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Introduction

In this work I studied the basic definitions of derived algebraic geometry, starting from the generalization
of classical stacks in groupoids (which will be called, in a more modern way, 1-stacks) to simplicial stacks
to then introduce derived stacks and then study some concrete examples. The main reference has been
undoubtedly [HAGII], which is where the approach to derived algebraic geometry with model categories
comes from (studied in a much more general way). Not all the necessary background material has been
covered here, for time (and space) issues: first of all the basic theory of model categories is assumed
to be known to the reader, and only some more advanced definitions are recalled. The main references
used for model categories are [Hov99] and [Hir03]. Also, the basic theory of simplicial sets is constantly
used: a good reference is [GJ99]. Basic facts about stacks in groupoids, using pseudofunctors or fibered
categories, are also assumed to be known: the reference here is [Vis08]. Finally, scheme theory contained
in [Har77] will be used, if needed.

Here follows a more detailled abstract of this work. In Chapter 1 we recall some definitions coming
from the theory of model categories, like what are simplicial and monoidal model categories, the main
properties of the left Bousfield localization and of homotopy function complexes. These results are just
stated: although the theory of model categories is interesting, we just need to know how to manipulate
such objects (for example mapping sets, and their properties, will be heavily used in the rest of the work).

In Chapter 2, after a brief recall of some algebraic geometry definitions, we introduce simplicial
presheaves and stacks (which will be the fibrant objects of the local model structure on SPr(Aff), for the
étale topology, or, more simply, simplicial presheaves satisfying an homotopical descent condition). We
also mention the link between classical stacks in groupoids and simplicial stacks: composing the former
with the nerve functor we obtain a particular class of simplicial stacks (we just call them stacks from now
on), whose homotopy groups πn are all trivial for n ≥ 2. The descent condition with the homotopy limit,
in this case, just gives back the more well-known 2-descent condition: a more extensive explanation can
be found in [Hen11]. Finally we define, recursively, n-geometric stacks: the most intuitive way to think
about them is using quotients; for example a 1-geometric stack is obtained as a quotient of a scheme by
a smooth action of a group scheme. The whole theory of schemes is, of course, embedded into the theory
of stacks using the Yoneda lemma (indeed representable stacks are just isomorphic to affine schemes).

In Chapter 3 we take a little break to carefully study a classical example: the moduli stack of G-
bundles on a scheme X over S. The goal is to prove that, under suitable condition on X, it is an
algebraic stack with a schematic diagonal map (using classical wording), covered by open substacks of
finite presentation over S. This part is mainly a rewriting of [Wan11]. We use the classical language of
pseudofunctors and 2-categories: some definitions, like the 2-fibered product, are recalled in the beginning
of the chapter. The interest of this chapter, which can seem a bit unrelated from the rest of the work, is
its final theorem, which will be used later to apply Lurie’s representability criterion, Theorem 5.2.2. And
also, it is a good example of how complex the problem of representability can be, and how non-trivial
(and long and tedious) can be the process of finding the right open covering of a given stack.

We finally begin to dive into the derived world in Chapter 4, where we start recalling some results of
simplicial algebra, like the definition of simplicial modules and of stable simplicial modules (needed for
the cotangent complex). We generalize then some classical definitions related to modules and maps (like
flat, étale or projective) to our simplicial (homotopical) case. We finally define derived stacks: the idea
is quite similar to the definition of stacks in Chapter 2, what changes here is that simplicial presheaves
are taken on the category of dAff = sCommop, i.e. we don’t use just rings but simplicial rings. We need
to consider two successive left Bousfield localizations of SPr(dAff) (starting with the obvious projective
model structure) to get to the analogue of the local model structure (w.r.t. the simplicial version of the
étale topology), because we need to take into account the nontrivial model structure on sComm. Finally,
derived stacks are just fibrant objects in this model category, i.e. simplicial presheaves which preserve
equivalences between simplicial rings and satisfy an homotopical descent condition. Again, we define
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n-geometric derived stacks in the same way as before. The basic objects here will be affine derived
schemes, written as RSpecA using the model Yoneda lemma, Proposition 4.5.2. Obviously stacks embed
into derived stacks, since any ring is a discrete simplicial ring, and we can also restrict a derived stack
only on classical rings: truncation and extension are the functorial way to pass from stacks to derived
stacks. Finally we introduce the definition of cotangent complex (and of higher tangent spaces) of a
derived stack, which can be thought as an homotopical generalization of the cotangent sheaf for smooth
schemes, or equivalently as an homotopical corepresentative of derived derivations.

We gathered enough theory and terminology to be able to see some concrete examples of derived stack:
this is what is done in Chapter 5. We mainly consider the derived stack of local systems on a simplicial
set (or, equivalently, on a topological space) and the derived stack of vector bundles on a scheme, which
is a particular case of a mapping derived stack. They are both generalizations of well known classical
stacks: the classical part of the derived stack of vector bundles is BunGLn , studied in detail in Chapter 3.
We compute, in both cases, the cotangent complex at a point (and then globally) and finally, for the
derived stack of vector bundles, we apply Lurie’s representability criterion and prove it is 1-geometric.

Notation and conventions

For us all rings are associative, unital and commutative. We will never mention universes, and totally
ignore any related set-theoretic issue: the rigorous treating of the subject can be done, and can be found
in [HAGII].

We will often abbreviate “with respects to” as w.r.t. as well as “left lifting property” as LLP. The
category of simplicial sets sSet will be endowed with the Quillen model structure, and we will write Top
to mean the category of compactly generated weak Hausdorff spaces with its Quillen model structure (so
that sSet and Top are Quillen equivalent model categories). We will often write X ∈ C or f : X → Y ∈ C
to mean X ∈ Ob(C) or f : X → Y ∈ Mor(C). Furthermore we will equally denote the hom sets in C either
by HomC(X,Y ) or C(X,Y ). Finally, we will both use the terms trivial and acyclic (which mean the same
thing in the context of model category) as well as the words filtrant and directed (for colimits).



1 Recalls of model categories

An omnipresent topic in this work is model categories and simplicial homotopy theory. Two great refer-
ences are [GJ99] and [Hov99]. The main reference for Bousfield localization machinery is [Hir03]. We will
write in this section just some results and definitions. This means that this section is just an occasion
to spell out and write properly the essential definitions mentioned around in the literature, and fix some
background terminology.

1.1 Cellular model categories

Starting slowly, we recall the following classical definitions. Our goal is to be able to state a theorem of
existence of left Bousfield localizations, which we will implicitely use/assume in the rest of our work. Of
course we are not going to write everything from scratch, the choice of the definitions is simply given by
the state of the knowledge of the author at the writing moment.

Definition 1.1.1. LetM be a category with filtered colimits, J ⊂ Mor(M), X ∈ Ob(M). We that X
is N-small relative to J if the functor HomM(X,−) commutes with directed colimits of diagrams like

Y0 → Y1 → · · · → Yn → Yn+1 → . . .

with every map Yi → Yi+1 belonging to J .

This definition can be generalized for any regular cardinal κ, talking then about κ-small objects,
where the condition simply changes in the fact that the colimit is indexed by κ and not by N (for the
precise statement see [Hov99, Definition 2.1.3]). We then say that X ∈ Ob(M) is small if there exists a
cardinal κ such that X is κ-small relative to Mor(M).

We will now talk about I-cell complexes, which can be thought as a categorical version of the classic
topological cell complexes, to be able to then give the definition of a cellular model category. We will
follow [Hir03].

Definition 1.1.2. Let M be a cocomplete category and I ⊂ Mor(M). A morphism f : X → Y ∈
Mor(M) is a relative I-cell complex if it is a transfinite composition of pushouts of elements of I. A
presentation of f is the datum of a λ-sequence (λ being a cardinal)

X = X0 → X1 → X2 → · · · → Xβ → . . . (β < λ)

such that any map Xβ → Xβ+1 is a pushout of a diagram like∐
s∈Sβ Cs Xβ

∐
s∈Sβ Ds Xβ+1

where Sβ ∈ Set, Cs → Ds ∈ I for every s ∈ Sβ . The datum of f together with a presentation is called
a presented relative I-cell complex. If X = ∅ (initial object of M) then we talk about I-cell complexes.
The size of f is the cardinality of the set of cells of f , which is

∐
β<γ Sβ . For β < γ, the β-skeleton of f

is Xβ .
A subcomplex of f is a presented relative I-cell complex f̃ : X̃ → Ỹ with corresponding sequence being

the upper row of the diagram
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X = X̃0 X̃1 X̃2 . . .

X = X0 X1 X2 . . .

idX

with the obvious compatibility conditions (i.e. everytime we attach a subset of the cells in I, in the same
way). For details see [Hir03, Definition 10.6.2-10.6.7].

Observe that CW-complexes are exactly I-cell complexes in Top for I = {Sn ↪→ Dn+1}n (generating
cofibrations for the Quillen model structure).

Definition 1.1.3. Let M be a cocomplete category, I ⊂ Mor(M) and λ a cardinal. An object X ∈
Ob(M) is γ-compact relative to I if for every presented relative I-cell complex f : X → Y , every map
g : W → Y factors through a subcomplex of f of size at most γ. We say that X is compact relative to I
if it is γ-compact relative to I for some cardinal γ.

Remark 1.1.4. There exist different notions of compact objects, the last one is from [Hir03]. Instead,
following [Hov99], a compact object is X ∈ Ob(M) such that HomM(X,−) commutes with κ-directed
colimit, for κ a regular cardinal.

Definition 1.1.5. A morphism f : X → Y ∈ Mor(M) is an effective monomorphism if

1. it has a cokernel pair, i.e. the pushout Y
∐
X Y exists;

2. it is the equalizer of the canonical maps Y ⇒ Y
∐
X Y .

Definition 1.1.6. LetM be a model category.

1. M is left proper if weak equivalences are stable by pushouts along cofibrations.

2. M is right proper if weak equivalences are stable by pullbacks along fibrations.

3. M is proper if it is both left and right proper.

Let’s now introduce the loop and suspension functor of a pointed model category, to then define stable
model categories.

Definition 1.1.7. Let (M, ∗) be a pointed model category. The suspension functor is given by

Σ: Ho(M)→ Ho(M), X 7→ ∗
L∐
X

∗

and the loop functor is given by

Ω: Ho(M)→ Ho(M), X 7→ ∗ ×hX ∗.

They form an adjunction Σ a Ω on the homotopy category.

Definition 1.1.8. Let (M, ∗) be a pointed model category. We say thatM is a stable model category if
the suspension functor Σ: Ho(M)→ Ho(M) is an equivalence of categories.

Time for a little tour into homotopy limits and colimits in model categories. We will often use
homotopy pullbacks and homotopy pushouts, so let’s recall a practical way to compute them.

Theorem 1.1.9. LetM be a model category. Consider the following square

a c

b

f

g

If M is left proper, or a, b, c are cofibrant, then the homotopy pushout of the above square can be
computed by replacing g by a cofibration and then computing normal pushout. Consider now the square
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y

x z

f

g

If M is right proper, or x, y, z are fibrant, then the homotopy pullback of the above square can be
computed by replacing f by a fibration and then computing normal pullback.

For example Top with the Quillen model structure is proper, so we can use the classic formulas with
the cylinder and the path space.

Definition 1.1.10. Let M be a model category. We say that M is cofibrantly generated if there exist
two sets I, J of maps inM such that

1. the domains of maps in I are small relative to I-cell complexes;

2. the domains of maps in J are small relative to J-cell complexes;

3. fibrations are exactly the maps with the LLP w.r.t. J ;

4. trivial fibrations are exactly the maps with the LLP w.r.t. I.

In this case I is the set of generating cofibrations and J the set of generating trivial cofibrations.

Recall that cofibrations (resp. acyclic cofibrations) in a cofibrantly generated model categoryM are
exactly retracts of relative I-cell complexes (resp. retracts of relative J-cell complexes).

Definition 1.1.11. LetM be a model category. We say thatM is a combinatorial model category if it
is cofibrantly generated and locally presentable, i.e. every object is a filtrant colimit of Hovey-compact
objects.

Definition 1.1.12. LetM be a model category. We say thatM is cellular if it is cofibrantly generated
by I and J such that

1. the domains and the codomains of maps in I are compact relative to I;

2. the domains of maps in J are small relative to I;

3. the cofibrations are effective monomorphisms.

Basically cellular model categories are cofibrantly generated model categories in which the I-cell
complexes are well behaved, in a certain sense. For a more thourough treatment of cellular model
categories we refer to [Hir03, Chapter 12].

1.2 Simplicial model categories

Here follows a bunch of technical definitions, relating enriched and monoidal categories to their model
structures (and hence bringing a ton of compatibility requirements between the different structures). We
will follow [Hov99, Chapter 4]. Let’s first recall the classic definitions of adjunction of two variables and
closed monoidal categories.

Definition 1.2.1. LetM,D and E be categories. An adjunction of two variables fromM×D to E is a
quintuple (⊗,Homr,Homl, ϕr, ϕl) where

⊗ : M×D → E , Homr : Dop × E →M, Homl : Mop × E → D,

M(C,Homr(D,E))
ϕ−1
r−→ E(C ⊗D,E)

ϕl−→ D(D,Homl(C,E))

where ϕl and ϕr are natural isomorphisms.

Definition 1.2.2. A closed monoidal structure on a categoryM is an octuple

(⊗, a, l, r,Homr,Homl, ϕr, ϕl)

where (⊗, a, l, r) is a monoidal structure onM (with associator, left and right unitor) and

(⊗,Homr,Homl, ϕr, ϕl) : M×M→M

is an adjunction of two variables. We callM a closed monoidal category.
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Let’s now get back into the model world and try to generalize the previous definitions.

Definition 1.2.3. LetM,D and E be model categories. An adjunction of two variables

(⊗,Homr,Homl, ϕr, ϕl) : M×D → E

is called a Quillen adjunction of two variables if, given a cofibration f : U → V inM and a cofibration
g : W → X in D, the pushout-product

f � g : P (f, g) := (V ⊗W )
∐
U⊗W

(U ⊗X)→ V ⊗X

is a cofibration in E which is trivial if either f or g is. We will say, with an abuse of notation, that ⊗ is
a Quillen bifunctor, meaning that it is part of a Quillen adjunction in two variables (⊗,Homr,Homl).

As expected, the total derived functors (⊗L,RHomr,RHoml,Rϕr,Rϕl) define an adjunction of two
variables Ho(M)×Ho(D)→ Ho(E). Here it is a classic lemma about Quillen adjunctions in two variables.

Lemma 1.2.4. Let M,D and E be model categories and let ⊗ : M×D → E be an adjunction of two
variables. Then the following are equivalent:

1. ⊗ is a Quillen bifunctor.

2. Given a cofibration g : W → X in D and a fibration p : Y → Z in E , the induced map

Homr,�(g, p) : Homr(X,Y )→ Homr(X,Z)×Homr(W,Z) Homr(W,Y )

is a fibration inM, trivial if either g or p is so.

3. Given a cofibration f : U → V inM and a fibration p : Y → Z in E , the induced map

Homl,�(f, g) : Homl(V, Y )→ Homl(V,Z)×Homl(U,Z) Homl(U, Y )

is a fibration in D, trivial if f or p is so.

Proof. See [Hov99, Lemma 4.2.2]. �

The following remark sheds some light on the terminology “Quillen bifunctor”.

Remark 1.2.5. Let⊗ : M×D → E be a Quillen bifunctor. If C ∈ Ob(M) is cofibrant then C⊗− : D → E
is a left Quillen functor, with right adjoint Homl(C,−). If E ∈ E is fibrant, the functor Homr(−, E) : D →
Mop is left Quillen, with right adjoint Homl(−, E) : Mop → D.

We have enough tools to define the model version of monoidal category.

Definition 1.2.6. LetM be a model category. It is a monoidal model category if it is a closed category
with a monoidal structure satisfying the following conditions.

1. The monoidal structure ⊗ : M×M→M is a Quillen bifunctor.

2. Let q : QS → S be the cofibrant replacement for the unit S, obtained by using MC5 axiom on
the map ∅ → S. Then the natural map q ⊗ idX : QS ⊗ X → S ⊗ X is a weak equivalence if X
is cofibrant. Similarly, the natural map idX ⊗ q : X ⊗ QS → X ⊗ S is a weak equivalence if X is
cofibrant.

An example of a (symmetric) monoidal model category is sSet with the cartesian product ×. The
adjoint is the internal hom Hom. Another example is Ch(R) with the tensor product of complexes.
Let’s recall that if M is a monoidal category, an M-module D is a category endowed with a functor
µ : M×D → D satisfying the classic module axioms, for example the following diagram must commute

M×D D

(M×M)×D 'M× (M×D) M×D

µ

⊗×idD

idM×µ

µ
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Definition 1.2.7. LetM be a monoidal model category. AnM-model category is anM-module D with
a model structure, making it a model category, such that

1. the action map µ : M×D → D is a Quillen bifunctor;

2. if q : QS → S is the cofibrant replacement for S (unit) inM, then the map idX ⊗ q : X⊗QS → X⊗S
is a weak equivalence for all cofibrant objects X.

The second condition is automatic if S is cofibrant inM.

Definition 1.2.8. Let M be a model category. It is a simplicial model category if it is an sSet-model
category.

In practice this means that we have a left adjoint ⊗ : sSet×M→M with a right adjoint exponential
map, satisfying the Quillen assumptions. For a more detailled treatment we send the interested reader
to [Hov99, p. 4.2].

1.3 Homotopy function complexes

Here we briefly define the homotopy function complexes on a model categoryM. Our main reference is
[Hir03, Chapter 15-17].

1.3.1 Reedy diagrams
First of all let’s recall the main definitions and results on Reedy diagram categories.

Definition 1.3.1. A category R is a Reedy category if it is small and it has two subcategories
→
R and

←
R,

both containing all Ob(R), and a degree function δ : Ob(R)→ N satisfying

1. every non-identity map in
→
R raises degree (called direct maps);

2. every non-identity map in
←
R lowers degree (called inverse maps);

3. every morphism g ∈ Mor(R) admits a unique factorization g =
→
g ◦

←
g where

→
g∈
→
R and

←
g∈
←
R.

Observe that if R is Reedy than Rop is also Reedy, with the same degree, putting
→
Rop= (

←
R)op and

similar.

Example 1. The category ∆ is Reedy, where the degree of [n] is n, direct maps are injections and inverse
maps are surjections.

Definition 1.3.2. Let R be a Reedy category and α ∈ Ob(R).

1. The latching category ∂(
→
R↓ α) of R at α is the full subcategory of the comma category (

→
R↓ α)

containing all objects but idα.

2. The matching category ∂(α ↓
←
R) of R at α is the full subcategory of the comma category (α ↓

←
R)

containing all objects but idα.

Definition 1.3.3. LetM be a model category, R be a Reedy category and consider the diagram category
MR. Let α ∈ Ob(R) and X ∈ MR (we use the notation X also to mean the induced ∂(

→
R↓ α)-diagram

defined by X(β→α) = Xβ and similar).

1. The latching object of X at α is LαX = lim−→∂(
→
R↓α)

X and the latching map of X at α is the natural
map LαX→ Xα.

2. The matching object of X at α is MαX = lim←−∂(α↓
←
R)

X and the matching map of X at α is the
natural map Xα →MαX.

The latching and matching object constructions are clearly functorial, i.e. if ϕ : X→ Y is a morphism
inMR, then, for every α ∈ R we have a commutative diagram (natural in α)
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LαX Xα MαX

LαY Yα MαY

Lαϕ ϕα Mαϕ

Definition 1.3.4. Let R be a Reedy category,M a model category, X,Y ∈MR and ϕ : X→ Y.

1. If α ∈ Ob(R), the relative latching map of ϕ at α is the map Xα

∐
LαX

LαY → Yα.

2. If α ∈ Ob(R), the relative matching map of ϕ at α is the map Xα → Yα ×MαY MαX.

We have finally enough words to describe the Reedy model structure of the diagram categoryMR.

Definition 1.3.5. Let R be a Reedy category,M a model category and X,Y ∈MR.

1. A map f : X→ Y is a Reedy weak equivalence if it is pointwise a weak equivalence ofM.

2. A map f : X→ Y is a Reedy cofibration if, for every α ∈ Ob(R), the relative latching map

Xα

∐
LαX

LαY → Yα

is a cofibration inM.

3. A map f : X→ Y is a Reedy fibration if, for every α ∈ Ob(R), the relative matching map

Xα → Yα ×MαY MαX

is a fibration inM.

Here’s our final theorem about the existence of the Reedy model structure.

Theorem 1.3.6. Let R be a Reedy category andM be a model category.

1. The categoryMR with Reedy weak equivalences, Reedy cofibrations and Reed fibrations is a model
category.

2. IfM is a left/right proper model category, then alsoMR is so.

Proof. See [Hir03, Theorem 15.3.4]. �

Under certain assumptions (cofibrant/fibrant constants) on MR, we can compute homotopy limits
and colimits (right and left Quillen adjoint of the constant diagram functor). For more details see
[Hir03, p. 15.10]. Our main interest and application of Reedy model structures will be for simplicial and
cosimplicial diagrams of a model category.

Let’s now introduce simplicial and cosimplicial resolutions.

Definition 1.3.7. Let X ∈ Ob(M) and let cc∗X ∈ M∆ be the corresponding constant cosimplicial
object and cs∗X ∈M∆op

the corresponding constant simplicial object.

• A cosimplicial resolution of X is a cofibrant approximation X̃→ cc∗X in the Reedy model category
M∆. A fibrant cosimplicial resolution is a cosimplicial resolution in which the weak equivalence
X̃→ cc∗X is a Reedy trivial fibration.

• A simplicial resolution of X is a fibrant approximation cs∗X → X̂ in the Reedy model category
M∆op

. A cofibrant simplicial resolution is a simplicial resolution in which the weak equivalence
cs∗X → X̂ is a Reedy trivial cofibration.

Example 2. In the category Top a cosimplicial resolution of X is given by {X × |∆n|}n, with faces and
degeneracies induced by the ones of the cosimplicial space [n] 7→ |∆n|.

We can give definitions of functorial simplicial/cosimplicial resolutions, maps between them and then
prove that they are all Reedy weak equivalences. In particular, in the same spirit of the “Comparison
theorem” of homological algebra, one can prove that fibrant cosimplicial resolutions are the final cosim-
plicial resolutions (there exists a unique, up to homotopy, weak equivalence). We have a similar (initial
instead of final) result for cofibrant simplicial resolutions.
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Proposition 1.3.8. LetM be a model category, X ∈ Ob(M) and X̃→ cc∗X a cosimplicial resolution.
Then X̃0 → X is a cofibrant approximation and

X̃0
∐

X̃0 X̃1 X̃0d0 ∐
d1

s0

is a cylinder object for X̃0. Analogue for simplicial resolution and path objects.

Proof. See [Hir03, Prop 16.1.6]. �

Finally we can talk about homotopy function complexes, which are a way to associate a simplicial
space of morphisms between two objects of any model category such that the set of connected components
is isomorphic to the set of maps, in the homotopy category, between these two objects. If we work in a
simplicial model category then this new space, between a cofibrant and a fibrant object, will be the same
as the simplicial space of morphisms coming from the sSet-enrichment.

Definition 1.3.9. LetM be a model category, X,Y ∈ Ob(M).

1. A left homotopy function complex from X to Y is a triple(
X̃, Ŷ ,M(X̃, Ŷ )

)
where

• X̃ is a cosimplicial resolution of X,

• Ŷ is a fibrant approximation of Y ,

• M(X̃, Ŷ ) is the simplicial set obtained by applying componentwise the contravariant functor
M(−, Ŷ ) = HomM(−, Ŷ ) to the cosimplicial diagram X̃.

2. A right homotopy function complex from X to Y is a triple(
X̃, Ŷ,M(X̃, Ŷ)

)
where

• X̃ is a cofibrant approximation of X;

• Ŷ is a simplicial resolution of Y ;

• M(X̃, Ŷ) is the simplicial set obtained by applying componentwise the covariant functor
M(X̃,−) = HomM(X̃,−) to the simplicial diagram Ŷ.

3. A two-sided homotopy function complex from X to Y is a triple(
X̃, Ŷ,diagM(X̃, Ŷ)

)
where

• X̃ is a cosimplicial resolution of X;

• Ŷ is a simplicial resolution of Y ;

• diagM(X̃, Ŷ) is the diagonal of the bisimplicial set ([n], [k]) 7→ M(X̃n, Ŷk).

Maps of left/right/two-sided homotopy function complexes are defined in the obvious way. We will
talk about homotopy function complex between X and Y to mean one of the three complexes defined in
Definition 1.3.9. Choosing a simplicial/cosimplicial resolution functor (e.g. Γ: M→M∆ with a natural
transformation Γ→ cc∗ etc) we can then talk about functorial homotopy function complexes.

Proposition 1.3.10. Let M be a model category and X,Y ∈ Ob(M). Then each left/right/two-
sided homotopy function complex from X to Y is a fibrant simplicial set. Moreover, any change of
left/right/two-sided homotopy function complex is a weak equivalence of fibrant simplicial sets.

Proof. See [Hir03, Proposition 17.1.3, 17.1.6, 17.2.3, 17.2.6, 17.3.2, 17.3.4]. �
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Finally we want to prove that all homotopy function complexes from X to Y are weakly equivalent.
For example, starting from a two-sided homotopy function complex(

X̃, Ŷ,diagM(X̃, Ŷ)
)

we consider X̃0 → X, which is a cofibrant approximation by Proposition 1.3.8. Then(
X̃0, Ŷ,M(X̃0, Ŷ)

)
is a right homotopy function complex, and the canonical map X̃→ cc∗X̃

0 induces a morphism

diagM(X̃, Ŷ)→M(X̃0, Ŷ).

Using this reasoning, and other analogue versions to build maps between the different homotopy function
complexes, one can prove the following theorem.

Theorem 1.3.11. LetM be a model category and X,Y ∈ Ob(M). Then any two homotopy function
complexes from X to Y are weakly equivalent Kan complexes.

Proof. See [Hir03, Theorem 17.1.11, 17.2.11, 17.3.9, 17.4.6]. �

By Theorem 1.3.11 we can give the following final definition.

Definition 1.3.12. LetM be a model category and X,Y ∈ Ob(M). We will denote by MapM(X,Y ) ∈
sSet an homotopy function complex from X to Y . This makes sense since we are only interested in its
homotopical properties, and all homotopy function complexes are weakly equivalent Kan complexes. We
will call it, sometimes, the mapping space from X to Y .

Theorem 1.3.13. LetM be a model category, X,Y ∈ Ob(M) and consider MapM(X,Y ) an homotopy
function complex. Then π0(MapM(X,Y )) is naturally isomorphic to HomHo(M)(X,Y ).

Proof. See [Hir03, Theorem 17.7.2]. �

Let’s also state a recognition result.

Theorem 1.3.14. LetM be a model category and g : X → Y ∈ Mor(M). The following statements are
equivalent:

1. g is a weak equivalence inM;

2. for everyW ∈ Ob(M) the map g induces a weak equivalence of simplicial sets g∗ : MapM(W,X)→
MapM(W,Y );

3. for every Z ∈ Ob(M) the map g induces a weak equivalence of simplicial sets g∗ : MapM(Y,Z)→
MapM(X,Z).

Proof. See [Vez13, Theorem 1.7.16]. �

Let’s now state a more concrete computational version of this result, valid in the context of simplicial
model categories.

Lemma 1.3.15. IfM is a simplicial model category, then for each cofibrant object X, {X ⊗∆n}n is a
cosimplicial resolution of X.

Using this we can then say that:

1. in sSet the mapping space MapsSet(X ,Y) is just Hom(X̃ , Ŷ), where X̃ is a cofibrant approximation
of X , Ŷ is a fibrant approximation of Y and Hom is the classic sSet-enrichment of sSet;

2. in Ch(R) we have a natural simplicial structure: the n-simplices of Hom(E,F ) are the chain maps
of degree n, or equivalently the set HomCh(R)(E,F [−n]). This implies that πi(MapCh(R)(E,F )) '
π0(MapCh(R)(E,F [−i])) ' HomD(R)(E,F [−i]) using Theorem 1.3.13.

