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Abstract 

This thesis has been carried on during Erasmus Studio+ project resulting from the collaboration 

between the research group of the Laboratory of Human Movement Bioengineering at the 

University of Padua (Italy) and the research group of Human Movement Biomechanics of the 

Faculty of Movement and Rehabilitation Sciences at the Katholieke Universiteit in Leuven 

(Belgium).  

The goal of this project is to create a new approach for the assessment of ground reaction forces, 

one of the fundamental parameters of gait analysis. At the clinical level, human motion analysis, 

can provide useful information for a variety of applications, from identifying functional 

abnormalities associated with pathological gait patterns, to rehabilitation, for example, of the 

knee after injury. Three-dimensional motion capture (3D MoCap) is the a widely accepted 

technique as the state of the art for the study of human motion: it consists of a series of precise 

measurements, which are processed by biomechanical models to produce curves related to 

indirect kinematics and dynamics, joint angles, forces and relative moments. The gold standard 

for measuring ground reaction forces (GRFs) is based on force platforms (FPs) often integrated 

with these MoCap systems in motion analysis laboratories. 

Generally, these results are considered reliable and used to make clinical decisions on specific 

interventions to restore a more functional gait for pathological individuals, from rehabilitation 

treatments to surgery. 3D MoCap requires a controlled environment and highly skilled 

operators; this involves a significant economic expense, so the goal is to look for cheaper 

surrogate techniques. An additional issue to consider is that when subjects walk in a controlled 

environment (e.g., a treadmill) they may not have a spontaneous gait, and this may alter the 

results of the analysis performed. As an alternative to using a laboratory environment, several 

methods have been developed to analyze movement, such as using a simple smartphone in 

conjunction with OpenCap, an open-source software package developed by Stanford 

University. 

In this study, particular attention is given to the use of mobile devices, as an alternative to FP, 

to measure GRFs: for example, methods based on pressure insoles that directly measure GRFs, 

or methods based on wearable inertial sensors (IMUs) that measure the movement of individual 

body parts, approximated to segments, and estimate GRFs using musculoskeletal models, and 

finally methods that exploit machine leaning [1]. Musculoskeletal modeling and simulation 
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provide an ideal framework for studying in silico quantities such as musculoskeletal load, 

muscle forces, and joint contact forces that cannot be measured in vivo [2].  

OpenSim, an open-source software that enables modeling, analysis, and simulation of the 

musculoskeletal system, was used to carry out this project, along with MATLAB, a 

programming and numerical computing platform. The aim of this thesis is to optimize the GRFs 

derived from the contact geometry belonging to a musculoskeletal model so that they are as 

close as possible to the values obtained from the force platforms in the laboratory. 
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Sommario 

Questa tesi è stata sviluppata durante il progetto Erasmus Studio+ come risultato della 

collaborazione tra il gruppo di ricerca del Laboratorio di Bioingegneria del Movimento Umano 

dell'Università di Padova (Italia) e il gruppo di ricerca di Biomeccanica del Movimento Umano 

della facoltà di Scienze del Movimento e della Riabilitazione della Katholieke Universiteit di 

Leuven (Belgio).  

L’obiettivo del suddetto progetto è quello di creare un nuovo approccio per la valutazione delle 

forze di reazione al suolo, uno dei parametri fondamentali dell’analisi del cammino. A livello 

clinico, l'analisi del movimento umano, può fornire informazioni utili per diverse applicazioni, 

dall'identificazione delle anomalie funzionali associate a modelli di andatura patologici, alla 

riabilitazione, per esempio, del ginocchio dopo un infortunio. La cattura tridimensionale del 

movimento (3D MoCap) è la tecnica ampiamente accettata come lo stato dell'arte per lo studio 

del movimento umano: consiste in una serie di misurazioni precise, che vengono elaborate da 

modelli biomeccanici per produrre curve relative alla cinematica e alla dinamica indiretta, di 

angoli articolari, forze e momenti relativi. Il gold standard per misurare le forze di reazione al 

suolo (GRF) si basa su piattaforme di forza (FP) spesso integrate con questi sistemi MoCap nei 

laboratori di analisi del movimento.  

Questi risultati sono generalmente considerati affidabili e utilizzati per prendere decisioni 

cliniche su interventi specifici, per ripristinare un'andatura più funzionale degli individui 

patologici, dai trattamenti di riabilitazione alla chirurgia. La 3D MoCap richiede un ambiente 

controllato e operatori altamente qualificati, ciò comporta un notevole dispendio economico, 

pertanto l’obiettivo è di cercare tecniche sostiutive più economiche. Un ulteriore aspetto da 

valutare è quello relativo al fatto che i soggetti quando camminano in un ambiente controllato 

(ad esempio, un tapis roulant) possono non avere un andamento spontaneo e ciò può alterare i 

risultati dell’analisi effettuata. In alternativa all’uso di un ambiente di laboratorio, sono stati 

sviluppati diversi metodi per analizzare il movimento, ad esempio con l’uso di un semplice 

smartphone insieme a OpenCap, un pacchetto software open-source sviluppato dall’Università 

di Stanford. 

In questo studio viene rivolta particolare attenzione all’uso di dispositivi mobili, come 

alternativa alle FP, per misurare le GRF: ad esempio, metodi basati su solette di pressione che 

misurano direttamente le GRF, o metodi basati su sensori inerziali indossabili (IMU) che 

misurano il movimento di singole parti del corpo, approssimate a segmenti, e stimano le GRF 

utilizzando modelli muscoloscheletrici, e infine metodi che sfruttano il machine leaning [1]. La 
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modellazione e la simulazione muscoloscheletrica forniscono un quadro ideale per studiare in 

silico grandezze come il carico muscoloscheletrico, le forze muscolari e le forze di contatto 

articolare che non possono essere misurate in vivo [2].  

Per lo svolgimento di questo progetto è stato utilizzato OpenSim, un software open-source che 

consente la modellazione, l'analisi e la simulazione del sistema muscoloscheletrico, insieme a 

MATLAB, una piattaforma di programmazione e calcolo numerico. L'obiettivo di questa tesi è 

l’ottimizzazione delle GRF ricavate dalla geometria di contatto appartenenti ad un modello 

muscoloscheletrico, in modo tale che siano il più possibile prossime ai valori ottenuti dalle 

piattaforme di forza in laboratorio. 
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1. HUMAN MOTION ANALYSIS 

1.1. Introduction 

Motion is a variation of position during time. Human motion analysis refers to the study and 

description of the human body during motion. The aim of motion analysis is to give quantitative 

and qualitative information about musculoskeletal system mechanics during movement, how it 

is controlled, and how it responds to different stimuli. This involves the use of techniques from 

various fields such as biomechanics, computer vision, and machine learning, to analyze, model, 

and understand human motion [3]. This analysis can be used in several applications, such as 

sports training, rehabilitation, animation, and human-computer interaction. By analyzing 

human motion, it is possible to identify areas for improvement, track progress, and ultimately 

optimize performance in a wide range of activities. The main objectives of human motion 

analysis are:  

● Obtaining the motion that could be done on selected point, body parts, joints, or the 

entire human body;  

● Deriving muscular activity;  

● Knowing the loads acting on tissues during specific motor tasks.  

Moreover, with this approach it is possible to design therapeutic routes, to assess functional 

limitations, to track the effectiveness of rehabilitation therapy, to diagnose eventual motor 

disorders, and to document the usage of aids and prosthesis, in the clinical field. In the same 

way, this methodical approach applies to evaluate the performances of an athlete, to optimize 

them and to prevent eventual injuries.  

In order to better understand how motion analysis works, it is necessary to introduce the basic 

movements that the human body can make. The main axes and planes that describe human body 

movements are illustrated in [Fig. 1]: 
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Figure 1: Anatomical planes and position definition. [4] 

As it can be seen from the [Fig.1], the main planes are [5]: 

● Sagittal plane (X, Y), which divides the human body into two symmetrical halves (right 

and left) and median plane refers to the midline while paramedian plane refers to 

subdividing one half;  

● Frontal or coronal plane (Y, Z), which divides the body into two asymmetrical halves 

(anterior and posterior); 

● Transverse plane (X, Z), which divides the body into two asymmetrical halves (upper 

and lower). 

While the main axes are: 

● X, the sagittal, or antero-posterior axis, which passes horizontally from anterior to 

posterior and it is formed by the intersection of the sagittal and transverse planes;  

● Y, the vertical axis, which passes vertically from superior to inferior and it is formed by 

the intersection of the sagittal and coronal planes;  

● Z, the coronal, or medio-lateral axis, which passes horizontally from left to right and it 

is formed by the intersection of the coronal and transverse planes; 
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The principal movements of the human body are performed around the principal axes and lie 

in the principal planes; in particular, these movements are classified into:  

● Flexion/extension, around the Z axis in the sagittal plane: Flexion refers to decreasing 

a joint angle, and extension to increasing the joint angle back to resting anatomical 

position; 

 

Figure 2: Flexion and extension movements of the shoulder and the knee. 

● Adduction/abduction, around the X axis in the frontal plane: Abduction is moving a 

body part away from its resting anatomical position in the coronal plane; adduction is 

returning it to its normal resting position; 

 

Figure 3: Abduction and adduction movements of the shoulder. 
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● Internal/external (or medio/lateral) rotation, around the Y axis in the transverse plane: 

Internal rotation is rotating a joint towards the midline and external rotation is rotating 

a joint away from the midline.  

 

Figure 4: Internal (medial) rotation and external (lateral) rotation of the hip. 

Other movements are possible and result from the combination of the latter.  

1.2. Gait analysis 

Human gait is a periodic motion of body segments. The analysis of this periodic motion and 

related studies is termed gait analysis, that is focused on walking and running.  

Walking is a common and fundamental form of human locomotion: it involves a rhythmic and 

alternating movement of the legs, arms, and trunk, as well as the coordinated use of various 

muscle groups [6]. The goal of normal human ambulation is to facilitate travel from one location 

to another while minimizing effort and maintaining adequate stability across a wide variety of 

walking conditions [7]. The musculoskeletal system, which is managed by the nervous system, 

interacts in a highly coordinated, complex manner with the bones, muscles, ligaments, and 

joints to enable human movement [8]. Furthermore, the locomotor system receives instructions 

from the central nervous system through the peripheral neural system; the latter is able to 

transfer the forces required for the body to move and carry out all daily tasks [8]. Gait analysis 

has gained much popularity because of its applications in clinical diagnosis (identifying 

abnormalities or deviations from normal gait that could mean a MSK disorder, or an injury), 

rehabilitation methods, gait biometrics, robotics, sports, and biomechanics. Traditionally, 

subjective assessment of gait was conducted by health experts; however, with the advancement 
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in technology, gait analysis can now be performed objectively and empirically for better and 

more reliable assessment. 

Determination of gait functionalities, irregularities, and classifications are the main target of 

gait analysis so that better treatment is possible to provide for no ambulatory patients and also 

to provide gait enhancement facilities for military or disaster recovery applications. Because of 

the complex structure of the human musculoskeletal system, gait analysis becomes the 

preliminary requirement in understanding the complex dynamics of its locomotion strategy. 

Several techniques are used in gait analysis such as optical system, inertial system, force plate 

mechanism, force shoes, foot plantar pressure sensor, electromyography, goniometric 

measurement system, magnetic system, acoustic tracking system, medical imaging technique, 

and uses of portable media devices such as smartphones, and some of them are going to be 

mentioned in this chapter.  

1.2.1. Human gait cycle 

The characteristics of human walking can be defined as the alternation of the same type of 

elementary movements of legs and feet [Fig.5].  

The movements of the legs for a single step can be categorized into two phases: Double Support 

Phase (DSP) and Single Support Phase (SSP). DSP starts at the moment of heel-contact or heel-

strike of one foot on the ground and ends at the toe-off situation of the rear foot (0 – 10% of 

gait cycle). The end of DSP is the start of SSP (10 – 50% of gait cycle) or swing phase. The 

conclusion of the swing phase occurs at the beginning of DSP i.e., heel-strike. So, a cycle of a 

single step begins with the heel-strike (0% of the gait cycle) and ends up with the following 

heel-strike (100% of the gait cycle) of the same foot [9].  

The gait cycle of a single leg also can be characterized by two other phases: Stance Phase and 

Swing Phase. The Swing Phase and the SSP represent the same manner of movement pattern 

and occur during 40% (approximately) of a gait cycle. The rest 60% (approximately) of a gait 

cycle represents the Stance Phase of the same foot. During the Stance Phase, DSP occurs at the 

beginning and the end of the phase. Stance phase is one of the major parts of a gait cycle because 

during this time, the body is balanced on the single leg, contact limb supports total weight, body 

propelled forward, and also maintains the direction of swing leg movement [10].  

So, the stance phase is the period in which the foot is in contact with the ground, and it could 

be divided into several sub-phases [7]: 
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1. Heel Strike (HS) – Initial contact (0% of gait cycle): This is the moment when the heel 

of the leading foot makes initial contact (from here the name) with the ground. The rest 

of the foot is off the ground. 

2. Foot flat (FF) – Loading response (0 – 10% of gait cycle): After the heel strike, comes 

the moment in which the foot becomes flat on the ground, so all the foot touches the 

ground. 

3. Midstance (10 – 30% of gait cycle): During this moment, the body’s weight is 

positioned over the supporting leg, maintaining stability. The opposite leg swings 

forward in preparation for the next step. 

4. Heel off – Terminal stance (30 – 50% of gait cycle): At this moment, since the body 

moves forward, the heel starts to lift off the ground. The toes remain in contact with the 

ground, and the body weight is transferred to the forefoot. 

5. Toe off – Pre-Swing (50 – 60% of gait cycle): After the heel is off the ground, the toes 

follow it, propelling the body forward. The foot leaves the ground and the stance phase 

ends. 

While the swing phase, is the period in which the foot is in air, and it could be divided into 

these different sub-phases: 

1. Initial swing – Acceleration (60 – 73% of gait cycle): During this moment, the leg 

swings forward and the foot gradually increases its speed. 

2. Mid – Swing (73 – 87% of gait cycle): In this moment, the leg continues to swing 

forward, and the foot reaches the highest part in the swing arc. The knee starts to extend 

in preparation for the next stance phase. 

3. Terminal Swing – Deceleration (87 – 100% of gait cycle): This is the moment in which 

the swing phase ends, in fact the foot begins to decelerate because it is reaching the 

ground preparing for the new heel strike. 

During ambulation, the main active muscles are [11]:  

● Gastrocnemius and soleus: these muscles are located in the calf and work together to 

plantarflex the ankle joint during the toe-off phase of walking. As the foot pushes off 

the ground, the gastrocnemius and soleus contract concentrically to lift the body up and 
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propel it forward. These muscles also play an important role in absorbing shock during 

the stance phase of walking;  

● Quadriceps: the quadriceps muscles are located in the front of the thigh and consist of 

four muscles: rectus femoris, vastus lateralis, vastus medialis, and vastus intermedius. 

These muscles work together to extend the knee joint during the stance phase of 

walking. As the foot strikes the ground, the quadriceps muscles contract eccentrically 

to control the flexion of the knee, and then contract concentrically to extend the knee 

and push the body forward; also active during the toe off phase but they contract to 

extend the knee joint;  

● Gluteus maximus: this muscle is the largest and most powerful muscle in the buttocks. 

It works to extend the hip joint during the stance phase (is active together with the 

gastrocnemius) of walking, which helps to propel the body forward. As the heel strikes 

the ground, the gluteus maximus contracts eccentrically to control the forward motion 

of the body, and then contracts concentrically to extend the hip and push the body 

forward. The gluteus maximus also plays an important role in stabilizing the pelvis 

during single-leg stance;  

● Gluteus Medius and gluteus minimus, that form the abductor muscles, are active during 

the stance phase to maintain stability. The Gluteus Medius muscle is located in the side 

of the hip and plays an important role in stabilizing the pelvis during single-leg stance. 

As the weight of the body shifts over the stance leg, this muscle contracts concentrically 

to prevent the opposite hip from dropping. This muscle also helps to control the internal 

and external rotation of the hip during walking;  

● Hamstrings: they are a group of three muscles located in the back of the thigh: biceps 

femoris, semitendinosus, and semimembranosus. These muscles work to flex the knee 

joint, so controlling the leg, during the swing phase of walking and also play a role in 

slowing down the forward movement of the leg during the stance phase. As the foot 

leaves the ground, the hamstrings contract eccentrically to control the extension of the 

hip and knee, and then contract concentrically to flex the knee and prepare the leg for 

the next step;  

● Iliopsoas: It belongs to the hip flexors, and it is active during the swing phase assisting 

the lifting of the leg and moving it forward;  
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● Adductors, that help with the control of the leg movements during the stance phase;  

● Tibialis anterior: this muscle is located in the front of the shin and is responsible for 

dorsiflexion of the ankle joint during the swing phase of walking helping control the 

lowering of the foot, and peroneals. As the leg swings forward, the tibialis anterior 

contracts concentrically to lift the foot and prevent it from dragging on the ground. This 

muscle also helps to control the foot during the stance phase of walking by eccentrically 

controlling the plantarflexion of the ankle. 

 

Figure 5: Gait analysis phases and muscles involved. 

Gait analysis involves the evaluation of an individual’s gait pattern, such as some space-time 

parameters that are calculated to characterize quantitatively the gait of each subject; in 

particular, these can be obtained by recording the task by means of different devices, through 

which some events of the gait must be identifiable [2]. The temporal parameters are : 

● Cadence [steps/min]: this is the number of steps per minute;  

● Stance and swing phases duration [s]: they are the times between heel strike and toe off 

and between toe off and heel strike of the same foot respectively;  

● Single and double support duration [s]: they are the times in mono and bi podalic 

support respectively; 

● Step duration [s]: this is the time between ipsilateral and contralateral heel contact; 

● Stride duration [s]: this is the temporal interval between consecutive heel strikes of the 

same foot; 
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While the spatial parameters are: 

● Step length [m]: this is the distance between consecutive heel strikes of the same foot;  

● Advancement length [m]: this is the distance covered during a complete gait cycle of 

one leg;  

● Step speed [m/s]: this is the linear velocity along walking direction measured on one 

step; 

● Walking speed [m/s]: this is the linear velocity along walking direction measured on 

one or more steps. 

1.3. Motion capture instrumentation 

One of the established techniques of gait analysis is the use of motion capture system [2], 

abbreviated as mocap. Although a number of researchers are trying to establish various 

strategies in representation, characterization, and recognition of human gait, it is really a 

challenging job to extract targeted and suitable features from image sequence. Targeted features 

could be joint positions, joint motion trajectories, and joint angle variations during walking. 

Gait motion can be analyzed with or without having any marker attached to the human body. 

In 3D mocap with markers, the subject is fitted with markers and/or IMU sensors, which can 

be attached directly to specific anatomical landmarks on the body (including pelvis, thighs, 

shanks, feet, and upper body, or placed on a specialized suit, and they help to track the subject’s 

movements accurately. These markers can be reflective spheres (most common), LED markers, 

or other types of markers that can be easily detected by the camera.  

For 3D analysis, more than one camera is needed with complex setup as the observation should 

focus on all planes of movements, because the 3D mocap captures not only the movements of 

a subject but also the three-dimensional position and orientation of the body parts. As 3D 

analysis requires reconstruction of the points of interest on the subject for all the time, the points 

should be visible for at least two cameras for every moment. Before any recording, the cameras 

or sensors have to be fixed and the origin of the laboratory system must be defined. Moreover, 

the mocap system needs to be calibrated, to establish the relationship between the marker 

positions and the subject’s joint angles and segment lengths. This calibration process involves 

recording specific poses, such as the static position, to align the virtual character with the 

subject’s physical movements. Then, once the system is calibrated, the subject performs the 
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exercises required in front of multiple cameras that record and capture the movements from 

different angles.  

The exercises are quite standard, and they are walking at normal speed, walking faster, usually 

also squatting, and going up and down the stairs. This captured data is processed using 

dedicated software, such as Vicon [12] or Xsense, that analyzes the positions, orientations and 

depth information of the markers/sensors and creates a 3D digital representation of the subject’s 

movements. This software analyzes the data and reconstructs the subject’s movements, 

providing information on joint angles and torques, segmental positions, and the other kinematic 

parameters related to walking. This data can be further refined and edited if it is necessary. With 

the reconstructed data, it could be possible to calculate the various gait parameters such as the 

ones cited in the previous paragraph (step length, cadence, walking speed, stance phase duration 

etc.) and temporal-spatial parameters such as foot contact times and swing times. 

1.3.1. Optoelectronic and stereophotogrammetric systems 

To capture 3D motion data is used the stereophotogrammetry [18], that combines the principles 

of stereoscopic vision and photogrammetry. Stereophotogrammetry works using multiple 

photographs of the subject and its movements, taken from different positions and angles to 

ensure that they cover all the scenes.  First of all, there should be defined internal parameters 

(focal length, principal point coordinates and distortion coefficients) and external parameters 

(position of the camera referment system with respect to the absolute referment system) to 

calibrate the stereophotogrammetric system. Then, when a part of the scene is acquired, a two-

dimensional photograph of a three-dimensional space, to describe the mathematical relationship 

between these two systems, is used in the pinhole camera model. The concept of a pinhole 

camera is a closed box into which a single tiny hole is made with a pin, through which light 

may enter and hit a photosensitive surface. The pinhole camera model mimics the geometrical 

projection carried out by a pinhole camera. The entire optics and aperture of a camera are 

reduced to a single point, that is called center of projection. The photosensitive surface is 

assumed to be planar and is represented by the image plane. To determine where a 3D point is 

depicted in the image, it is sufficient to consider a straight line from that 3D point and go 

through the center of projection. The intersection between this straight line and the image plane 

gives the desired image point of the 3D point. Instead, the line passing through the center of 

projection that is orthogonal to the image plane is called the optical axis and their intersection 

is the principal point. 



19 
 

 

Figure 6: Pinhole camera model. The distance between the center of projection and the image 

plane is the focal length f [19]. 

To get the 2D image point’s coordinates in the image coordinate system (x, y), having the 

coordinates of a 3D point expressed in the camera coordinate system (X, Y, Z), it should be 

applied these formulas [19]: 

𝑥 =  𝑓
𝑋

𝑍
 ;  𝑦 =  𝑓

𝑌

𝑍
. 

In order to model cameras in motion or multi-camera systems, one needs to describe the position 

and orientation of a camera. To do this, the laboratory coordinate system is considered as the 

world coordinate system. Let t be the coordinates of the center of projection in the world 

coordinate system and let the rotation matrix R represent the camera's orientation. Then, a 3D 

point is mapped from the world to the camera coordinate system, as: 

 

Once getting all the photographs from the multi-camera system, they are analyzed and 

corresponding points or features in the images (using for example SIFT algorithm) are 

identified. To get the points/features position in 3D space, is used the triangulation method [19].  
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These 3D points are then processed and used to create a dense point cloud representation of the 

scene. This point cloud consists of a large number of interconnected points, each representing 

a specific location in 3D space. From this point cloud is created a surface mesh to represent the 

object’s geometry. The captured photographs are projected onto the surface of the 3D mesh, 

helping to enhance the visual appearance of the 3D model subject. 

