
Università degli Studi di Padova
Norwegian University of Science and Technology - NTNU

DEPARTMENT OF INFORMATION ENGINEERING

Master Program in Automation Engineering

Master Thesis

Scheduling of Two Real-Time Tasks with Non-Fixed Sampling
Rates Modelled on an Unmanned Air Vehicle with

Autonomous Navigation and Image Processing Capabilities.

Candidate:

Gloria Gambaretto
Supervisor:

Professor Ruggero Carli

Co-Supervisor:

Professor Sverre Hendseth

December 5th 2016 Academic Year 2015-2016

C O N T E N T S

Acknowledgements v

Abstract vii

List of Acronyms ix

1 introduction 1

1.1 Approach and Motivation . 1

1.2 Outline of the Thesis . 3

2 related works 5

2.1 The scheduling problem . 5

2.1.1 Classical Real-Time Scheduling Algorithms 8

2.2 Control and Scheduling co-design . 9

2.3 On non-fixed sampling rates . 13

2.3.1 Event-based control . 14

2.3.2 Self-triggered control . 16

3 plane control task 19

3.1 Unmanned Air Vehicle . 19

3.1.1 Brief description of dynamics . 21

3.1.2 Plane control through an Autopilot 22

3.1.3 Kinematics . 24

3.2 Creation of a map with Google Earth 25

3.3 Path Planning . 27

3.3.1 Edge Detection . 29

3.3.2 Line Features . 38

3.4 Path Following . 40

3.4.1 Overview on path following algorithms 40

4 image processing task 47

4.1 Image’s complexity . 47

4.1.1 Use of binary descriptors . 48

4.2 Image Processing algorithm . 56

4.2.1 Learning function . 56

5 cpu scheduling for two shared tasks 59

5.1 Theoretical development for two generic tasks 59

iii

iv Contents

5.1.1 Tasks with different priorities . 59

5.1.2 Tasks with no priorities . 61

5.2 Application to real-case scenario . 64

5.2.1 Plane control with priority over image processing 65

5.2.2 Plane control and Image Processing with equal importance . . 72

6 simulation results on the real-case scenario 79

6.1 Theoretical results on meaningful examples 79

6.1.1 Medium Complexity Image . 80

6.1.2 Low Complexity Image . 81

6.1.3 High Complexity Image . 82

6.2 Scheduling algorithm on the realistic scenario 84

7 conclusion 93

7.1 Future Developments . 94

a use of a classifier 95

Bibliography 99

A C K N O W L E D G E M E N T S

É infine arrivato il momento più temuto, quello in cui spendo qualche riga in italiano
per i dovuti ringraziamenti. Come chi mi conosce sa, non sono solita a ringrazia-
menti e vistose manifestazioni di affetto, e mi sono chiesta fino all’ultimo se fosse
effettivamente possibile saltare questo passaggio e ringraziare tutti silenziosamente
solo nella mia testa. Evidentemente però immagino che a qualcuno di vanitoso fac-
cia piacere sentirselo dire anche per iscritto, quindi here I am.
Il primo ringraziamento va naturalmente ai miei genitori, con cui ogni momento
insieme si trasforma in litigio ma che per qualche strano motivo mi vogliono co-
munque a casa con loro. Evidentemente sarà per la mia bravura e velocità nel
pulire casa. Ringrazio mia nonna, che si lamenta costantemente (capisco da chi ho
preso), ma poi vuole bene un po’ a tutti, e il resto del parentado. Tanti tanti baci stel-
lari ai miei amici Alberto, Anna, Francesco, Giorgia, Laura e Niccolò per le serate,
le vacanze, i “Stasera usciamo?”, “Non so, voi che fate?”, “Boh, cosa c’è in giro?”, “Per
me va bene tutto.”“Mi si è rotta la caldaia, stasera salto.”, “Vabbè dai, ci vediamo settimana
prossima”. Baci8 anche agli amici dell’università, in particolare alle amiche del succo
succoso Bea, Chiara, Eli e Marta, e a Leo, con cui ho condiviso tutto il trash che inter-
net potesse contenere. Un ricordo va anche all’esperienza che ho fatto a Trondheim
e a tutte le persone più o meno meno simpatiche che ho conosciuto, Alessandro, Fil-
ippo, Alexandrina e tanti altri. Saremo tutti perennemente legati dall’infinita ricerca
delle birre meno costose. Un abbraccio anche alle varie coinquiline, Mariasole (<3),
Izzy, Rosy e Giusy. Un ringraziamento a tutti i miei professori ed in particolare al
Professor Carli ed al Professor Hendseth, i miei relatori. Infine, grazie serie tv, gra-
zie streaming, grazie Lory del Santo e grazie internet in generale per essere sempre
in grado di farmi trovare una scusa per evitare la luce del sole.
Concludo con una citazione di una mia guru, Crederci sempre, arrendersi mai.

v

A B S T R A C T

Control tasks and scheduling problems are usually treated in separate contexts, but
when they are implemented in a real-time system their co-design becomes essential,
as it will allow a better use of the limited computational resources. This project re-
gards the creation of a scheduling algorithm for two real-time tasks sharing the same
Processing Unit. Once a theoretical solution has been developed, we are required
to perform experiments and simulations on a real-case scenario. The two tasks in-
volved in the realistic scenario are control-related and data processing-related. The
former involves the control of a small unmanned air vehicle, with autonomous nav-
igation skills, and the latter the image processing of photos of the environment
underneath. The air vehicle has to adapt its velocity, and thus its sampling period,
to the “interestingness” of the area it is flying over, while the image processing al-
gorithm has to adapt its execution time on the same input. The two tasks share
the same CPU, and a scheduling technique is required to share in a correct way the
computational resources between the two jobs.

vii

L I S T O F A C R O N Y M S

CPU: Central Processing Unit;

EDF: Earliest Deadline First;

FOV: Field Of View;

GPS: Global Positioning System;

LOS: Line Of Sight;

NLGL: Non Linear Guidance Law;

PID: Proportional Integrative Derivative;

RM: Rate Monotonic;

RT: Real Time;

UAV: Unmanned Air Vehicle;

VTP: Virtual Target Point;

WCET: Worst Case Execution Time.

ix

1 I N T R O D U C T I O N

1.1 approach and motivation

Real-time control plays a crucial role in the coordination of dynamics of various
systems, ranging from micro-surgery to flight control, and computer controlled sys-
tems are often implemented using periodic real-time tasks [1]. This approach can
lead to significant over-provisioning of the real-time system, since task periods are
determined by the worst case time interval, assuring closed loop system stability,
and traditionally these estimations are very conservative [2]. Usually, the objective
of control activities (to control some process or plant) and the objective of scheduling
policies (to meet deadlines) are accomplished separately [3]. This approach leads to
sub-optimal solutions of both control performances and resources utilization, and
makes it difficult to schedule other tasks with secondary importance.
First, control tasks are optimized regardless the computational demands of other
tasks. Furthermore, in control design, a controller is designed assuming a fixed and
constant sampling period: in terms of task execution, this means that at run time the
controller will execute demanding a constant processing capacity. In this way it is
not taken into account the possibility that the controller could take advantage of the
available processing capacity, i.e. the controller design does not allow to increase
the execution rate to exploit available resources.
Second, scheduling techniques optimize the use of resources regardless the dynam-
ics of the control application, e.g. if the system is in equilibrium a control task may
not require the designed execution rate, so also the designed processing capacity.
The remaining resources could have been used by other tasks with higher process-
ing demands.
This is why in the last decade the periodic task model has been gradually abandoned
in real-time systems, in favour of new “aperiodic models”, where the sampling rate
of each task is dynamically obtained from a utilization factor and an index mea-
suring control performances. In this project it is presented a model for the control
of tasks in which computing resources and control performances are jointly con-
sidered, overcoming the problem introduced before: the combination of the two
approaches makes it possible to achieve better results. A number of researches has
solved the problem adopting two methods, in which tasks are either event-triggered
or self-triggering controllers [4]. The former solution uses some “asynchronous”
event within the control loop that, when violated, triggers the execution of a task;
the latter exploits the next control update time basing it on samples of the previous
data and on knowledge of the plant: each task determines the release of its next job.

1

2 introduction

It is however clear that even if these techniques involves “non-fixed” sampling rates,
they cannot assume any value, but they still have to be constrained in some range
to maintain the system’s stability and realistic performances.
The proposed algorithm takes into account the schedulability of two tasks, and is
then applied to a real-case scenario: the control of an unmanned air vehicle with im-
age processing capability. It needs to be able to adapt its speed (and thus its control
sampling period) and the execution time of its image processing algorithm (or, more
specifically, its deadline) based on the variation of a certain input signal. The air vehi-
cle is assumed equipped with all the necessary sensors required for its control and
navigation, and with a camera mounted on its undercarriage, able to take pictures of
the underlying terrain, resembling satellite images. In the simulation environment
this has been realized by simulating the plane’s flight over the maps provided by
the software Google Earth. Once a photo of the environment is taken, a function
computes its “interestingness” using a combination of descriptors, and based on the
value of this variable, that has been called complexity, the plane velocity and the time
that has to be waited for the next photo are obtained. The velocity is related to the
plane control sampling period, while the latter is related to the execution time of
the image processing algorithm (the processing of the image I(t) needs to be com-
pleted before starting to process image I(t+ 1)). The direction of the air vehicle is
decided based on the longest straight line detected in each picture. A fundamental
detail is that both tasks shares the same Central Processing Unit (CPU), so a way
to allocate in a proper fashion the available computational resources is described by
the scheduling algorithm.
This example is indeed a good description of the two main characteristics of the
proposed algorithm:

1. Differently from what is usually found in literature, only one of the tasks
is control-based, while the other involves data processing. In the first task,
the controlled parameter is the control sampling period, while for the second
task the controlled parameter is data-related, involving performances that can
still be commanded by an input. In the real-case example, the first task is
represented by the plane control, the second one by the image processing
algorithm;

2. In the real-case scenario, the tasks are both event-triggered and self-triggered.
The scheduling function changes the value of the parameters for the both task,
based on a variable representing the overall system (the complexity) and the
available resources, as in a self-triggered model. On the other hand, they are
modified and updated only when a certain event is violated, i.e. when the
following photo needs to be taken, acting like an event-based model. In other
words, it is possible to imagine it as an event-based sampling where the value
of the sampling time is computed in a self-triggered model’s fashion.

1.2 outline of the thesis 3

The task scheduling algorithm with the proposed characteristics is presented first
for two generic jobs in two situations: tasks with different priorities and tasks with
equal importance. Later, these theoretic solutions have been applied to the realis-
tic scenario presented before, and simulations have been made using the software
Matlab

r. On the basis of the obtained results in the simulations, conclusions are
made on the effectiveness of the proposed scheduling algorithm.

1.2 outline of the thesis

The thesis is divided in the following chapters.
Chapter 2 covers the necessary theoretical background for the rest of the thesis, us-
ing fundamental publications of the field. It will present the notion of scheduling,
the control and scheduling co-design approach and the non-fixed sampling rate
problem.
A description of an Unmanned Aerial Vehicle is given in Chapter 3, as well as the
description of path planning and path following algorithms.
The second task for the realistic scenario is detailed in Chapter 4, with the descrip-
tion of the complexity function, and the designing of the learning function used as
image processing algorithm.
The main theoretical contribution of this project is given in Chapter 5, in the two
cases of prioritized and non-prioritized tasks. The proposed algorithm is then ap-
plied in both situations to the two tasks of the proposed scenario.
In Chapter 6 more detailed simulations of the theoretical results are made on the
realistic scenario. A comparison between the proposed scheduling algorithm with
variable parameters, and a similar framework presenting fixed sampling, is eventu-
ally pursued.
A brief conclusion and suggestions for future works are included in Chapter 7.

2 R E L AT E D W O R K S

2.1 the scheduling problem

In any kind of plant, the control system is usually implemented on a micro-processor
that uses a real-time operating system [5]. This OS uses multiprogramming to mul-
tiplex the execution of tasks in that processing unit. The CPU time is then a shared
resource between all those jobs, that compete for its utilization. In real-time systems
processes are referred to as tasks, and have temporal qualities and restrictions [6].
Three basic properties are associated with a task: the release time, or ready time, in-
dicates when the task is ready to be executed; the deadline designates when it has
to finish and the execution time shows how much time it takes to run it. A task is
called periodic when it is recurring and has to be executed every given period. To
guarantee that all time constraints and requirements are met, it is necessary the use
of a scheduler to share the resources. An example of how a scheduler works is repre-
sented in Figure 1: three tasks T1, T2, T3 are given, each one with its execution time
and deadline, respectively (1, 3), (4, 9) and (2, 9). These can all be executed without
the expiration of their deadlines.

Figure 1.: Example of how a scheduler might work for three given tasks, as in [6].

When tasks are executed on a scheduler a mechanism called preemption can occur:
this happens when a job that is currently occupying the processor becomes inter-
rupted, its state saved and then it is changed for another task; it will finish its
execution later on, always before its deadline. This switching of tasks is known as
context switch, and every time it occurs it will take a small amount of time, that is
however usually not considered1. Not every processors support this technique, but
it is usually considered existing in a real-time system, where preemption is gov-
erned by priority 2.

1 The assumption of not considering context switch is justified by the involved time dimensions: when
tasks are referred to, the time dimension is milliseconds, i.e. 10−3 s, while the time taken for context
switching is measurable in microseconds, i.e. 10−6 s, which is three orders of magnitude smaller and
therefore negligible.

2 The priority, or weight, of a task is the importance given to it in the context of the present scheduling
problem.

5

6 related works

During the last decades the CPU scheduling has been a very active research area
and a lot of different models and algorithms were proposed. Most of them as-
sume that the tasks are periodic, with period Ti, a known worst-case execution time
(WCET) Ci and a hard deadline, Di. All this assumptions can in reality be relaxed
because practical systems are composed of tasks with varying timeliness require-
ments, where only a few of them are hard real-time tasks 3 [7]. Furthermore, the
use of WCET as an upper bound works fine only if its value is precisely estimated:
in reality, this is not easily achievable because of several low-level mechanisms in
modern computers, and thus it introduces a form on non-deterministic behaviour
in tasks’ execution [8]. In this way, a classical off-line hard guarantee would waste
the system’s computational resources only to have an absolute certainty of feasibil-
ity during sporadic peak load situations, even though the usual workload is much
lower. To give an example of this situation, one can consider a visual tracking sys-
tem where the target is first searched in a small predicted area, eventually enlarging
it step by step only if the search was not successful in the previous one. It is easy
to see that the worst-case situation is very rare, but much more time and resources
consuming, with respect to the ideal case, with the target found immediately in
the predicted area. In this case a soft guarantee based on the average execution
time allows for a general good behaviour of the software, and infrequent overruns,
i.e. when a task executes for more than its predicted execution time, can be dealt
with in other manners. For example, to prevent these unbounded delays the sys-
tem could decide to end the current job, or to assign it a lower priority. Another
common technique considers an off-line resource reservation, where before running
the program, each task is assigned a fraction of the available resources, preventing
in this way to use more than its allowed portion, and thus achieving isolation. This
method can however lead to a waste of resources, if the initial CPU bandwidth al-
location is not made in a correct fashion: this is the reason why in recent year the
general idea of CPU allocation is still used, applied instead in an on-line manner,
with resources fractions computed in real-time based of the actual demand of each
task. For example, Caccamo et al. [8] introduced the BASH (Bandwidth Sharing)
algorithm, that allows to manage overruns in a controlled fashion, performing an
efficient reclaiming of the unused computational time through a global bandwidth
sharing mechanism. It can also handle tasks with different constraints and criticality
without compromising both soft and hard real-time applications.
Another way may be to instead measure the actual execution time during every task
invocation, and adjust the parameters involved accordingly.

3 A real-time system can be catalogued into hard or soft, based on the consequences of a missed deadline:
the former never allows a missed deadline, because it can lead to important failure, which can harm
people or the environments, while the latter allows for the missing of some deadlines, causing only
degradation of the performances.

2.1 the scheduling problem 7

Various approach and methods to solve the scheduling problem and other related
issues can be found in the literature. For example in [7] Singh and Jeffay focused on
the problem of co-scheduling Real-Time tasks and Non Real-Time tasks, specifically
the ones whose performance is dependent upon their response time; furthermore,
they lack the notion of associated deadline. They solved the problem by schedul-
ing the Non Real-Time tasks first, while still meeting deadlines for the Real-Time
jobs: the variability in the execution time of Real-Time tasks was used effectively
as a leverage to reduce the response time of Non Real-Time ones. The proposed
algorithm exploits the probability distribution theory and uses it as a representation
of the variability in execution time of the tasks, using not a fixed processor share
but a the notion of expected processor share E[·]. This approach combines the elegance
of shared-based scheduling with the effectiveness of EDL: the Real-Time jobs are
initially assigned lesser processor share than the worst case requirement, and then
it increases with progress. This may lead to the requirement of the entire processor
near the deadline, but the probability that the conditions became so hard is low.

Another important example of real-time scheduling involves its application on au-
tomotive systems, where the scheduling of tasks and messages on in-vehicle networks
is a critical issue for offering good Quality of Service guarantees. Today’s cars are
indeed becoming more sophisticated for the presence of distributed embedded sys-
tems where various electronic devices are integrated to replace mechanical elements.
These components require an in-vehicle network to communicate in real-time, and
in such a way support the execution of their tasks: this network used to rely on an
event-triggered protocol, but eventually shifted towards a time-triggered protocol,
which grants more predictable and robust communications. Hu et al. [9] solved this
problem by introducing the Unfixed Start Time algorithm, which schedules jobs and
messages in a flexible way, such that start times are not fixed; this allows to enhance
schedulability, producing a significant advantage when compared to a previous list
of similar algorithms. Moreover, to tolerate assignment conflicts due to complex
and hard timing constraints, two other methods for rescheduling and backtrack-
ing are proposed: the former, called Rescheduling with Offset Modification, or ROM,
reschedules conflicted applications with an adjusted release time, while the latter
(Backtracking and Priority Promotion, BPP), used only when ROM does not produce
an efficient solution, backtracks a number of previously scheduled applications to
create space for the conflicted one. Simulation results shows the better performances
of the three combined algorithms compared to prior peer heuristics, especially in
terms of schedulability and bandwidth.

8 related works

2.1.1 Classical Real-Time Scheduling Algorithms

Scheduling algorithms are usually divided into two categories: off-line algorithms
takes all decision before the system is started, and during runtime the tasks are
executed in a pre-determined order. Usually, they are used when a hard real-time
system is involved, because the scheduling is studied ensuring that all processes
meet their deadlines. On the other hand, on-line scheduling takes decisions while
the system is running, and is based on priorities, that can be static, i.e. fixed a-priori,
or dynamic, i.e. assigned during runtime [6]. The first algorithms that were used to
solve the scheduling problem were the Rate Monotonic (RM) and the Earliest Deadline
First (EDF) algorithms proposed by Liu and Layland in 1973. They scheduled jobs
by prioritizing them on their period or deadline, a concept that is associated only
with real-time systems, while non real-time systems usually do not have a crisp
deadline that they are bound to.

EDF: the Earliest Deadline First can be classified as a dynamic priority driven
scheduling algorithm, and it is based on the principle that the task that is closest
to its deadline should run first, i.e. the process with the currently earliest deadline
during runtime is assigned higher priority. The priority between the tasks are cho-
sen dynamically on-line, because if a task is currently being executed but another
task with an earlier deadline becomes ready, then this last one will receive higher
priority over the other, and therefore preempts the currently running process. EDF
is capable of achieving full processor utilization.

EDL: Earliest Deadline as Late as possible (EDL), also known as Least Laxity First,
LLF, where the laxity of a task is its deadline minus the remaining computational
time. It can also be described as the maximum time a process can wait before it
executes in time to meet its deadline. The higher priority is assigned to the task
with the current least laxity; if two tasks has similar laxity they will continually
preempt each other, creating many context switches. Calculating an EDL schedule
is non trivial as it requires knowledge of arrival times of all RT tasks beforehand.

RM: In the Rate Monotonic technique real-time tasks gets priority over the non
real-time ones; unlike EDF, it has a static-priority pre-emptive scheme. The length
of a period determines its priority, i.e. tasks with short periods have higher priority.
For this algorithm to be used, it is necessary that deadlines length coincides with the
period, and that each task is independent from the the other. It can also be extended
for cases when the deadline occurs before the end of a period, and in that case it is
called Deadline Monotonic.
In Figure 2 is presented a practical example of how RM works, taking into account
two tasks T1 and T2 with execution time and period respectively (1, 4) and (2, 6): it
is possible to see how that T1 runs before T2, because it has a shorter period, and
therefore higher priority.

2.2 control and scheduling co-design 9

Figure 2.: Example of how a RM algorithm works for two given tasks, as in [6].

