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Abstract

The Vanadium Redox Flow Battery Systems are a promising technology for large
stationary storage. Their main advantages are a competitive cost and simplicity.

A key technology for the electrolyte feeding systems is based on interdigitated
channels but most of the multiphysics models found in literature are based on
simple �ow �elds. Therefore the aim of this work is to develop a multiphysics
model to simulate a VRFB with interdigitated channels by the means of the �nite
element method. The model is based on the electrochemistry of VRFB and on the
equations governing the �uid �ow �eld for free and porous media.

It is therefore possible to analyze the distribution of the electrolyte into the cell,
highlighting the areas with low intake of electrolyte, that are completely neglected
in most of the models.

This model is also suited to determine the behavior of a VRFB under di�erent
operating conditions. It is possible to evaluate the equilibrium voltage, the overpo-
tentials, the dissociation rate of the sulphuric acid species and the concentrations
of the di�erent vanadium species into the cell from a set of initial conditions.
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Chapter 1

Introduction

1.1 Need for energy storage

The electricity industry is facing an increase of the production of energy from
renewable sources due to their environmentally-friendly nature.

These sources are usually discontinuous, because the generated power depends
on the weather. The sun can be overshadowed by the clouds and the wind can vary
its direction and intensity very quickly. Hence the power variability can range from
the hourly time-scale for photovoltaic systems to the seconds or minutes time-scale
for wind generators.

The �uctuating production of these sources is therefore a big issue. Usually,
the base-load power, i.e. the amount of power demanded in every moment of the
day, is produced by coal and nuclear power plant while the power at peak time is
produced by plants that can be easily powered up.

Due to an European legal requirement to encourage renewable sources,they
have grid priority, meaning that the grid must take their electricity �rst. Wind
and photovoltaic sources would have however grid priority because their marginal
cost is zero.

Moreover their variation has a timescale faster than all the other plants and
when the power varies too much, it may not be enough to lower the output of
gas generators. Some plants may have to be switched o� altogether and some
coal-�red ones turned down.

In this scenario, the base-load power plants cannot be switched down, so the
companies were having to pay the managers of the grid to take their electricity,
transforming completely the established business model for utilities. Furthermore
existing grids are not designed for distributed sources so they can become un-
stable if power from these sources exceed 20% of the total amount of generated
power without solutions to compensate it. Distributed generation means small
sized electric generation units at residential, commercial and industrial sites, e.g.
small photovoltaic cells, wind turbines or small gas turbine [1]. Therefore, with
an increase of grid connected renewable and distributed power plants with the
simultaneous presence of large power plants, there is the need to design, control
and manage the grid more accurately.

The most e�ective solution to these problems are Electrical Storage Systems

1
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Figure 1.1: Allocation of di�erent energy storage requirements in the
power�discharge duration diagram (source: Electricity Storage Association [2])

ESS. In this way the exceeding energy generated by renewable sources can be
stored until the demand of power overtake the capability of the generation units.

Another use of the energy storage is to reduce electricity costs when electric
companies apply hourly pricing policies.

There are two main categories of energy servicies provided by ESS 1.1:

� Power Quality, that refers to a timescale quite short, in the range of min-
ute/second.

� Energy Management, that concerns load leveling, power balancing and peak
shaving

For both the categories the advantage in the use of Electrical Energy Storage
Systems is the possibility to delay the use of the generated electricity. The choice
of the ESS technology for each category of service is done according to the the
operating time and the available power. The time ranges from the fraction of a
second to several hours, with response time of millisecond for the fastest ESS while
available power ranges from few kilowatt to gigawatt.
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1.2 Energy Storage Systems

The ESS are categorized by storage capacity, power, lifetime (i.e. the ability to
resist to many charge/discharge cycles), cost and response time.

Present days o�er a wide range of technologies with di�erent ranges of storable
energy and di�erent localization needs, e.g.

� PHES, Pumped Hydro Energy Storage, store the energy in the form of po-
tential energy by pumping water at a certain height. It is the most exploited
at present and can exceed 50MWh and 3GW but can be sited only in moun-
tain regions. It also has high response time, so it is suitable for high-power
long-time services.

Other technologies are:

� CAES, Compressed Air Energy Storage, store the energy by compressing
air. The compression of air creates heat that can be stored and used during
expansion. There is the need of large scale underground caves. Has the same
rated power of PHES. The current R&D activity is developing adiabatic-
operating systems to overcome present limitations.

� FES, Flywheel Energy Storage, store angular kinetic energy, with a �y-
wheel that rotate at high velocity. It has very fast response but a fast
auto-discharge due to friction, also with electromagnetic bearings. They are
best suited for purposes such as frequency regulation. They are a�ected by
containment problems and gyroscopic e�ects from the Earth's rotation due
to the high rotational speed.

� SMES, Superconducting Magnetic Energy Storage, is made by supercon-
ducting coils that store magnetic energy. The superconductors need a huge
amount of energy to be kept at very low temperatures, since superconduc-
tivity at high temperature is still under research. Due to the fast response,
SMESs is suitable for power quality services.

� ELDC, Electric Double Layer Capacitor, store electrical energy by the
means of the electric double layer e�ect. It is known also as super-capacitor,
has a long life cycle but can store energy only for short time due to auto-
discharge. It is used mainly to assist other power supplies for surge power
requirements, such as during the acceleration of Electric/Hybrid Vehicles.

� ECES, Electro Chemical Energy Storage, store chemical energy into an elec-
trolyte. It seems to be the only suitable solution to compensate the intermit-
tency or variability of renewable energy generators. Due to the versatility
and modularity that allows wide scalability, the time scale energy storage of
this systems, can vary from short to long. It has a di�erent location in the
power/duration diagram from the other storage technologies (Fig. 1.2).
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Figure 1.2: power duration diagram of energy storage systems [3]

1.3 Electro Chemical Energy Storage

Since Alessandro Volta's �rst voltaic pile in 1800, batteries have evolved from non-
rechargeable primary cells to rechargeable secondary cells, and electrochemistry is
commonly used to store electricity in consumer electronics.
Batteries consist of two types of electrochemical devices:

� Primary batteries, irreversibly transform chemical energy to electrical energy

� Secondary batteries, can be recharged

Batteries and Advanced Batteries can respond to changes in power demand
within microseconds, have low standby losses and can have high energy e�ciency,
depending on the application and the details of the operation. Since in the majority
of batteries toxic materials are used, their disposal must be always be considered.

Lead-Acid Batteries

Lead-acid is one of the oldest battery technology and the �rst that can be recharged.
It was invented by Gaston Plantè in 1859 and consist of an alternated series of
lead metal electrodes and lead oxide electrodes placed in a sulphuric acid elec-
trolyte. This is one of the cheapest solutions for power quality and UPS but, due
to the short cycle life and the inability to withstand deep discharges, has limited
application for energy management.

Sodium Sulphur Batteries

Sodium sulphur batteries (NaS) were initially developed in 70s and the research
on them is still underway.
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These batteries are based on liquid sodium in the negative electrode and liquid sul-
phur at the positive electrode. The electrolytes at room temperature do not work
and require to be heated up. The main problem is therefore the high operating
temperature, that is about 300◦ C.

Lithium-Ions batteries

One of the most di�used type of battery is the lithium-ions battery, that combine
the lightness of the lithium (the lightest metal) with a high electrochemical po-
tential. This makes the Li-ion battery as the battery with the highest electrical
density, with a speci�c energy ranging between 100Wh/kg and 150Wh/kg [4].
The main limitation is the high cost per kWh.

Redox Flow Batteries

This kind of batteries (RFBs) is one of the most recent and promising technology
for the stationary energy storage. The electrochemical conversion of the energy is
exploited through redox processes of �uid electrolytes, which are stored in external
tanks.
This technology is presented in the following section.

1.4 Redox Flow Battery: Introduction

Redox Flow Batteries are a promising technology [3] that in the recent years has
increasingly studied. These batteries operate with redox reactions of two elec-
trolyte solutions through a polymer ion-exchange membrane that only allows for
transport of protons between two cell sectors. The concentration of metal ions
into the electrolytes depends strongly on the chemistry used, and it ranges from
0.1 to 9M [5]. The liquids are stored into two separate tanks and are introduced
into the RFB when needed.

The advantages of this technology are:

� �exibility and scalability, because of the independent sizing of power and
energy, the capacity can be increased simply by expanding the capacity of
the tanks

� high round trip e�ciency,

� high DOD, depth of discharge

� long durability, since RFBs operate by changing the valence of the metal ion,
the components of the electrolyte solution are not consumed

� fast responsiveness (small electrical time constant ∼ [ms])

� reduced environmental impact

� long stand-by periods on full discharge without ill e�ects
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� rapid refueling by solution exchange, in case of need

� low maintenance

The disadvantages of RFBs are:

� low power and energy density (10− 50Wh/kg), compared to other technolo-
gies. This makes them unsuitable for mobile applications

� the operating temperature is limited to a small range [15 ÷ 35◦C] to avoid
solution precipitation

� shunt currents, due to the conductivity of the electrolyte solution, that cause
additional losses and reduce the e�ciency

1.4.1 Vanadium Redox Flow Battery

Among the Redox Flow Batteries, the technology with the best chance to be widely
adopted is the Vanadium Redox Flow Battery.

The main advantage is the ability of vanadium to exist in four oxidation states,
making possible a battery with only one electroactive element instead of two. In
this way are used vanadium redox couples in both half-cells and the problem of
cross contamination by di�usion of ions across the membrane is therefore avoided.

Di�erently from other RFBs, this technology is cheaper (3.7÷ 4.5e/L for the
electrolyte) and an higher simplicity, avoids the use of highly toxic materials and
does not require recirculating external devices to keep the electrolyte homogeneous
because vanadium starts to precipitate only if the temperature overcomes a limit
temperature.

The �rst patent of the VRFB has been deposited by Maria Skyllas-Kazacos
and co-workers in 1986, while their �rst papers are from 1985 [6, 7]. Their work
has been developed at the University of New South Wales in Australia.

A VRFB is made by many power cells, connected in series and/or in parallel.
Each cell contains two half cells divided by an ion-permeable membrane, that
theoretically allows only the di�usion of protons as can be seen in Fig. 1.3. The
half-cells electrochemical reactions take place into porous electrodes, which are
made by carbon felt and are connected to graphite current collectors. The stack of
cells is connected to the tank by pipes and the electrolytes �ow thanks to pumps.
To make an electrolyte with vanadium, there is the need to dissolve it. This is done
by the means of a dilute sulphuric acid solution. The two electrolyte solution, due
to the di�erent oxidation states of the vanadium are di�erent. The negative half-
cell electrolyte contains only V 2+ and V 3+ ions and the positive half-cell electrolyte
contains only V O2+(V 4+) and V O+

2 (V 5+) ions.

1.5 Large-scale storage with VRFBs

One of the �rst papers that showed the possible use of VRFBs for the energy
storage is from the 2004, where L. Joerissen et al. [9] studied a possible use of the
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Figure 1.3: Basic scheme of a VRFB [8]

VRFB in small grids and stand-alone photovoltaic systems. They stated that this
technology allows the use of inexpensive components, and made a cost analysis.
The result of the cost estimation is 30000 e for a 2[kW ] and 30[kWh] system.

In 2011 Shigematsu [10] published a paper that reviewed the technical develop-
ment of the redox �ow battery (RFB). The RFBs are compared with other storage
technologies in the �rst part, then it describes the characteristics of the RF bat-
teries then explains the history of the development of this batteries. In particular
explains that after the patent of M. Skillas-Kazacos in 1986 [11], in Japan the
development of VRFB started after a new technology of recovering vanadium in-
cluded in petroleum and heavy fuels from the soot of the fuels burned at thermal
power plants. Therefore the development in Japan started in 1989 and the �rst
trial VRFB system were manufactured by Kashima Kita in 1997, a 200[kW ] and
800[kWh] system. After this system the development of various systems continued
and in 2001 Sumitomo Electric started to sell practical products for load leveling,
instantaneous voltage sag compensation and emergency power supply.

In another 2011 review, A. Weber et al. [12] examined some of the more
common RFBs, their individual components and underlying governing physical
phenomena. They state also that any RFB chemistry has a particularly advanta-
geous solution with respect to the other chemistry, making fundamental industrial
and academic research.

During the discharge the electrolyte solutions �ow through the carbon felt of
the electrodes and the V 2+ oxidizes in the anolyte, releasing electrons which are
collected by the graphite current collector and �ow trough an external load, and
subsequently they are transferred to the cathode. Finally, the V 5+ ions of the
catholyte are reduced by these electrons.

During the charge an external source reverses the �ow of electrons. This re-
verses the reactions in both the half-cells.
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1.5.1 Electrochemistry

VRFB is based on redox reactions involving four oxidation states of the vanadium:

V 2+ � V 3+ + e− (1.1)

V 5+ + e− � V 4+ (1.2)

where → represents the discharge and ← represents the charge of the battery. In
a redox reaction the species that loses electrons is said to be oxidized while the
species that gains electrons is reduced. It is possible to write therefore the following
equations to explain:

reductant → product+ e− (1.3)

oxidant+ e− → product (1.4)

Since a battery is a device that convert stored chemical energy in electrical energy
by a redox reaction, it is possible to write the reactions that occurs during the
charge and the discharge of the VRFB.

During the discharge the electrons move from the anolyte to the catholyte, by
�owing through the external load:

oxidation V 2+ → V 3+ + e−

reduction V 5+ + e− → V 4+

V 2+ + V 5+ → V 3+ + V 4+

(1.5)

During the discharge V 5+ takes an electron from V 2+ while during the charge the
reversed �ow of electrons gives the following redox reaction:

reduction V 3+ + e− → V 2+

oxidation V 4+ → V 5+ + e−

V 3+ + V 4+ → V 2+ + V 5+

(1.6)

Previous equations are a simple form of the reactions that actually occur into
the VRFB. The V 4+ and V 5+ exist as oxides, respectively V O2+ and V O+

2 . The
redox equation therefore must be modi�ed to guarantee the balance of charges and
the stoichiometry, by considering also the dissociation of H2O. The equation 1.2
becomes:

V O+
2 + 2H+ + e− � V O2+ +H2O (1.7)

while the equation 1.1 remains the same.
The equation 1.6 can be therefore modi�ed in:

V 2+ + V O+
2 + 2H+ � V O2+ + V 3+ +H2O (1.8)
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Nernst Equation

The individual potential of any electrode with respect to the standard hydrogen
electrode measured at standard conditions, i.e. 25◦C, 100kPa and a concentration
of 1M is called standard electrode potential E	. When the operating conditions
are di�erent from the standard conditions the relation between the electrode po-
tential E and the operating conditions is given by the Nernst equation.

This equation can be obtained by thermodynamics considerations: By starting
from the Gibbs free energy, which represents the maximum amount of extractable
energy from a chemical reaction, it is possible to write it as:

∆G = ∆H − T∆S [J/mol] (1.9)

where ∆H indicates the variation of enthalpy and ∆S is the variation of entropy.
The free energy can also be expressed as the sum of a constant term, the free
change of energy with activity of each product and reactant equal to one ∆G	

and a variable term, function of the temperature and the equilibrium constant K:

∆G = ∆G	 +RTlnK [J/mol] (1.10)

Since the equilibrium constant K can be expressed, for a generic reaction

aA+ bB � cC + dD (1.11)

as

K =
acCa

d
D

aaAa
b
B

(1.12)

where c	 is the standard molarity, ci is a concentration, ai = γci
ci
c	

is the ac-
tivity and γi is the activity coe�cient. The equilibrium constant K can also be
represented as:

K =
(γcC)c(γcD)d

(γcA)a(γcB)b
· c

c
Cc

d
D

caAc
b
B

(1.13)

therefore the Gibbs free energy can be expressed as

∆G = ∆G	 +RTln

[
ccCc

d
D

caAc
b
B

· γ
c
Cγ

d
D

γaAγ
b
B

]
[J/mol] (1.14)

The last step is obtained from the conservation of energy, that states the vari-
ation of energy is equal to the transfer of n moles of electrons to the di�erence of
potential E, with F the Faraday constant

∆G = −nFE [J/mol] (1.15)

so

E = E	 − RT

nF
ln

[
ccCc

d
D

caAc
b
B

· γ
c
Cγ

d
D

γaAγ
b
B

]
[V ] (1.16)

that is equal to

E = E	′ −RTln
[
ccCc

d
D

caAc
b
B

]
[V ] (1.17)
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E	′ is a formal redox potential that is introduced because it is directly measurable.
Since it is de�ned as

E	′ = E	 +
RT

nF
ln

[
γcCγ

d
D

γaAγ
b
B

]
[V ] (1.18)

it allows to write eq. 1.17, that does not take into account the activities and the
activity coe�cients which are not directly measurable.