The positive aspect of this technique lies in the fact that the measurements are reliable, as they 

come from a video-recorded analysis processed with appropriate software, which makes this a 

gold standard tool for motion analysis. However, despite its potential benefits, 

stereophotogrammetry has some limitations: the technique can be time-consuming and very 

expensive, and requires specialized equipment and expertise to implement effectively [18]. In 

addition, an accurate calibration is also required for the quality of the measured data: firstly, it 

is necessary to carry out a calibration procedure to define the calibration volume, the absolute 

reference system (origin and axes of the laboratory system), the internal and external parameters 

of the cameras [2]. Furthermore, it is also limited by the fact that it captures only the external 

movement of the body, and does not provide information about the internal musculoskeletal 

system [18].   

Although these tools guarantee a high accuracy in the measurement of the coordinates of the 

markers, the kinematic variables relating to the joints obtained from them can be affected by 

various types of errors. There errors can be classified into [2]:  

● Instrumental errors: they could be systematic (i.e., an inaccurate calibration) or casual 

(i.e., electronic noise). The first case occurs when there are bad estimations of the model 

parameters, the measurement system model has limited validity, or the entity of the error 

depends on the amplitude of the visual field and from the marker position. The second 

case occurs during the digitization process of the image or during its elaboration. To 

minimize these errors, low pass filtering or the self-tuning of the cut frequency is used. 

● Wrong positioning of markers on the anatomical landmarks: identifying the landmark 

can be complicated and requires specialized and experienced staff.  

● Soft tissue artifacts (STA): these artifacts are caused by sliding of the skin, 

deformations, movement of the underlying muscles, and the presence of adipose tissue.  
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Figure 7: The human movement analysis laboratory. Basic measurement instruments are 

depicted together with their systems of axes (p: photogrammetry; d: dynamometry) [18]. 

Another technique of human gait analysis is well known where active or passive markers are 

attached with the point of interest of the human body. These marker points are traced by an 

optoelectronic system that converts the emitted or reflected light signals from the markers into 

electrical signals. These electrical signals are used to construct models for gait analysis. The 

active markers emit light signals where small LEDs could be used to attach the point of interest 

of the subject. On the other hand, the passive markers reflect the lights coming from the 

optoelectronic device where Infra-Red (IR) light is used to illuminate the markers. Although 

the sampling rate of an optoelectronic system varies within the range of 50 Hz to 1 KHz, it does 

not increase the accuracy significantly for a quicker movement rather than slow walking. Some 

optoelectronic devices, like the Kinect sensor, use an array of camera and depth sensors to 

produce 3D virtual models of skeleton for gait analysis [18]. 

1.3.2. Force plates systems 

This system consists of metal flat and rigid plates having load cells (most commonly) at each 

corner of the plates. This mechanism is used to measure the GRF caused by standing or moving 

subject of experiment, including vertical force (magnitude of weight-bearing forces), anterior-

posterior force (forward/backward forces during gait or balance tasks), medial-lateral force 

(sideways forces during walking), center of pressure (location of the applied forces on the 
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plate), torque and timing of force application. The shape of the force plate can vary based on 

the design such as square, rectangular, or triangular [2].  

Sensors used in force plates could be resistive, capacitive, or piezoelectric, piezoresistive, strain 

gauge, etc. and they also could vary based on pressure range, sensitivity, and linearity. Force 

plate mechanism provides the facility to measure the force induced on the plate and its 

directions. Force transductors based on strain gauges have a spring element on which are 

applied the forces to measure. When solicited, this spring element generates a deformation on 

the surface, converting the forces to measure in a as more reproducible and linear deformation 

as possible. Strain gauge is a measure grid of conductive material obtained by photo etching on 

a polyimide carrier (the carrier is glued to the spring component, and this gives the electrical 

insulation). Generally, there are four strain gauges installed in a way that two are compressed 

and two are stretched by the applied force and they are linked in a circuit called Wheatstone 

bridge, alimented by a voltage [15]. 

 

Figure 8: The Wheatstone bridge. 
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The Wheatstone bridge is used for precision measures of unknown resistance and for measuring 

the resistance variance [15]. Then, the four triaxial strain gauges/bridges, with its resistance, 

formed a twelve channels system in which it is possible to calculate the intensity of the external 

force, that is obtained with the sum of the forces measured with the single bridges, and the 

torque respect to the force plate center.  

 

Figure 9: A force plate. 

When a person stands or moves on the force plates, the sensors can detect the applied forces 

and generate analog signals proportional to those forces. These signals are then converted into 

digital data using an analog-to-digital converter (ADC) and can be sampled at high frequency 

for precise force measurement.  

As the force plates are placed in a fixed location on the ground, the COP of the subject body 

can easily be calculated but for a long track it may lead to increased cost. Moreover, the suitable 

position of placing the footsteps on the plate may not be followed properly which could lead to 

the wrong calculation of COP point. Data captured from foot plates should combine with limbs 

kinematics information to analyze the principles of gait. 

1.3.3.  Electromyography (EMG)  

Electromyography (EMG) is a diagnostic technique, functional type, used to measure, register, 

and analyze, the small electric signals produced by muscles during contraction while walking 

or other locomotion [16].  

The fundamental unit for the muscle contraction process is the motor unit, that is a set of the 

motoneuron, and the muscular fibers innervated by the motor neuron itself. The motor neuron 

generates a signal, called motor unit action potential (MUAP), that causes the contraction of 

all, if the impulse is sufficiently wide, or none of the fibers. Depending on how many and which 

motor units are recruited, the intensity (strength) and duration of the contraction can vary 
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greatly. In muscles used for non-precise movements, such as posture or walking, motor units 

usually consist of hundreds or even thousands of muscle fibers, otherwise the number of fibers 

is considerably less. The repeated activation of the motor unit causes a MUAP train. The two 

most important mechanisms that influence the amplitude and density of the signal are the 

MUAP recruitment and the firing frequency [17]. 

 

Figure 10: Schematic representation of a motor unit with n muscle fibers. The algebraic 

summation of the action potentials (AP) of all the single fibers present in the recording uptake 

area of the electrode (AP1 + AP2 + … + APn) generates the MUAP. The main parameters of 

the MUAP waveform are indicated: amp = amplitude; dur = duration; p = phase; t = turn; BL 

= baseline. [17] 

EMG has two types [2]:  

1. Surface EMG (sEMG) that is not invasive.  

2. Intramuscular EMG (iEMG), that is invasive.  

sEMG is much easier to use compared with iEMG as the first one uses electrodes on the skin 

and the second one uses fine wires inserted into the deep muscle. But sEMG produces less 

efficient electric signals than iEMG. There are two types of sEMG: passive and active. Active 

sEMG provides signal amplification at the electrode side that reduces signal noise. To measure 

these signals, the surface electrodes or fine needle electrodes are placed or inserted into the skin 
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over the muscle of interest. The surface electrodes are placed directly on the skin and are used 

for the superficial muscles; for deeper muscles are necessary the needle electrodes with which 

it is possible the direct contact with the interested muscular group.  

The most commonly used surface electrodes are those of the Ag-AgCl type, gel, adhesive and 

disposable. They typically have a circular shape with a single or dual button, depending on the 

distance at which they are to be positioned. The conductive area, made up of the AgCl coated 

silver disk, should be about 1 cm or less. They can be further divided into passive and active 

electrodes: passive electrodes need an external amplification circuit; while the active electrodes 

have already integrated the pre-amplification circuit, which already allow to reduce the input 

noise, such as parasitic voltages due to capacitive couplings or to the movement of the 

electrodes. Based on the positioning surface, three configurations can be observed: 

1. Monopolar, in which a single signal detection electrode and a reference electrode are 

used. This method is used due to its simplicity but is not recommended as it detects all 

electrical signals in the vicinity of the detection surface. 

2. Bipolar, in which two detection electrodes are used, on the surface of interest, and a 

third one for reference, in an area not active with respect to the investigation. It is the 

most frequent configuration. 

3. Multipolar, in which are used several equidistant detection electrodes plus the ground 

one. It is used to further reduce the crosstalk between signals and noise, thus obtaining 

a more significant EMG signal. 

Needle electrodes are made of thin, strong, flexible wires, typically alloys of platinum, silver, 

nickel, and chromium. Depending on the muscle to be analyzed, they will be more or less long 

(from 25 to 70 mm) and thick (average diameter that varies between 0.30 and 0.45 mm) [16]. 

 

Figure 11: Types of electrodes: Surface electrodes on the left; Needle electrodes on the right. 
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The electrodes pick up the electric signals, known as electromyographic signals, generated by 

muscle fibers when they contract and produce electrical impulses. These detected 

electromyographic signals are weak and require amplification to make them measurable. In 

fact, the EMG signal is input to an instrumentation amplifier. The instrumentation amplifier 

must have a high input impedance (ideally tending to infinity) and a low output impedance 

(ideally tending to zero) and is typically made using 3 operational amplifiers. 

Then, the EMG signal is filtered and processed to remove noise and unwanted artifacts [2], 

ensuring the accuracy of the recorded data that could be then analyzed using dedicated software 

to extract the parameters of interest, such as the muscle length or strength. High frequency noise 

can be caused by signal conduction in nerves and by interference to electronic devices such as 

radios, computers or cell phones and can be removed with a low pass filter. Low frequency 

noise can be caused by amplifier DC offset, movement of the sensor on the skin and temperature 

variations and can be removed using a high pass filter. The cutoff frequency for the low-pass 

filter (LPF) is around 400-450 Hz, instead for the high-pass filter (HPF) is 15-20 Hz. 

Additionally, if information about the motor unit firing frequency is to be removed from the 

EMG signal, the cutoff frequency can be shifted between 25 and 30 Hz.  

Before the analysis using appropriate hardware/software of the EMG signal, it has to be 

converted into a digital signal so it would be compatible with these digital instruments. The tool 

used for this process is the analog-to-digital converter (ADC). The ADC therefore does nothing 

but convert the analog signal into bits through two processes: sampling and quantization. 

Sampling consists in transforming the signal from the continuous-time domain to the discrete-

time domain. The sampling frequency must be chosen in such a way as to respect the Nyquist 

theorem (fc ≥ 2fmax, fc = sampling frequency, fmax = maximum frequency contained in the 

signal), therefore typically it is around 1000 Hz or even, to avoid loss of signal, 1500 Hz. If this 

does not occur in the frequency domain, the phenomenon of "aliasing", i.e., overlapping of the 

spectrum, would occur. Quantization will subdivide the sampled analog signal into a set of 

levels which each identify a different range of voltage, where a binary coding is associated to 

each level. The number of quantization bits used is called resolution and for most EMG 

applications it is 12 bits (212 levels) [16]. 
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Figure 12: Example of intramuscular (blue curve) and surface (black curve) EMG signals. 

1.3.4. Inertial systems 

Inertial systems, also known as inertial measurement units (IMUs), are devices that utilize 

sensors to measure and track an object’s motion and orientation in 3D space. IMUs have 

become increasingly popular in recent years for human motion analysis due to their small size, 

low cost, and portability. IMUs are typically composed of miniaturized electronic devices that 

come with a full set of micro electro-mechanical systems (MEMS) sensors to determine the 

change in relative orientation of a body or body segment over time [13]. 

 The inertial system accumulates accelerometers and gyroscopes together and works on the 

principle of inertial measurements. One of the main advantages of IMUs is their ability to 

capture motion in real-time and in a variety of environments: unlike traditional motion capture 

systems, IMUs are less affected by occlusion and can still capture motion even when body parts 

are obstructed from view. Additionally, IMUs can be attached directly to the body or clothing, 

which allows for a more natural and unrestricted range of motion during activities. This makes 

IMUs particularly useful in sports science and biomechanics research, where athletes can 

perform their usual activities without being restricted by wires or markers [13]. 

Accelerometer and gyroscope provide the data of acceleration and orientation of the attached 

point through which segment acceleration, segment orientation, and joint position can be 

achieved for gait analysis. The sampling rate both for accelerometer and gyroscope are the same 

and vary from 100 Hz to 10 KHz. The tri-axial acceleration and gyration capabilities provide 

the facilities to analyze human locomotion in a 3D environment. The sensors are small, 

lightweight, and capable of detecting a large range of angular velocity and acceleration. Inertial 
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sensors have different components: One proof mass that generates the inertial force from an 

acceleration; An elastic spring, to give a mechanical support to the mass maintaining the neutral 

position; One dashpot, that controls the proof mass motion and to get the best features of the 

frequency response; A method to get the electrical output, that is the measurement of the proof 

mass motion (mechanical measurement) converted into the electrical measurement [2]. 

 

Figure 13: Inertial Measurement Unit (IMU). 

To design an accelerometer, it is important to control the proof of inertial mass movement. This 

mass should be rigid to act in a proper way and there should be a bigger stiffness than the one 

of the springs along the axis of sensitivity. The spring is important for the kinematic movement 

of the mass along the axis of sensitivity, which elastic constant depends on the properties and 

the geometry of the material. The mass should produce a relevant signal to avoid crosstalk with 

the other axis. The gyroscopes [13] are constituted of rotating mass in a rotating support inside 

a container that, when the gyroscope rotates around an axis perpendicular to the axis in which 

the mass rotates around, generates an angular moment around the orthogonal axis of the two 

that could be measured by a moment sensor. This is explained thanks to the Coriolis force [2], 

that is an apparent force applied to a body, when the motion is observed from a referral system 

that is in circular motion with respect to an inertial reference system. This force produces 

vibrations that are acquired by capacitive or piezoresistive sensors, so the transducer of the 

gyroscope should oscillate to work as a sensor. 

The system of the inertial sensors is formed by three accelerometers and three gyroscopes built 

orthogonally to measure the three linear and angular accelerations in an independent way, a 

hardware to process the signals, a battery, a transmitter of the signals and a container. 
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The disadvantage of using this system is the skin movement artifacts which can affect the 

reading of acceleration and gyration. It is also a challenging task to identify the segment length 

and exact rotational axis. Moreover, the acceleration is relative to the position of the Inertial 

Measurement Unit (IMU) system.  

The inertial sensors could give some errors based on repeatability, the capacity of giving the 

same measurement if it is repeated in time in the same conditions, stability, the capacity of 

giving the same output if it receives the same constant input, or drift, the variation of the signal 

output in time. IMU sensors always measure the force linked to acceleration gravity, which 

induces an error because it is detected as a constant acceleration by the accelerometer. For this 

reason, before any measurements, the calibration is done in static conditions. Double integration 

induces quadratic (accelerometers) or cubic (gyroscope) errors that depend on sample 

frequency. To reduce the error, the Kalman filter is used [2]. 

For human movement analysis, there are various alternatives like inertial sensors that use 

technologies like accelerometers, magnetometers, and gyroscopes to estimate joint kinematics. 

The advantages of this technology consisted in portability, accuracy, and reliability, even 

though they remain expensive and require particular algorithms. Moreover, the inertial sensors 

are linked to a PC allowing a wide variety of applications, in fact, this system could be used in 

every environment. In addition, each recent smartphone has an inertial measurement unit 

(IMU), so it is useful for long term analysis of the activity, but it is demonstrated that the 

resulting data have a low reliability [14].  

1.4. Gait-analysis protocols 

The markers are placed in the body according to different protocols that have been developed, 

in order to reduce as much as possible, the errors introduced in the previous paragraph, by the 

misplacement of markers on landmarks; these aim to create a standardized and repeatable 

method of carrying out the analyzes, positioning of the markers, calculating the variables of 

interest and the methods of presenting the results obtained. In general, a protocol uniquely 

define the anatomical landmarks where apply the markers to follow a predisposed 

biomechanical model; define the anatomical structures of reference by identifying the 

correspondence between the position of the markers and the underlying body segment; define 

the procedures from data acquisition, but also for data processing and analysis; finally, make 

kinematic and dynamic parameters clinically interpretable [2]. 
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First of all, in a protocol, it is necessary to describe the movement of the musculoskeletal model 

during a specific task, such as walking. This implies the definition of a global and/or local set 

of axes. The global referment system in the laboratory is given by the stereophotogrammetric 

system and the calibration procedure used and the local referment system is associated with the 

analyzed task. The local referment system requires the definition of a technical referment 

system associated with the anatomical segment of interest and also an anatomical reference 

system. These systems are defined according to the anatomical axes and planes indicated in 

[Fig.1]. 

The technical referment systems can be generated by one technical cluster. This type of system 

is used to describe the movement of a segment considering the instantaneous position of at least 

three not aligned markers associated with the anatomical segment. Their trajectories are 

reconstructed by a stereophotogrammetric system. The three markers are technical markers, 

and they are placed considering the visibility requirement from at least two cameras and in 

order to contain the movement with respect to the below bone. This configuration makes the 

technique cluster with an arbitrary position and orientation, and it is dependent on the 

collocation of markers and from the analytic procedure.  This technical referral system could 

require the definition of virtual markers, that is that they do not correspond to any anatomical 

point, and they can be constructed geometrically by other markers of the technical cluster [2]. 

At the end there is also the possibility to define another technical referment system, that is called 

morphological technical referment system. As it is understood by the name, this system is linked 

to the morphology of the bone and to the task, and it is not mandatory to define the marker set. 

So, for the definition of a protocol for kinematic analysis it is necessary to define a marker set 

for the cluster technical reference system and a set of anatomical points for the anatomical 

reference system. It should be respected the conventions of three dimensionality, minimum 

three markers per segment, visibility of the markers, maximum affability of the definition of 

the anatomical planes and axes, repere points easily identifiable, high accuracy, easily 

applicability of the markers, reduction of the time in patient preparation, reduction of the 

instruments, reduction of the time for the data collection, ensure the minimum variability of 

intra/inter operator and inter subject results [20]. The following paragraphs are going to describe 

the most used gait protocols by researchers. 

1.4.1. Helen Hayes – Davis protocol 

The Davis et al. protocol (1991) [21] is the most used protocol in movement analysis 

internationally. This protocol involves a comprehensive assessment of a patient’s gait, 
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including a physical exam, a review of medical history, and various tests and measurements. It 

involves the detection of the subject's anthropometric parameters (height, weight, distance 

between the anterior iliac crests and thickness of the pelvis, leg length, distance between the 

femoral condyles or diameter of the knee, distance between the malleoli or diameter of the 

ankle), used to estimate the position of the joint centers. Subsequently it is proceeded with the 

positioning of 22 markers in specific landmarks, such as [24] [Fig.14]: 

● acromion and seventh cervical vertebra (C7) 

● iliac crests and sacrum 

● greater trochanter, lateral femoral epicondyle and a marker positioned on a bar placed 

approximately mid-thigh 

● head of the fibula, malleolus and a marker placed on a bar positioned approximately 

halfway up the tibia 

● fifth metatarsal and heel (only in the standing phase) 

 

Figure 14: Davis Marker set configuration. 

Once the markers have been placed, it has been proceed with a static acquisition in an upright 

position which allows us to record the initial positions and define the reference systems as well 

as the joint centers. The last step consists in making the subject walk, with a speed considered 

normal by the subject itself, within the acquisition volume for a number of times necessary to 
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obtain at least three good walks. Finally, from the trajectories of the markers it is possible to 

obtain the displacement, speed and acceleration of the body segments and the joint angles [20]. 

The anthropometric parameters, measured thanks to the embedded coordinate system, may be 

determined for any body segment (assumed to be rigid) that has at least three non-colinear 

markers attached to it. The location of hip, knee, and ankle joint centers are calculated relative 

to the associated embedded coordinate system origin, i.e., the hip center location relative to the 

origin of the pelvic embedded coordinate system in pelvic coordinates, the knee center location 

relative to the origin of the marker-based thigh embedded coordinates system in thigh 

coordinates, and the ankle center location relative to the origin of the marker-based shank 

embedded coordinates system in shank coordinates [24]. 

 

Figure 15: Lower extremity, embedded coordinate system used to compute the joint angles 

and as frames of reference for the joint moment reactions. 

The limb rotation algorithm is based on the determination of Euler angles with an y-x-z axis 

rotation sequence that produces as output a transformation matrix consisting of three joint 

angles in the three directions. Then according to Davis protocol, it is possible to have a scheme 

to evaluate the kinetics data for dynamics calculations: the net 3D joint moments at the hip, 

knee, and ankle are computed via Newtonian mechanics through the application of Newton’s 

Second Law and Euler’s equations of motion: 
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Mx = Ixx + αx + (Izz – Iyy) ωyωz  

My = Iyy + αy + (Ixx – Izz) ωzωx  

Mz = Izz + αz + (Iyy – Ixx) ωxωy  

Where, (Mx, My, Mz) = components of the sum of the external moments applied to the limb 

segment; (αx, αy, αz) = components of the absolute segmental angular acceleration; (ωx, ωy, ωz) = 

components of the absolute segmental angular velocity; (Ixx, Iyy, Izz) = principal mass moments 

of inertia of the segment; x,y,z = body-fixed coordinate axes, defined as the principal axes and 

located at the center of mass of the segment [24]. 

The joint power relative to each segment axis is determined from the product of the joint 

moment vector component and the associated relative angular velocity component. The 

segmental mass, mass center location and mass moment of inertia are approximated based on 

the relationship of Dempster et al. (1959) [24]. 

The Helen Hayes marker set, only for the lower part of the body (15 markers), is represented in 

the figure below: 

 

Figure 16: Helen Hayes marker set (1990). The 15-marker system that uniquely defines the 

position of each segment in 3D space. Anterior and posterior view on the right; Marker 

configuration and embedded coordinate systems on the left [21]. 
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From Helen Hayes marker set derive other two marker sets: GaitLab and Cleveland Clinic, 

respectively on the left and on the right of the following figure: 

 

Figure 17: The 15-marker system that uniquely defines the position of each segment in 3D 

space for GaitLab and with clusters for Cleveland clinic (anterior and posterior view). 

1.4.2. C.A.S.T. protocol 

C.A.S.T. (Calibrated Anatomical System Technique) protocol (1995) also known as the 

"Calgary Cambridge Foot and Ankle Protocol" [22], is designed to provide a comprehensive 

assessment of foot and ankle function during gait, with a focus on identifying the underlying 

causes of foot and ankle pain and dysfunction. This protocol was developed to define 

anatomical and technical reference systems starting from the idea of solving soft tissue artifacts, 

a problem that arises when markers are applied to the skin. 

In this protocol the technical and anatomical reference systems are defined through an 

intermediate procedure called anatomical calibration. Anatomical calibration can be 

accomplished in two ways. If the anatomical landmark is easily palpable on the skin, a marker 

is placed on that point and thus the soft tissue artifact (STA) can be overlooked. Subsequently, 

the positions of the technical cluster (technical reference system) and the marker placed on the 

anatomical landmark are acquired. This procedure is then performed for each anatomical point. 

The second way to carry out anatomical calibration consists in directing a wand, made up of 

markers placed at known distances, to the anatomical point of interest. This allows the position 
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of the point to be detected with respect to the technical reference system and this procedure 

must then be repeated for all the repere points [20]. 

After obtaining information on the position of the technical reference system with respect to 

the global reference system and on the position of the reference point with respect to the 

technical system, it proceeds with the dynamic acquisition of the technical reference system 

and finally, with a reconstruction algorithm, the global position of the anatomical landmarks is 

reconstructed. 

The CAST protocol has the advantage of minimizing STA; however, it requires a high number 

of calibrations due to the 33 markers used. 

 

Figure 18: Anatomical calibration using a wand. 