BSA: The Background Server Algorithm allows the scheduling of periodic and a-
periodic tasks in a very simple approach, just giving priority to periodic processes.
In other words, a-periodic tasks can run only when the processor is idle, they are
executed in the background and are preempted if periodic tasks arrives.

2.2 control and scheduling co-design

Until a few years ago, the design of controllers and the scheduling of control tasks
were considered separately , leading to sub-optimal solutions: the fixed-period as-
sumption of task models was indeed widely adopted by the control community,
that used to develop its theory on deterministic, equidistant sampling. Controller
design and its digital implementation were built in isolation, as two separate steps,
without taking into account that the set of tasks needed for the control may not be
schedulable with the limited computing resources available. It also seems unnatural
to update the control signal in a periodic fashion, because control tasks should be
executed only if - or more often when - something significant happens in the plant
that needs to be controlled; the control task hence should not be executed at the
same fixed rate regardless of the state of the system. On the other hand, by combin-
ing scheduling theory and control theory, it is possible to achieve higher resource
utilization and better control performance: this is why the co-design of the sched-
uler and the controller is necessary. Such a design needs to incorporate information
about the available computational resources into the control system, so that optimal
solutions can be found [5]. This work on dynamic task adaptation was motivated by
multimedia application, such as the one taken into account for this project. They are
usually performed periodically, but with less rigid deadlines; an overrun can cause
a lower quality of service, but without critical consequences for the global system.
The possibility to vary tasks’ rates could also increase the flexibility of the system
in handling this overload situation: for example, whenever a new task cannot be
scheduled, instead of rejecting it, the system can try to reduce the utilization of

10 related works

other jobs to decrease the total load and accommodate the new request.
The first work that specifically addressed this subject was produced in 1996 by Seto
et al. [1]: they allowed task frequencies to change within a range as long as such a
change does not affect critically the global system. The control law is usually derived
based on the properties of the physical system that one is studying, and its digital
control algorithm should then be designed to optimize some system Performance
Index (PI). The new and better integrated approach for real-time control systems con-
siders the optimization of the global system performances taking into account at
the same time both control performance and the available computing resources: the
combination of these two areas opens up to the possibility of higher achievements.
This requires knowledge of the relation between control system performance and
sampling frequencies, i.e. tasks’ period. We would like the frequency to be as high
as possible, in order to make a better match between the continuous-time control
and its digital implementation, but still imposing for it a certain upper-bound, due
to the limitation on computing resources when shared among multiple tasks . On
the other hand, to make the controller work correctly and to capture in a realistic
way the system dynamics, the task period must have also a lower-bound, that is usu-
ally chosen 5÷ 10 times the corresponding system’s characteristic frequency. These
lower and upper bounds allows the task rate to vary within this range, i.e.

fmax 6 f 6 fmin or Tmin 6 T 6 Tmax (1)

In this way task schedulability can be enhanced, which means that one can change
the task period in that given set of values so that all the periodic tasks in the set may
become schedulable, while in a more fixed approach their original period could
made some of them unschedulable. Tasks’ period will be adjusted so that they will
optimize the overall system performances, taking into account two constraints:

i. The upper bound of tasks period;

ii. The underlying scheduling algorithm and the limitations on available resources.

First, a functional J(u), working as a system performance index, needs to be in-
troduced: this can be interpreted as a measure of the total cost of the control effort
generated in a specified time period [0, tf] by the control signal u. The optimal con-
trol problem requires to find a control u that minimizes the functional J, keeping in
mind that it is subject to the constraints in 1. It is necessary to point out that the
functional J do not always have the same meaning: it can measure the control effort,
as mentioned before, and in this case it needs to be minimized in order to obtain the
optimal control; on the other hand, it can also be designed to measure, for example,
the total work the system produces, and in this case it needs to be maximized. The
non-linear optimization problem is then associated with the scheduling problem,
considering both dynamic assignments, in which case an EDF algorithm will be

2.2 control and scheduling co-design 11

used, and static assignment, with a RM algorithm, where simulations show that the
former performs usually better than the latter. The conclusions that can be drawn
from this first work is that control-scheduling co-design can make schedulable a set
of tasks that previously were not because of fixed sampling periods; furthermore, if
the set of tasks were already schedulable, the proposed algorithm could be used to
improve the global performance.
Until now, we have assumed that all the tasks to be scheduled were control-related,
but the same approach can be used for other tasks, e.g. involving data processing
or display, because they can be associated with some performance indexes. One of
the tasks of this project belongs indeed to this category, because it concerns image
processing.

Another pioneering algorithm developed to solve the real-time scheduling-control
problem was theorized by Eker et al. [10], and was based on a dynamic feedback
from the scheduler to the controllers, and from the controllers to the scheduler, to
keep track of the dynamics of the computation workload when this could not be de-
termined accurately. They studied a situation in which the number of control loops
and their execution time was not fixed, thus the scheduler must adjust those tasks
in order to maintain the optimality of the system, working as a closed loop and
changing control frequencies. An example of how the feedback scheduler works is
depicted in Figure 3, where the inputs taken into account are the desired workload
level (usually a CPU utilization level), the current execution time and the perfor-
mance of each control loop; clearly, the output is their new sampling frequencies.
A Performance Index is used also in this case to compute how well the algorithm is

Figure 3.: Example of a feedback scheduler for control loops as in [10].

performing, hence it has to depend on the sampling rate. The most used PI in the lit-
erature is linear quadratic, and the controller needs to minimize this quadratic cost
function. The feedback is especially useful in overload situations, when the closed
loop system intervenes to change the sampling rates and to regain schedulability.
In his work Cervin et al. [11] extended the previous project and used a combina-
tion of feedback and feedforward to achieve the scheduling of control tasks: the
former was used to measure the execution time, so to maintain a high CPU utiliza-
tion, avoid overload and distribute in a proper fashion the computational resources,
while the latter was interpreted as an admission controller. To be more precise, the
introduction of a feedforward action makes the scheduler faster to react to sudden
changes in the workload, e.g. when a mode switch condition has been detected
or for changing load conditions; furthermore, it improves the regulation of the uti-

12 related works

lization during mode changes. The behaviour of the proposed algorithm has been
tested on an inverse pendulum system, where its superior performances over an open-
loop scheduling or a simple feedback scheduling has been proved. It also has better
results than the ones that can be obtained by using an EDF scheduling, where the
controller do not adjust its parameters according to the new sampling period.

A very important contribution to this field is represented by the work of Buttazzo
et al. [12], where they developed an interesting technique called Elastic Scheduling
that allows periodic tasks to intentionally change their execution rate to provide
better quality of service and to keep the system under loaded. This approach also
allows for a general resource allocation strategy, not limited to task scheduling,
and can be used whenever a resource needs to be allotted to objects with flexible
constraints. Also, the elastic approach adapts automatically to changes of load,
without specifying the WCET, using real-time and on-line readings of the actual
processor utilization.
They developed this technique drawing inspiration from a system of springs, each
one with a given rigidity coefficient and length constraints: the utilization of the
task is treated as an elastic parameter which can take value inside a defined range.
Each task τi is defined by four parameters in the following way:

τi(Ci, Ti0 , Timax ,Ei)

where Ci is the computation time, Ti0 is the nominal (minimum) period, Timax is the
maximum period and Ei > 0 is the elastic coefficient, that specifies how the task can
vary its utilization based on the actual demands. This means that the period Ti has
to belong to the range [Ti0 , Timax]. For a set of n tasks to be schedulable, the only
requirement is that

C1
T1max

+
C2
T2max

+ · · ·+ Cn

Tnmax
6 1

If this condition is verified it is possible to use a smaller period Ti 6 Timax , and
reach different period configurations that allows schedulability, with the advantage
that in the elastic model the best solution is implicitly encoded in the elastic coef-
ficients provided off-line. In this way each task is varied according to its current
elastic status, and can be “compressed” to give space to other jobs, or return to their
nominal period, depending on the amount of released bandwidth. The equivalence
with the system of springs is easily understood: its length xi can be compared to
the utilization factor Ui = Ci/Ti and the rigidity coefficient ki is equivalent to the
inverse of the task’s elasticity 1/Ei. Hence, the set of n tasks with total utilization
factor of Up =

∑
Ui can be seen as a system of n springs one after the other, with

total length L =
∑
xi. An example of how the system works is depicted in Figure 4

2.3 on non-fixed sampling rates 13

(a) Uncompressed springs with total length L.

(b) Springs compressed by a force F with length Ld < L.

Figure 4.: A linear spring system, as in [12].

If a force F is applied to the system of spring, the total length of the compressed
system is Ld =

∑n
i=1 xi, and it is possible to find the new length xi of each spring

as
xi = xi0 − (L0 − Ld)

Kp

ki
, where Kp =

1∑n
i=1

1
ki

(2)

where xi0 represents the nominal length of the i-th spring 4.
A set of elastic tasks can be compressed in a similar way, always keeping in mind
utilization constraints, i.e. a task can be compressed up to its minimum period:
when this value is reached by one or more tasks, the others will have to adapt
and be compressed more than previously computed. Once the overload is over,
the tasks may expand up to their original utilization, eventually recovering their
nominal periods.

2.3 on non-fixed sampling rates

As it has been explained in the previous Section 2.2, the purpose of the simultaneous
design of controller and scheduler is the optimization of the global system, taking
into account computational resources and performance of the controller. The easiest
and most effective way to achieve this result is to change the sampling frequency
(or the sampling period) of the application that needs to be controlled: the higher
the sampling frequency, the more resources it requires, therefore its schedulability
becomes more difficult, and vice versa. In other words, a short period allows a
quick reaction in front of perturbations, making it good from a control prospective,
but it increases the load of the processor, making it bad from a resource utiliza-

4 The procedure to derive the obtained solution is the following: for the equilibrium of the system F =

ki(xi0 − xi) ∀i from which we derive xi = xi0 − F/ki. By summing we have Ld = L0 − F
∑n
i=1

1
ki

,
thus the force can be expressed as F = Kp(L0 − Ld). Equation 2 is its direct consequence.

14 related works

tion prospective. For example, in an application where a robot has to explore an
unknown environment, it will be equipped with proximity sensors that allows it
to sense the presence of possible obstacles: these sensors needs to increase their
acquisition rate whenever they are approaching an obstruction, in order to main-
tain the desired performance. The discussion on computation, communication and
energy constraints became indeed very important in modern control systems: occu-
pying the CPU for control computations when nothing significant has happened in
the process is a waste of resources, in the same way the available communication
bandwidth is limited, and its use for sending data in a traditional periodic way is
unnecessary. In the literature, two approaches have been highlighted: event based
control and self-triggered control, where sensing and actuation are performed only
when needed [4]. They both consist on a feedback controller that computes the
control input, and a triggering mechanism that decides when that input has to be
updated. The main difference between them is that they are, respectively, reactive
and proactive: the former one generates a sample when a certain even occurs; the
latter instead computes the next sample ahead of time.
One of the first examples of aperiodic sampling can be found on the work of Kush-
ner and Tobias in 1969 [13], where they proved the stability of a random sampled
system, however not taking into account any of the thing mentioned before, such
as schedulability or control performance. They studied the case of linear and non-
linear systems with feedback loop, and proved their stability through the use of
Lyapunov theory when they were sampled with random periods, with independent
holding times.

2.3.1 Event-based control

In an event-triggered control (also known as interrupt-based feedback or Lebesgue sam-
pling) the triggering condition is based on the continuous monitoring of a certain
condition, e.g. the system state deviated more than a certain threshold from the
desired value. When this condition is violated, an event is generated, leading to
the sampling action. In other words, the event-based implementation of a feedback
control law consists in a holder5 that keeps the actuator values constant as long as
the triggering condition is not satisfied, and then recomputing that value updating
the actuators only when that happens. The asymptotical stability is still guaranteed
by Lyapunov theory.
Since the sampling instant are determined at execution time, an a-priori scheduling

5 Let tk be the time instant of the k-th sample and u(tk) the value of the input at that time. A holder
then maintain that same value until the next (k+ 1)-th sample is been computed. This means that

u(t) = u(tk) ∀t ∈ [tk, tk+1[, k ∈N

2.3 on non-fixed sampling rates 15

of energy, computational and communication resources can be challenging for this
kind of control: the triggering condition can be violated only a few times, resulting
in a very low sampling frequency, but it can also be violated very often, with a large
consume of resources.
A simple way to perform an event-triggered control is to use a PID controller, as
suggested in [14]. The control is divided in two parts: the first one consists of an
event detector that uses a traditional time-triggered sampling, while the second one
is the PID, which algorithm designs the new input signal; Figure 5 represents the
model. The sampling interval of the event detector, hnom, is the same one of the
corresponding time-triggered PID controller, which will be used for the final com-
parisons between the two methods.
The authors decided to use as a triggering event the crossing of a certain threshold

Figure 5.: Event-based PID structure. From [14].

in the error signal instead of the measurement signal: this guarantees sampling also
when the set-point changes. Formally

|e(tk+1) − e(tk)| > elim

which means that the new control signal is computed when the absolute difference
between two consecutive error values is greater than a certain limit. It is also possi-
ble to add the safety condition hk > hmax, i.e. to check that the time elapsed since
the last sample does not exceed the limit. The practical effect will be the execution
at the higher frequency hnom during transients and at the lower frequency hmax
during steady state. The code proposed for the event-based PID is very simple and
intuitive, and it consist on an algorithm executed at the nominal sampling frequency
where all computations for parameters and updates are integrated in an if -cycle, per-
formed only if the triggering conditions are violated. This entails a small increase
in complexity, however not with drastic consequences. The author then compared
the time-triggered PID and the event-triggered one with an equal simulation: the
former control algorithm will be executed 600 times over a 10 minutes simulation,
while the latter performs the event detection logic 600 times, but the actual control
cycle only 103 times. An approximate analysis on processor utilization shows a
reduction of about 58% in the used resources.

16 related works

2.3.2 Self-triggered control

Event-based control has the necessity to keep on monitoring the triggering con-
dition, thus usually requiring a dedicated hardware for this purpose, which is not
always possible. The integration of the analogue event detector in the physical plant
makes this sampling impractical, and for this reason the more pragmatic approach
of self-triggered control has been introduced: here the next update time is precom-
puted based on a prediction, using for example previous data and knowledge on
the plant dynamics. This strategy could be viewed as a way to introduce feedback in
the design of the sampling rate, in comparison to the open loop strategy of periodic
implementations [15]. The main difference is that this method deals with known
future periods, because they are the result of the model execution. The objective is
the simultaneous computation of the actuator values as well as the next update time.
It is possible to define a map Γ : Rn → R+ determining the triggering time tk+1 as
a function of the system state x(tk) at the time tk, i.e.

tk+1 = tk + Γ(x(tk)) = tk + τk

where τk denotes the inter-execution time, and it is usually belonging to a range
[τmin, τmax[. The upper bound in particular reinforces robustness of the implemen-
tation and and limits its complexity.
This kind of control can be solved as a minimum attention problem: “Given the state
of the system, compute a set of inputs that guarantee a certain level of performance
while maximizing the next time at which the inputs need to be updated”. Here
the term attention can be interpreted as the inverse of the time elapsed between two
consecutive update instants, i.e. τk.
For example, Velasco et al. [3] presented an algorithm that belongs to this category,
when at each control task instance execution the scheduler is informed on when the
next instance should be executed, hence adjusting at each run time its timing con-
straints. The next sample is then dynamically obtained by using a global parameter,
the utilization factor, and a local parameter, the control performance. The behaviour
of the overall system is depicted in Figure 6.

Figure 6.: System operation model for a self-triggered sampling as represented in [3].

The authors propose the use of an extended space-state representation of the system,

2.3 on non-fixed sampling rates 17

including as new state variables the task period and the utilization factor: in this
way they mix the control behaviour, as the part already present in the state-space
representation, with the execution rate of the tasks and the processing demand. In
a traditional model the space-state representation resembles the following equation:[

x(k+ 1)

y(k+ 1)

]
=

[
Ah

Ch

][
x(k)

y(k)

]
+

[
Bh

Dh

]
u(k) (3)

In Equation 3 x(k) and y(k) are the state variable at the k-th instant, and are
usually values coming from sensors; [Ah | Ch]

T is the system matrix, describing the
dynamic of the plant, and [Bh | Dh]

T is the input matrix, linking the inputs u with
the system. To be more precise, the matrices Ah,Bh,Ch and Dh are written with a
dependency on h, the sampling frequency, as a result of the discretization process,
and is usually a constant value chosen during the design stage. Therefore, the
choice of h has nothing to do with the system state, but it influences its dynamic.
The goal of the paper is to accommodate different values of the sampling period
according to the controller dynamics, extending the state representation with a new
state variable, the task period, h(k), which is too depending on the time period. The
new space-state model can then be represented in the following way:x(k+ 1)y(k+ 1)

h(k+ 1)

 =

Ah(k+1) 0

Ch(k+1) 0

α β ω


x(k)y(k)

h(k)

+

Bh(k+1)Dh(k+1)

0

u(k) (4)

The dependency on the new state h(k) with the other system variables is expressed
by the parameters α,β and ω. If α = β = 0 and ω = 1, so that h(k+ 1) = h(k) =

constant, the system is equivalent to the original one in 3. If α = β = 0 and
0 6 ω < 1 the sampling period will be decreasing at each execution, with h(k)→ 0,
leading to a non-real system; if instead ω > 1 the sampling period will tend to ∞,
thus violating Shannon’s sampling theorem. The situation the paper is interested
in happens when α 6= 0,β 6= 0 and 0 < ω < 1, so that the system has a variable
period, each one depending on the previous system state. The resulting transitions
in sampling periods are smooth, but the resulting space-state model becomes non-
linear, where a small input change can cause chaotic and unpredictable outputs.
The second step of the proposed model considers the introduction of the utilization
factor ζ and of an h-function, given by f(·), bounding the possible values of h, instead
of having a simple linear relation with the state variables, that could lead to its rapid
increase. In this new extension, the model becomes:x(k+ 1)y(k+ 1)

h(k+ 1)

 =

f1(x(k),y(k),h(k), ζ(k))f2(x(k),y(k),h(k), ζ(k))
f3(x(k),y(k),h(k), ζ(k))


x(k)y(k)

h(k)

+

f4(x(k),y(k),h(k), ζ(k))f5(x(k),y(k),h(k), ζ(k))
0

u(k)
(5)

In this new extension h(k+ 1) is obtained by the appropriate function of the state
of the controlled system and the processor resources. The focus of the problem

18 related works

in this case changes from the design of α,β and ω to the design of f(·), that de-
termines the system performance and the CPU load. A good way of designing it
is to get the system closer to the equilibrium enlarging the sampling period, and
decreasing it in case of perturbations, e.g. h(k + 1) = f3(x(k),y(k),h(k), ζ(k)) =

exp(−x2(k) − y2(k)) g(ζ(k)).

In [16] Gommans et al. broadened the field of computational resources saving by
including also communication resources saving: in a networked system, the avail-
able communication bandwidth is a scarce resource as much as the processor time.
Communications should occur only when relevant informations needs to be trans-
mitted from the sensors to the controllers, or from the controllers to the actuators.
They studied how to reduce the number of times the input was updated, adopt-
ing the self-triggering control, and how this is directly correlated to the number of
communications required from sensors to controllers and vice versa. The proposed
solution guaranteed the desired performance level and a significant reduction in
the utilization of the system’s communication resources, with a self-triggered LQR
strategy.

3 P L A N E C O N T R O L TA S K

3.1 unmanned air vehicle

An Unmanned Air Vehicle, or UAVs, is defined as a power driven air vehicle without
a human pilot on board, where its flight control is performed automatically through
an autopilot, without any remote controller. They also have to be reusable, and this is
why neither missiles nor bombs are considered within this category. The term UAV
is generally used with a wider meaning by the public, and it has not be mistaken
with Remotely Piloted Vehicles (RPVs), that are controlled from an operator in the base
station. UAVs should be able to perform some operations autonomously, requiring
both trajectory design (planning) and trajectory tracking (control), that are challenging
real-time tasks, given that the on-board computational capabilities are not always
able to support complex algorithms. The first UAV was designed in the Fifties by
Ryan Aeronautical for military reconnaissance and from that moment their use in-
creased to spare human pilots dangerous or dull jobs. These aircraft are nowadays
used in a variety of situations: military applications involve target and decoy, re-
connaissance, combat and logistic operations, while civil missions could be weather
forecasting, storm and fire detection, aero-biological sampling, mapping, inspection
of power lines, traffic assistance. Their advent was helped by their affordability and
ease of use, and for their technological increase in the last years. UAVs are usually
divided into two categories, fixed wings and rotary wings: the former have a simpler
structure and a more efficient aerodynamics, able to fly for longer distances at higher
speeds, while the latter have greater complexity that translates into lower velocities,
but they are able to perform vertical take-off and landing, and to hover; they also
provide for higher manoeuvring. An example of both can be found in Figure 7. A
new type of small UAVs is also becoming more relevant in recent years, i.e. flapping
wings vehicles: they are inspired by flying insects, and provides many advantages
that makes them a bridge between the two previous categories, e.g. simplicity of
control in small environments, quiet, high endurance times.
In this work we decided to focus on fixed wing air vehicles, because of the features
just presented that better adapts to the kind of civil mission we are interested in.
During flight, the performance of the aircraft is influenced by external conditions,
like wind, as well as aerodynamics parameters, like design and limited resources.
Small UAV, also known as Micro Aerial Vehicles (MAV), usually flies at low alti-
tude, normally less than 300 meters, to provide a precise observation of the ground,
which is very important for the missions they are designed for.