We also have a result about the relation between the mapping complex and Quillen adjunctions.
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Theorem 1.3.16. Let M and N be small model categories and let F : M −⇀↽− N :U be a Quillen
adjunction, let X ∈M be cofibrant and Y ∈ N be fibrant.

1. If X̃ is a cosimplicial resolution of X then F X̃ is a cosimplicial resolution of FX, and the adjunction
induces a natural isomorphism N (F X̃, Y ) 'M(X̃, UY ).

2. If Ŷ is a simplicial resolution of Y , then UŶ is a simplicial resolution of UY and the adjunction
induces a natural isomorphism N (FX, Ŷ) 'M(X,UŶ).

3. If X̃ is a cosimplicial resolution of X and Ŷ is a simplicial resolution of Y , then the adjunction
induces a natural isomorphism diagN (F X̃, Ŷ) ' diagM(X̃, UŶ).

Proof. See [Hir03, Proposition 17.4.16]. �

This implies that a Quillen adjunction induces the isomorphisms we expect also between mapping
complexes, in Ho(sSet). From now on we will use the derived adjunction inside the mapping complexes
to denote an appropriate representative.

Finally let’s state a theorem relating homotopy function complexes with homotopy limits and colimits.

Theorem 1.3.17. Let M be a framed model category (i.e. fix a simplicial and cosimplicial resolution
functor) and let I be a small indexing category.

1. If X is an objectwise cofibrant diagram inMI and Y is fibrant inM, then

MapM(HocolimX, Y ) ' Holimi MapM(Xi, Y )

in Ho(sSet).

2. If X is cofibrant inM and Y is an objectwise fibrant diagram inMI , then

MapM(X,HolimY) ' Holimi MapM(X,Yi)

in Ho(sSet).

Proof. See [Hir03, Theorem 19.4.4]. �

1.4 Bousfield localization

Here we will briefly define the left Bousfield localization of a model category, and state an existence
theorem. For time (and space) issues we again won’t give a full treatment of the subject: already spelling
out all precise definitions is too much, and we will just be happy with an intuition. For a more precise
and general treatment of the subject see [Hir03, Chapter 3-4].

Definition 1.4.1. LetM be a model category and C a class of maps inM.

1. An object W ∈ Ob(M) is C-local if it is fibrant and for every f : A → B ∈ C, the induced map of
homotopy function complexes

f∗ : Map(B,W )→ Map(A,W )

is a weak equivalence of simplicial sets. If C is a single map f we say f -local and if C is just the
map A→ ∗ then we say A-local.

2. A map g : X → Y inM is a C-local equivalence if for every C-local object W , the induced map

g∗ : Map(Y,W )→ Map(X,W )

is a weak equivalence of simplicial sets.

Proposition 1.4.2. IfM is a model category and C a class of maps inM, then any weak equivalence
ofM is a C-local equivalence.

Proof. See [Hir03, Proposition 3.1.5]. �
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Theorem 1.4.3. LetM and N be model categories and let F : M−⇀↽− N :U be a Quillen adjunction.Let
C be a class of maps inM. Then the following are equivalent.

(a) The total left derived functor LF : Ho(M)→ Ho(N ) satisfies LF (C) ⊂ Iso(Ho(N )).

(b) The functor F takes cofibrant approximations of elements of C into weak equivalences in N .

(c) The functor U takes fibrant objects of N into C-local objects ofM.

(d) The functor F takes C-local equivalences between cofibrant objects into weak equivalences in N .

Proof. See [Hir03, Theorem 3.1.6]. �

We are finally ready to define left Bousfield localizations.

Definition 1.4.4. LetM be a model category and C a class of maps inM. The left Bousfield localization
ofM with respect to C, if it exists, is a model category structure LCM on the underlying category ofM
such that

(a) the class of weak equivalences of LCM is the class of C-local equivalences ofM;

(b) the class of cofibrations of LCM is the class of cofibrations ofM;

(c) fibrations are defined by lifting properties.

Remark 1.4.5. As already written in Definition 1.4.4, the left Bousfield localization ofM with respect
to C might not exist. We will come back to the problem of existence later.

Let’s immediately note some properties of the left Bousfield localization.

Proposition 1.4.6. Let M be a model category and C a class of maps in M. Let LCM be the left
Bousfield localization ofM w.r.t. C (assume it exists). Then

(a) every weak equivalence ofM is a weak equivalence of LCM;

(b) the trivial fibrations of LCM are exactly the trivial fibrations ofM;

(c) every fibration of LCM is also a fibration ofM.

Moreover, the identity functors
idM : M−⇀↽− LCM : idM

are a Quillen adjunction.

Proof. See [Hir03, Proposition 3.3.3]. �

We also have a universal property, coming from the fact that the Bousfield localization is indeed a
certain kind of localization.

Proposition 1.4.7. Let M be a model category and C a class of maps in M. Let LCM be the left
Bousfield localization ofM w.r.t. C (assume it exists). Then the identity functor j : M→ LCM is a left
localization ofM with respect to C. This means the following things:

1. j is a left Quillen functor;

2. the total left derived functor Lj : Ho(M) → Ho(LCM) takes the (images of) elements of C in
Ho(M) into isomorphisms in Ho(LCM).

3. j is initial among such functors, i.e. if ϕ : M → N is a left Quillen functor such that Lϕ(C) ⊂
Iso(Ho(N )), then there exists a unique left Quillen functor δ : LCM→N such that ϕ = δ ◦ j.

Proof. See [Hir03, Theorem 3.3.19]. �

The key technical result is the following theorem. While all the previous results were completely sym-
metric, i.e. admitting complete dual formulations for right Bousfield localizations, the following theorem
is not symmetric and it only holds for the left case. This is due to the requested properties, like being
cofibrantly generated, not being self-dual.
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Theorem 1.4.8. LetM be a left proper cellular model category and let S be a set of maps inM.

1. The left Bousfield localization LSM exists.

2. The fibrant objects of LSM are the S-local objects ofM.

3. LSM is a left proper cellular model category.

4. IfM is a simplicial model category, then LSM is also a simplicial model category.

Proof. See [Hir03, Theorem 4.1.1]. �



2 Stacks

2.1 Recalls of algebraic geometry

In this work we will use, when needed, classical algebraic geometry, where classical means [Har77]. Let’s
just recall some definitions to warm up.

Definition 2.1.1. Let f : SpecA → SpecB a morphism in Aff, the category of affine schemes, corre-
sponding to a map of rings B → A.

• The map f is smooth if it is flat, of finite presentation and B is a B ⊗A B-module (by the mul-
tiplication map) of finite Tor dimension. This last condition is equivalent as asking Ω1

B/A to be a
projective (= locally free) B-module.

• The map f is étale if it is smooth and, in particular, B is a flat B⊗AB-module. This last condition
is equivalent as asking Ω1

B/A = 0, the B-module of Kähler differentials.

Clearly étale implies smooth (precisely étale means smooth with relative dimension 0). One intuitive
way to think is to see smooth maps as the analogue of submersions in differential geometry, and étale
maps as the analogue of local diffeomorphisms (inducing isomorphisms on tangent spaces and hence local
diffeomorphisms).

Of course these definitions are stable by composition and base change. For a more detailed exposition
see [Har77, Chapther III, 10].

We will assume to be known the notion of Grothendieck topology and the general notion of sheaf
on a site, for which our main reference will be [Vis08]. We will sometimes use pretopologies (i.e. set
of arrows {Ui → U} covering U) and sometimes sieves (i.e. subfunctors of hU ), recalling that there is
a canonical way to pass from one to the other (we have a one-to-one correspondence considering only
saturated pretopologies). Let’s now recall the definitions of fppf, fpqc and étale topology.

Definition 2.1.2. Let f : X → Y a faithfully flat morphism of schemes. If Y can be covered by open
affine subschemes {Vi} such that each Vi is the image of a quasi-compact open subset of X, then we say
that the map f is fpqc.

See [Vis08, Proposition 2.33] for some equivalent characterizations.

Definition 2.1.3. Let’s work in the category of affine schemes Aff (or also in the whole Sch).

• An étale covering {Ui → U}i is a jointly surjective collection of étale maps locally of finite presen-
tation.

• An fppf covering {Ui → U}i is a jointly surjective collection of flat maps locally of finite presenta-
tion.

• An fpqc covering {Ui → U}i is a collection of morphisms such that
∐
i Ui → U is fpqc (see

Definition 2.1.2).

Observe that the fpqc topology is finer than the fppf topology, which is finer than the étale topology,
which is in turn finer than the Zariski topology. A lot of properties of morphisms are local on the
codomain in the fpqc topology, see [Vis08, Proposition 2.36].
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2.2 Higher stacks

Let’s consider the category of affine schemes Aff = Commop (in the following we will always use this
equivalence implicitely) endowed with the étale Grothendieck topology, generated by coverings of SpecA
of the type {SpecAi → SpecA}i such that any SpecAi → SpecA is an étale map and the family of
functors {−⊗Ai : A−Mod→ Ai−Mod} is conservative (this is an equivalent version of Definition 2.1.3).
In an analogue way we consider the site Aff/X for a given X affine scheme. We will assume to be based
on k ∈ Comm (i.e. we implicitely consider the comma site Aff/ Spec k) but, for readability, we will drop
the comma notation.
We can then talk about sheaves on Aff and we’ll focus on simplicial presheaves SPr(Aff) ' sSetAff

op

,
which we endow with the projective model structure (called global model structure). This means that
weak equivalences and fibrations are defined pointwise. One can prove this defines a cofibrantly generated
model structure, proper and cellular.
We will now use the étale topology on Aff ' Ho(Aff) (using trivial model structure) to define a local
model structure, obtained as a left Bousfield localization of the global structure. Given a presheaf
F : Affop → sSet we can consider a presheaf of sets Aff 3 X 7→ π0(F (X)), which we sheafify to get π0(F ).
Similarly, for X ∈ Aff and s ∈ F (X)0, we define πj(F, s) to be the sheafification of the presheaf of groups

(Aff/X)op 3 (f : Y → X) 7→ πj(F (Y ), f∗(s)).

Definition 2.2.1. Using the same notation as above, the sheaves π0(F ) and πi(F, s) are called the
homotopy sheaves of F .

Observe that they are clearly functorial in F . To compute homotopy groups we can either choose a
fibrant replacement in sSet and apply the classical combinatorial definition, or just consider the topological
homotopy group of the geometric realization.

Definition 2.2.2 (Local model structure). Let f : F → F ′ be a map in SPr(Aff).

1. The map f is a local equivalence if π0(f) is an isomorphism of sheaves, as well as any πj(F, s) →
πj(F

′, f(s)), for all X ∈ Aff and s ∈ F (X)0.

2. The map f is a local cofibration if it is a global cofibration.

Local fibrations are defined by lifting properties. This structure is called the local model structure on
SPr(Aff) (it can be proved it actually defines a model structure, see [Bla01]), and we will use it from
now on.

We can give a characterization of fibrant objects in SPr(Aff), thanks to a general theorem of [DHI03].
We will need a general definition.

Definition 2.2.3 (Hypercovering). Given X ∈ Aff, the data of a morphism H → X in SPr(Aff) (im-
plicitely using Yoneda embedding on X) is called an (étale) hypercovering if it satisfies:

1. for any integer n, the presheaf of sets Hn is a disjoint union of representable presheaves

Hn '
∐
i

Hn,i

for Hn,i ∈ Aff (Yoneda);

2. for any n ≥ 0 the morphism of presheaves of sets

Hn ' H∆n

' Hom(∆n, H)→ Hom(∂∆n, H)×Hom(∂∆n,X) Hom(∆n, X)

induces an epimorphism on associated sheaves.

Here ∆n and ∂∆n are considered as constant simplicial presheaves, while Hom is the presheaf of mor-
phisms, valued in sets, between simplicial presheaves.

Example 3. Let {Ui → X}i∈I be an étale covering in Aff. Then the Čech nerve H ∈ SPr(Aff) of this
covering (more classicaly denoted by the Čech nerve of U =

∐
i Ui), given by

Hn =
∐

(i0,i1,...,in)∈In+1

Ui0 ×X Ui1 ×X · · · ×X Uin

with face maps given by projections and degeneracies given by diagonal (implicitely using Yoneda as
always), is a basic example of hypercovering.
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We can restate the second condition of hypercoverings just by saying that given Y ∈ Aff and a
commutative square

∂∆n H(Y )

∆n X(Y ) = constHom(X,Y )

in sSet, then there exists a covering sieve u ⊂ hY such that for any f : U → Y in u(U), there exists a
dashed lift

∂∆n H(U)

∆n X(U) = constHom(X,U)

making the diagram commutative. This is indeed a local lifting property, analogue to the lifting property
characterizing acyclic fibrations in simplicial sets. Let’s finally observe that, since X is a 0-truncated
simplicial presheaf (i.e. all homotopy sheaves πi are zero for i ≥ 1), the restriction X∆n → X∂∆n

is
actually an isomorphism for n > 1, so that the second condition becomes only dependent on H for n > 1
(requiring Hn → H∂∆n

to be an iso).
Given an hypercovering we define an augmented cosimplicial diagram in sSet

F (X)→ ([n] 7→ F (Hn))

where F (Hn) =
∏
i F (Hn,i).

Theorem 2.2.4. A simplicial presheaf F over Aff is fibrant if and only if

1. for any X ∈ Aff, F (X) is fibrant;

2. for any H → X hypercovering, the natural map

F (X)→ Holim[n]∈∆ F (Hn)

is an equivalence in sSet.

Proof. See [DHI03]. �

If F is a discrete presheaf, i.e. a presheaf of sets, then the second condition boils down to the usual
descent condition.

Definition 2.2.5. An F ∈ SPr(Aff) is called a stack if it satisfies the descent condition of Theorem 2.2.4.
The homotopy category Ho(SPr(Aff)) is called the category of stacks and its morphisms are denoted by
[F, F ′].

Remark 2.2.6. Although for F a presheaf of sets, the stack condition is equivalent to the set-theoretic
sheaf condition, for a general simplicial presheaf F being a sheaf of simplicial sets and being a stacks are
two different concepts: indeed the homotopy limit can be different from the standard limit, and we have a
more “relaxed” condition. Moreover, one can prove that if F is groupoid-valued (as in the classic theory of
1-stacks), then the homotopy limit boils down to the classic 2-Ker condition, see [Hen11]. More precisely,
to pass from groupoid-valued stacks to simplicial stacks one just composes with the nerve functor (and
obtains a 1-truncated simplicial presheaf).

Let’s observe that stacks are really a generalization of sheaves, by the full embedding

Sh(Aff)→ Ho(SPr(Aff))

considering any sheaf as a constant simplicial presheaf. This functor has a left adjoint F 7→ π0(F ).

Remark 2.2.7. To define stacks we work on the category of affine schemes Aff, and not on the category
Sch of general schemes, which is more usual in the classic context of stacks in groupoids. This doesn’t
affect at all the degree of generality of the theory: covering any scheme by affine opens we can reduce
ourselves to only look at affine schemes, and we can obtain a “bigger” stack on Sch using the descent
condition. This will remain valid also in the next chapters, where we will generalize this construction to
the simplicial world.
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2.2.1 Structure of SPr(Aff)

It will be useful to know a little better the category SPr(Aff), in particular its canonical sSet-enrichment.
The following reasoning will hold in great generality for the category of simplicial objects of any cocom-
plete category C.

Definition 2.2.8. Let K ∈ sSet and F ∈ sC, and define F ⊗K by

(F ⊗K)n :=
∐
k∈Kn

Fn ∈ C.

Given φ : [n]→ [m] ∈ ∆ we define a map φ∗ : (F ⊗K)m → (F ⊗K)n by∐
k∈Km Fm

∐
k∈Km Fn

∐
k∈Kn Fn

∐
φ∗

where the first map is induced by φ∗ : Fm → Fn and the second by φ∗ : Km → Kn.

Theorem 2.2.9. Suppose that C is bicomplete (for example any category of presheaves of sets). Then
with this bifunctor −⊗− : sC × sSet→ sC, the category sC becomes a simplicial category with

HomsC(A,B)n = HomsC(A⊗∆n, B).

Proof. See [GJ99, Chapter II, Theorem 2.5]. �

Let’s now state a version of Yoneda lemma valid for general simplicial presheaves SPr(C). Let’s
observe beforehand that the action of sSet on the simplicial category SPr(C) (using Theorem 2.2.9) is
given by

F ⊗K : [n] 7→
∐
Kn

Fn  F ⊗K ' F ×K

where F ∈ SPr(C), K ∈ sSet and in the last passage K is considered as a constant presheaf.

Lemma 2.2.10. Let C be a category and F ∈ SPr(C) be a simplicial presheaf. For any X ∈ Ob(C)
there is a natural isomorphism

HomSPr(C)(hX , F ) ' F (X)

of simplicial sets, where hX = const HomC(−, X) is the Yoneda discrete simplicial presheaf.

Proof. See [Vez13, Theorem 5.3.6]. �

Let’s now deduce a useful corollary for the case of SPr(Aff), endowed with the local model structure.
It obviously can be generalized, being careful with fibrant and cofibrant objects.

Corollary 2.2.10.1. Let F ∈ SPr(Aff) be a fibrant simplicial presheaf (hence a stack, according to our
previous definition). For any X ∈ Ob(Aff) there is a natural isomorphism

π0(HomSPr(Aff)(hX , F )) ' HomHo(SPr(Aff))(hX , F ) ' π0(F (X))

of sets.

Definition 2.2.11. Let F −→ H ←− G be a diagram of stacks in Ho(SPr(Aff)). We will denote by
F ×hH G the homotopy fiber product of some lift of such diagram in SPr(Aff) (this construction is thus
not functorial in Ho(SPr(Aff))).

2.3 Geometric stacks

Here we will give a new definition of schemes, and then of geometric n-stacks, that need to be thought
as quotients of schemes. More precisely the basic idea is the following: we consider a representable stack
X and a groupoid object X1 (which is itself a representable stack) acting smoothly on X, and then we
consider the quotient. Sometimes X1 needs not to be representable, but it can be itself a quotient of a
representable stack, and this is the main motivation behind the recursive definition of geometric n-stacks
(where we assume X1 to be (n−1)-geometric). A more extensive explanation, although in a more general
context, can be found at [HAGII, p. 1.3.3].
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Recall that any affine scheme SpecA can be identified, through the Yoneda map, to the presheaf

SpecB 7→ Hom(SpecB, SpecA) = Hom(A,B)

which is actually a sheaf for the étale topology (faithfully flat descent, see [Vis08, Theorem 2.55]), and
hence it can be considered as a constant simplicial stack in Ho(SPr(Aff)). The Yoneda embedding

h : Aff→ Ho(SPr(Aff))

is fully faithful.

Definition 2.3.1. Any stack isomorphic, in the homotopy category Ho(SPr(Aff)), to one SpecA (using
Yoneda embedding) is called an affine scheme, or a representable stack.

We can now define schemes.

Definition 2.3.2.

1. A morphism F → SpecA is a Zariski open immersion if F is a sheaf (i.e. 0-truncated), i is a
monomorphism of sheaves and there exists a family of classical Zariski open immersions {SpecAi →
SpecA}i such that the map ∐

i

SpecAi → SpecA

factors through an epimorphism of sheaves to F .

2. A morphism F → F ′ is a Zariski open immersion if it is locally so, i.e. for any affine scheme SpecA
and any map SpecA→ F ′, the induced map

F ×hF ′ SpecA→ SpecA

is a Zariski open immersion as in the previous point.

3. A stack F is a scheme if there exists a family of affine schemes {SpecAi}i with open immersions
SpecAi → F such that the induced morphism of sheaves∐

i

SpecAi → F

is an epimorphism. Such a family is called a Zariski atlas for F .

4. A morphism of schemes F → F ′ is called smooth if it is “locally smooth”, i.e. if there exist Zariski
atlases {SpecAi → F} and {SpecBj → F ′} such that we have commutative squares

F F ′

SpecAi SpecBj

with the downward morphism being (classically) smooth (here for any i we find j = j(i)).

Finally we are ready to define geometric stacks.

Definition 2.3.3.

1. A stack F is (−1)-geometric if it is representable (i.e. an affine scheme).

2. A morphism of stacks F → F ′ is (−1)-representable if for any representable stack X and any map
X → F ′, the homotopy pullback F ×hF ′ X is (−1)-geometric.

3. A (−1)-geometric morphism F → F ′ is (−1)-smooth if for any representable stack X and any map
X → F ′, the induced morphism F ×hF ′X → X is a smooth morphism between representable stacks.

Let n > 0 and assume the notions of (n − 1)-geometric stack, morphism and smooth morphism to be
defined. Then, by recursion on n, we can define the following.
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1. An stack F is n-geometric if there exists a family of maps {Ui → F}i∈I such that

(a) each Ui is representable,

(b) each map Ui → F is (n− 1)-smooth,

(c) the total morphism
∐
i∈I Ui → F is an epimorphism.

Such family is a smooth n-atlas.

2. A morphism F → F ′ is n-representable if for any representable stack X and any map X → F ′, the
stack F ×hF ′ X is n-geometric.

3. An n-geometric morphism F → F ′ is n-smooth if for any representable stack X and any map
X → F ′, there exists a smooth n-atlas {Ui} of F ×hF ′ X such that each composite map Ui → X is
smooth.

Observe that, since Zariski open immersions are smooth, schemes are 0-geometric stacks. One can
prove, although non-trivially, that if F is an n-geometric stack, then its diagonal is (n− 1)-representable.
Our definition makes sense, as justified by the following statement.

Proposition 2.3.4.

1. Any (n− 1)-representable (resp. (n− 1)-smooth) morphism is n-representable (resp. n-smooth).

2. All n-representable (resp. n-smooth) morphisms are stable by isomorphisms, homotopy pullbacks
and compositions.

Proof. See [HAGII, Proposition 1.3.3.3]. �

To conclude, let’s state some other important properties of n-geometric stacks and n-smooth maps.

Proposition 2.3.5. Let f : F → G be a morphism of stacks, where G is n-geometric. Suppose there
exists a smooth n-atlas {Ui} of G such that each stack F×hGUi is n-geometric. Then F is also n-geometric.
Furthermore, if each projection F ×hG Ui → Ui is n-smooth, then f is also n-smooth.

Proof. The slogan of this statement could be that n-geometricity and n-smoothness are local on n-
geometric targets. See [HAGII, Proposition 1.3.3.4] for the proof. �

Proposition 2.3.6. Let f be an n-representable morphism. If f is m-smooth, for m ≥ n, then it is
n-smooth.

Proof. See [HAGII, Proposition 1.3.3.6]. �

A vey important corollary is the following.

Corollary 2.3.6.1. Let n ≥ 0; then the full subcategory of n-geometric stacks in St(k) = Ho(SPr(Aff/k))
is stable by homotopy pullbacks and by disjoint unions.

Proof. See [HAGII, Corollary 1.3.3.5]. �

We conclude with one last definition.

Definition 2.3.7. A stack is a geometric stack if it is n-geometric for some n. A morphism of stacks is
smooth (resp. representable) if it is n-smooth (resp. n-representable) for some n.

Geometric stacks can be, maybe more intuitively, described, as announced in the beginning, in terms
of quotients by groupoid actions. For time issues we won’t report here this point of view, which can be
found at [HAGII, pp. 1.3.4, 1.3.5].



3 Moduli stack of G-bundles

3.1 Recalls on classical 1-stacks

We will now focus on a concrete classical example of stack: the moduli stack of G-bundles for an S-
scheme X → S (we can suppose to work, in general, in the category Schk for k a base field). We will
resume the results proved in [Wan11]. This chapter will be almost self-contained and we won’t use any
theory introduced up to now (no model category theory at all). We will use the more classical language
of stacks in groupoids and pseudofunctors, equivalent to the formulation in terms of fibered categories
in groupoids: for a detailed explanation see [Vis08]. We will just recall a few definitions and we will
completely skip any fibered category notion, for time and readability issues.

Definition 3.1.1. Let F be the datum of a map of sets/classes Ob(C)→ Ob(Cat) and, for every X,Y ∈ C
a map of sets HomC(X,Y ) → HomCat(FY, FX). We say that F is a (contravariant) pseudofunctor
or quasifunctor or lax 2-functor if the “functor conditions” hold up to isomorphism (i.e. it is a more
relaxed definition of a functor). In particular for every U ∈ C we have an isomorphism of functors
εU : F (idU ) ' idFU and for each pair of maps U f→ V

g→W an isomorphism αf,g : F (f)◦F (g) ' F (g ◦f).

There are some compatibility assumptions, like associativity of composition U f→ V
g→W

h→ T , expressed
by

F (f) ◦ F (g) ◦ F (h) F (g ◦ f) ◦ F (h)

F (f) ◦ F (h ◦ g) F (h ◦ g ◦ f)

αf,g(F (h))

F (f)αg,h αg◦f,h

αf,h◦g

We will use a bit of 2-category theory, in particular we will be interested in computing 2-limits (mainly
2-fibered products), which ideally satisfy the same universal property as their 1-counterpart but diagrams
commute up to isomorphism. Let’s just give a definition.

Definition 3.1.2. Consider the square

K X

Y Z

α

β f
σ

g

and suppose it commutes up to isomorphism, i.e. there exists a natural transformation σ : f ◦ α→ g ◦ β
which is an isomorphism in Hom(K,Z). We say that K is a 2-fibered product of the square if for every

W
(a,b)→ X × Y and τ : f ◦ a ∼→ g ◦ b there exists a unique map (up to isomorphism) c : W → K such that

the square

W

K X

Y Z

c

b

a

α

β f

g
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commutes up to isomorphism (or, in more modern terminology, 2-commutes). Explicitely this means we
have isomorphism πa : a

∼→ α ◦ c and πb : β ◦ c ∼→ b making the square

f ◦ a g ◦ b

f ◦ α ◦ c g ◦ β ◦ c

f∗πa

τ

g∗πb

c∗σ

(1-)commute in the category Hom(W,Z).

Finally let’s recall the classical definition of stacks in terms of 2-kernels.

Definition 3.1.3. Let F : Cop → Grpd be a pseudofunctor, where C is a site. Then we say that F is
a (1-)stack if for any X ∈ Ob(C) and for any covering {Ui → X} we have the following equivalence of
categories

F (X) ' 2− ker

( ∏
i F (Ui)

∏
i,j F (Ui,j)

∏
i,j,k F (Ui,j,k)

)
.

The condition is very intuitive: it is exactly the sheaf condition “up to isomorphism”. It means exactly
that we can glue (uniquely) local data, whose restriction on intersections are isomorphic, and such that
these isomorphisms (which before were supposed to be equalities) respect a natural cocycle condition
(this explains the triple intersection term above). This is just a particular case of our definition of stacks
(sometimes called “higher stacks”): applying the nerve functor N : Cat → sSet we get back to simplicial
stacks, in particular 1-stacks. It can be proved that this is indeed an equivalence, see [Hen11, Thm 3.5.2]
or [HAGII, p. 2.1.2]. Let’s finally recall the 2-Yoneda lemma, fundamental generalization of classical
Yoneda to the context of pseudofunctors (or fibered categories, depending on the tastes).

Lemma 3.1.4 (2-Yoneda lemma). Given a pseudofunctor F : Cop → Grpd and an element X ∈ C, then
we have an equivalence of categories

Hom(hX , F ) ' F (X)

where hX = HomC(−, X) and HomC(hX , F ) is the category of morphism between pseudofunctors (or
fibered categories over C). This equivalence is natural in X.

Proof. See [Vis08, p. 3.6.2]. �

3.2 Introduction and basic concepts

We will work in Sch/k endowed with the fpqc topology, see Definition 2.1.3, and we will consider a scheme
X both as a scheme and as a fpqc-sheaf (motivated by the fact that fpqc is subcanonical, again see [Vis08,
Thm 2.55]). Let’s recall the notions of (quasi)-projective morphism given by Grothendieck in [EGAII,
pp. 5.3, 5.5], which are slightly different from the ones in [Har77].