For dilute solutions activity coe�cients tend to the unity so activities can be
replaced by the concentrations, giving the standard electrode potential but for
VRFB this is not valid because the electrolytes are concentrated, not diluted,
solutions.

By starting from the equation 1.8 instead of 1.6 it is possible to get a Nernst
equation that can be expressed as:

E = E	 +
RT

F
ln

{(
cV O+

2
· c2
H+

cV O2+

)
c

(
cV 2+

cV 3+

)
a

}
[V ] (1.19)

This equation gives a good approximation of the potential of the cell until the
concentration of one of the species of vanadium becomes very high with respect to
the other. Normally the operating range of a battery does not exceed high state
of charges, so the approximation is acceptable.

The Nernst equation is therefore a useful relation between the standard po-
tential and the deviation from the standard conditions, allowing to determine the
equilibrium voltage for any condition.

The standard cell potential is E	 = 1.255V and it is obtained by summing the
standard reduction potentials of the half-cell reactions [8], i.e. for the anode

E	
anode = −0.255V, V 3+ + e− � V 2+ (1.20)

and for the cathode

E	
cathode = 1.000[V ], V O+

2 + 2H+ + e− � V O2+ +H2O (1.21)

To account also for the temperature dependence it is possible to modify eq. 1.19
as

E = E	
(

1 +
∂E	

∂T
∆T

)
[V ] (1.22)

where
∂E	

∂T
= − 1

nF

(
∂∆G	

∂T

)
' −1.26[mV/K] (1.23)

State of Charge

To evaluate the available energy with respect to the maximum stored energy it is
possible to use the State of Charge, usually written as SoC.It is expressed as a
ratio between the di�erent vanadium species:

SoC =
cV 2+

cV 2+ + cV 3+

=
cV O+

2

cV O2+ + cV O+
2

(1.24)
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This parameter is equal to 0 when the battery is completely discharged and it is
equal to 1 when the battery is completely charged.

Since the total concentration of vanadium cVtot is equal to the sum of the
concentrations of the vanadium species of each electrolyte

cVtot = cV 2+ + cV 3+ , cVtot = cV O2+ + cV O+
2

[mol/L] (1.25)

the SoC can be written also as:

SoC =
cV 2+

cVtot
=
cV O+

2

cVtot
(1.26)

The SoC can be expressed as a function of the concentrations because, with the
concentration ci = Mi

V ol
[mol/L], the total amount of electroactive species is

Mtot = MV 2+ +MV 3+ = CV 2+V ol + CV 3+V ol = (CV 2+ + CV 3+)V ol [mol] (1.27)

so

CVtot =
Mtot

V ol
= CV 2+ + CV 3+ [mol/L] (1.28)

and the same for CV 4+ and CV 5+ .

Overpotentials

The potential di�erence between the equilibrium potential, evaluated with the
Nernst equation, and the potential at which the redox reaction is experimentally
observed is called overpotential and occurs when a current �ows into the electrode.
In this case there is the need to force the redox reaction to proceed and this energy
is given by this overpotential. Since there are di�enent types of overpotentials
and they are electrode phenomena, i.e. they are phenomena related only to the
electrodes, they may a�ect either or both the electrodes.

� Activation overpotential, ηact

One of them is the activation overpotential, that represents the energy needed
to start a charge transfer. Therefore when an overpotential is applied the
equilibrium conditions are modi�ed and a current starts �owing. The magni-
tude of the current is limited by the mass transfer of the reactants or by the
rate of electron transfer between the electrodes and the reactant. Further-
more the magnitude of the overpotential depends on the rate of the reaction
that is taking place, i.e. a fast reaction requires a lower overpotential than
a slow reaction. This overpotential can be seen as the energy required to
overcome the activation barrier of a redox reaction. If the concentration of
reduced and oxidized species are equal, the activation barrier is symmetrical,
while if they are not equal, this barrier is not symmetrical. In this last case,
the activation energy required for the cathode and the anode reaction are
not equal.
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� Concentration overpotential, ηconc

Another overpotential, called concentration overpotential is related to the
di�erence in concentration between the bulk solution and the solution near
the surface of the electrode. The electroactive species have di�erent con-
centration between the bulk solution and the surface of the electrodes. This
causes a concentration overpotential, ηconc. If the rate of the reaction is high,
the reactant species do not came in contact with the surface of the electrode
fast enough. But to mantain a steady current the surface of the electrode
must came in contact with new electrolyte reactant from the bulk of the
solution, since the reaction occurs only in a thin layer next to the electrode,
otherwise a concentration overpotential occurs. The movement of species
into the electrolyte can be operated by convection, migration or di�usion;
each one has di�erent characteristics and velocities. Di�usion is regulated
by the Fick's �rst law:

Jdiff,i = −Di

(
∂ci
∂x

)
[mol/m2s] (1.29)

that can be written, for two or more dimensions as:

Jdiff,i = −Di∇ci [mol/m2s] (1.30)

where Di is the di�usion coe�cient of the species i and is function of the
electrochemical mobility, the viscosity and the radius of the particle.
The migration term refers to the movement of the ions through a solution,
that is an electric current. Their movement is caused by an electric �eld:
the rate of the migration depends on the intensity of the �eld i.e. as the
electrode potential increases. The equation of the drift velocity reached for
a charged particle is given by:

Vd = uE [m/s] (1.31)

where u[m2/V s] is the electric mobility and E[V/m] is the electric �eld.

The third term is the convective term, that refers to other ways to generate
motion into the solution, e.g. density di�erences, temperature gradients or
mechanical stirring. In this way it is also possible to decrease the contribute
of the concentration overpotential.

The expressions of the concentration potential are mainly relations with em-
pirical parameters.

� Ohmic and Ionic overpotentials, ηohm and ηion

Other overpotentials, which are analytically determinable, are the Ohmic
and the Ionic overpotentials, that are another way to consider the losses
caused by the electrical resistance of the carbon felt electrodes, the bipolar
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plates and the carbon collector plates. Therefore the ohmic overpotential
ηohm can be seen as:

ηohm = RohmI [V ] (1.32)

where Rohm is the sum of the resistances previously described.

Furthermore the current �ow is hindered by the resistance of the electrolyte
itself and by the resistance of the membrane. To consider this e�ect, analo-
gously to the ohmic overpotential, is possible to refer to a ionic overpotential
ηion. The conductivity of the electrolyte is a function of the number, the
charge and the mobility of the ions dissolved in it. This parameter can be
written therefore as:

σe = F
∑
|zi|ciui [S/m] (1.33)

where zi is the charge of the ion i and ui is the mobility and depends on
the size of the ion and its interactions with the other components of the
electrolyte. In this way it is possible to write the ionic overpotential as:

ηionic = RionicI =

(
1

σe

L

S
+Rm

)
I [V ] (1.34)

where L[m] is the length and A[m2] is the cross section. Rm[Ohm] is the
resistance of the membrane.

Given the operating conditions of the cell or the stack, it is possible to determine
the operating voltage of the stack as:

Utot = N(E −
∑

ηi) [V ] (1.35)

where N is the number of cells that compose the stack and ηi are the various
overpotentials mentioned above.

An useful table, found in [1] allows to see the variables dependency on the
operating conditions. • means direct dependency, ◦ denotes indirect dependency
and \ means no dependency.

Variable I CV 2+ CV 3+ CV 4+ CV 5+ CH+ T Q
SoC \ • • • • \ \ \
E \ • • • • • • ◦
ηact • • • • • \ • ◦
ηconc ◦ • • • • \ • ◦
ηohm • \ \ \ \ \ ◦ \
ηionic • ◦ ◦ ◦ ◦ ◦ ◦ \
Utot ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 1.1: Variables dependency on the operating conditions [1]
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Current: the Butler-Volmer Equation

From thermodynamic considerations and by taking into account the activation
overpotential ηact it is possible to write the Butler-Volmer equation, that make
possible an evaluation of the current into the cell (a detailed explanation can be
found in [1]):

I = I0

[
eαnFηact/RT − e−(1−α)nFηact/RT

]
[A] (1.36)

where I0[A] is the exchange current, i.e the value of the anodic current or the
cathodic current, in absolute value and α is the charge transfer coe�cient i.e. the
fraction of the interfacial potential at an electrode-electrolyte interface that helps
in lowering the free energy barrier for the electrochemical reaction. It is possible
to refer this coe�cient for each side of the battery, by considering the following
relation, where a and c refers to anode and cathode respectively [13]:

αpos = 1− αneg (1.37)

By doing this, the Butler-Volmer equation can be written as:

I = I0

[
eαposnFηact/RT − e−(αneg)nFηact/RT

]
[A] (1.38)

1.6 Multiphysics models

In 2008 were published the �rst multiphysics models. One by Blanc and Rufer [8]
and combined an electrochemical model with a mechanical model that describes
the hydraulic circuit of the electrolyte. The second model, the hydraulic one,
determines the power required to the pump. The last part shows a way to increase
the e�ciency of the stack by the mean of a variable �ow rate.

A 2D model has been published by Shah et al. [14] makes possible to analyze
the overpotentials and the current densities of a VRFB cell. This is done with
a 2D model, solved with COMSOLr but it consider a �uid �ow only in the y
direction, with the �uid entering directly into the porous electrode.

Another model of the beginning of 2009 has been performed by D. You et al.
[15]. They developed a two-dimensional stationary model based on the approach
of Shah [14]. They showed that the overpotential rises sharply when the battery
is charged near 100%SoC. Therefore a VRFB battery usually operates with a
maximum SoC of 95%. This model neglects completely electroneutrality and ionic
migration but it is good to compare the e�ect of di�erent parameters with the
same conditions.

A di�erent approach has been shown by Vynnyky [16] with a more detailed
model. He states that with a plug-�ow type velocity pro�le the model, using an
appropriate coordinate transformation, the equations of the model are mathemat-
ically equivalent to one-dimensional di�usion equation. The obtained model is
therefore an asymptotically reduced model, that led to lower computational time
preserving geometrical resolution. It shows inconsistencies with the model of Shah
et al. [14] due to the computation of the water pro�le in the carbon felt, that
Vynnyky states as not necessary.
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An enhancement to all the VRFB models has been performed by Knehr and
Kumbur [17]. They proposed a more complete description of the Nernst equation.
By incorporating the proton concentration at the positive electrode and adding the
Donnan potential the accuracy of the equation has been improved. When com-
pared with experimental data, the complete form of the Nernst equation showed
a much better agreement.

A more complete and detailed model has been proposed by Knehr et al. in 2012
[18]. They presented a 2D transient, isothermal model that can predict species
crossover and related capacity loss during operation. The model incorporates the
species transport across the membrane due convection, di�usion and migration
and also accounts for the transfer of water between half-cells to evaluate the vari-
ation of the volume of the electrolyte �uid. This model evaluates also the species
concentrations at the membrane/electrolyte interfaces and the e�ects of side re-
actions due to vanadium crossover, as a capacity loss and e�ciency and power
output losses.

In 2014 Chen et al. [19] proposed an enhancement to the model of Vynnyky
[16] by including the Donnan potential and the complete Nernst equation [17]. In
this model they used the same assumption and simpli�cation of the starting model,
i.e. they suppose also a plug-�ow type velocity pro�le. The enhancement operated
gives an increase of the accuracy with a negligible increase of the computational
cost.

1.7 3D models

All the previous models are based on simple �uid �ow �elds. The work of Xu et
al. [20] is based on the investigation of the �ow �eld design to minimize the mass
transport polarization at a minimum pressure drop. For this reason they analyzed
the performance of a VRFB with three di�erent �ow �elds:

� one with no �ow �eld

� one with a serpentine channel

� one with parallel �ow �elds

They state that the serpentine �ow �eld appears to be the most suitable because it
can improve the uniformity of the electrolytes through the electrode, it reduces the
overpotential due to a more even electrolyte distribution over the electrode surface
and enhances convective mass transport towards the membrane and furthermore
the serpentine has the highest e�ciency at the optimal �ow rate i.e. the �ow rate
that gives the maximum power-based e�ciency 1.4.

A 3D model that gives a rigorous explanation of pore-level transport resistance
and pumping power, with the analysis of time constants of heat and mass transfer
has been proposed by Yun and Sung [21]. Their dynamic model is solved by
the �nite volume method and shows the distribution of the temperature into the
electrode and the time required to the temperature to stabilize.
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Figure 1.4: Di�erent �ow �elds [20]

Figure 1.5: Example of interdigitated channels [22]

One of the most recent models, published during the development of this thesis,
is that one presented by Cong et al. [22]. They proposed a 3D model with
interdigitated �ow channel design e.g. Fig. 1.5. The choice of an interdigitated
�ow channels is due to a lower pressure drop than the serpentine design and due
to a more e�cient mass transfer than the parallel design (the �ow �eld designs
presented by Xu, [20]). In their work, they analyzed a small cell of 10×7mm2 with
single inlet and two other multi-inlet cells of 10× 35mm2 and 10× 70mm2. They
showed that the the pressure of electrolyte drops signi�cantly in the side inlet of
porous electrode at low �ow rates, resulting in uneven distribution of electrolyte
�ow �eld and cell potential, while at higher electrolyte �ow rates the potential
distribution becomes uniform.

1.8 Thermal and large scale models

In 2012 Tang et al. published a couple of works on the thermal modeling of the
VRFB [23, 24]. The �rst model [23] is used to predict the battery temperature
as a function of time under di�erent operating conditions and structure designs.
The results that they have obtained have shown that the electrolyte tempera-
ture in both the tanks and the stack is in�uenced by multiple e�ects of �ow rate,
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surrounding temperature and heat generated by cell resistance losses. In the sec-
ond model [24] the e�ect of the self-discharge reactions was incorporated into the
thermal model previously analyzed. The model is therefore suited to investigate
the thermal e�ect of the self-discharge reactions on both continuous charge and
discharge cycling and during standby periods. They showed also that the stack
resistance has a dominant impact on total heat generation and the electrolyte �ow
also plays an important role in heat transfer and dissipation.

Furthermore, a model for large scale applications of VRFB systems has been
proposed by Turker et al. [25] in 2013. They developed a simulation model based
on measurements with a kW-scale real life VRFB unit and obtained values for the
round-trip e�ciencies in good agreement with values reported in literature. They
also state that pumping losses are crucial at very low power levels.

Another investigation has been performed by Bromberger et al. [26] in 2014.
They introduced in a 2D model of a VRFB the e�ects of electrode compression
on voltage losses and hydraulics. As a results of the parametric studies they state
that the compression of the electrode lowers the area speci�c resistance (ASR), the
porosity and the hydraulic permeability, increasing therefore the pressure drop.
They state also that the ASR is highly sensitive to changes in the speci�c surface
area a m2/m3 and in the reaction constant k.