19

20 plane control task

(a) Fixed wings UAV. (b) Rotary wings UAV.

Figure 7.: Example of two Unmanned Air Vehicles.

To represent the motion of the vehicle it is necessary a mathematical model that
combines dynamics and kinematics with its aerodynamics parameters, obtaining a
6 Degrees Of Freedom (DOF) model.
In this project, since the main goal is not the model of the aircraft itself, which is
just the real-case scenario, but the scheduling problem behind it, we will use only
the kinematic equations of the air vehicle, and give just a brief description of the
complete model. We will use kinematics to design a control law to command the
desired heading rate, assuming constant altitude. The discussion about feedback
control for the attitude angles, air speed and altitude, implemented as low-level in-
ner loops, will be left to an autopilot, with which it is possible to interact just by
changing the sampling rates of those inner loops, providing greater or smaller con-
trol performances [17].

Figure 8.: Block diagram of the proposed division of the task.

The possibility to change the sampling frequency is of particular importance to
autonomous robots, since it allows the designer to change not only performances,

3.1 unmanned air vehicle 21

but also the number of executions of the algorithm. This hierarchical structure is
divided into small tasks as represented in Figure 8.

3.1.1 Brief description of dynamics

Consider a rigid body in space, its attitude, i.e. its geometric description, how that
object is placed in the environment. That is expressed in Euler angles, also known as
roll-pitch-yaw angles [18], as represented in Figure 9. A plane can rotate from its cen-
ter of gravity around three axis (x,y, z); these positional control is then transformed
into angular control with the previously mentioned angles (φ, θ,ψ).

Figure 9.: UAV axes.

The control of a fixed wing aircraft is represented by these three control surfaces
and by the thrust given by the engine:

• Ailerons: control of the roll angle;

• Elevator: control of the pitch angle;

• Throttle: control of the motor speed;

• Rudder: control of the yaw angle;

Not all small UAVs have to include the whole set of control surfaces: for example
many of them are equipped only with throttle and ailerons, that can be mixed to
work as an elevator (in this case they are called elevons).
The state variables are position, velocity, Euler angles and angular rate. We can
define the position with d = [x,y, z]T , the Euler angles in the inertial frame with
Θ = [φ, θ,ψ] ∈ (−π,π), the linear velocity as v = [u, v,w]T and the angular velocity
as ω = [p,q, r]T . It is necessary to stress in particular the importance of the angle ψ,
called the heading of the UAV, since it will be used in the next Section 3.4 as reference

22 plane control task

angle for the guidance problem. The heading, or yaw angle, is the one that defines
the direction the plane is pointed toward; it must not be mistaken with the course
angle ψG, which is the direction of travel with respect to the Earth’s surface. This
difference is better explained in Figure 10.

Figure 10.: Difference between the heading angle ψ and the course angle ψG.

Since the path that the plane has to follow is referred to way-points with locations
on the ground, the guidance problem that we have to solve requires the use of the
ground velocity Vg.
A discrete version of the nominal UAV dynamics without disturbances is:

x(t+ 1) = x(t) +∆T Va cos(ψ(t))

y(t+ 1) = y(t) +∆T Va sin(ψ(t))

ψ(t+ 1) = ψ(t) +∆T u(t)

(6)

where ∆T is the sampling period [19]. An important characteristic that the plane
dynamic has to take into account is the presence of a minimum turning radius, usually
in the range of 10 ÷ 50 meters, which is a primary constraint for path-following
algorithms.
Another constraint that needs to be taken into account is related to the airspeed of
the UAV, that clearly can take values only in a limited range1.

3.1.2 Plane control through an Autopilot

A robust and stable autopilot system that allows the control of the plane is essential
to perform in a good way the tasks. Autopilots are developed to assist a human

1 The terms speed and velocity are inherently different: speed is the scalar quantity that shows how fast
an object is moving, while the velocity of such object is a vector quantity that refers to the rate at which
such object is changing its position. For the sake of simplicity, although, these two terms will be used
as synonyms.

3.1 unmanned air vehicle 23

operator or to take its place into the guidance of the UAV [20]. Small UAVs can
also have another kind of control mode, i.e. Remote Control (RC), that requires a
human pilot to interact with the plane through radio signals, but they never reach
the enhanced navigation accuracy of an autopilot.
An on-board autopilot is equipped with a micro-controller, sensors and actuators,
and usually also with communication devices that allows him to share informations
with other vehicles or with a base station. The goal of an autopilot is to consistently
guide the aircraft to follow a specified path or to navigate through some way-points.
To achieve that it needs to receive from GPS satellite for position updates and to
send out control inputs to the motors. It usually consists in two main parts, the state
observer and the controller, as represented in Figure 11

Figure 11.: Functional structure of an UAV autopilot, adapted from [20].

The State Observer is usually an Inertial Measurements Unit (IMU), a conglomerate
where the sensors are mounted together. It can provide a complete set of sensors
reading such as: rate sensors for all three axes, a three-axis magnetic compass to
measure roll-pitch-yaw angles, a GPS receiver for the absolute position of the vehi-
cle, pressure sensors for informations about body velocity and altitude, ultrasonic
sensors for the relative altitude to the ground, accelerator. An alternative way to
obtain these information is to use an infra-red sensor: the main idea is to measure
temperature difference between two sensors on opposite extremities of each axis to
determine the angle, because the Earth emits more infra-red than the sky. Another
technique consists in Vision Sensors, that performs better in environments where the
GPS is not always available; this method is however more used for rotary wings air
vehicles for tasks like collision avoidance. Sensor readings are combined with GPS
informations and can be passed to a Kalman filter to generate the desired states.
The micro-controller on the autopilot carries out different basic functions, such as
estimation of the attitude angles, estimation of the absolute position and implemen-
tation of the inner loop PID controllers, for attitude. The autopilot includes also
an outer cycle on heading, which will be the one we are interested in designing,
for trajectory or way-point tracking. Due to the presence of non-linearities in the
plane dynamics, a lot of intelligent control techniques have been used to guarantee
a smooth navigation, such as PID control, Neural Network, Fuzzy Logic and more.

24 plane control task

3.1.3 Kinematics

In this chapter we will assume that a low-level autopilot regulates the airspeed and
the heading of the plane to the desired value. For the purpose of a high level path
planning and path following control design the kinematic model of an UAV is suffi-
cient [21].
A straight line path is parametrized in the x− y plane, assuming constant altitude;
moreover, the aircraft’s speed during every time interval τ is also considered con-
stant. Under this assumptions, the plane kinematics can be summarized as:

ẋ = VG cos(χ) = Va cos(ψ) + Vw cos(ψw)

ẏ = VG sin(χ) = Va sin(ψ) + Vw sin(ψw)

χ̇ = k(χd − χ)

u = max_limit(χ̇ VG)

(7)

where va is the UAV airspeed and VG is its ground speed: in particular, VG =√
V2Gx + V

2
Gy, with VVx = Va cos(ψ)+Vw cos(ψw) and VGy = Va sin(ψ)+Vw sin(ψw).

Furthermore, ψ is the heading angle of the plane, χ = atan2(ẋ, ẏ) 2 is the course
angle, χ̇ is the course angle rate and χd is the desired direction toward the goal. Vw
and ψw are, respectively, the wind speed and direction.
The lateral acceleration u is a function of the course angle χ and the ground speed
VG: this function, that we called max_limit(·), is needed to constrain it, because of
the presence of a minimum turning radius, hence the lateral acceleration needs to
have an upper bound. This condition is used only in simulation environment.

Algorithm 1 Function maxLimit.m pseudocode.

1: Input: u,VG,Rmin
2: Output: unew
3: if u < 0 and |u| > V2G/Rmin then
4: unew = −V2G/Rmin

5: end if
6: if u > 0 and |u| > V2G/Rmin then
7: unew = V2G/Rmin

8: end if
9: else unew = u

2 atan2 is a variation of the classic arctangent function that involves two arguments: this will allow to
gather additional information on the sign of the inputs, in order to return the appropriate quadrant
of the angle. This data was not available with the original function, whose range is (−π2 , π2).

3.2 creation of a map with google earth 25

If we consider, for the sake of simplicity, a model without wind disturbances,
then we have that Va = VG and χ = ψ, and the kinematic equations of motions are
revised to:

ẋ = Va cos(ψ)

ẏ = Va sin(ψ)

ψ̇ = k(ψd −ψ)

u = max_limit(ψ̇Va)

(8)

3.2 creation of a map with google earth

We image the UAV taken into consideration as equipped with a small camera, so
that it can take information from the ground below: a camera is a light sensor,
compared to the amount of information that it can provide. This is why a camera-
based approach is used for the autonomous flight of the aircraft. We will simulate
the presence of a downward-looking monocular camera, that provides images with
two-dimensional features and unknown depth. To explore and navigate, the UAV
will use the images captured by the camera, that are simulated in this project us-
ing Google Earth, which is a popular free software that provides satellite images of
places around the world.
The initial purpose of this project was to use Google Earth in an interactive way,
i.e.create an interface that allows the air vehicle to navigate on-line in the environ-
ment images provisioned by the software. Unfortunately the new updates released
at the beginning of 2016 made the interaction between Google Earth and the sim-
ulation environment used, Matlab

r, extremely difficult. An alternative way to
simulate the flight was then chosen, which proved to be much easier, computation-
ally lighter, but still guaranteeing the correctness of its adoption. This alternative
method consisted in using a big image, created by saving smaller portions of this
map one at a time and successively melting them together. This bigger image of
the environment needed to be big enough so that during the simulated flight the
UAV could never reach its borders (problem that would never have occurred with
the on-line navigation), and needed to have a quality comparable to the one of a
camera mounted on the aircraft. The place depicted in the map was chosen in such
a way so that it could represent various types of environment with different degrees
of complexity: in particular it shows field, with low complexity, and small towns,
which center is categorized as having high complexity. The figures were captured
at a height of 150 meters, which is a normal altitude for UAVs in order to avoid col-
lisions with obstacles. The air vehicle will clearly not have knowledge of the entire
map, because it is exploring an unknown area, but is only able to have visualize a
portion of it, i.e. the part that the camera is capturing at the moment. This is the

26 plane control task

Field Of View (FOV) provided by the camera, and it will be a square with 150 me-
ters sides, as a real downward-looking camera usually allows. This is represented
in Figure 12.

Google, c©DigitalGlobe

Figure 12.: Complete map of the environment with highlighted an example of the plane’s
FOV.

Obviously, when the map is uploaded into the programming language, its dimen-
sions will be translated into pixels, and every information about meters will be
lost. To avoid such a problem, a conversion parameter pixel/meter needs to be
found. It is known, from its extraction from Google Earth, that the map represents a
7500× 2880 m2 area, i.e. an image with dimension 9600× 3240 pixels in Matlab

r.
From this, it was possible to find out that each pixels corresponds to 0.85 meters,
i.e.:

nm = 0.85 np or np = 1.18 nm (9)

where nm is the number of meters equivalent to np pixels. This operation needs to
be performed every time informations involving dimensions are required, e.g. the
velocity of the UAV, which is expressed in meters per second and has to be translated
into pixels per second, and vice versa: for example, a velocity of 15 m/s becomes
17.7 px/s, using Equation 9.
An important feature that one has to take into account when dealing with digital
images is that, when they are processed by a numerical computing environment like
Matlab

r, the origin of the image coordinate frame is in the upper-left corner, with
the v-axis pointing down3. On the contrary, the inertial frame that we are using for
the coordinates of the air vehicle is the standard one, with origin in the bottom-left
corner. For what concerns the values on u and x, not additional work needs to be
done, but if dealing with v or y axis it is necessary to know that they are shifted and
pointing toward opposite direction, as in Figure 13.

3 The name of the axes for the image coordinate frames is u, corresponding to the x-axis, and v, corre-
sponding to the y-axis.

3.3 path planning 27

Figure 13.: Different coordinate frames, red for the UAV position and green for the image.

Copyright issues

Google company allows its users to utilize its software with a non exclusive and non
transferable license , allowing them to visualize and write on the maps they provide
and to publish contents when correctly mentioned. It does not allow its use for sell-
ing contents or new products, unless specifies otherwise, or to take inspiration from
it to design mapping-related datasets with similar functions. This project does not
intend to have any commercial purpose but it is only conceived with an academic
intention, therefore the fair use of Google Earth is respected.
Every image exported from the maps has to clearly show Google’s and the data
provider’s name (c©DigitalGlobe), with a clear and visible attribution. One can de-
cide whether to use the text directly applied by the application on the imagery or to
customize its style and placement, but this has to be done in such a way so that it is
as visible and legible as the original one.

3.3 path planning

The air vehicle that has been taken into consideration until now is autonomous, i.e. it
has the ability to perform a task without being remotely controlled by a human op-
erator [22]. They must have advanced path planning and following algorithms, and
an effective and robust autonomous navigation system provided by an autopilot, as
described in Section 3.1.2.
In this context, a path is defined as a sequence of way-points connected by straight
lines or arcs, through which the vehicle must traverse. The guidance algorithm then
takes the mission plan and the plane kinematics as inputs, and generates the appro-
priate commands for the control system to track. These are elaborated by the inner
control loops in the autopilot, that suitably actuate the control surfaces of the UAV,
following the acceleration commands generated by the outer loop. In other words,

28 plane control task

in this inner/outer loop design, the outer guidance loop considers the kinematics
of the plane, while the inner control loop considers its dynamics. This inner loop is
usually multiple time (5÷ 10) faster than the outer one, because dynamical variables
respond much more quickly in time scale. The goal of the guidance problem is to
make the vehicle fly exactly over the lines joining the way-points as projected on the
ground picture, with minimum cross-track or lateral deviation.
The first sub-task to solve is the planning of such a path, i.e. decide where the air-
craft has to fly. This can be done in multiple ways, based on the mission and the
goal that the plane needs to achieve: it could be a very simple straight line or a cir-
cumference, without taking into account any feature of the environment, or it can be
based on its characteristics, e.g. on following rivers, power lines, oil pipelines. We
would like the UAV to move following the roads that it detects in its current view
of the underlying terrain: this is a common choice in the literature, since UAVs are
mostly used for aerial photography and investigation [23]. We can imagine a road
as the longest straight line in the current view, so it can be detected by a line recog-
nition algorithm. It is clear nevertheless that a road has also other characteristics to
be defined as such, besides being the longest straight line: the color, the texture, the
way it is connected with other roads; sometimes it is not even straight, in the case
of turns or roundabouts. We can find in the literature many examples of how this
problem has been addressed over the years, especially when using satellite imagery.
Automated road detection algorithms can be grouped into five categories, as in [24]:

• Ridge finding: use edge operators to find their magnitude and direction, fol-
lowed by thresholding and thinning to obtain ridge pixels;

• Heuristic Reasoning: uses a-priori knowledge and rules about road character-
istics to identify them;

• Dynamic programming: model roads with a set of equation on the derivatives
of grey values and use their characteristics to solve optimization problems;

• Statistical Inference: model linear features as Markox processes or stochastic
models on roads width, colour, direction and background, then use maximum
a-posteriori probability to detect road networks;

• Map matching: use existing road maps and then upgrade them to the actual
road network, based on the assumption that the new ones need to be con-
nected with the old ones.

For example, in [25] the authors used satellite images and special images from the
near infra-red range, since they carry significant information on linear structures.
They started by identifying some features typical of roads, e.g. thickness, grey level,
colour compared to the background, contrast and minimum length, and proceeded
with three major steps: line enhancement, segmentation (eliminating successively

3.3 path planning 29

non-road pixels) and linking (recovering eliminated road pixels, if any). Arafat et
al. [26] focus on colour features to extract streets, taking into consideration also
noisy images, when misclassification can occur due to shadows, high buildings and
illumination. In [27], high-level information are extracted from road maps (retrieved
on-line from map services), and then combined with satellite images fro detecting
the road network to plan the shortest path: this method takes advantage of prior
knowledge of the road map, provided by map developers, to simplify road detection,
with high accuracy and low computational cost. However, since the main aim of
this project is not the way the air vehicle moves, but it is just a scenario on which
to test the proposed scheduling algorithm, we decided to use the simplest solution
possible, which is to detect the longest straight line, even if sometimes it could lead
to a wrong road detection or to non-efficient solutions in the trajectory design. We
evaluated the performances of diverse line detection algorithms that Matlab

r makes
available, to find out which one is the best one in terms of computational speed and
precision in the road detection.

3.3.1 Edge Detection

In computer vision, we call edge detection algorithms those procedures that combines
mathematical methods which aim is to identify points in an image where its bright-
ness changes sharply or, in general, have discontinuities of some kind [37]. Usually,
these occurs with variations in depth, surface orientation, material properties and
scene illumination. These points are generally organized into a set of curved line
segments called edges. Applying and edge detector to an image helps to filter out
informations that are considered less relevant, while preserving its important struc-
tural properties.
Algorithms for edge detection can be approximately divided into two categories:
gradient based and Laplacian based. The former method detects the edges by looking
for maxima and minima in the first order derivative of the image, usually looking
for the direction where you have the local maximum value of the gradient; the latter
searches for zero-crossing points in the second order derivative, usually the Lapla-
cian. We inspected the behaviour of four algorithms among the most famous: Canny,
Sobel, Prewitt and Roberts belonging to the first category, Marr-Hildreth for the second
category. In literature, the most used method is the Canny Edge Detector, because
it is the one the usually performs significantly better, unless some preconditions on
the image are particularly suitable for another algorithm.

Consider for example the image in Figure 14. We can clearly see tall spikes cor-
responding to strong variations in the intensity of the image along the horizontal
profile at v = 130. The very rapid increase over the space of just a few pixels is

30 plane control task

distinctive of an edge more than any other decision based on the actual value of
grey levels.

Figure 14.: Horizontal profile of a grey-level image along line v = 130.

The first-order derivative along this cross-section is:

p ′[v] = p[v] − p[v− 1]

where p is the vector containing the pixel value of the horizontal profile. This
signal is nominally zero, with clear non-zero responses at the edges of an object.
This derivative can also be written as a symmetrical first-order difference:

p ′[v] =
1

2
(p[v+ 1] − p[v− 1])

which is equivalent to convolution with the one dimensional kernel

D =

[
1

2
0

1

2

]
Other convolution kernels has been proposed for computing horizontal gradient

(to highlight vertical edges), and the most common is the Sobel kernel:

Dsobel =

−1 0 1

−2 0 2

−1 0 1


The results of the application of this kernel is a weighted sum of the horizontal

gradient for the current row and the rows above and below. If we want to compute
the vertical gradient we just have to use the transpose of this kernel matrix, and
in this way we can highlight horizontal edges. We then proceed by computing the
derivatives of the image I with respect to the u and the v axis, calling them Iu and
Iv respectively. If we call D a convolution matrix such as the Sobel kernel, then we
can write the two operations as

Iu = D⊗ I Iv = D
T ⊗ I (10)

3.3 path planning 31

where the symbol ⊗ stands for the operation of convolution.

Canny Edge Detector

The Canny edge operator is a very effective and well known edge detector.
Taking the derivative of a signal such as in Equation (10) accentuates high-frequency
noise, which is a stationary random process. We can reduce the effect of noise by
smoothing the image before taking the derivative4. Then the equation becomes:

Iu = D⊗ (G(σ)⊗ I) = (D⊗G(σ))︸ ︷︷ ︸
DoG

⊗I

where, using the associative property of convolution, we exploited the Derivative of
Gaussian (DoG), which can be computed analytically as:

Gu(u, v) = −
u

2πσ2
e
−u2+v2

2σ2

The standard deviation σ controls the scale of the edges that are detected. This last
argument overrides the default Sobel Kernel.
We can afterwards compute the edge magnitude of the gradient of each pixel as M =√
I2u + I2v, and its direction as Θ = atan2(Iu, Iv). We then performs two additional

steps:

1. Non-local maxima suppression: this technique is applied to thin the edge. By
examining pixel values in a local neighbourhood normal to the edge direction,
i.e. the edge gradient direction, we can find the maximum vale, and set all the
other to zero. As a result we have a set of non-zero pixels corresponding to
ridges and peaks lines;

2. Hysteresis thresholding: for each non-zero pixel that exceeds the upper thresh-
old we create a chain of adjacent pixels that exceed the lower threshold; any
other pixel is set to zero.

