π] is then divided into a constant number Mθ

of angular channels of size a

f(r, θ, t)→ f(ri, θk, t), ri ∈ (1, L/ε]× (1, L/ε], k ∈ (1, 2π/a) . (6.4)
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The diffusion integral has the dimensionless form

Id[f ] = −f(r, θ, t) +

∫
dθ′f(θ′)

∫
dηP0(η)δ2π(θ′ + η − θ) , (6.5)

that can be cast into the discrete version

−f(ri, θk, t) +
∑
n

P0(k,n)f(ri, θn, t) (6.6)

or even in the more concise and useful notation∑
n

Dk,nf(ri, θn, t) , (6.7)

by defining the diffusion operator

Dk,n := P0(k,n) − δk,n. (6.8)

We now apply the discretization procedure to the collision term

Ic[f ] = −f(θ)

∫
dφR(|θ − φ|)f(φ) +

∫
dφ1dφ2R(|φ1 − φ2|)f(φ1)f(φ2)

×
∫
dηP (η)δ2π(θ̄ + η − θ) ,

(6.9)

that becomes

−f(ri, θk, t)
∑
m

R(|θk − θm|)f(ri, θm, t) +
∑
l,m

Pk,m,lR(|θl − θm|)f(ri, θl, t)f(ri, θm, t)

(6.10)
or ∑

l,m

Ck,l,mf(ri, θl, t)f(ri, θm, t) , (6.11)

with the following definition of the collision operator

Ck,l,m = Pk,l,mR(|θl − θm|)− δk,lR(|θk − θm|) . (6.12)

The last term f(r− τeθ, θ, t) which accounts for convection, can be rewritten as∑
l

Tk,l(τ)f(ri, θl, t) , (6.13)

with the definition of the convection operator that can be understood looking at Fig.
1515. The matrix element Tk,l gives the fraction of particles that in the time interval
(t, t+ τ) moved from lattice site l to lattice site k and it can be derived with simple
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Figure 15: Left: Illustration of the lattice structure. Each space element is represented by a black square
of side length ε. Appended to each lattice site is a constant number of angular slices (Mθ

slices; indicated by the circles and red arrows). The kth angular slice at lattice site (α, β)
stores the value of f({xα, yβ}, θk, t). Right: Illustration of the convection step. The length of
the dashed arrows indicates the length of the time step τ , the direction of the dashed arrows
indicates the angular channel being streamed. The colored regions indicate the fraction of
f({xα, yβ}, θk, t) converted to neighboring lattice sites [darker colors: convection out of
(α, β); lighter colors: convection into (α, β); cf. Eq. (6.136.13)]. Note that we have to choose
τ/ε� 1 to make the number of collisions between particles situated at different lattice sites
at time t small (otherwise a local evaluation of the collision processes is not justified).

Figure courtesy of F. Thüroff and C. A. Weber.

geometrical considerations. One necessary condition is that τ � ε, so that we can
fulfil the requirement from the Boltzmann equation that collisions are local. This has
to be taken in consideration when specific parameters for the simulations are chosen.

We can now collect all discretised terms of the equation to obtain the update rule

f(ri, θk, t+ τ) =
∑
l

Tk,l(τ)f(ri, θl, t) + τ
∑
n

Dk,nf(ri, θn, t)

+ ρ̂ τ
∑
l,m

Ck,l,mf(ri, θl, t)f(ri, θm, t)
(6.14)

that corresponds to an Euler forward algorithm where the updated distribution
function at time t+ τ is calculated from the know distribution at time t.

F. Thüroff and C. A. Weber constructed the Boltzmann equation solver [4747, 4949]
for a single species of particles: in order to numerically simulate our system we
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have extended and modified it including another self-propelled particle species.
Therefore instead of having one single density distribution function f , we now
simulate the temporal evolution of two density distributions (fA and fB) by means
of two convection, two diffusion and two collision operators independent from one
another. Additionally, to account for inter-species collisions⇔ we introduce a new
nonlinear term in the discretization scheme. The algorithm updates the distribution
functions for species A and B, fA and fB respectively, at the same time by applying
the following rule

fA(ri, θk, t+ τ) =
∑
l

Tk,l(τ)fA(ri, θl, t) + τ
∑
n

DA
k,nf

A(ri, θn, t)

+ τ
∑
l,m

[
ρ̂AC

A
k,l,mf

A(ri, θl, t)f
A(ri, θm, t) + ρ̂BC

A−B
k,l,mf

A(ri, θl, t)f
B(ri, θm, t)