In the same year Tang et al. [27] operated a study on the optimization of the
�ow rate of VRFB. By modeling the concentration overpotential and analyzing
the pressure losses in all the components they found a value for the �ow factor of
7.5 for their VRFB system as an optimal choice, since it maximizes the e�ciency.
The �ow factor is the ratio between the actual �ow rate and the stoichiometric
�ow rate, which is evaluated from the Faraday's law. With this model it is possible
to �nd a trade-o� between concentration overpotential and pump losses, which are
both closely related to the �ow rate.
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Chapter 2

COMSOL Multiphysicsr Model

In order to analyze how a vanadium redox �ow battery works it is useful to develop
a model to be solved with a �nite element multiphysics software.

Therefore the �rst part of the work is the analysis of an already developed
model, found in the COMSOLr model library [28]. In this way it is possible
to describe a system by a set of variables and a set of equations that establish
relationships between the di�erent variables [29]. These equations represent the
key characteristics or behaviors of the selected system.

A computer simulation is an attempt to model a real or hypothetical situation
on a computer so it can be studied to see how the system works. By changing
variables in the simulation, predictions may be made about the behavior of the
system. Computer simulation has become a useful part in engineering to gain an
insight into the operation of a process or a system.

Traditionally, the formal modeling of a system has been via a mathematical
model, which attempts to �nd analytical solutions enabling the prediction of the
behavior of a system from a set of parameters and initial conditions. Computer
simulation is often used for modeling systems for which simple closed form analytic
solutions are not possible. [30]

2.1 Finite Element Method

The �nite element method (FEM) is a numerical technique used for �nding approx-
imate solutions to the boundary value problems for partial di�erential equations
(i.e. a di�erential equations together with a set of additional restraints, called the
boundary conditions). FEM encompasses all the methods for connecting many
simple element equations over many subdomains, named �nite elements, to ap-
proximate a more complex equation over a larger domain.[31]

For elliptic partial di�erential equations, frequently no classical solution exists,
and often there is the need to work with a so-called weak solution. This has
consequences for both the theory and the numerical treatment. While it is true that
classical solutions do exist under appropriate regularity hypotheses, for numerical
calculations the analysis cannot be set up in a framework in which the existence of
classical solution is guaranteed. One way to get a suitable framework for solving

19
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elliptic boundary-value problems using �nite elements is to pose them as variational
problems: variational methods are used to minimize an error function and produce
a stable solution (i.e. minimizing or maximizing functionals)[32].

In the case of ordinary di�erential equations initial or boundary conditions can
be speci�ed, while in the case of partial di�erential equations of the second or-
der, the type of equation determines whether initial, boundary or initial-boundary
conditions should be imposed.

The main feature of the FEM is the discretization of the domain through
the creation of a grid (mesh), composed by small and simple elements, the so-
called �nite elements. Elements in 1D are segments, in 2D can be triangles or
quadrilaterals and in 3D can be hexahedra, tetrahedra, square based pyramids
and prisms. There is freedom in the choice of the elements so it is quite easy to
�ll with good approximation domains of any shape.

In classical FEM formulation the mesh must be conform to interfaces, that
means that no element can �ll portions of di�erent regions with di�erent material
parameters. The domain must be completely covered and there cannot be inter-
sections between elements. Two elements can have in common: nothing, a node,
an entire edge (2D and 3D) or an entire face (3D). If the domain is not completely
covered, the mesh is a non-conform mesh and the problem can be solved only with
special methods.

The elements are connected by points called nodes (which are the vertices of the
elements or internal points). Each node i has an interpolating function Ni(x), that
usually is a piecewise polynomial function, always continuous in the domain Ω. On
each element the solution of the problem is expressed as the linear combination
of shape functions. The coe�cients of the shape functions (degrees of freedom)
are the unknowns of the algebraic problem. Shape functions usually are linear
functions, but they can also be of the second degree or more. For each element
there are as many interpolants as the number of the vertexes of the element if the
interpolants are of the �rst degree, while in general is equal to the number of nodes
on the element.

There are two main approaches to solve a FEM problem, one is called varia-

tional and the other is called weighted residual. In the �rst case there is the need
of a functional to be minimized, while it is not needed with the second approach,
since there is the need of only the di�erential equation that describes the problem.
Usually it is hard to write the functional to be minimized, but it is easier to solve.

The evaluated function minimizes the error on the whole solution. One of the
advantages of the FEM is that the interpolation is included in the method itself
and it is not done arbitrarily a posteriori.

The mesh usually can be made by the use of two techniques, Advancing Front
and Delaunay triangulation. The �rst technique starts from the boundary and, by
knowing the spacing function, �nds next points. For each iteration a new front is
created and must be avoided any overlapping of triangles. The advantage is that
gives a good accuracy on the boundary, but has the disadvantage of being slow.
Instead Delaunay triangulation is used to maximize the minimum angle of every
triangle, avoiding sharp triangles.
Since the number of the test functions is equal to the number of the shape function
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coe�cients, the number of the constraint is equal to the number of the unknowns
and the process gives a linear system of equations that has an unique solution if
the boundary conditions are well-de�ned and well-posed.

These kind of problems can be expressed as a matrices problem Ax = I where
A is the matrix of the parameters and I is the vector of the known terms. Matrices
and vectors of the matrices problem are obtained by assembling the contribution
of each �nite element: the goal is to determine the matrix relative to the global
coordinate system, the sti�ness matrix.

The solution of the matrices problem is obtained by iterative techniques such
as Gauss-Siedel method or by direct solver as Cholesky decomposition.

The boundary conditions de�ne the interfaces between the subdomains of the
model. Together with initial conditions, boundary conditions are required to cor-
rectly de�ne and solve the model. They are usually divided in three groups: Dirich-
let condition, that sets the value of a function on the boundary; Neumann con-
dition, that sets the derivative of a function and Robin condition, that imposes a
combination of the value of a function and its derivative (mixed condition).

2.2 Finite element analysis software

The computational complexity to perform a simulation with FEM requires the use
of a computer with appropriate software to solve systems of partial di�erential
equations. Examples of software are ANSYSr, COMSOLr and SIMULIAr.

The complexity of some processes required to develop specialized software,
that makes easier the implementation of some models, by ad hoc implementation,
compilation and graphical interfaces.

The main component of the software is the solver, that uses a prede�ned formu-
lation and integration method. The solver can compile an input �le in the format
required by the software. Together to the solver, there are also components of the
software that facilitate the user in building the input �le without the need of a text
editor, called pre-processor. The components that allow the visualization and the
organization of the output, to make it easily understandable whether the result is
acceptable or not, are called post-processor.

2.2.1 COMSOL Multiphysicsr

Comsol Multiphysicsr is a powerful interactive environment for modeling and solv-
ing coupled problems based on FEM. The software provides a powerful integrated
desktop environment with a Model Builder, where it is possible to get full overview
of the model and access to all functionality [33].

Modules

In the present work are used the Fluid Flow branch and the Electrochemistry
branch of the Batteries and Fuel Cells Module, in particular:

� the Free and Porous Media Flow interface



22 CHAPTER 2. COMSOL MULTIPHYSICSr MODEL

� the Tertiary Current Distribution, Nernst-Plank Interface

� the Secondary Current Distribution Interface

Geometry

The software has an internal CAD graphic interface, to create 1D, 2D or 3D
geometries with Boolean operators, extrusions and rotations.
It can also import geometries created with external software like AutoCADr or
CATIAr.

Parameters and Equations

The software has a tool to specify or modify parameters and properties of materials
with constant values, interpolating or analytic functions and much more. The
values can be applied to the whole domain, to subdomains, surfaces, edges, points
or contours of the geometry.

Boundary Conditions

Comsol allows both Neumann and Dirichlet conditions on internal or external
contours. It is possible to de�ne also other boundary conditions. All the conditions
can be set by constant values or functions.

Mesh

The software can create free meshes that can be used in any geometry. These
meshes do not have any restrictions on the distribution of the elements. It is also
possible to create mapped mesh with �xed sizes and distributions. The boundaries
of the domain and the subdomains are also faces or edges of the elements of the
mesh.

Solver

COMSOL Multiphysicsr includes di�erent linear solvers, e.g. GMRES, PARDISO
and Conjugate gradient. Iterative solver are not always converging. To improve
convergence, it is possible to set preconditioning and other parameters, to obtain
an optimal solver for the model.

Convergence

The convergence of the approximated solution with the exact solution depends on
various parameters. If the model is well de�ned, the approximated solution is very
near to the exact solution.

The precision of the results depends on the grade of the polynomial function
and on the shape and the size of the �nite elements. With the same polynomial
function, the error decreases by reducing the size of the elements.

The main causes of errors are:
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� errors in the code

� pre-processing or post-processing errors

� numerical approximations

� errors in the physical model

� use of elements not suitable with the real problem

Due to this errors the result must be veri�ed e.g. with the entity of the values
or with known solutions. Another check is to use a �ner mesh and then make a
comparison between the two results.

Validation

To be sure that the model is suited to the prediction of data, it must be validated,
by comparing the results of the model with experimental results.

For every kind of model, the di�erence from the result of the model and the
experimental result is acceptable when the deviation is compatible with both the
characteristics of the input data and the variations of the phenomenon.

If the deviation is high, there must be done a check of all the input data and
the parameters. When the di�erence is small enough, the model can be used as a
reliable forecasting tool.

2.3 Starting point: COMSOLr VRFB model

The starting point of the present work is a simpli�ed version of the model proposed
by Knehr and Agar [18]. By neglecting the dependency of the model on the third
spatial dimension, it is possible to develop a 2D model, that is easier to compute
than a 3D model.

In this work the complete development of a new model has been avoided since
a simple and useful model is found on the model library of COMSOLr [28].

The �rst thing that can be noted in this model is that the electrode is fed
from the bottom with the electrolyte containing a solution of sulfuric acid and
a vanadium redox couple. This �uid is supposed to enter in the electrode with
constant velocity, along the y axis. The negative electrode, on the left, is grounded
and the current leaves the cell from the side on the right with a �xed current
density. The spatial regions used are three, made by rectangles of the same height
but with di�erent thickness. The external regions are the electrodes, while the
central region is the membrane (as can be seen in �g. 2.1). For each rectangle
must be set:

� a model of its behavior, with constitutive relations

� interface conditions

� boundary conditions
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Figure 2.1: Geometry of the VRFB COMSOL model

In this case the model is solved for a stationary case, with a given set of inlet
conditions, as the concentration of the species entering the cell and the velocity of
the �ow.

This is possible because the time required to measure a signi�cant variation of
the concentration of the species into the electrolyte is higher than the electrical
and chemical time constants. Therefore the system can be studied as a sequency
of stationary systems.

2.3.1 Positive and negative electrolyte solutions

Negative Electrolyte

The species contained in the negative electrolyte are:

� H+

� HSO−
4

� SO2−
4

� V 3+
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� V 2+

The equation used to calculate the equilibrium potential is the Nernst equation
(eq. 1.16)

Eeq,neg = E0,neg +
RT

F
ln

(
aV 3+

aV 2+

)
[V ] (2.1)

where E0,neg[V ] is the reference potential for the anode reaction and ai is the
chemical activity of the species i.

The current follows a Butler-Volmer equation 1.38

I = Ai0,neg
[
e(1−αnegnFηact/RT − e−αnegnFηact/RT

]
[A/m3] (2.2)

where A[m2/m3] is the speci�c surface area of the porous electrode and αneg is the
transfer coe�cient.

The reference current density is given by the following relation:

i0,neg = Fkneg(aV 2+)1−αneg(aV 3+)αneg [A/m2] (2.3)

where kneg is the rate constant.
The overpotential of the negative electrode is de�ned as:

ηneg = φs − φl − Eeq,neg [V ] (2.4)

where φs[V ] is the electric potential of the solid phase and φl[V ] is the electrolyte
potential. For this model it takes into account only the ohmic and the ion over-
potentials.

Positive Electrolyte

The species contained in the positive electrolyte are:

� H+

� HSO−
4

� SO2−
4

� V O2+

� V O+
2

In this case the Nernst equation, according to 1.8 becomes:

Eeq,pos = E0,pos +
RT

F
ln

(
a
V O+

2 (aH+)
2

aV O2+

)
[V ] (2.5)

The Butler-Volmer equation are modi�ed as follows:

I = Ai0,pos
[
e(1−αposnFηact/RT − e−αposnFηact/RT

]
[A] (2.6)

where the reference current density is:

i0,pos = Fkpos(aV O2+)1−αpos(aV O+
2

)αpos [A/m2] (2.7)
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2.3.2 Sulphuric acid

As reported in the previously cited [18], the �rst dissociation of the sulphuric acid
is assumed to be complete:

H2SO4 → H+ +HSO−
4 (2.8)

while the second step

HSO−
4 → H+ + SO2−

4 (2.9)

is considered incomplete and its state of dissociation is described by:

rd = kd

(
aH+ − aHSO−4
aH+ + aHSO−4

− β

)
(2.10)

where rd is a rate parameter, kd is a dissociation constant and β is the level of
dissociation. This is an important parameter since the dissociation of the sulphuric
acid varies the concentration of the available H+.

2.3.3 Current distribution

The molar �ux of species is described by means of the Nernst-Planck equation,
that takes into account di�usion, migration and convection:

Ni = −Di∇ci − ziumob,iFci∇φl + cin [mol/m3s] (2.11)

The �rst term −Di∇ci is the di�usion �ux, the second, −ziumob,iFci∇φl, is the
migration term, where umob,i is the mobility of the species i, and the third term,
cin is the convection term, where n m/s is the �uid velocity vector.

The convective term summed up for all the species gives a null contribution due
to the electroneutrality. For this reason the electrolyte current density, evaluated
by means of the Faraday's law, sums up the contributions of all the di�usion
and migration terms. Each of these terms is multiplied by its charge and then
multiplied by the Faraday's constant:

il = F
∑
n

zi(−Di∇ci − ziumob,iFci∇φl) [A/m2] (2.12)

2.3.4 Interface conditions

To match �eld problems in subdomains, there is the need to set up the interface
conditions between the membrane and the free electrolytes.

The �rst condition is the equality of the current density across the membrane:

n · il,e = n · il,m (2.13)

where il,e[A/m
2] is the current density in the electrolyte and il,m[A/m2] is the

current density in the membrane.
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Since the only species crossing the membrane are protons H+ (neglecting the
crossover of other species) the current in the membrane, according to the Faraday's
law is proportional to the �ux of H+, while for the other species the contribute is
zero:

n ·NH+,e = n · il,m
F

[mol/m2s] (2.14)

Usually, the Nernst equation is in the form adopted in the fuel cell literature. That
is, for the positive electrode:

Epos = E0,pos +
RT

F
ln

(
cV O+

2

cV O2+

)
[V ] (2.15)

For the VRFB this is an incomplete representation, because the potential across the
membrane is not negligible, i.e. the activity of the hydrogen must be incorporated.
This gives a more complete description of the equilibrium potential:

Epos = E0,pos +
RT

F
ln

(
cV O+

2
c2
H+

cV O2+

)
[V ] (2.16)

Another important factor, ignored in the standard form of the Nernst equation, is
the Donnan potential, as reported in [17] that has the following form:

Em,± =
RT

F
ln

(
cH+,±

ch+,m

)
[V ] (2.17)

where ± is the positive or the negative electrolyte andm represents the membrane.
By introducing it, the relation between the potentials and the concentration (or
activity, supposed equivalent) becomes:

φl,m = φl,e +
RT

F
ln

(
aH+,m

aH+,e

)
[V ] (2.18)

2.4 Analysis of the model in COMSOLr

The VRFB model implemented in the COMSOLr library relies on the following
physics of the Batteries and Fuel Cells Module:

� Tertiary current distribution, Nernst-Planck

� Secondary current distribution

The �rst physics include reactions, mass and electric charge transport. It is related
to the positive and negative electrodes because the concentrations in the porous
electrode domains are of the same order of magnitude and the gradients of the
concentrations are not negligible. For the second physics reactions do not occur
inside the membrane is instead related to the membrane because the negative ions
are �xed inside the polymer membrane so their concentration is constant.
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Therefore, the general equations to be solved are respectively

∇ · il = F
∑
n

ziRi [A/m3] (2.19)

and
il = −umob,+F 2c+∇φl = −σl∇φl [A/m2] (2.20)

where the Ri[mol/m
3s] are the reaction sources due to the porous electrode reac-

tions and σl is the electrolyte conductivity.
The Table 2.1 shows the parameters used for the model and where they can

be found in the literature. In Appendix A can be found a detailed insight on the
equations of the model.