1.4.3. IOR – GAIT protocol 

IOR-Gait protocol (Leardini et al. 2007) [23], also known as the "Istituto Ortopedico Rizzoli 

Gait Protocol", is designed to provide a comprehensive assessment of gait in patients with a 

wide range of orthopedic and neurological conditions, including cerebral palsy, spina bifida, 

and osteoarthritis.  

This protocol was born as a union of the protocols described previously, combining the need to 

use a limited number of markers with the aim of obtaining accurate data. This was achieved by 

considering a few markers from the Davis protocol and adopting the calibration procedure 

characteristic of the C.A.S.T. protocol. In the IOR-Gait protocol it is preceded with the 

calibration of six markers, three for each limb; however, the estimate of anatomical landmarks 

is reduced due to the adoption of only the anatomical reference system and not the technical 

one. 
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Figure 19: IOR-Gait protocol marker set (gray points) and anatomical repere points (black 

points); the wand indicates the calibration points. 
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2. MUSCULOSKELETAL (MSK) MODELING 

2.1. Introduction 

The musculoskeletal (MSK) system is the combination of the muscular and skeletal systems in 

the human body. It provides structural support, facilitates movement, protects vital organs, and 

enables various physiological functions. It consists of bones, muscles, tendons, ligaments, and 

connective tissues. The computational approach used to simulate and analyze the interactions 

between the tissues of the MSK systems is Musculoskeletal modeling. 

Musculoskeletal models are typically built using anatomical data obtained from medical 

imaging. These data are used to create three-dimensional representations of the MSK system. 

These models include information about joint kinematics, muscle architecture and 

physiological properties. The muscles in these models are represented as actuators that can 

contract and produce forces, in fact the muscle modeling involves characterizing muscle 

properties allowing the estimation of muscle forces, joint torques and joint reaction forces 

during different activities, such as walking. The movement analysis, so for example walking, 

with MSK models, is done applying external forces and motion data as inputs and estimating 

how the parameters of the model change over time.  

 

Figure 20: Example of a MSK model. In red are represented the muscles as actuators. The 

model is represented with respect to the global coordinate system. [25] 
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2.2. Musculoskeletal modeling analysis  

2.2.1. Musculoskeletal model 

Musculoskeletal models for biomechanical simulations have become increasingly popular for 

analyzing human movement. In addition to joint kinematics and kinetics, musculoskeletal 

models allow researchers to evaluate other biomechanical variables that cannot be 

experimentally measured in vivo, such as muscle lengths and forces. Moreover, these models 

can be scaled and customized to make the musculoskeletal model subject-specific [2]. The 

entire human body is described by a multi-body articulated system: the inertial characteristics 

of the masses are known; the individual anatomical segments are approximated to rigid bodies 

rotating about a joint axis and are identified by means of anatomical landmarks. Moreover, the 

masses of the segments are assumed to be concentrated on the center of mass of the segments, 

and the lengths of these segments are defined as distances between anatomical landmarks [26]. 

Various software have been developed to model and analyze human movement (i.e., AnyBody, 

and OpenSim), and there is always an increase in literature reporting motion analyzes based on 

these software systems. With the development of these new software various musculoskeletal 

systems were born, in particular for the lower limbs, through which various parameters can be 

estimated (i.e., the length of muscle fibers, speed, acceleration) in both physiological and 

pathological conditions. First of all, to create a motion simulation, the definition of a dynamic 

model of the musculoskeletal system and its interactions with the environment is necessary. 

Usually, a musculoskeletal model consists of [26]: 

● Bodies: rigid segments representing bone components or other elements of the model 

like platforms; 

●  Joints: connect the bodies to each other; 

● Forces: the muscles that extend between the bodies, but also forces estimated by contact 

geometries; 

● Constraints: to lack degrees of freedom of the model. 

 

2.2.2. Scaling 

In order to attribute to the model, the mass and anthropometric characteristics of a particular 

subject, the generic model is scaled from which the experimental data were collected. 

The scaling process changes the dimensions of the bodies present in the model, the masses, the 

tensor of the moments of inertia and the lengths of the muscle fibers and tendons, while it does 
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not modify the characteristic curves or the maximum isometric forces of the muscles [2]. There 

are two techniques for scaling the size of model bodies: 

● Measurement-based scaling: the scale factor is determined by comparing the distance 

between the markers and the model with the position of the experimental markers 

present on the subject; 

●  Manual scaling: some predetermined scaling factors are used, in case of no static 

acquisition of the subject with markers available.  

Thus, the masses of the bodies are scaled so that the total mass equals the specific mass of the 

subject. The two methods used for scaling the masses are to preserve the mass distribution, and 

based on scale factors; in any case, the inertia tensor is recalculated based on the new 

dimensions and masses. 

 

Figure 21: Experimental markers position (blue markers) measured with motion capture. 

Virtual markers (pink markers) are placed in correspondence on anatomical models. The 

distances between experimental markers (ei) and the distances between virtual markers (mi) 

are used to calculate scaling factors [20]. 
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2.2.3. Inverse Kinematics (IK) 

Kinematic analysis represents the position, motion, and trajectories of interest points (or 

anatomical segments or the whole body) for each instant of time during the task execution of 

the subject to describe the locomotion pattern where mass and force are not considered. Since 

the morphology of the anatomical segments is very complex, it is substituted by a simple 

morphology, that is the rigid body [27]. 

The inverse kinematics (IK) problem is the problem of finding a vector of joint variables which 

produce the known desired end effector location and orientation (relative to the base frame) of 

a serial chain manipulator. Also, all the geometric link parameters are known. An end effector, 

in robotics, is the device at the end of a robotic arm, designed to interact with the environment. 

In human biomechanics analysis, the end effector is the human arm or the lower limb. An 

inverse kinematics problem could be well posed that means that exists a unique vector of joint 

angles that correspond to the desired end effector location, but it could be also ill posed because, 

for a given end effector position (x, y), there could be either no solution (in this case the target 

location is infeasible, that means, out of the reachable workspace), or because there are many 

solutions (one, two or multiple) [28]. In general, ill-posedness of the latter type can be 

interpreted as arising from two distinct phenomena. First, the inverse is non unique in a global 

sense but perhaps still well-defined locally because of the existence of multiple solution 

branches. This occurs for manipulators both with and without excess degree of freedom (DOF). 

Second, the inverse kinematics problem for a manipulator with redundant DOF is locally ill-

posed in that each solution branch contains an infinite number of solutions. In general, the set 

of solutions to the inverse kinematics problem for a redundant manipulator consists of a finite 

number of nontrivial self-motion manifolds (the solution branches) in the configuration space. 

The general problem of IK is to find a solution or multiple solutions when a 4 × 4 homogeneous 

transformation matrix is given [29]: 

𝐻𝑛
0 = [𝑅𝑛

0 𝑜𝑛
0 0 1 ] ∈ 𝑅3 

The above homogeneous transformation matrix provides the end-effector orientation (3 × 

3  matrix) 𝑅𝑛
0 and position (a 3×1 vector providing the coordinates of the end-effector origin 

𝑜𝑛
0) with respect to the base frame. From n-DOF manipulator relationship,  

H = 𝑇𝑛
0 = A1(q1)∙…∙ An(qn) 
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it can be possible to find the solution for joint variables q1, q2, q3,…, qn, unless the problem is 

ill-posed. The position of the end-effector (X) is a function of joint variables qi (X = f(qi)), then 

solving for IK, required to solve for the joint variables when the end-effector’s position is 

provided by: 

qi = f-1(X)      (1) 

To solve joint variables, there are two distinct methods [29]: 

1. Analytical Method:  

The analytical method solves Equation (1) analytically to produce all possible solutions for a 

given inverse kinematic problem. Depending on the DOF of a robot manipulator, the number 

of solutions varies. Again, For manipulators with a fewer DoF than that of the end-effector, 

there are possibilities of no solution; in cases where there are too many degrees of freedom, 

there can be infinite solutions. The analytical method is further divided into two methods called 

geometric and algebraic methods, based on how the equations are. As it moves ahead to solve 

the IK problem for different robot manipulators using the analytical method, it could be 

observed that as the number of joints increases, the complexity of solving inverse kinematic 

using the analytical method becomes more unfeasible. 

a. Geometric Method:  

The geometrical approach to solving IK decomposes the geometry of the robot manipulator, 

consisting of linkage and joints, into multiple planar problems. Converting a 3D problem to 

several 2D problems is quite straightforward for certain configurations of robots. The equations 

found after solving each 2D problem are then used to solve joint variables using algebraic 

manipulation. An example uses the geometry of the manipulator to form a trigonometric 

relationship between the desired end-effector position and joint values.  

b. Algebraic Method:  

The algebraic approach to solving IK uses the forward kinematics solution for a robot 

manipulator (X = f(qi)) and uses the homogeneous transformation matrix 𝑇𝑛
0 to find the 

necessary joint equations and solve them algebraically. There is no systematic way to solve 

multiple solutions like in the geometrical approach. It does not include observing the 

geometrical aspects of the robot manipulator to find the equations. When comparing with the 

geometric approach, the algebraic approach relies on the solution of forward kinematics 
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whereas the geometrical approach only relies on the geometry of the robot manipulator 

(obviously both require the end-effector position in the form of a 4×4 homogeneous 

transformation matrix). 

2. Numerical Iterative Method:  

Numerical solutions, unlike analytical solutions, are robot independent and may thus be used 

for any kinematic structure. Only when the polynomial equations have four or fewer degrees 

may analytical solutions be found. The analytical solution fails to provide a solution if the 

degree of the polynomial is higher. As a result, even if the DOF is less than or equal to 6, many 

manipulator geometries are not solvable. In general, higher numbers of non-zero geometric 

parameters correspond to a higher degree of polynomials, which makes the analytical approach 

unfeasible. It uses a numerical approach to solve such manipulator geometries. There are 

different ways to solve IK using the numerical method; the Newton-Raphson method is one of 

the faster ways to find solutions for nonlinear equations. 

a. Newton-Raphson method:  

It is known that a robot manipulator’s end-effector position (X) can be defined as a 

differentiable function of joint variables. Assuming that the robot manipulator is with only 

revolute joint, it can be written that: 

X = f(θ) 

Let xd and θd be the desired end-effector position and joint values to reach the desired joint 

variable. Thus, the inverse kinematic can be defined as: 

xd – f(θd)=0 

This equation represents the Newton-Raphson method, and the goal is to find θd. 

According to the Newton-Raphson method, nonlinear polynomials can be solved by making an 

initial guess and using that to converge towards a root/solution (it doesn’t necessarily solve for 

the closest root). 
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Figure 22: Solution illustration (polynomial curve) for the numerical iterative method [29]. 

The Newton-Raphson method begins with the selection of an initial guess (xn), which is closer 

to the solution xd, from where we find the slope f‘(xn). When extended it can be seen that the 

slope intersects at the x-axis giving a new point (xn+1). Then, it is evaluated the slope f‘(xn+1) at 

point xn+1. The slope then intersects at a new point xn+2 and the process repeats converging 

towards the solution xd. 

It is preferable to derive the formula for a better approximation (xn+1) according to the figure 

above. The tangent f′(xn) can be defined as 

y = f‘(xn)(x − xn) + f(xn) 

The x-intercept (y = 0) of the tangent f′(xn) will give the point xn+1. Therefore, 

0 = f(xn) + f‘(xn)(xn+1 − xn)  ∴  xn+1 = xn − (
𝑑𝑓(𝑥)

𝑑𝑥
)−1 f(xn) 

Since it has been considered a vector in IK, x is equal to 

�⃗�  =  [𝜃1  ⋮  𝜃𝑛 ] 

Thus, 

𝑥𝑛+1 = 𝑥𝑛 − (
𝜕𝐹(𝑥)

𝜕𝑥 
)−1|xn F(xn) 

Where, 
𝜕𝐹(𝑥)

𝜕𝑥 
 is the Jacobian matrix. 

The iteration will continue till it has reached the end-effector position. Sometimes, the function 

curve is such that it doesn’t reach the end-effector position even after many iterations (the 

approximation doesn’t converge towards the solution). In such cases, it is taken a new initial 

guess (xn) and starts new iterations [29]. 



44 
 

2.2.4. Ground reaction forces (GRFs) 

The branch of mechanics that studies the effects of forces on motion is known as kinetics. 

Understanding the mechanisms of joint injuries and musculoskeletal diseases requires kinetics 

analysis of human motion. Walking is a fundamental and frequently utilized motion, and thus 

can be used to understand the mechanical pathways of musculoskeletal problems of lower limb 

joints. Kinetic analysis uses mass and force resulting from the movement and impact of the 

musculoskeletal system of the human body. Impact force transmission of human body lower 

limbs is important to analyze to find out the condition of catastrophic failure or damages during 

walking [30]. The impact force can be defined as the force that occurs at the contact moment 

between heel and ground.  

Kinetic analysis of walking typically requires the coordinates of body movements and ground 

reaction forces (GRF). Ground reaction forces are the forces that could be measured based on 

the interaction of the body (in particular, the feet) with the ground, according to Newton’s third 

law: “For every action, there is an equal and opposite reaction” [31]. A person standing 

motionless on the ground exerts a contact force on it, equal to the person’s weight, and at the 

same time, an equal and opposite ground reaction force is exerted by the ground on the person. 

In order to move, the person puts force into the ground and the ground applies forces back 

(GRF) onto him/her which then propels the subject forward. There is no GRF during the swing 

phase. 

The GRF has a point of application on the foot, a magnitude, and a direction, or line of action. 

In static situations these all remain constant, with the magnitude equal to body weight. 

However, in dynamic situations such as locomotion they typically vary in a repetitive trend. 

When the line of action of the GRF lies at a distance from the center of rotation of a joint, it 

creates an “external moment.” The greater the perpendicular distance of the line of action of 

the GRF to the joint center (the “lever arm”), the greater the external moment will be. If the 

GRF is aligned close to the joint center, the external moment is smaller. If the GRF passes 

through the joint center, then no external moment is generated. The presence of an external 

moment tends to cause motion at a joint and usually requires the generation of an opposing 

internal muscle moment to create equilibrium or to control this motion. The greater the external 

moment, the greater the required internal moment likely will be. In static situations, the internal 

and external moments will be equal and opposite and therefore in equilibrium. However, in 

dynamic situations, such as locomotion, it may be necessary for the moments generated by the 

muscles to be slightly greater or less than the external moments to control angular motion at the 
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joints. During the stance phase, the GRF alignment may pass from one side of the joint center 

to the other, “switching” moments from, for example, flexion to extension.  

 
Figure 23: GRF trend during stance phase. 

There are three components of induced GRF [2]:  

1. Anteroposterior GRF (AGRF, PGRF),  this is the force exerted in the front-to-back 

direction that is the x axis. When walking forward, the ground exerts an anterior force 

(AGRF) on the foot, which helps to move forward; vice versa, when the walking arrives 

to a stop, the ground exerts a posterior force (PGRF) on the foot which helps to slow 

down, and then to stop the motion; 

2. Vertical GRF (VGRF),  this is the force exerted in the up-down direction that is the y 

axis. When jumping the ground exerts an upward force on foot which helps to lift off 

the ground; vice versa, when landing after the jump, the ground exerts a downward force 

on foot which helps to absorb the impact; 

3. Mediolateral GRF (MGRF, LGRF), this is the force exerted in the side-to-side direction 

that is the z axis. When changing directions during a motion (walking or running), the 

ground exerts a medio-lateral force on foot, which helps to move in the desired direction 

(left or right). 

In addition to these forces along the three orthogonal axes, there is also a moment along the 

vertical axis at the center of the pressure (COP) placed on the foot sole. The GRFM is measured 

using force plates. GRFM prediction is of great interest for simulating walking, and they can 

be estimated using equations for inverse dynamics of human motion. 
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Figure 24: Ground reaction forces and moment (GRFM) in typical walking. [32]. 

2.2.5. Center of pressure (COP) 

The center of pressure (COP) is the point of application of resultant ground reaction force 

(vertical, anterior-posterior, and medio-lateral components) acting on a subject’s feet during 

standing or other activities like walking (COM). If both feet are in contact with the floor, the 

COP is a point between them.  

According to D.A. Winter [33], when the body is in the standing position, the chain that 

describes the biomechanics of the body could be considered as an inverted pendulum to the 

ankle with a one degree of freedom on the sagittal plane. COM reflects on the effective 

movements of the body, while COP reflects on the muscular forces. With respect to the ankle, 

COM is the distance from the gravity force vector and COP is the distance from the ground 

reaction force vector. The equation that describes the inverse pendulum is [2]:  

COP – COM = k*COP 

That is, horizontal distance between COP and the center of gravity projection is inverse 

proportional to the acceleration of the COP movement. To maintain a correct stability, there is 

the need of moving the body mass as little as possible. Instability derives from the difference 

COM – COP that, if it is positive, the COM acceleration is positive, otherwise is negative. To 

avoid the fall, there are two mechanisms of control: 

1. Acting on COP controlling the muscular activation of the ankle. 

2. Acting on COM with relative movements of body parts. 



47 
 

 

Figure 25: The trajectory of the center of pressure (COP) in the foot. (A) The COP trajectory 

in X-Y in the stance phase. (B) The COP movement is shown along the Y-axis versus time. 

[34] 

The COP is measured with the force plates or statokinesiogram, and it is an important parameter 

in assessing postural control and balance indicating how the subject adjusts their body position 

to maintain stability during standing or dynamic activities. Deviations in the COP over time 

curve indicate issues with balance or postural control [2]. The COP movement trajectories is an 

important point also to consider explaining the behavior of walking gait. It helps in 

understanding how the body distributes and manages forces during dynamic activities and can 

provide information about gait stability and eventually gait abnormalities.  

2.2.6. Inverse Dynamics (ID) 

Simulations of human movement dynamics are useful for multiple applications such as the 

prediction of injury risks, musculoskeletal disease progression, clinical decision making, 

selecting effective patient treatment or the design of wearable robots like exoskeletons or arm 

prosthesis. 

In the field of biomechanics, inverse dynamics analysis is commonly used to investigate aspects 

of mechanics, energetics, and control of movement. An inverse dynamics analysis is typically 

based on measurement of the kinematics of the body segments, often complemented with 

measurement of selected external forces (e.g., the ground reaction force), required for a desired 

motion; but kinematics is in general inconsistent with measured external forces, i.e., result in 

nonzero residual forces and torques. 
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Inverse Dynamics is a function that takes joint orientations (and their time derivatives) as inputs 

and joint moments and forces as outputs. Not only does Inverse Dynamics give the joint 

moments required to make a certain rotation, but it also gives the forces and torques from the 

link. Inverse dynamics relies on the motion of the subject and a body model to compute the 

forces that were necessary to produce this movement [35]. 

Using these data, the net joint moments, and net joint reaction forces are calculated using 

Newton-Euler equations of motion applied to a model containing a (chain of) rigid segments. 

These equations are [36]: 

● Newton’s (linear) equation: F = 𝑚 ∙ 𝑎; 

● Euler’s (angular) equation: M = 𝐼 ∙ 𝛼; 

where F is the force, m is the mass, a is the linear acceleration, M is the moment, I is the mass 

moment of inertia and α is the angular acceleration.  

These equations describe the behavior of a mathematical model of the limb called a link-

segment model, and the process used to derive the joint moments at each joint is known as 

inverse dynamics. Classically, these equations are solved consecutively for each body segment, 

starting at a segment for which the number of unknowns matches the number of equations. This 

is easily done when the motion is an open chain, with no resistance to motion at the terminal 

segment, since all the kinematic variables are known from motion analysis.  

When there is contact of the limb with another object, such as the ground, the forces between 

the limb and the obstructing object in this closed chain must be measured. This is usually 

arranged by the technique of strain-gauging, described in the previous paragraphs used in force 

plates used to measure the ground reaction force during walking and running [36]. There is a 

potential issue with inverse dynamics though when the articulated body has a closed loop. At 

this point, the lower limbs form a loop with the supporting plane. There are workarounds to this 

issue. For example, for biped locomotion, you can adopt a simple approximate solution. The 

ground force can be distributed to each foot according to the percentage of body support on 

each leg. If a percent of the upper body weight is supported by the left leg and the remaining 

percent is supported by the right leg, then the left hip gets a percent of the force and torque from 

the pelvis and the right hip gets the remaining percent [35].  

A model is based on several assumptions, e.g.: 

● that the joints are frictionless pin-joints; 
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● that the segments are rigid with mass concentrated at their centers of mass (COMs); 

● that there is no co-contraction of agonist and antagonist muscles; 

● that air friction is minimal. 

Joint Reaction Forces 

For the calculation of this type of forces, it is used the Newton equation; the sum of Horizontal 

Forces, ∑ 𝐹x = m∙ax is calculated as [36]: 

Rxp = m∙ax - Rxd 

where p = proximal, d = distal joint, ay = acceleration of segment center of mass, COM, in y 

direction; note that d = force platform when p = ankle. 

And the sum of Vertical Forces, ∑ Fy = m∙ay as: 

Ryp = m∙ay + m∙g - Ryd 

These formulas have to be considered for each body segment of the limb. 

Joint moment 

Finally, it could be possible to calculate the joint moments, the aim of inverse dynamics. This 

time, from Euler equation, the sum of Moments, ∑ 𝑀z = 𝐼 ∙ 𝛼, is calculated as [36]: 

Mzp = Iz∙α - Mzd - Rxp∙rp∙sinθ + Ryp∙rp∙cosθ + Rxd∙rd∙sinθ - Ryd∙rd∙cosθ 

where rp = distance from segment COM to proximal joint; θ = angle of segment to the right-

hand horizontal. Or, using motion coordinates (more usual), the sum of moments is obtained 

with: 

Mzp = Iz∙α  - Mzd - Rxp∙ (yp-yCoM) + Ryp∙ (xCOM-xp) + Rxd∙ (yCOM-yd) - Ryd∙ (xd-xCOM) 

where (xCOM, yCOM) are the coordinates of the center of mass of the segment, (xp, yp) the 

coordinates of the proximal joint (xd, yd) the coordinates of the distal joint. For the 

understanding of these formulas, see the figure below. 
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Figure 26: A limb-segment model with all the vectors cited in the formulas [36]. 

It will be noted that several body segment parameters are required to be known, such as the 

relative masses and mass moment of inertia (or radius of gyration) of each segment, the 

positions of their centers of mass. These are determined mostly from published cadaver studies, 

though there now exist automatic techniques for their estimation in vivo. 

However, kinematics and forces are usually not consistent due to incorrect modeling 

assumptions and measurement errors. This is commonly resolved by introducing ‘residual 

forces and torques’ which compensate for this problem, but do not exist in reality. 

Inverse dynamics is a very powerful technique for understanding movement, but it does have 

some inherent limitations [36]: 

● it relies on assumptions that are not always valid - specifically: 

o there may be friction at the joint (e.g., in osteoarthritis); 

o the distribution of mass in the segment is not uniform, and certainly not 

concentrated at one point; 

● estimating the joint center of rotation is prone to error (Holden & Stanhope, 1998): 
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o the typical models (e.g., Helen Hayes) used rely heavily on anthropometry to 

define the hip joint center (because it is deep and so can't be directly defined by 

a marker); 

o the joint center of rotation may also (and often does) move during motion, 

especially at the knee; 

o some models (e.g., Cleveland model and six degree of freedom model used at 

NIH using marker triads) make less assumptions in this respect; 

● measurement error (Holden et al, 1997 [37]): 

o the worst of these tends to be inaccuracies in co-alignment of the force platform 

and motion analysis system; 

o marker motion on the skin, especially "wand" type markers on sticks; 

o motion at the skin-bone interface; 

o marker tracking is sometimes contaminated by errors  due to interpolation when 

markers go missing and data from some frames is lost; 

● body segment parameters (anthropometry) are approximations and generalizations: 

o very thin or overweight people, children and patients with wasted legs may have 

different proportions; 

o note that this will mainly affect the swing phase; during stance the ground 

reaction forces are dominant, and accelerations are minimal; 

o special consideration must be given to amputees, in order to use values 

appropriate to the prosthesis components; 

● error propagation (the errors of the distal joint calculations affect those at more proximal 

calculations). 