The Canny method differs from the other edge-detection algorithms for this two
additional steps, and this is why this method is therefore less likely to be fooled by
noise, and more likely to detect true weak edges.

Sobel Edge Detector

The Sobel edge detector does not perform any other additional steps besides the
convolution in Equation (10) to compute the derivatives. It then computes the edge
magnitude and direction, and returns edges at those points where the gradient of I

4 We call smoothing the result of the convolution of the image I with a square kernel w×w containing
equal elements and of unit volume. We obtain an image where each output pixel is the mean of the
pixels in a corresponding w×w neighbourhood. The spread is controlled by the standard deviation
parameter σ.

32 plane control task

is maximum. We can also specify the direction of detection, horizontal, vertical or
both. We can see the different result that we obtain in Figure 15.

Figure 15.: Results of the Sobel edge detector with different directions of detection. The red
line highlights the longest line.

Prewitt Edge Detector

The Prewitt algorithm is structured like the Sobel edge detector, but it uses a differ-
ent kernel to obtain the first derivative:

Dprewitt =

−1 0 1

−1 0 1

−1 0 1

 (11)

Also the results in terms of detected edge are very similar, as one can observe in
Figure 16.

Figure 16.: Results of the Prewitt edge detector with different directions of detection. The
red line highlights the longest line.

Roberts Edge Detector

Lawrence Roberts proposed this algorithm in 1963, taking into account some prop-
erties that in his vision an edge detector should have: a well-defined produced edge,

3.3 path planning 33

little noise in the background, edge intensity should be as close as possible to what
a human would perceive.
If we call xu,v the intensity of the pixel in position (u, v), then we can compute its
derivative zu,v as:

zu,v =
√

(yu,v − yu+1,v+1)2 + (yu+1,v − yu,v+1)2 where yu,v =
√
xu,v

This operation will give as result to highlight changes in intensity in a diagonal
direction. This computation can be made easily by convolving the original image I
with the following kernels:

Droberts,1 =

[
1 0

0 −1

]
Droberts,2 =

[
0 1

−1 0

]
We then proceed as in any other detector, computing the magnitude of the first-

order derivative and its direction.

Marr-Hildreth Edge Detector

An alternative way of finding points of high gradient is to compute the second-order
derivative and determine where it is zero.
First, we compute the Laplacian Operator as:

52I = ∂2I

∂u2
+
∂2I

∂v2
= Iuu + Ivv

which is the sum of the second spatial derivative in the horizontal and vertical
directions. This can be accomplished with the convolution of the original image
with a Laplacian kernel, such as:

L =

0 1 0

1 −4 1

0 1 0


which is isotropic, i.e. it responds equally to edges in any direction. This second

derivative is even more sensitive to noise, so also in this case we need to smooth the
original image with a Gaussian filter:

52I = L⊗ (G(σ)⊗ I) = (L⊗G(σ))︸ ︷︷ ︸
LoG

⊗I

where on the third equivalence we highlighted the Laplacian of Gaussian kernel
(LoG), that can be written analytically as:

LoG(u, v) =
∂2G

∂u2
+
∂2G

∂v2
=

1

πσ4

(
u2 + v2

2σ2
− 1

)
e
−u2+v2

2σ2

This is known as the Marr-Hildreth operator, or Mexican hat kernel. This technique
allows us to find the maximum gradient when the second derivative is zero, but a
significant edge is a zero crossing from a strong positive value to a strong negative
value.

34 plane control task

Comparison of the algorithms

If we apply to the same image, the one in Figure 14, the five methods that we have
explained so far, we obtain the results in Figure 17

Figure 17.: Results of different algorithm of edge detection. The red line highlights the
longest line.

We can see that the Canny algorithm detects a greater number of edges, but
almost all the methods detect as longest line the same one, which is the one that
actually has the strongest change in intensity in the original image, even though it
is not the longest. The only method with a different behaviour is the Prewitt edge
detector, that in this case is the one with the “poorest” performance.
We tried to pre-process the image applying a Gaussian filter with different values
of the smoothing factor σ, the standard deviation. We can observe in Figure 18 and
in Figure 19 the result of the edge detection with this initial smoothing, respectively
with σ = 2 and σ = 4. With a smoothing factor of σ = 2 almost all the detector
find a smaller number of edges, but choose as longer one the same one as before,
except for the Prewitt algorithm, that in this case selects the same line of the other
methods. On the other hand with σ = 4 the Canny detector chooses the line that is
actually the longest in the original image, probably because of the removal of some
noise through the smoothing. We can also make another observation valid in all
cases, that becomes clear by looking at all the images: the Canny algorithm always

3.3 path planning 35

finds edges that are well connected among them, smooth and precise. This is why
this algorithm is often considered the best edge detector algorithm, conclusion that
we can apply also to this project.

Figure 18.: Edge detection with previous smoothing, σ = 2.

Figure 19.: Edge detection with previous smoothing, σ = 4.

36 plane control task

We tried to apply the same methods to different images, with a greater degree of
complexity: we can observe the results in Figure 20 and Figure 21.

Figure 20.: Edge detection of an image with medium complexity, without pre-processing.

Figure 21.: Edge detection of an image with medium complexity, previous smoothing, σ =

2.

3.3 path planning 37

In particular, in Figure 20 the five methods were applied without any pre-processing
on the original image. We can see how all the methods chooses the same strongest
line. If we apply a previous Gaussian filter, with smoothing factor σ = 2, we obtain
the images of Figure 21, where three out of five algorithm keeps the same strongest
line, while Sobel and Prewitt edge detector find a different line, that is anyway ac-
ceptable in this case. If we apply a stronger smoothing factor the results remain
almost the same, except for the Roberts algorithm that selects a line that is not ac-
ceptable.
If eventually we study an image with high complexity, we will see that all the al-
gorithms performs more poorly than before, because of the great number of edges
found: not only streets (which are usually smaller and partially hidden by palaces),
but buildings and other elements of an urban context. We can observe this behaviour
in Figure 22: no algorithm is able to select the main road in the original image, which
is on the bottom left corner, but they all choose other lines that looks almost straight
because of the buildings edges. In particular, Roberts method chooses a line that is
not acceptable.

Figure 22.: Edge detection of an image with high complexity, without pre-processing.

We applied again a previous smoothing with σ = 2. In this case we have the same be-
haviour of the previous case, where almost all the algorithms can select a line that is
reasonable but not an actual road. Similar results are found with a smoothing factor
σ = 4.

38 plane control task

3.3.2 Line Features

In all the previous figures we have always highlighted the longest line, but in order
to do that we first need to extract some line features, and this can be made through
the Hough Transform5.
Consider a point in space and the infinite number of lines that pass through that: if
the point could vote for these lines, then each possible line would receive one vote. If
we consider another point in the same environments, using the same system to cast
votes for all the possible lines that pass through it, one line, the one that connects
the two points, will receive two votes. All the other possible lines will receive one or
zero votes. We need now to parametrize each line in terms of a minimum number
of parameters: in this case is common to use the (ρ, θ) parametrization:

v = −u tan θ+
ρ

cos θ
, θ ∈

[
−
π

2
,
pi

2

)
, ρ ∈ [ρmin, ρmax)

instead of the classical v = mu+ c, because it is problematic for the case of vertical
lines, where m = ∞. In this way each line can be considered a point (ρ, θ) in the
two-dimensional space of all possible lines.

Figure 23.: (ρ, θ) parametrization for two line segments; in blue positive quantities, in red
negative quantities.

Hough Transform

If we use in practice the technique described in Section 3.3.2, we cannot consider
an infinite number of lines, so we reduce them to a finite set. The ρθ-space is
quantized and a corresponding Nθ ×Nρ array A is used to tally the votes: this is
called the accumulator array. For aW×H input image we have that ρmax = −ρmin =

5 From here on we will use as edge detector the Canny edge detector.

3.3 path planning 39

√
W2 +H2. The array A has Nρ elements spanning the interval [ρmin, ρmax) and

Nθ elements spanning the interval
[
−π2 , pi2

)
.

An edge point (u, v) votes for all the parametrized lines, i.e. all the pair (i, j) for
which ρ = u sin θ+ v cos θ holds; in this case the elements A[i, j] are all incremented.
At the end of the process the elements of matrix A with the largest number of
votes correspond to dominant lines in the scene. We can clearly see this in Figure 24,
representing the accumulator array: most of the array contains zero votes, and is
represented as a black pixel, while the red curves are trails of single voters; they
intersect in those points that correspond to lines with more than one vote. The more
bright the color is, the greater number of votes that line received; we see several
bright spots that are closer together, and this is due to quantization effects. We
highlighted in the Figure the five strongest peaks in black, and the strongest among
all in blue.

Figure 24.: Hough accumulator array.

We also superimposed to the original image the detected lines, that we can see in
Figure 25.

Figure 25.: Lines detected by the Hough transform, in red the longest line.

40 plane control task

3.4 path following

When performing an autonomous flight for tasks such as mapping, search and res-
cue, patrol and surveillance, a UAV is required to follow a predefined path at a
prescribed height [21]. In this case nonetheless the path is not a-priori known, but
it is computed on-line and in real-time based on the structure of the terrain over
which the UAV is flying, as seen in Section 3.3. Path-following is in general a basic
requirement for any kind of unmanned vehicle, and this problem has application
in aerospace, underwater and ground robots [28]. In path-following, instead of
tracking a time-parametrized reference, i.e. a trajectory, the vehicle is required to con-
verge to and follow a path without temporal restriction. Examples can be found in
literature showing that path-following strategies performs consistently better than
trajectory-tracking algorithms, with enhanced results, smoother convergence and
less demand on the control effort.
The paths that it is usually required to follow are straight lines and circular orbits,
also called loiter. Once a path has been fixed, on-line or off-line, through a certain
amount of way-points, a path following algorithm has to be designed: this ensures
that the UAV will follow the predefined path in two or three dimensions. In this
project only paths with constant altitude will be developed, so we will use algo-
rithms for path following that will concern only two dimensions, because we stated
as an initial assumption that the air vehicle would always fly at a constant height,
for the sake of simplicity.

3.4.1 Overview on path following algorithms

Once a path has been planned as in Section 3.3, the path following problem is to
determine the commanded heading angle that accurately tracks the path. In this
project the path that the air vehicle has to follow is a composition of straight lines
computed and updated in real-time, each one defined by its initial and final points,
respectively Wi and Wi+1 [21]. We define also the line-of-sight (LOS) angle θ as the
angle formed by the current line that the plane is following with respect to the x−y
coordinate frame. The distance d from the vehicle to the path is the cross-track error,
and this quantity has to be minimized as the UAV approaches the line. In addition
to that, the path-following algorithm has to minimize the heading error ξ = |θ−ψ|,
where ψ is the current heading angle of the air vehicle 6.
The goal of any path-following algorithm is therefore to have the quantities d → 0

6 The notation | · | represents the absolute value, while || · || is used for the Euclidean norm.

3.4 path following 41

and ξ → 0 as the mission time t → 0 7. Then, it is possible to write the state vector
of the errors as e(t) = (d(t), ξ(t))T , and the error dynamics become:

d(t+ 1) = d(t) +∆T Va sin(ξ(t))

ξ(t+ 1) = ξ(t) +∆T Va u(t)

In this way the original path tracking problem becomes a regulation problem, driv-
ing the state to zero.

Figure 26.: The UAV located at p needs to follow the straight line defined by the way-points
Wi and Wi+1.

The path following problem is usually solved using two kind of strategies: geomet-
ric and control-based; the former are widely described in missile guidance literature,
while the latter are gaining popularity for their robustness to wind disturbances.
Examples for both the techniques are presented below.

• Geometric Algorithms: Geometric techniques are commonly based on the
concept of Virtual Target Point (VTP) on the path, which is an imaginary point
moving along the desired flight path as a pseudo-target. The vehicle has to
chase the VTP, which eventually drives the UAV onto the desired path. These
algorithms have performances with high variability based on the chosen virtual
distance parameter, where the latter is the distance between the VTP and the
aircraft position projected on the path (i.e. the distance d in Figure 26), that
influences also its stability.

• Control Algorithms: Control techniques are very popular for solving path
following problems, especially non-linear control algorithms. A common ap-
proach is based on a classic (PID) controller, which performances are however

7 The formal definition is the following: “Let an unmanned aerial vehicle have position p(t), and assume
that it has to follow the path P(γ) ∈ R2, parametrized by γ ∈ R; let P be sufficiently smooth with bounded
derivatives. The objective is to define a feedback control law such that the closed-loop signals are bounded,
|| p(t) − P(γ(t)) || converges to a neighbourhood of the origin, and the velocity error | γ̇− vp(γ(t)) | < ε, for
ε > 0, where vp(γ) ∈ R is the desired velocity.”

42 plane control task

not satisfying; its extension with feedforward capability is proved to have a
better behaviour. Other widely known control-based methods includes linear
quadratic regulator, sliding mode control, model predictive control and adap-
tive control. In literature, many studies on stability and performances guaran-
tee the accurate tracking of the path under different environmental conditions
for this class of algorithms.

We focused our attention on the first class, due to its simplicity, robustness and
ease of implementation, and chose and compared two algorithms belonging to it:
carrot chasing and Non-Linear Guidance Law. The plainness of these programs must
not be associated with poor performances, but it is instead their strength, and makes
them very useful in systems with limited resources. For example, carrot chasing
algorithm is the most used approach, and it is the default path-following program
in the Paparazzi autopilot, one of the most common open-source autopilot systems
[29].

Carrot Chasing

This algorithm uses a VTP to direct the air vehicle toward the desired path. As the
time progresses, the VTP position updates and consequently also the UAV heading
direction: in this way the vehicle will move toward the path and asymptotically
follow it. In this algorithm the VTP is also called the “carrot”, hence the name of the
technique; in the literature we can also find mentions of this same method under
the name “rabbit-chasing” algorithm.
When it is required to follow a straight line, this is uniquely identified by two points
Wi and Wi+1: this notation implies that the plane has to move from the first point
to the second one. Assume that p is the location of the UAV, and ψ its heading. We
will call q the projection of p onto the LOS at a distance R from Wi and s = (xt,yt)
the VTP, located at distance δ from q, as shown in Figure 27.

Figure 27.: Straight line path following using the carrot chasing algorithm.

3.4 path following 43

The algorithm can be summarized by these three steps:

1. Determine the cross-track error d, which is the distance between p and q;

2. Update the location of the VTP;

3. Update ψd and u based on the location of s. In particular, the lateral accelera-
tion is defined as:

u = κ (ψd −ψ) Va

These three steps are performed iteratively until the UAV reaches the point Wi+1.
The control input is the lateral acceleration u, and it uses a Proportional controller
with gain k > 0. The performance of this algorithm is regulated by the value of the
parameters k itself and δ. In particular, low values of the latter (δ = 0÷ 10) force the
UAV to move directly toward the LOS, resulting in a trajectory that is normal to the
path, and then causing the presence of overshoots. Hence, it will take more time to
settle on the path, making the cross-track error higher. On the other hand, setting δ
to a larger value will direct the vehicle toward the path very slowly, causing again a
high cross-track error. It is therefore necessary a good calibration in order to settle
the UAV to the path as quickly as possible.

Algorithm 2 Function carrot_chasing.m pseudocode.

1: Input: Wi = (xi,yi), Wi+1 = (xi+1,yi+1), p = (x,y), ψ, δ, Va, κ
2: Output: u
3: Ru =‖Wi − p ‖, θ = atan2(yi+1 − yi, xi+1 − xi)
4: θu = atan2(y− yi, x− xi), β = θ− θu

5: R =
√
R2u − (Ru sin(β))2

6: (xt,yt)← ((R+ δ)cosθ, (R+ δ)sinθ), s = (xt,yt)
7: ψd = atan2(yt − y, xt − x)
8: u = max_limit(κ(ψd −ψ)Va)

In Figure 28 it is possible to observe some of the outcomes of the algorithm: in
particular, in Figure 28a the values of the parameters were fixed, with κ = 0.05 and
δ = 50, and the initial heading angle was varied. In Figure 28b instead the initial
heading angle was fixed to ψ = 0 (and κ = 0.05) and we tried to change the value
of the parameter δ: it is possible to see the presence of multiple overshoots for low
δ, while for high values of the parameter it takes a longer time to reach the path. In
every case the chosen velocity for the plane was Va = 20 m/s.

Non-Linear Guidance Law

The NLGL algorithm uses again the VTP concept to make the UAV approach the
desired path. It is more flexible that the previous algorithm because it can be applied

44 plane control task

(a) Fixed κ = 0.05 and δ = 50. (b) Fixed ψ = 0 and κ = 0.05.

Figure 28.: Simulations for the carrot chasing algorithm.

to any type of trajectory, not only straight lines or loiters.
The VTP position s = (xt,yt) is determined as the intersection of the path and a
circle with radius L, as in Figure 29. Obviously they will intersect in two points,
that we will call s and s ′: we will then choose the one that will represent the VTP
based on the direction in which the UAV has to move, which is the one nearest to
the way-point Wi+1.

Figure 29.: Straight line path following using the NLGL algorithm.

The lateral acceleration u is generated according to the direction of the reference
point, it is relative to the vehicle velocity [30], and it is determined as:

u = 2
V2a
L
sin(η)

The direction of the acceleration will align the air vehicle velocity with the direction
of the segment ps; furthermore, if the UAV is far from the path, the algorithm tend
to rotate the velocity direction so as to approach the path at a large angle. This guid-
ance law, when following a straight line path, can be linearised and approximated

3.4 path following 45

to a Proportional Derivative (PD) controller8, where Va works as the proportional
gain, and L as the derivative gain; the ratio L/Va is the time constant.
The value of the parameter L is chosen constant, with the assumption that it will
always intersect the path: if this does not happen the algorithm will have a cross-
track error grater than L, therefore producing no VTP and giving θ = π/2. This
will the vehicle move in the orthogonal direction toward the path, not providing the
desired heading command. It is possible otherwise to slightly modify the algorithm
by adding a for cycle that increases the value of L by a fixed quantity, until it is large
enough to return two valid points s and s ′. The value of L nonetheless must not
be too big: in this case the circle L will always intersect the line, and the VTP will
always exist, but it might take a much longer time to converge.
Stability is assured in [30] by a Lyapunov function when the trajectory is circular,
and can be extended to the straight line case when the radius approaches infinity.

Algorithm 3 Function nlgl.m pseudocode.

1: Input: Wi = (xi,yi), Wi+1 = (xi+1,yi+1), p = (x,y), L, Va
2: Output: u
3: Draw a circle of radius L centred in p
4: Determine s = (xt,yt) as intersection between circumference and segment wi −
Wi+1

5: ψ = atan2(yt − y, xt − x)
6: η = θ−ψ

7: u = max_limit(2 V2a sin(η)/L)

Simulations for the algorithm are reported in Figure 30, with a vehicle velocity of
Va = 20m/s. In Figure 30a are presented the results obtained by changing the initial
heading angle, and keeping a fixed parameter L = 100. In Figure 30b instead we
used the same initial heading angle ψ = 0 and changed the value of the parameter
L, i.e. the radius of the circumference that defines the VTP: when this radius is
too small, the VTP does not exist, therefore the final trajectory is not optimal, as
mentioned before; on the other hand, high values of L always provide the VTP but
takes a much longer time to approach the path.

8 Assuming small angles and straight line path one can derive the formula

u = 2
V2a
L
sin(η) ≈ 2

Va

L

(
ḋ+

Va

L
d

)

46 plane control task

(a) Fixed L = 100. (b) Fixed initial heading angle ψ = 0.

Figure 30.: Simulation for the Non Linear Guidance Law algorithm.

4 I M A G E P R O C E S S I N G TA S K

4.1 image’s complexity

One of the goal of this project is to adapt the velocity of the air vehicle to the under-
lying environment, making it fly faster when the area is considered not important
or not interesting. It is therefore necessary to establish some features and peculiar-
ities that makes an image have a certain degree of interestingness, i.e. to decide the
quantity of information that every image is associated with. With regards to satel-
lite imagery, a particular photo can be considered relevant when it includes a large
number of buildings and streets, i.e. when the UAV is flying over a urban con-
glomerate. On the contrary, a rural area without constructions can be considered
less important for the goal and thus requires a smaller amount of image processing.
From now on, we will refer to this concept as complexity1 of an image: the higher
the complexity, the more interesting the area (e.g. city centres), and the more time
it takes to be processed. This means that once the complexity has been evaluated,
the system uses that value to generate image-based velocity references to the flight
control. An example of three images with high, medium and low complexity can be
found in Figure 31.

Google, c©DigitalGlobe

(a) High complexity.

Google, c©DigitalGlobe

(b) Medium complexity.

Google, c©DigitalGlobe

(c) Low complexity.