]
(6.15)

fB(ri, θk, t+ τ) =
∑
l

Tk,l(τ)fB(ri, θl, t) + τ
∑
n

DB
k,nf

B(ri, θn, t)

+ τ
∑
l,m

[
ρ̂BC

B
k,l,mf

B(ri, θl, t)f
B(ri, θm, t) + ρ̂AC

A−B
k,l,mf

B(ri, θl, t)f
A(ri, θm, t)

]
(6.16)

where the new letter indices indicate that the operator includes the parameters for
species A or for species B. The convection operator only depends on the time-step
τ , thus it is the same for both. Regarding the "new" factors in front of the mutual-
collisions operator (ρ̂B for species A and ρ̂A for species B), they are a result of the
rescaling choice fA → fA/ρA and fB → fB/ρB.

6.2 Numerical results

In this final section of the thesis we want to present our numerical results obtained
from numerical simulations carried out via the SNAKE algorithm, a C++ implemen-
tation of the update rules Eqs. (6.156.15) and (6.166.16). The program takes as input the
parameters that define the model: density and noise for both species as well as
inter-species noise. To compare numerical results to analytical ones (mainly linear
stability), we have set the self-diffusion noise equal to the collision noise and σA−B
equal to the average of the two (Eqs. (3.443.44)-(3.463.46)). Our simulations were per-
formed on a rather small 10×10 lattice with spacing ε = 0.5, time step τ = 0.05 (note
τ � ε) and with a total number of angular channels Mθ = 28. The total duration of
our simulations was T ≈ 40000. A random density distribution f(ri,j , θk, t = 0) both
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over the lattice and over the angular channels was employed as initial configuration
of the system. A few snapshots of a bigger system are shown in Fig. 1616, 1919, 2020, 2121 to
better display wave patterns and the evolution of heterogeneities over time.

a)

-

6

x direction

y
di

re
ct

io
n

b) c)

Figure 16: From left to right: snapshots of a 100 × 100 grid evolving in time from a random initial
configuration towards homogeneous polar order. In a) we plot the two axes indicating the
two orthogonal directions on our lattice. The color indicates the density at each point in
space, changing from green (lowest) to white (highest). Each arrow indicates the direction
of motion at that point on the lattice: they are rescaled for better visualization.

To plot the nonequilibrium phase diagram for the system we calculate the average
momentum over the whole lattice when the system reaches its relaxed stationary
state and distinguish between polar ordered and disordered phase.
The first thing that comes to our attention is that the two plots for the phase diagram
Fig. 1717-1818 are completely identical: this means that the two species have the same
average behaviour throughout the parameter space. By "average behaviour" we mean
that even if the phase is clearly the same at the same point on the lattice, locally the
two species show differences in momentum and density. This is consistent with our
linear analysis that cannot yield anything but a single phase diagram describing the
system as a whole. Looking for example at Fig. 1717 a) we realize that, except for a few
"anomalous" ones, blue dots (HPP) are below the black transition line while orange
points (HIP) are above it, thus mostly agreeing with Fig. 1010 a).

In Fig. 1818 we displayed the phase diagram for σB = 0.5, while ρB = 0.4 as
before. Also in this case the two species share the same phase diagram, once again
confirming their entwined evolution, as our linear stability had suggested. Since we
have increased the noise of species B, we would expect the disordered state (orange)
to occupy the region above the concavity of the transition curve, as shown in Fig. 1010
d). This is what our numerical plots also reveal, except for a few blue points that
occupy the region close to the transition line. When we compare linear stability plots
to Fig. 1818 we can recognize the same kind of "anomaly" as in Fig. 1717, i.e. the system
drifts towards order too early in parameter space. With "too early" we mean that
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Figure 17: Parameters: ρB = 0.4, σB = 0.5.
Right: phase diagram for species A. Left: phase diagram for species B.
Blue: ordered region. Orange: disordered region.
It is evident that the two species share exactly the same phase diagram, confirming our
stability analysis.

for example setting the noise to a constant σA = 0.35 in Fig. 1818 and increasing the
density starting from the y axis, we encounter order before effectively crossing the
transition line. The same holds for the phase diagram of Fig. 1717 but for higher noise
and in the "reversed direction".

Trying to justify this discrepancy, we recall that although the transition disorder
⇔ order was originally thought to be continuous [5454], it was more recently pointed
out by Chaté, Gregoire et al. [1010, 2222, 2323] that in the limit of big system size the
transition seems instead to be discontinuous, with formation of heterogeneities.