2.4.1 Porous electrodes: Tertiary current distribution

The Tertiary current distribution physics is used to model the electrolyte into the
porous electrodes. The relations found in the negative electrode Tertiary Current
Distribution Physics are in Table 2.2 while the relations of the positive electrode
physics are in Table 2.3. In both the tables Eeq,± = Nernst(a, b, c) are the Nernst
equations 2.1 and 2.5 where a, b, c are the input parameters.

The main nodes of this Tertiary current Distribution physics (i.e the interfaces
of the software to set the parameters of each physics) are:

� electrolyte,

� insulation,

� no �ux,

� initial values

To study VRFBs must be added to the physics other components (nodes), as:

� porous electrode,

� reactions,

and nodes to set boundary and interface conditions as, for the negative elec-
trode:

� electric ground,

� concentration,

� out�ow, while for the second, the positive electrode, are:

� electrode current,

� concentration

� out�ow
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parameter value unity de�nition
Hcell 0.035 [m] Cell height [18]
Wcell 0.0285 [m] Cell depth [18]
Le 0.004 [m] Electrode thickness [20]
Lm 203e-6 [m2/s] Membrane conductivity [20]
DV2 2.4e-10 [m2/s] V 2+ di�usion conductivity [34]
DV3 2.4e-10 [m2/s] V 3+ di�usion conductivity [34]
DV4 3.9e-10 [m2/s] V O2+ di�usion conductivity [34]
DV5 3.9e-10 [m2/s] V O+

2 di�usion conductivity [34]
DH 9.312e-9 [m2/s] H+ di�usion conductivity [35]
DSO4 1.065e-9 [m2/s] SO2−

4 di�usion coe�cient [18]
DHSO4 1.33e-9 [m2/s] HSO−

4 di�usion coe�cient [18]
v 300 [ml/min/m2] Inlet velocity
T 293.15 [K] Cell temperature
σe 66.7 [s/m] Electrode conductivity [18],[36]
ε 0.93 Electrode porosity [18],[36]
a 3.5e4 [m2/m3] Electrode speci�c area [18]
E0,pos 1.004 [V ] Standard potential,positive [37]
kpos 2.5e-8 [m/s] Rate constant,positive [18]
αp 0.55 Transfer coe�cient,positive [18]
E0,neg -0.255 [V ] Standard potential,negative [37]
kneg 7e-8 [m/s] Rate constant, negative [18]
αn 0.45 Transfer coe�cient, negative [18]
β 0.25 Dissociation constant [18]
kd 1e4 [m3s] HSO−

4 dissociation rate [18]
aH,m 1.99 Membrane proton activity [18]
σm 10 [s/m] Membrane conductivity [18]
cV2,0 156 [mol/m3] V 2+ initial concentration [18]
cV3,0 884 [mol/m3] V 3+ initial concentration [18]
cV4,0 884 [mol/m3] V O2+ initial concentration [18]
cV5,0 156 [mol/m3] V O+

2 initial concentration [18]
cH,0,neg 4447.5 [mol/m3] H+ initial concentration,ne [18]
cH,0,pos 5097.5 [mol/m3] H+ initial concentration,pe [18]
cHSO4,neg 2668.5 [mol/m3] HSO−

4 initial concentration,ne [18]
cHSO4,pos 3058.5 [mol/m3] HSO−

4 initial concentration,pe [18]
iavg -100 [mA/cm2] Average current conductivity

Table 2.1: Table of the parameters and their references in the literature

equations of electrode, tertiary current distribution

After having set the nodes of the physics, must be analyzed the equations of each
component to adjust it correctly.

� Electrolyte: For both cases the equations of the electrolyte are over-
written by the porous electrode equations, since there are no domains that
contain only electrolyte and not the porous electrode.
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Negative Electrode
aV 3 max(cV 3, eps) V 3+ activity
aV 2 max(cV 2, eps) V 2+ activity
aH max(cH,neg, eps) H+ activity
aHSO4 max(cHSO−4 ,neg, eps) HSO−

4 activity

aSO4 max(cSO4,neg, eps) SO2−
4 activity

Eeq,neg Nernst(E0,neg, T, aV 3+/aV 2+) Equilibrium potential

i0,neg Fknega
1−αneg
V 2+ a

αneg
V 3+ Exchange current density

rd kd
(
aH−aHSO4

aH+aHSO4
− β

)
Dissociation rate

φl φl,neg Electrolyte potential
φs φs,neg Electrode potential

Table 2.2: Negative Electrode relations

Positive Electrode
aV 5 max(cV 5, eps) V O+

2 activity
aV 4 max(cV 4, eps) V O2+ activity
aH max(cH,pos, eps) H+ activity
aHSO4 max(cHSO−4 ,pos, eps) HSO−

4 activity

aSO4 max(cSO4,pos, eps) SO2−
4 activity

Eeq,pos Nernst(E0,pos, T, aV 5+a2
H/aV 4+) Equilibrium potential

i0,pos Fkposa
1−αpos
V 4+ a

αpos
V 5+ Exchange current density

rd kd
(
aH−aHSO4

aH+aHSO4
− β

)
Dissociation rate

φl φl,neg Electrolyte potential
φs φs,neg Electrode potential

Table 2.3: Positivee Electrode relations

(a) negative electrode electrolyte. (b) positive electrode electrolyte.

Figure 2.2: Negative and positive domains

� Insulation:
For the electrical insulation the equations are −n · ie = 0 and n · is = 0,
and describe the wall or the boundary of a cell that is not in contact with
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a conductor, therefore it is overwritten by electric ground and electrode
current. The vector n represents the normal vector to the insulated surfaces,
il represents the current into the electrolyte and is represents the current of
the electrode. For this system it acts with the contribution of no �ux,
concentration and out�ow.

(a) negative electrode insulation . (b) positive electrode insulation.

� No �ux:
it is a boundary condition that sets zero the �ux of chemical species i in
the direction orthogonal to the boundary: −n ·Ni = 0 where Ni is the �ux
of chemical species. It is applied only into the long sides where acts with
insulation and electric ground, while for the short sides is overridden by
out�ow and concentration.

(a) negative electrode no �ux . (b) positive electrode no �ux.

� Initial values:
initial values sets the initial values of the electric and electrolyte potentials
and the initial values of the concentrations in the whole region (see �g 2.2).
It is recommended to start from good initial values to ensure the convergence
of the system, due to the exponential nature of some equation. The values
to use are: cHSO4,±,0, cH±,0, cV2,0, cV3,0 and −E0,±.

� Porous electrode:
porous electrode imposes a balance of charges for the electrode and the
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electrolyte in the pores. It imposes also a balance of mass for the species
of the electrolyte. It works with the contribution of initial values and
reaction (see �g. 2.2). The mass balance equation is:{

∇ · (−Di,eff∇ci − ziUm,i,effFci∇φl) + n · ∇ci = Ri,tot

Ri,tot =
∑

m
Ri,m + εlRi,src

(2.21)

Where Ri,tot is the reaction source due to the porous electrode reactions,
where the total reaction source is the sum of the contributes of the reaction
sources.

The current in the electrolyte is

∇ · il = εlF
∑

i
ziRi,src +Ql + iv,total (2.22)

where iv,tot is the current density of the Butler-Volmer equation 1.38 and Ql

is the electric charge stored in a in�nitesimal volume. Due to the stationary
model, Ql = 0.
Due to the stationarity of the problem, Ql = 0. From the Butler-Volmer
equation Due to the electroneutrality, another equation is:∑

i
zici = 0 (2.23)

The Nernst-Planck equation can be written as in eq. 2.11.
The current can be evaluated from the Faraday's law, by considering the �ux
of the active species into the electrode:

il = F
∑

i
zi(−Di,eff∇ci − ziUm,i,effFci∇φl) (2.24)

The di�usion coe�cient must be rede�ned by considering also the porosity
of the porous electrode by the so-called Bruggemann correction where εl is
the porosity of the electrode:

Di,eff = ε1,5
l Di (2.25)

The components of the current are evaluated as follow:

∇ · is = Qs − iv,total, is = −σs∇φs (2.26)

where Qs is a current source and it is equal to 0.
The conductivity σs must be computed by taking into account the Brugge-
man correction:

σs,eff = ε1,5σs (2.27)

iv,total =
∑

m
iv,m (2.28)
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The input of this component are the vector �eld u, the temperature T , the
electrical conductivity of the electrode σs, the di�usion coe�cients DSO4 ,
DHSO4 ,DH , DV2 , DV3 , the migration in the electric �eld, with the Nernst-

Einstein relation Um,i,eff =
Di,eff
RT

, the charge numbers if SO4, HSO4, H,
V2 and V3, the electrolyte volume fraction (porosity) εl and the Bruggeman
di�usion.

� Porous electrode reaction:
By adding porous electrode it is added by default also the porous elec-
trode reaction node that de�nes the electrode kinetics for the charge trans-
fer reaction that occurs between the pore electrolyte and the electrode in the
electrocatalyst sites in a porous electrode. The equation is (see eq. 2.4):

η = φs − φe − Eeq (2.29)

Where the potential can be corrected by considering the temperature, as in
eq. 1.22:

Eeq = Eeq,ref +
dEeq
dT

(T − Tref ) (2.30)

the equilibrium potential at reference temperature is set while its derivative,
for this system is null. The kinetic expression of the electrode is of Butler-
Volmer type, de�ning an equation such:

iloc = i0

(
e
αaFη
RT − e

−αcFη
RT

)
(2.31)

where are set the exchange current density i0, the anodic transfer coe�cient
αa and the cathodic transfer coe�cient αc. Other parameters to set are the
active speci�c surface area av, the number of participating electrons and the
stoichiometric coe�cients to evaluate ri,m =

νi,miv
nmF

.

� Reactions:
Must be added also the reactions node to add the reaction that are not
electrochemical reactions, i.e. the reactions that do not gives a contribute to
the Nernst equation. These equations are:

∇ · (−Di∇ci − ziUm,iFci∇φl) + u · ∇ci = Ri,src (2.32)

and

∇ · il = F
∑

i
ziRi,src +Ql (2.33)

To consider a detailed model, must be added also the chemical reaction, i.e.
the dissociation rate of the sulphuric acid, de�ned in eq. 2.10.
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� Electric ground:
for the negative electrode there is the electric ground node, to bound the
electric potential to zero:

φs = 0 (2.34)

� Electrode current:
for the positive electrode instead is set the electrode current is,average, that
corresponds to the current of the collector, where∫

∂Ω

is · ndl = is,avg

∫
∂Ω

dl (2.35)

(a) electric ground . (b) electrode current .

� Concentration:
the node concentration gives the concentration �eld of the electrolyte on
a boundary:

ci = c0,i (2.36)

and needs to set the concentrations c0,HSO4±
, c0,H± , c0,V2 and c0,V3 for the

negative electrode, while for the positive c0,V2 and c0,V3 are substituted with
c0,V4 and c0,V5 .

(a) negative electrode concentration . (b) positive electrode concentration.
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� Out�ow:
The out�ow node sets on a boundary that the �ux of chemical species
through advection and migration is perpendicular to the selected boundary,
with no contribution from di�usion to the �ux over the selected boundary.

−n ·Di∇ci = 0 (2.37)

(a) negative out�ow. (b) positive out�ow.

2.4.2 Membrane: Secondary current distribution

The secondary current distribution component corresponds to the membrane. It
de�nes the transport of charged ions in an electrolyte uniform composition, using
Ohm's Law and charge balance. It takes into account also for activation over-
potentials, where the relation between charge transfer and overpotential can be
described by Butler-Volmer equations.

electrode current, secondary current distribution

The equations of the model of the membrane and its interface conditions are
described in the following part.

� Electrolyte:
the node electrolyte de�nes the balance of charges into the electrolyte with:

∇ · il = Ql (2.38)

where

il = −σl∇φl (2.39)

with the electrolyte conductivity σm to be set.
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� Insulation:
the node insulation, as for the tertiary current distribution, gives

−n · il = 0,−n · is = 0 (2.40)

and it is valid on the boundary and not on the interface with the electrodes.

� Initial values:
Into the node initial values are speci�ed the values of the electrolyte po-
tential φlm and of the electric potential φs.

(a) membrane insulation . (b) membrane initial values .

� Pointwise Constraint:
To add interface conditions are used two pointwise constraint, the �rst with
expression that take into account the Donnan potential.

φlneg −
RT

F
ln(

aH
aHm

)− φlm = 0 (2.41)

and constraint force expression, that should help in case the previous equa-
tion does not work, that has no physical meaning:

test
(
φlneg +

cHneg
F
− φlm = 0

)
(2.42)

and for the second expression

φlpos −
RT

F
ln(

aH
aHm

)− φlm = 0 (2.43)

and constraint force expression

test
(
φlpos +

cHpos
F
− φlm = 0

)
(2.44)
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(a) negative pointwise constraint. (b) positive pointwise constraint.

2.4.3 Mesh

For this model, the mesh required is quite simple, because of the geometry. The
only issue to be treated with particular care is the mesh density, which has to be
higher close to the membrane where reactions occurs (�g 2.3).

Figure 2.3: mesh of the simple model

2.4.4 Solution

The solution is found with a Newton-Raphson algorithm, where each step is solved
with an iterative solver. In this case the solver is set with GMRES and fully
coupled iterations, which means all the physics are computed together. The inde-
pendent variables of the fully coupled system are:

� electric potential

� concentration cH for the positive electrode

� concentration cHSO4 for the positive electrode

� electrolyte potential φl,m

� concentration cHSO4 for the negative electrode
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� electrolyte potential φl,neg

� electric potential φs,pos

� electrolyte potential phil,pos

� concentration cV 5+

� concentration cV 4+

� concentration cV 3+

� concentration cV 2+

� terminal voltage

Results

From this model it is possible to get many informations, such as the distribution
of the concentration of the di�erent species into the cell, like the vanadium ions
in Fig 2.4, or the second dissociation of the sulphuric acid. It is possible also to

(a) distribution of concentration of

V 2+ and V 5+ species.
(b) distribution of concentration of

V 3+ and V 4+ species.

Figure 2.4: concentration of the vanadium species in the cell

get only part of the solution, de�ned on a subspace of the whole system, or values
along a cut-line (Fig:2.5)
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(a) electrolyte potential. (b) Electrode current density.

Figure 2.5: Behaviors of Electrolyte potential and Electrode current density along
a line parallel to the x− axis, at half the height of the cell
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Chapter 3

Multiphysics model with �uid �ow

�eld

The model previously analyzed neglects completely the �ow �eld of the electrolyte
solution by supposing that the �ow is only along the y − axis, with a constant
velocity in the whole section. This approximation is not well suited for the simu-
lation of a practical cell. In a practical cell the electrolyte solution does not enter
directly in the porous electrode but enters from one or more pipes, e.g. in Fig.
3.1. The same is for the out�ow of the cell.

Figure 3.1: Example of serpentine �ow �eld [20]

For these reasons an enhanced version of the model will consider the �uid �ow
of a practical cell.