● it can only determine the net moment: 

o co-contraction of antagonistic muscles will cancel out (important in spastic 

conditions, such as cerebral palsy and stroke); 

● it cannot differentiate between different muscles: 

o e.g., we can determine that the joint moment is flexor, but not the relative activity 

of each flexor muscle; 
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3. CONTACT MODELS                                                                                                            

3.1. Description  

When two or more bodies collide, contact occurs between two surfaces of the bodies so that 

they cannot overlap in space. Contact mechanics is the study of the deformation of solids that 

touch each other at one or more points. In a broader sense, contact is a common and important 

aspect of mechanical systems, where multiple parts are assembled to compose the system. The 

objective of contact analysis is to investigate four different aspects: 

1. Whether two or more bodies are in contact; 

2. Where the location or region of contact is; 

3. How much contact force or pressure occurs in the contact interface; 

4. If there is a relative motion after contact in the interface. 

Contact is categorized as nonlinearity [38]. This can be explained in two aspects. Firstly, if two 

separate bodies come into contact, the contact force stays at zero until the bodies are separate 

and increases vertically after the two bodies come into contact. A similar phenomenon happens 

in the tangential direction under friction, where two bodies are stuck together until the tangential 

force reaches a threshold, after which continuous sliding occurs without further increasing the 

tangential force. Such an abrupt change in contact force and slip makes the problem highly 

nonlinear. Secondly, in order to be a well-posed problem in mechanics, either displacement 

(kinematics) or force (kinetics), but not both, must be given for every material point. In fact, a 

central distinction in contact mechanics is between stresses acting perpendicular to the 

contacting bodies' surfaces (known as normal stress) and frictional stresses 

acting tangentially between the surfaces (shear stress).  

Normal contact mechanics or frictionless contact mechanics focuses on normal stresses caused 

by applied normal forces and by the adhesion present on surfaces in close contact, even if they 

are clean and dry. Frictional contact mechanics emphasizes the effect of friction forces [39].  

There are different types of contact body models: 

● Elastic 

● Plastic 

● Visco-Elastic 

In static or dynamic contact. 

In order to describe contact mechanics, contact force formulations like the Hertz theory and 

elastic foundation modeling (EFM) have been used [40].  
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Hertzian contact theory is a classical theory of contact mechanics and even though the 

derivation of this theory is relatively difficult, the final solution is a set of simple analytical 

equations relating the properties of the system to the developed stress. Hertz contact theory is 

derived from the analytical solution of elasticity theory equation under half-space (i.e., either 

of the two parts into which a plane divides the three-dimensional Euclidean space) 

approximation [41]: 

1. Surfaces are infinitely large half-spaces. 

2. Pressure profile is parabolic (which assumes that the shape of the bodies in contact can 

also be approximated well with parabolic shapes, e.g., sphere, ellipse, or a cylinder) 

3. All the assumptions of the classical theory of elasticity apply (small strain, 

homogeneous material). 

Elastic Foundation Modeling (EFM) is a technique used to analyze the behavior of structures 

resting on elastic or viscoelastic foundations. The technique involves developing a 

mathematical model for the foundations of a system and considering the interaction between 

the foundation and the system. These models range from simple to complex and have been 

applied in structural mechanics, bio-devices, and composite structures. The Winkler model is 

one of the simplest presentations for an elastic foundation. It was first proposed by Winkler to 

model a Euler–Bernoulli beam on an elastic foundation. The model assumes that the foundation 

behaves like a series of independent linear springs supporting the structure [42]. 

The analytical method described by Hertz assumes that the size of the contact area is small 

when compared to the curvature radii of the surfaces in the initial contact point. It is a good 

approximation for small strains and non-conforming solids but is limited to simple geometric 

objects like spheres or cylinders. Alternatively, EFM assumes that contacting solids may be 

considered rigid bodies but with a thin layer of elastic material at the surfaces. The geometry 

of each surface, which can be arbitrarily complex, is approximated with a triangular mesh. A 

spring is placed at the centroid of each triangle, discretizing the contact areas, and enabling the 

computation of contact forces for each discrete element, independent of each other [40]. 
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Figure 27: Elastic Foundation method formulation [40]. 

Based on Hertz elastic contact theory, Hunt and Crossley [43] developed a contact force model 

in 1975 very used in a wide series of applications through the years. The popularity of the Hunt 

and Crossley contact force model is owed to its simplicity and suitability to treat impacts in 

dynamical systems, since it directly depends on the material, geometric and kinematic 

properties of the colliding bodies. Moreover, this model avoids the computation of significant 

contact forces, either repulsive or attractive, when the penetration is close to zero [44]. 

However, it can be a source of computational difficulties, such as the generation of attractive 

forces during the impact period, which are not acceptable from the physical point of view. This 

occurs when the contact forces are not the only ones governing the motion of the colliding 

bodies. In addition, the Hunt and Crossley contact force model does not behave properly for 

collisions with high impact velocity. In fact, as mentioned in the original paper, this model was 

developed for low impact velocities. Another limitation associated with the Hunt and Crossley 

solution deals with the estimation and identification of the contact parameters.   

 

3.2. Contact spheres models 

3.2.1. Impact between a sphere and a half-space 

An elastic sphere of radius R incidents an elastic half-space understood as ground, where total 

deformation is d, causing area a of radius [39]: 

a = √𝑟 ∙ 𝑑 

The applied force F is related to the displacement d by: 

𝐹 =
4

3
𝐸 𝑟

1
2 ∙ 𝑑

3
2 
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Where E comes from: 

1

𝐸
=

1 − 𝜈1
2

𝐸1
+

1 − 𝜈2
2

𝐸2
 

And 𝐸1, 𝐸2 are the elastic moduli 𝜈1, 𝜈2 the Poisson’s ratios associated with each body. The 

distribution of normal pressure in the contact area as a function of distance from the center of 

the circle is  

𝑝(𝑟)  =  𝑝0(1 −
𝑟2

𝑎2
)

1
2 

where 𝑝0 is the maximum contact pressure given by 

𝑝0  =  
3𝐹

2𝜋𝑎2
=

1

𝜋
(
6𝐹𝐸2

𝑟2
)

1
3 

The radius of the circle is related to the applied load F by the equation 

𝑎3 =
3𝐹𝑟

4𝐸
 

Thus, the total deformation d is related to the maximum contact pressure by 

𝑑 =  
𝑎2

𝑟
= (

9𝐹2

16𝐸2𝑟
)

1
3 

The maximum shear stress occurs in the interior at 0.49a for ν = 0.33. 

 

Figure 28: Contact between a sphere and a half-space [39]. 

3.2.2. Impact between two spheres 

For this purpose, let consider the representation of [Fig.29], in which the two spheres 1 and 2 

have masses m1 and m2, respectively. In order to keep the analysis simple, let assume that the 

two spheres describe a one-dimensional movement with constant velocities and without any 

external applied force. Thus, before the impact, the velocity of sphere 1 is higher than the 

velocity of sphere 2, which means that sphere 1 impacts sphere 2. After the termination of the 

impact, the velocity of sphere 1 is lower than the velocity of sphere 2, which implies that the 

two spheres separate from each other when the impact ends. During the impact process, the 
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transition between pre- and post-impact velocities is considered to be smooth. Furthermore, the 

duration of the impact is assumed to be finite to facilitate the representation of the kinematic 

and dynamic quantities [44]. 

 

Figure 29: a) One-dimensional central impact between two solid spheres; b) Deformation and 

contact force evolutions during the impact; c) Velocities of the spheres before, during, and 

after the impact; d) Accelerations of the spheres before, during, and after the impact [44]. 

When the two spheres, represented in [Fig.29], are in contact, deformation (penetration or 

indentation) occurs in the vicinity of the contact zone, resulting in reaction contact forces that 

act over the impact period. The geometric condition that permits evaluating the relative 

penetration between the two spheres can be expressed as [44] 
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𝛿 = 𝑅1 + 𝑅2 − (𝑥2 − 𝑥1) 

where x1 and x2 represent the horizontal position of the spheres 1 and 2, and R1 and R2 denote 

the corresponding radii. 

One of the most popular contact force models developed to handle the impact between two 

solid elastic and isotropic spheres is the one based on the hertzian contact theory. The Hertz's 

contact force model can be expressed as  

𝐹 =  𝐾𝛿𝑛 

in which K represents the contact stiffness parameter, δ is the local relative penetration between 

the surfaces of the two spheres, and n is the nonlinear power exponent determined from material 

and geometric properties of the local region of the contacting bodies. According to the hertzian 

contact theory, the power exponent n is equal to 3/2 for the case in which a parabolic 

distribution of contact stresses is considered. For two spheres of isotropic materials in contact, 

the contact stiffness parameter is a function of the radii of the spheres 1 and 2 and the material 

properties in the form 

𝐾 =
4

3(𝜎1 + 𝜎2)
√

𝑅1𝑅2

𝑅1 + 𝑅2
 

where the material parameters σ1 and σ2 are given by 

𝜎𝑖 =
1−𝜐𝑖

2

𝐸𝑖
 (𝑖 =  1,2) 

and the quantities νi and Ei represent the Poisson's ratio and Young's modulus associated with 

each sphere, respectively. For other contacting geometries, the contact stiffness is evaluated 

using different expressions, which always depend on the local geometry and material properties 

[44]. 

[Fig.27 b-c-d], show the evolution of the deformation and contact force at the impact duration, 

as well as the velocities and accelerations of each sphere before, during and after the collision. 

In these diagrams,  𝑡(−) represents the instant just before the impact, 𝑡(+) denotes the instant 

immediately after the impact, and Δt is the duration of the impact. In the impact process 

represented in [Fig.27], the relative approaching velocity, and the relative separating velocity 

are defined as, respectively 

�̇�
(−)

= 𝑣1
(−)

− 𝑣2
(−)

 & �̇�(+) = 𝑣1
(+)

− 𝑣2
(+)
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The kinematic coefficient of restitution, which is based on Newton’s impact theory, can be 

established as the quotient between the relative normal velocities of the colliding bodies just 

after and just before the impact. The Newton's hypothesis can be written as 

𝑐𝑟 = −
�̇�(+)

�̇�(−)
 

where �̇�
(−)

 and  �̇�
(+)

 represent the relative normal velocities of the colliding bodies 

immediately before and after the impact, respectively. The coefficient of restitution constitutes 

the foundation of the impact models of mechanical systems. For a fully elastic collision, this 

parameter is equal to unity, while for a fully inelastic collision, the coefficient of restitution is 

null. The most general and predominant type of collision involves a coefficient of restitution, 

the value of which varies between 0 and 1 [44]. 

The Hunt and Crossley [43] contact force model is composed of two parcels, namely the elastic 

(conservative) and viscous (dissipative) components, and can be written as  

𝐹 =  𝐾𝛿𝑛 + 𝜒𝛿𝑛�̇� 

where K represents the contact stiffness, δ is the penetration, n denotes the nonlinear 

exponent, χ is the hysteresis damping factor, and �̇� is the penetration velocity. According to the 

Hunt and Crossley approach, the coefficient of restitution can be related to the impact velocity 

as 

𝑐𝑟 = 1 − 𝛼�̇�(−) 

in which α represents a parameter that depends on the material, geometry, and kinematics of 

contacting bodies, and �̇�
(−)

 represents the velocity at the beginning of the contact. It should be 

noticed that, according to Hunt and Crossley work, the relation given by the last equation is 

valid for relatively low impact velocities. Hunt and Crossley also presented a formulation for 

the hysteresis damping factor as 

𝜒 =
3

2
𝛼𝐾 

Thus, combining last two equations yields the following expression for the hysteresis damping 

factor 

𝜒 =
3(1 − 𝑐𝑟)

2

𝐾

�̇�(−)
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which can easily be determined since the values of the coefficient of restitution and contact 

stiffness parameter are characteristics of the pair of contacting bodies. Finally, introducing the 

last expression of hysteresis damping factor into the equation of contact force, permits 

obtaining the Hunt and Crossley contact force model written in a convenient form as 

𝐹 = 𝐾𝛿𝑛[1 +
3(1 − 𝑐𝑟)

2

�̇�

�̇�(−)
] 

 

Figure 30: Central impact between two solid spheres modeled with the Hunt and Crossley 

contact force model [44]. 

3.3. Musculoskeletal models application 

Musculoskeletal models can be divided into two main categories: finite elements (FE) models 

and multibody models [40]. 

3.3.1. Finite elements (FE) musculoskeletal models 

Finite Element Analysis, or FEA, is the simulation of a physical phenomenon using a numerical 

mathematical technique called the Finite Element Method, or FEM, useful for problems with 

complicated geometries, loadings, and material properties where analytical solutions cannot be 

obtained [45]. The FEM is a general numerical method for solving partial differential 

equations in two or three space variables (i.e., approximate solution of boundary value 

problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts 

that are called finite elements. This is achieved by a particular space discretization in the space 

dimensions, which is implemented by the construction of a mesh of the object: the numerical 

domain for the solution, which has a finite number of points. The finite element method 

formulation of a boundary value problem finally results in a system of algebraic equations. The 

method approximates the unknown function over the domain. The simple equations that model 

these finite elements are then assembled into a larger system of equations that models the entire 

problem. The FEM then approximates a solution by minimizing an associated error function 

via the calculus of variations.  
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There have been some FE MSK models, especially models of the foot. FE analyses can predict 

the load distribution between the foot and supporting structures and provide information on the 

internal stress and strain states of the ankle-foot complex [40]. Simple foot FE models have 

been developed to study the stress distribution within the foot at different time points during 

stance phase [46] or to evaluate stress distributions in the plantar soft tissue [47]. These models 

described the foot as a unique segment and often used rough geometries of the bones. Other 

simple models were used to determine the stress distribution in the foot plantar soft tissue when 

using insoles. FE analysis has provided valid insights into different aspects of lower limb 

musculoskeletal biomechanics, e.g., foot joints stress distribution and plantar distribution on 

the foot soft tissue. However, FE musculoskeletal studies are limited to static or quasi-static 

evaluations due to the required demanding computational power. 

 

Figure 31: Finite Element (FE) model described in Cheung and Zhang (2005): (A) soft 

tissues; (B) bony and ligamentous structures [40]. 

When the physical phenomena is a contact between two or more bodies, the finite element 

equation solves for unknown information with given information. If the boundary value 

problem is, for example, the displacement of the bodies’ boundary, and the displacement is 

given, reaction force should be calculated with FEM; on the other hand, on the traction 

boundary, if the applied force is given, the corresponding displacement is to be calculated.  In 

case of contact, however, both displacement and contact force are unknown, except for very 

limited cases; that is, the contact boundary is a part of the solution. Therefore, the finite element 

analysis procedure must find if a material point in the boundary of a body is in contact with the 

other body and if it is in contact, the corresponding contact force must be calculated. Since the 

contact force at a material point can affect the deformation of neighboring points, this process 
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needs to be repeated until finding the right states for all points that are possible in contact. For 

the case of an elastic system, equilibrium can be described as finding a displacement field that 

minimizes the potential energy. Contact can then be considered as a constraint of the 

optimization formulation, such that the potential energy is minimized while satisfying the 

contact constraint; that is, a body cannot penetrate the other body. The constrained optimization 

problem can be converted into an unconstrained one by using the penalty regularization or 

Lagrange multiplier methods. Therefore, most contact algorithms are derived based on these 

two methods. 

To run an FEA simulation, a mesh is first generated that makes the object of interest discrete, 

containing millions of small elements that make up the overall shape. This is a way of 

transcribing a 3D object into a series of mathematical points that can then be analyzed. The 

density of this mesh can be altered based on how complex or simple a simulation is needed. 

Calculations are run for every element or point of the mesh and then combined to make up the 

overall final result for the structure. Since the calculations are done on a mesh rather than the 

entirety of a physical object, some interpolation needs to occur between the points. These 

approximations are usually within the bounds of what's needed. The points of the mesh where 

the data is known mathematically are referred to as nodal points and tend to be grouped around 

boundaries or other areas of change in an object's design [45].  

A mesh is a representation of a larger geometric domain by smaller discrete cells. A mesh 

partitions space into elements (or cells or zones) over which the equations can be solved, which 

then approximates the solution over the larger domain. Element boundaries may be constrained 

to lie on internal or external boundaries within a model. Higher-quality (better-shaped) elements 

have better numerical properties, where what constitutes a "better" element depends on the 

general governing equations and the particular solution to the model instance. 

The primary characteristics of a finite element are embodied in the element stiffness matrix. 

For a structural finite element, the stiffness matrix contains the geometric and material behavior 

information that indicates the resistance of the element to deformation when subjected to 

loading. Such deformation may include axial, bending, shear, and torsional effects. 

In finite element analysis, solution accuracy is judged in terms of convergence as the element 

“mesh” is refined. There are two major methods of mesh refinement. In the first, known as h-

refinement, mesh refinement refers to the process of increasing the number of elements used to 

model a given domain, consequently, reducing individual element size. In the second method, 
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p-refinement, element size is unchanged, but the order of the polynomials used as interpolation 

functions is increased. The objective of mesh refinement in either method is to obtain sequential 

solutions that exhibit asymptotic convergence to values representing the exact solution. 

3.3.1.1. Spheres’ mesh 

Most of the geometric objects like points, lines, triangles, planes, pyramids, and cubes, are 

perfectly representable in modern graphics hardware. When users face the problem of creating 

a mesh for a sphere, trade-offs must be made between quality and construction, memory and 

rendering costs. There are several methods to do this type of mesh, but there will be explained 

four methods, analyzing their characteristics and comparing them (O. S. Cajaraville, 2015 [48])  

● Standard sphere – UV Sphere: This is the most common implementation of a sphere 

mesh and can be found in almost any 3D toolset. This method divides the sphere using 

meridians (lines from pole to pole) and parallels (lines parallel to the equator). It 

produces faces with a bigger area near the equator and smaller ones close to the poles. 

The faces are of triangles, at the poles, and quads. 

● Normalized Cube: This method uses a uniformly subdivided cube where each vertex 

position is normalized and multiplied by the sphere radius. This creates a non-uniformly 

subdivided sphere where the triangles closer to the center of a cube face are bigger than 

the ones closer to the edges of the cube. 

● Spherified Cube: This method is based on a subdivided cube as well, but it tries to create 

more uniform divisions in the sphere. The area of the faces and the length of the edges 

suffer less variation, but the sphere still has some obvious deformation as points get 

closer to the corners of the original cube. 

● Icosahedron: An icosahedron is a polyhedron composed of 20 identical equilateral 

triangles and possesses some interesting properties: Each triangle has the same area, and 

each vertex is at the same distance from all its neighbors. To get a higher number of 

triangles there is the need to subdivide each triangle into four triangles by creating a 

new vertex at the middle point of each edge which is then normalized, to make it lie in 

the sphere surface. This breaks the initial properties of the icosahedron; the triangles are 

not equilateral anymore and neither the area nor the distance between adjacent vertices 

is the same across the mesh. An added problem with this method is that it can only 

increase the number of faces by four each time. But it is still a better approximation by 

almost any measure excluding its number of triangles. 
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The sphere mesh will be an imperfect representation as it is using triangles to approximate the 

surface of the sphere. The metrics used to compare the different implementations is the distance 

from a number of points on the sphere surface to the mesh created, and the ratio between the 

expected triangle area and the actual triangle area. It turned out that the UV sphere is the worst 

option in terms of accuracy for a given number of triangles, but it is still the easiest algorithm. 

But if there is the need to render a lot of spheres or there is the need of highly tessellated spheres, 

the other algorithms are better [48].  

 

Figure 32: Comparison of the four methods to mesh a sphere illustrated. All around 400 

triangles [48]. 

 

3.3.2. Musculoskeletal multibody models 

Musculoskeletal multibody models are described by rigid segments (bones) connected through 

joints actuated by muscle tendon actuators [40]. A rigid body is a system of particles, where the 

distance between any two particles is fixed, also when it is in motion, and this distance is 

described by a shift vector that is in function only of the coordinates of the two particles, 

considered as points. In fact, all the particles of which the rigid body is constituted have a rigid 

motion, that is, they maintain the features, the distances, and a fixed respect to an external 

observer [49].  

With an observer is intended an orthogonal cartesian system with a fixed orientation in which 

are defined an origin, a length measurement unit and three orthogonal axes i.e., x, y, z. The 

problem of rigid motion could be reconducted to the relative motion of two referral systems in 

the three-dimensional Euclidean space, that is the local system associated with the rigid body 
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that moves with respect to the environment (for example the laboratory), represented by the 

global referral system. To define the position of a rigid local system with respect to a rigid 

global system, it is used a position vector and an orientation matrix (director cosines matrix). 

The fundamental formula of rigid motion, in vectorial form is: 

Ṗ = Ȯ + ω ∧ (P – O) 

Where Ṗ is the vector of coordinates of the velocity in the global system of the rigid body point; 

Ȯ is the vector of coordinates of the velocity of the origin of the global system; (P – O) is equal 

to the product of position vector in the local system and the orientation matrix; ω is the angular 

velocity. The rigid body has six degrees of freedom according to Euler-Cardan convention: 

3DOF refers to the three rotations around the three axes and the other 3 are referred to the three 

shifts along the three distal axes. The two researchers, Grood and Suntay, defined a joint 

coordinate system that provided a simple geometric description of the three-dimensional 

rotational and translational motion between two rigid bodies. 

 

Figure 33: Joint coordinate system with floating axis applied to the knee by Grood and Suntay 

(1983). [50]. 

It is assumed that internal forces are generated to hold the relative positions fixed. These internal 

forces are all balanced out with Newton’s third law, so that they all cancel out and have no 

effect on the total momentum or angular momentum. The rigid body can actually have an 
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infinite number of particles, spread out over a finite volume. The properties of shape, total mass, 

center of mass and rotational inertia tensor, for a rigid body, remain constant. The shape is 

defined by a closed triangular mesh of integer vertex indices. 

3.3.2.1. AnyBody  

The AnyBody modeling system (AMS) is a state-of-the-art musculoskeletal modeling and 

simulation software for biomechanical analysis founded by researchers from Aalborg 

University [51]. The AnyBody modeling allows users to create a full body detailed MSK model 

and simulate internal body loads as e.g., muscle activity, muscle forces and joint reaction forces. 

AMS has a graphical user interface (GUI) including several features such as the AnyScript 

editor, progress, and information window, and the model and chart view. AnyScript is an object-

oriented programming language used within the AnyBody Modeling System. It is specially 

designed for describing the workings of the human body and its interactions with environmental 

objects such as exoskeletons, workplaces, etc. The elements of the models in AMS are mostly 

mechanical in nature and the most important ones are: 

● Segments: representation of bones and other rigid elements of models.  