Definition 3.2.1. Let f : X → S be a morphism of schemes. We say that

• f is quasi-projective if it is of finite type and there exists a relatively ample invertible sheaf L on
X (relative means that for every affine open V ⊂ S, the sheaf L

∣∣
f−1(V )

is ample);

• f is projective if there exists a quasi-coherent OS-module E of finite type, such that X is S-
isomorphic to a closed subscheme of P(E);

• f is strongly projective (resp. strongly quasi-projective) if it is finitely presented and there exists
a locally free OS-module E of constant finite rank such that X is S-isomorphic to a closed (resp.
retrocompact, i.e. having inclusion map quasi-compact) subscheme of P(E).

Given X,Y ∈ Sch/k we will write X × Y = X ×Spec k Y and X(Y ) = Homk(Y,X). Given a fibered
product over S, we write pri : X1 ×S X2 → Xi for the canonical map, for i = 1, 2. Given an OX -module
F and an S-scheme T , we write XT = X ×S T and FT = pr∗X F .
In particular, for S = Specκ(t) with t ∈ T , we will write Xt := XS and Ft = FS : this notation can be
confused with taking stalks but usually context is enough to understand the correct meaning. Given a
locally free OX -module of finite rank E we write E∨ = HomOX (E ,OX) for its dual, which is again locally
free of finite rank.

We will work with an algebraic group G over k, which will mean an affine group scheme of finite type
over k.
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Definition 3.2.2. Let S ∈ Sch/k and P be a sheaf on (Sch/S)fpqc (which corresponds to a sheaf on
(Sch/k)fpqc equipped with a morphism to S). We say that P is a right (left) G-bundle over S if it is a
right (left) G

∣∣
S
-torsor (recall that if H ∈ Grp, an H-torsor is a set on which H acts simply transitively).

Of course the definition can be given in the more general case for G a sheaf of groups.

Proposition 3.2.3. Let P be a right G-bundle over S. It is then representable by an affine scheme over
S and it is fppf-locally trivial. If G is smooth, then it is also étale-locally trivial.

The idea is that since affine morphisms are effective for fpqc descent (i.e. the fibered category Aff/S →
Sch/S is a stack for fpqc topology, see [Vis08, Thm 4.33]), using the fpqc local trivializations of P → S
(by definition there exists an fpqc covering {Ui → S}i such that PUi ∼= Ui × GUi , and the isomorphism
over Ui,j will determine a cocycle gi,j) we deduce that P is representable by a scheme affine over S. Since
G→ Spec k is fppf we can also say P is locally trivial in the fppf topology.

Let’s observe that, in general, for a group sheaf G on a site C and S ∈ C, we have an isomorphism
of sheaves G

∣∣
S
' Isom(G,G) where the right hand side corresponds to right G-equivariant morphisms (G

acting by right multiplication on itself). This isomorhism is given by

G(S) 3 g 7→ `g

where `g is the left multiplication by g.
Let’s recall the classical definition of algebraic spaces, given, for example, at [Stacks, Definition 025Y].

Definition 3.2.4. A pseudofunctor F : (SchS)op → Grpd is an algebraic space if it is an fppf sheaf of
sets, the diagonal F → F ×S F is representable (by a scheme) and it admits an étale surjective atlas
U → F , for U a scheme.

Definition 3.2.5. A morphism of pseudofunctors X → Y is representable (resp. schematic) if for any
scheme S mapping to Y, the 2-fibered product X ×Y S is isomorphic to an algebraic space (resp. a
scheme).

We will talk about a specific class of stacks, the algebraic stacks. The definition we use is the following
(it requires some more condition than the one stated before).

Definition 3.2.6. An algebraic stack X over a scheme S is a stack in groupoids on (Sch/S)fppf such
that the diagonal X → X ×S X is representable and there exists a scheme U with a smooth surjective
morphism U → X (a smooth atlas).

We will study some properties of quotient stacks and Hom-stacks, to then finally use them together
to prove some properties of the stack of G-bundles on X → S (which we will assume to have some nice
properties), which will be defined later on.

3.3 Quotient stacks

Fix a k-scheme Z with a right G-action α : Z × G → Z (satisfying all the properties we expect a right
action to satisfy).

3.3.1 Definition and first properties
Definition 3.3.1. The pseudofunctor [Z/G] : (Sch/k)op → Grpd is defined by

[Z/G](S) = {Right G-bundles P → S endowed with a G-equivariant morphism P → Z} .

A morphism from P → Z to P ′ → Z is simply a G-equivariant morphism P → P ′ over S × Z. For
∗ = Spec k endowed with the trivial action, we call BG = [∗/G].

Seeing schemes as fpqc sheaves, we notice immediately that [Z/G] is an fpqc stack. The main result
of this section will be that it is an algebraic stack.

Definition 3.3.2. Let Y be a k-stack and σ0 : Z → Y a morphism of stacks. Then σ0 is G-invariant if
it satisfies the following conditions.

(1) The diagram

https://stacks.math.columbia.edu/tag/025Y
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Z ×G Z

Z Y

α

pr1 σ0

σ0

is 2-commutative, i.e. there exists a 2-isomorphism ρ : pr∗1 σ0 → α∗σ0 (here we use a notation
inspired to fibered categories, simply pr∗1 σ0 means σ0 ◦ pr1).

(2) For a scheme S, given z ∈ Z(S) and g ∈ G(S), let ρz,g denote the corresponding 2-morphism

z∗σ0 ' (z, g)∗ pr∗1 σ0
(z,g)∗ρ−−−−→ (z, g)∗α∗σ0 ' (z.g)∗σ0.

Then these 2-morphisms must satisfy the natural associativity condition, namely for g1, g2 ∈ G(S),
we require

z∗σ0 (z.g1)∗σ0

(z.(g1g2))∗σ0 ((z.g1).g2)∗σ0

ρz,g1g2

ρz,g1

ρz.g1,g2

to (1)-commute.

Let’s consider a 2-cartesian diagram

Z ×Y S Z

S Y

σ0

with σ0 G-invariant and S a scheme. Then Z ×Y S is a sheaf of sets and it comes equipped with a
(unique) right G-action making Z ×Y S → S G-invariant and Z ×Y S → Z G-equivariant. Let’s recall
that the 2-fibered product is built, for a scheme T , setting

(Z ×Y S)(T ) =
{

(a, b, φ) | a ∈ Z(T ), b ∈ S(T ), φ : a∗σ0
∼→ b∗σ0

}
so that the action is given by

(a, b, φ).g := (a.g, b, φ ◦ ρ−1
a,g)

for any g ∈ G(T ). Since ρa.g1,g2
◦ ρa,g1

= ρa,g1g2
this defines a natural G-action.

Definition 3.3.3. Let Y be a k-stack and σ0 : Z → Y a G-invariant morphism of stacks. We say σ0 is
a G-bundle if for any Sch 3 S → Y the induced G-action on Z ×Y S → S gives a (classical) G-bundle.
This implies that σ0 is schematic.

We will need lot of lemmas, hold tight. Observe that we have a trivial element τ0 ∈ [Z/G](Z),
corresponding to the trivial bundle pr1 : Z ×G→ Z equipped with the G-equivariant morphism α : Z ×
G→ G.

Lemma 3.3.4. The diagram

Z ×G Z

Z [Z/G]

α

pr1 τ0

τ0

is 2-cartesian, and τ0 is a G-equivariant morphism.

Proof. Observe that τ0(S) : Z(S) → [Z/G](S) sends f : S → Z to the trivial bundle f∗τ0 = α ◦ (f ×
id) : S×G→ Z. Suppose that for a scheme S we have z, z′ ∈ Z(S) and an isomorphism φ : z′∗τ0

∼→ z∗τ0.
Explicitely, φ corresponds to an element g ∈ G(S) such that



22 3.3. Quotient stacks

S ×G S ×G

Z

α(z′×id)

rg

α(z×id)

commutes (over S). This basically means z.g = z′. So we associate (z, g) ∈ (Z × G)(S) to the point
(z, z′, φ) of the 2-fibered product. Conversely, given z ∈ Z(S) and g ∈ G(S) they uniquely determine
z′ = z.g and a G-equivariant isomorphism z′∗τ0 → z∗τ0. This proves that the map

(α,pr1) : Z ×G→ Z ×[Z/G] Z

is indeed an isomorphism.
Let now S = Z×G and consider idZ×G. We obtain, by definition of 2-fibered product, an isomorphism

ρ−1 : α∗τ0 → pr∗1 τ0

which is explicitely defined by (z, g1, g2) 7→ (z, g1, g1g2). Therefore for a scheme S, z ∈ Z(S) and
g ∈ G(S), the morphism ρz,g corresponds (using again Yoneda and the definition of τ0) to the morphism
of schemes S ×G→ S ×G given by (s, g0) 7→ (s, g(s)−1g0). Using (g1g2)−1 = g−1

2 g−1
1 we deduce that τ0

is G-invariant. �

Lemma 3.3.5. Let τ = (f : P → Z) ∈ [Z/G](S) for a scheme S and suppose that P admits a section
s : S → P. Then the G-equivariant morphism s̃ : S × G → P induced by s gives an isomorphism
(f ◦ s)∗τ0 → τ ∈ [Z/G](S).

Proof. Call a = f ◦ s : S → P → Z. We have a cartesian diagram

S ×G Z ×G Z

S Z

a×id

pr1

α

a

so that, as observed in the preceding proof, a∗τ0 = (α(a× id) : S ×G→ Z). The diagram

S ×G P

Z

s̃

α(a×id) f

is commutative by G-equivariance. This proves s̃ is a morphism in [Z/G](S), inducing the claimed
isomorphism. �

Lemma 3.3.6. Let Y be a k-stack and σ0 : Z → Y a G-bundle. Then there exists an isomorphism
Y → [Z/G] of stacks making the following triangle

Z

Y [Z/G]

σ0 α : Z×G→Z

∼

2-commutative.

Remark 3.3.7. Observe how we are already using the 2-Yoneda lemma. The statement above implies
that, in the particular situation where Y = Y is a scheme, then Y ' [Z/G], i.e. the two notions of
quotients, as scheme and as stack, coincide.

Proof. First let’s define the morphism F : Y → [Z/G] by sending σ ∈ Y(S) to

F (σ) := Z ×Y S Z

S Y

σ0

σ
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for any scheme S. As said before, since σ0 is a G-bundle, Z ×Y S → Z is an object of [Z/G](S). Let
now σ, σ′ ∈ Y(S) and write P = Z ×Y,σ S and P ′ = Z ×Y,σ′ S. We write, as before, P(T ) = {(a, b, φ)}
with a ∈ Z(T ), b ∈ S(T ) and φ : a∗σ0

∼→ b∗σ. A morphism ψ : σ → σ′ in Y(S) induces a G-equivariant
morphism P → P ′ over S × Z by

(a, b, φ) 7→ (a, b, b∗ψ ◦ φ). (3.1)

This proves that F is indeed a morphism of stacks. Our plan now is the following: we first prove the
triangle is 2-commutative and then that F is fully faithful and essentially surjective (pointwise, see [Vis08,
p. 3.5.2]) to deduce it is an isomorphism.
2-commutativity:
We must give an isomorhism τ0 → F (σ0) in [Z/G](Z). We have already seen that (α,pr1) : Z × G →
Z ×Y Z is a G-equivariant isomorphism of sheaves over Z × Z, and this is the searched map.
Fully faithfulness:
To prove F is fully faithful we can prove, since Y and [Z/G] are stacks, that for any scheme S and
σ, σ′ ∈ Y(S) the induced morphism of sheaves of sets

F : IsomY(S)(σ, σ
′)→ Isom[Z/G](S)(F (σ), F (σ′))

is an isomorphism. Let P,P ′ be as before. We can choose an fppf covering {Si → S}i trivializing both
G-bundles, and since the Hom above are sheaves, it suffices to study this “trivial” case. Let ψ : P → P ′ be
a G-equivariant morphism over S×Z. Since P is trivial, there exists a section s ∈ P(S), corresponding to
(a, idS , φ : a∗σ0

∼→ σ) for a ∈ Z(S). The map ψ sends s to some element (a, idS , φ
′ : a∗σ0

∼→ σ) ∈ P ′(S),
which is a section of P ′. Define the following morphism of sets

L : Hom[Z/G](S)(F (σ), F (σ′))→ HomY(S)(σ, σ
′)

by ψ 7→ φ′ ◦ φ−1 : σ → σ′. Now we just need to check F (on the hom sets) and L are inverse to
each other. Starting with ψ : σ ' σ′, we know F (ψ)(s) = (a, idS , ψ ◦ φ) ∈ P(S) by Eq. (3.1). Thus
LF (ψ) = (ψ ◦ φ) ◦ φ−1 = ψ so LF = id. Starting instead with Ψ: P → P ′ then L(Ψ) = φ′ ◦ φ−1 and
hence

FL(Ψ): s 7→ (a, idS , (φ
′ ◦ φ−1) ◦ φ) ∈ P ′(S).

Since a G-equivariant morphism of trivial bundles P → P ′ is determined by the image of a single section
s ∈ P(S) we deduce Ψ = LF (Ψ). We conclude that F is fully faithful.
Essential surjectivity:
Finally we’ll prove that F is essentially surjective and hence an isomorphism of stacks. Let τ = (f : P →
Z) ∈ [Z/G](S) and let {ji : Si → S}i be an fppf covering trivializing P, so that we have sections
si ∈ P(Si). Write fi the restriction of f to P

∣∣
Si
. By Lemma 3.3.5 we have isomorphisms (fi◦si)∗τ0 ' j∗i τ .

From the 2-commutativity of the triangle proved above, we already have τ0 ' F (σ0). Therefore

F ((fi ◦ si)∗σ0) ' (fi ◦ si)∗F (σ0) ' (fi ◦ si)∗τ0 ' j∗i τ.

and we conclude that F is an isomorphism using [Stacks, Lemma 046N]. �

3.3.2 Twisting by a torsor
Let’s now introduce a useful construction, the twist by a torsor. Let’s place ourselves in the most general
setting, where C is a subcanonical site with a terminal object and a sheaf of groups G. Let S ∈ C and
let P be a right G

∣∣
S
-torsor over S. Let now F be a sheaf of sets on C endowed with a left G-action.

Then G
∣∣
S
acts on the right on P × F by (p, z).g := (p.g, g−1.z). We build the presheaf Q on C/S by

Q(U) = (P(U)×F(U))/G(U). Then we define

PF = (P × F)/G = P
G
× F

to be the sheafification of Q and we call it the twist of F by P. Since sheaves on C form a stack ([Vis08,
p. 3.2]) we can describe PF by giving a descent datum. Let {Si → S} be a trivializing fppf cover of P.
We then have a descent datum of P giving by (G

∣∣
Si
, gi,j) for some cocycle gi,j ∈ G(Si,j). Observe that

(P
∣∣
Si
×F)/G ' (G

∣∣
Si
×F)/G ' F

∣∣
Si
,

https://stacks.math.columbia.edu/tag/046N
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and Q
∣∣
Si
' F

∣∣
Si

is already a sheaf on C/Si. By the definition of the group action of P × F we see that
the transition maps

ϕi,j :
(
F
∣∣
Sj

) ∣∣∣
Si,j
→
(
F
∣∣
Si

) ∣∣∣
Si,j

are given by left multiplication of gi,j . Since sheafification commutes with the restrictions C/Si → C/S
we obtain that (

F
∣∣
Si
, ϕi,j

)
is a descent datum for PF .

3.3.3 Change of space
Let β : Z ′ → Z be a G-equivariant morphism of schemes endowed with a right G-action. Then there is a
natural morphism of stacks [Z ′/G]→ [Z/G] defined by

(P → Z ′) 7→ (P → Z ′
β→ Z).

We will prove that, under certain assumptions, this morphism is schematic. First, a technical lemma.

Lemma 3.3.8. Let βi : Zi → Z be G-equivariant morphisms of schemes for i = 1, 2. Then the square

[(Z1 ×Z Z2) /G] [Z1/G]

[Z2/G] [Z/G]

is 2-cartesian (the maps are induced by the natural projections pri : Z1 ×Z Z2 → Zi).

Proof. See [Wan11, Lemma 2.3.2]. �

The key for the next proof will be the following technical lemma, which roughly says that algebraic
spaces are stable under fppf descent.

Lemma 3.3.9. Let S be a scheme and F : (Sch/S)op
fppf → Set be a functor. Let {Si → S}i be a covering

of (Sch/S)fppf . Assume that

(1) F is a sheaf,

(2) each Fi = hSi→S × F is an algebraic space,

(3)
∐
i∈I Fi is an algebraic space.

Then F is an algebraic space.

Proof. See [Stacks, Lemma 04Sk]. �

Lemma 3.3.10. The morphism [Z ′/G]→ [Z/G] is representable. If the morphism of schemes Z ′ → Z is
affine (resp. quasi-projective with a G-equivariant relatively ample invertible sheaf), then the morphism of
quotient stacks is schematic and affine (resp. quasi-projective). Any fppf target-local property of Z ′ → Z
is inherited by the map of quotient stacks.

Proof. Let S be a scheme and (f : P → Z) ∈ [Z/G](S). We know S ' [P/G] thanks to Remark 3.3.7.
By Lemma 3.3.8 we have a cartesian square

[(Z ′ ×Z P) /G] [Z ′/G]

S [Z/G]
f : P→Z

https://stacks.math.columbia.edu/tag/04Sk
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and we must prove that [(Z ′×Z P)/G] is representable by an algebraic space. We will verify the assump-
tions of Lemma 3.3.9 to conclude. Since any category equivalent to a set is an equivalence relation, i.e.
a groupoid with no automorphisms (see [Vis08, p. 3.5.3]), the stack isomorphism S ' [P/G] implies that
[P/G](T ) is an equivalence relation for any scheme T . Therefore [(Z ′×Z P)/G](T ) is also an equivalence
relation, so it is isomorphic to a sheaf of sets, verifying the assumption (1).

Choose an fppf covering {Si → S}i trivializing P and let si ∈ P(Si) be sections. Using Lemma 3.3.8
we have the 2-cartesian diagram

[Z ′ ×Z PSi/G] [Z ′ ×Z P/G]

Si S

and we claim that [Z ′×ZPSi/G] is represented by the scheme Z ′×Z,f◦siSi (varying i they form a covering
of Z ′, by the axioms of Grothendieck topologies). We have a morphism Si × G

∼→ PSi → Z given by
f ◦ s̃i = f ◦ α ◦ (si × idG). There is a G-equivariant isomorphism

γi : (Z ′ ×Z,f◦si Si)×G→ Z ′ ×Z (Si ×G)

over Si, where on the left G acts as a trivial bundle, while on the right G acts both on Z ′ and Si × G.
More precisely, given a ∈ Z ′(T ), g ∈ G(T ) for T an Si-scheme, we have γi(a, g) = (a.g, g) (we can verify
that γi, naturally defined as (α′(prZ′ × idG),prSi × idG) has this form and is indeed a G-equivariant
isomorphism). Applying Remark 3.3.7 we have an isomorhism

Φi : Z
′ ×Z,f◦si Si ' [(Z ′ ×Z,f◦si Si)×G/G]

γi−→ [(Z ′ ×Z (Si ×G)) /G]
id×s̃i−→ [(Z ′ ×Z PSi) /G]

over Si, defined explicitely on T -points by sending a ∈ (Z ′ ×Z,f◦si Si)(T ) to

T ×G (Z ′ ×Z,f◦si Si)×G Z ′ ×Z (Si ×G) Z ′ ×Z P

T

a×id γi id×s̃i

After restricting to the chosen covering, [(Z ′ ×Z P)/G] ×S Si ' [(Z ′ ×Z PSi)/G] becomes representable
by a scheme (using the isomorphism Φi above). Then using Lemma 3.3.9 we deduce that [(Z ′ ×Z P)/G]
is representable by an algebraic space. Let’s take a break and try to describe its descent datum, which
will be useful in the future.
Descent datum:
Denoting Si,j = Si ×S Sj we have a cocycle gi,j ∈ G(Si,j) such that sj = si.gi,j ∈ P(Si,j). The action of
g−1
i,j on Z ′ induces an isomorhism

ϕi,j : Z ′ ×Z,f◦sj Si,j → Z ′ ×Z,(f◦sj).g−1
i,j
Si,j = Z ′ ×Z,f◦si Si,j .

Given a ∈ (Z ′ ×Z,f◦sj Si,j)(T ), the square

T ×G Z ′ ×Z PSi,j

T ×G Z ′ ×Z PSi,j

`gi,j

Φj(a)=(id×s̃j)◦γj◦(a×id)

Φi(ϕi,j(a))=(id×s̃i)◦γi◦(ϕi,j(a)×id)

is commutative (easy computation). Therefore Φj(a) and (Φi◦ϕi,j)(a) are isomorphic in [(Z ′×ZPSi,j )/G].
We can thus conclude that (Z ′ ×Z,f◦si Si, ϕi,j) is a descent datum of [(Z ′ ×Z P)/G] with respect to the
chosen covering {Si → S}i.
If Z ′ → Z is affine, then by base change so is Z ′ ×Z,f◦si Si → Si. Affine morphisms are effective under
descent (see [Vis08, p. 4.33]) so we deduce that [(Z ′×Z P)/G] is representable by a scheme affine over S.

Suppose now Z ′ → Z is quasi-projective with a G-equivariant relatively ample invertible OZ′ -module
L. From the description of the descent datum we have a commutative square
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Z ′ ×Z,f◦sj Si,j Z ′

Z ′ ×Z,f◦si Si,j Z ′

ϕi,j

pr1,j

g−1
i,j

pr1,i

and the G-equivariant structure of L gives an isomorphism

ϕ∗i,j pr∗1,i L ' pr∗1,j L

of invertible sheaves relatively ample over Si,j . Since the (gi,j) are a cocycle, the associativity property
of G-equivariance implies that the above isomorphisms also satisfy the corresponding cocycle condition.
By descent ([SGAI, VIII, Proposition 7.8]) we can then conclude that [(Z ′ ×Z P)/G] is representable by
a quasi-projective scheme over S. �

Corollary 3.3.10.1. For a k-scheme Z with a right G-action and a right G-bundle P over a k-scheme
S, there is an isomorphism PZ ' [(Z × P)/G] over S.

Proof. From the proof of Lemma 3.3.10 we know that [(Z ×P)/G] has a descent datum (Z × Si,j , ϕi,j).
This is the same descent datum as PZ, as explained in Section 3.3.2. This also implies that

PZ [Z/G]

S BGP

is cartesian. �

Corollary 3.3.10.2. Given τ = (p : P → S, f : P → Z) ∈ [Z/G](S) for a k-scheme S,

P Z

S [Z/G]

f

p τ0

τ

is cartesian. In particular, τ0 : Z → [Z/G] is schematic, affine and fppf.

Proof. Using Yoneda and Lemma 3.3.8 we have a cartesian square

[((Z ×G)×α,Z,f P) /G] [Z ×G/G]

[P/G] [Z/G]

α

where Z ×G is the trivial bundle over Z. There is a G-equivariant morphism

(f × id, αP) : P ×G→ (Z ×G)×α,Z,f P

where, again, P ×G is the trivial bundle over P. Action of G and projection induce a G-equivariant map
P ×G→ P ×S P over P × P. Therefore the following diagram

S P Z

[P ×G/G]

[P/G] [((Z ×G)×α,Z,f P) /G] [Z ×G/G]

idP

p

idP×G

f

idZ×G

(f×id,αP)

is 2-commutative. Hence, applying Remark 3.3.7, we deduce that the initial cartesian square is isomorphic
to the desired one. Moreover, we see that the morphism f∗τ0 → p∗τ is defined by the action and first
projection morphism. �
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3.3.4 Change of group
Let H ↪→ G be a closed subgroup of G and let’s investigate the relation between BH and BG.

Let’s first consider the action by left multiplication of H on G, giving rise to the fppf sheaf of right
cosets H\G. By [DG70, Thm 5.4] the sheaf H\G is representable by a quasi-projective k-scheme with a
G-equivariant ample invertible sheaf. The map H ×G→ G×H\GG, given by the multiplication and the
projection, is an isomorphism by [DG70, p. 2.4], i.e. the following square

H ×G G

G H\G

µ

pr2 π

is cartesian. Therefore the projection π : G→ H\G is a left H-bundle. All the previous discussion, where
we used right actions, can be rewritten using left actions; we will use the notation [H\G] to denote the
quotient stack of G by the left action of H, sending S to the groupoid of left H-bundles P → S equipped
with an H-invariant morphism to G. Observe that Remark 3.3.7 implies that idG induces an isomorphism
H\G ∼→ [H\G] defined on a scheme S by

G×H\G G G G

S H\G

π

idG

Lemma 3.3.11. The left H-bundle G→ H\G defines a right G-bundle H\G→ [H\∗].

Proof. Let µ : G × G → G be the multiplication map and consider (pr1, µ) : G × G → G × G where H
acts on the first coordinate on the lhs and diagonally on the rhs, so that this morphism is H-equivariant.
We have 2-commutative squares

H\G H\G×G H\G

[H\G] [H\(G×G)] [H\G]

idG

pr1 µ

(pr1,µ) idG

pr1 pr2

where the 2-isomorphisms are identities (and the action of H on G × G in the middle top is on the left
component). Thus we have a 2-commutative diagram

H\G×G H\G

H\G [H\∗]

µ

pr1

with 2-morphism idG×G, which gives H\G→ [H\∗] the structure of a right G-invariant morphism.
Let P ∈ [H\∗](S) be a left H-bundle over S and let {Si → S}i be an fppf covering trivializing P. We

will conclude by considering the cartesian square

H\G×[H\∗] S H\G

S [H\∗]P

and proving that the leftmost arrow is a G-bundle (S is a scheme obviously). Applying the same exact
argument as in the proof of Lemma 3.3.10 we obtain the cartesian square
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Si ×G [H\G]

Si [H\∗]H×Si

where the top arrow corresponds to H × Si ×G→ G : (h, a, g) 7→ hg. The morphism Si ×G→ [H\G] '
H\G equals π ◦ pr2 (easy computation) , which is G-equivariant. This means that

Si ×G→ H\G×[H\∗],H×Si Si ' (H\G×[H\∗],P S)×S Si

is a G-equivariant isomorphism. Thus H\G×[H\∗],P S is a right G-bundle, and this suffices to prove that
H\G→ [H\∗] is also a right G-bundle. �

Let’s now observe that combining Lemma 3.3.6 and Lemma 3.3.11 we have an isomorhism [H\∗] '
[(H\G)/G] sending a left H-bundle P over S to H\G ×[H\∗],P S → H\G. Using inverse action we
pass to right H-bundles, obtaining BH ' [H\∗]. Applying Corollary 3.3.10.1 we observe that the map
BH ' [H\∗] ' [(H\G)/G]→ BG sends a right H-bundle P to the fiber bundle PG, where G is twisted
using the left action. We have also a right G-action on such twist, induced bu the right multiplication by
G on itself.

Proposition 3.3.12. The morphism BH → BG sending P 7→ PG is schematic, finitely presented and
quasi-projective.

Proof. Consider the map [(H\G)/G]→ BG: by Corollary 3.3.10.1 we have a 2-cartesian square

E(H\G) BH ' [(H\G)/G]

S BGE

Since H\G is quasi-projective with a G-equivariant ample invertible sheaf over ∗ = Spec k, then, us-
ing Lemma 3.3.10 we deduce that E(H\G) is representable by a scheme quasi-projective and of finite
presentation over S. This proves the proposition. �

3.3.5 [Z/G] is algebraic
We’ll state the last technical lemmas and then, finally, we will be able to prove that the quotient stack is
an algebraic stack, under certain assumptions.

Lemma 3.3.13. For algebraic groups G,G′, the morphism BG×BG′ → B(G×G′) sending a G-bundle
P → S and a G′-bundle P ′ → S to P ×S P ′ is an isomorphism.

Proof. Let, as in the statement, (P,P ′) ∈ (BG × BG′)(S) and choose an fppf covering {Si → S}
trivializing both. This means that we have descent data

(Si ×G, gi,j), (Si ×G′, g′i,j)

for gi,j ∈ G(Si,j), g
′
i,j ∈ G′(Si,j). Then

(Si ×G×G′, (gi,j , g′i,j))

is a descent datum for P ×S P ′. Using the fact that both BG × BG′ and B(G ×G′) are stacks, we see
that this morphism is an isomorphism, whose inverse is E 7→ (EG, EG

′) where G×G′ acts by projections
on G and G′. �

Let’s now study a particular case of our problem, with the simplest quotient stack BG. We will invoke
the well known Artin’s theorem, which we only state here.