3.1 Flow �eld model

The approximation of a simple �ow �eld allows only the study of �ow cells with
simple geometries. To analyze the e�ect of di�erent inlet geometries, the model

41



42 CHAPTER 3. MULTIPHYSICS MODEL WITH FLUID FLOW FIELD

must take into account also the �uid �ow �eld.
This work analyze and develop a model that combine the �ow �eld analysis

with the electrochemical analysis.
To develop the model are made some assumptions to describe the behavior of

the electrolyte into the channels and into the porous electrode. The electrode is
composed by a graphite porous matrix, so the general equation that describes the
�uid �ow in it is the Darcy's law

q =
−κ
µ
∇p [m/s] (3.1)

where q is the Darcy �ux i.e. discharge per unit area, which is related to the
average velocity by the porosity

v =
q

εp
[m/s] (3.2)

The �ow �eld in a porous media can be described also by the Brinkman equation

ρ

εp

(
∂u

∂t
+ (u · ∇)

u

εp

)
=−∇p+∇ ·

[
1

εp

{
µ(∇u + (∇u)T − 2

3
µ(∇ · u)I

}]
+

−
(
κ−1µ+

Qbr

ε2
p

)
u + F [N/m3]

(3.3)

where I is the identity matrix, µ[Pas] is the dynamic viscosity, εp is the porosity,
κ[m2] is the permeability tensor of the porous medium, βf [kg/m

4] is the Forch-
heimer drag that adds a viscous force proportional to the square of the �uid velocity
and Qbr[kg/m

3s] is a mass source.
Usually the Darcy's law 3.4 is a good approximation.

〈v〉 =
−k
εpµ
∇p [m/s] (3.4)

but the previous considerations suggest the use of the Brinkman form of the
Darcy's law, due to the presence of the Brinkman term, which is used to account
for transitional �ow between boundaries. The previous equation is therefore well
suited to describe the �uid �ow into the electrode, but the empty pipes cannot be
represented in the same way.

This problem requires a model which can analyze the �uid �ow in two adjacent
regions, one with a free �ow and one with a porous �ow. The �ow in the open
regions, i.e. where free �ow occurs, can be described by the Navier-Stokes equation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · T + F [N/m3] (3.5)

where ρ[kg/m3] is the density of the �uid, u[m/s] is the velocity �eld, p[Pa] is the
pressure, T [N/m2] is the total stress and F [N/m3] is the volume force.
Since the �uid �ow is de�ned in two di�erent regions, must be de�ned interfacial
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conditions to take into account the transition from a domain to another. There
are various possibilities to describe the interface boundary between the di�erent
domains. The interface conditions used in this model are one of the simplest
possibilities. In particular are imposed the continuity of the pressure and of the
velocity on the interface.

A detailed analysis of the possible interface conditions is done in [38], where
the best approximation is obtained by de�ning a viscous transition zone, as a
subdomain of the porous region. This space is supposed to have a behaviour still
represented by the Navier-Stokes equation. Therefore the continuity of velocity
and pressure is imposed across it.

The following part therefore describes the physics of Comsol that allows this
calculation, i.e. the Free and Porous Flow physics.

3.1.1 Equation of the Free and porous �ow physics

The present model is developed to give the solution of a stationary problem. For
this reason the Navier-Stokes and the Brinkman equation are modi�ed, neglecting
the time-varying terms.

Equations of the Free Flow

The equation in free �ow is the Navier-Stokes equation without time derivatives

ρ(u · ∇)u = ∇
[
−pI + µ(∇U + (∇u)T )

]
+ F [N/m3] (3.6)

and steady-state continuity equation,

ρ∇ · u = 0 [kg/m3s] (3.7)

Equations of the Porous Flow

The �ow in the porous domain is described by Brinkman equation, without time
derivatives

0 = ∇ ·
[
−pI +

µ

εp

(
∇U + (∇U)T

)
− 2µ

3εp
(∇ · u)I

]
+

−
(
µκ−1 + βf |u|+

Qbr

ε2
p

)
u + F [N/m3]

(3.8)

and the continuity equation, that contains also a source term

ρ∇ · u = Qbr [kg/m3s] (3.9)

Boundary conditions

The other components of this physic are mentioned in this part.
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� Inlet
The inlet has a simple equation, that sets the initial velocity.

u = u0 [m/s] (3.10)

� Out�ow
The out�ow node allow the exit pressure of the �ow �eld to be set by:[

−pI + µ
(
∇u + (∇u)T

)]
n = −p̂0n [Pa] (3.11)

and the pressure on the boundary p̂0 has to be

−p̂0 ≤ p0 [Pa] (3.12)

where the p0 pressure for this model is set to zero

p0 = 0 [Pa] (3.13)

� Fluid Properties
The �uid properties are explained by the Navier-Stokes equation 3.6 and
the continuity equation 3.7

� Porous Matrix Properties
The porous matrix properties are described by the Brinkman equation
3.8

3.1.2 Variables of the new model

The advanced model requires to de�ne new variables such as the inlet velocity, the
velocity �eld into the whole domain, the porosity and the outlet pressure.

The inlet velocity is chosen by taking into account that there are losses in the
mass transport and the current �owing through the electrodes depends also on the
concentration of V 2+ and V 5+ in the negative and positive electrodes.

A useful way to optimize the e�ciency is to vary the �ow rate. In order to do
that, has been proposed the use of a �ow factor, that multiplies the value of �ow
rate calculated on the basis of Faraday law for electrolysis 3.14. From literature
can be found that the optimal results are obtained considering a �ow factor α with
1 ≤ α ≤ 8 [23, 27]. Hence

Qelectrode =
I

FcV SoC
[kg/m3s] (3.14)

becomes

Qα = α
I

FcV SoC
[kg/m3s] (3.15)

where I[A] is the electric current, cV [mol/m3] is the concentration of the de-
creasing vanadium species and SoC is the state of charge.
Usually the SoC ranges from the 10% to the 90%, but it is also possible to set
SoCmin = 20÷ 25%.
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Figure 3.2: MATLABr processing of the y component of the velocity �eld

3.2 Coupling between 2D analysis and 3D �ow �eld

model

In this work the �rst investigation about the implementation of a realistic �ow
�eld to a VRFB is done by adding a �ow �eld calculated with a separated model,
composed only by a free and porous �ow physics and then scaled and introduced
in the electrochemical model. The Cartesian components of the velocity computed
on a rectangular grid by 3D �ow �eld model were exported as matrices. These
tables then have been imported in the 2D VRFB model as functions (see �g 3.2),
then used as input functions to describe the velocity of the electrolyte into the
electrode.

In this way has been investigated the feasibility of the combination of the �ow
�eld physics with the electrochemistry physics.

In the second step the free and porous �ow �eld physics have been added to
the VRFB model, to be solved in the same simulation, with a segregated solver.

3.3 Interdigitated �ow �eld

The laboratory of Computational Electrical Engineering of the University of Padua
is currently studying a VRFB system prototype. In this system, whose layout can
be seen in Fig. 3.3, the electrolyte �uid enters through the porous electrode via
interdigitated channels (see Fig 3.5).
The VRFB cell under study in the laboratory has interdigitated serpentine chan-
nels, that make all the electrolyte pass through the porous electrode (Fig. 3.4).
Performing a 3D multiphysics simulation of the whole cell will require a tremen-
dous computational cost. Therefore an equivalent 2D model would reduce drasti-
cally the time required for the computation.

The following part of the work is done to �nd a model which can perform a
simulation of a cell of this system.
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V2

V3

V4

V5

−

+

Figure 3.3: Layout of the monopolar cell

Figure 3.4: Simpli�ed 3D model of interdigitated �ow channels, You et al. [22]
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Figure 3.5: Monopolar plate with interdigitated channels

The single cell has a height hcell = 260mm and a width wcell = 160mm, that
are the dimensions of the membrane. The current density is set to obtain a current
density of i = 2000A/m2, therefore the current is

I = i× hcell × wcell ' 83A (3.16)

The total concentration of vanadium is set at

cVtot = 1600mol/m3 (3.17)

The feeding system is made by interdigitated serpentine, 5 ∼ 6 for the in�ow
and 4 ∼ 5 for the out�ow (�g 3.5).

With this concentration of vanadium and a concentration of sulphuric acid
∼ 6M the two electrolytes have di�erent characteristics.

For the negative electrolyte the main parameters are:

� Density
The density of the negative electrolyte is ρneg = 1300kg/m3

� Viscosity The viscosity of the negative solution is ηneg = 0.0025Pa · s

while for the positive electrolyte the parameters are:

� Density The density of the positive solution is ρpos = 1354kg/m3

� Viscosity The viscosity of the positive solution is ηpos = 0.005Pa · s

Due to the di�erence of viscosity the behavior of the cell is not anymore symmetric
as in the case of the previous simple model.

Another important parameter is the permeability. This value has a wide range
in the literature since it is determined with the Kozeny-Carman equation,where
the Kozeny-Carman constant is a �tting parameter, obtained by measuring the
permeability, known the porosity and the diameter of the �bers or the diameter of
the pores:

k =
d2
fε

3

KCK(1− ε)2
[m2] (3.18)
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(a) y component of the velocity �eld. (b) x component of the velocity �eld.

Figure 3.6: Flow �eld into a vrfb with pipes in parallel to the electrodes

where df [m] is the graphite �ber diameter, ε is the porosity and KCK is the
Kozeny-Carman constant, that characterize the shape and the orientation of the
material [20].
Another expression of the Kozeny-Carman equation, used in VRFB modeling [18,
26] is

k =
d2
pε

3

16KCK(1− ε)2
[m2] (3.19)

where dp[m] is the pore diameter, usually measured by mercury porosimeter.

For a more detailed analysis of the Kozeny-Carman equation, also by means of
fractal geometry, there is a work of P. Xu and B. Yu [39].

In the literature, the Kozeny-Carman constant KCK goes from a value of 4.28
in the work of D. You et al. [15] to a value of 180 and more [20]. The value of the
permeability k[m2] therefore must be obtained experimentally.

This parameter, due to its proportionality with the pressure gradient (see
Darcy's law 3.4), has a direct relation with the sizing of the pumps (in the
Brinkman equation the permeability κ is still related to the pressure gradient
).

In the present work some of the trial simulation were performed with a value of
k = 1×10−9[m2], that is in good agreement with the values found in the literature.

The simple 2D model with the serpentine in parallel with the electrode, where
the external rectangles are the pipes and the three internal rectangles are the
electrodes and the membrane, was not feasible due to the small �ow of electrolyte
into the porous electrode (�g 3.6). This happened because of the high permeability
k[m2] of the porous graphite electrode.

To avoid this problem the �ow has to pass completely through the porous
electrode.
In order to have an idea of how the �uid goes through the graphite electrode a 3D
�uid �ow model has been done. This model has only one inlet pipe and one outlet
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Figure 3.7: 3D �ow �eld model with two pipes and a part of porous electrode

pipe (�g 3.7).

The mesh of this model was made thiner near the inlet and the outlet and
coarser near the end of the pipes (�g 3.8). It is also as �ne as possible to obtain a
convergent solution. Every pipe is long lp = 250mm.

The �ow rate is calculated from the Faraday's law (3.15), with a current density
of i = 2000A/m2 and a state of charge SoCmin = 0.25, that is the condition that
requires the highest �ow rate.

As a result, it is possible to see how the �uid is distributed into the porous elec-
trode, with the magnitude of the velocity �eld in �g. 3.9. A better understanding
is given by the y and z component of the velocity �eld, respectively in �g. 3.10 and
in �g. 3.11 As can be seen from �g. 3.10, �g. 3.11 and 3.12, with the parameters
set above, the majority of the electrolyte passes through the porous electrode at
the beginning and at the end of the cell, creating two zones with a good amount
of fresh electrolyte solution, in the rest of the cell velocity of the �ow is very low.
This consideration neglects the fact that the real cell has serpentine channels, that
should increase the passage area of the electrolyte solution through the porous
electrode.
A solution to make a 2D model of an interdigitated channel cell is to simulate a
slice of the cell along a x− z plane (�g 3.13).

This can be done by supposing that the �ow rate at the inlet (�g 3.14) passes
through the electrode homogeneously distributed. By doing this, the equivalent
�ow rate can be calculated as the inlet �ow rate multiplied by the area of the inlet
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Figure 3.8: Partial view of the mesh of the 3D �ow �eld model

Figure 3.9: 3D velocity �eld magnitude
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(a) y component of the velocity �eld on a

x− y plane.
(b) y component of the velocity �eld on y−z
planes.

Figure 3.10: y component of the velocity �eld

(a) z component of the velocity �eld on x−z
planes.

(b) particular of the z component of the ve-

locity �eld on x− z planes.

Figure 3.11: z component of the velocity �eld

Figure 3.12: z component of the velocity �eld on a x− y plane
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Figure 3.13: Example of cell with interdigitated channels, with a section on a xz
plane

and divided by the area of the interface between the electrode and the pipe

Qeq = Qinlet
Ainlet

Ainterface
[m3/s] (3.20)

This assumption allows to perform a 2D simulation. As a result of the interdigi-
tated channels �ow �eld, the concentration of the electroactive species (Fig. 3.15)
is homogeneous the whole cell except in the side areas.

3.3.1 Voltage driven analysis

With this model it is also possible to set the electric potential instead of the current
density. This is done by adding a node Electrode Potential to the Tertiary
Current Distribution of the positive electrode and by removing the Electrode
Current. If this process is done to a model that has been already solved, it is
necessary to create another solution. By doing this COMSOL makes a new system
to be solved, with the electrode potential as a parameter and the electrode current
as an unknown term.

3.3.2 Current driven analyis

One of the most important things to note is that it is possible to perform a paramet-
ric sweep, i.e. the solution of the same model with di�erent sets of parameters e.g.:
By de�ning the state of charge SoC and the total concentration of vanadium per
each electrolyte solution cVtot [mol/m3] the concentrations of vanadium species
result
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Figure 3.14: Inlet of the cell

(a) V 2+ and V 5+ concentrations. (b) V 3+ and V 4+ concentrations.

Figure 3.15: Concentration of the vanadium species in a VRFB with interdigitate
channels
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Figure 3.16: Curves of charge and discharge cycles with di�erent current densities

� cV 2+
0 = cVtot × SoC [mol/m3]

� cV 3+
0 = cVtot × (1− SoC) [mol/m3]

� cV 4+
0 = cVtot × (1− SoC) [mol/m3]

� cV 5+
0 = cVtot × SoC [mol/m3]

Therefore by performing a parametric sweep of the SoC parameter, it is possible
to see the behavior of the cell for each value of SoC.

By varying both the state of charge SoC and the electrode current density
iavg[A/m

2] it is possible to get the curves of the electric potential during a cycle
of charge and discharge (see Fig. 3.16 and Fig. 3.17). The postprocessing
is done with MATLABr (see Appendix 2). The values has been exported from
COMSOLr in a .cvs �le and then imported with a MATLAB script. The imported
data were subsequently rearranged in order to create a �gure with the curves of
the electric potential, during both the charge, with a positive current density, and
the discharge, with negative current density, but the same magnitude.

Another possibility is to analyze how the concentration of vanadium species
changes into the cell, making possible to see if there are some "blind spots", where
there is an higher discharge of the electrolyte due to a low �ow (Fig. 3.18).
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(a) Electric potential with di�erent SoC and

current density,1.
(b) Electric potential with di�erent SoC and

current density,2.

Figure 3.17: Curves that shows the behavior of the electric potential during charge
and discharge with di�erent values of current density

Figure 3.18: View of a portion of a VRFB with interdigitated channels, concen-
tration of V 2+ and V 5+ species
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(a) VRFB cell with an odd number of inter-

digitated channels.
(b) VRFB cell with an even number of in-

terdigitated channels.

Figure 3.19: Di�erent velocity �elds for odd and even number of channels

3.3.3 Analysis of the 2D �ow �eld results

With this model it is also possible to verify how the velocity �eld is distributed.
There is the possibility to optimize the distribution of the interdigitated channels,
to have an homogeneous �ow �eld into the cell:

� the zones of the porous electrode where the fresh electrolyte �uid is supplied
by the external channels have a lower discharge rate of the vanadium ions
due to the higher �ow rate.

� the extremities of the porous electrode region receive a minimum amount
of new electrolyte, therefore di�usion mechanisms become more important
than the �ow �eld itself. This makes necessary to put the external channels
as near as possible to the boundary of the cell.