● Joints: They connect segments and allow them to articulate with respect to each other. 

● Drivers: Specification of the movement of the model should perform and provide power 

input as motors. 

● Kinematics measures: Abstraction representation of kinematical constraints. 

● Forces: Forces applied to the model. 

AMS provides the user of an embedded chart view in which he/she could review analysis results 

e.g., individual muscle activity and joint reaction forces and get a graphical representation of 

the same. Moreover, AMS handles closed kinematic chains and it comes with inbuilt solvers 

for computing of forces and moments based on kinematics of the human body. AMS has the 

ability to predict ground reaction forces (GRF) so the user can make inverse dynamics models 

based on recorded motion without GRF force measurement.  

A use of this server was for example, those of Kim, et al. (2019) [52]. The authors developed a 

five-segment musculoskeletal foot model by modifying the detailed foot model in the AnyBody 

Managed Modeling Repository and integrated it with a full-body musculoskeletal model for 

quantifying moments in foot joints. This five-segment foot model consists of five rigid 

segments (talus, calcaneus, midfoot, metatarsals, and toes) and five joints (tibiotalar, subtalar, 

Chopart’s, Lisfranc, and MTP joints). The foot model has 9 rotational degrees of freedom 
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(DoFs), 21 muscles and 17 ligaments. The kinematics of the joints were estimated in the 

kinematics optimization routine in the AnyBody Modeling System. Scales of the five foot-

segments and marker positions were adjusted to minimize the difference between the marker 

locations on the model. The GRF measured at the center of the foot pressure was divided by 

the ratio of the sum of the pressure under each foot segment. To input distributed GRFs into the 

foot segments, multiple nodes were attached to each foot segment (calcaneus: 31, midfoot: 36, 

metatarsals: 73, and toes: 30), and the total number of nodes was 170 as it can be seen in the 

figure [Fig.32]. The nodes in a segment could provide the GRF that was distributed to the 

segment using foot pressure data. Joint kinematics and distributed GRFs were input to the full-

body musculoskeletal model with the authors’ custom foot. An inverse dynamics-based 

optimization in the AnyBody Modeling System was performed at each instance of the input 

data to estimate the kinetics of the human musculoskeletal system, which included forces of the 

muscles and ligaments. The optimization minimized the maximum activation levels (force 

divided by strength) of the muscle actuators. The force between two adjacent bones was 

calculated at each joint during the kinetics estimation. 

 

Figure 34: The 170 nodes in a five-segment MSK foot model that provide the ground reaction 

force (GRF) were distributed to this segment [52]. 

 

3.3.2.2. OpenSim 

OpenSim is a freely available software package that enables the user to build, exchange, and 

analyze computer models of the musculoskeletal system and dynamic simulations of 

movement. OpenSim was introduced at the American Society of Biomechanics Conference in 

2007. Successively, an application programming interface (API) was added, allowing 

researchers to access and customize OpenSim core functionality. In the last versions of the 

software, the API was extended to MATLAB and Python and a new visualizer was added. Since 

the initial release, thousands of people have used the software in a wide variety of applications, 

including biomechanics research, medical device design, orthopedics and rehabilitation 
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science, neuroscience research, ergonomic analysis and design, sports science, computer 

animation, robotics research, biology, and education [53]. 

The software provides a platform on which the biomechanics community can build a library of 

simulations that can be exchanged, tested, analyzed, and improved through multi-institutional 

collaboration. The core software is written in C++, and the graphical user interface (GUI) is 

written in Java. OpenSim plug-in technology makes it possible to develop customized 

controllers, analyses, contact models, and muscle models among other things. The user can 

analyze existing models and simulations and develop new models and simulations from within 

the GUI. Moreover, the user with the GUI can import motion analysis data, scale a computer 

model of the musculoskeletal system, perform inverse dynamics analysis, and plot results all 

from the graphical interface. 

OpenSim includes a wide variety of features. Some of the most useful features include taking 

pictures and videos of MSK models, plotting the results of the analysis; scaling the size of MSK 

models, performing inverse kinematics (IK) and dynamics (ID) but also forward dynamics and 

analyzing dynamic simulations.   

In formulating the equations-of-motion (i.e., the system dynamics), OpenSim employs 

Simbody which is an open-source multibody dynamics solver. In Simbody and OpenSim, the 

body is the primary building block of the model. Each body in turn owns a joint that connects 

it to an existing parent body. The joint defines the coordinates and kinematic transforms that 

govern the motion of that body with respect to its parent body. Within the model all bodies are 

contained in a BodySet [53].  

Thus, to start the model, there is the need to define a set of rigid bodies that represent the system. 

In the <BodySet> section, there are defined this group of bodies, with the name, mass 

properties, and visible objects associated with each body.  

For Geometries, OpenSim supports more types/shapes such as Brick, Sphere, Cylinder, Cone, 

and Ellipsoid. In the model file it can be specified not only the shape geometry, but also the 

color, display preferences, and scale factors. These properties that specify how the geometry is 

displayed are grouped under the <Appearance> tag and can be specified for each Geometry 

object separately.  

In addition to the set of rigid bodies, there is also the need to define the relationship between 

those bodies (i.e., joint definitions). In the figure below [Fig.], a joint (in red) defines the 
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kinematic relationship between two frames (B and P) each affixed to a rigid body (the parent, 

Po, and the body being added, Bo) parameterized by joint coordinates  

 

Figure 35: Parent (green) and child (blue) bodies kept together by the joint (red) [53]. 

A body is a moving reference frame (Bo) in which its center-of-mass and inertia are defined, 

and the location of a joint frame (B) fixed to the body can be specified. Similarly, the joint 

frame (P) in the parent body frame (Po) can also be specified. Flexibility in specifying the joint 

is achieved by permitting joint frames that are not coincident with the body frame. In the last 

version of OpenSim, this flexibility was enhanced via the introduction of the Frame class 

hierarchy. There are three main types of Frames:  

● Ground (each model starts with a ground frame) 

● Body  

● PhysicalOffsetFrame 

All three of these frames are called PhysicalFrames because they either are a rigid body or are 

fixed to a rigid body. In this OpenSim version, a joint connects two PhysicalFrames (parent and 

child).  

In order to actuate the model, there is the need to define the forces that will be applied to the 

model. Just like bodies are defined within the <BodySet> section, forces are defined in 

the <ForceSet> section of the model file. Forces come in two varieties:  

● passive forces like springs, dampers, and contact; 

● active forces like springs, idealized linear or torque actuators, and muscles; 
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Active forces that require input (controls) supplied by the user or by a controller are called 

Actuators and are a subset of the ForceSet. OpenSim has several built-in forces that include: 

PrescribedForce, SpringGeneralizedForce, BushingForce, as well as HuntCrossleyForce and 

ElasticFoundationForce to model forces due to contact. 

A model may have some specific contact geometry that is associated with a model, in fact they 

are required when defined contact forces (for example, Hunt-Crossley Force) are. In OpenSim, 

contact geometry can be an analytical shape, such as a half-place, sphere, or cube, or a user-

defined shape represented in a geometry file. The Sphere class reference is a contact geometry 

subclass representing a sphere centered at the origin, in which it could be defined as the radius 

besides the other features of contact geometry set class, i.e., location, orientation and/or 

filename [53]. 

3.3.2.3. OpenCap 

Due to costs and the requirement of experts, despite the utility of the instruments of the optical 

motion capture, metrics of movement dynamics are not often used in clinical trials. For this 

reason, visual movement evaluations are used, that require basic instruments and there is no 

need for the laboratory environment to inform clinical decisions and as outcomes for clinical 

trials. With this aim, it is developing a new open-source platform, called OpenCap, that from 

video-based motion measures three-dimensional kinematics and kinetics of human movement 

with two or more smartphones and so without specialized hardware, software, or expertise [54]. 

OpenCap provides the use of two iOS devices (iPhone or iPad), as substitution of the video 

cameras that are the gold standard optical motion capture, to register the videos of the human 

movement. This approach offers alternatives to motion capture to estimate joint kinematics, but 

it offers no ready way to estimate ground reaction forces and moments, which are essential 

components for MSK modeling.  

As [55] article reported, there are some alternatives to force plates. For example, there are the 

instrumented shoes and pressure insoles that again are expensive and not perfectly accurate or 

there are methods such as foot ground non-contact models, like the calculation of the distance 

between the feet and the center of pressure (COP) for the estimation of GRFM, but these 

methods do not allow the calculation of all components. Foot ground contact models that use 

visco-elastic force elements or muscle-like force elements have a high accuracy when they are 

subject-specific, so these methods estimate all components of GRFM using kinematic data.  
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3.4. Machine learning 

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses 

on the use of data and algorithms to imitate the way that humans learn, gradually improving its 

accuracy.  

In general, machine learning algorithms are used to make predictions or classification. Based 

on some input data, which can be labeled or unlabeled, the algorithm will produce an estimate 

about a pattern in the data. There is an error function that evaluates the prediction of the model. 

If there are known examples, an error function can make a comparison to assess the accuracy 

of the model [56]. 

About Model Optimization Process, if the model can fit better to the data points in the training 

set, then weights are adjusted to reduce the discrepancy between the known example and the 

model estimate. The algorithm will repeat this “evaluate and optimize” process, updating 

weights autonomously until a threshold of accuracy has been met.  Machine learning models 

fall into three primary categories. 

● Supervised machine learning             

Supervised learning, also known as supervised machine learning, is defined by its use of labeled 

datasets to train algorithms to classify data (classification supervised learning) or predict 

outcomes (regression supervised learning) accurately. As input data is fed into the model, the 

model adjusts its weights until it has been fitted appropriately. This occurs as part of the cross-

validation process to ensure that the model avoids overfitting or underfitting. Supervised 

learning helps organizations solve a variety of real-world problems. Supervised learning 

methods are for example Bayesian classifiers for classification; support vector machines 

(SVM), nearest neighbor (NN), Random forest, Ada-boost, and artificial neural networks 

(ANN) for regression. 

● Unsupervised machine learning 

Unsupervised learning, also known as unsupervised machine learning, uses machine learning 

algorithms to analyze and cluster unlabeled datasets. These algorithms discover hidden patterns 

or data groupings without the need for human intervention. This method’s ability to discover 

similarities and differences in information makes it ideal for exploratory data analysis, cross-

selling strategies, customer segmentation, and image and pattern recognition. It’s also used to 

reduce the number of features in a model through the process of dimensionality reduction. 



71 
 

Principal component analysis (PCA) and singular value decomposition (SVD) are two common 

approaches for this. Other algorithms used in unsupervised learning include gaussian mixture 

models, k-means clustering, and probabilistic clustering methods. 

● Semi-supervised learning   

Semi-supervised learning offers a happy medium between supervised and unsupervised 

learning. During training, it uses a smaller labeled data set to guide classification and feature 

extraction from a larger, unlabeled data set. Semi-supervised learning can solve the problem of 

not having enough labeled data for a supervised learning algorithm. It also helps if it’s too costly 

to label enough data [56]. 

3.4.1. Artificial Neural Network (ANN) 

Artificial neural networks (or simply neural networks (NNs)) are a branch of unsupervised 

machine learning models that are built using principles of neuronal organization discovered by 

connectionism in the biological neural networks constituting animal brains [57].  

ANNs are composed of artificial neurons which are conceptually derived from 

biological neurons. Each connection, like the synapses in a biological brain, can transmit a 

signal to other neurons. An artificial neuron receives signals then processes them and can signal 

neurons connected to it. The "signal" at a connection is a real number, and the output of each 

neuron is computed by some non-linear function of the sum of its inputs. The connections are 

called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. The 

weight increases or decreases the strength of the signal at a connection. Each artificial neuron 

has inputs and produces a single output which can be sent to multiple other neurons. The inputs 

can be the feature values of a sample of external data, such as images or documents, or they can 

be the outputs of other neurons. The outputs of the final output neurons of the neural net 

accomplish the task, such as recognizing an object in an image. 

To find the output of the neuron we take the weighted sum of all the inputs, weighted by 

the weights of the connections from the inputs to the neuron. It has been added a bias term to 

this sum. This weighted sum is sometimes called activation. This weighted sum is then passed 

through a (usually nonlinear) activation function to produce the output. The neurons are 

typically organized into multiple layers. Neurons of one layer connect only to neurons of the 

immediately preceding and immediately following layers. The layer that receives external data 

is the input layer. The layer that produces the ultimate result is the output layer. In between 
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them are zero or more hidden layers. Single layer and unlayered networks are also used. 

Between two layers, multiple connection patterns are possible. They can be 'fully connected', 

with every neuron in one layer connecting to every neuron in the next layer. They can 

be pooling, where a group of neurons in one layer connects to a single neuron in the next layer, 

thereby reducing the number of neurons in that layer. Neurons with only such are known 

as feedforward networks. Alternatively, networks that allow connections between neurons in 

the same or previous layers are known as recurrent networks [57]. 

 

Figure 36: Example of Artificial neural network (ANN) architecture [58]. 

Artificial neural networks learn (or are trained) by processing examples, each of which contains 

a known "input" and "result", forming probability-weighted associations between the two, 

which are stored within the data structure of the net itself. The training of an artificial neural 

network from a given example is usually conducted by determining the difference between the 

processed output of the network (often a prediction) and a target output. This difference is the 

error. The network then adjusts its weighted associations according to a learning rule and using 

this error value. Successive adjustments will cause the neural network to produce output that is 

increasingly similar to the target output. After a sufficient number of these adjustments, the 

training can be terminated based on certain criteria. Then are going to add more examples, so 

artificial neural networks systems learn to perform any tasks without being programmed with 

task-specific rules [57]. 



73 
 

ANNs are an extraordinarily flexible tool for nonlinear modeling and are especially useful in 

gait analysis. Many studies  have shown that ANNs can be useful in predicting or distinguishing 

gait patterns. Recently, new studies predicting lower body joint loads using an ANN instead of 

an inverse dynamic approach have been reported. However, typically an ANN needs training 

data to make a prediction. Seung Eel Oh et al. (2013) study, developed an improved method for 

predicting GRFM for a normal gait with high accuracy and without the need for GRF-measuring 

devices during walking. The network utilized a back-propagation algorithm and the gradient 

steepest descent method (Schalkoff, 1997) [58]. The hidden layer with three nodes consisted of 

a bipolar sigmoid transfer function. In this study, the gait data  are considered in the ANN 

training and also used as a test sample to validate the developed ANN. The results show that 

the predicted GRF is worse than the ones measured with force plates due to general limitations 

of an Artificial Neural Network, but if perfected, this method could give good results also in 

prediction of GRFM. 
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4. METHODS                                                                                                                               

4.1. Introduction 

Human movement, especially the gait analysis, typically requires an optical motion capture 

system formed by infrared cameras for tracking marker trajectories to estimate kinematic data 

as well as multi-axial force plates (one or more) for the measurement of ground reaction forces 

and moments (GRFM) and the estimation of joint kinetics (joint moment and powers). 

Moreover, musculoskeletal (MSK) modeling and simulation tools combine the measures also 

of muscle activation from electromyography to do investigations of motor control and MSK 

loading. These measurement techniques are however not transferable outside the laboratory 

environment, especially in clinical applications, due to the excessive costs, time and expertise 

required. Further the use of these force plate data requires that each foot lands on a single force 

plate, creating a highly constrained environment.  

The aim of this research study is to develop a method, based on optimization problem, for the 

estimation of GRFMs of three different trials of five healthy subjects, only from motion capture 

(MoCap) data, inverse kinematics (IK) simulations and a scaled MSK model with five spheres 

applied on the right foot. The estimation of GRFs is an important part of MSK analysis for 

trying to monitor the complex joint biomechanics, including joints moments and muscular 

activations. These measurements are used for clinical applications, where estimations of MSK 

loading is an important clinical need. 

The next paragraphs of this thesis are going to describe the steps of the research study and the 

software that were used. 

4.2. Data collection  

The first step of this study was to obtain all the data in order to get the inputs of the optimization 

problem. 

3D Motion Capture data were collected at the Movement and Posture Analysis Laboratory 

Leuven (MALL), at the Department of Movement Science of the KU Leuven, in Belgium. 

There were analyzed five healthy adults with no previous musculoskeletal or neurological 

disorders volunteered for the study (1 male and 4 females with average height of 1.68 ± 0.09 

m and weight of 73.04 ± 11.97 kg). All subjects were performed in five different walking trials. 

The following table summarizes all the subject’s demographics. 
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Subject Gender 

Height 

[m] 

Body weight 

[Kg] 

BMI 

[Kg/m2] 

Average gait 

speed [m/s] 

H01 M 1.81 87.6 26.25 1.65 

H02 F 1.69 77.5 26.96 1.22 

H03 F 1.70 76.5 26.30 1.33 

H04 F 1.62 55.6 20.96 1.34 

H06 F 1.58 68.0 26.84 1.08 

Table 1: Summary of 5 healthy subject demographics and gait data. 

A full-body Plug-in-Gait marker set was used to place the retro-reflective markers which were 

supplemented with 3-marker clusters on the upper and lower arms and legs, as well as 

anatomical markers on the sacrum, medial femur epicondyles, and medial malleoli, for a total 

of 65 markers.  

 

Figure 37: Plug-in-Gate marker placement. 
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Ground-reaction forces and marker trajectories were then synchronously recorded using 3 

ground-embedded force plates (AMTI, Watertown, USA, 1000Hz) and a 10-camera motion 

capture system (100 Hz, Vicon, Oxford, UK) respectively. 

It was required for each subject to do a static calibration trial, captured by the MoCap system 

to scale the generic MSK model. Then, the subjects performed several walking trials in order 

to calibrate the motion capture devices so that MoCap systems could capture ground reaction 

forces and moments as well as three-dimensional body movements simultaneously and 

synchronously.  

4.3. Data elaboration workflow 

4.3.1. Creation of the model workflow 

The musculoskeletal model used in this study is a result of  Falisse et al. work [60]. The authors 

of this article started from an existing model in the OpenSim library, known as the ‘Full body 

running model’ developed by Hamner et al. (2010) [76]. The Falisse et al. model has 31 degrees 

of freedom (DoFs) (pelvis-to-ground: 6 DoFs, hip: 3 DoFs, knee: 1 DoF, ankle: 1 DoF, subtalar: 

1 DoF, metatarsophalangeal-toe: 1 DoF, lumbar: 3 DoFs, shoulder: 3 DoFs, and elbow: 1 DoF), 

92 muscles actuating the lower limb and lumbar joints, 8 ideal torque motors actuating the 

shoulder and elbow joints, and six contact spheres per foot (three in the body calcaneus and the 

other three in the body toes) in order to simulate a movement and then estimate the parameters. 

Moreover, the knee flexion axis was fixed to its anatomical position to increase computational 

speed and passive stiffness (exponential) and damping (linear) were added to the lower limb 

and lumbar joint in order to model ligaments and other passive structures. To describe muscle 

excitation-activation coupling it is used the Raasch’s model; instead, to describe muscle-tendon 

interaction and dependence of muscle force on fiber length and velocity it is used Hill-type 

muscle model. Then, with the Newtonian rigid body was modeled the skeletal motion and with 

Hunt-Crossley foot-ground contact, the authors described the smooth approximations [60]. 

This generic model used in this study, has been created doing some modifications on the model 

previously explained. Firstly, were added two more DoFs to the knee joint, allowing the joint 

to perform the movements of adduction-abduction and internal-external rotation in addition to 

flexion-extension, and to each joint, were added reserve actuators and torques in order to ensure 

the model was strong enough to perform all tasks. Secondly, since this study is interested in the 

behavior of the single right leg, the muscle group and the contact spheres were removed from 

the left leg and foot (incrementing the computational speed). In addition, for the finality of this 

study, according to the Plug-in-Gait marker set, markers were added only in the lower part 

(trunk and legs) of the model.  
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The main change was made to the spheres’ configuration. This new configuration provides five 

spheres (and not six) designed (two in the body calcaneus and three in the body toes) so that 

the forces exerted by the ground during a task and recorded by the spheres themselves, could 

be better estimated. 

In summary the generic model presents [61]: 

● 35 degrees of freedom (DoFs) so arranged: 

o Pelvis-to-ground: 6 DoFs,  

o Hip: 3 DoFs,  

o Knee: 3 DoF, 

o Ankle: 1 DoF,  

o Subtalar: 1 DoF,  

o Metatarsophalangeal-toe: 1 DoF,  

o Lumbar: 3 DoFs,  

o Shoulder: 3 DoFs,  

o Elbow: 1 DoF. 

● 49 muscles actuating the lower limb and lumbar joints defined as Thelen 2003 model 

placed only on the right side to simplify computational complexity;  

● Reserve actuators applied to every joint to enable the simulation to run; 

● 35 markers placed on the lower limbs and the trunk; 

● 5 contact spheres implemented only on the right foot in order to reduce the 

computational complexity.  
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Figure 38: The generic model as a referment model of this study. 

These spheres are part of the “Contact Geometry” class of the model, and they are very 

important for the extraction of the ground reaction forces and moments during the task. The 

spheres have a specific location, and radius as geometry parameters defined with respect to the 

right calcaneus (calcn_r body on OpenSim) frame. Each sphere is characterized by physic 

parameters: 

● the constant stiffness (i.e., plain strain modulus): the rigidity of the sphere; 

● the dissipation coefficient: the amount of energy that is dissipated or lost in a system 

due to friction or other forms of resistance; 

● the static friction coefficient: the amount of force required to initiate sliding motion 

between two surfaces in contact with each other; 

● the dynamic friction coefficient: the amount of force required to maintain relative 

motion between two surfaces in contact with each other; 

● the viscous friction coefficient: the amount of frictional force that arises between two 

objects in relative motion through a viscous fluid (i.e., air or water); 

● the transition velocity.  

All of these parameters are described in the tables below with the exception of the location, 

which will be discuss in the next paragraphs: 
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 Geometric 

parameters 
Physic parameters 

Spher

e 

Radius 

[m] 

Stiffness 

[N/m2] 

Dissipation 

[s/m] 

Static & 

Dynamic 

friction 

Viscous 

friction 

Transition 

velocity 

[m/s] 

1 0.032 10000000 2 0.8 0.5 0.2 

2 0.032 10000000 2 0.8 0.5 0.2 

3 0.021 10000000 2 0.8 0.5 0.2 

4 0.021 10000000 2 0.8 0.5 0.2 

5 0.016 10000000 2 0.8 0.5 0.2 

Table 2: Summary of the five spheres parameters. 

 

Figure 39: Contact sphere placement on the foot: A) lateral view; B) medial view; C) plantar 

view [61]. 

1 2 
3 

4 5 
4 5 

3 2 
1 
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The described before was a generic model, used in order to generate five new musculoskeletal 

scaled models, one for each subject, based on the data from motion capture measurements 

(weight, marker placements, 3D body segments) .  

These models were obtained thanks to OpenSim 4.4 Scaling tool [62]. It was necessary to add 

the mass of the subject of interest and the marker data in the settings section. The markers data 

were taken from a MoCap file during the static position, named T-pose (from the subject’s 

position with the arms up); this file, used as reference, is called Tpose.trc.  

 

Figure 40: A man standing in an anatomical T-pose. [63]. 