Theorem 3.3.14. Let X be an S-stack satisfying the three following conditions:

(1) X is an fppf S-stack;

(2) the diagonal map ∆: X → X ×S X is representable, separated and quasi-compact;
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(3) there exists an S-algebraic space Y and a map Q : Y → X of S-stacks which is representable and
fppf.

Then X is an algebraic stack.

Proof. See [LM00, Thm 10.1]. �

Lemma 3.3.15. The k-stack BG is an algebraic stack with a schematic, affine diagonal. Specifically, for
right G-bundles P,P ′ over S, there is an isomorphism

IsomBG(S)(P,P ′) ' P×SP′(G)

as sheaves of sets on Sch/S , where G×G acts on G from the right by g.(g1, g2) = g−1
1 gg2.

Proof. Let S ∈ Sch/k and P,P ′ ∈ BG(S); we have a 2-cartesian square

IsomBG(S)(P,P ′) BG ' [(G\G×G)/G×G] ' [G/G×G]

S BG×BG ' B(G×G)

∆BG

(P,P′)

where in the upper row we observed that there is an isomorphism G\(G × G) ∼= G given by (g1, g2) 7→
g−1

1 g2, where G acts diagonally on the left. Since the lhs has a G-equivariant right G × G-action, the
rhs G inherits a right (G × G)-action given by g.(g1, g2) = g−1

1 gg2, as claimed in the statement. By
Proposition 3.3.12 and Lemma 3.3.13 we get an isomorhism IsomBG(S)(P,P ′) ' P×SP′(G) over S.

Since G is affine over k, by assumption, the associated fiber bundle P×SP′(G) is representable by
an affine scheme over S. Hence the diagonal ∆BG is schematic and affine. By Corollary 3.3.10.2 the
morphism ∗ → BG is schematic, affine and fppf. We can conclude that BG is an algebraic stack using
Theorem 3.3.14. �

Here is the main result of this whole section.

Theorem 3.3.16. The k-stack [Z/G] is an algebraic stack with a schematic, separated diagonal. If Z is
quasi-separated (i.e. the diagonal map is quasi-compact) then the diagonal ∆[Z/G] is quasi-compact. If
Z is separated then ∆[Z/G] is affine.

Proof. Consider the diagonal map Z → Z × Z, G-equivariant for the diagonal action of G on the rhs. It
induces a map

[Z/G]→ [Z × Z/G] ' [Z/G]×BG [Z/G]

which is representable by Lemma 3.3.10, the last isomorphism being the one of Lemma 3.3.8. Now, the
diagonal ∆[Z/G] is obtained by composition

[Z/G]→ [Z/G]×BG [Z/G]→ [Z/G]× [Z/G]

where the last map is coming from the universal property of products. This last map is obtained by base
change

[Z/G]×BG [Z/G] [Z/G]× [Z/G]

BG BG×BG∆BG

and hence it is representable (in particular schematic and affine) thanks to Lemma 3.3.15. This implies
that the diagonal map ∆[Z/G] is representable (this is the first condition to check to prove [Z/G] is an
algebraic stack). By Lemma 3.3.15 there exists a scheme U and a smooth surjective morphism U → BG.
The change of space f : [Z/G]→ BG is representable by Lemma 3.3.10, so U ×BG [Z/G] is representable
by an algebraic space. Therefore there exists a scheme V with an étale surjection V → U ×BG [Z/G];
the composition V → [Z/G] is then the searched smooth atlas, so we can conclude [Z/G] is an algebraic
stack.

As observed before, we know that [Z/G]×BG [Z/G]→ [Z/G]× [Z/G] is schematic and affine. Since f
is representable, then its diagonal ∆f : [Z/G]→ [Z/G]×BG [Z/G] (which is exactly the same morphism
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we used above) is schematic and separated, see [Stacks, Lemma 04YQ]. If Z is quasi-separated, then
by descent PZ → S is quasi-separated for any P ∈ BG(S) (easy for trivial bundles then use descent).
Recalling the pullback square of Corollary 3.3.10.1 we have just proved that f : [Z/G] → BG is quasi-
separated. Thus, by [Stacks, Lemma 04YT] we see that ∆f is quasi-compact.

Starting instead with Z separated we can do an analogue reasoning to deduce f is separated. Using
[Stacks, Lemma 04YS] the diagonal ∆f is, in this case, a closed immersion.

Composing the two maps ∆f and [Z/G] ×BG [Z/G] → [Z/G] now gives all the desired properties of
the diagonal of [Z/G]. �

3.4 Hom stacks

3.4.1 Hilb and Quot
First of all let’s recall some definitions and results on Hilb and Quot constructions, which will be useful
later on. Our main reference here is [Fan+13, Chapter 5].

Definition 3.4.1. Let S be a Noetherian scheme and X → S of finite type. Let E be a coherent sheaf
on X. Let QuotE/X/S : (Sch/S)op → Grpd be the pseudofunctor defined by

(T → S) 7→
{

(F , q)
∣∣∣∣ F ∈ Coh(XT ), flat over T and with proper schematic support,
q : ET � F is surjective

}
.

A map (F, q)→ (F ′, q′) is an isomorphism f : F → F ′ such that f ◦ q = q′. It is indeed a pseudo-functor
since properness and flatness are conserved by base change and tensor product is right exact.

Definition 3.4.2. Let X → S be of finite presentation and let’s define HilbX/S : (Sch/S)op → Grpd by
posing HilbX/S = QuotOX/X/S . Explicitely we have

(T → S) 7→
{
i : Z ↪→ XT

∣∣∣∣ i is a closed immersion and Z → T is flat,
proper and finitely presented

}
.

Let X → S be a morphism of finite type between Noetherian schemes and let L be a very ample sheaf
on X and F a coherent sheaf on X with proper schematic support on S. Then for each s ∈ S we can
consider the Hilber polynomial Φs of Fs using the line bundle Ls. By [Har77, III, Theorem 9.9] we know
that if F is flat over S then the function s 7→ Φs ∈ Q[λ] is locally constant on s. We have shown

Proposition 3.4.3. In the above case, we have the stratification

QuotE/X/S =
∐

Φ∈Q[λ]

QuotΦ,L
E/X/S .

The main result is the following.

Theorem 3.4.4. Let S be a scheme, π : X → S strongly (quasi-)projective and L a relatively very ample
line bundle on X. Then for a coherent OX -module E , quotient sheaf of some π∗(W )(ν) for W vector
bundle on S and ν ∈ Z, and any polynomial Φ ∈ Q[λ] the functor QuotΦ,L

E/X/S is representable by a
(quasi-)projective S-scheme (which we’ll denote in the same way).

Proof. See [AK80, Theorem 2.6]. �

3.4.2 First definitions
We will now turn our attention to the so called “mapping stacks”, which are nothing else than a particular
case of the section stacks (all will be defined precisely later). They will be essential tools to define and
understand our goal, the stack of G-bundles on X ∈ Sch/S .

Definition 3.4.5. Let S ∈ Sch, X ∈ Sch/S and Y : (Sch/S)op → Grpd be a pseudofunctor. We define the
Hom 2-functor HomS(X,Y) : (Sch/S)op → Grpd by

HomS(X,Y)(T ) = HomT (XT ,YT ) = HomS(XT ,Y).

https://stacks.math.columbia.edu/tag/04YQ
https://stacks.math.columbia.edu/tag/04YT
https://stacks.math.columbia.edu/tag/04YS
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Using the 2-Yoneda lemma we have a natural equivalence of categories HomS(XT ,Y) ' Y(XT ) and
hence we deduce that if Y is an fpqc S-stack then HomS(X,Y) is as well.

We can now finally define our object of interest.

Definition 3.4.6. Let S be a k-scheme. Given X ∈ Sch/S , the moduli stack of G-bundles on X → S is
BunG := HomS(X,BG× S).

Since BG is an fpqc stack, also BunG is so. Explicitely, for an S-scheme T , BunG(T ) is the groupoid
of G-bundles on XT .

Our war strategy will be to study and prove general results about Hom-stacks, using the section
stacks, and then deduce properties of BunG by using those cannons.

As announced we will now study the sheaf of sections.

3.4.3 Scheme of sections
Let S be a base scheme, X ∈ Sch/S and fix a morphism of S-schemes Y → X.

Definition 3.4.7. Using the same notations as above, we define the presheaf SectS(X,Y ) : (Sch/S)op →
Set by

(T → S) 7→ HomXT (XT , YT ) = HomX(XT , Y ).

Since schemes are fpqc sheaves then the presheaf SectS(X,Y ) is actually an fpqc sheaf of sets.
We will now state (resp. and sketch a proof) of (some) technical lemmas, the final goal being to prove

representability of SectS(X,Y ) under some particular assumptions.

Example 4. As mentioned before, understanding the sheaf of sections can be equivalent to understanding
the mapping stack. Indeed, for X,Z ∈ Sch/S and pr1 : X ×S Z → X we have the equality

SectS(X,X ×S Z) = HomS(X,Z).

Lemma 3.4.8. Let p : X → S be a flat, finitely presented, proper morphism and E a locally free OX -
module of finite rank. Then SectS(X,Spec

X
SymOX E) is representable by a scheme affine and finitely

presented over S.

Proof. By [EGAG0, Corollaire 4.5.5] we can take an open affine covering of S and reduce to the case S
is affine (roughly the corollary says that a sheaf F : (Sch/S)op → Set is representable iff its restriction
to any covering of S are so). We can assume S is also of finite type using Noetherian approximation
and change of base, see [EGAIV, Tome 3, 8]. Write F = E∨, which is again a locally free OX -module.
From [EGAIII, Tome 2, Thm 7.7.6, Remarque 7.7.9] there exists a coherent OY -module Q equipped with
natural isomorphisms

HomOT (QT ,OT ) ' Γ(T, (pT )∗FT ) = Γ(XT ,FT )

for any S-scheme T . Giving a section XT → (Spec
X

Sym E) ×S T ' Spec
XT

(SymOXT
ET ) over XT is

the same thing as giving a morphism of OXT -modules ET → OXT . This is nothing else than an element
in Γ(XT , E∨T ). Since E is locally free of finite rank, there is a canonical isomorphism FT ' E∨T . The
above formula shows that an element of SectS(X,Spec

X
Sym E)(T ) is naturally isomorphic to a map in

HomS(T, Spec
S

SymOS Q) ' HomOT (QT ,OT ). We thus conclude that

SectS(X,Spec
X

SymOX E) ' Spec
S

SymOS Q

as sheaves over S. �

Let’s now prove, as a lemma, a (stronger) particular case of our final theorem of this section, when
the map Y → X is affine.

Lemma 3.4.9. Let p : X → S be a flat, finitely presented, projective morphism. If Y → X is affine and
finitely presented, then SectS(X,Y ) is representable by a scheme affine and finitely presented over S.

Proof. As before, we can reduce to the case where S is affine and Noetherian, and X is a closed subscheme
of PrS for some integer r. By assumption, Y = Spec

X
A for A a quasi-coherent OX -algebra. Since Y is

finitely presented over X and X is quasi-compact, there are finitely many local sections of A generating it
as an OX -algebra. By extending coherent sheaves (see [EGAI, Corollaire 9.4.3]), there exists a coherent
OX -module F ⊂ A containing all such sections. Using [Har77, Chap 2, Corollary 5.18] (an easy corollary
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of Serre theorem forX projective, stating that we can find n big enough so that F(n) is globally generated)
we can find a locally free resolution of OX -modules E1 � F . This induces a surjection of OX -algebras
SymOX E1 � A, and let I be its kernel. Redoing this same reasoning on I, we find a locally free OX -
module E2 and a map E2 → I whose image generates I as an OX -algebra. The short exact sequence of
OX -algebras SymOX E2 → SymOX E1 → A→ 0 induces the cartesian square

Y = Spec
X
A X

Spec
X

Sym E1 Spec
X

Sym E2

where X → Spec
X

Sym E2 is the zero section. We have a canonical isomorhism

SectS(X,Y ) ' SectS(X,X)×SectS(X,Spec
X

Sym E2) SectS(X,Spec
X

Sym E1)

and observe that S ' SectS(X,X) (one way to see it is to verify that we can apply the conclusion of
the previous lemma with Q = OS , which satisfies the assumptions there). By Lemma 3.4.8, all the three
sheaves in the fibered product are represented by schemes affine and finitely presented over S. Therefore
SectS(X,Y ) is representable by a scheme.

The morphism S ' SectS(X,X)→ SectS(X,Spec
X

Sym E2) sends T → S to 0 ∈ Γ(XT , (E2)∨T ), using
the correspondence of Lemma 3.4.8. Therefore

S → SectS(X,Spec
X

Sym E2) ' Spec
S

SymQ2

is the zero section, and in particular is a closed immersion. By base change, also SectS(X,Y ) →
SectS(X,Spec

X
Sym E1) is a closed immersion and hence we conclude that SectS(X,Y ) is affine and

finitely presented over S. �

Lemma 3.4.10. Let p : X → S be proper. For any morphism Y → X and U ↪→ Y open immersion,
SectS(X,U)→ SectS(X,Y ) is schematic and open.

Proof. For an S-scheme T , suppose there exists a map f : XT → Y overX, which by 2-Yoneda corresponds
to a map of sheaves T → SectS(X,Y ). The fibered product

T ×SectS(X,Y ) SectS(X,U) SectS(X,U)

T SectS(X,Y )
XT→Y

is a sheaf on Sch/T and it sends T ′ → T to a singleton if XT ′ → XT → Y factors through U , and to the
empty set otherwise (this is just how points of fibered products behave in general). We claim that this
sheaf is representable by the open subscheme

W = T \ pT (XT \ f−1(U))

of T , where pT (XT \ f−1(U)) is closed in T by properness of p. Suppose that the image of T ′ → T
contains a point of pT (XT \ f−1(U)), i.e. there are t′ ∈ T ′ and x ∈ XT mapping to the same point of
T , and f(x) 6∈ U . Let K be the compositum field of κ(t′) and κ(x) over κ(pT (x)): this gives a point of
XT ′ corresponding to (t′, x) ∈ T ′×XT . Thus the map XT ′ → XT → Y does not factor through U , since
f(x) 6∈ U .

Conversely, suppose there exists x′ ∈ XT ′ with image outside of U . Then its image x ∈ XT is not in
f−1(U), so pT ′(x′) maps to pT (x) ∈ pT (XT \ f−1(U)).

We then conclude that T ′ → T factors through T \ pT (XT \ f−1(U)) if and only if XT ′ → Y factors
through U . Therefore T ×SectS(X,Y ) SectS(X,U) is representable by this open subscheme of T . �

Lemma 3.4.11. Let S be a Noetherian scheme, and let p : X → S and Z → S be flat proper morphisms.
Suppose there is a morphism π : Z → X over S. Then there exists an open subscheme S1 ⊂ S with the
following universal property: for any locally Noetherian S-scheme T , the base change πT : ZT → XT is
an isomorphism if and only if T → S factors through S1.

Proof. See [Wan11, Lemma 3.1.7]. �
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Suppose we have a proper morphism X → S and a separated morphism g : Y → X. For a section
f ∈ SectS(X,Y )(T ), the graph of f over XT is a closed immersion XT → XT ×XT YT . Indeed, gT ◦ f =
idXT implies that f is separated, and we can obtain the graph of f as the following pullback

XT XT ×XT YT ' YT

YT YT ×XT YT

f

(1,f)

f×XT idYT

∆gT

and hence by separatedness of gT (so that its diagonal is a closed immersion) we deduce our claim. Using
XT ×XT YT ' YT we deduce that f itself if a closed immersion.

Therefore f : XT ↪→ YT represents an element of HilbY/S(T ). We have defined an injection of sheaves

SectS(X,Y )→ HilbY/S . (3.2)

Lemma 3.4.12. Let p : X → S and Y → S be finitely presented, proper morphisms, and suppose that
p is flat. Then Eq. (3.2) is an open immersion.

Proof. Since the statement is Zariski local on the base, we can assume S is affine and Noetherian by
[EGAIV, Tome 3, 8]. Let T → HilbY/S represent Z ⊂ YT a closed subscheme flat over an S-scheme T .
Again, by the same argument, we can assume T Noetherian. Applying Lemma 3.4.11 to the composition
Z → XT we deduce that there exists an open subscheme U ⊂ T such that for any locally Noetherian
T ′ → T , the base change ZT ′ → XT ′ is an isomorhism if and only if T ′ → T factors through U . An
isomorhism ZT ′ → XT ′ is the same thing as giving a section XT ′ ' ZT ′ ↪→ YT ′ . We assumed T ′ to be
locally noetherian, but by Noetherian approximation the same reasoning holds in the more general case.

We conclude that T ×HilbY/S SectS(X,Y ) is represented by U , and hence we have the claimed open
immersion. �

We are ready to prove our main result about the sheaf of sections.

Theorem 3.4.13. Let X → S be a flat, finitely presented, projective morphism, and let Y → X be a
finitely presented, quasi-projective morphism. Then SectS(X,Y ) is representable by a disjoint union of
schemes which are finitely presented and locally quasi-projective on S.

Proof. Let L be an invertible OY -module ample relative to π : Y → X and let K be an invertible OX -
module ample relative to p : X → S. For every (n,m) ∈ N2 choose an integer χn,m. Define the subfunctor

Hilb
(χn,m)

Y/S ⊂ HilbY/S

to have T -points the flat closed subschemes Z ⊂ YT such that for all t ∈ T , the Euler characteristic
χ((OZ ⊗ L⊗n ⊗ π∗(K⊗m))t) = χn,m. We choose to look at these particular sheaves because, as we’ll
see, (some) will be (very) ample w.r.t. Y → S, see [Stacks, Lemma 0C4K]. We claim that they form a
disjoint open cover of HilbY/S (making all possible choices of course). First of all, this is Zariski local
on S so we may assume, by Noetherian approximation, S to be Noetherian. By [AK80, Corollary 2.7]
(using HilbY/S = QuotOY /Y/S) the functor HilbY/S is representable by a locally Noetherian scheme.

Let’s first of all verify
HilbY/S =

∐
s∈Z

Hilb
(s)
Y/S

where the coproduct is taken as sheaves. This means that we can assume T connected (and Noetherian,
by approximation) so that using [EGAIII, Tome 2, Thm 7.9.4] the Euler characteristic of (OZ ⊗ L⊗n ⊗
π∗(K⊗m))t (seen as a function on T ) is locally constant (hence constant by connectedness). This implies
that it is a disjoint cover. To see they are open consider the cartesian square

W Hilb
(χ)
Y/S

T HilbY/S
Z

https://stacks.math.columbia.edu/tag/0C4K
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where W = {t ∈ T | χ((OZ ⊗ L⊗n ⊗ π∗(K⊗m))t) = χ} is an open subscheme of T , by the properties
of Euler characteristic mentioned above and by the fact that the connected components of a locally
Noetherian scheme are open [EGAI, Corollaire 6.1.9].

Now it suffices to show that for any choice of (χn,m), the functor

SectS(X,Y ) ∩Hilb
(χn,m)

Y/S

is representable by a scheme finitely presented and locally quasi-projective over S. Again, since this is
Zariski local on S, we will assume S to be affine and Noetherian. By [EGAII, Prop 4.4.6, 4.6.12, 4.6.13],
there exists a scheme Y projective over X, an open immersion Y ↪→ Y , an invertible module L very
ample relative to Y → S, and positive integers a and b such that

L⊗a ⊗ π∗(K⊗b) ' L
∣∣
Y
.

Let Φ ∈ Q[λ] be a polynomial satisfying Φ(n) = χna,nb for a particular choice of such integers. If it
does not exist then Hilb

χna,nb
Y/S is empty and the claim is trivial (so in practice now we focus on the

“right” choice, using the Hilbert polynomial of Z w.r.t. L). Using Lemma 3.4.10, Lemma 3.4.12 and
[AK80, Theorem 2.6, Step IV] we deduce that SectS(X,Y )∩Hilb

(χn,m)

Y/S is an open subfunctor of HilbΦ,L
Y /S

(representable by [AK80, Corollary 2.8]). Since an open immersion to a Noetherian scheme is finitely
presented we can conclude. �

3.4.4 Morphisms between Hom stacks
The goal will be to use our results on the scheme of sections to deduce that the diagonal of BunG is
schematic under certain conditions on X.

Lemma 3.4.14. Suppose X → S is flat, finitely presented, and projective. Let F : Y1 → Y2 be a
schematic morphism between pseudo-functors. If F is quasi-projective (resp. affine) and of finite presen-
tation, then the corresponding morphism

HomS(X,Y1)→ HomS(X,Y2)

is schematic and locally of finite presentation (resp. affine and of finite presentation).

Proof. Let τ2 : XT → Y2 represent, by Yoneda, a morphism T → HomS(X,Y2). Since F is schematic, the
2-fibered product Y1 ×Y2,τ2 XT is representable by a scheme YT . We have thus the following 2-cartesian
square

YT Y1

XT Y2

π

τ1

F

τ2

with the commuting 2-isomorphism γ : F (τ1)
∼→ π∗τ2. Given a T -scheme T ′, suppose that τ ′1 : XT ′ → Y1

is a 1-morphism such that the square

XT ′ Y1

XT Y2

pr1

τ ′1

F

τ2

2-commutes via a 2-morphism γ′ : F (τ ′1)
∼→ pr∗1 τ2. Thus, by the universal property of 2-fibered products,

there exists a unique morphism of schemes f : XT ′ → YT over XT and a unique 2-morphism φ : f∗τ1
∼→ τ ′1

such that

F (f∗τ1) f∗F (τ1) f∗π∗τ2

F (τ ′1) pr∗1 τ2

F (φ)

∼ f∗γ

∼

γ′
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commutes. On the other hand, we have that(
HomS(X,Y1)×HomS(X,Y2) T

)
(T ′) =

{
(T ′ → T, τ ′1 : XT ′ → Y1, γ

′ : F (τ ′1)
∼→ pr∗1 τ2)

}
by the 2-Yoneda lemma. Thus for a T -scheme T ′ and a pair (τ ′1, γ

′) as above, there exists a unique
f ∈ HomXT (XT ′ , YT ) = SectT (XT , YT )(T ′) such that

(f∗τ1, f
∗γ : F (f∗τ1)

∼→ pr∗1 τ2) ∈
(
HomS(X,Y1)×HomS(X,Y2) T

)
(T ′)

and there is a unique 2-morphism (f∗τ1, f
∗γ) ' (τ ′1, γ

′) induced by φ. Therefore we have a cartesian
diagram

SectT (XT , YT ) HomS(X,Y1)

T HomS(X,Y2)

By assumptions we have YT → XT finitely presented and quasi-projective (resp. affine) and hence, by
Lemma 3.4.9 and Theorem 3.4.13 we deduce that SectT (XT , YT ) → T is schematic and locally of finite
presentation (resp. affine and of finite presentation). �

Corollary 3.4.14.1. Suppose X → S is flat, finitely presented and projective. Then the diagonal of
BunG is schematic, affine and finitely presented.

Proof. By Lemma 3.3.13 we deduce that the canonical map BunG×G → BunG×BunG is an isomorphism.
Applying Lemma 3.3.15 and Lemma 3.4.14 to BG → B(G × G) we deduce that BunG → BunG×G is
schematic, affine and finitely presented, and we conclude. �

Corollary 3.4.14.2. Let H ↪→ G be a closed subgroup of G. If X → S is flat, finitely presented
and projective, then the corresponding morphism BunH → BunG is schematic and locally of finite
presentation.

Proof. Immediate. �

3.5 Presentation of BunG
Recall that we defined BunG of X → S in Definition 3.4.6 as HomS(X,BG×S). We will prove that it is
an algebraic stack and give a presentation. We will have lot of lemmas and we will mainly focus on the
case G = GLr, to then pass to the general case using the well known fact that any affine algebraic group
can be embedded into a linear group.

Lemma 3.5.1. The morphism from the k-stack

Br : T 7→ {locally free OT -modules of rank r, with isomorphisms of OT -modules}

to BGLr, sending E 7→ IsomT (OrT , E) is an isomorhism.

Proof. From [Vis08, Theorem 4.2.3] we know that QCoh is an fpqc stack and since local freeness of rank
r persists under fpqc maps (by [EGAIV, Tome 2, Proposition 2.5.2]) we deduce that Br is an fpqc stack.
We have a canonical simply transitive right action of GLr on IsomT (OrT , E) given by right composition.
Given a Zariski covering {Ti ⊂ T}i trivializing E we obtain a descent datum (OrTi , gi,j) for E , where
gi,j ∈ GLr(Ti ∩ Tj). Since IsomTi(OrTi ,O

r
Ti

) ' Ti × GLr, we have a descent datum (Ti × GLr, gi,j)
(the same as before) corresponding to IsomT (OrT , E). Conversely, given P ∈ BGLr(T ) there exists a
descent datum (Ti×GLr, gi,j) for some fppf covering {Ti → T}. If V = Ar is the standard r-dimensional
representation of GLr, then the twist PV is a module in Br(T ) and has a descent datum given by
(OrTi , gi,j). This implies that P 7→ PV is the inverse morphism. �

This implies that any GLr-bundle is Zariski locally trivial. From now on we’ll implicitely use the
isomorhism Br ' BGLr to pass between locally free modules and GLr-bundles.

Fix a base k-scheme S and let p : X → S be a flat, strongly projective morphism, with a fixed ample
invertible sheaf O(1) on X. From now on we will write Bunr as a shorthand for BunGLr , the stack of
GLr-bundles on X. Let’s recall that an OXT -module F is relatively generated by global sections if the
counit p∗T pT∗F → F is surjective.
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Definition 3.5.2. Let F be a quasi-coherent OXT -module, flat over T . We say F is cohomologically flat
in degree i if for any cartesian square

XT ′ XT

T ′ T

v

pT ′ pT

u

the canonical morphism u∗RipT∗F → RipT ′∗(v
∗F) from [Fan+13, p. 8.2.19.3] is an isomorphism.

We will use the main results about the base change formula, written in [Fan+13, Theorem 8.3.2].
In particular we will mainly use the following.

Theorem 3.5.3. Let

X ′ X

Y ′ Y

h

f ′ f

g

be a cartesian square of schemes, with X and Y quasi-compact and separated. Let F be a quasi-coherent
sheaf on X. If the map g is flat, or F is flat on Y , then there is a natural isomorphism

Lg∗Rf∗F → Rf ′∗(h
∗F)

in D(Y ′) (derived category of OY ′ -modules).

In particular we deduce that the induced maps g∗Rqf∗F → Rqf ′∗(h
∗F) are isomorphisms.

We will use the following criterion for cohomological flatness.

Lemma 3.5.4. For an S-scheme T , let F be a quasi-coherent sheaf on XT , flat over T . If pT is separated,
pT∗F is flat and RipT∗F = 0 for i > 0, then F is cohomologically flat over T in all degrees.

Proof. Since the statement is local, we can assume T and T ′ to be affine. By the base change formula
Theorem 3.5.3, we have a quasi-isomorphism

Lu∗RpT∗F
∼→ RpT ′∗(v

∗F)

of chain complexes of OT ′ -modules. Since RipT∗F = 0 for i > 0, we have a quasi-isomorphism pT∗F '
RpT∗F . By flatness of pT∗F we have Lu∗pT∗F ' u∗pT∗F and hence u∗pT∗F ' RpT ′∗(v

∗F). We
conclude that

u∗RipT∗F ' RipT ′∗(v∗F)

for all i (consider i = 0 and i > 0 separately). This isomorphism corresponds to the canonical one given
before, so we can conclude. �

Proposition 3.5.5. For an S-scheme T , let

Un(T ) :=

{
E ∈ Bunr(T )

∣∣∣∣ RipT∗(E(n)) = 0 for all i > 0
and E(n) is relatively generated by global sections

}
be the full subgroupoid of Bunr(T ) = Br(T ). For E ∈ Un(T ), the direct image pT∗(E(n)) is flat, and
E(n) is cohomologically flat over T in all degrees. In particular, the inclusion Un ↪→ Bunr makes Un a
pseudo-functor.