Figure 31.: Example of images with different levels of interestingness.

It is obviously possible to change the meaning of complexity depending on the pur-
pose of the mission: for example, if the main goal is to find oil pipelines, an image
can be considered more complex when it detects a high presence of such pipelines;
if the air vehicle is looking for a particular target, the underlying area is evaluated
as more important if something in it resembles that target, thus requiring more in-

1 Formally, in literature, complexity has the meaning of “how much attention is required to detect and
recognize objects by a person, and to set relations among them” [31].

47

48 image processing task

vestigation. In many cases the idea of image complexity is rather used to determine
compression levels or bandwidth allocation, and to determine similarities among
images.
There are many approaches that one can follow when it comes to decide whether an
image can be classified as important or not: fuzzy logic [32], gray level co-occurrence
matrix analysis [33], neural network [34]. We tried two methods in this project: the
first one involves a classifier able to distinguish whether an image has high, medium
or low complexity, by using a training set of already categorized images; the second
one assigns to each image a value from 0 to 1 (0 being that image not complex at all),
using a set of descriptors that can expound different features. The former technique
proved not to be very efficient, and is illustrated thoroughly in Appendix A, while
the latter turned out much more effective and is discussed in Section 4.1.1.

4.1.1 Use of binary descriptors

This technique is inspired by the Independent Component Analysis (ICA) developed
by Perkiö et al. [35], and it consists on associating to every image a number from
0 to 1, where 0 means that the image has the lower complexity possible, and 1

represents the highest degree of complexity. From this point on, the letter c will
be used to indicate the complexity of the image. Such value will be computed as
the mathematical mean of different parameters that can be associated to each image.
The descriptors that has been used are all binary, which means they are based on the
grayscale version of the image, and do not take into account features connected to
the color levels.

Entropy

It is a scalar value representing a statistical measure of randomness that can be used
to characterize the texture of the input image. It was introduced in Shannon’s infor-
mation theory to measure the amount of information in a set of symbols or in an
image. Images with low entropy have very little contrast, and large runs of pixels
with the same or similar value; an image that is perfectly flat will have an entropy
equal to zero. This measure is often used in compression algorithms, because it is a
good description of the amount of information that can be coded. This measure is
defined as:

E = −
∑
i

Pi log2Pi

where Pi is the probability that the difference between two adjacent pixels is equal
to i. It can also be seen as the histogram count of the corresponding intensity image
[36].
To decide whether this feature is a good descriptor, we applied it to three sets of
images just like the ones in Figure 31, i.e. classifying a-priori some images through

4.1 image’s complexity 49

a simple decision made by a human operator. What is expected is to find that all the
images belonging to a data set, or at least most of them, will have a similar value of
this descriptor. The result of this operation can be observed in Figure 32: the value
of the entropy is indeed sufficiently different for the three categories, and only some
images fall into an area where images belonging to another categories lie.

Figure 32.: Value of entropy for three sets of images with different degrees of complexity.

We computed eventually a trimmed mean, i.e. we excluded 10% of the outliers
from the computation, leaving out the highest and lowest k data values, where
k = 0.5 n

p

100
, with n number of images and p the percentage (in this case p = 10).

We also computed a normalized mean, where the minimum and maximum value
for the normalization are found observing the image: in the case of entropy, for
example, we used m = 5 and M = 7.5, and we obtained a range of values equal to
M−n = 2.5 2. The results can be seen in Table 1.

Table 1.: Average value of entropy for three sets of images with different complexity.

High Medium Low

Real Value 7.0978 6.8676 6.3765
Normalized Value 0.8391 0.7471 0.5506

2 In case of an image with higher entropy than the value M, to avoid having normalized values higher
than 1, we cast its value to M. We use the same procedure in case of a value of entropy lower than m,
casting it to m.

50 image processing task

SURF

We have already discussed briefly in Appendix A the SURF algorithm, used to detect
key-points in an image. Theoretically, an image with low complexity is supposed
to have a small number of interesting points, while an image with high complexity
should have a bigger number of key-points. We can see from Figure 33 that this
behaviour is generally respected, as the number of interesting points associated to
each image usually lies within a band with images of the same category.

Figure 33.: Number of SURF features for three sets of images with different degrees of
complexity.

We can also observe the same behaviour in Table 2, where we can see that the
trimmed mean (without 10% of the outliers) of the three categories are well dis-
tanced, and thus provide a good measurement for the complexity.

Table 2.: Average number of SURF features for three sets of images with different complex-
ity.

High Medium Low

Real Value 113.9778 62.1778 9.4889
Normalized Value 0.6332 0.3454 0.0527

MSER

The Maximally Stable Extremal Regions (MSER) is a feature detector algorithm that
extract from an image a number of co-variant regions caller MSERs. This technique

4.1 image’s complexity 51

was proposed by Matas et al. [38] to find correspondences between elements from
two images with different viewpoints. This algorithm is based on the idea of taking
regions which stay nearly the same through a wide range of thresholds. The word
extremal in the name of the technique refers to the property that all pixels inside a
region have either higher or lower intensity than all the pixels on its outer boundary
[39]. Also in this case, we will expect that a figure with low complexity should
have a smaller number of regions detected, with respect to an image with higher
complexity, because it does not contain many change in intensity levels. We can see
from Figure 34 that this behaviour is respected.

Figure 34.: Number of MSER features for three sets of images with different degrees of
complexity.

It is also possible to confirm that the number of MSER’s regions is a good de-
scriptor of the complexity of an image by observing the trimmed mean for the three
categories in Table 3.

Table 3.: Average number of MSER features for three sets of images with different complex-
ity.

High Medium Low

Real Value 128.2222 79.2000 19.7778
Normalized Value 0.7123 0.4400 0.1099

52 image processing task

FAST

FAST (Features from Accelerated Segment Test) algorithm was proposed by Rosten and
Drummond in 2006 [40], and it is a corner detection algorithm widely used in real-
time application for its velocity. FAST corner detector uses a circle of 16 pixels to
classify whether a candidate point p is actually a corner. If a set of N contiguous
pixels in the circle are all brighter than the intensity of candidate pixel p (plus a
threshold value t), or all darker than its intensity (minus a threshold value t), then
p is classified as corner. We can observe from Figure 35 that the algorithm works
well with images with low interest, having a smaller number of corners detected,
while it has some difficulties distinguishing between medium and high complexity
images. Anyhow the performances are quite good, and the distance between the
mean in each category is high enough, as one can see from Table 4.

Figure 35.: Number of FAST features for three sets of images with different degrees of
complexity.

Table 4.: Average number of FAST features for three sets of images with different complex-
ity.

High Medium Low

Real Value 127.3556 72.9556 7.1778
Normalized Value 0.6368 0.3648 0.0359

4.1 image’s complexity 53

BRISK

BRISK, Binary Robust Invariant Scalable Keypoints, is an algorithm for the detection
of key-point in an image, like the SURF algorithm, theorized by Leutenegger et al.
[41]. It is the fastest algorithm for the detection of interest points, while maintaining
a high quality description for them. Using this algorithm leads to good results, as
one can see from Figure 36 and Table 4: the higher the degree of complexity in an
image, the greater the number of key-points found by BRISK.

Figure 36.: Number of BRISK features for three sets of images with different degrees of
complexity.

Table 5.: Average number of BRISK features for three sets of images with different complex-
ity.

High Medium Low

Real Value 78.6667 47.2000 5.1556
Normalized Value 0.5619 0.3371 0.0368

After normalizing all the previous five parameters, so that their values fall be-
tween 0 and 1, we computed their mean, and called the resulting number complexity
of the image, as already mentioned at the beginning of this Section.

c =
E+NSURF +NMSER +NFAST +NBRISK

5

We eventually obtained the results in Figure 37, where it is easy to see that the three

54 image processing task

classes under consideration are well distributed, and almost each one of them falls
into the correct band of values.

Figure 37.: Average value of all the features for three sets of images with different degrees
of complexity.

We can observe the same results in Table 6: the three trimmed mean are well
distanced, allowing us to consider this method a good way to measure the interest-
ingness, or complexity, of an image.

Table 6.: Average value of all the features for three sets of images with different complexity.

High Medium Low

Normalized Value 0.6784 0.4481 0.1604

Indeed, if we apply this to a brand new image, representing the current view of
the UAV of the underlying terrain, we can attach to that image a number from 0 to
1 representing its interestingness, and use this value to adjust some of its character-
istic, e.g. the plane velocity or its sampling frequency.

A final adjustment needs to be made: so far in the description of how to manage
the ideal complexity of the image, the execution time has never been taken into
account. Because of the limited amount of computational resources that an on-
board CPU has, this algorithm needs to be quite fast and simple. All of the features
analysed up until now fulfil these requirements, except for the MSER. By using the
useful run and time tool made available by the MATLABr software, we were able
to measure the execution time of each operation in the program, and to find out

4.1 image’s complexity 55

that the MSER algorithm itself contributed for more than 50% the total time of the
complexity function. For this reason it has been left out from the final writing of the
function, which produces anyway an optimal output.

Others binary descriptors

The field of Computer Vision is very wide, and make a lot of algorithms to detect
relevant features available. To compute the images complexity we only applied five
of them, because they are the ones that guarantee the higher performances, in terms
of computational time and relevance of the results. For example, we could have
used Harris Detector for the detection of relevant corners instead of FAST algorithm,
but its results are not satisfactory: it takes more time and, as we can see clearly
from Figure 38, it does not discriminate properly between images with growing
complexity. A great number of pictures belonging to the “Low Interest” class are
indeed associated with a high value of complexity, i.e. a high number of corners are
identified (this is probably due to some pattern or particular texture present in the
terrain).

Figure 38.: Number of corners for three sets of images with different degrees of complexity.

From Table 7 we can observe the same behaviour: images belonging to a “Low
Interest” class have a trimmed mean greater than the ones belonging to a “Medium
Interest” class, which is not the desired conduct from our algorithm.

56 image processing task

Table 7.: Average number of corners for three sets of images with different complexity.

High Medium Low

Real Value 107.5556 63.4667 74.5333
Normalized Value 0.5378 0.3173 0.3661

4.2 image processing algorithm

The image processing task can have multiple applications, e.g. looking for specific
patterns in the territory, tracking some targets, research for damages in power lines,
hunt for differences from previous maps of the same place. All these missions are
applicable to this project, because they need more time and resources to analyse
points with high complexity.

4.2.1 Learning function

To generalize the concept expressed in the beginning of Section 4.2, instead of fo-
cusing on a specific application, a learning function L is used [42]. It receive as input
the image I(t) that it has to examine, its complexity c(t) and the computational re-
sources ζI that it can use. With this informations it will update a search map, which is
the representation of the environment. This function will take values in the interval
[0, 1], i.e. l(p, c, ζI) = z 3, where l(·) = 0 means that the terrain we are flying over is
completely unknown, on the contrary if l(·) = 1 it means that it is completely known
and we have all the possible informations about that point. The map l(p, c, ζI) is
defined as l : χ× [0, 1]× [0, 100]→ [0, 1], and it is updated on-line based on the value
of c and ζI, that work as weights for the learning function. As the air vehicle moves
around in the region, it gathers new informations about the environment, which is
incorporated in its search map. In general, this map serves as a storage place of
the knowledge that the vehicle has about the region. The use of this method allows
some advantages, for example it can be dynamically adjusted with a forgetting fac-
tor to incorporate changing environments (in case of targets moving around). The
search map is represented by a matrix L associated with the image: to each pixel p
of the image corresponds an entry in the matrix L, associated to that pixel’s value
of the learning function, that can be seen as an updating rule for that matrix.
As mentioned before, the function is influenced by the complexity and the com-
putational resources: the former contributes in a decreasing manner, i.e. the more

3 p = (x,y) is a point in the search map χ, i.e. the complete map of the region defined in Section 3.2,
c is the complexity of the image currently representing the FOV of the plane and ζI is the resources
available for the image processing task as computed by the scheduling algorithm, and it will be
defined in the next Chapter 5. The output z ∈ [0, 1] corresponds to the certainty about knowing the
environment at the coordinate.

4.2 image processing algorithm 57

complex the image, the more difficult it is to “learn” its features, while the latter
contributes in an increasing way, i.e. the more resources are available, the more op-
erations can be performed, hence making the exploration easier. For example, it is
possible to use two exponential to represent the two contributes:

l(p, c, ζI) = L(p) + lup,1(c) + lup2(ζI) = L(p) +αe
βc + γeδζI

where p is the pixel being examined in that moment, L(p) is the value of the

(a) Function lup,1(c). (b) Function lup,2(ζI).

Figure 39.: Contributions of image complexity and available resources.

matrix L corresponding to that pixel and α,β,γ and δ are, respectively, magnitude
coefficients and decay rates of the two functions lup,1 and lup,2. Of course, if the
value of l(p, c, ζI) is already equal to 1, it cannot grow any more and it must remain
fixed. In Figure 39 it is possible to see two examples of how the two contributions
lup,1(c) and lup,2(ζI) can be implemented, in particular the functions chosen are:

lup,1(c) = 0.3 e−5 c(t) + 0.1

lup,2(ζI) = 0.005 e5 ζI(t) + 0.1
(12)

A practical example of how the function l(·) works is here presented, using a matrix
L of dimension 5× 5 representing the whole map, and one of its sub-matrix of di-
mension 2× 2 representing the plane’s field of view, highlighted in blue. It is possible
to observe that, when the complexity is low or the available resources are high, the
learning function assumes a higher value, thus indicating that in those conditions
the knowledge of the specific region is increasing faster. Another observation that
can be made is the following: when the complexity of the image is high, the learn-
ing mechanism requires more time to have a complete knowledge of the area, but
that is also the case when the speed of the air vehicle is the slowest, and the time
between two consecutive images is the smallest. This means that two consecutive
pictures are not very different from one another, because the plane movement was
small, so with high probability the same pixel can be analysed more than one time,

58 image processing task

causing also in this case the increasing of the informations gathered about that area.
In the example, the fact that, when the complexity is high, the matrix representing
the Field of View of the plane is not moving, expresses this behaviour.

L(t) =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


c = 0.5, ζI = 50⇒ lup = 0.29

L(t+ 1) =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.29 0.29 0 0 0

0.29 0.29 0 0 0


c = 0.3, ζI = 40⇒ lup = 0.31

L(t+ 2) =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.29 0.59 0.31 0 0

0.29 0.59 0.31 0 0


c = 0.6, ζI = 54⇒ lup = 0.29

L(t+ 3) =


0 0 0 0 0

0 0 0 0 0

0 0 0.29 0.29 0

0.29 0.59 0.59 0.29 0

0.29 0.59 0.30 0 0


c = 0.9, ζI = 55⇒ lup = 0.28

L(t+ 4) =


0 0 0 0 0

0 0 0.28 0.28 0

0 0 0.57 0.57 0

0.29 0.59 0.59 0.29 0

0.29 0.59 0.30 0 0


c = 0.8, ζI = 58⇒ lup = 0.30

L(t+ 5) =


0 0 0 0 0

0 0 0.58 0.58 0

0 0 0.87 0.87 0

0.29 0.59 0.52 0.29 0

0.29 0.59 0.30 0 0



It is of course possible to integrate the environment matrix into the path planning
process. When the algorithm detects the lines in each FOV image, one could base
the decision not only on the longest one, but also on the one traversing the regions
that are most unknown, i.e. with the greatest density of zeros in the matrix L. In the
same way, instead of exploring new areas, one can also choose to give the priority
to places that are almost completely known (i.e. with a value ≈ 1), by ensuring their
complete investigation, and only then move to other regions.

5 C P U S C H E D U L I N G F O R T W O S H A R E D
TA S K S

5.1 theoretical development for two generic tasks

When different tasks need to be executed during the same period, the CPU time
constitutes a shared resource for the tasks to compete for: this is why is necessary
to schedule its usage [11]. The goal is to assign variable sampling periods to every
single task such that the overall performance of the system is optimized, subject to
the schedulability constraints1.

Let’s consider n different tasks κ1, . . . , κn that have to be executed simultaneously
and to share the same CPU. Let’s also assume that each one of this tasks is robust to
the change of its sampling period, i.e. it will maintain its stability; this assumption
is proved to be true for a large amount of control tasks. It is clear that the sampling
rate, however, cannot assume every value in R, but needs to be constrained between
a lower and an upper bound, for the reasons explained in Section 2.2: this means
that the sampling period Ti in task κi can assume values that lays in Ti,min 6 Ti 6

Ti,max (or, equally, one can say that the sampling frequency fi = 1/Ti has to be in
the range [fi,max, fi,min]). The chosen time period will affect the CPU resources
needed, specified by the letter ζi, that can assume values between 0 and 100 [%]. It
is assumed that the available computing resources can be divided in the exact way
[11].
We theorized two different approaches to follow in such a situation: prioritize the
tasks or letting them have the same importance.

5.1.1 Tasks with different priorities

Let’s assume that two task κ1 and κ2 have to be executed at the same time in a
system with a unique processing unit. Without loss of generality, let’s also assume
that κ1 has a higher priority than κ2, i.e. the success of the former task is more
important than the performance of latter. This means that, as long as κ1 performs
as it is expected, κ2 could either be executed at the very least of its possibility or
miss its deadline, based on what was a priori decided. In this case the sampling
periods will be chosen following the block diagram in Figure 40.
All the functions that will be used from this point will be assumed continuous and
invertible.

1 The effect of control delay and jitter are here neglected.

59

60 cpu scheduling for two shared tasks

Figure 40.: Block diagram of a task scheduler with two tasks with different priorities.

As one can observe, only the first task will compute its sampling rate based on
the system input, through the function f11(u(t)). It will be able to use as much com-
putational resources as it needs to have exactly the performance requested by the
input at time t, without taking into account the necessity of task κ2. Using a second
function f12(T1) it is then possible to obtain the CPU level of utilization for that first
job ζ1. It is important to specify that, while f11(·) does not have any a priori restric-
tion and can assume any form based on the input u(t), function f12(·) will always be
monotonic and strictly increasing: the more the sampling frequency increases (or the
period decreases), the more workload the processing unit will need to sustain. Once
the value of ζ1 is known, it is possible to use the task scheduler to obtain the portion
of CPU ζ2 that the task with lower priority can use. This computation is performed
by a function g(·) that takes into account the computational resources still available
and decides how much of them can be used to execute the task κ2. Once the value
of ζ2 is known, it is possible to obtain the sampling period T2 using the function
f−12 (ζ2). The inverse function is here used in accordance to the previous notation: in
general, we will use a direct function f(·) that has as output the CPU portion used
for the task, while the inverse function f−1(·) will have instead the computational
resources as input and the sampling period as output.
It is important to focus the attention on the the function g(·), that works as the ac-
tual scheduler for the tasks. This map can assume many forms, based on an a priori
decision on the total resources utilization ζTOT that needs to be achieved.
For example, it may be desirable to always use all the available CPU for the two
tasks: in this case it is simply:

ζ2 = g(ζ1) = ζTOT − ζ1

i.e. all the remaining resources will be allocated for κ2, that in this way can achieve
performances even superior to what the system needs. This solution can be used
when the optimal behaviour of the system is the main purpose, and we do not need
to care about issues like battery consumption.
A second approach, on the contrary, is used when constraints on energy consump-
tion needs to be taken into account, i.e. there is the need to use the least possible
amount of resources. In this case then the function g(·) that works as task scheduler
depends not only on the available CPU ζTOT − ζ1, but also on some other factor, for
example the remaining energy e(t) or the same input u(t) used previously to decide
the value of T1. Furthermore, this method is robust to the presence of noise w(t):
if a corruption occurs during the computation of ζ1 or ζ2 and their value assumes

5.1 theoretical development for two generic tasks 61

higher numbers, the first method could allocate resources ζ1 + ζ2 > ζTOT , leading
to unpredictable consequences and irregular behaviour of the overall system. On
the other hand the second method will have ζ1 + ζ2 6 ζTOT , thus having idle re-
sources that can be used in this critical situation.
Neither of the previous approaches take into account that the function f12(T1) could
allocate by itself all the available computational resources for the first task. κ2, hav-
ing lower priority, could certainly withstand some missed deadline if this situation
would only occur a few times, but it is possible to avoid this unsafe circumstance
at all. In fact, since the sampling periods that the tasks can assume are constrained
between a lower and an upper bound, so is the CPU portion that the task will use:

ζ1,min 6 ζ1 6 ζ1,max ζ2,min 6 ζ2 6 ζ2,max

The ideal situation occurs when ζ1,max + ζ2,min 6 ζTOT , because in this case the
above circumstance of not having enough resources for both tasks can never turn
out. In every other situation, a simple solution consists in lowering the value of
ζ1,max, and thus of T1,min, to

ζ
′
1,max = ζTOT − ζ2,min ⇒ T1,min = f−112 (ζ

′
1,max)

This will lead to a slightly degraded performance of the first task, but it will help
to maintain the overall stability of the system by always providing at least the basic
functionality of the second task.
It is clear that, from the beginning of Section 5.1.1, the situations where ζi,max >
ζTOT , i = 1, 2, or ζ1,min + ζ2,min > ζTOT has never been referred to, because these
are cases where neither task is schedulable, so the general scheduling problem has
no solution. The only way to proceed in this case is to cancel some secondary job or
to use a more powerful CPU, so that ζTOT can assume a bigger value.