The debate was further enriched by numerical simulations of mean-field theories
for the Vicsek model that were able to numerically find soliton-like waves in the
limit of high speed: these are able to change the nature of the transition from
continuous to discontinuous [2525]. The fact that the transition disorder-order may
exhibit hysteresis suggests that different initial conditions might shed more light on
the mentioned anomalies. Assuming that when the simulations are started the total
average momentum is already above the attractive region of our HIP fixed point,
this causes the system to evolve towards an HPP stationary state despite being in
the stability region of the isotropic critical point. Hysteresis may even emerge in the
transition between different possible homogeneous states: this interesting hypothesis
relates to the question we asked when deriving the hydrodynamic equations, i.e. if

58



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

n
o

is
e

 σ
A

density ρA

ORDER
DISORDER

Transition line

a)
Species A

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1
n

o
is

e
 σ

A

density ρA

ORDER
DISORDER

Transition line

b)
Species B

Figure 18: Parameters: ρB = 0.4, σB = 0.9.
Right: phase diagram for species A. Left: phase diagram for species B.
Blue: ordered region. Orange: disordered region.
The two species share exactly the same phase diagram, confirming our stability analysis.

more than one nontrivial homogeneously ordered solutions exist in our system.
In contrast to a number of previous studies on single species systems [1010, 2525, 4747],

our ordered phase only exhibits homogeneous steady states. We speculate that this
might be due to the small system sizes considered here [1010], nevertheless we expect
(and observe for larger systems) density waves and possibly cluster-lane patterns
[4747] to form in the vicinity of the binary-mixture transition line. In Fig. 1919 the system
is organizing into a stripe-structured pattern. The 64 × 64 lattice employed here
seems to be big enough for heterogeneities to build up and eventually converge into
a density wave. What usually happens is that two or more regions of high density
group together and start moving in one direction on a low-density isotropic substrate.
However, we stress the fact that there is no a priori reason why density waves should
be observed in a binary mixture if not for similarity with the single species case.

The snapshot of Fig. 2020 is taken for a system slightly above the transition line:
ρA = 0.15, σA = 1.05 and σB = 0.5. It shows how even in the situation where spatial
patterns arise, the two species share the same behaviour: the two density waves
propagate in a common direction, with equal speeds. However if we "cut" the plane
along the diagonal and plot the profile of the waves as we move from the lower left
corner to the upper right one we find two distinct shapes. This effect might be due to
our choice to implement a model with equal speeds for the two species, yet it is not
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guaranteed that this is the only reason why no de-mixing is observed. For example
phase separation was shown to occur in the case of differently shaped particles [5858]
and/or in the case of variable speed [3333]. Using the same data as for Fig. 2121 we

a) b)

Figure 19: Left to right: Two snapshots of the wave-forming process at two different times tright > tleft.
We can see that two regions of higher density (yellow) are separated by a low density region
(blue) that will become the trough of the wave. The two yellow-red regions (here the density
is the highest) shown on the left eventually become one single peak whose lateral extent is
the whole lattice diagonal.

have plotted in Fig. 2222 the density profiles of the two waves at the same time. From
this plot the front rear asymmetry [66, 2525, 4747] is clear: the density jump at the front
is much steeper than the one at the back, the difference becoming more and more
evident as we increase the density further in the ordered region (see Fig. 4 a) of Ref.
[4747]). Furthermore the density difference in the two species is reflected in the more
pronounced peak for species B (ρA = 0.15 < ρB = 0.4).

The phase diagrams in Fig. 1717 and Fig. 1818 mostly confirm our stability analysis,
except for parameters close to the transition line: as already mentioned, hysteresis
effects could explain why this inconsistency takes place. However a bigger lattice, a
higher parameter discretization (density and noise are increased by 0.1 between each
simulation) and, most importantly, implementations with different initial conditions
are needed to examine the nature of this phenomenon. Nevertheless we can firmly
state that the trend derived from linear stability is the same as found in numerical
simulations. In particular the transition line is undoubtedly the one shown in Fig 1010
for the two noise values chosen for our numerical investigations; the emergence of
a density threshold for σB = 0.9 > σcrit and the possibility, for σB = 0.5 < σcrit of
entering the disordered region by increasing the density (see Fig. 1717), both distinctive
characteristics of an active binary mixture, are confirmed. Besides validating our
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a) b)