 

This file was useful to have customized scale factors generated in the Scale Factors section in 

OpenSim, obtained by comparing distances between the markers of the generic model and the 

markers of the T-pose subject. It is important to underline that in the OpenSim tool was 

necessary to create the measurement set, that is the distances, between the marker pairs of the 

two models assigned to pelvis, torso and both legs to justify a symmetric behavior, as can be 

seen in the figure above [Fig.38]. Moreover, knowing the marker data, it was easier to assign 

less contribution to markers that are part of a cluster during the scaling operation and to the 

markers that are not important for this work (i.e., the markers of the upper body). 
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Figures 41-42: Example of using OpenSim Scaling tool in this study [62]. 

The Scaling tool does not consider any contact geometry, so if the model contains these 

geometries, their relative position to the body to which they are assigned does not change. Since 
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during scaling the body measurements change, the unchanged position of the contact geometry, 

that is in this case the spheres on the right foot, could be a source of errors for the extraction of 

ground reaction forces and moments.  

For this reason, after the scaling of the generic model, the position of all the five spheres for 

each new scaled model was fixed with the received MATLAB custom function called 

“fixContactSpherePositionAfterScaling.m”. This function accepts as inputs the generic model, 

as the model of spheres position referment, and the new scaled model, as the model with 

different anthropometry, and calculates new scaling parameters related to the spheres on the 

foot, thus adjusting their position. Then, the output of this function is the final musculoskeletal 

model used in this work, called scaled&fixed_model.osim. 

 

Figure 43: The creation of the model workflow [61]. 

 

4.3.2. Inverse kinematics workflow 

Once obtaining the final model, it was necessary to evaluate the inverse kinematics. First, 

inverse kinematics was obtained from the Inverse Kinematics Tool in OpenSim [64]. In the 

settings section of this tool, the markers data file .trc captured by MoCap of each walking trial 

of the subject, has to uploaded. Automatically, the corresponding time range in seconds is going 

to appear in the window, during which the subject performed that specific trial. As output, the 

inverse kinematics tool will create a .mot file containing all the segment body positions in 

degrees for all the axes during the walking. 

 

 

fixContactSpherePositionAfterScaling.m 
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Figure 44: Example of using Inverse Kinematics OpenSim tool in this work [64]. 

OpenSim IK tool goes through each time step (frame) of motion and computes generalized 

coordinate values which positions the model in a pose that "best matches" experimental markers 

and coordinate values for that time step. The experimental coordinate values are the joint angles 

obtained directly from a motion capture system. Mathematically, the "best match" is expressed 

as a weighted least squares problem, whose solution aims to minimize both marker and 

coordinate errors [65]. But this motion does not ensure the correct placement of the foot (i.e., 

the contact of the five spheres) on the ground during the stance phase, that is from Heel-strike 

to Toe-off. This happens because of the laboratory calibration, since the model, and its system, 

does not automatically recognize where the floor is. Generally, to resolve this problem, it is 

used by the Vicon software to indicate where the ground is, directly in the MoCap system.  

In this study, there is no knowledge of the exact geometry of the foot and the floor. For this 

reason, in the kinematics trial measured from MoCap (file .trc) and then from the cited tool, 

there is a mismatch between the foot and the floor. To reduce as much as possible this mismatch, 

and so adjust the kinematics to ensure the contact of the spheres with the ground, the Moco 

approach described in more detail in the study [61] was followed. 

OpenSim Moco [66] is a software toolkit for the optimization of the motion and control of MSK 

models using the direct collocation that handles diverse problems (motion tracking, motion 
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prediction, parameter optimization, etc.) for MSK simulations and also handles kinematic 

constraints, which enable modeling of kinematic loops and complex anatomy. The direct 

collocation optimal control method allows to estimate the muscle activity and predict new 

motions without the need for experimental data. In the direct collocation method, the states and 

controls of the system are approximated as polynomial splines over a mesh of time points and 

an optimizer solves for the knot points that lead the splines to obey the system dynamics. The 

dynamics requires the time derivative of the state splines to match the derivative from the 

system differential equations at specified time points. This method then produces a nonlinear 

program in which the states are introduced as variables and the system dynamics are enforced 

as constraints.  

In this approach, at the beginning, are defined states and controls that Moco needed in the MSK 

model. The states are the degrees of freedom (DOFs) of the model’s joints and both angular 

and velocity values; the controls are the muscles present on the model in terms of activations 

and fiber lengths, and the value of the reserve actuators. These data are present in the 

’StatesReporter_states.sto’ file, obtained thanks to the OpenSim Analyze Tool as it can see in 

the figure below. 
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Figures 45-46: An example of using the OpenSim Analyze Tool in this study. 

Then, it was necessary to use a custom MATLAB code containing the function from OpenSim 

Moco Tool, called MocoTrack [66]. The inputs of this function are the scaled musculoskeletal 

model and the States Reporter file (.sto) created containing the motion to improve. To allow 

modifications to the model and to IK file, the MATLAB ‘ModelProcessor’ and 

‘TableProcessor’ commands were used, and they were performed by their respective operators 

‘ModelOperators’ and ‘TableOperators’. The modifications that were applied are: 

● ModOpIgnoreTendonCompliance(): turn off tendon compliance for all muscles in the 

model; 

● ModOpReplaceMusclesWithDeGrooteFregly2016(): replace muscles of other types 

(particularly, Millard2012EquilibriumMuscles and Thelen2003Muscles) in the model 

with muscles of this type; 

● ModOpIgnorePassiveFiberForcesDGF(): turn off passive fiber forces for all 

DeGrooteFregly2016Muscles() in the model;  

● ModOpScaleActiveFiberForceCurveWidthDGF(): scale the active fiber force curve 

width for all DeGrooteFregly2016Muscles in the model;  

● TabOpLowPassFilter(): apply a low pass filter to the trajectory. 
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After these modifications to the inputs, the code provides the application of two cost functions 

implemented by Moco. The cost functions are so defined as: 

1. MocoTrackingGoal: is the default MocoTrack cost function. It minimizes the error 

between provided reference data and the associated model quantities (i.e., joint angles, 

joint velocities, marker positions); 

2. MocoControlGoal: It minimizes the sum of the absolute value of the controls raised to 

a given exponent, integrated over the phase. 

For both functions, specific weights were set in order to obtain the desired movement tracking 

and the estimated muscle activations as close as possible to the measured ones. The next step 

of the approach followed was to set the settings required by MocoProblem built into the 

MocoTrack package, to solve the problem of this study. Then, it was necessary to set bounds, 

i.e., the ranges of values within states produced as output by Moco must be, so as to impose an 

additional constraint to limit deviations from the data provided as input. The final step was 

invoking the MocoSolver solver also present in the MocoTrack package, with which was 

possible to launch the MocoTrack analysis, obtaining as output the Moco_solution_MoCap.sto 

file. This file contains the tracked motion (that is, the values of joint angles and their respective 

velocities), and the values of muscle activations and length of muscle fibers and it is crucial for 

the optimization problem that is the main focus of this study. Further information about 

MocoTrack packages are in [66] article.  

So, the use of OpenSim Moco was important to ensure that during the stance phase, the contact 

spheres are in contact with the ground, because it determined a change in joint angles permitting 

a better estimation of ground reaction forces extracted from the spheres. This has allowed a 

better definition of the optimization problem, that is the core of this thesis, which is described 

in the next paragraph. 

Moreover, it was also calculated the measured IK from MoCap data, in order to compare these 

values with the ones obtained with OpenSim Moco workflow. 

4.3.3. Optimization problem workflow 

The aim of the optimization problem, of this thesis is based on, is to find a position of the five 

spheres on the right foot in order to extract GRFs from the model as close as possible to the 

GRF measured from force plates during MoCap measurements, that is the state of the art at the 

time of writing this thesis. The next paragraphs are going to describe all the procedures required 

to get the best solution obtained in this study. 



87 
 

Extraction of Ground Reaction Forces 

During walking, the forces that the ground exerts on the right foot are collected by the five 

spheres placed on it. In order to get these forces during the movement, it was created a custom 

MATLAB function called ‘extractGRFfromSpheres.m’ [Appendix] that accepts as inputs a 

motion file, that in this case is the movement tracked with Moco, and the scaled and fixed 

model. With this function, it is possible to obtain the real force extraction from each sphere, 

considered as a ForceSet class, where the sphere is the object called 

‘SmoothSphereHalfSpaceForce’, and then make the vector summation of all of them. The 

resulting force is thus decomposed in the three coordinates (Anteroposterior, Vertical and 

Mediolateral) and then saved in a matrix in function of the motion time.  

Evaluation of COP and GRM  

Starting from the force matrix created, it was possible to calculate the center of pressure (COP) 

and the ground reaction moment (GRM) using the zero-moment-point (ZMP) method [67]. This 

method is usually applied in robotics for the determination of a humanoid robot (or similar 

objects) stability. Stability is defined as the point on the ground where the sum of all forces  and 

the sum of all moments around this point is equal to zero. The ZMP approach is thus important 

for maintaining stability and balance, since the point indicates the location where the center of 

mass is, to prevent and avoid falls. For this reason, the ZMP method was applied for the 

evaluation of the COP, so the point of application of the GRFs, considered as the point where 

the resultant tangential moments of the active forces are equal to zero (ZMP). 

The position of ZMP and so the COP coordinates, can be calculated using these formulas 

derived from the method described above: 

1. xCOP = 𝑀z/𝐺𝑅𝐹y 

2. zCOP = − 𝑀x/𝐺𝑅𝐹y 

3. yCOP = 0 

4. 𝐺𝑅𝑀y = 𝑀y – zCOP ∙  𝐺𝑅𝐹x + xCOP ∙  𝐺𝑅𝐹z 

5. 𝐺𝑅𝑀x = 𝐺𝑅𝑀z = 0 

Where (xCOP, yCOP, zCOP) are the COP coordinates, 𝐺𝑅𝑀 = (𝐺𝑅𝑀x, 𝐺𝑅𝑀y, 𝐺𝑅𝑀z) are the ground 

reaction moments applied to COP and 𝑀 = (𝑀x, 𝑀y, 𝑀z) are the ground reaction moments 

extracted from the spheres.  
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COP coordinates and the GRMs around it were then added to the matrix of 

‘extractGRFfromSpheres.m’ function. The output of this function thus created a new .mot file 

called ‘walk_GRFMOCO.mot’ that contains all the values expressed in the matrix. 

Definition of the optimization problem 

Before the formulation of the optimization problem, it was necessary to create a custom 

function on MATLAB, that calculates a new vector of ground reaction forces estimated from 

contact spheres in function of their position. This function accepts as inputs: the scaled model, 

a new vector of spheres position, the starting and the ending position of the time range of 

interest, and the components (that could be considered singularly or together) [Appendix]. The 

function takes the new position of the spheres and sets this position to the input model, creating 

a new model with the location changed. At the end, thanks to the function 

‘extractGRFfromSpheres.m’ cited in the previous paragraph, this custom function creates the 

corresponding ground reaction forces from the ‘walk_GRFMOCO.mot’ file.  

Finally, it could be possible to use the ‘fminsearchbnd.m’ function [68], from the MATLAB 

optimization tool (in particular, solver-based nonlinear optimization) for the finding of the 

optimal solution. The function ‘fminsearchbnd.m’ uses the Nelder-Mead simplex algorithm 

with bound constraints; this algorithm uses a simplex of n + 1 point for n-dimensional vectors 

x. The algorithm first makes a simplex around the initial guess x0 by adding 5% of each 

component x0(i) to x0, and using these n vectors as elements of the simplex in addition to x0. 

Then, the algorithm modifies the simplex repeatedly according to the following procedure:  

1. Let x(i) denote the list of points in the current simplex, i = 1, ...,n + 1. 

2. Order the points in the simplex from lowest function value f(x(1)) to 

highest f(x(n + 1)). At each step in the iteration, the algorithm discards the current 

worst point x(n + 1), and accepts another point into the simplex. [Or, in the case of 

step 7 below, it changes all n points with values above f(x(1))]. 

3. Generate the reflected point 

r = 2m – x(n + 1), 

where 

m = Σx(i)/n, i = 1...n, 

and calculate f(r). 
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4. If f(x(1)) ≤ f(r) < f(x(n)), accept r and terminate this iteration, giving as 

result ‘Reflect’. 

5. If f(r) < f(x(1)), calculate the expansion point s 

s = m + 2(m – x(n + 1)), 

and calculate f(s). 

a. If f(s) < f(r), accept s and terminate the iteration, giving as 

result ‘Expand’. 

b. Otherwise, accept r and terminate the iteration, giving as 

result ‘Reflect’. 

6. If f(r) ≥ f(x(n)), perform a contraction between m and either x(n + 1) or r, 

depending on which has the lower objective function value. 

a. If f(r) < f(x(n + 1)) (that is, r is better than x(n + 1)), calculate 

c = m + (r – m)/2 

and calculate f(c). If f(c) < f(r), accept c and terminate the iteration, 

giving as result ‘Contract outside’. 

Otherwise, continue with Step 7 (Shrink). 

b. If f(r) ≥ f(x(n + 1)), calculate 

cc = m + (x(n + 1) – m)/2 

and calculate f(cc). If f(cc) < f(x(n + 1)), accept cc and terminate the 

iteration, giving as result ‘Contract inside’. 

Otherwise, continue with Step 7 (Shrink). 

7. Calculate the n points 

v(i) = x(1) + (x(i) – x(1))/2 

and calculate f(v(i)), i = 2, ...,n + 1.  

The simplex at the next iteration is x(1), v(2), ...,v(n + 1) , giving as 

result ‘Shrink’. 
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Figure 47: Points that fminsearchbnd might calculate in the procedure, along with each 

possible new simplex. The original simplex has a bold outline. The iterations proceed until 

they meet a stopping criterion [68]. 

In this study, the input parameters of ‘fminsearchbnd.m’ function thus are: 

● The starting position of the spheres p0, as the initial guess (values expressed in [Tab.3]); 

● The range within the spheres could move through the foot, defined with a lower and an 

upper boundary; 

● The Optimization options, specified as a structure such as ‘optimset’ (a function 

provided by MATLAB Optimization tool ad hoc for this type of functions) returns. The 

options chosen for this optimization problem are: 

o Display: This is the level of display. It was set to ‘iter’ in order to display output 

at each iteration; 

o MaxFunEvals: Maximum number of function evaluations f(p) allowed (it has to 

be a positive integer). It was set to 1500; 

o MaxIter: Maximum number of iterations allowed (it has to be a positive integer). 

It was set to 1500; 

o TolFun: Termination tolerance on the function value, a positive scalar. It was set 

to 10-30; 

o TolX: Termination tolerance on the position vector p, a positive scalar. It was 

set to 10-30; 
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● The function to minimize that is dependent from the position p, f(p) that will be called 

the optimized function. 

Table 3: Initial position p0 of the five spheres for each subject. These positions are from scaled 

positions based on the foot sizing. 

The range within the spheres could move, is defined by their initial position and their radius, in 

order to get a physiological optimal position; defined p0i = (x0i, y0i, z0i) the starting position and 

ri the spheres radius, with i = 1, …, 5, the lower and upper boundaries are: 

 

 Location (x, y, z) [m] 

Subject 

Sphere 
H01 H02 H03 H04 H06 

1 

(0.009, 0.006, 

-0.004) 

(0.009, 0.006,  

-0.004) 

(0.009, 0.006,  

-0.004) 

(0.008, 0.005,  

-0.004) 

(0.008, 0.005,  

-0.004) 

2 
(0.05, 0.01, 

0.02) 

(0.05, 0.01, 

0.02) 

(0.05, 0.01, 

0.02) 

(0.05, 0.009, 

0.02) 

(0.05, 0.01, 

0.02) 

3 
(0.15, 0.002, 

0.02) 

(0.14, 0.002, 

0.02) 

(0.14, 0.002, 

0.02) 

(0.13, 0.002, 

0.02) 

(0.13, 0.002, 

0.02) 

4 

(0.15, 0.002,  

-0.01) 

(0.14, 0.002,  

-0.009) 

(0.14, 0.002,  

-0.009) 

(0.13, 0.002,  

-0.008) 

(0.13, 0.002,  

-0.009) 

5 

(0.18, 0.0004, 

-0.003) 

(0.17, 0.0004,  

-0.003) 

(0.17, 0.0004,  

-0.003) 

(0.16, 0.0004,  

-0.003) 

(0.16, 0.0004,  

-0.003) 
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These boundaries have been chosen based on their initial position p0i on the right foot with 

respect to its size, scaled with respect to each subject's demographics; for this reason, there are 

different boundaries between the spheres and the space directions. 

The optimization function that is used for this problem analysis is the root mean square error 

(RMSE) of the difference between the ground reaction forces measured in the laboratory using 

force plates, considered as reference and the ones estimated from MoCap data with Moco 

kinematics modifications. The formula is expressed below: 

Optimal function = RMSE(p) = √
1

𝑁
∑ |𝐺𝑅𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐺𝑅𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑝)|2𝑁

𝑛=1  

where GRFestimated is the result of the ‘estim.m’ function, that is dependent from the position. 

At each iteration, the temporary vector position created with the algorithm follow with which 

‘fminsearchbnd’ is based, set the position of the model creating a new momentary one, and thus 

a transitory vector of GRFs; then, these forces are subtracted from the GRFmeasured and later 

is calculated the root mean square of this difference. It follows the same process until the 

number of iterations is exceeded or when it reaches the tolerance.   

Once the stopping criterion is met, ‘fminsearchbnd’ gives as results, the spheres position that 

made minimum the root mean square error, and the value of this error. With this optimal 

position it was defined in the final model and extracted the optimal ground reaction forces in 

the same way as before, creating the last file called ‘GRF_MocoOptim.mot’.  

At the end both measured and optimal estimated ground reaction forces were filtered with the 

low-pass Butterworth filter at 20Hz and then with the filtered forces it was calculated the 

correlation coefficient.  

Correlation is a statistical measure that expresses the linear relationship between two variables 

[69]. The correlation is unable to verify the presence or the effect of other variables other than 

the two examined. In particular, it says nothing about cause and effect. The correlation is 

described by a value that does not have a specific unit, called the correlation coefficient, ranging 

from -1 to +1 and denoted by r. Statistical significance is indicated by a p-value (p-value is a 

measure of probability used in hypothesis testing). Therefore, correlations are typically written 

using two basic numbers: r and p. 

● The closer r gets to zero, the weaker the linear correlation is. 

● A positive r-value indicates a positive correlation, where the values of the two variables 

tend to increase in parallel. 
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● A negative r-value indicates a negative correlation, where the value of one variable tends 

to increase as the other decreases. 

● The p-value is the proof that, based on what we observed on the sample, we can 

meaningfully conclude that the correlation coefficient of the population is different from 

zero. 

● The lack of a unit of measurement implies that the correlation is measured according to 

its own scale. 

Another useful piece of data is N, or the number of observations. As with most statistical tests, 

knowing the sample size helps to judge its validity and understand how well it represents the 

relevant population. 

Once getting the IK with OpenSim Moco and then the ground reaction forces, it was important 

to give attention to the calculation of joint moments with these values, obtainable with Inverse 

Dynamics evaluation, in order to compare them with the ones measured with MoCap systems. 

This would be another parameter to validate the proposed entire workflow as an alternative to 

the actual state of the art. 

4.3.4. Inverse dynamics workflow 

The Inverse Dynamics (ID) OpenSim Tool [70], determines the generalized forces (e.g., net 

forces and torques) at each joint responsible for a given movement. Given the kinematics (e.g., 

states or motion) describing the movement of a model and perhaps a portion of the kinetics 

(e.g., external loads) applied to the model, the ID Tool uses these data to perform an inverse 

dynamic analysis. Classical mechanics mathematically expresses the mass-dependent 

relationship between force and acceleration, F = ma, with equations of motion. The Inverse 

Dynamics Tool solves these equations, in the inverse dynamics sense, to yield the net forces 

and moments at each joint which produce the movement. The classical equations of motion 

may be written in the following form [71]: 

 

Where 𝑞, �̇�, �̈� ∈ 𝑅𝑁 are the vectors of generalized positions, velocities, and accelerations, 

respectively; M(q) ∈ 𝑅𝑁𝑥𝑁
 is the system mass matrix; C(𝑞, �̇�) ∈ 𝑅𝑁 is the vector of Coriolis and 

centrifugal forces; G(q) ∈ 𝑅𝑁
  is the vector of gravitational forces; and 𝜏 ∈ 𝑅𝑁 is the vector of 

generalized forces (N is the number of degrees of freedom).  
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The motion of the model is completely defined by the generalized positions, velocities, and 

accelerations. Consequently, all of the terms on the left-hand side of the equations of motion 

are known. The remaining term on the right-hand side of the equations of motion is unknown. 

The inverse dynamics tool uses the known motion of the model to solve the equations of motion 

for the unknown generalized forces [71].  

In fact, in order to obtain inverse dynamics for this work, it was necessary to insert the Moco 

kinematics, previously created, in the main settings of this tool. Then, to add the kinetics applied 

to the model of this study, in the External Loads section of the same tool, the 

‘GRF_MocoOptim.mot’ file was uploaded, specifying the ground reaction forces and moment 

for this scaling model by creating an external force. This external force is applied with respect 

to the right calcaneus (calcn_r body name in OpenSim). 

 

Figure 48: An example of using the External Forces interface. 

The output of this tool is a file containing all the joint moments during the walking trials. 

The ID workflow has been followed for the estimated case, (i.e., Moco IK and extracted GRF), 

for the measured case (i.e., MoCap IK and GRF), but also for a ‘mix’ case, that is Moco IK and 

measured GRF. This was done for the comparison between the three cases in order to confirm 

if this workflow could be a valid alternative to the gold standard for clinical and sport 

rehabilitation.  
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5. RESULTS        

In this chapter are going to be illustrated all the results previously introduced in the Methods 

chapter. For each subject in this study, three trials were considered for a total of fifteen tasks 

evaluated. Moreover, one of the three tasks was randomly chosen as the optimized trial 

obtaining a certain spheres position for each subject MSK model (five trials in total); this 

configuration was used to extract GRFs and then compute ID in the remaining two trials (ten 

trials in total).  

The results, to allow a better comparison, will be shown with the calculation of average and 

standard deviation across all the subjects’ walking trials as functions of the percentage of  stance 

phase. Before this calculation, all the ground reaction forces and joints moments were time 

normalized as one hundred and one data points at one percent intervals of the gait cycle.  

In the obtained graphs, the blue curves will represent the reference data (force plates 

measurements) while the red ones will refer to the results of this study’s approach. The green 

curves will represent the results before the optimization, well-illustrated in [61] study, with the 

exception of the inverse dynamics results, where the green curves will represent the measured 

forces with Moco IK (more details will be explained in the specific paragraph). The x-axis 

corresponds to the stance phase, and it will be represented as a percentage; the y-axis 

corresponds to the value under analysis, and it will be represented as: 

● Degrees (°) for joints’ angle variation; 

● Body Weight (BW) for ground reaction forces; 

● Meters (m) for center of pressure’s position; 

● Centimeters (cm) for spheres’ position variation; 

● Nm/kg for joint moments. 

All the calculations, normalizations and creation of the graphs were done thanks to the 

MATLAB functions [72]. It is going to discuss the results for each value singularly in the 

following paragraphs.                                                                                                                        

5.1. OpenSim Moco inverse kinematics results 

The OpenSim Moco approach was used in order to get an adhesion of the spheres on the ground, 

since the model and its system does not automatically know where the floor is, and thus having 

a physiological walking and an actual contact between foot and ground, then the possibility to 



96 
 

evaluate the GRFs. Better contact implies more precise evaluation of ground reaction forces. 