� To have a symmetric behavior of the cell, the number of the in�ow channels
must di�er from the number of the out�ow channels by one unit. In this way
the number of channel is odd and therefore the external channels are both
in�ow or out�ow channels (Fig 3.19)

3.3.4 Towards a full 3D modeling

You et al. [22] have created a simpli�ed 3D model of a VRFB with interdigitated
channels. By taking that work as a reference, the following idea is to develop a
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Figure 3.20: 3D �uid �ow model with the three regions chosen to solve the elec-
trochemical model

Figure 3.21: 3D �uid �ow model with the three regions chosen to solve the elec-
trochemical model (see �g 3.20)

3D multiphysics model that consider the �ow �eld of the complete 3D �uid �ow
model.
Since a multiphysics simulation of the whole VRFB cell, with 260× 160mm2 area
is unfeasible with a standard workstation, while the simulation of the 3D �uid �ow
were already performed.

The idea therefore was to solve the 3D electrochemical model only in a small
part of the cell, with the solved �ow �eld of the previous simulation as an input
value. For this problem three region were chosen (Fig. 3.20):

� one near the inlet

� one in the middle of the height

� one near the outlet

The 3D model was set up according to Fig 3.21
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3.4 Further developments

The present multiphysics model, that solves both the �ow �eld and the electro-
chemistry of a VRFB, can be used for observing the cell behavior on di�erent
operating conditions.

The simplest evaluation allowed by the model is the value of the average con-
centration at the outlet of the channel. By knowing the initial concentration, the
average out�ow concentration and the volume of the tank, it is possible to evaluate
the time required to a complete charge or discharge of the VRFB. The variation
of the inlet concentration can be approximated from the following mass balance,
which assume instantaneous mixing and negligible reaction in the reservoir of vol-
ume V [m3] [14]

dcini
dt

= ω
V

(couti − cini ) [mol/m3s], cini (0) = c0
i [mol/m3] (3.21)

where the volumetric �ow at the outlet boundaries, with cross-sectional area Aout,
is ω = νinεAout.
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Conclusion

The �rst part of the work has been focused on the analysis of the VRFB technol-
ogy. The equations that describe this systems have been explained and organized
together with their references. After analyzing the state of the art models it has
been possible to say that one of the problems that needed further investigation is
the study of the �ow �eld. A simple 2D electrochemical model, already developed
in COMSOLr, was selected as the basis for the development of a more detailed
model.

The second part has been the analysis of this simple model and how it is
implemented in COMSOL. Then the parameter of this model were set to be in
accord with the system with interdigitated channels being studied in the laboratory
of Computational Electrical Engineering. The results given by this model were not
adequate to represent the behavior of the VRFB system. The pressure gradient and
the �ow rate necessary to maintain the imposed current were order of magnitude
greater than the required values.

The third part of the work therefore was focused on the research of the equa-
tions to describe the �uid �ow �eld, their interface conditions and the implemen-
tation of them in the COMSOL model and how to simulate the 3D cell with a 2D
model.

After an assumption on the 3D �ow �eld, with the developed model is possible
to simulate properly an interdigitated channel VRFB cell. The performed simula-
tions highlight the fact that, di�erently from the literature, the distribution of the
electrolyte into the porous electrode for an optimal range of the �ow rate, with
this geometry, is uneven. This distribution of the electrolyte may led to "hotspot".
But if the temperature of the cell overcome a limit value, the vanadium ions start
to precipitate, making the cell useless. For this reason some measures can be taken
to guarantee an even and homogeneous distribution of the electrolyte into the cell,
such as di�erent spacing of the channels.

Since the interdigitated channels �ow �eld is a key technology, there is the
need of further analysis. The only available model with this kind of channels state
that the uneven pressure drop between the external channels and the internal is
obtained for low �ow rates, but this is not in agreement with the optimal �ow factor
α reported in [27] because a �ow factor of 7 has been used for the 2D multiphysics
simulation and the �ow �eld is still uneven (see �g 3.19) and a higher �ow rate

59
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could reduce the overall e�ciency of the VRFB system. Therefore a solution to this
problem could be �nd from the solution of the 3D electrochemical model with the
solved 3D �ow �eld that remains an open task. A further step in the improvement
of the model therefore could be the implementation of the heat transfer physics.
In this way it could be possible to evaluate the temperature distribution into the
cell and avoid the precipitation of the vanadium ions by increasing the �ow rate.
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Appendix A

Equations of the simple model

A.1 Negative electrode: Tertiary current distribu-

tion

1. Porous electrode, negative, the equations of the Domain1 (�g A.1)

are:

� Current source:
Qsi = 0[A/m3],

SO4

� Concentration of SO4:

cSO4 =
(−cHSO4×zcHSO4

−cH×zcH−cV2×zcV2−cV3×zcV3 )

zcSO4
+eps

[mol/m3] where eps is

the machine epsilon, an upper bound to the relative error due to round-
ing in �oating point arithmetic. In this case used to avoid division for
zero.

� Di�usion coe�cient

DcSO4
=

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =

DSO4ε
1,5 0 0

0 DSO4ε
1,5 0

0 0 DSO4ε
1,5

 [m2/s]

Figure A.1: Domain1
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� Average di�usion coe�cient
DavSO4

= 1
2
(DxxSO4

+DyySO4
)[m2/s]

� Total �ux

TfluxcSO4 =

TfluxxTfluxy
Tfluxy

 =

=

DxxcSO4

∂cSO4

∂x
−DxycSO4

∂cSO4

∂y
+ Cfluxx,cSO4 +Mfluxx,cSO4

DyxcSO4

∂cSO4

∂x
−DyycSO4

∂cSO4

∂y
+ Cfluxy,cSO4 +Mfluxy,cSO4

DzxcSO4

∂cSO4

∂x
−DzycSO4

∂cSO4

∂y
+ Cfluxz,cSO4 +Mfluxz,cSO4

 [m2/s]

� Di�usive �ux

DfluxcSO4 =

DfluxxDfluxy
Dfluxy

 =

DxxcSO4

∂cSO4

∂x
−DxycSO4

∂cSO4

∂y

DyxcSO4

∂cSO4

∂x
−DyycSO4

∂cSO4

∂y

DzxcSO4

∂cSO4

∂x
−DzycSO4

∂cSO4

∂y

 [m2/s]

� Concentration gradient ∇x

∇y

∇z

 =

 ∂cSO4

∂x
∂cSO4

∂y

0

 [mol/m4]

� Di�usive �ux magnitude

DfluxMagcSO4 =
√
Dflux2

x,cSO4
+Dflux2

y,cSO4
+Dflux2

z,cSO4
[mol/m2s]

� Total �ux magnitude

TfluxMagcSO4 =
√
Tflux2

x,cSO4
+ Tflux2

y,cSO4
+ Tflux2

z,cSO4
[mol/m2s]

HSO4

� Concentration of HSO4:

cHSO4 =
(−cHHSO4×zcHHSO4

−cH×zcH−cV2×zcV2−cV3×zcV3 )

zcHSO4
+eps

[mol/m3]

� Di�usion coe�cient

DcHSO4
=

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =

DHSO4ε
1,5 0 0

0 DHSO4ε
1,5 0

0 0 DHSO4ε
1,5

 [m2/s]

� Average di�usion coe�cient
DavHSO4

= 1
2
(DxxHSO4

+DyyHSO4
)[m2/s]

� Total �ux

TfluxcHSO4 =

TfluxxTfluxy
Tfluxy

 =

=

DxxcHSO4

∂cHSO4

∂x
−DxycHSO4

∂cHSO4

∂y
+ Cfluxx,cHSO4 +Mfluxx,cHSO4

DyxcHSO4

∂cHSO4

∂x
−DyycHSO4

∂cHSO4

∂y
+ Cfluxy,cHSO4 +Mfluxy,cHSO4

DzxcHSO4

∂cHSO4

∂x
−DzycHSO4

∂cHSO4

∂y
+ Cfluxz,cHSO4 +Mfluxz,cHSO4

 [m2/s]

� Di�usive �ux

DfluxcHSO4 =

DfluxxDfluxy
Dfluxy

 =

DxxcHSO4

∂cHSO4

∂x
−DxycHSO4

∂cHSO4

∂y

DyxcHSO4

∂cHSO4

∂x
−DyycHSO4

∂cHSO4

∂y

DzxcHSO4

∂cHSO4

∂x
−DzycHSO4

∂cHSO4

∂y

 [m2/s]
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� Concentration gradient ∇x

∇y

∇z

 =

 ∂cHSO4

∂x
∂cHSO4

∂y

0

 [mol/m4]

� Di�usive �ux magnitude

DfluxMagcHSO4 =
√
Dflux2

x,cHSO4
+Dflux2

y,cHSO4
+Dflux2

z,cHSO4

� Total �ux magnitude

TfluxMagcHSO4 =
√
Tflux2

x,cHSO4
+ Tflux2

y,cHSO4
+ Tflux2

z,cHSO4

H

� Concentration of H:
cH =

(−cHH×zcHH−cH×zcH−cV2×zcV2−cV3×zcV3 )

zcH+eps
[mol/m3]

� Di�usion coe�cient

DcH =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =

DHε
1,5 0 0

0 DHε
1,5 0

0 0 DHε
1,5

 [m2/s]

� Average di�usion coe�cient
DavH = 1

2
(DxxH +DyyH )[m2/s]

� Total �ux

TfluxcH =

TfluxxTfluxy
Tfluxy

 =

DxxcH
∂cH
∂x
−DxycH

∂cH
∂y

+ Cfluxx,cH +Mfluxx,cH
DyxcH

∂cH
∂x
−DyycH

∂cH
∂y

+ Cfluxy,cH +Mfluxy,cH
DzxcH

∂cH
∂x
−DzycH

∂cH
∂y

+ Cfluxz,cH +Mfluxz,cH

 [m2/s]

� Di�usive �ux

DfluxcH =

DfluxxDfluxy
Dfluxy

 =

DxxcH
∂cH
∂x
−DxycH

∂cH
∂y

DyxcH
∂cH
∂x
−DyycH

∂cH
∂y

DzxcH
∂cH
∂x
−DzycH

∂cH
∂y

 [m2/s]

� Concentration gradient ∇x

∇y

∇z

 =

 ∂cH
∂x
∂cH
∂y

0

 [mol/m4]

� Di�usive �ux magnitude

DfluxMagcH =
√
Dflux2

x,cH +Dflux2
y,cH +Dflux2

z,cH

� Total �ux magnitude

TfluxMagcH =
√
Tflux2

x,cH + Tflux2
y,cH + Tflux2

z,cH

V2

� Concentration of V2:

cV2 =
(−cHV2×zcHV2−cH×zcH−cV2×zcV2−cV3×zcV3 )

zcV2+eps
[mol/m3]

� Di�usion coe�cient

DcV2
=

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =

DV2ε
1,5 0 0

0 DV2ε
1,5 0

0 0 DV2ε
1,5

 [m2/s]



66 APPENDIX A. EQUATIONS OF THE SIMPLE MODEL

� Average di�usion coe�cient
DavV2

= 1
2
(DxxV2

+DyyV2
)[m2/s]

� Total �ux

TfluxcV2 =

TfluxxTfluxy
Tfluxy

 =

DxxcV2
∂cV2
∂x
−DxycV2

∂cV2
∂y

+ Cfluxx,cV2 +Mfluxx,cV2
DyxcV2

∂cV2
∂x
−DyycV2

∂cV2
∂y

+ Cfluxy,cV2 +Mfluxy,cV2
DzxcV2

∂cV2
∂x
−DzycV2

∂cV2
∂y

+ Cfluxz,cV2 +Mfluxz,cV2

 [m2/s]

� Di�usive �ux

DfluxcV2 =

DfluxxDfluxy
Dfluxy

 =

DxxcV2
∂cV2
∂x
−DxycV2

∂cV2
∂y

DyxcV2
∂cV2
∂x
−DyycV2

∂cV2
∂y

DzxcV2
∂cV2
∂x
−DzycV2

∂cV2
∂y

 [m2/s]

� Concentration gradient ∇x

∇y

∇z

 =

 ∂cV2
∂x
∂cV2
∂y

0

 [mol/m4]

� Di�usive �ux magnitude

DfluxMagcV2 =
√
Dflux2

x,cV2
+Dflux2

y,cV2
+Dflux2

z,cV2

� Total �ux magnitude

TfluxMagcV2 =
√
Tflux2

x,cV2
+ Tflux2

y,cV2
+ Tflux2

z,cV2

V3

� Concentration of V3:

cV3 =
(−cHV3×zcHV3−cH×zcH−cV3×zcV3−cV3×zcV3 )

zcV3+eps
[mol/m3]

� Di�usion coe�cientDcV3
=

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =

DV3ε
1,5 0 0

0 DV3ε
1,5 0

0 0 DV3ε
1,5

 [m2/s]

� Average di�usion coe�cient
DavV3

= 1
2
(DxxV3

+DyyV3
)[m2/s]

� Total �ux

TfluxcV3 =

TfluxxTfluxy
Tfluxy

 =

=

DxxcV3
∂cV3
∂x
−DxycV3

∂cV3
∂y

+ Cfluxx,cV3 +Mfluxx,cV3
DyxcV3

∂cV3
∂x
−DyycV3

∂cV3
∂y

+ Cfluxy,cV3 +Mfluxy,cV3
DzxcV3

∂cV3
∂x
−DzycV3

∂cV3
∂y

+ Cfluxz,cV3 +Mfluxz,cV3

 [m2/s]

� Di�usive �ux

DfluxcV3 =

DfluxxDfluxy
Dfluxy

 =

DxxcV3
∂cV3
∂x
−DxycV3

∂cV3
∂y

DyxcV3
∂cV3
∂x
−DyycV3

∂cV3
∂y

DzxcV3
∂cV3
∂x
−DzycV3

∂cV3
∂y

 [m2/s]

� Concentration gradient ∇x

∇y

∇z

 =

 ∂cV3
∂x
∂cV3
∂y

0

 [mol/m4]
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� Di�usive �ux magnitude

DfluxMagcV3 =
√
Dflux2

x,cV3
+Dflux2

y,cV3
+Dflux2

z,cV3

� Total �ux magnitude

TfluxMagcV3 =
√
Tflux2

x,cV3
+ Tflux2

y,cV3
+ Tflux2

z,cV3

� Porosity
εp = ε[1]

� Velocity �eld u
v
w

 =

 model.input.u1
model.input.u2
model.input.u3

 [m/s]

� Convective �ux

SO4 Cflux =

 Cfluxx,SO4

Cfluxy,SO4

Cfluxz,SO4

 =

 cSO4model.input.u1
cSO4model.input.u2
cSO4model.input.u3


� Convective �ux magnitude

CfluxMagcSO4 =
√
Cflux2

x,cSO4
+ Cflux2

y,cSO4
+ Cflux2

z,cSO4

� Convective �ux

HSO4 Cflux =

 Cfluxx,HSO4

Cfluxy,HSO4

Cfluxz,HSO4

 =

 cHSO4model.input.u1
cHSO4model.input.u2
cHSO4model.input.u3


� Convective �ux magnitude

CfluxMagcHSO4 =
√
Cflux2

x,cHSO4
+ Cflux2

y,cHSO4
+ Cflux2

z,cHSO4

� Convective �ux

H Cflux =

 Cfluxx,H
Cfluxy,H
Cfluxz,H

 =

 cHmodel.input.u1
cHmodel.input.u2
cHmodel.input.u3


� Convective �ux magnitude

CfluxMagcH =
√
Cflux2

x,cH + Cflux2
y,cH + Cflux2

z,cH

� Convective �ux

V2 Cflux =

 Cfluxx,V2
Cfluxy,V2
Cfluxz,V2

 =

 cV2model.input.u1
cV2model.input.u2
cV2model.input.u3


� Convective �ux magnitude

CfluxMagcV3 =
√
Cflux2

x,cV3
+ Cflux2

y,cV3
+ Cflux2

z,cV3

� Convective �ux

V3 Cflux =

 Cfluxx,V3
Cfluxy,V3
Cfluxz,V3

 =

 cV3model.input.u1
cV3model.input.u2
cV3model.input.u3


� Convective �ux magnitude

CfluxMagcV3 =
√
Cflux2

x,cV3
+ Cflux2

y,cV3
+ Cflux2

z,cV3
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� electrolyte potential
V = φl[V ]