Figure 20: Snapshot of a density wave propagating along diagonal of the lattice: on the right an example
of wave for species A and on the left one for species B. As anticipated both species move in
the same direction with the same speed. The typical front-rear asymmetry, characteristic
feature of this density waves is also present. Moreover a difference in the profile of the wave
can be seen between a) and b).

stability analysis, SNAKE has given us more insight about what kind of solutions
are to be found inside the order region: "coupled" wave-like patterns form in the
mixture at the onset of instabilities, where by "coupled" we mean that A-particles
and B-particles move in the same direction thus avoiding any de-mixing effect in
the system. We then infer that differences in macroscopic density and stochastic
noise are not sufficient to yield phase-separation between the two species. Other
studies suggest that differentiating particles by their speed and/or their shape may
instead induce separate segregation [3333, 5858]. Nevertheless the main feature of this
kind of density waves, namely the front-rear asymmetry is retained: notice that this
property depends on the overall density of the species (see Fig. 2222) and it is more
pronounced the bigger the density [3232, 4747, 4848]. No other variety of spatial patterns
(like for example the cluster lanes of Ref. [4747]) was found in our simulations: still the
region close to the onset of order deserves by itself a much deeper analysis, given the
abundance of interesting phenomena reported in particle simulations [11, 2525, 3333, 5858].
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a) b)

Figure 21: Structure of a wave propagating along the x-axis: from the coalescence of two vertically
separate high density regions a belly-shaped pattern is formed. Eventually this vertical
asymmetry disappears while the typical front-rear asymmetric wave profile is developed.

-

-

Figure 22: The density profiles for a wave of species A (blue) and of species B (green) are drawn. The
two patterns have the same direction (indicated by the two arrows) and almost fully overlap
(both species have the same speed) but not the same shape (densities are different).
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Conclusions

Diversity in active systems such as bacterial populations [44], polymer suspensions
[1818], as well as in fish schools [3333] or swarms of insects [4040] is a fundamental and
intrinsic property of many out-of-equilibrium biophysical systems.
The main purpose of the thesis was to approach the study of heterogeneous active
systems. In the spirit that characterises physical sciences, we have simplified our
problem as much as possible first looking at binary mixtures of self-propelled point-
like particles moving in a non-conservative fashion on a plane. The two species differ
from one another in density and stochastic noise. A kinetic Boltzmann approach
was employed for this study: all our work is therefore based on the hypothesis of
molecular chaos and pairwise interactions. Furthermore, our model only considers a
polar alignment rule both for intra-species and inter-species collisions.

As a first step into the world of binary self-propelled particles we devised the
equations for the two polar-fields (first Fourier mode) and for the densities. We
then applied linear stability analysis close to the homogeneous and isotropic phase
(HIP) of such equations, motivating our choice for the eigenvalue-eigenvector pair
that correctly accounts for polar alignment. This gave us a whole new picture of
what really happens when two distinct active populations are mixed together: the
non-equilibrium phase diagram shows that mixing two disordered species may in
general give rise to an ordered mixture and confirms the intuition that introducing
additional polar collisions between the two species does not suppress order.
In addition to that we pointed out the possibility of a re-entrant phase transition for
noise values close to criticality and the emergence at higher noise values of a disorder
⇒ order transition-threshold in the density. If instead the noise of the "control"
species is chosen below the critical value, an order⇒ disorder transition takes place
by increasing the density of the other. The stability of the homogeneous-polarized
phase (HPP) was also tested against plane wave perturbations: the behaviour remains
unchanged and the dispersion relation for parameters above criticality suggests that
the phase transition is dominated by a homogeneously growing order.

Motivated by the possibility of calculating a homogeneous but polarized solution
analytically from our equations, we successfully derived the set of hydrodynamic
equations for the density and polar fields for each species, adopting the procedure
described in [66]. Despite the quite unhandy coefficients for a few terms, we were
able to confirm one of the results obtained from linear stability, supported also by
successive numerical simulations: if the momentum field of species A vanishes, so
has to be for species B.