Proof. Since flatness is local we can assume T is affine. Call F = E(n) ∈ Un(T ). Then, remembering
the assumption on p : X → S, XT is quasi-compact and separated, so we can choose a finite affine open
covering U = (Uj)j=1,...,N of XT and use it to compute Čech cohomology. We have an isomorphism

Ȟi(U,F)
∼→ Hi(XT ,F).

By [EGAIII, Tome 1, Proposition 1.4.10, Corollaire 1.4.11], RipT∗F is the quasi-coherent sheaf associated
to Hi(XT ,F), we deduce Ȟi(U,F) = 0 for i > 0. This means that the augmented Čech complex
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0 Γ(XT ,F) Č0(U ,F) . . . ČN−1(U ,F) 0

is exact. Since F is T -flat, also Či(U,F) =
∏
j0<···<ji Γ(Uj0 ∩ · · · ∩ Uji ,F) is flat over Γ(T,OT ). By

induction and [Har77, III, Proposition 9.1] we conclude that Γ(XT ,F) is flat over Γ(T,OT ), i.e. pT∗F is
flat over T . Using Lemma 3.5.4 we conclude that F is cohomologically flat in all degrees.

Now we want to show that for T ′ → T , the pullback ET ′ still lies in Un(T ′), i.e. it is relatively generated
by global sections and it satisfies RjpT ′∗FT ′ = 0 for all j > 0. This last fact holds by cohomologically
flatness (i.e. base change isomorphism holds) so we concentrate on the first one. Again, since this property
is local, let T and T ′ be affine schemes. Thus (relative becomes unnecessary and) there exists a surjection⊕
OXT � F , which pulls back to a surjection

⊕
OXT ′ � FT ′ , showing that FT ′ is also generated by

global sections. Since pullback and tensor product commute, we conclude ET ′ ∈ Un(T ′). �

Remark 3.5.6. If S is affine then the ring Γ(S,OS) is an inductive limit of finitely presented k-algebras
and by [EGAIV, Tome 3, 8] we know that we can find S1 → Spec k affine of finite presentation, a map
S → S1 and a flat projective morphism p1 : X1 → S1 which is equal to p after base change. From now on
we will thus work with such p1, because then we just need to base change to get back results from the
original p. This will allow us to focus only on Noetherian S.

Lemma 3.5.7. The pseudofunctors (Un)n∈Z form an open cover of Bunr.

Proof. Fix T → S and E ∈ Bunr(T ) (i.e. a map T → Bunr). The 2-fibered product Un ×Bunr

T : (Sch/T )op → Grpd sends T ′ → T to the equivalence relation

{(E ′ ∈ Un(T ′), E ′ ' ET ′)} .

To prove Un is open then we just need to find an open subscheme Un ⊂ T with the universal property
such that T ′ → T factors through Un iff RipT ′∗(ET ′(n)) = 0 for i > 0 and ET ′(n) is relatively generated
by global sections over T ′. With the usual locality and Noetherian approximation-fu we can assume S
and T to be affine and Noetherian (for the details see [Wan11, Lemma 4.1.5]).

We will have in mind the following cartesian square

Xt XT

Specκ(t) T

pt pT

where we observe that the upward arrow is a closed immersion by base change. Call F = E(n) and define

Un :=

{
t ∈ T

∣∣∣∣ Hi(Xt,Ft) = 0 for i > 0
and ϕt : p∗t pt∗Ft = Γ(Xt,Ft)⊗OXt � Ft surjective

}
.

We claim that the set of points t ∈ T where Γ(Xt,Ft)⊗OXt � Ft is surjective is open. Indeed consider
the set

F := {x ∈ XT | (ϕt)x : (p∗t pt∗Ft)x → (Ft)x ' Fx is not surjective}

where the subscript x denotes taking the stalk at the point x ∈ XT (ϕt is indeed a map of OXt-modules
and hence ofOX -modules by pushforward of a closed immersion). By Nakayama’s lemma (using coherence
of F and finiteness of Specκ(t)→ T , so that Ft is still coherent) we deduce that if (ϕt)x is surjective at
x ∈ XT , then it is surjective at any y in an open neighborhood of x in XT (we find a lift of generators).
This means exactly that F is closed in XT and hence pT (F ) ⊂ T is also closed since pT is projective.
Then its complement in T is open, and clearly for any t in it, the map ϕt is surjective: there cannot exist
x ∈ XT mapping to t such that (ϕt)x is not surjective, since then x ∈ F and hence t = pT (x) ∈ pT (F ).

Since X is quasi-compact, it can be covered by N affines, and so does Xt by base change. We can
compute the cohomology of Ft using Čech cohomology, from which we immediately see Hi(Xt,Ft) = 0
for i > N and all t. Fixed i, the set of t ∈ T for which Hi(Xt,Ft) = 0 is open by upper semicontinuity
of the fibers [Har77, III, Theorem 12.8] (F is flat over T since it is locally free and pT is flat by base
change). By intersecting a finite number of such sets, we deduce that Un is open.

By [Har77, III, Theorem 12.11], for t ∈ Un we have RipT∗F ⊗ κ(t) = 0 for i > 0. Since p is proper
by assumption, Rip∗F is coherent by [EGAIII, Tome 1, Theorem 3.2.1]. Thus by base change (F is
cohomologically flat by Proposition 3.5.5) and by Nakayama’s lemma we obtain

RipUn∗(FUn) ' (RipT∗F)
∣∣
Un

= 0.
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Again by Nakayama’s lemma we have that FUn is relatively generated by global sections (by the choice
of Un). This proves that EUn ∈ Un(Un), i.e. we have a 2-commutative square

Un Un

T Bunr

EUn

E

Suppose now there is a morphism u : T ′ → T such that RipT ′∗FT ′ = 0 for i > 0 and FT ′ is relatively
generated by global sections. We need to prove it factors through Un. Take t′ ∈ T ′ and let t = u(t′). By
cohomological flatness (and structure of higher direct images) we deduce that Hi(Xt′ ,Ft′) = 0 for i > 0.
Since Specκ(t′)→ Specκ(t) is faithfully flat, by Theorem 3.5.3, we have

Hi(Xt,Ft)⊗κ(t) κ(t′) ' Hi(Xt′ ,Ft′) = 0

and hence Hi(Xt,Ft) = 0 for i > 0. Since FT ′ is relatively generated by global sections, by assumptions,
we have Γ(Xt′ ,Ft′)⊗OXt′ � Ft′ ; by faithfully flatness this implies Γ(Xt,Ft)⊗OXt � Ft. Thus t ∈ Un,
i.e. the morphism u factors through Un.

This proves that Un is open in Bunr. Finally, by Serre’s cohomology theorem [Har77, III, Theorem 5.2],
given E ∈ Bunr(T ) there exists n ∈ Z such that RipT∗(E(n)) = 0 for i > 0 and E(n) is generated by
global sections. This implies that E ∈ Un(T ) and therefore the (Un)n∈Z form an open cover of Bunr. �

Remark 3.5.8. For an S-scheme T and E ∈ Un(T ) we claim that pT∗(E(n)) is a locally free OT -module
of finite rank. The key idea is to use Noetherian approximation, and then the well known algebraic
fact that a flat module of finite type over a noetherian ring is locally free of finite rank. See [Wan11,
Remark 4.1.7].

For a polynomial Φ ∈ Q[λ], define a pseudo-subfunctor BunΦ
r ⊂ Bunr by

BunΦ
r (T ) = {E ∈ Bunr(T ) | Φ(m) = χ(Et(m)) ∀ t ∈ T, m ∈ Z} .

For a locally Noetherian S-scheme T and E ∈ Bunr(T ), the Hilbert polynomial of Et (the unique poly-
nomial in Q[λ] sending n 7→ χ(Et(n))) is a locally constant function on T by [EGAIII, Tome 2, The-
orem 7.9.4]. We deduce (hiding under our carpet all noetherian approximation arguments) that the
(BunΦ

r )Φ∈Q[λ] form a disjoint open cover of Bunr. Let

UΦ
n := Un ∩ BunΦ

r

so that Un has a disjoint open cover given by such opens. Let’s try to understand them better: given
E ∈ UΦ

n (T ) we know by Remark 3.5.8 that pT∗(E(n)) is locally free of finite rank. By cohomological flatness
of E(n) (see Proposition 3.5.5) and the assumption RipT∗(E(n)) = 0 for i > 0, we have H0(Xt, Et(n)) '
pT∗(E(n))⊗κ(t) is a vector space of dimension Φ(n) (we consider Euler characteristic but by assumption
we have only 0-th homology). This implies that pT∗(E(n)) is locally free of rank Φ(n).

Using [Stacks, Lemma 05UN] (which says that if we have a morphism from a pseudofunctor to a stack
that is representable by an algebraic space, then the source is also a stack) and the fact that Bunr is a
stack, we deduce that all these pseudo-functors are also fpqc stacks.

Now we want to find smooth surjective morphisms to the UΦ
n . We will introduce a bunch of new

pseudofunctors.
Let’s define the pseudofunctors YΦ

n : (Sch/S)op → Grpd by

(T → S) 7→

{
(E , φ, ψ)

∣∣∣∣∣ E ∈ UΦ
n (T ), φ : OΦ(n)

XT
� E(n) is surjective,

the adjoint morphism ψ : OΦ(n)
T → pT∗(E(n)) is an isomorphism

}
.

A morphism (E , φ, ψ) → (E ′, φ′, ψ′) is an isomorphism f : E → E ′ satisfying f(n) ◦ φ = φ′. This last
condition is equivalent to pT∗(f(n)) ◦ ψ = ψ′ by adjunction. To give an isomorphism ψ as above just
means specifying Φ(n) elements of Γ(XT , E(n)) that form a basis of pT∗(E(n)) as an OT -module. By how
we defined morphism, YΦ

n (T ) is an equivalence relation.
Technical lemma.

https://stacks.math.columbia.edu/tag/05UN
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Lemma 3.5.9. Suppose we have a cartesian square

XT ′ XT

T ′ T

pT ′

v

pT

u

M ∈ OT − Mod, N ∈ OXT − Mod and φ : p∗TM → N a map of OXT -modules. If ψ : M → pT∗N is
its adjoint morphism, then the composition of u∗(ψ) with the base change map u∗pT∗N → pT ′∗v

∗N
corresponds, via the adjunction (pT ′∗, p

∗
T ′) to v∗(φ) : p∗T ′u

∗M' v∗p∗TM→ v∗N .

Proof. See [Wan11, Lemma 4.1.8]. �

ForM = OΦ(n)
T and N = E(n) in Lemma 3.5.9 we see that the pullbacks of φ and ψ are compatible,

so that YΦ
n is a pseudo-functor in a non-ambiguous way.

Lemma 3.5.10. For Ψ ∈ Q[λ], define the pseudofunctor WΨ : (Sch/S)op → Grpd by

WΨ(T ) :=
{

(F , φ) | F ∈ BunΦ
r (T ), φ : OΨ(0)

XT
� F

}
where a map (F , φ) → (F ′, φ′) is an isomorphism f : F → F ′ satisfying f ◦ φ = φ′. Then WΨ is
representable by a strongly quasi-projective S-scheme.

Proof. As before the WΨ(T ) are equivalence relations so, considering the sets of equivalence classes, WΨ

is isomorphic to a functor
WΨ ⊂ Quot

Ψ,O(1)

OΨ(0)
X /X/S

=: Q.

By Theorem 3.4.4 we know that Q is representable by a scheme strongly projective over S. We will
prove that WΨ ↪→ Q is schematic, open and finitely presented and this will imply that WΨ ' WΨ is
representable by a strongly quasi-projective S-scheme. As usual, by the locality of the claim, we assume
S affine and Noetherian. Let (F , φ) : T → Q and consider WΨ ×Q T , the 2-fibered product. Consider
the following set

U := {x ∈ XT | the stalk F ⊗OXT ,x is free} .

Since F is coherent, by Nakayama’s lemma, U is an open subset of XT . We claim that the open subset

V := T \ pT (XT \ U) ⊂ T

represents WΨ ×Q T . We need to prove that a morphism T ′ → T lands in V iff FT ′ is locally free. If
T ′ → T factors through V , then XT ′ → XT lands in U , which implies that FT ′ is locally free (since, by
construction, F

∣∣
U
is locally free). Conversely, suppose T ′ → T is such that FT ′ is locally free and assume

by contradiction that there exists t′ ∈ T and x ∈ XT mapping to the same t ∈ T such that F ⊗OXT ,x is
not free. We have cartesian squares

(XT ′)t′ (XT )t XT

Specκ(t′) Specκ(t) T

where the down-left arrow is faithfully flat. Then Ft′ ' Ft ⊗κ(t) κ(t′) is a flat OXt′ -module (change base
of FT ′ which is locally free). Since flatness is a local property for the quasi-compact faithfully flat maps
(see [EGAIV, Tome 2, Proposition 2.7.1]), this implies that Ft is flat over OXt . By the definition of Q
(see Definition 3.4.1) F is T -flat. Therefore F ⊗ OXT ,x is OT,t-flat and Ft ⊗OXt,x is OXt,x-flat and by
[Mat70, 20.G] we conclude that F ⊗OXT ,x is OXT ,x-flat and hence a free module, contradiction! Hence
T ′ → T must factor through V . We showed that WΨ is representable by an open subscheme of Q. Since
S is Noetherian, Q is also Noetherian and hence WΨ ↪→ Q is finitely presented (being an open immersion
between Noetherian schemes). �
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Lemma 3.5.11. The pseudo-functor YΦ
n is representable by a scheme Y Φ

n which is strongly quasi-
projective over S.

Proof. Let Ψ ∈ Q[λ] be defined by Ψ(λ) := Φ(λ+ n), and consider WΨ as before. There is a morphism
WΨ → BunΦ

r (observe the change in the polynomial) given by (F , φ) 7→ F(−n) (indeed χ(F(−n)(m)) =
χ(F(m − n)) = Ψ(m − n) = Φ(m)). The corresponding 2-fibered product UΦ

n ×BunΦ
r
WΨ is isomorphic

to the pseudo-functor ZΦ
n : (Sch/S)op → Grpd defined by

ZΦ
n (T ) :=

{
(E , φ) | E ∈ UΦ

n (T ), φ : OΦ(n)
XT

� E(n)
}

where a morphism (E , φ) → (E ′, φ′) is an isomorphism f : E → E ′ satisfying f(n) ◦ φ = φ′. Since UΦ
n

is open and schematic in BunΦ
r then we deduce that the morphism ZΦ

n → WΨ is schematic and open.
Thus Lemma 3.5.10 implies that ZΦ

n is representable by an open subscheme ZΦ
n ⊂ WΨ. We claim that

ZΦ
n ↪→ WΨ is finitely presented: using Noetherian approximation as in Remark 3.5.6 we reduce to S

Noetherian, where this is trivial (any open subscheme of a Noetherian scheme is finitely presented).
Therefore we proved that ZΦ

n is quasi-projective over S.
We will prove that the morphism YΦ

n → ZΦ
n sending (E , φ, ψ) 7→ (E , φ) is schematic, open and

finitely presented, and this suffices to conclude the proof. We may assume S Noetherian as usual,
using Remark 3.5.6 and [EGAG0, Corollaire 4.5.5]. Let (E , φ) ∈ ZΦ

n (T ) and let ψ be the adjoint map
OΦ(n)
T → pT∗(E(n)). Let’s define

U := T \ Supp(cokerψ)

and observe it is open in T . Indeed ψ means choosing Φ(n) sections in Γ(XT , E(n)) and U is the
maximal subscheme of T where they generate pT∗(E(n)), so it is open by Nakayama. Then we easily
see that a map u : T ′ → T lands in U if and only if u∗(ψ) is a surjection, which happens iff u∗(ψ) is
an isomorphism of sheaves, since both OΦ(n)

T and pT∗(E(n)) are locally free OT -modules of rank Φ(n).
From Proposition 3.5.5 we know that the base change morphism u∗pT∗(E(n)) → pT ′∗(ET ′(n)) is an
isomorphism. Thus the compatibility statement of Lemma 3.5.9 says that u∗(ψ) is an isomorphism if and
only if the adjoint of v∗(φ) is an isomorphism, where v : XT ′ → XT . This translates exactly to U being
the representative of the 2-fibered product YΦ

n ×ZΦ
n
T .

Taking T = ZΦ
n , Noetherian, we deduce that YΦ

n → ZΦ
n is schematic, open and finitely presented and

therefore we conclude that YΦ
n is represented by a strongly quasi-projective S-scheme. �

We are ready for the last lemma before our main result. We will connect with the theory of G-bundles
we started studying.

Lemma 3.5.12. There is a canonical right GLΦ(n)-action on Y Φ
n such that the morphism Y Φ

n → UΦ
n

sending (E , φ, ψ) 7→ E is a GLΦ(n)-bundle. Therefore by Lemma 3.3.6 we have an isomorphism

UΦ
n ' [Y Φ

n /GLΦ(n)]

sending E ∈ UΦ
n (T ) to a GLΦ(n)-equivariant map IsomT (OΦ(n)

T , pT∗(E(n)))→ Y Φ
n .

Proof. Define a map α : YΦ
n ×GLΦ(n) → YΦ

n by

((E , φ, ψ), g) 7→ (E , φ ◦ p∗T (g), ψ ◦ g)

over an S-scheme T . The diagram

YΦ
n ×GLΦ(n) YΦ

n

YΦ
n UΦ

n

α

pr1

is 2-commutative, evidently. Then α induces a GLΦ(n)-action on Y Φ
n taking equivalence classes, i.e. there

exists a 2-commutative square

Y Φ
n ×GLΦ(n) Y Φ

n

YΦ
n YΦ

n

∼ ∼

α
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and the associated 2-morphisms satisfy the classic associativity conditions because YΦ
n (T ) is an equiva-

lence relation. Thus we deduce that Y Φ
n → UΦ

n is GLΦ(n)-invariant. For T ∈ Sch/S let E : T → UΦ
n . Then

the 2-fibered product is given by(
YΦ
n ×UΦ

n
T
)

(T ′) =
{

(N , φ, ψ, γ) | (N , φ, ψ) ∈ YΦ
n (T ′), γ : N ∼→ ET ′

}
where a map (N , φ, ψ, γ) → (N ′, φ′, ψ′, γ′) is an isomorphism f : N → N ′ satisfying f(n) ◦ φ = φ′ and
γ′ ◦f = γ. Then the above groupoid is an equivalence relation and YΦ

n ×UΦ
n
T is isomorphic to the functor

P : (Sch/T )op → Set given by

(T ′ → T ) 7→
{

(φ, ψ) | φ : OΦ(n)
XT ′

� ET ′(n), the adjoint ψ is an isomorphism
}
.

Let’s observe that the surjectivity of φ is automatic: since ET ′(n) is relatively generated by global sections,
if we have ψ : OΦ(n)

T ′
∼→ pT ′∗(ET ′(n)), then the adjoint morphism

φ : OΦ(n)
XT ′

ψ
' p∗T ′pT ′∗(ET ′(n))� ET ′(n)

is surjective (where the last morphism is the counit, by definition of adjunction). Thus, P(T ′) is just the
choice of a basis for pT ′∗(ET ′(n)) and the induced right GLΦ(n)-action on P is defined by ψ.g = ψ ◦ g, for
g ∈ GLΦ(n)(T

′). Recall that we know, by Remark 3.5.8, that the direct image pT∗(E(n)) is locally free of
rank Φ(n). By cohomological flatness of E(n) over T by Proposition 3.5.5 we have

P(T ′
u→ T ) ' IsomT ′(OΦ(n)

T ′ , pT ′∗(ET ′(n))) ' IsomT ′(OΦ(n)
T ′ , u∗pT∗(E(n))) '

' IsomT ′(u
∗OΦ(n)

T , u∗pT∗(E(n))) = IsomT (OΦ(n)
T , pT∗(E(n)))(T ′

u→ T )

so that P ' IsomT (OΦ(n)
T , pT∗(E(n))), where the latter is the obvious GLΦ(n)-bundle. This proves that

the map YΦ
n → UΦ

n is a GLΦ(n)-bundle. �

Finalle we conclude this chapter stating our main result about BunG.

Theorem 3.5.13. Let X → S be a flat, finitely presented projective morphism. The S-stack BunG is an
algebraic stack locally of finite presentation over S, with a schematic, affine diagonal of finite presentation.
Additionally, BunG admits an open covering by algebraic substacks of finite presentation over S.

Proof. By Corollary 3.4.14.1 we already know that the diagonal of BunG is schematic, affine and finitely
presented. By the classic [DG70, 2, Theorem 3.3] for any affine algebraic group G there exists r ∈ N such
that G ⊂ GLr is a closed subgroup. So we will first focus on this case and then generalize.

We saw in Lemma 3.5.1 that the morphisms YΦ
n → UΦ

n are smooth and surjective, being GLΦ(n)-
bundles. After having assumed S Noetherian as usual, by Lemma 3.5.11 we know that each YΦ

n is
representable by a scheme Y Φ

n finitely presented over S. The map

Y =
∐

n∈Z,Φ∈Q[λ]

Y Φ
n → Bunr = BunGLr

is then smooth and surjective because the (UΦ
n ) are an open cover of Bunr by Lemma 3.5.7, and Y is

locally of finite presentation over S. This is the searched smooth atlas for Bunr, which is then an algebraic
stack locally of finite presentation over S. From the already mentioned [Stacks, Lemma 05UN] we deduce
that also all the UΦ

n ⊂ Bunr are algebraic stacks, and they are of finite presentation over S (since the Y Φ
n

are so).
Let’s now pass to our initial G; by Corollary 3.4.14.2 we know that the corresponding map BunG →

Bunr is schematic and locally of finite presentation. Consider the 2-cartesian squares

Ỹ Φ
n ŨΦ

n BunG

Y Φ
n UΦ

n Bunr

https://stacks.math.columbia.edu/tag/05UN
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where by base change we deduce that the maps Ỹ Φ
n → ŨΦ

n are smooth and surjective, and the (ŨΦ
n ) form an

open covering of BunG. From Theorem 3.4.13 (using BunG = HomS(X,BG×S) ' SectS(X,X×S BG))
and Corollary 3.4.14.2, we deduce that Ỹ Φ

n is representable by a disjoint union of schemes of finite
presentation over S, let them by Ai (imagine fixed n and φ). Then, chosen i, we have an open immersion
Ai ↪→ Ỹ Φ

n , together with a smooth surjective morphism Ỹ Φ
n → ŨΦ

n , where the last is an algebraic open
substack of BunG. Applying [Stacks, Lemma 05UP] to such map, we deduce that there exists Xn,φ,i
algebraic open substack of ŨΦ

n with a smooth surjective morphism Ai → Xn,φ,i and hence of finite
presentation over S. This concludes our proof. �

https://stacks.math.columbia.edu/tag/05UP


4 Derived stacks

4.1 Recalls of simplicial algebra

From now on k will be a fixed ring. Let’s recall a classical fact, which will be used in the following.

Proposition 4.1.1. Every simplicial set X is the homotopy colimit over its cells. More precisely, let

X̃ : ∆op → Set ↪→ sSet

be the corresponding bisimplicial set, which in degree k is given by the constant simplicial set Xk. Then
we have an isomorphism

Hocolim X̃ → X

in Ho(sSet).

Proof. Classic, see Proposition 6.5, nLab. �

With the same idea one can prove that for X ∈ sSet, we have X ' Hocolim∆n→X ∆n. We will use this
argument a lot in the next chapters. Recall that the category of simplicial abelian groups (abelian group
objects in sSet) has a model structure, right-transferred from sSet (so that equivalences and fibrations are
the same). In particular every simplicial abelian group is a Kan complex thanks to the following classic
proposition.

Proposition 4.1.2. Let G a simplicial group. Then G is a Kan complex. Moreover, let A → B be a
surjection of simplicial abelian groups; then it is a fibration.

Proof. See [GJ99, Lemma I.3.4, Proposition III.2.10]. �

It is also a monoidal model category with the componentwise tensor product, i.e. given A,B ∈ sAb
we can define A⊗ B ∈ sAb by (A⊗ B)n = An ⊗ Bn. The category sComm of simplicial rings also has a
right-transferred model structure and so we can define simplicial modules.

Definition 4.1.3. Let A ∈ sComm and M ∈ sAb. We say that M is a simplicial A-module if there exists
a map

µ : A⊗Z M →M

of simplicial abelian groups satisfying the classical module axioms. The category of simplicial A-modules,
denoted by sA−Mod, inherits a model structure as before.

Similarly we can define the category of simplicial A-algebras (with A ∈ sComm) simply as the comma
category A/sComm. Seeing every ring as a discrete simplicial ring we recover the particular cases of
sk −Mod and sk − Alg.

Theorem 4.1.4 (Dold-Kan). Let k ∈ Comm. The normalised cochain complex functor

N : sk −Mod→ Ch≤0(k)

sending A ∈ sk −Mod to the cochain complex given where N(A)m is the free k-module on Am modulo
degenerate simplices, induces a Quillen equivalence between the category of simplicial k-modules and of
(cohomologically graded) cochain complexes.

Proof. See [Wei94, p. 8.4.1]. �

https://ncatlab.org/nlab/show/homotopy+limit#Examples
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We will use later on this equivalence between the homotopy categories Ho(sk −Mod) and D≤0(k).
Let’s now look a little more in details the model structure of sk−Alg; we will just state some properties,

without proving them. For n ≥ 0 let’s define the n-sphere k-modules by Snk := Sn ⊗ k ∈ sk −Mod. For
every X ∈ sSet we can build the free k-algebra k[X ] ∈ sk − Alg (pointwise construction). In particular
we have isomorphisms

HomHo(sk−Alg)(k[Sn], A) = [k[Sn], A]sk−Alg ' πn(A)

where the homotopy groups are of course based in 0. The inclusions Sn ' ∂∆n+1 ↪→ ∆n+1 induce natural
maps k[Sn]→ k[∆n+1] and one can prove that the set of morphisms

{k[Sn]→ k[∆n+1] | n ∈ N}

is a set of generating cofibrations of sk − Alg, which is also compactly generated.
A finite cell object is an element A ∈ sk − Alg for which there exists a finite sequence in sk − Alg

A0 = k → A1 → A2 → · · · → Am = A

such that for any i there exists a push-out square in sk − Alg given by

k[Sni ] Ai

k[∆ni+1] Ai+1

Using [HAGII, Prop 1.2.3.5] we see that the finitely presented objects of the model category sk − Alg
(see Definition 4.4.2) are exactly retracts of finite cell objects. This reasoning can be generalised to the
category of sA− Alg, with A ∈ sk − Alg, by considering A[Sn] = k[Sn]⊗k A and similar.

The functor π0 : sk − Alg → k − Alg is left Quillen (the right adjoint being the classic inclusion
i : k − Alg → sk − Alg) and preseves finitely presented morphisms, but i does not. This means that
being of finite presentation in sk − Alg is a much stronger condition than to be just a finitely presented
k-algebra. The model structures on simplicial modules and algebras are cofibrantly generated, proper
and cellular.

Given A simplicial commutative k-algebra (recall that any simplicial group is a Kan complex), we
can consider its homotopy groups (based at 0) together as π∗(A) :=

⊕
n πn(A). This is a graded abelian

group (use Dold-Kan correspondence to identify homotopy of A with the homology of the normalized
chain complex), and moreover it is also a graded commutative algebra. In-fact, given α : ∆n/∂∆n '
Sn → A ∈ πn(A) and β : Sm → A ∈ πm(A) maps of pointed simplicial sets, we can consider

α.β : Sn × Sm −→ A×A −→ A⊗k A
µ−→ A

where the last morphism is the multiplication on A. Observing that (Sn, ∗) ∪ (∗, Sm) is sent to zero by
α.β we can factorize through the smash product (defined, as in topological spaces, by the quotient of the
product by the wedge sum) to obtain

α.β : Sn ∧ Sm ∼= Sn+m → A

which will be the product of α and β. Similarly, for M ∈ sA−Mod, π∗(M) is a graded π∗(A)-module.
Let f : A→ B ∈ sComm and consider the classical adjunction

−⊗A B : sA−Mod −⇀↽− sB −Mod :f∗

where f∗ is just restriction of scalars. It is a Quillen adjunction, which becomes a Quillen equivalence
when f is a weak equivalence (see [Fre09, p. 11.2.10]). The left derived functor is denoted by

−⊗L
A B : Ho(sA−Mod)→ Ho(sB −Mod).