� Charge number
zcSO4 = 1[1]

� Mobility

umSO4 =

umSO4,xx umSO4,xy umSO4,xz

umSO4,yx umSO4,yy umSO4,yz

umSO4,zx umSO4,zy umSO4,zz

 =

= 1
RconstTemp

DcSO4,xx DcSO4,xy DcSO4,xz

DcSO4,yx DcSO4,yy DcSO4,yz

DcSO4,zx DcSO4,zy DcSO4,zz

 [s ·mol/kg]

� Electrophoretic �ux

MfluxcSO4 =

 Mfluxx,cSO4

Mfluxy,cSO4

Mfluxz,cSO4

 =

 zcHSO4F · cSO4(−umSO4,xx

∂V
∂x
− umSO4,xy

∂V
∂y

zcHSO4F · cSO4(−umSO4,yx

∂V
∂x
− umSO4,yy

∂V
∂y

zcHSO4F · cSO4(−umSO4,zx

∂V
∂x
− umSO4,zy

∂V
∂y


� Charge number
zcHSO4 = −1[1]

� Mobility

umHSO4 =

umSO4,xx umSO4,xy umSO4,xz

umSO4,yx umSO4,yy umSO4,yz

umSO4,zx umSO4,zy umSO4,zz

 =

= 1
RconstTemp

DcSO4,xx DcSO4,xy DcSO4,xz

DcSO4,yx DcSO4,yy DcSO4,yz

DcSO4,zx DcSO4,zy DcSO4,zz

 [s ·mol/kg]

� Electrophoretic �ux

MfluxcHSO4 =

 Mfluxx,cHSO4

Mfluxy,cHSO4

Mfluxz,cHSO4

 =

=

 zcHHSO4F · cHSO4(−umSO4,xx

∂V
∂x
− umSO4,xy

∂V
∂y

zcHHSO4F · cHSO4(−umSO4,yx

∂V
∂x
− umSO4,yy

∂V
∂y

zcHHSO4F · cHSO4(−umSO4,zx

∂V
∂x
− umSO4,zy

∂V
∂y


� Charge number
zcH = 1[1]

� Mobility

umH =

umSO4,xx umSO4,xy umSO4,xz

umSO4,yx umSO4,yy umSO4,yz

umSO4,zx umSO4,zy umSO4,zz

 =

= 1
RconstTemp

DcSO4,xx DcSO4,xy DcSO4,xz

DcSO4,yx DcSO4,yy DcSO4,yz

DcSO4,zx DcSO4,zy DcSO4,zz

 [s ·mol/kg]

� Electrophoretic �ux
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MfluxcH =

 Mfluxx,cH
Mfluxy,cH
Mfluxz,cH

 =

 zcHF · cH(−umSO4,xx

∂V
∂x
− umSO4,xy

∂V
∂y

zcHF · cH(−umSO4,yx

∂V
∂x
− umSO4,yy

∂V
∂y

zcHF · cH(−umSO4,zx

∂V
∂x
− umSO4,zy

∂V
∂y



� Charge number
zcV2 = −1[1]

� Mobility

umV2 =

umSO4,xx umSO4,xy umSO4,xz

umSO4,yx umSO4,yy umSO4,yz

umSO4,zx umSO4,zy umSO4,zz

 =

= 1
RconstTemp

DcSO4,xx DcSO4,xy DcSO4,xz

DcSO4,yx DcSO4,yy DcSO4,yz

DcSO4,zx DcSO4,zy DcSO4,zz

 [s ·mol/kg]

� Electrophoretic �ux

MfluxcV2 =

 Mfluxx,cV2
Mfluxy,cV2
Mfluxz,cV2

 =

 zcV2F · cV2(−umV2,xx
∂V
∂x
− umV2,xy

∂V
∂y

zcV2F · cV2(−umV2,yx
∂V
∂x
− umV2,yy

∂V
∂y

zcV2F · cV2(−umV2,zx
∂V
∂x
− umV2,zy

∂V
∂y



� Charge number
zcV3 = −1[1]

� Mobility

umV3 =

umV3,xx umV3,xy umV3,xz

umV3,yx umV3,yy umV3,yz

umV3,zx umV3,zy umV3,zz

 =

= 1
RconstTemp

DcV3,xx DcV3,xy DcV3,xz

DcV3,yx DcV3,yy DcV3,yz

DcV3,zx DcV3,zy DcV3,zz

 [s ·mol/kg]

� Electrophoretic �ux

MfluxcV3 =

 Mfluxx,cV3
Mfluxy,cV3
Mfluxz,cV3

 =

 zcHV3F · cV3(−umSO4,xx

∂V
∂x
− umSO4,xy

∂V
∂y

zcHV3F · cV3(−umSO4,yx

∂V
∂x
− umSO4,yy

∂V
∂y

zcHV3F · cV3(−umSO4,zx

∂V
∂x
− umSO4,zy

∂V
∂y

)



� Element size
helem = h[m]

� Equation residual
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RescHSO4 = −DcHSO4,xx

∂2cHSO4

∂x2
−DcHSO4,xy

∂2cHSO4

∂x∂y

−DcHSO4,yx

∂2cHSO4

∂y∂x
−DcHSO4,yy

∂2cHSO4

∂y2
+

+
∂

∂x
(cHSO4zcHSO4F (−umHSO4,xx

∂φl
∂x
− umHSO4,xy

∂φl
∂y

))

+
∂

∂y
(cHSO4zcHSO4F (−umHSO4,yx

∂φl
∂x
− umHSO4,xy

∂φl
∂y

))+

+ u
∂cHSO4

∂x
+ v

∂cHSO4

∂y
−RcHSO4 [mol/m

3s]

(A.1)

� Equation residual

RescH = −DcHxx

∂2cH

∂x2
−DcHxy

∂2cH

∂x∂y

−DcHyx

∂2cH

∂y∂x
−DcHyy

∂2cH

∂y2
+

+
∂

∂x
(cHzcHF (−umHxx

∂φl
∂x
− umHxy

∂φl
∂y

))

+
∂

∂y
(cHzcHF (−umHyx

∂φl
∂x
− umHxy

∂φl
∂y

))+

+ u
∂cH

∂x
+ v

∂cH

∂y
−RcH [mol/m3s]

(A.2)

� Equation residual

RescV2 = −DcV2,xx

∂2cV2

∂x2
−DcV2,xy

∂2cV2

∂x∂y

−DcV2,yx

∂2cV2

∂y∂x
−DcV2,yy

∂2cV2

∂y2
+

+
∂

∂x
(cV2zcV2F (−umV2,xx

∂φl
∂x
− umV2,xy

∂φl
∂y

))

+
∂

∂y
(cV2zcV2F (−umV2,yx

∂φl
∂x
− umV2,xy

∂φl
∂y

))+

+ u
∂cV2

∂x
+ v

∂cV2

∂y
−RcV2 [mol/m

3s]

(A.3)
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� Equation residual

RescV3 = −DcV3,xx

∂3cV3

∂x3
−DcV3,xy

∂3cV3

∂x∂y

−DcV3,yx

∂3cV3

∂y∂x
−DcV3,yy

∂3cV3

∂y2
+

+
∂

∂x
(cV3zcV3F (−umV3,xx

∂φl
∂x
− umV3,xy

∂φl
∂y

))

+
∂

∂y
(cV3zcV3F (−umV3,yx

∂φl
∂x
− umV3,xy

∂φl
∂y

))+

+ u
∂cV3

∂x
+ v

∂cV3

∂y
−RcV3 [mol/m

3s]

(A.4)

� Electrolyte current density vector

Il =

 Ilx
Ily
Ilz

 =

Ilx = F (zcSO4(−DcSO4,xx

∂cSO4

∂x
−DcSO4,xy

∂cSO4

∂y
)− zcSO4umcSO4,xxFcSO4

∂φl
∂x

+

− zcSO4umcSO4,xyFcSO4
∂φl
∂y

)+

+ zcHSO4(−DcHSO4,xx

∂cHSO4

∂x
−DcHSO4,xy

∂cHSO4

∂y

− zcHSO4umcHSO4,xxFcHSO4
∂φl
∂x

+

− zcHSO4umcHSO4,xyFcHSO4
∂φl
∂y

)+

+ zcH(−DcHxx

∂cH

∂x
−DcHxy

∂cH

∂y
− zcHumcHxxFcH

∂φl
∂x

+

− zcHumcHxyFcH
∂φl
∂y

)+

+ zcV 2(−DcV2,xx

∂cV2

∂x
−DcV2,xy

∂cV2

∂y
− zcV2umcV2,xxFcV2

∂φl
∂x

+

− zcV2umcV2,xyFcV2
∂φl
∂y

)+

+ zcV3(−DcV3,xx

∂cV3

∂x
−DcV 3,xy

∂cV3

∂y
− zcV3umcV3,xxFcV3

∂φl
∂x

+

− zcV3umcV3,xyFcV3
∂φl
∂y

)

(A.5)
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Ily = F (zcSO4(−DcSO4,yx

∂cSO4

∂x
−DcSO4,yy

∂cSO4

∂y
)+

− zcSO4umcSO4,yxFcSO4
∂φl
∂x
− zcSO4umcSO4,yyFcSO4

∂φl
∂y

)+

+ zcHSO4(−DcHSO4,yx

∂cHSO4

∂x
−DcHSO4,yy

∂cHSO4

∂y
+

− zcHSO4umcHSO4,yxFcHSO4
∂φl
∂x
− zcHSO4umcHSO4,yyFcHSO4

∂φl
∂y

)+

+ zcH(−DcHyx

∂cH

∂x
−DcHyy

∂cH

∂y
− zcHumcHyxFcH

∂φl
∂x
− zcHumcHyyFcH

∂φl
∂y

)+

+ zcV 2(−DcV2,yx

∂cV2

∂x
−DcV2,yy

∂cV2

∂y
− zcV2umcV2,yxFcV2

∂φl
∂x

+

− zcV2umcV2,yyFcV2
∂φl
∂y

)+

+ zcV3(−DcV3,yx

∂cV3

∂x
−DcV 3,yy

∂cV3

∂y
− zcV3umcV3,yxFcV3

∂φl
∂x

+

− zcV3umcV3,yyFcV3
∂φl
∂y

)

(A.6)

Ilz = F (zcSO4(−DcSO4,zx

∂cSO4

∂x
−DcSO4,zy

∂cSO4

∂y
)+

− zcSO4umcSO4,zxFcSO4
∂φl
∂x
− zcSO4umcSO4,zyFcSO4

∂φl
∂y

)+

+ zcHSO4(−DcHSO4,zx

∂cHSO4

∂x
−DcHSO4,zy

∂cHSO4

∂y
+

− zcHSO4umcHSO4,zxFcHSO4
∂φl
∂x
− zcHSO4umcHSO4,zyFcHSO4

∂φl
∂y

)+

+ zcH(−DcHzx

∂cH

∂x
−DcHzy

∂cH

∂y
− zcHumcHzxFcH

∂φl
∂x

+

− zcHumcHzyFcH
∂φl
∂y

)+

+ zcV 2(−DcV2,zx

∂cV2

∂x
−DcV2,zy

∂cV2

∂y
− zcV2umcV2,zxFcV2

∂φl
∂x

+

− zcV2umcV2,zyFcV2
∂φl
∂y

)+

+ zcV3(−DcV3,zx

∂cV3

∂x
−DcV 3,zy

∂cV3

∂y
− zcV3umcV3,zxFcV3

∂φl
∂x

+

− zcV3umcV3,zyFcV3
∂φl
∂y

)

(A.7)
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Figure A.2: Boundaries1-4

� Total power dissipation density
Qh = −Ilx ∂φl∂x

− Ily ∂φl∂y
− isx ∂φs∂x − isy

∂φs
∂y

[W/m3]

� Current source
Qli = 0

� Electrode current density

Is =

 Isx
Isy
Isz

 =

 −σxx
∂φs
∂x
− σxy ∂φs∂y

−σyx ∂φs∂x − σyy
∂φs
∂y

−σzx ∂φs∂x − σzy
∂φs
∂y

 [A/m2]

� Temperature
Temp = mode.input.minputtemperature[K]

� Electrode reaction source
Ivtot = 0[A/m3]

� Electrical conductivity

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 =

σe 0 0
0 σe 0
0 0 σe


2. Porous electrode, negative the equations of the boundaries 1 and 4 (�g

A.2)

� Convective boundary �ux
CBFcHSO4 = 0

� Convective boundary �ux
CBFcH = 0

� Convective boundary �ux
CBFcV2 = 0

� Convective boundary �ux
CBFcV3 = 0

3. Reactions of the domain 1 (�g A.1)

� Total rate expression
RcHSO4 = rdεp[mol/m

3s]
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� Total rate expression
RcH = −rdεp[mol/m3s]

� Total rate expression
RcV2 = 0[mol/m3s]

� Total rate expression
RcV3 = 0[mol/m3s]

� Total rate expression
RcSO4 = −rdεp[mol/m3s]

4. Porous electrode reaction (per),negative equations of domain 1 (�g
A.1)

� Total rate expression
RcHSO4 = RcHSO4,per [mol/(m

3s)]

� Total rate expression
RcH = RcHper [mol/(m

3s)]

� Total rate expression
RcV2 = RcV2,per [mol/(m

3s)]

� Total rate expression
RcV3 = RcV3,per [mol/(m

3s)]

� Total power dissipation density
Qrev +Qirrev[W/m

3]

� Electrode reaction source
ivtot = iv[A/m3]

� Local current source
iv = ilocAv[A/m3]

� Local current source
pce1.iv = iv[A/m3]

� Cathodic transfer coe�cient
αc = αneg

� Anodic transfer coe�cient
αa = 1− αneg

� Exchange current density
i0 = i0neg[A/m

2]

� Local current density

iloc = i0
(
e

αaFη
R∗Temp − e

−αcFη
R∗Temp

)
[A/m2]

� Total interface current density
itot = iloc[A/m

2]

� Active speci�c surface area
Av = a[1/m]
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Figure A.3: boundary1

� Irreversible heat source
Qirrev = ivη[W/m3]

� Reversible heat source
ivTempdEeq

dt
[W/m3]

� Temperature derivative of equilibrium potential
dEeq
dT

= 0[V/K]

� Overpotential
φs − φl − Eeq[V ]

� Stoichiometric coe�cient
V i0,cSO4 = 0[1]

� Stoichiometric coe�cient
V i0,cHSO4 = 0[1]

� Stoichiometric coe�cient
V i0,cH = 0[1]

� Stoichiometric coe�cient
V i0,cV2 = 1[1]

� Stoichiometric coe�cient
V i0,cV3 = −1[1]

� Total rate expression
RcHSO4 = 0

� Total rate expression
RcH = 0

� Total rate expression
RcV2 = − iv

F

� Total rate expression
RcV3 = iv

F

5. Electric ground of boundary1 (�g A.3)

� Boundary electric potential
φs,BND = 0[V ]
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Figure A.4: boundary2

� Constraint
φs,BND − φs = 0[V ]

6. No �ux, negative the equations of the boundaries 1-4 (�g A.2)

� Convective boundary �ux
CBFHSO4 = cHSO4(unx,mesh + vny,mesh + wnz,mesh)

� Convective boundary �ux
CBFH = cH(unx,mesh + vny,mesh + wnz,mesh)

� Convective boundary �ux
CBFV2 = cV2(unx,mesh + vny,mesh + wnz,mesh)

� Convective boundary �ux
CBFV3 = cV3(unx,mesh + vny,mesh + wnz,mesh)