In the last part of the thesis our analytical results were numerically tested em-
ploying the SNAKE algorithm [4949], appropriately modified to handle two distinct
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species interacting with each other. The great advantage of numerical approaches,
namely to explore parameter regions for which linear stability is not conclusive or
not applicable, was exploited to investigate which kind of patterns arise at the onset
of order and deep inside the instability region of the HIP. This numerical tool helped
us in the process of understanding how our mixture behaves: possibly due to our
choice of differentiating particles according to their density or to their noise, we
always observed deeply entwined patterns. The same type of density waves as for
example in [4747] were discovered close to the transition line both for species A and B
(for a system large enough). The wave profile is different but the direction, speed
and region of existence are the same. Consequently, we end up with equal numerical
phase diagrams where no de-mixing behaviour is observed. We postulate that if
spatial properties like shape, speed or even curvature were the characterizing differ-
ences between the two populations in the mixture (instead of noise for example), we
would detect clustering, phase separation and other separate-grouping behaviour
[11, 3333, 5858].

Other recent findings in Brownian dynamics simulations e.g. in [1919], seem to
confirm the rich variety of different possible phenomena happening in heterogeneous
populations. Excited for what is still to come, we suggest that the Boltzmann approach
may give promising results also in variable-speed mixtures, in particles with different
chirality (curvature) or in systems with broken particle-shape symmetry.

In summary our work has shown that the behaviour of two different species
changes significantly when they are mixed together with an additional polar align-
ment rule. This is revealed by the non-equilibrium phase diagram of a binary mixture,
derived both analytically and numerically. In addition to disorder and homogeneous
polar order, we found density-wave patterns close to the transition line, both in
species A and in species B, but no de-mixing behaviour was observed: we suggest
that a different characterization of the two species for their intrinsic properties might
instead lead to phase separation.
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Appendices

A Fourier transform of the collision integral

The gain term of the collision integral is transformed in the following way for a polar
collision rule:

IGc,k =

∫
dθeikθ

∫ π

−π
dθ1dθ2R(θ2 − θ1)f(θ1)f(θ2)

∫ ∞
−∞

dηP (η)

× δ2π(Ψ(θ1, θ2) + η − θ)

=
1

(2π)2

∑
p,q

f̂pf̂q

∫
dθeikθ

∫
dθ1e

−ipθ1
∫
dθ2e

−iqθ2R(θ2 − θ1)

∫ ∞
−∞

dηP (η)

× δ2π((θ1 + θ2)/2 + η − θ)

=
1

(2π)2

∑
p,q

f̂pf̂q

∫
dθ1e

−ipθ1
∫
d∆e−iq(∆+θ1)R(∆)

∫ ∞
−∞

dηP (η)

×
∫
dθeikθδ2π(θ1 + ∆/2 + η − θ)

=
1

(2π)2

∑
p,q

f̂pf̂q

∫
d∆R(∆)

∫ ∞
−∞

dηP (η)

×
∫
dθ1e

−ipθ1e−iq(θ1+∆)eik(θ1+∆/2+η)

=
1

(2π)2

∫
dθ1e

i(k−q−p)θ1︸ ︷︷ ︸
=2πδk−q,p

∑
p,q

f̂pf̂q

∫
d∆R(∆)ei(k/2−q)∆

×
∫ ∞
−∞

dηP (η)eikη︸ ︷︷ ︸
=:Pk

=
1

2π

∑
q

f̂qf̂k−qPk

∫ π/2

−π/2
d∆R(∆) cos((q − k/2)∆) .
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In the case of an antipolar collision rule:

Ψ(θ1, θ2) =

(
Ψ1(θ1, θ2)
Ψ2(θ1, θ2)

)
=



(
(θ1 + θ2)/2 + π/2

(θ1 + θ2)/2− π/2

)
if π/2 < |θ2 − θ1| < π

(
θ1

θ2

)
else .

(A.1)
So that Eq. (3.283.28) for the gain term (the loss one remains the same) can be rewritten
separating the two contributions Ψ1 and Ψ2∫

dθ eikθIG,antipolarc [f ] =

∫
dθeikθ

∫ π

−π
dθ1dθ2R(θ1, θ2)f(θ1)f(θ2)

∫ ∞
−∞

dηP (η)

×
(

1

2
δ2π(Ψ1(θ1, θ2) + η − θ) +

1

2
δ2π(Ψ2(θ1, θ2) + η − θ)

)
,

(A.2)

that is similar to the polar case, except for the additional factors ±π/2 that shift the
complex exponential, resulting in

IG,antipolarc,k =
1

(2π)2

∑
p,q

f̂pf̂q

∫
d∆R(∆)

∫ ∞
−∞

dηP (η)

×
∫
dθ1e

−ipθ1e−iq(θ1+∆) 1

2
(eik(θ1+∆/2+η+π/2) + eik(θ1+∆/2+η−π/2)︸ ︷︷ ︸

=eik(θ1+∆/2+η)(2 cos(kπ/2))

=
1

2π

∑
q

f̂qf̂k−q Pk cos(kπ/2)

∫ 3/2π

π/2
d∆R(∆) cos((q − k/2)∆) .