As done before, any ring can be considered as a constant simplicial ring and this induces a fully faithful
embedding

j : Comm→ Ho(sComm)
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which possesses a left adjoint
π0 : Ho(sComm)→ Comm.

In the same way, considering a π0(A)-module as a constant simplicial A-module (using the obvious map
A→ π0(A)) we obtain the adjunction

π0 : Ho(sA−Mod) −⇀↽− π0(A)−Mod :j

where j is again a full embedding.
Finally we can consider the loop and suspension functors. They are defined in any nice enough model

category by Ω(X) = ∗ ×hX ∗ and S(X) = ∗
∐h
X ∗, where ∗ is the terminal object (see Definition 1.1.7).

We observe that in our case the suspension S : Ho(sk −Mod) → Ho(sk −Mod) corresponds to the
shift functor E 7→ E[1], using Dold-Kan correspondence. Symmetrically, the loop is the opposite shift
E 7→ E[−1].

4.2 Stable modules

Let’s now introduce the category of stable A-modules, denoted by Sp(A−Mod). We will just use it when
A is a simplicial ring, and there is a more trivial description which we will give at the end of this section;
for now let’s assume to be in a good enough model category C (the precise assumptions are exactly the
Homotopical Algebraic Context one, found in [HAGII]). This section is just a summary of the highlights
of [HAGII, p. 1.2.11].

Assume C is a pointed model category, 1 ∈ Ob(C) its monoidal unit, and let S be the suspension
functor. Let S1

C ∈ C be a cofibrant model for S(1) ∈ Ho(C) and, given A ∈ Comm(C) consider

S1
A := S1

C ⊗A ∈ A−Mod

the free A-module on S1
C . The functor

S1
A ⊗A − : A−Mod→ A−Mod

is left Quillen and has a right adjoint

HomA(S1
A,−) : A−Mod→ A−Mod.

We define the category SpS
1
A(A−Mod) of spectra of A-modules following [Hov01].

Definition 4.2.1. With the notation above, let SpS
1
A(A −Mod) be the category of whose objects are

sequences (Xn)n∈N together with structure maps σ : S1
A⊗AXn → Xn+1 for all n. A morphism of spectra

from X to Y is a collection of maps fn : Xn → Yn commuting with structure maps, i.e. making the
following squares

S1
A ⊗A Xn Xn+1

S1
A ⊗A Yn Yn+1

S1
A⊗Afn

σX

fn+1

σY

commutative. We will call SpS
1
A(A−Mod) the category of stable A-modules, and we will often denote it

by Sp(A−Mod).

We initially endow SpS
1
A(A −Mod) with the projective model structure, with componentwise weak

equivalences and fibrations. Then we will consider the left Bousfield localization of this structure, whose
local objects are the stable modules M∗ ∈ Sp(A−Mod) such that each induced map

Mn → RHomA(S1
A,Mn+1)

is an isomorphism in Ho(A−Mod). Details can be found in [Hov01].
There exists a Quillen adjunction, functorial in A, given by

SA : A−Mod −⇀↽− Sp(A−Mod) : (−)0

where the right adjoint acts by M∗ 7→M0, while the left adjoint is given by SA(M)n = (S1
A)⊗An ⊗AM .

Under reasonable assumption, SA is a fully faithful embedding, i.e. every A-module is a particular stable
A-module.
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Lemma 4.2.2. If the suspension functor S : Ho(C)→ Ho(C) is fully faithful then for any A ∈ Comm(C)
the functor SA is fully faithful. Moreover, if C is a stable model category as in Definition 1.1.8, SA is a
Quillen equivalence.

Proof. See [HAGII, Lemma 1.2.11.2]. �

One can then prove that the Ho(Sp(A − Mod)) is a closed symmetric monoidal category, with the
symmetric monoidal structure inherited from Ho(A −Mod) and still denoted by − ⊗L

A −. In particular
this means that for M∗, N∗ ∈ Sp(A−Mod) we have a stable A-module of morphisms

RHomSp
A (M∗, N∗) ∈ Ho(Sp(A−Mod)).

Let’s now give some more words.

Definition 4.2.3. A stable A-module M∗ ∈ Ho(Sp(A −Mod)) is called 0-connective if it is isomorphic
to some SA(M) for an A-module M ∈ Ho(A −Mod). By induction, for n > 0, M∗ is (−n)-connective
if it is isomorphic to Ω(M ′∗) for some −(n − 1)-connective M ′∗ (recall that Ω is the loop functor on
Ho(Sp(A−Mod))).

Recall that by (A−Mod)∧ we mean the prestack category on A−Mod, i.e. the left Bousfield localization
of the projective strucure on SPr(A−Mod) with respect to the Yoneda images of weak equivalences of
A−Mod. Consider now the following “restricted” Yoneda embedding:

h−s : Sp(A−Mod)op → (A−Modop)∧, M∗ 7→
(
hM∗s : N ∈ A−Mod 7→ Hom(M∗,Γ∗(SA(N)))

)
where we chose a simplicial resolution functor Γ∗ for the model category Sp(A −Mod). One can prove
the following

Proposition 4.2.4. For any A ∈ Comm(C), the functor h−s has a total right derived functor

Rh−s : Ho(Sp(A−Mod))op → Ho((A−Modop)∧)

which commutes with homotopy limits.

Proof. See [HAGII, Proposition 1.2.11.3]. �

We will use this functor later, talking about the cotangent complex.
Finally, as said in the beginning, let’s specialize this very general definition to our well known simplicial

case.

Remark 4.2.5. Let A ∈ sk − Alg and consider the homotopy category Ho(Sp(sA −Mod)). It can be
described as follows: letN(A) be the normalized dg-algebra of A by Dold-Kan (see Theorem 4.1.4 recalling
that N is a lax symmetric monoidal functor). Then we can consider the model category of unbounded
N(A)-dg-modules (weak equivalences are quasi-isomorphisms of complexes and fibrations are the ones of
Ch(k)) and its homotopy category Ho(N(A)− dg −Mod). One can then prove that Ho(Sp(sA−Mod))
and Ho(N(A)− dg−Mod) are equivalent. In particular if A is a commutative k-algebra, then N(A) = A
and we find

Ho(Sp(sA−Mod)) ' D(A) ' Ho(Ch(A)).

4.3 Affine cotangent complex

Let’s now introduce the definition of cotangent complex. We will start from the affine case and then
globalize. We will need some notions of simplicial commutative algebra before.

Definition 4.3.1. Let A ∈ sComm and M ∈ sA−Mod. The trivial square zero extension of A by M is
the simplicial commutative ring A⊕M defined for every n by the classical trivial square zero extension
An ⊕ Mn (faces an degeneracies are defined in the obvious way). In particular, this means that for
a, a′ ∈ An and m,m′ ∈Mn we have

(a,m) · (a′,m′) := (aa′, am′ + a′m)

and sum is obvious.
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It is a bi-augmented A-algebra A→ A⊕M → A by the inclusion/projection respectively. Recall that
the classical (i.e. using normal rings and modules) set Derk(A,M) is defined as the set of k-linear sections
of the projection A⊕M → A. One can prove that Derk(A,−) defines a functor which is corepresentable
by Ω1

A ∈ A−Mod, the module of Kähler differentials.
We can generalize this to the simplicial context: let A ∈ sk − Alg and M ∈ sA −Mod. Recall that

sComm is a simplicial model category (see Definition 1.2.8) and, denoting by Hom its simplicial Hom set,
we can consider its derived version RHom(A,B) = Hom(QA,B) (where QA is a cofibrant replacement
for A). Similarly, the category sA−Mod is enriched over sk−Mod, i.e. we have simplicial Hom sets which
are moreover simplicial k-modules (just as it happens in the classical case). To refresh our memory, we
have

HomsComm(A,B) : [n] 7→ HomsComm(A⊗∆n, B),

HomsA−Mod(M,N) : [n] 7→ HomsA−Mod(M ⊗A A[∆n], N).

which (A⊗∆n)m =
⊗

σ : ∆m→∆n Am is just a particular case of Theorem 2.2.9, recalling that coproduct
in Comm is the tensor product. See [SCR] for the details.

Definition 4.3.2. The simplicial set of derived derivations Derk(A,M) is defined as the homotopy
pullback (computed, equally, either in sSet or sk −Mod)

Derk(A,M) RHomsk−Alg(A,A⊕M)

∗ = k RHomsk−Alg(A,A)

π∗

idA

i.e. the homotopy fiber at idA of the natural map RHomsk−Alg(A,A ⊕ M) → RHomsk−Alg(A,A).
To be precise, the homotopy fiber is taken exactly at the image of idA through the canonical map
Homsk−Alg(A,A)→ RHomsk−Alg(A,A).

A more compact notation is

Derk(A,M) = RHom−/A(A,A⊕M)

where Hom−/A is the simplicial Hom of the comma category sk − Alg/A.

Proposition 4.3.3. The functor

Derk(A,−) : Ho(sA−Mod)→ Ho(sSet)

is co-represented by a simplicial A-module LA = LA/k ∈ Ho(sA−Mod), called the cotangent complex of
A. This means that for any M ∈ sA−Mod one has

Derk(A,M) ∼= MapsA−Mod(LA,M) ∈ Ho(sSet).

Proof. The proof can be found in [Qui70; GH00]. One possible construction for LA is by setting

LA := Ω1
QA ⊗L

QA A ∈ Ho(sA−Mod)

where QA is a cofibrant replacement for A, and Ω1
QA is obtained by applying levelwise the construction

of Kähler differentials. �

Let’s observe that π0(LA) ' Ω1
π0(A) ∈ π0(A)−Mod by adjunction. The construction LA is functorial

in A and therefore for any morphism f : A→ B we have an induced morphism LA → LB in Ho(sA−Mod),
which by adjunction induces a map

LA ⊗L
A B → LB

in Ho(sB −Mod).

Definition 4.3.4. The homotopy cofiber of the above morphism is denoted by LB/A (although it depends
on f) and it is called the relative cotangent complex of B over A. More specifically we have, by definition,
the homotopy cocartesian diagram
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LA ⊗L
A B LB

∗ LB/A

Lf

where the diagram must be taken in the category sB −Mod (so choosing representatives) and ∗ is the
terminal object in sB −Mod.

4.4 Some properties of modules and morphisms

As described in the previous section, given A ∈ sk − Alg we can consider the graded commutative k-
algebra π∗(A), functorial in A. In particular πi(A) is a π0(A)-module and hence for a map A → B in
sk − Alg we obtain a natural morphism

π∗(A)⊗π0(A) π0(B)→ π∗(B)

of π0(B)-modules. More generally, for M ∈ sA−Mod we have a morphism of π0(A)-modules π0(M)→
π∗(M) giving rise to

π∗(A)⊗π0(A) π0(M)→ π∗(M).

Definition 4.4.1. Let A ∈ sk − Alg and M ∈ sA −Mod. The simplicial A-module M is strong if the
natural morphism

π∗(A)⊗π0(A) π0(M)→ π∗(M)

is an isomorphism of graded π∗(A)-modules. A morphism A→ B in sk − Alg is strong if B is strong as
a simplicial A-module.

Let’s now give some definitions of classical module properties, but seen in a homotopical point of
view. This does not happen in the classical case, i.e. with normal rings, because the model structures are
trivial and so it does not change to work in the normal category or in the homotopy one. Here, instead,
there is a difference. All of the following can be carried out in a greater generality, in a monoidal model
category satisfying some niceness properties (an Homotopical Algebraic Context), see [HAGII, Part 1].
This section makes more sense in a general HA context, for our purposes the only results that matter
(that can be as well taken as definitions) are Lemma 4.4.4 and Theorem 4.4.10. We have chosen to include
the more general definitions because they really give an intuition of how classic ones are generalized in
an homotopical context.

Definition 4.4.2. Let A ∈ sk − Alg and M ∈ sA−Mod.

1. M is flat as a simplicial A-module if the functor

−⊗L
AM : Ho(sA−Mod)→ Ho(sA−Mod)

preserves homotopy pullbacks.

2. M is projective if it is a retract of
∐L
I A, for some set I, in the homotopy category Ho(sA−Mod).

3. M is perfect if the natural map (coming from derived tensor adjunction)

M ⊗L
AM

∨ → RHomsA−Mod(M,M)

is an isomorphism in Ho(sA − Mod). Here we are using the derived tensor product, the derived
dual M∨ := RHomsA−Mod(M,A) and the structure of simplicial A-module of the internal hom.

4. f : M → N ∈ sA −Mod is finitely presented if for any filtered diagram {M → Zi}i in sA −Mod,
the natural morphism

Hocolimi MapM/sA−Mod(N,Zi)→ MapM/sA−Mod(N,Hocolimi Zi)

is an isomorphism in Ho(sSet).

Here’s a bunch of properties.
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Proposition 4.4.3. Let A ∈ sk − Alg and M ∈ sA−Mod.

1. The free A-module An is flat

2. Flat modules in Ho(sA−Mod) are stable by derived tensor products, finite coproducts and retracts.

3. Projective modules in Ho(sA −Mod) are stable by derived tensor products, finite coproducts and
retracts.

4. IfM is a flat/projective sA−Mod, thenM⊗L
AB (fixing A→ B a map in sComm) is a flat/projective

sB −Mod.

5. A perfect module is flat.

Proof. See [HAGII, Prop 1.2.4.2]. �

While the previous definitions and properties can be generalized, we can use our definition of strongness
Definition 4.4.1 to have more useful characterizations of such properties in sk − Alg and sA−Mod.

Lemma 4.4.4. Let A ∈ sk − Alg and M ∈ sA−Mod.

1. M is projective (resp. flat) if and only if it is strong and π0(M) is a projective (resp. flat) π0(A)-
module.

2. M is perfect if and only if it is strong and π0(M) is a projective π0(A)-module of finite type.

3. M is projective and finitely presented if and only if it is perfect.

Proof. See [HAGII, Lemma 2.2.2.2]. �

Let’s now focus on properties of morphisms. The philosophy will always be to look at π0 and ask some
strongness condition. As usual, following [HAGII] we will give general definitions (written, for readability,
already in our specific case) and then specialize to our case with simplicial modules.

Definition 4.4.5. Let f : A→ B in sk − Alg.

1. The map f is a (model) epimorphism if for any C ∈ sA− Alg, the simplicial set MapsA−Alg(B,C)
is either empty or contractible.

2. The map f is flat if the induced functor

−⊗L
A B : Ho(sA−Mod)→ Ho(sB −Mod)

commutes with finite homotopy limits.

3. The map f is a formal Zariski open immersion if it is flat and the forgetful functor

f∗ : Ho(sB −Mod)→ Ho(sA−Mod)

is fully faithful.

4. The map f is formally unramified if LB/A ' 0 in Ho(sB −Mod).

5. The map f is formally étale if the natural morphism

LA ⊗L
A B → LB

is an isomorphism in Ho(sB −Mod).

Definition 4.4.6. A morphism f : A→ B ∈ sk − Alg is a Zariski open immersion/unramified/étale if it
is finitely presented and a formal Zariski open immersion/formally unramified/formally étale.

Remark 4.4.7. Recall that in a category C with fiber products, a map i : x→ y is a monomorphism if
and only if x → x ×y x is an isomorphism. In the model context this gives the definition of i being a
monomorphism if the diagonal x→ x×hyx is an isomorphism in Ho(C). Equivalently, i is a monomorphism
if and only if for any z ∈ C the induced map MapC(z, x) → MapC(z, y) is a monomorphism in sSet.
Moreover a map f : K → L of simplicial sets is a monomorphism if and only if for any s ∈ L the
homotopy fiber of f at s is either empty or contractible.

Thus a map A → B ∈ sk − Alg is an epimorphism in the sense of Definition 4.4.5 iff it is a
monomorphism (in the sense explained above) in the opposite model category, or equivalently if the
map B ⊗L

A B → B is an isomorphism in Ho(sk − Alg).
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All these definitions are stable by compositions, equivalences and homotopy pushouts. For a more
detailled discussion see [HAGII, p. 1.2.6]. Let’s now see these general definitions in our simplicial case.

Definition 4.4.8. A map f : A → B is strongly flat/strongly étale/strong Zariski open immersion if it
is strong and if the morphism of affine schemes

Specπ0(B)→ Specπ0(A)

is flat/étale/Zariski open immersion.

Proposition 4.4.9. Let f : A→ B in sk − Alg; it is finitely presented in the sense of Definition 4.4.2 if
and only if

1. the morphism π0(A)→ π0(B) is a finitely presented morphism of rings (classical sense),

2. the cotangent complex LB/A ∈ Ho(sB −Mod) is finitely presented.

Proof. See [HAGII, Proposition 2.2.2.4]. �

Finally, the key result, confirming our philosophy.

Theorem 4.4.10. A morphism in sk−Alg is flat/Zariski open immersion/étale if and only if it is strongly
flat/strong Zariski open immersion/strongly étale.

Proof. See [HAGII, Theorem 2.2.2.6]. �

4.5 Derived Stacks

We work in the category dAff := sCommop, or, if needed, we can work over a different base commutative
ring k, and we will consider simplicial commutative k-algebras. We will write SpecA for A ∈ sComm
just as a formal writing. We endow dAff with the opposite model structure of the classical one on
sComm, the right-transferred structure from the forgetful functor to simplicial sets (concretely speaking
weak equivalences and fibrations are taken in sSet). Let’s consider SPr(dAff) = Funct(dAffop, sSet),
equivalently thought as simplicial object in Psh(dAff). We will introduce three different model structures
on this category, by successive left Bousfield localizations, and to avoid confusion we will use different
names.

Projective model The first model structure, denoted again by SPr(dAff), is simply the projective
model structure on sSetdAff

op

with weak equivalences and fibrations defined componentwise.

Prestack category Let’s now consider the Yoneda embedding

h : dAff→ SPr(dAff), X 7→ hX = Hom(−, X)

extending the classical Yoneda map with constant simplicial sets. Given a weak equivalence X ∼→ Y
in dAff we obtain a map hX → hY which has no reason to be a weak equivalence a priori, and hence
we cannot factorize h through Ho(dAff). For this we introduce a new model structure dAff∧ via left
Bousfield localization of SPr(dAff) with respect to all maps hX → hY coming from X

∼→ Y in dAff.

This intermediate model structure does not appear when defining stacks since they are simplicial
presheaves over Aff, whose model structure is trivial, and thus there’s no need to worry about
equivalences at the source.

Proposition 4.5.1. The fibrant objects in dAff∧ are the F : dAffop → sSet satisfying:

1. For any X ∈ dAff, F (X) is fibrant (i.e. a Kan complex).

2. For any X ∼→ Y in dAff, the induced F (Y )→ F (X) is an equivalence in sSet.

Proof. See [HAGI, p. 4.1]. �
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Recall that dAff∧ is a simplicial model category, being a left Bousfield localization of the simplicial
model category SPr(dAff). Thus, for fibrant and cofibrant objects, the homotopy function complex
is exactly the internal simplicial hom. We will implicitely use from now on the following version of
Yoneda lemma. Define

h : dAff→ dAff∧ : x 7→ (hx : y 7→ Hom(y, x)).

Recall that, in the homotopy category, for x fibrant, this is exactly the homotopy function complex
between y and x. By [HAGI, Lemma 4.2.1], the functor h preserves fibrant objects and weak
equivalences between them, so we can right derive it to obtain Rh = h ◦R, where R is a functorial
fibrant replacement in dAff.

Proposition 4.5.2 (Model Yoneda Lemma). Let’s consider the map Rh as defined above. Then

1. it is fully faithful;

2. the canonical map hx → Rhx is an isomorphism in Ho(dAff∧);

3. for any fibrant object F ∈ dAff∧, using internal simplicial hom, we have

RHom(Rhx, F ) ' RHom(hx, F ) ' F (x)

in Ho(sSet).

Proof. See [HAGI, Theorem 4.2.3]. �

This model-version of Yoneda gives us an equivalent representation of the discrete presheaf hX ,
which is clearly not discrete anymore.

Stack category Finally we want to introduce also a notion of local equivalences for morphisms in dAff∧,
and for this we define the étale Grothendieck topology on Ho(dAff): a family of morphisms {A →
Ai}i in sComm is an étale covering if every A→ Ai is étale (in simplicial sense, see Definition 4.4.5
and Theorem 4.4.10) and if the family of functors

{− ⊗L
A Ai : Ho(sA−Mod)→ Ho(sAi −Mod)}

is conservative. A completely analogue definition gives rise to the étale topology on Ho(dAff/X), for
X ∈ dAff. We use this topology to define homotopy sheaves for objects F ∈ Ho(dAff∧), which we can
assume to be fibrant (and hence to preserve weak equivalences). Given such an F : dAffop → sSet
we consider the presheaf X 7→ π0(F (X)): since it sends equivalences in dAff to isomorphism of sets,
we can factorize it to obtain

πpr0 (F ) : Ho(dAff)op → Set,

which we can finally sheafify to obtain the sheaf π0(F ). Similarly, for X ∈ dAff and s ∈ F (X)0 we
can define a presheaf of groups sending f : Y → X to πj(F (Y ), f∗(s)), which again we can factorize
through the homotopy category and the sheafify to obtain πj(F, s) : Ho(dAff/X)op → Grp.

Definition 4.5.3. Using the same notations as above, π0(F ) and πi(F, s) are called the homotopy
sheaves of F .

As the careful reader may have noticed, we have defined them for a generic object of Ho(dAff∧) by
choosing a particular fibrant approximation, so we should verify that this does not really depend
on this arbitrary choice. This comes from general Bousfield localization properties: local weak
equivalences between local fibrant objects are indeed global equivalences. We are ready to define
the local model structure.

Definition 4.5.4. Let f : F → F ′ ∈ SPr(dAff).

• The map f is a local equivalence if the induced morphism π0(F )→ π0(F ′) is an isomorphism
of sheaves on Ho(dAff), and if for any X ∈ dAff, s ∈ F (X)0 the induced morphism πj(F, s)→
πj(F

′, f(s)) is an isomorphism of sheaves on Ho(dAff/X).

• The map f is a local cofibration if it is a cofibration in dAff∧, i.e. a cofibration in SPr(dAff).

Local fibrations are defined by lifting properties. We call this model structure the local model
structure and we write it like dAff∼.
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We are not proving that this is actually a model structure, see [HAGI] for the details. As before,
we have a nice characterization of fibrant objects in dAff∼.

Proposition 4.5.5. A presheaf F : dAffop → sSet is fibrant if and only if it satisfies the following
properties.

1. For any X ∈ dAff, F (X) is fibrant (i.e. a Kan complex).

2. For any X ∼→ Y in dAff, the induced F (Y )→ F (X) is an equivalence in sSet.

3. Given X,Y ∈ dAff, the natural morphism

F (X ×h Y )→ F (X)× F (Y )

is an isomorphism in Ho(sSet).

4. For any X ∈ dAff and H → X étale hypercovering, the natural map

F (X)→ Holim[n]∈∆ F (Hn)

is an equivalence in sSet.

Finally we can define derived stacks.

Definition 4.5.6. An object F ∈ SPr(dAff) is called a derived stack if it respects conditions (2), (3) and
(4) of Proposition 4.5.5. The homotopy category Ho(dAff∼) is called the homotopy category of derived
stacks (often we will just refer to its objects as derived stacks) and morphisms in this category are denoted
by [F, F ′].

A particular case is the following.

Definition 4.5.7. Let A ∈ sComm and consider SpecA ∈ dAff. We have R(SpecA) = SpecQ(A), for Q
a cofibrant replacement in sComm. We define

RSpecA := RhSpecA : B ∈ sComm 7→ Hom(QA,−).

Any element of dAff∼ isomorphic to RSpecA for some A ∈ sComm is called a derived affine scheme.

Finally let’s talk about internal homs in the homotopy category Ho(dAff∼). A much more general
and detailled treatment can be found at [HAGI, p. 3.6].

Proposition 4.5.8. The homotopy category of derived stacks Ho(dAff∼) is cartesian closed. Its internal
homs are denoted by RHom(−,−). Explicitely, given F and G derived stacks, we have

RHom(F,G) ' Hom(F,RinjG),

where Rinj is the fibrant replacement in the model category SPr(dAff) with the local injective model
structure and Hom is the internal hom functor of SPr(dAff). Furthermore, if G is a derived stack then
RHom(F,G) is a derived stack.

Proof. See [HAGI, Proposition 3.6.1, Corollary 3.6.2, Definition 3.6.3]. �

4.6 Derived geometric stacks

We can give the same definitions of derived geometric n-stacks just as it is done for normal stacks in
Section 2.3.

Let’s first recall that we can consider the model Yoneda embedding

Rh : Ho(dAff)→ Ho(dAff∧)

and we have a corresponding derived analogue of the faithfully flat descent (i.e. the classical theorem
stating that Spec(A) : B ∈ Comm 7→ Hom(A,B) is a sheaf for the fppf topology on Aff). This practically
means that RSpecA : B ∈ sComm 7→ Hom(QA,B) satisfies the descent condition for étale hypercoverings,
i.e. it is a derived stack. Let’s recall our terminology.
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Definition 4.6.1. Objects in the essential image of Rh are called derived affine schemes, or representable
derived stacks.

Observe that, differently from affine schemes of Definition 2.3.1, they are not 0-truncated. Let’s now
give a general definition of a derived scheme.

Definition 4.6.2.

1. A map of derived stacks F → F ′ is a monomorphism if the induced F → F ×hF ′ F is an equivalence
(see Remark 4.4.7).

2. A map of derived stacks F → F ′ is an epimorphism if the induced π0(F ) → π0(F ′) is an epimor-
phism of sheaves.

3. Let i : F → RSpecA be a morphism. It is a Zariski open immersion if it satisfies the following
conditions.

(a) The map i is a monomorphism.

(b) There exists a family of (simplicial) Zariski open immersions {A→ Ai}i such that∐
i

RSpecAi → RSpecA

factors through an epimorphism to F .

4. A map F → F ′ is a Zariski open immersion if for any derived affine scheme X and any map X → F ′

we have that

F ×hF ′ X X

F F ′

the induced map F ×hF ′ X → X is a Zariski open immersion (in the sense of the previous point).

5. A derived stack F is a derived scheme if there exists a family of derived affine schemes {RSpecAi}i
and Zariski open immersions RSpecAi → F such that∐

i

RSpecAi → F

is an epimorphism of sheaves. Such a family {RSpecAi → F} is a Zariski atlas for F .

We say that a morphism of derived schemes X → Y is smooth/flat/étale/finitely presented (etc) if there
exist Zariski atlases {RSpecAi → X} and {RSpecBj → Y } with commutative squares (in Ho(dAff∼))

X Y

RSpecAi RSpecBj

such that the downward arrow has the desired properties (for each i, j). We have, as usual, stability by
composition and homotopy base changes.

Now we are ready to define, by recursion, derived geometric stacks. The definition is exactly the same
as for geometric stacks (we simply work in a different category so we need to use the word “derived”),
but we will write it again here for readability. Since here the derived context is clear, we will just say
“representable” to mean “representable derived stack”.
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Definition 4.6.3.

1. A derived stack F is (−1)-geometric if it is representable (i.e. a derived affine scheme).

2. A morphism of derived stacks F → F ′ is (−1)-geometric if for any representable derived stack X
and any map X → F ′, the homotopy pullback F ×hF ′ X is (−1)-geometric.

3. A (−1)-geometric morphism F → F ′ is (−1)-smooth if for any representable derived stack X and
any mapX → F ′, the induced morphism F×hF ′X → X is a smooth morphism between representable
derived stacks.

Let n > 0 and assume the notions of derived (n − 1)-geometric stack, morphism and smooth morphism
to be defined. Then, by recursion on n, we can define the following.

1. A derived stack F is n-geometric if there exists a family of maps {Ui → F}i∈I such that

(a) each Ui is representable,

(b) each map Ui → F is (n− 1)-smooth,

(c) the total morphism
∐
i∈I Ui → F is an epimorphism.

Such family is a smooth n-atlas.

2. A morphism F → F ′ is n-representable if for any representable derived stack X and any map
X → F ′, the derived stack F ×hF ′ X is n-geometric.