5.1.2 Tasks with no priorities

The situation where no task has higher importance than any other is now explored;
in this case the decision on their sampling time is taken simultaneously and not
sequentially as in Section 5.1.1. The first part of the procedure does not differ from
the previous case: from an input u(t) the value of T1 is calculated using f11(u),
then we will obtain ζ1 = f12(T1). Now, instead of determining ζ2 based on the
remaining resources, its value will be decided independently from the other task.
Using the same input u(t), or a different one v(t), the value of T2 and ζ2 will be
computed simultaneously to the first job: T2 = f21(v) and ζ2 = f22(T2). In this way
the obtained results will be the same as if the data for the second task had been
computed first, exploiting the fact that neither of them has priority over the other.
This procedure can be observed in the first part of the scheme in Figure 41.

62 cpu scheduling for two shared tasks

Figure 41.: Block diagram of a task scheduler with two tasks with no priorities.

In the second part of the process the quantity ζreq = ζ1 + ζ2 is first computed,
which expresses the total CPU demand for the correct execution of both tasks, i.e.
the requested CPU resources. If the obtained result shows that ζreq 6 ζTOT , we
do not need to perform any additional steps on the algorithm, since the situation
is already optimal. On the contrary, if the requested resources exceed the total
available CPU it is necessary to reallocate part of them through the task scheduler,
described by the function g(ζ1, ζ2), that gives as a result the new values ζnew1 and
ζnew2 . 

if ζreq 6 ζTOT → ζnew1 = ζ1

ζnew2 = ζ2,

if ζreq > ζTOT →

ζnew1

ζnew2

 = g

ζ1
ζ2

 .

When the second situation occurs, we need to reduce the portions of CPU for each
task: this will allow, in the end, to obtain ζnew1 + ζnew2 6 ζTOT . It is clear that each
task can be slowed down as long as it does not reach one of its lower constraints, i.e.
ζ1,min and ζ2,min.
There are many ways to perform such an operation, with some algorithms already
present in the literature, e.g. [12], [3], [16]. In this project, we propose and alter-
native, simpler and easier approach: first, we compute how much the two tasks
together exceeds the total available resources: ζex = ζreq − ζTOT ; after that, it is
possible to split this excess of resources among the two tasks in two ways:

1. Split it evenly among the tasks:ζnew1 = ζ1 − 0.5ζex = ζ1 − 0.5(ζ1 + ζ2 − ζTOT) = 0.5ζ1 − 0.5ζ2 + 0.5ζTOT

ζnew2 = ζ2 − 0.5ζex = ζ2 − 0.5(ζ1 + ζ2 − ζTOT) = 0.5ζ2 − 0.5ζ1 + 0.5ζTOT

or, in matrix form:[
ζnew1

ζnew2

]
=

[
0.5 −0.5
−0.5 0.5

][
ζ1

ζ2

]
+ 0.5ζTOT

5.1 theoretical development for two generic tasks 63

2. Split it proportionally among the tasks: when the two jobs require portions of
CPU that are very disproportionate, splitting the exceeding demands equally
is not the optimal solution, because the performance of the one with the lower
ζ will be degraded very heavily, while the other will suffer almost negligible
consequences. In this case it will be better to degrade the tasks proportionally
in the following way:ζnew1 = ζ1 ζTOT

ζreq

ζnew2 = ζ2 ζTOT
ζreq

= ζTOT − ζ
new
1

To write it in matrix form as in the previous case, it is first required to compute
the two quantities a and b, which specify how to allocate ζex :

a =
ζ1
ζreq

, b =
ζ2
ζreq

= 1− a

So it is possible to write:ζnew1 = ζ1 − a ζex

ζnew2 = ζ2 − b ζex = ζ2 − (1− a) ζex[
ζnew1

ζnew2

]
=

[
1− a −a

−b 1− b

][
ζ1

ζ2

]
+

[
a

b

]
ζTOT =

[
1− a −a

a− 1 a

][
ζ1

ζ2

]
+

[
a

1− a

]
ζTOT

Once the new values for the CPU shares are obtained, using the method that better
suits the situation, it is required to go back and change the previous values on the
sampling periods. This can be easily done by inverting the functions f12(·) and
f22(·) thus obtaining:

Tnew1 = f−112 (ζ
new
1) , Tnew2 = f−122 (ζ

new
2)

A better and more detailed scheme of this procedure is the one of Figure 42.

Figure 42.: Block diagram of a task scheduler with two tasks with no priorities.

64 cpu scheduling for two shared tasks

Available computational resources varying with time

We always assumed the parameter ζTOT to be constant in time, and we kept it fixed
once its value was decided. There are some cases in which the available CPU for
the execution of the tasks changes over time. This can happen, for example, for the
presence of noise and other disturbances, or for some malfunctions in the processing
unit. This will lead to to a real value of available resources ζreal(t) smaller than the
a-priori known value ζTOT . In this case a way to measure that parameter is needed
during every step of the algorithm, to make the task scheduler even more robust to
dangerous situations.Ideal scenario → ζreal(t) = ζTOT = constant,

Realistic scenario → ζreal(t) 6 ζTOT .

In this way, every time the algorithm will be executed, a new and correct value of
ζTOT will be used, guaranteeing the correct operation of the overall system.

5.2 application to real-case scenario

The real-case scenario of this project involves the execution of two tasks: the plane
control and the image processing. These tasks need to be executed at the same time
and to share the same processing unit, thus we can apply the scheduling strategies
presented in Section 5.1. The first task is clearly control-related, and will have as
output its sampling period TP(t), while the latter involves data processing, specif-
ically the execution of the learning function l(·) introduced in Section 4.2.1 on the
images sequentially captured by the camera mounted on the air vehicle. The output
will be τ(t), which is the time that has to pass between one picture and the next
one captured by the camera. This variable is closely related to the execution time of
such algorithm, but they are not equivalent: each time-slot τ indeed is the sum of
the execution time of both tasks. This means that during the period of time τ(t) the
plane dynamics will be controlled at sampling rate TP(t), and that the remaining
computational resources can be used to increase the portion of “known” environ-
ment, thanks to the update of the learning function. A schematic version of how
this works, time-wise, is presented in Figure 43, where it is specified that the first ε
seconds in every time slot τ(t) are used for the actual processing of the scheduling
algorithm; we can assume ε << τ in general, so from now on we will neglect it.
This approach can be considered as both an event-triggered and a self-triggered control,
as described in Section 2.3. The choice of the sampling period for the plane control
TP(t) is made in a self-triggered fashion, because its value is computed based on
the knowledge of the system and its state, which is in this case described by the
complexity of the image at time t, c(I(t)). The length of the time period τ(t) also
depends on the value of that state descriptor, the image complexity. Both of them

5.2 application to real-case scenario 65

Figure 43.: Every τ seconds the scheduling algorithm computes the new values of TP(t) and
the next τ(t).

are however updated when a certain event occurs, which is the expiration of time
τ(t), resembling an event-based control.
The input of the overall process is the complexity c(I(t)) of the current image I(t),
introduced in Section 4.1: its value will determine the speed of the air vehicle v(t),
thus its sampling time TP(t), and the time between two consecutive pictures τ(t).

It is clear that we are working with variable sampling time: the instants of time
t− 1, t, t+ 1 and so on, are not equidistant: indeed, we have that:

t = (t− 1) + τ(t− 1) → t+ 1 = t+ τ(t)

So the general rule to compute the time instant ti that we are analysing at a certain
moment is:

ti = ti−1 + τ(ti−1) = t0 +

i−1∑
k=0

τ(tk) i = 1, . . .

5.2.1 Plane control with priority over image processing

First, the method already presented in Section 5.1.1, where the tasks can be orga-
nized by their priority, is developed. In this case, we assume that the task with
higher priority is the plane control one, thus the appropriate choice for its sampling
time is considered more important than the correct analysis of the current terrain
picture. The overall process is presented in Figure 44.

Figure 44.: Evolution of the algorithm when plane control has priority over image process-
ing.

The first part of the algorithm involves the plane control, and its characterizing func-

66 cpu scheduling for two shared tasks

tion fP(·) can be summarized as the composition of the three internal function; the
image processing task is in the same way characterized by the function fI(·). The
main difference from the previous theoretical development is that this second task is
not control-related, hence its output will not be its sampling period, but the time pe-
riod τ. All the functions involved in the algorithm are then the ones in the following
Equation 13:

ζP(t) = (fP3 ◦ fP2 ◦ fP1) (c(t))

= fP(c(t))

ζI(t) = g(ζP(t))

τ(t) = fI(ζI(t))

(13)

The input of the overall system, as mentioned before, is the complexity c(t) of the
current image I(t): this can assume values from 0 to 1. When the complexity is low,
the image is classified as not interesting, hence the plane can fly at high speed; on
the contrary, when the complexity is high the image and the terrain the air vehicle
is flying over are considered important, so the speed will be lower2. This relation
is exploited through the function fP1(c(t)), that will be monotonic and decreasing:
simulations have been made considering it a linear, quadratic or cubic dependency
on c(t); the actual form of this function will be apt to every mission’s requirement.
An example of how this map can be written is presented in Equation 14, with linear
dependency:

v(t) = fP1(c(t)) = vmin +∆v(1− c(t)), ∆v = vmax − vmin,

0 6 c(t) 6 1
(14)

As it is possible to see from Figure 45, we assumed the velocity of the air vehicle
constrained between 15 6 v(t) 6 30 [m/s]: the speed is maximum when the com-
plexity is minimum, on the contrary with maximum complexity we have the slowest
velocity.

To connect the velocity of the vehicle to its control sampling periods TP(t)3 the
function fP2(v(t)) is used. This map can assume numerous forms, but some basic
hypothesis can be made: when the air vehicle flies at a medium speed, which means
it is assuming its ideal cruise mode, it does not need a high control effort, because
it is already in stable condition; in this case the sampling period can be maximized.
On the other hand, more control is needed in situations in which stability is more
difficult to maintain, i.e. in both the extremities of the allowed velocity range. In
these two points the sampling period needs to be as small as possible, to provide

2 As explained in Section 3.1.1 the plane velocity is constrained between two bounds because of its
dynamics, so we will have vmin 6 v 6 vmax.

3 A complete notation for this variable would be TP(v(t)) = TP(v(c(t))). To avoid this complex and
hardly legible notation, we maintained only the dependency on time.

5.2 application to real-case scenario 67

(a) Function block. (b) Simulation results.

Figure 45.: Examples on how to obtain the UAV’s velocity from the image complexity.

robustness. The conclusion is that the function fP2(v(t)) will have two minima at the
extremes of its domain, and a maximum in the middle of its domain, as represented
in Figure 46.

(a) Function block. (b) Simulation results.

Figure 46.: Example on how to obtain the plane’s sampling period from its complexity.

Here we assumed that the plane control sampling period could assume values in
the range 0.001 6 TP(t) 6 0.1 [s]. The equation used in Figure 46 is the one of a
parabola with vertex in (vmiddle, TP,max) = (22.5[m/s], 0.1[s]), passing through the
points (vmin, TP,max) = (15[m/s], 0.001[s]) and (vmax, TP,max) = (30[m/s], 0.001[s]),
that will also be the extremities of its domain. In general, the equation of a parabola
is y = ax2 + bx+ c and, by substituting the values listed before, one can obtain the
three parameters a,b and c. In this specific case we obtained:

TP(t) = fP2(v(t)) = −0.0018 v2(t) + 0.0792 v(t) − 0.7910

68 cpu scheduling for two shared tasks

It is clear that using this specific function will use the lowest values of TP only if
the speed is very high or very slow: another possible solution consists in using a
Gaussian function, with its characteristic bell shape, that will allow to use the smaller
values of TP more often. It is necessary to remark that nevertheless an optimal solu-
tion does not exist, because everything depends on the needs of each mission.

The third function characterizing the plane control task is fP3(TP(t)), which estab-
lishes the relationship between the sampling period and the computation resources
ζP(t) that need to be reserved for it. In this case too the function will be monotonic
and decreasing: its maximum value is reached when the sampling period is the small-
est, while the minimum will correspond to a larger TP. An example for this map is
the following, showing linear dependency:

ζP(t) = fP3(TP(t)) = ζP,min +∆ζP(1− T
′
P(t)), ∆ζP = ζP,max − ζP,min

To use the previous equation the data TP needs to be normalized in the range 0÷ 1,
producing T

′
P. We assume to know also the values of the minimum and maximum

CPU requested, ζP,min and ζP,max respectively; their values have here been fixed
to 30 and 70 [%] 4. A graphical representation of how the function can be chosen is
presented in Figure 47.

(a) Function block. (b) Simulation results.

Figure 47.: Example on how to obtain the necessary computational resources for the plane
control from its sampling period.

It is possible to see in Figure 48 the complete function fP(c(t)) for the plane control
task and observe how the final variable ζP changes as the input c(t) grows.
If a linear function is used in fP1 and fP3 the minimum usage of CPU for this first
task will be found when the image has medium complexity, because the vehicle
would be travelling at its ideal cruise velocity, thus it will require minimum control

4 Clearly the value of ζP,max 6 ζTOT , otherwise the overall scheduling problem will have no meaning.

5.2 application to real-case scenario 69

Figure 48.: Complete function fP(c(t)) for the plane control.

effort; for the opposite reason, the CPU usage will be found at the extremes of the
complexity range. When a cubic or a quadratic function is used we can see that
the minimum utilization is reached on a different position, nearer to small values of
the complexity: this happens because these functions are convex. On the contrary, if
concave functions are used, the minimum will be near higher values of complexity.

Once the value of ζP is known, the task scheduling function g(ζP) can be used
to determine the computational resources that the image processing task can utilize.
In this case also the map will be monotonic and strictly decreasing. We can decide to
use all the available CPU to complete this second task, in which case the scheduling
function will simply be:

ζI(t) = g(ζP(t)) = ζTOT − ζP (15)

or it can assume other forms, in which case the condition ζP + ζI 6 ζTOT always
needs to be checked. Another simple function that can be used exploit a linear
dependency between the two variables:

ζI(t) = g(ζP(t)) = ζI,min +∆ζI(1− ζ
′
P(t)), ∆ζI = ζI,max − ζI,min

where ζ
′
P is the value of ζP normalized between 0÷ 1. For all the following simula-

tion it has been assumed ζI,min = 30 and ζI,max = 70, so that ζP(t) + ζI(t) = ζTOT
in all time instants, thus reflecting the situations of Equation 15. In Figure 49 we
can see examples of how the task scheduling function works. If observed carefully,
it is possible to observe a double line regarding the quadratic and the cubic case:
this actually exist also for the linear case, but it not visible because the two lines are
perfectly overlying. This is due to the fact that the function fP(c(t)) is not bijective,
because not surjective.

The final step considers the achievement of the value of τ(t) through the function
fI(ζI(t)), that correlates the time that has to pass between two consecutive shots

70 cpu scheduling for two shared tasks

(a) Function block. (b) Simulation results.

Figure 49.: Example on how to obtain the computational resources for the image processing
task from the CPU portion required for the plane control.

of the camera (and thus influencing the update of the learning function l(·)) to the
remaining resources. It need to be monotonic increasing, as one can observe from
Figure 50, because the less CPU it has available, the smaller number of operations
can be performed. In this case to update in a significant way the map of the known
environment, it is necessary to have a longer τ period. We imagined the value of
τ(t) to be included in the range [0.5, 1.5] seconds.

(a) Function block. (b) Simulation results.

Figure 50.: Example on how to obtain the time period τ(t) from the remaining available
CPU.

If we plot the value of τ(t) with respect to the complexity as in Figure 51, although,
we can see how this result is not satisfying: when the image I(t) presents a low
complexity, the time τ(t) assumes its maximum value, as one can expect (since the
current terrain is not interesting, there is not need to capture a great number of

5.2 application to real-case scenario 71

photos). The same situation is however present also when the complexity is high, in
which case we would like τ to be small. Indeed, the relation between the complexity
and τ should be strictly decreasing, and this is why this approach where the plane
control task is prioritized over the image processing one is not suitable for this sce-
nario.

Figure 51.: Simulation results for the prioritized case.

We observe eventually the total consumption of CPU resources from Figure 52: us-
ing only linear function guarantees a complete use of the computation resources,
while quadratic or cubic functions will maintain part of the CPU idle, except for
some critic points. This can be useful in case some other task of secondary im-
portance needs to be performed, or if battery saving is important for the specific
mission. Of course the results of using 100% of the CPU in the linear case is ob-
tained only because of the choices for ζP and ζI range of values, that always sum
up to 100. If those values are changed, also the slope of the line representing the
total resources consumption will vary.

Figure 52.: Simulation for the total CPU used in the prioritized case.

72 cpu scheduling for two shared tasks

5.2.2 Plane control and Image Processing with equal importance

When this approach is used, the two task are not prioritized, and their correct ac-
complishment has the same importance: the partition of the CPU’s resources is con-
ducted simultaneously and independently. If, at the end of this process, the total
resources needed ζreq result higher than the actual available resources ζTOT , the al-
gorithm will proceed with their re-distribution using one of the methods presented
in Section 5.1.2. Following the same procedure, the block diagram that summarizes
the process is the one of Figure 53.

Figure 53.: Block scheme of the complete process when the tasks do not have priorities.

The algorithm computes the two values ζP(t) and ζI(t) through the functions
fP(c(t)) and fI(c(t)): they both use the same input c(t), the complexity of the image
I(t). Specifically:

• The function fP(·) that regulates the computational resources needed to per-
form an appropriate air vehicle control has the same characteristics of the one
used in Section 5.2.1:

ζP(t) = (fP3 ◦ fP2 ◦ fP1) (c(t))

= fP(c(t))

with the same properties of the inner functions already disclosed in the same
Section. The block scheme follows in Figure 54.

Figure 54.: Block scheme of the function fP(·) for the plane control.

5.2 application to real-case scenario 73

In this case the overall behaviour of function fP(·), with respect to the com-
plexity c(t), can be observed in Figure 48 on page 69.

• The image processing function fI(·) can be decomposed as in the block scheme
of Figure 55. The first inner function fI1(c(t)) uses the image complexity to

Figure 55.: Block scheme of the function fI(·) for the image processing.

determine the time τ(t) that has to pass between two consecutive photos cap-
tured by the vehicle’s camera. This map needs to be monotonic and strictly
decreasing: when an image is classified as non-interesting, i.e. c(t) is low, more
time can pass until the next image is processed; on the contrary, if an image is
considered important, i.e. its c(t) is high, the value of τ(t) needs to be small,
so that there are more possibilities to study and process the area over where
the vehicle is flying. This function can, for example, have the behaviour pre-
sented in Figure 56a.

(a) Simulation results for fI1(·). (b) Simulation results for fI2(·).

Figure 56.: Examples on how the image processing functions can be implemented.

This may seem as a contradiction: we are reserving a longer time for the al-
gorithm when it is not really needed, because when c(t) is low the learning
function l(·), that is being used to generalize an image processing application,
increases its values much faster, thus making the area easily “known”. It is
necessary to remember although that such function is also influenced by the
available resources ζI(t) in a decreasing manner, i.e. the fewer resources are re-
served in such period τ(t), the harder it is to learn about the area, because the

74 cpu scheduling for two shared tasks

operations are processed slower. Exploiting the situation, is possible to come
up with some requirements for function fI2(·), which controls how τ(t) is con-
nected to ζI(t). A longer τ(t) will allow more time to conduct the required
operations of the image processing task, thus demanding less computational
resources; a small τ(t) requires the same image processing algorithm to be ex-
ploited in a smaller amount of time, i.e. it will be more demanding. Observing
Figure 56b one can see examples of how the function can be implemented.
The overall function fP(c(t)) has therefore the following form:

ζI(t) = (fI2 ◦ fI1) (c(t))

= fI(c(t))

The CPU resources requested by the two task can be summarized in Figure 57.

Figure 57.: Computational resources used by the plane control task and by the image pro-
cessing task in relation to the complexity of the image, supposing both of them
constrained in the range [30, 70] %.

The plane control task requires the maximum use of CPU when the complexity of
the image is either very low or very high, because those are the most difficult sit-
uations to control: the air vehicle has to fly using a velocity which is at the two
extremes of its allowed range. On the contrary the image processing task uses all of
its reserved resources only when the image complexity is ' 1. It is now clear that
this will be the most critical condition, since both tasks will use all of the resources
held for them.