This approach generates a variation of joint angle values, as can be seen in the table [Tab.4]. 

Joint  mean ± std of RMSE of joints’ angle variation [°] 

Hip Flx/Ext 2.13 ± 1.62 

Hip Add/Abd 1.31 ± 1.36 

Hip IR/ER 1.07 ± 0.77 

Knee Flx/Ext 10.67 ± 5.64 

Knee Add/Abd 4.53 ± 2.74 

Knee IR/ER 4.09 ± 2.87 

Ankle DF/PF 7.81 ± 4.79 

Subtalar 6.33 ± 2.95 

Table 4: Average value (± standard deviation) of RSME joints’ angle variation for all the 

fifteen trials’ inverse kinematics. 

Average root mean square error of the variation between kinematics measured with MoCap and 

those calculated with OpenSim Moco function, MocoTrack, shows that the values are within 

the range of 1-7° with the exception of the knee flexion/extension, that is almost 11°. 

5.2. Optimal ground reaction forces results 

The estimated GRFs extracted from the values recorded by the five contact spheres placed on 

the right foot (in red) are compared in [Fig.49] with the forces recorded by the force platforms 

in the MoCap system (in blue). Both are represented as the three components (Anterior-

posterior, Vertical and Medio-Lateral GRF) singularly, with respect to the global reference 

system.  

These graphs were obtained using the ‘plot_distribution.m’ MATLAB function that represents 

the data as a curve for the mean, and as the area around it, for the standard deviation. In order 

to validate the optimization problem, two plots of GRFs comparison were generated: One for 

the optimized trials, one for the remaining ones [Fig.50]. 
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Figure 49: GRFs comparison: in red the GRFs estimated while in blue the GRFs measured for 

all the fifteen trials.  

 

Figure 50: GRFs comparison: in red the GRFs estimated while in blue the GRFs measured for 

the five optimal trials in the first row, and for the ten remaining trials in the second one. 
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For both cases (all trials together and the division in optimized and not optimized trials), was 

calculated the average and standard deviation of the root mean square error (RMSE) and also 

of Pearson coefficient. All the results are summarized in the tables below [Tabs.5-6]: 

GRF component RMSE [BW] Pearson coefficient 

Anterior-Posterior  0.09 ± 0.04 0.82 ± 0.06 

Vertical  0.23 ± 0.12 0.6 ± 0.29 

Medio-Lateral 0.06 ± 0.03 0.1 ± 0.12 

Table 5: Average value (± standard deviation) of GRFs’ Pearson coefficient (R2) and root 

mean square error (RMSE) for each component for all the trials. 

GRF component 

RMSE [BW] Pearson coefficient 

Optimal Not optimal Optimal Not optimal 

Anterior-Posterior  0.08 ± 0.02 0.09 ± 0.05 0.86 ± 0.05 0.79 ± 0.04 

Vertical 0.13 ± 0.05 0.28 ± 0.11 0.72 ± 0.27 0.54 ± 0.29 

Medio-Lateral 0.04 ± 0.01 0.06 ± 0.03 0.07 ± 0.07 0.12 ± 0.14 

Table 6: Average value (± standard deviation) of GRFs’ Pearson coefficient (R2) and root 

mean square error (RMSE) for the optimal and unseen trials.  

These values reflect the graphs’ behavior represented in the figures [Figg.47-48], especially for 

the estimated medio-lateral GRF component, where the standard deviation of Root mean square 

error, is proportionally higher than the others two with a value of mean (± standard deviation) 

of  0.06 ± 0.03 BW (instead for the vertical component is 0.23 ± 0.12 BW, while for the 

anterior/posterior component is 0.09 ± 0.04 BW). In addition, the Pearson coefficient is worse 

for the medio/lateral component, with an average (± standard deviation) of 0.1 ± 0.12, that 

justifies the weak correlation between the estimated GRF (red) and the measured one (blue). 

Different behavior is for both anterior/posterior and vertical components, where the average 

(± standard deviation) is partially strong for the first, with a value of 0.6 ± 0.29 and a value of 

0.82 ± 0.06 for the second, that evidence the strong correlation. 
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Regarding the optimized trials, the average (± standard deviation) of root mean square error, is 

lower than the consideration of all trials together case, for all GRFs components with values of  

0.08 ± 0.02 BW, 0.13 ± 0.05 BW, and 0.04 ± 0.01 BW for A/P, V, and M/L component 

respectively; the average (± standard deviation) of Pearson coefficient is higher than the 

condition in which there are considered all the fifteen trials for A/P and V values of 0.86 ± 0.05 

and 0.72 ± 0.27 respectively, with the exception of the M/L component, that is lower compared 

with the same component for all trials case, with a value of 0.07 ± 0.07 that increases the weak 

correlation, supported also by the presence of only one trial per subject.  

Regarding the not optimized trials, there are similar values of mean  (± standard deviation) of 

RMSE for A/P and M/L component with the case of all trials, while for the vertical component 

is higher compared to that case, with a value of 0.28 ± 0.11 BW. This behavior happens because 

the vertical component has more weight in the optimization problem (since it has the highest 

magnitude), and this causes a smaller error in such cases, while in the current case of not 

optimized trials, the error is bigger. On the contrary of the RMSE, the average (± standard 

deviation) of Pearson coefficient is lower than the case of all trials for A/P and V component 

with values of 0.79 ± 0.04 and 0.54 ± 0.29 respectively, with the exception of M/L component 

that is of 0.12 ± 0.14. This last value could be justified by the fact that there are two trials per 

subject, and this could mean more correlation than the optimized case. 

Here, in the following figure [Fig.51] it is represented how the optimization changes the 

behavior of the GRFs components curves with respect to the initial condition of the study [61] 

(only for all trials). The green curves show the initial condition, while the red ones show the 

condition after the application of  the optimization problem. It can be seen that only the vertical 

component is closer to the corresponding measured GRF (blue curve). This is justified by the 

higher weight on the optimization problem. 
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Figure 51: GRFs comparison: in red the GRFs estimated after the optimization, in blue the 

GRFs measured and in green the GRFs estimated before the optimization for all the fifteen 

trials.  

It was interesting to observe the behavior of a random subject’s optimized trial, and so its 

spheres’ position, on another random subject. This has been done in order to demonstrate if this 

optimization problem approach could be considered subject specific or not. This step is 

fundamental when a physician has to decide to give a personalized treatment or could be 

adapted with ascertained previous clinical cases. The graphs obtained from this analysis are 

represented below [Fig.52]: 
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Figure 52: GRFs comparison: in red GRFs estimated using the optimization of a random 

subject on its random trial; in blue GRFs measured on the same trial; in green GRFs estimated 

using the optimization of another random subject on the same trial. 

It can be seen that the optimized GRFs behavior of the same subject (red curves) is better than 

the GRFs using the optimization of a different subject  (represented by the green curves), with 

the exception of the anterior-posterior component, but this behavior is anyway far from the 

measured GRFs (blue curves), in fact the value of root mean square error is 0.06 BW (against 

0.1 BW of the first case). The values of RMSE of the other two components are 0.25 BW and 

0.04 BW for vertical and medio-lateral components respectively (against the values of 0.31 

BW, and 0.05 BW respectively for the first case). 

5.3. Variation of spheres position results 

In the paragraph of the optimization problem workflow of the Methods chapter was explained 

that, in order to obtain the minimum RMSE of the difference between the measured and 

estimated GRFs, the five spheres have been moved within the right foot according to the 

previously defined boundaries, to extract the forces that satisfy this optimization relationship. 

The last iteration of the MATLAB optimization framework ‘fminsearchbnd.m’, has generated 

as output, the position vectors of all the spheres, that are shown in the following table for each 

subject [Tab.7]. 
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Table 7: Final position of the five spheres for each subject after the application of the 

optimization problem. 

Thanks to OpenSim, it was possible to see how the five spheres actually moved in the right 

foot. In fact, the following figures show the displacement in the lateral and plantar view 

[Fig.53]. 

Spheres’ location (x, y, z) [m] 

Subject 

Sphere 
H01 H02 H03 H04 H06 

1 

(0.013, 0.003, 

0.01) 

(0.009, 0.005,  

-0.018) 

(0.02, 0.008,  

-0.04) 

(0.013, 0.019,  

-0.005) 

(0.064, 0.001,  

0.002) 

2 
(0.06, 0.01, 

0.02) 

(0.068, 0.026, 

0.018) 

(0.076, 0.009, 

0.018) 

(0.042, 0.017, 

0.016) 

(0.112, 0.023, 

0.028) 

3 

(0.142, 0.004, 

0.026) 

(0.16, 0.013, 

0.021) 

(0.133, 0.008, 

0.016) 

(0.119, 0.013, 

0.013) 

(0.152, 0.011,  

-0.005) 

4 

(0.168 0.006,  

-0.001) 

(0.14, 0.005,  

-0.009) 

(0.161, 0.012,  

-0.011) 

(0.117, -0.002,  

-0.009) 

(0.153, 0.006,  

-0.014) 

5 

(0.18, 0.0008, 

-0.019) 

(0.172, -

0.003,  

0.009) 

(0.171, -

0.008,  

-0.007) 

(0.156, 0.003,  

-0.019) 

(0.159, 0.008,  

-0.009) 
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Figure 53: Spheres’ position variation: in red, new spheres’ location; in blue, start spheres’ 

location. Lateral view on the left, plantar view on the right.  

At the end to have a quantitative value of this displacement, with a custom MATLAB code, the 

difference between the ending (“optimal”) and the starting position of the five spheres for each 

subject in the three directions, thus in the space, was calculated. 

 

Figure 54: Spheres’ position variation in all directions (the circle represents the difference 

between Final position [Tab.7] and Initial position [Tab.3]) for each subject after the 

application of the optimization problem of a random trial. 
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According to the custom boundaries settled, it can be seen that the spheres have a higher 

variation on the Anterior/Posterior axis (x-axis) with the exception of the fifth sphere of all the 

subject, while there is the lowest variation on vertical axis (y-axis). 

5.4. Center of pressure results 

As mentioned in the Methods chapter, for the extraction of GRFs components was created a 

custom function (extractGRFfromSpheres.m; further details are contained in the Appendix), in 

which are also present the center of pressure components and the ground reaction moment, 

obtained with ZMP method [67]. Then, after the application of the optimization problem, a new 

file in which contained the previously illustrated GRFs components (red curves of [Figg.49-50] 

is generated, but also the center of pressure associated with them. Also in this case, for the 

explanation of the center of pressure behavior, it was useful to consider the results of all the 

trials together and the results of the optimized and not optimized trials [Figg.55-56]. 

 

Figure 55: Center of pressure (COP) comparison: in red the COP coordinates estimated after 

the optimization while in blue the COP coordinates measured and in green the COP 

coordinates estimated before the optimization for all the fifteen trials. 
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Figure 56: Center of pressure (COP) comparison: in red the COP coordinates estimated after 

the optimization while in blue the COP coordinates measured and in green the COP 

coordinates estimated before the optimization for the optimized and unseen trials. 

In order to get quantitative values of the behavior previously illustrated, there were calculated 

the average (± standard deviation) of the root mean square error and the Pearson coefficient, 

that are showed in the following tables for both cases (optimized and not optimized trials) [Tabs. 

8-9]. 

COP component RMSE [m] Pearson coefficient 

Anterior-Posterior 0.08 ± 0.04 0.2 ± 0.19 

Medio-Lateral 0.03 ± 0.01 0.3 ± 0.28 

Table 8: Average value (± standard deviation) of COPs’ Pearson coefficient (R2) and root 

mean square error (RMSE) for all the trials.  

COP component 

RMSE [m] Pearson coefficient 

Optimal Not Optimal Optimal Not optimal 

Anterior-Posterior 0.08 ± 0.04 0.07 ± 0.04 0.26 ± 0.23 0.18 ± 0.17 

Medio-Lateral 0.03 ± 0.02 0.03 ± 0.01 0.24 ± 0.26 0.33 ± 0.3 

Table 9: Average value (± standard deviation) of COPs’ Pearson coefficient (R2) and root 

mean square error (RMSE) for the optimal and unseen trials.  
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The values illustrated are in line with the curves shown in [Figg.55-56]. In fact, COP 

coordinates have a low RMSE (0.08 ± 0.04 m and 0.03 ± 0.01 m for A/P and M/L coordinates 

respectively), but the small values of Pearson coefficient (0.2 ± 0.19 and 0.3 ± 0.28 for A/P 

and M/L coordinates respectively) justify the weak correlation between the curves, in both cases 

(all trials, optimized and not trials [Tab.9]). 

5.5. Joint moments from inverse dynamics 

Finally, [Fig.57] shows joint moments for the hip (first row), knee (second row), and ankle 

(third row) joints during overground walking for all the tasks, obtained from the OpenSim 

Inverse Dynamics Tool, as explained in Methods chapter, using Moco inverse kinematics 

approach on measured GRFs with force plates, (green curve) and on estimated GRFs extracted 

from the five spheres, with the point of application obtained via ZMP calculations (red curve) 

and using MoCap approach that used the kinematics and GRFs measured by the 

stereophotogrammetric system (blue curve).  

 

Figure 57: ID comparison: in red the moments obtained from estimated GRF with Moco 

kinematics; in green the moments obtained from measured GRF with Moco kinematics; in 

blue the moments obtained from measured GRF with MoCap kinematics; for all the fifteen 

trials. 

For a better understanding of these graphs the average and standard deviation of the root mean 

square error and Pearson coefficient were calculated, and they are expressed in the following 

table [Tab.10]. 
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Joint Moments 

Inverse Dynamics obtained with Moco kinematics 

Estimated GRFs Measured GRFs 

RMSE 

[Nm/kg] 

Pearson 

Coefficient 

RMSE 

[Nm/kg] 

Pearson 

Coefficient 

Hip Flx/Ext 1.2 ± 1.09 0.52 ± 0.36 0.47 ± 1.02 0.93 ± 0.1 

Hip Add/Abd 0.6 ± 0.62 0.17 ± 0.14 0.17 ± 0.25 0.8 ± 0.32 

Hip IR/ER 0.14 ± 0.1 0.46 ± 0.26 0.09 ± 0.07 0.83 ± 0.28 

Knee Flx/Ext 0.91 ± 0.68 0.53 ± 0.18 0.41 ± 0.59 0.88 ± 0.25 

Knee Add/Abd 0.49 ± 0.66 0.19 ± 0.22 0.14 ± 0.25 0.8 ± 0.24 

Knee IR/ER 0.12 ± 0.11 0.53 ± 0.37 0.08 ± 0.08 0.83 ± 0.23 

Ankle DF/PF 0.65 ± 0.39 0.31 ± 0.22 0.58 ± 0.35 0.88 ± 0.21 

Subtalar 0.26 ± 0.41 0.29 ± 0.25 0.18 ± 0.09 0.58 ± 0.27 

Table 10: Average value (± standard deviation) of inverse dynamics’ Pearson coefficient (R2) 

and root mean square error (RMSE) with respect to measured ID for all the fifteen trials.  

These values reflect the graphs’ behavior represented in the figure [Fig.57], especially for both 

estimated Adduction/Abduction hip and knee moments and Subtalar moment, where the 

standard deviation of Root mean square error, is proportionally higher than the others two with 

a value of mean (± standard deviation) of  0.6 ± 0.62 Nm/kg, 0.49 ± 0.66 Nm/kg, and 0.26 ± 

0.41 Nm/kg respectively for the Estimated GRFs case. Moreover, for the Adduction/Abduction 

hip and knee moments, the Pearson coefficient is worse than the one of the other moments, with 

an average (± standard deviation) of 0.17 ± 0.14, and  0.19 ± 0.22, that justifies the weak 

correlation between the estimated joint moments (red) and the measured one (blue). Different 

behavior is for both Flexion/Extension and Internal/External rotation moments for either hip 

and knee, where the average (± standard deviation) is partially strong, with values of 0.52 ± 

0.36, 0.46 ± 0.26, 0.53 ± 0.18, and 0.53 ± 0.37 respectively, that evidence the good correlation. 

It can be seen that there is the absence of strong correlation between the cited curves, for 

Estimated GRFs case. 
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Instead for the Measured GRFs case, the values are better compared to the previous case: the 

RMSE is very low with the exception (especially regarding the standard deviation) of hip and 

knee flexion/extension and ankle dorsiflexion/plantarflexion where the values of average 

(± standard deviation) are 0.47 ± 1.02 Nm/kg, 0.41 ± 0.59 Nm/kg, and 0.58 ± 0.35 Nm/kg 

respectively, but the same joint moment have the best Pearson coefficient where the values of 

average (± standard deviation) are 0.93 ± 0.1, 0.88 ± 0.25, and 0.88 ± 0.21, indicating a strong 

correlation with the full MoCap joint moments. All the values are indicated in [Tab.10]. 

As done before with the GRFs and COP results, also for the joint moments it was done the 

difference between all the trials and the optimized and not trials. Here, there are shown the 

graphs [Figg.58-59] and then the table [Tab.11] contained the average and standard deviation 

of root mean square error (RMSE) and Pearson coefficient (R2). 

 

Figure 58: ID comparison: in red the joints moments obtained from estimated GRFs with 

Moco kinematics; in green the moments obtained from measured GRFs with Moco 

kinematics; in blue the moments obtained from measured GRFs with MoCap kinematics; for 

the five optimal trials. 
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Figure 59: ID comparison: in red the joints moments obtained from estimated GRFs with 

Moco kinematics; in green the moments obtained from measured GRFs with Moco 

kinematics; in blue the moments obtained from measured GRFs with MoCap kinematics; for 

the ten unseen trials. 

Joint Moments 

Inverse Dynamics obtained with Moco kinematics – Estimated 

GRFs 

RMSE [Nm/kg] Pearson coefficient 

Optimal Not optimal Optimal Not optimal 

Hip Flx/Ext 1.05 ± 0.22 1.28 ± 1.35 0.52 ± 0.44 0.52 ± 0.34 

Hip Add/Abd 0.4 ± 0.14 0.69 ± 0.74 0.22 ± 0.18 0.15 ± 0.12 

Hip IR/ER 0.16 ± 0.06 0.13 ± 0.11 0.5 ± 0.23 0.44 ± 0.28 

Knee Flx/Ext 0.74 ± 0.22 0.99 ± 0.82 0.58 ± 0.15 0.5 ± 0.19 

Knee Add/Abd 0.36 ± 0.1 0.56 ± 0.81 0.17 ± 0.23 0.2 ± 0.38 

Knee IR/ER 0.08 ± 0.03 0.14 ± 0.13 0.65 ± 0.38 0.47 ± 0.19 

Ankle DF/PF 0.51 ± 0.13 0.72 ± 0.46 0.33 ± 0.3 0.3 ± 1.36 

Subtalar 0.15 ± 0.04 0.32 ± 0.5 0.25 ± 0.23 0.3 ± 0.27 
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Table 11: Inverse Dynamics obtained with Moco kinematics – Estimated GRFs: Average 

value (± standard deviation) of inverse dynamics’ Pearson coefficient (R2) and root mean 

square error (RMSE) with respect to measured ID for the optimal and unseen trials. 

Joint Moments 

Inverse Dynamics obtained with Moco kinematics – Measured GRFs 

RMSE [Nm/kg] Pearson coefficient 

Optimal Not optimal Optimal Not optimal 

Hip Flx/Ext 0.23 ± 0.11 0.63 ± 1.25 0.96 ± 0.05 0.91 ± 0.11 

Hip Add/Abd 0.07 ± 0.02 0.22 ± 0.3 0.92 ± 0.08 0.74 ± 0.38 

Hip IR/ER 0.07 ± 0.09 0.1 ± 0.06 0.94 ± 0.06 0.77 ± 0.33 

Knee Flx/Ext 0.19 ± 0.08 0.52 ± 0.7 0.97 ± 0.01 0.83 ± 0.3 

Knee Add/Abd 0.05 ± 0.03 0.19 ± 0.3 0.82 ± 0.28 0.79 ± 0.24 

Knee IR/ER 0.04 ± 0.02 0.09 ± 0.1 0.87 ± 0.07 0.8 ± 0.28 

Ankle DF/PF 0.45 ± 0.37 0.64 ± 0.34 0.97 ± 0.03 0.84 ± 0.25 

Subtalar 0.19 ± 0.07 0.17 ± 0.11 0.6 ± 0.32 0.57 ± 0.25 

Table 12: Inverse Dynamics obtained with Moco kinematics – Measured GRFs: Average 

value (± standard deviation) of inverse dynamics’ Pearson coefficient (R2) and root mean 

square error (RMSE) with respect to measured ID for the optimal and unseen trials.  

Regarding the five optimized trials results, which curves are illustrated in [Fig.56], the average 

(± standard deviation) of root mean square error, is lower for all joints moments,  with the 

exception of Hip Internal/external rotation moment, which has a value of 0.16 ± 0.06 Nm/kg 

(against the previous result 0.14 ± 0.1 Nm/kg in [Tab.10]); the average (± standard deviation) 

of Pearson coefficient is higher than the condition in which there are considered all the fifteen 

trials, with the exception of Subtalar moment, with a value of 0.25 ± 0.23 (against the previous 

result 0.29 ± 0.25 in [Tab.10]). 

Regarding the ten not optimized trials, as expected, there are higher values of mean  (± standard 

deviation) of RMSE for all joints moments, with the exception of Hip Internal/external rotation 

moment, which has a value of 0.13 ± 0.11 Nm/kg (against the previous result 0.14 ± 0.1 Nm/kg 

in [Tab.10]);. the average (± standard deviation) of Pearson coefficient is slightly lower than 
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the condition in which there are considered all the fifteen trials, with the exception of Subtalar 

moment, with a value of 0.3 ± 0.27 (against the previous result 0.29 ± 0.25 in [Tab.10]).  

In [Tab.12] are reported the average (± standard deviation) of RMSE and Pearson coefficient 

for the ‘mix’ case (Measured GRFs and Moco IK). The behavior is the same as the one 

explained for [Tab.11] with the exception of hip internal/external rotation and subtalar moment 

regarding the average (± standard deviation) of RMSE, and of Knee adduction/abduction and 

subtalar joints regarding the  average (± standard deviation) of Pearson coefficient, in which is 

the opposite: for hip IR/ER, the optimal case RMSE is lower than the unseen case (0.07 ± 0.09 

Nm/kg optimal against 0.1 ± 0.06 Nm/kg unseen trial), vice versa for subtalar joint’s RMSE 

(0.19 ± 0.07 Nm/kg optimal against 0.17 ± 0.11 Nm/kg unseen trial); for knee add/abd joint 

the optimal case Pearson coefficient is better than the unseen case (0.82 ± 0.28 optimal against 

0.79 ± 0.24 unseen trial), vice versa for subtalar joint’s Pearson coefficient (0.6 ± 0.32 optimal 

against 0.57 ± 0.25 unseen trial). All the comparisons just illustrated between optimal and 

unseen trials values in [Tab.11] and [Tab.12] have been done knowing that the RMSE and 

Pearson coefficient parameters for measured GRFs (and Moco IK) are better than estimated 

GRFs (and Moco IK) as previously written for [Tab.10]. 
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6. DISCUSSION             

The results illustrated in the previous chapter allow us to do some considerations about the 

developed optimization problem on the estimated ground reaction forces extracted from five 

contact geometries in a custom musculoskeletal model, during over ground walking gait. 