3. An n-geometric morphism F → F ′ is n-smooth if for any representable derived stack X and any
map X → F ′, there exists a smooth n-atlas {Ui} of F ×hF ′X such that each composite map Ui → X
is smooth.

Observe that, since Zariski open immersions are smooth, derived schemes are derived 0-geometric
stacks. All properties stated in the final part of Section 2.3 continue to hold in the derived context, so
we won’t write them again.

4.7 Truncations

Let’s now explore the relation between stacks, as defined in Definition 2.2.5, and derived stacks. The
initial idea is that we enlarged the domain to consider simplicial rings, which have a nontrivial model
structure. By considering every ring as a discrete simplicial one Comm → sComm we have a functor
i : Aff→ dAff, whose pullback functor

i∗ : dAff∼ → SPr(Aff)

can be proved to be a right Quillen adjoint, where SPr(Aff) has the local model structure (see [HAGII,
p. 2.2.4]). Its left Quillen adjoint is denoted by i! : SPr(Aff) → dAff∼. Passing to homotopy derived
functors (and working over k) we obtain the adjunction

Li! : St(k) = Ho(SPr(Aff)) −⇀↽− dSt(k) = Ho(dAff∼) :Ri∗

on the homotopy categories of stacks and derived stacks. Let’s state two important properties.

Lemma 4.7.1. The functor Li! is fully faithful. Moreover the functor i∗ is both right and left Quillen,
and, in particular, it preserves weak equivalences.

Proof. See [HAGII, Lemma 2.2.4.1, Lemma 2.2.4.2]. �

In particular, we have Li!(SpecA) = RSpecA and Li! commutes with homotopy colimits, so that
writing any F ∈ St(k) as homotopy colimit of representable stacks (affine scheme) we get Li!F . Time for
some terminology.

Definition 4.7.2.

1. The truncation functor is
t0 := Ri∗ : dSt(k)→ St(k).
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2. The extension functor is the left adjoint to t0

i := Li! : St(k)→ dSt(k).

3. A derived stack F is truncated if the adjunction counit map

it0(F )→ F

is an isomorphism in dSt(k).

Concretely, the trunctation functor sends a functor F : dAffop → sSet to t0(F ) : Affop → sSet, i.e. we
only compute F on classical nonsimplicial rings. In particular we have

t0(RSpecA) ' Specπ0(A).

Proposition 4.7.3.

1. The truncation functor t0 commutes with homotopy limits and homotopy colimits. The extension
functor i commutes with homotopy colimits, but not with homotopy limits.

2. The truncation functor t0 preserves epimorphism of stacks (they are checked at the level of π0).

3. The functor t0 sends n-geometric derived stacks to n-geometric stacks, and flat (resp. smooth,
étale) morphisms between n-geometric derived stacks to flat (resp. smooth, étale) morphisms to
n-geometric stacks.

4. The functor i preserves homotopy pullbacks of n-geometric stacks along a flat morphism, sends
n-geometric stacks to n-geometric derived stacks and flat (resp. smooth, étale) morphisms between
n-geometric stacks to flat (resp. smooth, étale) morphisms between n-geometric derived stacks.

Proof. See [HAGII, Proposition 2.2.4.4]. �

Let’s conclude with another definition.

Definition 4.7.4. Given a stack F ∈ Ho(SPr(Aff)), a derived extension of F is the data of a derived
stack F̃ ∈ Ho(dAff∼) and an isomorphism of stacks F ' t0F̃ .

There is always a trivial derived extension, given by j, but lot of times most of stacks (coming from
moduli problems) admit natural nontrivial derived extensions. We will see an example with the derived
stack of local system.

4.8 Cotangent complex

Let’s now pass to the global case, and let F be a derived stack and X = RSpecA a derived affine scheme.
Let’s choose an A-point of F (morphism of derived stacks)

x : X = RSpecA→ F

and let’s recall that by Yoneda (Proposition 4.5.2) we have RHom(RSpecA,F ) ' F (A) in Ho(sSet).

Definition 4.8.1. Using the same notation as above, let M ∈ sA−Mod, consider the level-wise trivial
square zero extension A⊕M and let X[M ] := RSpec(A⊕M). We define

Derx(F,M) := Hofiberx(F (X[M ])→ F (X)) ∈ Ho(sSet)

where the map is induced by X → X[M ] (which is induced by the canonical projection A⊕M → A). It
is called the simplicial set of derived derivations of F at the point x with coefficients in M .

Using Yoneda one can rewrite

Derx(F,M) ' MapX/ dSt(X[M ], F ) ∈ Ho(sSet).

This definition is functorial in M and hence we get a functor

Derx(F,−) : sA−Mod→ sSet

(the definition with the mapping space is at the level of homotopy categories, while the one with the
homotopy fibers is at the level of model categories).
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Definition 4.8.2. Let F be a derived stack and let A ∈ sk − Alg.

1. Let x : X = RSpecA → F be an A-point. We say that F has a cotangent complex at x if there
exists an integer n ≥ 0, a (−n)-connective stable A-module LF,x ∈ Ho(Sp(sA − Mod)) and an
isomorphism

Derx(F,−) ' RhLF,xs

in Ho((A−Modop)∧).

2. If F has a cotangent complex at x, the stable A-module LF,x is called the cotangent complex of F
at x.

3. If F has a cotangent complex at x, the tangent complex of F at x is then the stable A-module

TF,x := RHomSp
A (LF,x, A) ∈ Ho(Sp(sA−Mod)).

Suppose F has a cotangent complex at x. This means that for every M ∈ sA − Mod we have an
isomorphism

Derx(F,M) ' RhLF,xs (M) ' MapSp(sA−Mod)(LF,x,M)

in Ho(Sp(sA−Mod)), i.e. LF,x corepresents Derx(F,−) on the level of homotopy categories. In particular,
if A is a discrete k-algebra, by Remark 4.2.5, we have Ho(Sp(sA−Mod)) ' D(A), so that we can consider
LF,x to be a chain complex in A (not necessarily bounded in non-negative degree, so not corresponding
to a simplicial A-module by Dold-Kan). Clearly, for F = RSpecB we obtain again the previously built
affine cotangent complex.

Let’s now consider a morphism u in Ho(dAff∼/F )

Y = RSpecB X = RSpecA

F

u

y x

Let M ∈ sB − Mod, which is also a simplicial A-module using the restriction A → B; we have a
commutative diagram

A⊕M B ⊕M

A B

inducing a commutative diagram of representable stacks

X[M ] Y [M ]

X Y

inducing again a natural morphism

u∗ : Derx(F,M)→ Dery(F,M).

By universal property, assuming the following objects exist, this induces a morphism

u∗ : LF,y → LF,x ⊗L
A B.

Definition 4.8.3. The derived stack F has a global cotangent complex if the following two are satisfied:

(1) For any simplicial ring A and any point x : RSpecA→ F , there exists a cotangent complex LF,x ∈
Ho(Sp(A−Mod)).

(2) For any triangular diagram like the one above, the induced morphism u∗ : LF,y → LF,x ⊗L
A B is an

isomorphism in Ho(Sp(B −Mod)).
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Proposition 4.8.4. Any representable derived stack F = RSpecA has a global cotangent complex.

Proof. See [HAGII, Proposition 1.4.1.8]. �

Proposition 4.8.5. Let F be an n-geometric derived stack. Then F has a global cotangent complex,
which is furthermore (−n)-connective.

Proof. See [HAGII, Proposition 1.4.1.11]. �

There is also a notion of relative cotangent complex for a morphism f : F → F ′ of derived stacks. As
before, let X = RSpecA and x : X → F . The map f induces a morphism Derx(F,M)→ Derf(x)(F

′,M)
and hence a map

dfx : LF ′,f(x) → LF,x
in Ho(Sp(sA−Mod)).

Definition 4.8.6. With the previous notations, we define

LF/F ′,x := Hocofiber(dfx)

and we call it the relative cotangent complex of f at x.

We have used this definition for its shortness, one could also use [HAGII, Definition 1.4.1.14] and then
prove the above one as a property. As before we have a notion of global relative cotangent complex.

Definition 4.8.7. Let f : F → G a morphism of derived stacks. We say that f has a relative cotangent
complex if the following two conditions are satisfied.

1. For any A ∈ sk−Alg and any point x : RSpecA→ F , the map f has a relative cotangent complex
LF/G,x at x.

2. For any commutative diagram

Y = RSpecB X = RSpecA

F

u

y x

in Ho(dAff∼/F ), the induced (same reasoning as before) morphism

u∗ : LF/G,y → LF/G,x ⊗L
A B

is an isomorphism in Ho(Sp(sB −Mod)).

Finally let’s state some of the main properties of cotangent complexes, which can be seen as homo-
topical analogues of the properties of the sheaf of differentials on a scheme (e.g. normal and conormal
sequences).

Lemma 4.8.8. Let f : F → G be a morphism of derived stacks.

1. If F and G both have cotangent complexes, then f has a relative cotangent complex. For every
point x : RSpecA→ F we have a natural homotopy cofiber sequence of stable A-modules

LG,x −→ LF,x −→ LF/G,x.

2. If f has a relative cotangent complex, for map of derived stacks H → G, the morphism F×hGH → H
has a relative cotangent complex satisfying

LF/G,x ' LF×hGH/H,x

for any x : RSpecA→ F ×hG H.

3. If for any point x : X = RSpecA → F , the map F ×hG X → X has a relative cotangent complex,
then the morphism f has a relative cotangent complex. Furthermore, we have

LF/G,x ' LF×hGX/X,x.
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4. If for any point x : X = RSpecA→ F , the derived stack F ×hGX has a cotangent complex, then the
morphism f has a relative cotangent complex. Furthermore, we have a natural homotopy cofiber
sequence

LA −→ LF×hGX,x −→ LF/G,x.

Proof. See [HAGII, Lemma 1.4.1.16]. �

4.8.1 Postnikov towers
Let A be a simplicial commutative k-algebra.

Definition 4.8.9. A is said to be n-truncated if πi(A) = 0 for all i > n.

We can consider the full subcategory of n-truncated simplicial k-algebras sk−Alg≤n (with the induced
model structure) with the corresponding embedding between homotopy categories. This last functor has
a left adjoint

τ≤n : Ho(sk − Alg)→ Ho(sk − Alg≤n)

called the n-truncation functor.

Definition 4.8.10. Let A ∈ sk − Alg and consider a diagram

A→ · · · → A≤n → A≤(n−1) → · · · → A≤1 → A≤0 = π0(A)

of simplicial commutative k-algebras such that

• each A≤n is n-truncated;

• the map dn : A→ A≤n induces isomorphisms on πi for i ≤ n;

• the map dn : A→ A≤n is such that for every n-truncated simplicial k-algebra N , we have

d∗n : Mapsk−Alg(A≤n, N)
∼−→ Mapsk−Alg(A,N) ∈ Ho(sSet).

Such a diagram is called a Postnikov tower of A. It is clearly uniquely defined in the homotopy category
of sk − Alg.

One has a natural isomorphism
A ' HolimnA≤n

in Ho(sk − Alg). Using the cotangent complex we can give an explicit formula for the Postnikov tower
of A, by induction on n (starting with A≤0 = π0(A) and the trivial map A → π0(A)). It can be proven
that for every n > 0 there is an homotopy cartesian diagram

A≤n A≤(n−1)

A≤(n−1) A≤(n−1) ⊕ πn(A)[n+ 1]

0

kn

where πn(A)[i] := Si ⊗ πn(Ai) ∈ Ho(sk −Mod), 0 is the trivial derivation and kn is a (uniquely deter-
mined) derivation, corresponding to an element of [LA≤(n−1)

, πn(A)[n+1]]. This is called the n-Postnikov
invariant of A.

4.8.2 Obstruction theory
Definition 4.8.11. Given A simplicial ring,M ∈ sA−Mod and d ∈ π0(Der(A,M)) let’s define A⊕dΩM
as the homotopy pullback of

A⊕d ΩM A

A A⊕M

p

d

s
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where s : A→ A⊕M is the trivial derivation. The map p : A⊕dΩM → A is called the natural projection.

Definition 4.8.12. A derived stack F is inf-cartesian if for any diagram like above, the square

RF (A⊕d ΩM) RF (A)

RF (A) RF (A⊕M)r

is homotopy cartesian. A derived stack F has an obstruction theory if it has a global cotanget complex
and it is inf-cartesian.

Recall that for F ∈ dSt(k) and A ∈ sk − Alg we write

RF (A) := RHom(RSpecA,F )

so that, by Yoneda lemma, we have RF (A) ' (RF )(A) where RF is a fibrant replacement of F .
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We finally have enough theory to study some examples of derived stacks, generalizing well known classical
stacks, like local systems or vector bundles. Unless otherwise specified, we will work over a base ring
k ∈ Comm (although sometimes, for readability, we will just leave implicit the comma category notation).
Recall that we use the following notations

St(k) := Ho(SPr(Aff/ Spec k)), dSt(k) := Ho(dAff∼/ Spec k).

5.1 Local systems

Let’s consider the 1-geometric stack

Vectn : Affop → sSet, SpecA 7→ Vectn(A)

where Vectn(A) is the nerf of the groupoid of projective A-modules of rank n. It is exactly the nerf of
the classical stack BGLn of Chapter 3. We can see it as a derived stack thanks to the extension functor

i : St(k)→ dSt(k)

of Definition 4.7.2.

5.1.1 Quasi-coherent modules and vector bundles
Let’s now take a little time to define a general version of the derived stacks of vector bundles, which a
priori is unrelated to the extension i(Vectn) (we will see they are equivalent after this section). This is
just a summary of [HAGII, p. 1.3.7]. We will first define the derived stack of quasi-coherent modules,
generalizing the classic case from algebraic geometry.

Definition 5.1.1. Let A ∈ sk−Alg and let’s define the category QCoh(A) of quasi-coherent sA-modules.
Its objects are families (MB)B where B ∈ sA− Alg and MB ∈ sB −Mod, together with isomorphisms

αu : MB ⊗B B′ →MB′

for every morphism of simplicial A-algebras u : B → B′; we also require this family to satisfy a compati-
bility condition, namely that for any pair of maps

B
u→ B′

v→ B′′

of sA − Alg we must have αv ◦ (αu ⊗B′ B′′) = αv◦u. Such data is denoted simply by (M,α). A
morphism (M,α)→ (M ′, α′) is given by a family of morphisms of sB-modules fB : MB →M ′B for every
B ∈ sA− Alg, such that for any u : B → B′ ∈ sA− Alg the diagram

MB ⊗B B′ MB′

(M ′B)⊗B B′ M ′B′

αu

fB⊗BB′ fB′

α′u

commutes.
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Morally, this defines the category of quasi-coherent simplicial sheaves over the derived affine schemes
RSpecA. We have a natural projection functor QCoh(A) → sA − Mod (which will be denoted by
Γ(RSpecA,−) in analogy with the global section functor) sending (M,α) to MA. It is straightforward to
check it is an equivalence of categories, just as in the classical case quasi-coherent modules over an affine
scheme SpecB are equivalent to B-modules.

Moreover, the global section functor can be used to transport the model structure of sA −Mod on
QCoh(A), using the well known Quillen’s transfert theorem. In practice this means that weak equivalences
and fibrations in QCoh(A) are simply checked on the global sections, while cofibrations are defined by
lifting properties.

Given f : A → A′ ∈ sk − Alg, corresponding to u : RSpecA′ → RSpecA, we have a pullback functor
(induced by the tensor product −⊗A A′)

f∗ : QCoh(A)→ QCoh(A′)

and it is clearly a left Quillen functor.

Definition 5.1.2. The assignment A 7→ QCoh(A) and (f : A → A′) 7→ f∗ defines a (pseudo)-functor
QCoh : dAffop

/ Spec k → Cat. It is a cofibrantly generated left Quillen presheaf on dAff/ Spec k, in the sense of
[HAGII, Appendix B].

Since pullbacks are left Quillen, we have a (pseudo)-subfunctor QCohcW , considering the subcategory
of cofibrant objects and weak equivalences between them. Composing it with the nerve (and strictifying
if needed) we obtain the simplicial presheaf

N(QCohcW ) : dAffop
/ Spec k ' sk − Alg→ sSet, A 7→ N(QCoh(A)cW ).

Definition 5.1.3. The simplicial presheaf of quasi-coherent modules is N(QCohcW ) as defined above. It
is denoted by QCoh and considered as an object in dAff∼/ Spec k.

Let’s immediately observe that for any simplicial k-algebra A, QCoh(A) is weakly equivalent to
the nerve of sA − ModcW , so in particular π0(QCoh(A)) is in bijection with isomorphism classes of
Ho(sA−Mod). The main result on quasi-coherent modules is the following theorem.

Theorem 5.1.4. The simplicial preshaf QCoh is a derived stack.

Proof. See [HAGII, Theorem 1.3.7.2]. �

Finally we can talk about vector bundles of rank n. Recall from Lemma 4.4.4 that a simplicial A-
module is projective of rank n if and only if it is strong and π0(M) is a (classical) projective π0(A)-module
of rank n. It is equivalent to ask for the existence of a covering family A → A′ such that M ⊗L

A A
′ is

isomorphic to (A′)n in Ho(sA′ − Mod) (this is simply the homotopical version of projective of rank n
iff locally free of rank n). We can then consider Vectn(A) ⊂ QCoh(A) to be the sub-simplicial set
consisting of connected components corresponding to rank n vector bundles. Since projective modules
are stable by base change, we see that Vectn ⊂ QCoh is indeed a sub-simplicial presheaf. One can prove
the following.

Theorem 5.1.5. The simplicial presheaf Vectn is a derived stack, and it is usually called the derived
stack of vector bundles of rank n. Moreover, Vectn is 1-geometric, finitely presented and its diagonal is
a (−1)-representable morphism.

Proof. See [HAGII, Corollary 1.3.7.4, Corollary 1.3.7.12]. �

5.1.2 Derived stack of local systems
In the previous section, we re-defined Vectn as a derived stack, so now we have two version of derived
stacks of vector bundles: this one and the one obtained extending the classical one. We used the same
notation Vectn for both of them, and this abuse of notation is justified by the following lemma.

Lemma 5.1.6. There exists a natural isomorphism

i(Vectn) ' Vectn

in dSt(k).
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Proof. See [HAGII, Lemma 2.2.6.1]. �

Recalling that the category dAff∼ is a simplicial model category (we start with a simplicial model
category SPr(dAff) and then we do two left Bousfield localizations, which keep the simplicial model
structure), we can consider, fixed K ∈ sSet, the exponentiation functor F 7→ FK which is right Quillen
and hence can be derived. Its right derived functor is denoted by F 7→ FRK ' (RF )K , where RF is a
fibrant replacement of F in dAff∼.

Definition 5.1.7. Let K ∈ sSet, which we think embedded as constant simplicial presheaf in dAff∼. The
derived moduli stack of rank n local systems on K is

RLocn(K) := VectRKn = RHom(K,Vectn) ∈ dSt(k) = Ho(dAff∼k ),

see Proposition 4.5.8.

Let’s recall that we also have a non derived version of this stack Locn(K) : Affop → Grpd defined by
A 7→ Funct(Π1(K), BGLn(A)). One can prove the following.

Lemma 5.1.8. We have an isomorphism in St(k):

Locn(K) ' t0RLocn(K)

where t0 is the truncation functor t0 : dSt(k)→ St(k), right adjoint to i.

Proof. See [HAGII, Lemma 2.2.6.4]. �

Also we have

Lemma 5.1.9. If K is a finite simplicial set, then the derived stack RLocn(K) is a finitely presented
1-geometric derived stack.

Proof. See [HAGII, Lemma 2.2.6.3]. �

We can give also a more intuitive topological notion of the derived stack of local system, to then
finally prove it gives the same result as the simplicial one if we consider it on the geometric realization of
K ∈ sSet. Let X ∈ Top and A ∈ sk−Alg; the category sA−Mod(X) is simply the category of presheaves
on X valued in sA−Mod. We can consider first the projective model structure and then its left Bousfield
localization such that E → F is a weak equivalence if Ex → Fx is an equivalence in sA − Mod for all
x ∈ X. We now focus on the subcategoy sA − Mod(X)cW of cofibrant objects and weak equivalences
between them. If A→ B is a map in sk − Alg we have a base change functor

sA−Mod(X)→ sB −Mod(X), E 7→ E ⊗A B

which is left Quillen and hence induces a functor

−⊗A B : sA−Mod(X)cW → sB −Mod(X)cW .

This construction induces a pseudofunctor A 7→ sA−Mod(X)cW from sk − Alg to Cat, which can be
strictified as usual (see [Hen11] for the explicit procedure), from now on we will pretend it is a genuine
functor. Let’s define a subfunctor of it: for A ∈ sk − Alg we call A − Locn(X) the full subcategory of
sA − Mod(X)cW consisting of all E such that there exists an open covering {Ui} of X such that each
restriction E

∣∣
Ui

is isomorphic, in Ho(sA − Mod(Ui)), to a constant presheaf with fibers a projective
sA −Mod of rank n. This is a subfunctor of A 7→ sA −Mod(X)cW and composing it with the nerve we
obtain a presheaf RLocn(X) ∈ dAff∼ given by

RLocn(X)(A) := N(A− Locn(X)).

Proposition 5.1.10. Let K ∈ sSet and |K| ∈ Top be its geometric realization. Then the simplicial
presheaf RLocn(|K|) is a derived stack and there exists an isomorphism

RLocn(|K|) ' RLocn(K)

in dSt(k).

Proof. See [HAGII, Proposition 2.2.6.5]. �
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Let’s now try to describe the cotangent complex of RLocn(K) at a global point

E : ∗ = Spec(k)→ RLocn(K)

and recall that it belongs to Ho(Ch(k)) = D(k) (derived category of k) and for any M ∈ sk − Mod
(identified with a chain complex in negative degree by Dold-Kan when needed) it satisfies

DerE(RLocn(K),M) ' MapCh(k)(LRLocn(K),E ,M) ∈ Ho(sSet).

Let’s first observe that, using the adjunction with t0 (whose left adjoint is the inclusion functor i) and
Lemma 5.1.8, E corresponds to a map Spec(k)→ Locn(K) in St(k), which then, by Corollary 2.2.10.1,
corresponds to a functor Π1(K) → G(k), where G(k) is the groupoid of projective k-modules of rank n,
i.e. E is a local system on K. We can then consider the homology complex of K with coefficients in the
local system E ⊗k E∨, where E∨ is the pointwise dual.

An intuitive way to think about local system on a space X (since Top and sSet are Quillen equivalent)
is to think about locally constant sheaf of modules, so that the cohomology complex is just the sheaf
cohomology one.

Let’s quickly view two nice proofs of the universal coefficient theorems in a derived setting, which will
help us understand the next part. We will just focus on abelian groups, to avoid the spectral sequence
versions.

Proposition 5.1.11 (Universal Coefficients). Let X ∈ Top be a nice space (e.g. a CW-complex) and
G ∈ Z−Mod. We have the following two (non-naturally) split exact sequences

0 Hn(X)⊗G Hn(X,G) Tor1(Hn−1(X), G) 0,

0 Ext1(Hn−1(X), G) Hn(X,G) Hom(Hn(X), G) 0.

In the derived category D(Z) this just amounts in saying

C∗(X,G) ' C∗(X)⊗L G, C∗(X,G) ' RHom(C∗(X), G).

Proof. Since the homology complex C∗(X) is bounded and free in each component and Z is a PID, we
can write, in the derived category D(Z)

C∗(X,G)
def' C∗(X)⊗G ' C∗(X)⊗L G.

The proof of this fact goes as follows: we can find a quasi-isomorphism from a complex of free abelian
groups F∗ to C∗(X), and the complex of free Z-modules is itself quasi-isomorphic to the sum of its
homology, using the fact that every subgroup of a free abelian group is free (we write every term Fn '
ker ∂n ⊕ im ∂n). To get back the original statement we can just observe that in D(Z) we have

C∗(X) '
⊕
n

Hn(X)[n] =⇒ C∗(X)⊗L G '
⊕
n

(Hn(X)⊗L G)[n].

Since Z has projective dimension 1 (i.e. any abelian group has a free resolution with only two nonzero
terms) we see that in D(Z), for any A ∈ Ab, we have A⊗LG ' (A⊗G)⊕Tor1(A,G)[1]. We then conclude

C∗(X,M) '
⊕
n

Hn(X,M)[n] '
⊕
n

(
(
Hn(X)⊗G)⊕ Tor1(Hn−1(X), G)

)
[n].

The cohomology version is analogue, observing

C∗(X,G)
def' Hom(C∗(X), G) ' RHom(C∗(X), G)

and RHom(A,G) ' Hom(A,G)⊕ Ext1(A,G)[1]. �

Proposition 5.1.12. We have an isomorphism in D(k):

LRLocn(K),E ' C∗(K,E ⊗k E∨)[−1].
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Proof. Let’s fix M ∈ sk−Mod and try to compute DerE(RLocn(K),M), defined as the homotopy fiber
of

RLocn(K)(RSpec(k ⊕M))→ RLocn(K)(RSpec(k))

at E, where the morphism is induced by the projection k ⊕M → k (trivial square zero extension at
every level). This corresponds to the simplicial mapping set of all maps K → Vectn(k ⊕M) lifting
E : K → Vectn(k), i.e. we have

DerE(RLocn(K),M) ' MapsSet/Vectn(k)(K,Vectn(k ⊕M)) ∈ Ho(sSet).

Let’s try to describe in a different way the projection Vectn(k⊕M)→ Vectn(k); observe first of all that,
thanks to the bi-augmentation k → k⊕M → k, this map has a section. We claim that it is already a Kan
fibration, so we can compute its homotopy fiber just with a normal pullback. Recalling the definitions,
Vectn(A), for A ∈ sk − Alg, is just the nerf of the groupoid of projective sA-modules of rank n (see
Definition 4.4.2). Then, to verify that it is a fibration, we just need to verify it lifts against generating
acyclic cofibrations Λnk → ∆n. This holds by surjectivity and by the fact that we are taking nerves of
groupoids (i.e. all maps are invertible). Thus, this is a fibration and we can just compute the normal
fiber.

Observe now that any projective s(k⊕M)−Mod is a cobase change of a projective k−Mod. Indeed
a projective s(k ⊕M) −Mod corresponds to an idempotent endomorphism of a free s(k ⊕M) −Mod:
fixing a base of such a free module (of finite type, since we are interested in rank n), the coefficients of
the matrix of such endomorphism must lie in k (embdedded in k⊕M), since multiplication on M is zero
in k ⊕M . This means exactly that we can consider the corresponding endomorphism of the same free
k-module, obtaining a projective k-module, and then base change to get back our original module.

Let’s define a simplicial category G(k ⊕M) having as objects projective k-modules of rank n (same
objects as G(k)) and having as the simplicial set of morphisms

G(k ⊕M)(P, P ′) := HomW
s(k⊕M)−Mod(P ⊕ (P ⊗kM), P ′ ⊕ (P ′ ⊗kM))

where we consider the sub-simplicial set of (weak) equivalences in the simplcial hom-sets in the S-category
s(k⊕M)−Mod. Observe that P ⊕ (P ⊗kM) ' P ⊗k (k⊕M), which is a cobase change of P ∈ sk−Mod
(seen as a constant simplicial k-module). It is then cofibrant, since − ⊗k (k ⊕M) preserves cofibrant
objects (being left Quillen) and since P is cofibrant as sk −Mod, being projective (any acyclic fibration
is surjective levelwise and projective modules lift against surjections). Let’s also observe that, since a
surjection between simplicial abelian groups is a Kan fibration of simplicial sets by Proposition 4.1.2,
every object of s(k⊕M)−Mod is also fibrant. We have a natural map of S-categories G(k⊕M)→ G(k)
being identity on objects and acting on simplicial sets of morphisms by

HomW
s(k⊕M)−Mod(P ⊕ (P ⊗kM), P ′ ⊕ (P ′ ⊗kM))→ HomW

sk−Mod(P, P ′)→

constπ0(HomW
sk−Mod(P, P ′)) ' G(k)(P, P ′)

where we consider G(k) as simplicial enriched category in the trivial way (constant morphism). Using
[HAGII, Prop. A.0.6], we can say that the projection Vectn(k ⊕M) → Vectn(k) is isomorphic to the
map

N(G(k ⊕M))→ N(G(k)),

where we consider the nerve of an S-category, defined as the diagonal of the bisimplicial set sending
([n], [m]) to chains of (n + 1) objects whose degree of maps is m. It is again a right Quillen adjoint, as
in the classical case (explained, for example, in [DK79] and in [HAGII, Appendix A]). This means that
N preserves (homotopy) pullbacks.