5.2 application to real-case scenario 75

Once the two values of ζP and ζI are known, we can compute the total CPU required
by computing their sum: if ζreq < ζTOT , the algorithm can be executed with the
current values of TP and τ; otherwise, the resources demanded by the two tasks are
too high, hence they need to be adjusted using the task scheduler function g(ζP, ζI).
From Figure 58 it is possible to see that the situation is ideal, i.e. no CPU overload

Figure 58.: Total CPU requested by the two tasks simultaneously.

occurs, when the value of complexity is lower than 0.75, assuming the use of linear
functions and ζTOT = 100%. Over this value, it is necessary to adjust ζP and ζI
using some techniques such as the ones of Section 5.1.2.
When the first procedure is used, i.e. splitting the excess of demand evenly between
the tasks, the result is the one presented in Figure 59: in particular Figure 59a shows
how the CPU is adjusted for each individual task, while Figure 59b shows that, af-
ter applying the task scheduling function g(ζP(t), ζI(t)), the condition ζreq 6 ζTOT
holds, which was the result we expected.

(a) Effect of the scheduling function for each task. (b) After the re-distribution, ζreq 6 ζTOT holds.

Figure 59.: Simulation of of the scheduling algorithm with even re-distribution between
tasks.

76 cpu scheduling for two shared tasks

The second method considered a proportional division of the exceeding CPU, that
degrades the performances of each task accordingly to their effective use of CPU,
so that one task is not more disadvantaged than others from this re-allocation of
resources. The results that are obtained resemble the ones in Figure 59, obtained
using the previous method.
To observe a more evident difference between the two approaches it is necessary to
be in a more complex situation, e.g. modifying the ranges in which ζI and ζP can
take values. For the results in Figure 60 for example the values 40 6 ζP(t) 6 100 [%]

and 30 6 ζI(t) 6 80 [%] have been used.

Figure 60.: Re-distribution of resources using the two methods of even and proportional
partitioning of the excess.

The new values ζnewP and ζnewI clearly have consequences on the other data in-
volved: τ(t) and TP(t) (and also v(t)5) are modified, and will assume a new value,
obtained inverting the functions fP3(·) and fI2(·). Using the same data of the previ-
ous example, it was possible to obtain their new value, as reported in Figure 61.
It is clear that τnew(t) and TP,new(t) are very far from their ideal values (although
this example has been designed with the goal of emphasizing the difference between
the old and new values, by taking the algorithm to its extremes. Indeed, this is not

5 Regarding the inversion of fP2
(·) to obtain the velocity of the vehicle: the function is not bijective,

so formally its inversion in impossible. There is however a way to solve the problem, exploiting the
fact that the value of the input c(t) do not change in the time interval τ when the task scheduling
algorithm is executed. From Figure 46 on page 67 it is possible to see that with each value of TP
we can choose between two different velocities, v1 (on the left, the lowest) and v2 (on the right, the
highest). The choice between the two is simple:If c(t) 6 0.5 → v(t) = v2 = max(v1, v2),

If c(t) > 0.5 → v(t) = v1 = min(v1, v2).

This means that it is possible to write the inverse function not as f−1P2
(TP), but more precisely as

f−1P2
(TP , c).

5.2 application to real-case scenario 77

an ideal situation), but still it allows the two tasks to keep on functioning without
causing damages to the processing unit.

(a) New values of TP(t). (b) New values of τ(t).

Figure 61.: New values assumed by TP and τ after the re-distribution of CPU resources.

6 S I M U L AT I O N R E S U LT S O N T H E
R E A L- C A S E S C E N A R I O

6.1 theoretical results on meaningful examples

We try now to make the scenario of Section 5.2.2 more realistic, using data that can
be applied to some real plane control and image processing task.
First, we exploit some data that are known:

• The update rate of the sensors mounted on the air vehicle: the sensors gives new
data with a fixed frequency, around the value of fs = 25Hz (Ts = 40ms). Since
the inner loop dynamics are usually 5÷ 10 times faster, this means that it is
possible to obtain the maximum value for the plane sampling period, that will
be TP,max = 8ms.

• The sampling frequency of the on-board CPU, optimized for high-speed compu-
tations. It runs at a maximum rate fP = 1kHz, which means that the smaller
period for the plane control could be TP,min = 1ms [43]. This value is al-
though not acceptable, because it does not take into account that a small part
of such controller always need to be shared with the second task, which leads
to the actual minimum value TP,min = 1.1 ms. This means that the sensors
can be over-sampled, giving the controller a better statistical measure: the ad-
ditional control is therefore redundant, providing the necessary robustness for
more precarious flight conditions. Indeed, this gives the vehicle a very high
control bandwidth, making it very stable in flight. We assume also that the
execution time of the control is 1 ms.

• The maximum rate of the camera mounted on the UAV, i.e. the smaller time that
has to pass before the camera will be able to take another picture. Usually this
value is fI = 5Hz, or TI = 200ms. It is easy to see that this parameter coincides
with the variable τ, which means that TI = τmin = 0.2s. The value of τmax is
here also fixed to 1s.

• The Worst Case Execution Time of the Path Planning algorithm, that we will fix to
Tpp = 30ms and the Worst Case Execution Time of the Task Scheduling algorithm,
fixed also to Tts = 30ms.

We study how the task are scheduled in three meaningful examples. In the strat-
egy that will be used, all functions uses a linear (proportional) rescaling, making it
computationally efficient, thus possible to use on-line.

79

80 simulation results on the real-case scenario

6.1.1 Medium Complexity Image

When c(t) = 0.5 it is possible to obtain, using function fI1(c(t))
1, the value of τ,

in this case equal to 0.6 s. All this period τ(t) is interposed by the smaller time
periods Ts = 40 ms, when the vehicle’s sensors supply new measurement for the
plane control2.
The execution time for the path planning algorithm and the scheduling algorithm
need to be reserved only once in each time segment τ, respectively at the beginning
and at the end. This leaves, in each one of those time slots, 10 milliseconds available
for the plane control: this means that for these two time slots (0÷ Ts and (τ− Ts)÷ τ)
the sampling period for the plane control will be fixed in any condition and equal
to TP = 4ms, since TP = Ts/tav, where tav is the available time in each time slot.
Figure 62 offers a graphical representation of the situation.

Figure 62.: Times partitioning for the c(t) = 0.5 situation.

Having c(t) = 0.5 means that the air vehicle is flying in an ideal cruising mode,
where only a minimum amount of control is needed, leading to a value TP(t) =

TP,min = 8ms. In this case, to avoid the great amount of spare CPU that will result
by using the functions of Section 5.2, it will be more suitable to use a different
kind of function f ′P(·), in which the value of TP(t) will depend not only on the
complexity but also on the tracking error e(t), i.e. on how far the vehicle current
position is from the desired trajectory. On the other hand, even if the tracking error
would turn out the highest possible, being the UAV very far, it will not be possible
to use TP(t) = TP,min = 1.1 ms, because the image processing task also requires
part of each time slot Ts. Using the function fI(·) as defined in Section 5.2.2, it is
possible to recover that data: assuming 10 6 ζI(t) 6 60 [%], for c(t) = 0.5 we obtain
ζI(t) = 35 %, i.e. the time required for image processing task tip will be equal to
14 ms during every time slot Ts 3, and 182 ms in the entire slot τ(t). This leaves a

1 The function is assumed to have a linear form, i.e.

τ(t) = τmin +∆τ(1− c(t)), ∆τ = τmax − τmin

2 Of course if the value of TP will result higher than 8 ms, i.e. 1/Ts, an access to the sensors value will
be made more often.

3 Assuming that the whole time slot of 40 ms can be used for these two tasks, this value corresponds to
ζTOT = 100 %. Then tip(t) = ζI(t) · 40/100

6.1 theoretical results on meaningful examples 81

total of 26 ms for the plane control, hence TP,min = 1.5 ms. In the end, therefore,
we will be left with a choice of TP(t) in the range 1.5 6 TP(t) 6 8 [ms], depending
on the tracking error e(t). Let’s imagine for the example that it will give as a result
3 ms: then in every time slot ∼ 13 ms will be reserved for the plane control task,
meaning ζP(t) = 33 %, as in Figure 63. There will remain 32 % of the computational
resources available for other purposes: this idle CPU can be used simply to save
energy, to fulfil some other secondary task, e.g. communication with a base station,
or to improve the performances of the tasks.

Figure 63.: Partitioning of a time-slot Ts.

An observation needs to be made about the actual distribution in each time slot
Ts of tp and ti: the representation of Figure 63 (and later of 66 and 69) is just
a simplification of how they are actually allocated. It is clearly not true that the
image processing task is all executed first and the plane control task is executed all
together only after that, or vice-versa. The plane control indeed needs to be executed
periodically, with TP = 3 ms in this case, and we supposed it to have an execution
time of 1 ms; the image processing task on the contrary does not have that need,
but it will be preempted. A more realistic representation is presented in Figure 64:
the green blocks represent the image processing task; the blue blocks represents the
plane control part, and each block is 1 ms long, which is the execution time of the
control algorithm. The white part represents the idle time for the CPU.

Figure 64.: Realistic situation of the plane control being executed periodically and the image
processing being preempted.

6.1.2 Low Complexity Image

When the complexity is low, i.e. c(t) ≈ 0, the corresponding value of τ will be the
highest, so τ(t) = 1 s. Such as in the previous case, the first and final time slots
are reserved for the path planning and the task scheduling algorithm, while the
remaining time τ(t) − 2Ts can be used for the tasks we are analysing.

82 simulation results on the real-case scenario

Figure 65.: Times partitioning for the c(t) ≈ 0 situation.

In this situation the speed of the air vehicle will be the greatest possible, so the
minimum sampling period for the plane control will be very small, since the plane
is working on an area where the control is harder: function fP(c(t) = 0) will give
as a result TP(t) = TP,min = 1.1 ms. This value stems from the fact that it is
not possible to use the real minimum value of 1 ms, because a portion of each time
segment Ts always needs to be reserved for the image processing task, as mentioned
at the beginning of Section 6.1. The smallest share for that task occurs when it needs
only ζI,min = 10%, i.e. exactly this case in which c(t) = 0 (indeed using fI(c(t) = 0)
the obtained result is ζI(t) = 10%). That result corresponds to tip = 4 ms, leading
to an available time for the plane control equal to tpc = 36 ms ⇒ TP,min = 1.1 ms.
In this case the necessary computational resources for the plane control task are
ζP(t) = ζP,max = 90%, as in Figure 66.

Figure 66.: Partitioning of a time-slot Ts.

In this example, to retrieve the value of TP(t) the function fP(·) of Section 5.2 has
been used. The application of f ′P(·), function that also take into account the tracking
error, will have given the same result, because in this case there are no free resources
that can be used to raise the sampling rate.

6.1.3 High Complexity Image

When the image has high complexity c(t) ≈ 1, it means that the area the plane is
flying over is very interesting, so, according to function fI1(c(t)) the time between
two consecutive images will be small, i.e. τ(t) = 0.2 s, as depicted in Figure 67.
According to function fI2(τ(t)), the computational resources that needs to be re-
served for the image processing task are ζI(T) = 60 % of the CPU, with tip = 24 ms,

6.1 theoretical results on meaningful examples 83

Figure 67.: Times partitioning for the c(t) ≈ 1 situation.

with only 16 ms remaining for the plane control task in each time slot Ts. This
value of tpc leads to a minimum value TP,min = 2.5 ms, that is nevertheless not
enough for the required control: when the complexity is high the UAV flies at a
minimum speed, thus requiring a sampling period TP(t) = TP,min = 1.1ms and a
CPU portion of ζP(t) = 90%. Unlike the previous examples, in this case the condi-
tion ζreq(t) 6 ζTOT is violated: a re-distribution of available resources is necessary.
Applying the scheduling function g(·) in the proportional fashion we will obtain the
new values ζnewP (t) = 60% and ζnewI (t) = 40%. Proceeding with the scheme of
Figure 41 and inverting functions fP3(TP(t)) and fI2(τ(t)), it is possible to obtain,
respectively, the new values TnewP (t) = 3.8 ms and τnew(t) = 0.52 ms 4. The new
situation will be the one in Figure 68.

Figure 68.: Times partitioning for the c(t) ≈ 1 situation, after being correctly scheduled.

The allotment of resources in a single time slot Ts is the one presented in Figure 69,
and clearly does not allow for any idle time for the processing unit.

Figure 69.: Partitioning of a time-slot Ts after the re-distribution of resources.

In general, one can see how all of the resources are re-allocated in Figure 70: for

4 The results that we would have obtained with an equal re-distribution of resources are quite similar:
ζnewP (t) = 65 and ζnewI (t) = 35, leading to TnewP (t) = 3.2 ms and τnew(t) = 0.6 ms.

84 simulation results on the real-case scenario

low values of complexity the behaviour of the complete system is ideal, in the sense
that it never needs to resort to the scheduling function. The minimum of the CPU
consumption is reached when c(t) ≈ 0.43, and it is equal to ≈ 44.5%. The necessity
for the re-distribution appears only when c(t) > 0.84.

Figure 70.: The re-allocation of resources starts when c(t) > 0.84.

6.2 scheduling algorithm on the realistic scenario

We tested in conclusion the outcome of the overall algorithm, by integrating all
the components of the simulated scenario described in the previous chapters. In
Chapter 3 the first task has been developed, with the UAV control, path planning
and path following algorithms. The second task, i.e. the learning function, has been
explained in Chapter 4, following the development of the complexity function. In
Chapter 5 ultimately the scheduling algorithm has been built, which sets all the
variable parameters (v(t), TP(t) and τ(t)) based on the complexity of the current
FOV and the available resources ζP(t) and ζI(t).
After the decision of an arbitrary starting point on the environment map and the
initial heading of the air vehicle, the result is the one of Figure 71, over a time
period of 50 s. The yellow plane represents the initial position, the light blue one
final position, the blue line the trajectory that has been followed and the green circle
the time instants t0 = 0 s, t1 = t0 + τ(t0) s, . . . , in which the variables are updated.

Before analysing the behaviour of the UAV, it is necessary to point out that the
trajectory that it has to follow is not ideal. We programmed the path planning

6.2 scheduling algorithm on the realistic scenario 85

Google, c©DigitalGlobe

Figure 71.: Trajectory of the air vehicle.

algorithm so that it follows the longest line in each image captures at the time
instants ti. This line can vary in a significant way from one image to the next, thus
making the trajectory not very smooth. To avoid, or to reduce, this problem, a small
adjustment to the path planning algorithm has been made. The length of the line
has been considered as its weight, and in each new image the line to follow is being
updated only if its weight, θc, is bigger than the previous weight, θp (i.e. if the new
line is longer than the last one). If this does not happen, the straight line to follow
remains the one of the previous FOV. Furthermore, in order to avoid that, when a
line has the maximum length, the UAV keeps on following the same one, its weight
is repeatedly decreased of a certain value.if θc < (θp − 10) → θc = θp − 10, lc = lp ;

if θc > θp → θc, lc unchanged.

Once the adjustment has been made, the results will be the one of Figure 72, with a
smoother trajectory.
It is possible to observe how, in the areas with a greater number of buildings, the
time instants are much closer among them, as a result of a higher complexity. This
will lead to low velocities, small sampling periods and small time periods τ. On
the contrary, when the plane is flying over fields, e.g. in the right section of the
image, the complexity is low and the time instants are more diluted. This correct
behaviour is summarized in Figure 73, which shows how the parameters vary when
the complexity change. Also associated to the complexity are the portions of CPU
associated to each task, defined by the functions described in Section 5.2.2. We can
see how during certain time periods the total usage of CPU reaches 100 %, but it
never evolves into a re-allocation of resources. The mean values of the parameters

86 simulation results on the real-case scenario

Google, c©DigitalGlobe

Figure 72.: Trajectory of the UAV with the optimized path planning algorithm and NLGL
guidance law.

are summed up in Table 8: in particular the value of ζTOT is positive, leaving a great
amount of free resources for other tasks.

Table 8.: Mean values of the parameters for the NLGL guidance law.

v [m/s] TP [s] τ [s] ζP [%] ζI [%] ζTOT [%]

24.3 0.006 0.7 36.2 29.0 65.1

We would also like to see how the image processing task has behaved, even if it
is not possible to give an absolute verdict, i.e. to decide whether it was “good” or
not. We can nevertheless study how much of the complete map has been visited,
and with which grade of accuracy. The UAV fled over 349037 pixels, i.e. it studied
1.1222% of the environment. The mean degree of knowledge5 is 0.7839. Of this
visited points, 182438 are completely known, i.e. their value in the environment
matrix L is equal to 1 (0.5865% of the complete map and 52.269% of the total visited
cells). In Figure 74 it is possible to observe what has just been described: the areas
that belong to the FOV for the longer time are entirely known, while the ones that
have been analysed for a shorted period, e.g. the external edges of the FOV, are only
partially known.

5 As defined in Section 4.2.1, the knowledge of an area can assume values in the interval [0, 1], where 1
means that the air vehicle has complete acquaintance with the area.

6.2 scheduling algorithm on the realistic scenario 87

Figure 73.: Variations of the parameters according to complexity.

88 simulation results on the real-case scenario

Google, c©DigitalGlobe

Figure 74.: Output of the learning function l(·): areas in yellow are completely known,
while the ones in blue are still unknown.

Other important informations to take into account:

• The total distance covered by the UAV is d = 1272 m;

• The number of times that the scheduling and path planning algorithm has
been performed is N = 72: clearly this data is not fixed, given that the param-
eter τ is variable. This value also corresponds to the number of photos of the
environment captured by the plane.

We also wanted to study the case with fixed parameters, i.e. where v, Tp and τ do
not vary with the complexity. The chosen fixed values are6

v = 22.5 m/s Tp = 0.004 s τ = 0.6 s

ζP = 40% ζI = 35 %

that gives as a result the trajectory of Figure 75.
In this situation the UAV will travel 1134 m and the path-planning algorithm will
be performed 84 times (but there is no need to run also the scheduling algorithm).
Regarding the output of the image processing task, the UAV will explore 308404 pix-
els, i.e. 0.9915% of the original map, with a mean value of 0.7839. Of them, 52.222 %
are completely known (with a value equal to 1), and that corresponds to 0.5178% of
the total environment.

6 The values have all been chosen, for uniformity, in the middle of their interval.

6.2 scheduling algorithm on the realistic scenario 89

Google, c©DigitalGlobe

Figure 75.: Trajectory of the UAV with fixed sampling.

It is clearly not possible to make a direct comparison between the two methods
presented, because the path planning algorithm designs different routes for the two
of them. It is besides inappropriate to try and apply the same path on the two situ-
ations, since there would not be consistency with the scheduling algorithm: during
every test run, a new line to follow, hence a new path, is chosen every τ seconds,
a value that differs from simulation to simulation. To force a specified path, which
has been previously designed keeping in mind some particular values of τ, means
going against its possibility to vary, thus compromising the goal of RT scheduling.
Even so, we can observe that the distance travelled by the UAV and the percent-
age of explored territory are both higher in the first case, which uses the designed
scheduling algorithm, instead of the one with fixed parameters. This behaviour con-
sistently occurs during various simulations (' 150), with the scheduling algorithm
that allows the air vehicle to travel, on average, 150 meters more every 30 seconds,
and to explore 0.1% more of the environment. Furthermore, and most notably, these
better results are achieved by using an equal or smaller amount of computational
resources. This is why it is safe to say that a scheduling algorithm that allows for
variable sampling rate in the UAV control, and an image processing algorithm with
variable execution time, performs on average better of one with fixed quantities.

To end this chapter, one last example is taken into account, in which a re-distribution
of resources due to the scheduling algorithm does occur. Clearly, for this to happen,
the UAV must be travelling over areas with high complexity, as seen in Section 6.1,

90 simulation results on the real-case scenario

e.g. a city centre. This is the case of Figure 76, where the area is classified as highly
complex, as one can appreciate from the fact that distance from two consecutive
dots is always very small, meaning a small value of τ.

Google, c©DigitalGlobe

Figure 76.: Trajectory of the UAV in a city centre, i.e. in an area of high complexity; the red
dots represent the time instants in which a re-allocation of resources happens.

The mean values of the parameters in this example are reported in Table 9. As
one could expect from the theoretical development, an environment with a high
complexity degree shows lower velocities, smaller sampling periods7 and shorter
periods τ, when compared with Table 8. The CPU’s portion dedicated to the plane
control is similar, but the most significant difference appears in the resources allo-
cated for the image processing algorithm, that needs more CPU only when c is high
(on the contrary, the maximum amount of CPU is requested for the plane control
when the velocity is both low or high).