Adding the unchanged "loss" contribution we obtain the final expression of the Fourier
transform of the collision integral for an antipolar collision rule

Iantipolarc,k =
1

2π

∑
q

f̂qf̂k−q

∫ 3/2π

π/2
d∆R(∆) (Pk cos(kπ/2) cos((q − k/2)∆)− cos(q∆))

(A.3)
or as before ∑

q

Iantipolarq,k f̂qf̂k−q (A.4)

with

Iantipolarq,k =

∫ 3/2π

π/2

d∆

2π
R(∆) (Pk cos(kπ/2) cos((q − k/2)∆)− cos(q∆)) (A.5)
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The case of nematic collisions is a combination of the two preceding rules

Ψ(θ1, θ2) =

(
Ψ1(θ1, θ2)
Ψ2(θ1, θ2)

)
=



(
(θ1 + θ2)/2

(θ1 + θ2)/2

)
if |θ2 − θ1| < π/2

(
(θ1 + θ2)/2 + π/2

(θ1 + θ2)/2− π/2

)
if π/2 < |θ2 − θ1| < π

(
θ1

θ2

)
else .

(A.6)
The coefficients Iq,k also have two contributions

Inematic
q,k =

∫ π/2

−π/2

d∆

2π
R(∆) cos((q − k/2)∆)︸ ︷︷ ︸

polar

+

∫ 3/2π

π/2

d∆

2π
R(∆) (Pk cos(kπ/2) cos((q − k/2)∆)− cos(q∆))︸ ︷︷ ︸

antipolar

(A.7)
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B Coefficients for the Hydrodynamic Equations

µA = PA0,1 − 1 + (IA−A0,1 + IA−A1,1 )ρA + IA−B1,1 ρB

γA = IA−B0,1 ρA

αA =
1

2
∇∗
(

IA−A1,2 νA

1− νAνB(IAB0,2 )2ρAρB

)

βA = −1

2
∇∗
(

IA−B0,2 (νA)3

1− νAνB(IAB0,2 )2ρAρB

)

αA−B =
1

2
∇∗
(

IA−B1,2 νA

1− νAνB(IAB0,2 )2ρAρB

)
− 1

2
∇∗
(

IA−B0,2 (νA)3ρAI
B−A
1,2

1− νAνB(IAB0,2 )2ρAρB

)

ζA = −(IA−A−1,1 + IA−A2,1 )
νAI

A−A
1,2

1− νAνB(IAB0,2 )2ρAρB
−
IA−B−1,1 I

A−B
0,2 IA−A1,2 νAνBρB

1− νAνB(IAB0,2 )2ρAρB

δA =
IA−B2,1 IA−B0,2 IB−B1,2 ρA(νA)2

1− νAνB(IAB0,2 )2ρAρB

AA =
IA−B−1,1 I

B−A
0,2 IA−B1,2 νAνBρB

1− νAνB(IAB0,2 )2ρAρB
−
IAB−1,1I

BA
0,2 I

AB
0,2 I

BA
1,2 (νA)2νBρA

1− νAνB(IAB0,2 )2ρAρB

−
(IA−A−1,1 + IA−A2,1 )IAB1,2

1− νAνB(IAB0,2 )2ρAρB
−

(IA−A−1,1 + IA−A2,1 )IBA1,2 ν
A

1− νAνB(IAB0,2 )2ρAρB

BA = −
IAB2,1 I

AB
1,2 ν

A

1− νAνB(IAB0,2 )2ρAρB
+

IAB2,1 I
AB
0,2 I

BA
1,2 (νA)2ρA

1− νAνB(IAB0,2 )2ρAρB

CA = −
IAB−1,1I

BA
0,2 I

AB
0,2 I

BB
1,2 (νA)2νBρAρB

1− νAνB(IAB0,2 )2ρAρB
+

(IA−A−1,1 + IA−A2,1 )IAB0,2 I
BB
1,2 (νA)2ρA

1− νAνB(IAB0,2 )2ρAρB

DA = −
IAB2,1 I

AA
1,2 ν

A

1− νAνB(IAB0,2 )2ρAρB
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