7. Concentration,negative the equation of boundary2 (�g A.4)

� Concentration
c0HSO4 = cHSO4,0[mol/m3]

� Concentration
c0H = cH0[mol/m3]

� Concentration
c0V2 = cV2,0[mol/m3]

� Concentration
c0V3 = cV3,0[mol/m3]

� Constraint
−cHSO4 + c0HSO4 = 0[mol/m3]

� Constraint
−cH + c0H = 0[mol/m3]

� Constraint
−cV2 + c0V2 = 0[mol/m3]

� Constraint
−cV3 + c0V3 = 0[mol/m3]
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Figure A.5: boundary3

8. Out�ow, negative the equations of boundary 3, weak expressions (�g A.5)

� Integration frame: material

− zcHSO4 ∗ F ∗ cHSO4 ∗ (−nx ∗ (umcHSO4,xx ∗mean(
∂φl
∂x

)+

+ umcHSO4,xy ∗mean(
∂φl
∂y

) + umcHSO4,xz ∗mean(0))− ny ∗ (umcHSO4,yx ∗mean(
∂φl
∂x

)+

+ umcHSO4,yy ∗mean(
∂φl
∂y

) + umcHSO4,yz ∗mean(0))− nz ∗ (umcHSO4,zx ∗mean(
∂φl
∂x

)+

+ umcHSO4,zy ∗mean(
∂φl
∂y

) + umcHSO4,zz ∗mean(0))) ∗ test(cHSO4)

(A.8)

� Integration frame: material

− zcH ∗ F ∗ cH ∗ (−nx ∗ (umcHxx ∗mean(
∂φl
∂x

)+

+ umcHxy ∗mean(
∂φl
∂y

) + umcHxz ∗mean(0))− ny ∗ (umcHyx ∗mean(
∂φl
∂x

)+

+ umcHyy ∗mean(
∂φl
∂y

) + umcHyz ∗mean(0))− nz ∗ (umcHzx ∗mean(
∂φl
∂x

)+

+ umcHzy ∗mean(
∂φl
∂y

) + umcHzz ∗mean(0))) ∗ test(cH)

(A.9)

� Integration frame: material

− zcV2 ∗ F ∗ cV2 ∗ (−nx ∗ (umcV2,xx ∗mean(
∂φl
∂x

)+

+ umcV2,xy ∗mean(
∂φl
∂y

) + umcV2,xz ∗mean(0))− ny ∗ (umcV2,yx ∗mean(
∂φl
∂x

)+

+ umcV2,yy ∗mean(
∂φl
∂y

) + umcV2,yz ∗mean(0))− nz ∗ (umcV2,zx ∗mean(
∂φl
∂x

)+

+ umcV2,zy ∗mean(
∂φl
∂y

) + umcV2,zz ∗mean(0))) ∗ test(cV2)

(A.10)
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� Integration frame: material

− zcV3 ∗ F ∗ cV3 ∗ (−nx ∗ (umcV3,xx ∗mean(
∂φl
∂x

)+

+ umcV3,xy ∗mean(
∂φl
∂y

) + umcV3,xz ∗mean(0))− ny ∗ (umcV3,yx ∗mean(
∂φl
∂x

)+

+ umcV3,yy ∗mean(
∂φl
∂y

) + umcV3,yz ∗mean(0))− nz ∗ (umcV3,zx ∗mean(
∂φl
∂x

)+

+ umcV3,zy ∗mean(
∂φl
∂y

) + umcV3,zz ∗mean(0))) ∗ test(cV3)

(A.11)

9. Tertiary current distribution, negative the equations of domain1, (�g
A.1)

� Total rate expression
RcHSO4 = 0[mol/(m3s)]

� Total rate expression
RcH = 0[mol/(m3s)]

� Total rate expression
RcV2 = 0[mol/(m3s)]

� Total rate expression
Rcv3 = 0[mol/(m3s)]

� Current source
Qsi = 0[A/m3]

� Domain Flux
Domflux(∂φl

∂x
) = Ilx[A/m

2]

� Domain Flux
Domflux(∂φl

∂y
) = Ily[A/m

2]

� Domain Flux
Domflux(∂φs

∂x
) = Isx[A/m

2]

� Domain Flux
Domflux(∂φs

∂x
) = Isy[A/m

2]

� Domain Flux
Domflux(∂cSO4

∂x
) = DfluxcSO4,x +MfluxcSO4,x [mol/(m

2s)]

� Domain Flux
Domflux(∂cSO4

∂y
) = DfluxcSO4,y +MfluxcSO4,y [mol/(m

2s)]

� Domain Flux
Domflux(∂cHSO4

∂x
) = DfluxcHSO4,x +MfluxcHSO4,x [mol/(m

2s)]

� Domain Flux
Domflux(∂cHSO4

∂y
) = DfluxcHSO4,y +MfluxcHSO4,y [mol/(m

2s)]

� Domain Flux
Domflux(∂cH

∂x
) = DfluxcHx +MfluxcHx [mol/(m

2s)]
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� Domain Flux
Domflux(∂cH

∂y
) = DfluxcHy +MfluxcHy [mol/(m

2s)]

� Domain Flux Domflux(∂cV2
∂x

) = DfluxcV2,x +MfluxcV2,x [mol/(m
2s)]

� Domain Flux
Domflux(∂cV2

∂y
) = DfluxcV2,y +MfluxcV2,y [mol/(m

2s)]

� Domain Flux
Domflux(∂cV3

∂x
) = DfluxcV3,x +MfluxcV3,x [mol/(m

2s)]

� Domain Flux
Domflux(∂cV3

∂y
) = DfluxcV3,y +MfluxcV3,y [mol/(m

2s)]

� Thickness
d = 1[m]

10. Tertiary current distribution, negative the equations of boundaries1-4,
(�g A.2)

� Inward electrolyte current density
nil = 0[A/m2]

� Inward electrode current density
nis = 0[A/m2]

� Normal vector

N =

 Nx

Ny

Nz

 =

 dnx
dny
0


� Normal vector

Nmesh =

 Nx,mesh

Ny,mesh

Nz,mesh

 =

 root.dnx,mesh
root.dny,mesh

0


� Normal electrolyte current density
Nil = BNDfluxφl [A/m

2]

� Normal electrolyte current density
Nis = BNDfluxφs [A/m

2]

� Normal vector

Nc =

 Nx,c

Ny,c

Nz,c

 =

 root.nxc/
√
root.nxc2 + root.nyc2

root.nyc/
√
root.nxc2 + root.nyc2

0


� Boundary �ux
BNDfluxcHSO4 = −Dflux_spatialcHSO4 [mol/(m

2s)]

� Normal total �ux
NTfluxcHSO4 = BNDfluxcHSO4 +CfluxcHSO4,x ·nx,c +CfluxcHSO4,y ·
ny,c + CfluxcHSO4,z · nz,c[mol/(m2s)]

� Normal di�usive �ux
NDfluxcHSO4 = DfluxcHSO4,x ·nx,c+DfluxcHSO4,y ·ny,c+DfluxcHSO4,z ·
nz,c[mol/(m

2s)]
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� Normal convective �ux
NCfluxcHSO4 = CfluxcHSO4,x ·nx,c+CfluxcHSO4,y ·ny,c+CfluxcHSO4,z ·
nz,c[mol/(m

2s)]

� Normal electrophoretix �ux
NMfluxcHSO4 = MfluxcHSO4,x·nx,c+MfluxcHSO4,y ·ny,c+MfluxcHSO4,z ·
nz,c[mol/(m

2s)]

� Boundary �ux
BNDfluxcH = −Dflux_spatialcH [mol/(m2s)]

� Normal total �ux
NTfluxcH = BNDfluxcH+CfluxcHx ·nx,c+CfluxcHy ·ny,c+CfluxcHz ·
nz,c[mol/(m

2s)]

� Normal di�usive �ux
NDfluxcH = DfluxcHx·nx,c+DfluxcHy ·ny,c+DfluxcHz ·nz,c[mol/(m2s)]

� Normal convective �ux
NCfluxcH = CfluxcHx·nx,c+CfluxcHy ·ny,c+CfluxcHz ·nz,c[mol/(m2s)]

� Normal electrophoretix �ux
NMfluxcH = MfluxcHx·nx,c+MfluxcHy ·ny,c+MfluxcHz ·nz,c[mol/(m2s)]

� Boundary �ux
BNDfluxcV2 = −Dflux_spatialcV2 [mol/(m2s)]

� Normal total �ux
NTfluxcV2 = BNDfluxcV2 + CfluxcV2,x · nx,c + CfluxcV2,y · ny,c +
CfluxcV2,z · nz,c[mol/(m2s)]

� Normal di�usive �ux
NDfluxcV2 = DfluxcV2,x·nx,c+DfluxcV2,y ·ny,c+DfluxcV2,z ·nz,c[mol/(m2s)]

� Normal convective �ux
NCfluxcV2 = CfluxcV2,x·nx,c+CfluxcV2,y ·ny,c+CfluxcV2,z ·nz,c[mol/(m2s)]

� Normal electrophoretix �ux
NMfluxcV2 = MfluxcV2,x·nx,c+MfluxcV2,y ·ny,c+MfluxcV2,z ·nz,c[mol/(m2s)]

� Boundary �ux
BNDfluxcV3 = −Dflux_spatialcV3 [mol/(m2s)]

� Normal total �ux
NTfluxcV3 = BNDfluxcV3 + CfluxcV3,x · nx,c + CfluxcV3,y · ny,c +
CfluxcV3,z · nz,c[mol/(m2s)]

� Normal di�usive �ux
NDfluxcV3 = DfluxcV3,x·nx,c+DfluxcV3,y ·ny,c+DfluxcV3,z ·nz,c[mol/(m2s)]

� Normal convective �ux
NCfluxcV3 = CfluxcV3,x·nx,c+CfluxcV3,y ·ny,c+CfluxcV3,z ·nz,c[mol/(m2s)]

� Normal electrophoretix �ux
NMfluxcV3 = MfluxcV3,x·nx,c+MfluxcV3,y ·ny,c+MfluxcV3,z ·nz,c[mol/(m2s)]
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Figure A.6: domain2

� Normal total �ux
NTfluxcSO4 = BNDfluxcSO4 +CfluxcSO4,x ·nx,c +CfluxcSO4,y ·ny,c +
CfluxcSO4,z · nz,c[mol/(m2s)]

� Normal di�usive �ux
NDfluxcSO4 = DfluxcSO4,x · nx,c + DfluxcSO4,y · ny,c + DfluxcSO4,z ·
nz,c[mol/(m

2s)]

� Normal convective �ux
NCfluxcSO4 = CfluxcSO4,x · nx,c + CfluxcSO4,y · ny,c + CfluxcSO4,z ·
nz,c[mol/(m

2s)]

� Normal electrophoretix �ux
NMfluxcSO4 = MfluxcSO4,x · nx,c +MfluxcSO4,y · ny,c +MfluxcSO4,z ·
nz,c[mol/(m

2s)]

A.2 Membrane: Secondary current distribution

1. Electrolyte, membrane the equations of domain 2, (�g A.6)

� Electric �eld Ex
Ey
Ez

 =

 −∂φlm
∂x

−∂φlm
∂y

0

 [V/m]

� Current Source Qli = 0[A/m3]

� Electrode current density ilx
ily
ilz

 =

 σl,xx
∂φlm
∂x
− σl,xy ∂φlm∂y

σl,yx
∂φlm
∂x
− σl,yy ∂φlm∂y

σl,zx
∂φlm
∂x
− σl,zy ∂φlm∂y

 [A/m2]

� Electrolyte current density vector Ilx
Ily
Ilz

 =

 ilx
ily
ilz

 [A/m2]
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Figure A.7: boundary4

Figure A.8: boundary7

� Electrolyte conductivity

σm =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 =

σm 0 0
0 σm 0
0 0 σm

 [S/m]

� Total power dissipation
Qh = −Ilx ∂φlm∂x − Ily

∂φlm
∂y

[W/m3]

2. Poinwise constraint 1, membrane equations of the boundary 4 (�g A.7)

� Constraint
φl,neg −Nernst(0, φl, aH

AHm
)− φlm = 0[V ]

� Constraint force
φl,neg + cH

F
− φlm = 0

3. Poinwise constraint 2, membrane equations of the boundary 7 (�g A.8)

� Constraint
φl,pos −Nernst(0, φl, aH

AHm
)− φlm = 0[V ]

� Constraint force
φl,pos + cH

F
− φlm = 0

4. Secondary current distribution, membrane equation of the domain 2
(�g A.6)
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Figure A.9: boundary4-7

� Current source
Qsi = 0[A/m3]

� Domain Flux
Domflux(

∂φlm
∂x

) = Ilx[A/m
2]

� Domain Flux
Domflux(

∂φlm
∂y

) = Ily[A/m
2]

� Domain Flux
Domflux(∂φs

∂x
) = root.comp.1.siec.Isx

� Domain Flux
Domflux(∂φs

∂y
) = root.comp.1.siec.Isy

� Thickness
d = 1[m]

5. Secondary current distribution, membrane equations of the boundaries
4-7 (�g A.9)

� Inward electrolyte current density
nil = 0[A/m2]

� Inward electrode current density nis = 0[A/m2]

� Normal electrolyte current density nIl = BNDfluxφlm [A/m2]

6. Secondary current distribution, membrane equations of the boundary
4 (�g A.7)

� Normal vector

 nx
ny
nz

 =

 unx
uny
0


� Normal vector (mesh)

 nx,mesh
ny,mesh
nz,mesh

 =

 root.unxmesh
root.unymesh

0


� Boundary �ux BNDfluxφlm = −ufluxspatial(φlm)[A/m2]
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7. Secondary current distribution, membrane equations of the boundaries
5-7

� Normal vector

 nx
ny
nz

 =

 dnx
dny

0


� Normal vector (mesh)

 nx,mesh
ny,mesh
nz,mesh

 =

 root.dnxmesh
root.dnymesh

0


� Boundary �ux BNDfluxφlm = −dfluxspatial(φlm)[A/m2]

A.3 Positive electrode: Tertiary current distribu-

tion

For the positive electrode, the equation are the same of the negative electrode,
with the substitution of V2 and V3 with V5 and V4



Appendix B

Matlab Codes

Code to create the curves of the electric potential for di�erent charge and discharge
current densities.

1 %script to make the charge/discharge curves

%from the files exported from COMSOL

3

5

clear all

7 clc

%import of the datas

9 table = sprintf('test2.csv');

delimiterIn = ',';

11 headerlinesIn = 5;

Data = importdata(table ,delimiterIn ,headerlinesIn );

13 Data = Data.data;

15 col3 = Data (:,3);

17 tab = [];

19 %file prepared for 19 soc levels

numsoc =19;

21 %and 10 current levels

numcurr =10;

23 for j=1: numsoc

25 col =[];

for i=1: numcurr

27 col = [col;col3(i+(j-1)* numcurr )];

end

29

tab = [tab col];

31 end

%for each current , there are both the "-" sign and the

33 %"+" sign; by doing this , it is possible to consider

85
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%both the discharge and the charge

35 curves = [];

for k=1:5

37 reg = tab(k,:);

inv = fliplr(tab(11-k,:));

39 row = [reg inv];

curves = [curves; row];

41 end

curve = fliplr(curve);

43

currents = [200 ,150 ,100 ,50 ,25];

45 soc=linspace (1,2*numsoc ,2* numsoc );

surf(soc ,currents ,curves );

47

%calculation of the electric efficiency

49 eta_v = [];

for j=1:5

51 totpotc =0;

totpotd =0;

53 for i=1: numsoc

totpotc=totpotc+curve(j,i);

55 totpotd = totpotd + curve(j,(2* numsoc +1)-i);

end

57 pot_c_m = totpotc/numsoc;

pot_d_m = totpotd/numsoc;

59 eta_v(j) = pot_d_m/pot_c_m;

end
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