Let’s now focus on the particular case where K = ∆0, where E : ∆0 → Vectn(k) is just a projective
k-module of rank n. Using ∆0 = N(1), where 1 is the singleton groupoid, we just need to find the fiber,
in S-categories, of G(k ⊕M) → G(k) at E ∈ G(k). The object set is clearly a singleton, corresponding
to the point E in G(k ⊕M), so the only problem is finding its simplicial set of endomorphisms, which is
exactly the sub-simplicial set of endomorphism of E in G(k⊕M) that gets sent to idE . Observe that (by
the tensor-forgetful adjunction) we have

HomW
s(k⊕M)−Mod(E ⊕ (E ⊗kM), E ⊕ (E ⊗kM)) ' HomW

sk−Mod(E,E ⊕ (E ⊗kM)) '

HomW
sk−Mod(E,E)×Homsk−Mod(E,E ⊗kM)
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and hence the simplicial set of morphisms must be Homsk−Mod(E,E⊗kM) ' E⊗k E∨⊗kM (since E is
of finite type). Therefore the searched fiber is the S-category (∗, E ⊗k E∨ ⊗kM), whose simplicial nerve
is the classifying space K(E ⊗k E∨ ⊗kM, 1), defined by [n] 7→ (E ⊗E∨ ⊗Mn)×n, with faces and cofaces
being the obvious ones. Summarizing, we have this (homotopy) pullback diagram in sSet:

K(E ⊗ E∨ ⊗M, 1) Vectn(k ⊕M)

∆0 Vectn(k)E

Therefore, using the universal property of the pullback, we obtain

DerE(RLocn(∆0),M) ' MapsSet/Vectn(k)(∆
0,Vectn(k ⊕M)) '

' MapsSet/∆0(∆0,K(E ⊗ E∨ ⊗M, 1)) ' K(E ⊗ E∨ ⊗M, 1).

Expressing K as homotopy colimit of standard simplices ∆n (the index category is given by maps ∆m →
K) we obtain

DerE(RLocn(K),M) ' MapsSet/Vectn(k)(K,Vectn(k ⊕M)) '
Holim∆n→K MapsSet/Vectn(k)(∆

n,Vectn(k ⊕M))

and, by recalling that local systems only depend on the homotopy type of the base space (and ∆n is
contractible), using the above expression for ∆0 (being careful that there E means the restriction of our
local system to one simplex) we obtain

DerE(RLocn(K),M) ' MapsSet(K,K(E ⊗k E∨ ⊗kM, 1)).

Lemma 5.1.13. We have an isomorphism

MapsSet(X ,K(G, n)) ' MapCh(k)(k,C
∗(X ,G)[n])

in Ho(sSet), where X ∈ sSet, G ∈ sk −Mod and K(G, n) is the n-th classifying space, obtained applying
n times, in sequence, the bar construction to the S-category G, i.e. K(G, n) = Bn(G).

Proof. We will just sketch a proof to justify why this adjunction should hold, or better, how we must
understand the object C∗(X ,G) (which is weird, since G is a simplicial k-module). To motivate the
generalization in the lemma we will assume G to be discrete and call it G ∈ k − Mod (so that if the
property holds for discrete objects then definitions are taken so that it still holds in the general case).

By Proposition 4.1.1 we can write X ' Hocolim∆n→X ∆n and using the properties of the mapping
space (see Theorem 1.3.17) we can write

MapsSet(X ,K(G,n)) ' Holim∆n→X MapsSet(∆
n,K(G,n))

and since ∆n ' ∆0 in Ho(sSet) (contractible) we have

MapsSet(X ,K(G,n)) ' Holim∆n→X MapsSet(∆
0,K(G,n)) ' Holim∆n→X K(G,n).

Similarly, writing the cohomology complex C∗(X , G) as the homotopy limit of the C∗(∆n, G) ' G we
get, for the right hand side, the following expression

MapCh(k)(k,C
∗(X , G)[n]) ' Holim∆n→X MapCh(k)(k,G[n]) ' Holim∆n→X MapsAb(k,DK(G[n]))

where we used the Dold-Kan equivalence, see Theorem 4.1.4. Let’s observe now, using the free-forgetful
adjunction, that

MapsAb(k,DK(G[n])) ' MapsSet(∆
0, DK(G[n])) ' DK(G[n]).

We are reduced to compare K(G,n) and DK(G[n]) as simplicial set, which are clearly weak equivalent
(the only nontrivial homotopy group of K(G,n) is πn = G, while the only nontrivial homology, and hence
homotopy group using Dold-Kan, of G[n] is Hn = G). �
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Thus by the intuition given by the lemma we are confident enough to write

MapsSet(K,K(E ⊗k E∨ ⊗kM, 1)) ' MapCh(k)(k,C
∗(K,E ⊗k E∨ ⊗kM)[1]) '

' MapCh(k)(k[−1], C∗(K,E ⊗k E∨ ⊗kM)).

By perfectness of E ⊗ E∨ and (a general version of) Proposition 5.1.11 we have

C∗(K,E ⊗k E∨ ⊗kM) ' RHom(C∗(K,E ⊗k E∨),M)

and hence, using the adjunction with the (left derived) tensor product (although here k[−1] is already
projective, so it does not make any difference and it just produces a shift), we conclude

DerE(RLocn(K),M) ' MapCh(k)(k[−1],RHom(C∗(K,E ⊗k E∨),M)) '
' MapCh(k)(C∗(K,E ⊗k E∨)[−1],M).

Thus, we finally conclude that

LRLocn(K),E ' C∗(K,E ⊗k E∨)[−1] ∈ Ho(Ch(k)). �

5.2 Derived mapping stack

Definition 5.2.1. Let X be a (classic) stack over k ∈ Comm and F a derived n-geometric stack. The
mapping derived stack of morphisms between X and F is given by

Map(X,F ) := RHom(i(X), F ) ∈ dSt(k)

where RHom is the internal hom of the cartesian closed category Ho(dAff∼), as defined in Proposi-
tion 4.5.8 (a priori this differs from the internal hom for the category of stacks St(k)). It sends A ∈ sComm
to RHom(i(X)×h RSpecA,F ).

Let’s recall the following criterion.

Theorem 5.2.2 (J. Lurie’s representability criterion). Let F ∈ dSt(k). The following are equivalent:

(1) F is an n-geometric derived stack.

(2) F satisfies the three following conditions.

(a) The truncation t0(F ) is an Artin (n+ 1)-stack, i.e. it is (n+ 1)-truncated and m-geometric for
some m.

(b) F has an obstruction theory.

(c) For any A ∈ sk − Alg, the natural map

RF (A)→ Holims RF (A≤s)

is an isomorphism in Ho(sSet), where we consider the Postnikov tower of A.

Proof. See [HAGII, Appendix C]. �

Let’s now concentrate on a particular case, namely when X is a projective and flat k-scheme and
F = Y is also a projective smooth k-scheme. Let’s recall the following.

Remark 5.2.3. Let τ : SpecA→ Spec k a map of schemes. Let’s observe the classical adjunction

τ∗ : OSpecA −Mod ' A−Mod→ OSpec k −Mod ' k −Mod : (τ)∗

passes to chain complexes Ch(A) and Ch(k) (endowed with the projective model structures) inducing a
Quillen adjunction. The left derived functor Lτ∗ corresponds to the left derived tensor product A⊗L

k −,
while R(τ)∗ is denoted also as C∗(SpecA,−) is the sheaf cohomology complex (indeed the non-derived
version just amounts to taking global sections, i.e. (τ)∗F = Γ(F ,SpecA)).

We are ready to prove the following.
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Proposition 5.2.4. With the same notations as above, the derived stack Map(X,Y ) (we consider X
and Y already embedded in dSt(k)) is a 1-geometric derived stack. Moreover, for any f : X → Y the
cotangent complex of Map(X,Y ) at the point f is

LMap(X,Y ),f ' C∗(X, f∗TY )∨

where TY = HomOY −Mod(Ω1
Y/ Spec k,OY ) is the tangent sheaf of Y → Spec k and C∗(X, f∗TY ) is the

sheaf cohomology complex.

Proof. As usual observe that a point Spec k → Map(X,Y ) corresponds, using adjunctions and Yoneda,
to an element of π0(Map(X,Y )(Spec k)) = HomdSt(k)(X,Y ), i.e. to a map f : X → Y . Let’s first focus
on finding the cotangent complex. To do so, we must understand derivations; denote by S = RSpec k,
pick M ∈ sk −Mod and let S[M ] = RSpec(k ⊕M). Then

Derf (Map(X,Y ),M)
def
= MapX/ dSt(k)(X ×hS RSpec(k ⊕M), Y ) = MapX×SS/ dSt(k)(X ×hS S[M ], Y ).

Writing X = Hocolimi Ui for Ui = RSpecAi flat affine k-schemes (a suitable chart system of X) with
Ai flat k-algebra for each i, we obtain

MapX×SS/ dSt(k)(X ×hS S[M ], Y ) ' Holimi MapUi/ dSt(k)(Ui ×hS S[M ], Y ).

Observe that we implicitely used that Hocolimi and − ×hS S[M ] commute (this derives from properties
of t-model topoi, see [HAGI, Theorem 4.9.2]). Observe now that

Ui ×hS S[M ] = RSpec(Ai)×hk RSpec(k ⊕M) ' RSpec(Ai ⊕ (Ai ⊗L
k M)) = Ui[Ai ⊗L

k M ]

and, calling τi : Ui → Spec k the structure morphism, we get Ai ⊗L
k M = Lτ∗i (M) (the pullback functor

τ∗ is left Quillen, and we are also identifying quasi-coherent modules on affine schemes with their global
sections). Thus we can write

MapX/ dSt(k)(X×hSS[M ], Y ) ' Holimi MapUi/ dSt(k)(Ui[Lτ∗i (M)], Y ) ' Holimi MapCh(Ai)(LY,gi ,Lτ
∗
i (M))

where the last function complexes is in Ch(Ai), gi is the restriction of f to Ui and LY,gi = g∗i LY is
the global cotangent complex of Y (which is a smooth scheme, hence its cotangent complex is perfect,
corresponding to the classical cotangent sheaf) at the point gi : Ui → Y . Recalling the the (global)
tangent complex TY is defined as the dual complex of LY , we obtain

Holimi MapCh(Ai)(g
∗
i LY ,Lτ∗i (M)) ' Holimi MapCh(Ai)(Lτ

∗
i (M∨), g∗i TY ) '

' Holimi MapCh(k)(M
∨, C∗(Ui, g

∗
i TY ))

where the last passage is given by the universal property of the cohomology complex (right derived functor
of global sections, which corresponds to the structure pushforward to Spec k, see Remark 5.2.3).

Notice that we also used, en passant, the commutation between the (derived) pullback τ∗i and the
(derived) dual (−)∨ = RHomk(−, k). This is possible because Ai is flat over k and hence

(Lτ∗i (M))∨ = RHomCh(Ai)
(Ai ⊗L

k M,Ai) ' Ai ⊗L
k RHomCh(k)(M,k) = Lτ∗i (M∨).

Finally, recalling that X = Hocolimi Ui, we obtain

Derf (Map(X,Y ),M) ' MapCh(k)(M
∨, C∗(X, f∗TY ))

so that, using again duality and (M∨)∨ 'M , we can conclude

LMap(X,Y ),f ' C∗(X, f∗TY )∨.

This last passage is justified by the fact that f∗TY is a perfect complex in Ch(OX −Mod): this holds
because TY is projective, since Y is smooth (so that also the pullback is projective, componentwise)
and X is projective (so its higher cohomology groups will vanish, i.e. only a finite number of nonzero
components will be present). �

Let’s state and prove a technical lemma about inf-cartesianity.
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Lemma 5.2.5. Let F be a derived stack which is inf-cartesian. Then, for any F ′ ∈ dSt(k) the mapping
derived stack Map(F ′, F ) is also inf-cartesian.

Proof. Choose F ′ derived stack and write it (using the “homotopical” version of the density theorem,
the classical statement saying that any presheaf is a colimit of representable presheaves) as an homotopy
colimit of representable derived stacks

F ′ ' Hocolimi Ui ∈ dSt(k)

Then we obtain
Map(F ′, F ) ' Holimi Map(Ui, F )

and, as inf-cartesian property is stable by homotopy limits, we can just focus on the case F ′ = RSpecB
is representable. Let A ∈ sk − Alg and M ∈ sA − Mod with π0(M) = 0 and choose a derivation
d ∈ π0(Derk(A,M)). Applying the derived stack Map(F ′, F ) to the homotopy pullback diagram defining
A⊕d ΩM (see Definition 4.8.11) we obtain the commutative diagram

Map(F ′, F )(A⊕d ΩM) Map(F ′, F )(A)

Map(F ′, F )(A) Map(F ′, F )(A⊕M)

and, observing Map(F ′, F )(A) = RHom(RSpecB ×hk RSpecA,F ) ' RF (A⊗L
k B) we get

RF ((A⊕d ΩM)⊗L
k B) RF (A⊗L

k B)

RF (A⊗L
k B) RF ((A⊕M)⊗L

k B).

By assumption F is inf-cartesian, so we can consider this property with A⊗L
k B ∈ sk−Alg and d⊗k B ∈

π0(Derk(A ⊗L
k B,M ⊗L

k B)), and we obtain that the last diagram is homotopy cartesian (the functor
− ⊗L

k B commutes with homotopy pullbacks, since − ⊗k B is left Quillen). Thus we conclude that also
Map(F ′, F ) is inf-cartesian. �

Let’s now state a criterion to investigate the n-geometricity of the derived stack Map(X,F ) (with the
same notations as above, i.e. X is a stack and F an n-geometric derived stack).

Theorem 5.2.6. With same notations as above, assume the following are satisfied:

(1) The stack
t0(Map(X,F )) ' RHom(X, t0(F )) ∈ St(k)

is n-geometric (where the last Hom is the internal hom for classical stacks).

(2) The derived stack Map(X,F ) has a global cotangent complex.

(3) The stack X can be written, in St(k), as an homotopy colimit Hocolimi Ui, where Ui is an affine
scheme, flat over Spec k.

Then, the derived stack Map(X,F ) is n-geometric.

Proof. The converse holds, clearly. Let us suppose Map(X,F ) respects the three hypotheses, and let’s
try to lift an n-atlas of t0(Map(X,F )) to an n-atlas of Map(X,F ). We will use Theorem 5.2.2, i.e. we
need to prove that Map(X,F ) satisfies conditions (a)-(c). The condition (a) is exactly our assumption
(1). Having an obstruction theory means having a global cotangent complex and being inf-cartesian: the
existence of cotangent complex is assumption (2), while for inf-cartesian we can use Lemma 5.2.5. It then
remains just to show condition (c) of Lurie’s criterion. Let’s now write X = Hocolimi Ui, with Ui affine
and flat over k, so that

Map(X,F ) ' Holimi Map(Ui, F ).

Since condition (c) is stable by homotopy limits, we can assume X = SpecB for B a commutative flat
k-algebra. For any A ∈ sk −Mod the map

Map(X,Y )(A)→ Holims Map(X,Y )(A≤s)
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is equivalent to (see the proof of preceeding lemma)

RF (A⊗k B)→ Holims RF ((A≤s ⊗k B))

where we didn’t write the left-derived tensor product since B is flat over k (and hence A⊗kB corresponds
to A⊗L

kB). By flatness, we can write (A≤s)⊗kB ' (A⊗kB)≤s (recall that A≤s is obtained as an homotopy
pullback) and therefore the above morphism is equivalent to

RF (A⊗k B)→ Holims RF ((A⊗k B)≤s)

which is an equivalence since F is n-geometric (using the other direction of Theorem 5.2.2). �

5.3 Derived moduli space of vector bundles

Finally we will focus our attention on the derived version of the stack of rank n vector bundles (i.e. GLn-
bundles) studied in Chapter 3. We start with similar assumptions, namely p : X → Spec k a projective
and flat map (so that X is a projective flat space over k). Here k will be a field.

Definition 5.3.1. The derived moduli space of GLn-bundles of p : X → Spec k is

Map(X,Vectn) := RHom(X,Vectn) ' RHom(X,BGLn)

where we view X,Vectn and BGLn implicitely embedded in dSt(k).

We see that it is exactly the derived version of Definition 3.4.6. Recall that, as classic stacks, Vectn '
BGLn.

Remark 5.3.2. Let’s take a little detour, which will be useful in the following proof; let j : X → SpecA
be a map of schemes and consider the direct image functor

j∗ = Γ(X,−) : QCoh(X)→ A−Mod.

Write X as colimit of affine charts Ui and observe that, by the very definition of sheaf, we can write j∗
as a limit of the functors of global sections on the open covering {Ui}i (considering also intersections).
More specifically we have the following diagram

Ui X

SpecA

π

σ

j

and we consider the (pseudo)-functors π∗ ◦ σ∗ (the index i is implicit), acting by F 7→ Γ
(
Ui,F

∣∣
Ui

)
. We

can thus write
j∗ ' lim←−

i

π∗ ◦ σ∗

and we will then use the derived version of this (which is nothing else then the derived base change
formula), stating

C∗(X,−) = Rj∗ ' Holimi C
∗(Ui,Lσ∗(−)) ∈ D(A).

Proposition 5.3.3. The derived stack Map(X,Vectn) has a global cotangent complex. In particular,
given a point x : RSpecA → Map(X,Vectn) with A ∈ sk − Alg, corresponding to a vector bundle E on
X ×h RSpecA, the cotangent complex is

LMap(X,Vectn),E ' C∗(X ×h RSpecA, End(E))[−1] ∈ Ho(Sp(sA−Mod)).

Proof. By Yoneda lemma, x is an element of π0(RHom(X×hRSpecA,Vectn)), corresponding to a rank
n vector bundle E on X ×h RSpecA. Let’s fix a system of affine (flat) k-charts so that

X ' Hocolimi Ui
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where Ui ' SpecBi for Bi a flat k-algebra. Then we have

Map(X,Vectn) ' Holimi Map(Ui,Vectn)

and we can consider xi, obtained by composing x and the canonical projection Map(X,Vectn) →
Map(Ui,Vectn). Since Ui ' SpecBi ' RSpecBi, by Yoneda and k-flatness of Bi we have

xi ∈ π0(Map(Ui,Vectn)(RSpecA)) = π0(RHom(RSpecA×h RSpecBi,Vectn)) =

= π0(RHom(RSpec(Bi ⊗L
k A),Vectn)) = π0(Vectn(Bi ⊗k A))

so that xi is just the datum of Ei, a projective s(Bi⊗kA)-module of rank n. It corresponds to the global
sections of Ei, the homotopy pullback of the vector bundle E , in this diagram

Ui ×h RSpecA X ×h RSpecA

RSpecA

σ

π
j

where we immediately notice that j is projective and flat by base change.
Observe now that given M ∈ sA−Mod we have

Map(Ui,Vectn)(RSpecA) ' Vectn(Bi ⊗k A),

Map(Ui,Vectn)(RSpecA⊕M) ' Vectn(Bi ⊗k (A⊕M)) ' Vectn((Bi ⊗k A)⊕ (Bi ⊗kM)).

To compute derivations for Ui and M , we need to find the homotopy fiber

• Vectn((Bi ⊗k A)⊕ (Bi ⊗kM))

∗ = ∆0 Vectn(Bi ⊗k A)
Ei

and we see that, as in the proof of Proposition 5.1.12, we have

• = K(Ei ⊗Bi⊗A E
∨i
i ⊗Bi⊗A (Bi ⊗M), 1)

where E∨ii = Homs(Bi⊗A)−Mod(Ei, Bi ⊗ A) and Bi ⊗k M ∈ s(Bi ⊗k A) − Mod. Let’s observe that by
thinking of derivations as maps towards our derived stack under RSpecA, we see that in Ho(sSet) we
have

Derx(Map(X,Vectn),M) ' Derx(Holimi Map(Ui,Vectn),M) '
' HolimiDerxi(Map(Ui,Vectn),M).

By definition of derivations as homotopy fibers, and reasoning again as in Lemma 5.1.13 (even though
here we need to use stable modules and not just chain complexes), we have

Derxi(Map(Ui,Vectn),M) ' K(Ei ⊗Bi⊗A E
∨i
i ⊗Bi⊗A (Bi ⊗M), 1) '

' MapsSet(∆
0,K(Ei ⊗Bi⊗A E

∨i
i ⊗Bi⊗A (Bi ⊗M), 1)) '

' MapSp(s(Bi⊗A)−Mod)(Bi ⊗A, (Ei ⊗Bi⊗A E
∨i
i ⊗AM)[1])

where we used the fact that C∗(∆0, G) = G and Ei⊗Bi⊗AE
∨i
i ⊗Bi⊗A (Bi⊗kM) ' Ei⊗Bi⊗AE

∨i
i ⊗AM .

Recall now that, Bi being k-flat, Bi ⊗L
k A = Bi ⊗k A, and using the derived adjunction (where the

right adjoint is the forgetful functor s(Bi ⊗A)−Mod→ sA−Mod) we obtain

MapBi⊗A(Bi ⊗L
k A, (Ei ⊗Bi⊗A E

∨i
i ⊗AM)[1]) ' MapA(A[−1],A(Ei ⊗Bi⊗A E

∨i
i )⊗AM)

where we do not need to (right) derive the forgetful functor s(Bi ⊗ A) −Mod → sA −Mod since it is
exact. For typography reasons we used Bi⊗A to mean the category of stable simplicial (Bi⊗A)-modules,
similar for A in the second mapping space.
Observe that we have the following homotopy cartesian diagram
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End(Ei) End(E)

Ui ×h RSpecA X ×h RSpecA

and that

Γ(Ui ×h RSpecA, End(Ei)) = EndO
Ui×hRSpecA

(Ei) ' EndBi⊗A(Ei) = Ei ⊗Bi⊗A E
∨i
i .

Since we don’t need to derive the forgetful functor σ∗ we then obtain

C∗(X ×h RSpecA, End(E)) ' Holimi C
∗(Ui ×h RSpecA, End(Ei)) ' Holimi A(Ei ⊗Bi⊗A E

∨i
i )

where in the last passage we exploited the fact that Ui ×h RSpecA, being (derived) affine, has no higher
cohomology (this is just a fancy slogan: to be precise we used that on a derived affine schemes, giving a
quasi-coherent (simplicial) module corresponds to give its global section, and End(Ei) is projective, hence
fibrant, so no need to derive).

Let’s now prove that the stable sA-module C∗(X ×h RSpecA, End(E)) is perfect. First technical
point: since in the category Sp(sA −Mod) a square is homotopy cartesian if and only if it is homotopy
cocartesian, any functor commutes with finite homotopy limits iff it commutes with finite homotopy
colimits. We will use this property for derived tensor products (in our case the derived version is the
same as non-derived since we work with flat schemes). Since End(E) is projective of rank n, we have two
maps

End(E) ↪→ (OX ⊗A)n −→ End(E)

whose composite is the identity. They induce corresponding maps at the level of “complexes” so that we
might just prove that C∗(X×hRSpecA,OX⊗A) is perfect (hence also a sum of n copies is so). Recalling
the writing of X as homotopy colimit, we have

C∗(X ×h RSpecA,OX ⊗A) ' Holimi C
∗(Ui ×h RSpecA,OUi ⊗A) ' Holimi(OUi ⊗A)

where we used the fact that (derived) affine schemes have no higher cohomology. Since X is projective
of finite type, it admits a finite number of affine charts, i.e. the homotopy limit above is finite and hence
we can exchange it with the tensor product −⊗A. We obtain

C∗(X ×h RSpecA,OX ⊗A) ' (HolimiOUi)⊗A ' (Holimi C
∗(Ui,OUi))⊗A ' C∗(X,OX)⊗A.

Since X is projective over a field k, we know from classical algebraic geometry that its cohomology
H∗(X,OX) is a finite dimensional k-vector space, i.e. that C∗(X,OX) is a perfect complex in Ch(k).
By base change, also C∗(X,OX) ⊗ A is perfect as a stable sA-module, and hence we conclude that
C∗(X ×h RSpecA,OX ⊗A) is perfect in Sp(sA−Mod). We will then be able to do all the usual duality
shenanigans. Since only the homotopy type of M ∈ Ho(sA − Mod) matters, we can replace M by a
(fibrant) and cofibrant resolution in Sp(sA − Mod), so that − ⊗A M ' − ⊗L

A M . As written above,
−⊗L

AM commutes with finite holimits (taken in Sp(sA−Mod)), and hence

Holimi MapSp(sA−Mod)(A[−1],A(Ei ⊗Bi⊗A E
∨i
i )⊗L

AM) '

' MapSp(sA−Mod)(A[−1],Holimi A(Ei ⊗Bi⊗A E
∨i
i )⊗L

AM) '

' MapSp(sA−Mod)(A[−1], C∗(X ×h RSpecA, End(E))⊗L
AM)

and using Proposition 5.1.11 together with

RHom(C∗(X ×h RSpecA, End(E)), A)⊗L
AM ' RHom(C∗(X ×h RSpecA, End(E)),M)

and the tensor-hom adjunction we conclude

Derx(Map(X,Vectn),M) ' MapSp(sA−Mod)(A[−1], C∗(X ×h RSpecA, End(E))⊗L
AM) '

' MapSp(sA−Mod)(C∗(X ×h RSpecA, End(E))[−1],M)

so that we proved LMap(X,Vectn),E ' C∗(X ×h RSpecA, End(E))[−1].
Finally, let’s prove the derived stack Map(X,Vectn) admits a global cotangent complex using Defi-

nition 4.8.3. Let’s consider the following commutative diagram in Ho(dAff∼)



72 5.3. Derived moduli space of vector bundles

RSpecA RSpecB

Map(X,Vectn)

f

E F

where E (resp. F) is a rank n vector bundle on X ×h RSpecA (resp. X ×h RSpecB). More precisely
this means that E is the homotopy pullback of F under the natural map idX ×f : X ×h RSpecA →
X ×h RSpecB (and the same happens for the sheaf of endomorphisms). We have proved before that

LE := LMap(X,Vectn),E = C∗(X ×h RSpecA, End(E))[−1] ∈ Sp(sA−Mod),

LF := LMap(X,Vectn),F = C∗(X ×h RSpecB, End(F))[−1] ∈ Sp(sB −Mod)

and now we want to prove that the natural map

u : LE → LF ⊗L
B A

is a weak equivalence in Sp(sA −Mod). Since they are perfect stable modules, it suffices to prove their
dual (the cohomology complexes) are weakly equivalent. By Theorem 3.5.3 applied to the homotopy
cartesian square

X ×h RSpecA X ×h RSpecB

RSpecA RSpecB

pA

idX ×f

pB

f

and to the coherent locally free sheaf End(F) on X ×h RSpecB we obtain

C∗(X ×h RSpecB, End(F))⊗L
B A

∼−→ C∗(X ×h RSpecA, End(E))

in Ho(Sp(sA−Mod)), which is exactly what we wanted (recalling that the derived pullback is the derived
tensor product and the derived push-forward is the cohomology complex). �

Proposition 5.3.4. The classical part t0 Map(X,Vectn) is 1-truncated Artin geometric stack.

Proof. We have

t0 Map(X,Vectn) ' t0RHom(X,Vectn) ' Hom(t0(X), t0(Vectn))
def' BunGLn

where we see the stack in groupoids BunGLn as a stack in simplicial sets by using the nerve functor. Of
course it is 1-truncated, and it is Artin (i.e. using smooth atlases) 1-geometric by Theorem 3.5.13. �

Theorem 5.3.5. The derived stack Map(X,Vectn) is a 1-geometric derived stack.

Proof. This derives from Theorem 5.2.6, by verifying the three asumptions. The first is Proposition 5.3.4,
the second is Proposition 5.3.3 and the third one is obvious by our assumptions on X (just choose an
affine covering). �
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