Table 9.: Mean values of the tasks’ parameters in an area of high complexity.

v [m/s] TP [s] τ [s] ζP [%] ζI [%] ζTOT [%]

18.6 0.0059 0.41 35.9 46.7 82.6

As we just mentioned, in this case the total amount of computational resources
needed sometimes exceeds ζTOT , which is why a re-arrangement of the parameters’
value is necessary. Their new ones are obtained by using the formulas specified on
the scheduling function g(·), widely explained in Section 5.2.2, and are summarized
in Figure 77. This example is also useful to understand the different length of the
time instants: in this case the simulation was only 30 s long, but it had t = 74 time
instants, almost as much as in the previous example of Figure 72. This happens

7 The difference between the two values of TP is not very accentuated because of the peculiar shape of
its defining function.

6.2 scheduling algorithm on the realistic scenario 91

because in this last situation the time instants are so much closer, since the UAV is
traversing an area with complexity, while in the previous case they were on average
more far from each other.

Figure 77.: Parameters’ variations according to complexity, with re-allocation of resources.

7 C O N C L U S I O N

The goal of this thesis was to develop a scheduling algorithm that allows two
tasks with variable parameters to share the same processing unit, so with a limited
amount of computational resources. The partitioning process had to be solved and
adapted to the condition of every new time instant in real-time, based on a certain
input signal, that influenced also the sampling rate of the two tasks. The process
was first solved in a theoretical way, providing two solutions, one with prioritized
tasks and one for jobs with the same importance, with the design of a scheduling
algorithm.
The solution was eventually applied to a real-case scenario, concerning the flight of
a UAV over the map of a territory with different kind of environments. The first
task to be scheduled was the plane control itself, in which the sampling period TP(t)
had to be adjusted every new time instant. The second task dealt with the image
processing of the pictures taken from the underlying territory, and had to show
variable execution time. This is strictly correlated to the period that had to pass
between two consecutive photos τ(t), that has been chosen as the second variable
parameter; during this time period the image processing of the current photo has to
be concluded. This highlights one of the main peculiarities of this project: usually
in literature, when dealing with real-time scheduling, the variable parameters taken
into account are sampling frequencies, because the tasks are control-related. In this
case only one task fall under that category (the UAV control), while the other is data
processing-related, thus the characterizing parameter is unusual. The input signal
that influenced both tasks is the image’s complexity c(I(t)), i.e. its degree of inter-
estingness. Based on this value, the scheduling function decides the air vehicle’s
velocity (and hence its sampling rate), and the value of τ, in a self-triggered fashion.
At the expiration of the period τ new values are computed, in an event-triggered
fashion. The variation of the parameters influenced the computational resources
their related tasks needed, ζP and ζI. When their predicted values exceeded the
maximum amount of available CPU, they had to be re-distributed through a func-
tion g(·). This causes a small deterioration of the performances of the tasks, but still
guaranteeing that the overall process would function and operate without missed
deadlines or system failures.
The realistic scenario has then been implemented: the air vehicle was modelled
through its kinematics equations (Chapter 3), and the image processing algorithm
though a learning function (Chapter 4). We ran simulations of the system with fixed
parameters, then added the scheduling function to highlight the differences in the

93

94 conclusion

two models. Unfortunately, it is not possible to draw definitive conclusions from a
direct comparison, because the path that the UAV follows in the two situations is not
the same, and it influences the global performance. The imposition of an a-priori
specified path for both is furthermore inappropriate, as it will defeat the goal of
the scheduling algorithm. Nevertheless, some observations from a statistical point
of view are possible: on most cases, indeed, a UAV equipped with the scheduling
algorithm will travel 150 meters more every 30 seconds, and will explore 0.1% more
of the total map. Moreover, a smaller or equal amount of computational resources
is usually requested, making this algorithm very useful in situations in which the
utilization of fewer resources is a critical point, e.g. the flight of an air vehicle.

7.1 future developments

There are of course many ways in which this project can be enhanced.
The first and more important improvement consists certainly in the introduction
of noises, that can drastically change the output of the scheduling algorithm. The
principal sources of disturbances are due to the presence of wind, which can consis-
tently modify the velocity of the plane. In this case the velocity v of the air vehicle
no longer corresponds to its ground velocity vg, and also the wind direction has to
be taken into account. This will influence the kinematic equation of the UAV and,
consequently, the way the path following algorithm operates, that has to be modify
in order to be robust to wind. Furthermore, wind estimation is usually not reliable,
because of inferior sensors and the necessity of high computational power to run
advanced estimation algorithms. Another noise that can occur is due to corruptions
when the sampling time is low: redundancy is not present, hence it does not provide
the necessary robustness to the sensors reading. In addition, a user may experience
more noises when the CPU usage is over 70 %, with the presence of lags.
Another advances could be application of the scheduling algorithm to n tasks, in
order to make it usable in more general contexts. In this way it will be possible to
take into account other periodic tasks, that can enhance the overall performance of
the scenario.
A small device that could however improve the global flight experience of the UAV
consists in introducing a feedback in the plane control1. This will allow for a real-
time change of the control parameters of the plane, that will be adapted to the
change of the sampling period, making the real-time scheduling problem even more
complete.

1 This is possible only in the case the dynamic of the air vehicle are completely modelled in the scenario,
and not disregarded as in this project.

A U S E O F A C L A S S I F I E R

In this first method, we classify every new image that the vehicle takes into three
categories: high, medium or low interest. The decision is made by extracting a
series of features from the image and then comparing them to the features of every
category: if they assume values that are closest to a high interest image, then it is
classified in this way etc. To develop this method we need first to have a data set of
images belonging to every category. This has been made by an a-priori classification
from a human operator, having many images that resembles a real photograph taken
by the air vehicle. It is now already clear why this algorithm do not always give the
best results: this a-priori classification is made by a human operator, and so we need
to withstand to what the operator decided and evaluated as interesting or not. All
the test images that we had were evaluated into three categories: High interestingness,
medium interestingness and low interestingness. We used this a-priori classification as
training and validation data sets by splitting the images that we had.

The first step of this procedure consists in a preliminary operation, i.e. adjust the
number of images in each category so that they will all have the same number of
images and the training set will be balanced.
Eventually, we separated each set into a training set, that contains 30% of the images,
and a validation set, with the remainder 70%. We also randomized the split to avoid
biasing the results.
We extracted features from the training set by using the Matlab function bagOfFeatures.m,
that can help us accomplish two tasks:

1. extracts SURF features from all images in all image categories, creating a “vo-
cabulary” of SURF features representative of each image category;

2. constructs the visual vocabulary by reducing the number of features through
quantization of feature space using K-means clustering.

SURF features

For a long time, keypoint detection and description was made through the SIFT
algorithm, that guaranteed good results but long computational time. In 2006 Bay
et al. [ref] published the paper “SURF: Speeded Up Robust Features”, introducing
indeed the SURF algorithm, a speeded-up version of SIFT. The main difference be-
tween the two algorithm is the way they approximate Laplacian of Gaussian and the
use of wavelet transforms for orientation assignment. Another important improve-
ment is the use of sign of Laplacian (trace of Hessian Matrix) for underlying interest

95

96 use of a classifier

point, that adds no computation cost since it is already computed during detection.
Analysis shows it is 3 times faster than SIFT while performance is comparable to
SIFT.

K-means clustering

K-means clustering is a method of vector quantization, that aims to partition n ob-
servations into k clusters, in which each observation belongs to the cluster with the
nearest mean, serving as a prototype of the cluster. This results in a partitioning
of the data space into Voronoi cells. By default, the Matlab function divides all the
features in 500 clusters.

Next, encoded training images from each category are fed into a classifier training
process, that relies on the multiclass linear SVM classifier.
Having now the trained classifier we can evaluate its performance. First, we can
make a sanity check by testing it with the training set. We obtain the following
confusion matrix in Table 10:

Table 10.: Confusion matrix for the Training Set.

High Medium Low

High 1.00 0.00 0.00
Medium 0.08 0.92 0.00
Low 0.00 0.00 1.00

We can see that we have ones, or values really close to one, on the main diagonal,
i.e. a near perfect confusion matrix.
In the next step we evaluate the classifier on the Validation Set, which was not used
during the training. We use the evaluate function to test how good the classification
performed, observing the returned confusion matrix, shown in Table 11.

Table 11.: Confusion matrix for the Validation Set.

High Medium Low

High 0.96 0.04 0.00
Medium 0.46 0.29 0.25
Low 0.04 0.13 0.83

It is clear that the results are not good, in particular the images belonging to the
category of “medium interestingness” are often confused and classified into the other
two categories. The average accuracy is 69%, which is unsatisfactory and inadequate
for our goal.
We made another attempt with this method, this time using five categories of images

use of a classifier 97

instead of only three, each one containing images of decreasing complexity, to check
if the performances of the classifier improved. Unfortunately, this did not happened
and the results were even worse, returning the confusion matrix in Table 12 for
the Validation Set. In this case the average accuracy is 51%, and this disappointing
results are probably caused by the difficulty of the a-priori classification into the five
categories, as mentioned previously, that has to withstand the personal opinion of
the human operator who is in charge if this classification.

Table 12.: Confusion matrix for the Validation Set, using five categories of images.

High High/Medium Medium Medium/Low Low

High 0.89 0.11 0.00 0.00 0.00
High/Medium 0.33 0.33 0.11 0.11 0.11
Medium 0.22 0.11 0.22 0.00 0.44
Medium/Low 0.11 0.00 0.22 0.56 0.11
Low 0.04 0.13 0.83 0.44 0.56

B I B L I O G R A P H Y

[1] Seto D., Lehoczky J.P., Sha L. and Shin K.G. (1996). “On task schedulability in
real-time control systems”. In Real-Time Systems Symposium, 1996., 17th IEEE,
pages 13-21, Los Alamitos, CA.

[2] Wang X. and Lemmon M.D. (2009). “Self-Triggered Feedback Control Systems
With Finite-Gain L2 Stability”. In IEEE Transactions on Automatic Control, Vol-
ume:54 , Issue: 3, pages 452 - 467

[3] Velasco M., Martì P. and Fuertes J.M. (2003). “The self triggered task model for
real-time control systems”. In 24th IEEE Real-Time Systems Symposium, pages
67-70.

[4] Heemels W.P.M.H., Johansson K.H. and Tabuada P. (2012). “An introduction to
event-triggered and self-triggered control”. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pages 3270 - 3285, Maui, HI.

[5] Årzèn K.E., Cervin A., Eker J. and Sha L.(2000). “An introduction to control
and scheduling co-design”. In Decision and Control, 2000. Proceedings of the 39th
IEEE Conference on, Volume 5, pages 4865 - 4870, Sydney, NSW.

[6] F. Lindh, T. Otnes and J. Wennerström. “Scheduling Algorithms for Real-Time
Systems”. Mälardalens University, Sweden.

[7] Singh A., Jeffay K. (2007). “Co-Scheduling Variable Execution Time Require-
ment Real-Time Tasks and Non Real-Time Tasks”. In 19th Euromicro Conference
on Real-Time Systems (ECRTS’07), pages 191-200, Pisa.

[8] M. Caccamo, G. C. Buttazzo and D. C. Thomas (2005). “Efficient reclaiming
in reservation-based real-time systems with variable execution times”. In IEEE
Transactions on Computers, Volume 54, no. 2, pages 198-213.

[9] M. Hu, J. Luo, Y. Wang, M. Lukasiewycz and Z. Zeng (2014). “Holistic Schedul-
ing of Real-Time Applications in Time-Triggered In-Vehicle Networks”. In IEEE
Transactions on Industrial Informatics, Volume 10, no. 3, pages. 1817-1828.

[10] J. Eker, P. Hagander and K. Årzén (2000). “A feedback scheduler for real-time
controller tasks”. In Control Engineering Practice, Volume 8, pages 1369-1378.

[11] A. Cervin, J. Eker, B. Bernhardsson and K. Årzén (2002). “Feed-
back–Feedforward Scheduling of Control Tasks”. In Real-Time Systems, Volume
23, Issue 1/2, pages 25-53.

99

100 Bibliography

[12] G. C. Buttazzo, G. Lipari, M. Caccamo and L. Abeni (2002). “Elastic Scheduling
for Flexible Workload Management”. In IEEE Transactions on Computers, Volume
51, Issue, pages 289-302.

[13] H. Kushner and L. Tobias (1969). “On the stability of randomly sampled sys-
tems”. In IEEE Transactions on Automatic Control, Volume 14, no. 4, pages 319-
324.

[14] K. E. Årzén (1999). “A Simple Event-Based PID Controller”. In 14th IFAC World
Congress.

[15] A. Anta and P. Tabuada (2010). “To Sample or not to Sample: Self-Triggered
Control for Nonlinear Systems”. In IEEE Transactions on Automatic Control, Vol-
ume 55, no. 9, pages 2030-2042. 2010.

[16] T. Gommans, D. Antunes, T. Donkers, P. Tabuada and M. Heemels (2014). “Self-
triggered linear quadratic control”. In Automatica, Volume 50, Issue 4, Pages
1279-1287.

[17] D. Jung, J. Ratti and P. Tsiotras (2009). “Real-time Implementation and Valida-
tion of a New Hierarchical Path Planning Scheme of UAVs via Hardware-in-
the-Loop Simulation”. In Unmanned Aircraft Systems, pages 163-181, Springer
Netherlands.

[18] H. Castañeda, O. S. Salas-Peña, J. de Leòn-Morales (2013). “Robus Autopilot
for a Fixed Wing UAV Using Adaptive Super Twisting Technique”. In 6th In-
ternational Conference on Physics and Control PHYSCON 2013, San Luis Potosí,
México.

[19] Y. Kang and J. K. Hedrick (2009). “Linear Tracking for a Fixed-Wing UAV Using
Nonlinear Model Predictive Control” .In IEEE Transactions on Control Systems
Technology, Volume 17, No. 5, pages 1202-1210.

[20] H. Chao, Y. Cao and Y. Chen (2007). “Autopilots for Small Fixed-Wing Un-
manned Air Vehicles: A Survey”. In International Conference on Mechatronics and
Automation, Harbin, 2007, pages 3144-3149.

[21] P. B. Sujit, S. Saripalli and J. B. Sousa (2014). “Unmanned Aerial Vehicle Path
Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned
Aerial Vehicles”. In IEEE Control Systems, Volume 34, Number 1, pages 42-59.

[22] M. Z. Shah, R. Samar and A. I. Bhatti (2015). “Guidance of Air Vehicles: A
Sliding Mode Approach”. In IEEE Transactions on Control Systems Technology,
Volume 23, Number 1, pages 231-244.

Bibliography 101

[23] J. Fang, C. Miao, Y. Du (2012). “Adaptive nonlinear path following method
for fix-wing micro aerial vehicle”. In Industrial Robot: An International Journal,
Volume 39, Issue 5, pages 475 - 483.

[24] D. Chaudhuri, N. K. Kushwaha and A. Samal (2012). “Semi-Automated Road
Detection From High Resolution Satellite Images by Directional Morphological
Enhancement and Segmentation Techniques”. In IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, Volume 5, Issue 5, pages 1538-
1544.

[25] A. Mukherjee, S. K. Parui, D. Chaudhuri, B. B. Chaudhuri and R. Krishnan
(1996). “An efficient algorithm for detection of road-like structures in satellite
images”. In Pattern Recognition, Proceedings of the 13th International Conference,
Vienna, Volume 3, pages 875-879.

[26] S. Y. Arafat, A. Y. Butt and N. Liaqat (2011). “Automatic road detection using
MCSC”. In Multitopic Conference (INMIC), 2011 IEEE 14th International, Karachi,
pages 126-131.

[27] V. Hoang, D. Caceres Hernandez, A. Filonenko and K. Jo (2015). “Path Planning
for Unmanned Vehicle Motion Based on Road Detection Using Online Road
Map and Satellite Image”. In Computer Vision - ACCV 2014 Workshops, pages
433-447, Springer.

[28] R. Cunha, D.J. Guerreiro Tomé Antunes, P. Gomes and C.J. Silvestre (2006). “A
path-following preview controller for autonomous air vehicles”. In Proceedings
of the AIAA Guidance, Navigation, and Control Conference, Keystone, Colorado,
pages 1-21.

[29] http://wiki.paparazziuav.org/wiki/Main_Page

[30] S. Park, J. Deyst, and J. P. How (2007). “Performance and Lyapunov Stability of
a Nonlinear Path Following Guidance Method”. In Journal of Guidance, Control,
and Dynamics, Volume 30, No. 6, pages 1718-1728.

[31] A. Ralescu and J. Shanaham (1999). “Perceptual Organization for Inferring Ob-
ject Boundaries in an Image”. In Pattern Recognition, Volume 32, pages 1923-
1933.

[32] I. Mario, M. Chacon, D. Alma, and S. Corral (2007). “Image complexity mea-
sure: A human criterion free approach”. In Proc. Annual Meeting of the North
American Fuzzy Information Processing Society, pages 241–246.

[33] J. Zou and C. Liu (2010). “Texture Classification by Matching Co-occurrence
Matrices on Statistical Manifolds”. In 10th IEEE International Conference on Com-
puter and Information Technology, pages 1-7.

http://wiki.paparazziuav.org/wiki/Main_Page

102 Bibliography

[34] Y. Chen, J. Duan, Y. Zhu, X. Qian and B. Xiao (2015). “Research on the im-
age complexity based on neural network”. In 2015 International Conference on
Machine Learning and Cybernetics, Guangzhou, pages 295-300.

[35] J. Perkiö and A. Hyvärinen (2009). “Modelling Image Complexity by Inde-
pendent Component Analysis, with Application to Content-Based Image Re-
trieval”. In Proceedings of the 19th International Conference on Artificial Neural Net-
works: Part II, pages 704-714.

[36] http://www.astro.cornell.edu/research/projects/compression/entropy.

html

[37] T. Lindeberg (2001). “Edge detection”. In Hazewinkel, Michiel, Encyclopedia of
Mathematics, Springer.

[38] J. Matas, O. Chum, M. Urban and T. Pajdla (2002). “Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions”. In Proceedings of the British
Machine Conference, pages 36.1-36.10, David Marshall and Paul L. Rosin, editors.

[39] http://www.micc.unifi.it/delbimbo/wp-content/uploads/2011/03/slide_

corso/A34%20MSER.pdf

[40] E. Rosten and T. Drummond (2006). “Machine learning for high-speed corner
detection”. In European conference on computer vision, pages 430-443.

[41] S. Leutenegger, M. Chli and R. Y. Siegwart (2011). “BRISK: Binary Robust in-
variant scalable keypoints”. In 2011 International Conference on Computer Vision,
Barcelona, pages 2548-2555.

[42] Polycarpou M., Passino K., Yang, Y. and Liu Y. (2003). “Cooperative Control De-
sign For Uninhabited Air Vehicles”. In Cooperative Control: Models, Applications
and Algorithms, pages 283-321, Springer US.

[43] S. G. Ahrens (2008). “Vision-Based Guidance and Control of a Hovering Vehi-
cle in Unknown Environments”. Master of Science in Mechanical Engineering,
Massachusetts Institute of Technology.

http://www.astro.cornell.edu/research/projects/compression/entropy.html
http://www.astro.cornell.edu/research/projects/compression/entropy.html
http://www.micc.unifi.it/delbimbo/wp-content/uploads/2011/03/slide_corso/A34%20MSER.pdf
http://www.micc.unifi.it/delbimbo/wp-content/uploads/2011/03/slide_corso/A34%20MSER.pdf

	Acknowledgements
	Abstract
	List of Acronyms
	1 Introduction
	1.1 Approach and Motivation
	1.2 Outline of the Thesis

	2 Related Works
	2.1 The scheduling problem
	2.1.1 Classical Real-Time Scheduling Algorithms

	2.2 Control and Scheduling co-design
	2.3 On non-fixed sampling rates
	2.3.1 Event-based control
	2.3.2 Self-triggered control

	3 Plane Control Task
	3.1 Unmanned Air Vehicle
	3.1.1 Brief description of dynamics
	3.1.2 Plane control through an Autopilot
	3.1.3 Kinematics

	3.2 Creation of a map with Google Earth
	3.3 Path Planning
	3.3.1 Edge Detection
	3.3.2 Line Features

	3.4 Path Following
	3.4.1 Overview on path following algorithms

	4 Image Processing Task
	4.1 Image's complexity
	4.1.1 Use of binary descriptors

	4.2 Image Processing algorithm
	4.2.1 Learning function

	5 CPU scheduling for two shared tasks
	5.1 Theoretical development for two generic tasks
	5.1.1 Tasks with different priorities
	5.1.2 Tasks with no priorities

	5.2 Application to real-case scenario
	5.2.1 Plane control with priority over image processing
	5.2.2 Plane control and Image Processing with equal importance

	6 Simulation results on the real-case scenario
	6.1 Theoretical results on meaningful examples
	6.1.1 Medium Complexity Image
	6.1.2 Low Complexity Image
	6.1.3 High Complexity Image

	6.2 Scheduling algorithm on the realistic scenario

	7 Conclusion
	7.1 Future Developments

	A Use of a Classifier
	Bibliography