The aim of this study was to develop an approach that substituted the gold standard, that is the 

use of force plates, in order to extract the ground reaction forces (and moments), and avoid the 

use of these instruments for the measurement of these forces. One of the reasons why there is 

the want to limit the use of the force plates, is that, despite the accuracy of the measures, their 

cost is extremely high. 

In general, there are already such systems for the estimation of GRFs without the use of force 

plates [54], as mentioned in the third chapter of this thesis, that are the pressure insoles, that 

remain expensive but avoid another problem of the usage of force plates, that is the MoCap 

system instrument. In fact, besides this study representing an interesting alternative to pressure 

insoles, it is the beginning of a project that has, as a goal, the elimination of the entire use of 

motion capture systems environment. There are already research projects that have the aim of 

avoiding the use of such systems that allow the study of movements  in a controlled environment 

but limiting the applications of motion analysis. One of them is the already validated OpenCap 

system [54], that allows the registration of human motion kinematics outside the motion 

laboratory (for example in an athletics field) thanks to common instruments (i.e., iPhone and/or 

iPad) and then upload the video on the software for the motion analysis. Another approach is 

the use of the inertial wearable sensors IMUs and OpenSim Moco tool coupled with models 

that have contact geometry for which the results are explained in the study [61]. The last one 

has been the approach followed in this thesis to reach the goal previously illustrated. 

Regarding the results of this study, to allow a better understanding of them, they are going to 

be explained in the following specific paragraphs.                                                               

6.1. Discussion of Ground reaction forces results 

As for the results obtained using the optimization framework ‘fminsearchbnd’ in MATLAB to 

extract the best ground reaction forces as possible, with the custom model and Moco kinematics 

as inputs, it can be stated that the joint angles data were consistent, as it can be seen in the 

Result chapter [Tab.4]. Since an error of less than 2° is acceptable in most clinical applications, 

while errors of 2° to 5° are also acceptable but require specific interpretation and larger errors 
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are not acceptable, joints angles, such as Dorsi/Plantar flexion and Inversion/Eversion of the 

ankle, and especially, the Flexion/Extension of the knee, have to be improved in MocoTrack 

approach, changing the weights in the cost functions, MocoTrackingGoal and/or 

MocoControlGoal, or changing the boundaries in MocoProblem section. 

The aim of this thesis is to validate an optimization method in order to generate the best 

estimation of ground reaction forces based on a biomechanical model that has specific contact 

geometries suitable forces acting on them. The best estimation of ground forces are obtained if 

these forces are as close as possible to the ones extracted from force plates, that is the state of 

the art for this purpose. There are several studies in literature (for example the one showed in 

[73]), applied on different clinical and sportive research, with which the ground reactions forces 

extracted from the contact spheres could be compared, beside the ones recorded in the 

Movement and Posture Analysis Laboratory Leuven (MALL), at the Department of Movement 

Science of the KU Leuven, but in this chapter the GRFs obtained will be compared with these 

last explained forces, which results are illustrated in the Result chapter.  

From a visual comparison, shown in [Fig.51], it is possible to establish how the approach 

presented provides improvements with respect to the initial GRFs (i.e., the ones before the 

optimization), but also some problems. The improvement is confirmed by the small root mean 

square error for the vertical component (0.23 ± 0.12 BW), that is followed by a good correlation 

(0.6 ± 0.29), instead limitations are confirmed by the weak correlation (0.1 ± 0.12) for the 

medio-lateral component and its behavior is strongly dependent on the trial, confirmed by the 

large standard deviation and by the worsening compared to the initial case; the anterior-

posterior component has a similar behavior respect to the initial case, and it presents a strong 

correlation (0.82 ± 0.06). These considerations are in common with the optimized and not trials 

cases individually, knowing that in the first case, the results are slightly higher than the ones 

commented. 

In order to justify these inappropriate values that bring such RMSE, the reason could be firstly 

attributed to the geometric configuration of the contact spheres and their mechanical properties 

during the development of the musculoskeletal problem used in this study and explained in the 

Methods chapter, that do not recreate a perfect gait motion. Secondly, the parameters considered 

in the MocoTrack algorithm of OpenSim Moco library bring some limitations because they do 

not ensure the perfect adhesion of the foot with the ground, even if the algorithm tries to get as 

close as possible to it. Then, these values could be justified by the several parameters (for 

example, the physical ones, illustrated in the methods chapter) of the contact spheres that were 
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not managed by this optimization method, i.e., the optimization function chosen; by the choice 

of the boundaries, that should be more restrictive around the foot and respect its physiology, or 

by the several simplifications made on the musculoskeletal model. But the main problem of 

these results is the number of contact geometries utilized in the model: this causes a very high 

approximation that might have brought these results. Despite this modification may bring the 

optimization problem to be more difficult to manage, considering also the parameters 

mentioned before, thus, to be computationally slower, it could be a decisive way to improve the 

results. 

Moreover, as it can be seen in [Fig.52], the optimization is strongly subject dependent. This 

happens because there is a high inter-variability between subjects and this reflects on the 

subject’s foot size, height, weight, way to walk, how to put the foot on the ground, and the 

eventual pathology (even if it is not this study’s case). On the contrary, the optimization is 

slightly trial dependent. For this reason, it was chosen to do the optimization on a random trial 

instead of considering the one that would have provided the smallest root mean square error. 

Regarding all the considerations made about the correlation between contact spheres and force 

estimation, it is evident that the results obtained in the present study cannot be considered 

reliable and clinically applicable. Suggestions of improvement are shown in the Conclusion 

chapter. 

6.2. Discussion of Center of pressure results 

The optimization method used in this study, thus the variation of the contact spheres’ position 

variation, also strongly influences the estimation of the anterior/posterior and medio/lateral 

center of pressure (COP) components and the ground reaction moment. As explained in the 

Methods chapter, for their calculations, the zero-moment-point (ZMP) method [67] was 

employed, contained in the ‘extractGRFfromSpheres.m’ custom function code in MATLAB.  

Since the optimization function is applied only on ground reaction forces, there is no evident 

improvement in the calculation of these values despite the obtained forces being used as input 

of the ZMP method. This method is a validate approach in order to obtain these points of action 

of these ground reaction forces, and the ground reaction moment, but it is evident that there are 

discrepancies, reported in [Tab.8-9] of the Result chapter, where high RMSE values and small 

Pearson coefficients (which led to a very weak correlation),  can be seen for all the components.  
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According to D. Gupta et al., the ZMP method [67] elicits different simulation kinetics, and so 

COP coordinates, but besides this, the discrepancies are especially given by the not perfectly 

good approximations of the GRFs obtained from the optimization framework. Improvements 

of this evaluation have to be done firstly on the GRF problem optimization approach.  

6.3. Discussion of Inverse Dynamics results 

These considerations and results about ground reaction forces and center of pressure, reflect on 

the estimations of joint moments, obtained from the application of inverse dynamics 

mathematical equation reported in the methods chapter. Graphically, [Fig.57] clearly reports 

how the results from the estimated GRFs are highly variable: in particular, regarding the 

moments of hip and knee flexion/extension (hip Flx/Ext, knee Flx/Ext) and internal/external 

rotation (hip IR/ER, knee IR/ER), it is possible to find anomalous peaks at the beginning with 

strongly overestimated values at the end. This overestimation can be attributed to the inaccurate 

estimations of GRFs, GRMs, and COP components, which, when added together, produce such 

errors. Besides these inaccuracies, the evaluation of IK with the MocoTrack approach has also 

brought such ID (red curves in [Fig.57]). In fact, the green curves shown in the same figure, 

obtained with measured GRFs demonstrate how this IK influences the evaluation of ID. These 

curves showing a similar behavior compared to the full MoCap ID (blue curves in the same 

figure), justified with the high Pearson coefficient reported in [Tab.10], with the exception of 

Ankle plantarflexion/dorsiflexion, which overcomes the physiological positive range value. As 

confirmation of the graphs shown in [Fig.57], the Pearson coefficient and root mean square 

error (RMSE) were calculated and reported in [Tab.10] for full estimated ID (red curves), and 

mix ID (green curves) cases with respect to the full MoCap ID (blue curves).  

Moreover, [Fig.57] shows an unexpected trend for hip and knee abduction/adduction moments 

(hip Add/Abd and knee Add/Abd) and subtalar moment as result of the influence of the unseen 

trials provided by [Fig.59], with the consequence of the high standard deviation, already 

mentioned in the Result chapter. This particular trend could be attributed to the fact that there 

are  larger errors in both GRFs and COP cases, which are added together in the inverse 

dynamics’ calculation. This in fact happens with less intensity in the optimized trials case, 

reported in [Fig.58]. As expected, [Tab.11] highlights the differences illustrated in [Figg.58-

59], reporting mean (± std) RMSE and Pearson coefficient values of these joint moments, 

highlighted in the Result chapter. The same comments could be made also on green curves due 

to OpenSim Moco IK influence in ID calculations.  
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The results just discussed represent yet another confirmation that the present project cannot be 

considered completed; on the contrary, further testing and development are needed in order to 

reduce the peaks and the higher variability of hip and knee abduction/adduction moments (hip 

Add/Abd and knee Add/Abd) and subtalar moment present in [Fig.57], consequently increasing 

the correlation between reference data and data obtained by minimizing the errors present for 

the full estimated ID. 
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7. CONCLUSION   

This thesis was developed with the aim of proposing a new optimization problem approach in 

order to estimate the best ground reaction forces, i.e., the closest to those measured with force 

plates. The estimation of these forces is based on a biomechanical model and data from an IMU-

based approach [61]. The ultimate goal is to develop a reliable and clinically employable 

alternative to the gold standard for the study of motion analysis, represented by the combination 

of retro-reflective markers and a stereophotogrammetric system, known as the motion capture 

(MoCap) system [2]. 

One clinical application of this study could be that of finding a rehabilitation therapy solution 

for osteoarthritis, in particular knee osteoarthritis, for elder and/or lonely people that cannot 

reach the laboratory in which is present the MoCap system (since most of the time, they are in 

other cities given the low attendance due to high costs or small environments) or for anyone 

who cannot afford high expenses.  

Osteoarthritis (OA) is the most frequent musculoskeletal disease and the most common 

degenerative joint disorder that affects one or several diarthrodial joints, including small joints 

(such as those in the hand) and large joints (such as the knee and hip joints) [74]. Clinically, the 

condition is characterized by the syndrome of joint pain, transient morning stiffness, crepitus 

on joint, and dysfunction caused by substantial joint degeneration, that lead to instability and 

physical disability, thus impairing quality of life. OA can be classified as primary (or idiopathic) 

and secondary (based on the attribution to recognized causative factors, such as trauma, surgery 

on the joint structures, abnormal joints at birth, etc.) [75]. Osteoarthritis is not a curable disease 

at present, as the mechanism by which it arises and progresses remains incompletely 

understood. Therefore, the major goals of OA treatment are pain control with minimal adverse 

effects, maintenance or improvement of joint mobility and function, and improved health 

related quality of life. Treatment should be tailored to each individual. Because no single 

therapy is adequate, the major clinical guidelines for disease management generally agree that 

therapy should involve a combination of nonpharmacologic and pharmacologic therapies. In 

fact, the therapeutic spectrum ranges from general measures to physiotherapy, orthopedic aids 

and orthoses, pharmacotherapy, and finally surgery and rehabilitation [75]. 

The results presented in the dedicated chapter (Results) clearly show how the approach 

developed in this project is promising: through a variation of a single parameter of spherical 

contact geometries with specific geometrical and physical characteristics ([Tab.2]), it was 



118 
 

possible to get ground reaction forces closer to those measured in MoCap environment. The 

MATLAB optimization function [68], previously described in the Methods chapter, has 

allowed us to estimate these new GRFs, varying the spheres’ position, considered as an input, 

within physiological ranges. In the result chapter, in addition to the main objective of this thesis, 

i.e., the comparison of estimated GRFs with the measure GRFs ([Fig.49], [Fig.50], [Tab.5], and 

[Tab.6]), were presented compared results of center of pressure coordinates ([Fig.55], [Fig.56], 

[Tab.8], and [Tab.9]) followed by the joints moments ([Fig.57], [Fig.58], [Fig.59], [Tab.10], 

and [Tab.11]). 

Conclusions based on the results obtained and the discussion of these presented in the dedicated 

chapter (Discussion) can be drawn: the workflow developed represents a new method for the 

optimization of ground reaction forces. As mentioned in the previously cited chapter, further 

improvements to contact geometry should be made, despite the results obtained being 

promising. Many factors must be considered: for example, evaluating a different number of 

spheres, adding the variation of new parameters (such as radius or stiffness), or modifying the 

tolerances of ‘fminsearchbnd’ MATLAB function. In particular, the results estimated from the 

spheres still have some discrepancies from the values measured from the force platforms, 

despite the optimization; these discrepancies are directly responsible for errors in the 

subsequent calculation of center of pressure coordinates and joint moments. This shows how 

further improvements in this direction suitable for enhancing the reported estimated values are 

needed, since the gold standard devices (force plates) still appear to be the most reliable. 

The proposed study constitutes a starting point for future developments and improvements that 

aim to validate this optimization method and that would bring such values of ground reaction 

forces to be reliable and clinically applicable. Beyond these, a study devoted entirely to contact 

spheres is necessary, since through this it is possible to understand in depth how changes in 

geometrical and mechanical characteristics introduced, lead to significative changes in terms of 

proximity to measured force values by these estimated forces extracted from these geometries; 

based on this important study it will be possible to define the best configuration as a 

combination of geometry, position, number, and mechanical characteristics of the spheres that 

produces the most reliable optimization results. A further development concerns the model: in 

order to make it as comparable as possible with the human musculoskeletal system, it is 

necessary to add additional degrees of freedom to the joints (i.e., to the ankle joint) making it 

less simplifying, with the ultimate goal of employing such a model in the study of movements 

of patients with diseases that impair normal walking, such as the already mentioned 

osteoarthritis, and neurological diseases. 
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Appendix: Code used 

1. Optimization_problem.m  

The script reported was used to get the best as possible ground reaction forces components (here 

the code is applied to the last subject, HS6, but the method is the same for the others with the 

exception of GRF measured range of interested, indicated with startL and endL, and GRF 

estimated, both before and after optimization, indicated with startP and endP). 

%% GRF optimization 
import org.opensim.modeling.*; 
sub = 6; 
walk = 0; 
startL = 579; 
endL = 1141; 
startP = 11; 
endP = 68; 
BW = 68*9.81; %body masses of the subjects = [87.6 77.5 76.5 55.6 68]; 
 
lab = ['walk_',num2str(walk),'_grf.mot']; 
modelOsim= ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\model\HS',num2str(sub),'_G
RFextr_scaled.osim'];  
motionFile = ['Moco_solution_MoCap_',num2str(walk)]; 
 
% Creation of GRF file 
extractGRFfromSpheres_v2(lab,motionFile,modelOsim,sub,walk,false); 
model = Model(modelOsim); 
model.initSystem(); 
 
%% Ground reaction forces and moments MEASURED 
[D_lab,C_lab,T_lab]= readMOTSTOTRCfiles_v1(['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\experimentalData\walk_',nu
m2str(walk),'\'], ['walk_',num2str(walk),'_grf.mot']); 
 
if sub == 1 || (sub == 2 && walk == 7) 
    grf_lab = TimeNormalize_v1([T_lab.ground_force_vx(startL:10:endL), 
T_lab.ground_force_vy(startL:10:endL), 
T_lab.ground_force_vz(startL:10:endL)],101); 
    grm_lab = TimeNormalize_v1(T_lab.ground_torque_y(startL:10:endL),101); 
    cop_x_lab = TimeNormalize_v1(T_lab.ground_force_px(startL:10:endL),101); 
    cop_z_lab = TimeNormalize_v1(T_lab.ground_force_pz(startL:10:endL),101); 
elseif sub == 4 
    if walk == 5 
        grf_lab = TimeNormalize_v1([T_lab.ground_force1_vx(startL:10:endL), 
T_lab.ground_force1_vy(startL:10:endL), 
T_lab.ground_force1_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab.ground_torque1_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force1_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force1_pz(startL:10:endL),101); 
    else  
        D_lab(:,20) = -D_lab(:,20); 
        D_lab(:,22) = -D_lab(:,22); 
        generateMotFile_v3(D_lab,C_lab,[['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\experimentalData\walk_',nu
m2str(walk),'\'],['walk_',num2str(walk),'_grfAP.mot']]) 
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        [D_lab1,C_lab1,T_lab1]= readMOTSTOTRCfiles_v1(['C:\Users\ASUS\OneDrive - 
KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\experimentalData\walk_',nu
m2str(walk),'\'], ['walk_',num2str(walk),'_grfAP.mot']); 
        grf_lab = TimeNormalize_v1([T_lab1.ground_force3_vx(startL:10:endL), 
T_lab1.ground_force3_vy(startL:10:endL), 
T_lab1.ground_force3_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab1.ground_torque3_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force3_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force3_pz(startL:10:endL),101); 
    end 
elseif sub == 2 
    if walk == 9 || walk == 12 
        grf_lab = TimeNormalize_v1([T_lab.ground_force1_vx(startL:10:endL), 
T_lab.ground_force1_vy(startL:10:endL), -
T_lab.ground_force1_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab.ground_torque1_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force1_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force1_pz(startL:10:endL),101); 
    else  
        grf_lab = TimeNormalize_v1([T_lab.ground_force_vx(startL:10:endL), 
T_lab.ground_force_vy(startL:10:endL), 
T_lab.ground_force_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab.ground_torque_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force_pz(startL:10:endL),101); 
    end 
else % sub == 3 || sub == 6  
    D_lab(:,2) = -D_lab(:,2);  
    D_lab(:,4) = -D_lab(:,4); 
    generateMotFile_v3(D_lab,C_lab,[['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\experimentalData\walk_',nu
m2str(walk),'\'],['walk_',num2str(walk),'_grfAP.mot']]) 
    [D_lab1,C_lab1,T_lab1]= readMOTSTOTRCfiles_v1(['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\experimentalData\walk_',nu
m2str(walk),'\'], ['walk_',num2str(walk),'_grfAP.mot']); 
    grf_lab = TimeNormalize_v1([T_lab1.ground_force1_vx(startL:10:endL), 
T_lab1.ground_force1_vy(startL:10:endL), 
T_lab1.ground_force1_vz(startL:10:endL)],101); 
    grm_lab = TimeNormalize_v1(T_lab1.ground_torque1_y(startL:10:endL),101); 
    cop_x_lab = TimeNormalize_v1(T_lab.ground_force1_px(startL:10:endL),101); 
    cop_z_lab = TimeNormalize_v1(T_lab.ground_force1_pz(startL:10:endL),101); 
end 
 
%% INITIAL Ground reaction forces ESTIMATED 
[D_MoCo,C_MoCo,T_MoCo]= readMOTSTOTRCfiles_v1(['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\modelledData\walk_',num2st
r(walk),'\'], ['walk_',num2str(walk),'_GRFMOCO.mot']); 
 
if sub == 1 || (sub == 2 && walk == 7) 
    grf_MoCo_start = TimeNormalize_v1([T_MoCo.ground_force_vx(startP:endP), 
T_MoCo.ground_force_vy(startP:endP), T_MoCo.ground_force_vz(startP:endP)],101); 
    grm_MoCo_start = T_MoCo.ground_torque_y(startP:endP); 
    cop_x_MoCo_start = TimeNormalize_v1(T_MoCo.ground_force_px(startP:endP),101); 
    cop_z_MoCo_start = TimeNormalize_v1(T_MoCo.ground_force_pz(startP:endP),101); 
    if walk == 11  
        grf_MoCo_start = 
TimeNormalize_v1([T_MoCo.('1_ground_force_vx')(startP:endP), 
T_MoCo.('1_ground_force_vy')(startP:endP), 
T_MoCo.('1_ground_force_vz')(startP:endP)],101); 
        grm_MoCo_start = T_MoCo.('1_ground_torque_y')(startP:endP); 
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        cop_x_MoCo_start = 
TimeNormalize_v1(T_MoCo.('1_ground_force_px')(startP:endP),101); 
        cop_z_MoCo_start = 
TimeNormalize_v1(T_MoCo.('1_ground_force_pz')(startP:endP),101); 
    end 
elseif sub == 4 && walk == 5 
    grf_MoCo_start = TimeNormalize_v1([T_MoCo.ground_force1_vx(startP:endP), 
T_MoCo.ground_force1_vy(startP:endP), T_MoCo.ground_force1_vz(startP:endP)],101); 
    grm_MoCo_start = T_MoCo.ground_torque1_y(startP:endP); 
    cop_x_MoCo_start = TimeNormalize_v1(T_MoCo.ground_force1_px(startP:endP),101); 
    cop_z_MoCo_start = TimeNormalize_v1(T_MoCo.ground_force1_pz(startP:endP),101); 
else  
    grf_MoCo_start = TimeNormalize_v1([T_MoCo.ground_force1_vx(startP:endP), 
T_MoCo.ground_force1_vy(startP:endP), T_MoCo.ground_force1_vz(startP:endP)],101); 
    grm_MoCo_start = T_MoCo.ground_torque1_y(startP:endP); 
    cop_x_MoCo_start = TimeNormalize_v1(T_MoCo.ground_force1_px(startP:endP),101); 
    cop_z_MoCo_start = TimeNormalize_v1(T_MoCo.ground_force1_pz(startP:endP),101); 
end 
 
%% Spheres Position 
% Initial position 
sph = model.get_ContactGeometrySet(); 
S1 = org.opensim.modeling.ContactSphere.safeDownCast(sph.get('s1_r')); 
S2 = org.opensim.modeling.ContactSphere.safeDownCast(sph.get('s2_r')); 
S3 = org.opensim.modeling.ContactSphere.safeDownCast(sph.get('s3_r')); 
S4 = org.opensim.modeling.ContactSphere.safeDownCast(sph.get('s4_r')); 
S5 = org.opensim.modeling.ContactSphere.safeDownCast(sph.get('s5_r')); 
p1 = S1.get_location(); 
p2 = S2.get_location(); 
p3 = S3.get_location(); 
p4 = S4.get_location(); 
p5 = S5.get_location(); 
 
x = [p1.get(0),p2.get(0),p3.get(0),p4.get(0),p5.get(0)]; 
y = [p1.get(1),p2.get(1),p3.get(1),p4.get(1),p5.get(1)]; 
z = [p1.get(2),p2.get(2),p3.get(2),p4.get(2),p5.get(2)]; 
p0 = [x;y;z]'; 
 
%% Radius  
r1 = S1.getRadius(); 
r2 = S2.getRadius(); 
r3 = S3.getRadius(); 
r4 = S4.getRadius(); 
r5 = S5.getRadius(); 
 
%% FMINSEARCHBND FOR THE OPTIMIZATION 
grf_lab = reshape(grf_lab,[1,size(grf_lab,1)*3]); 
opt_fun = @(p) rms(grf_lab - estim_v3(model,p,sub,walk,startP,endP,6,false)); 
options = optimset('Display','iter','MaxFunEvals', 1500, 'MaxIter', 1500, 
'TolFun', 1e-30, 'TolX', 1e-30); 
 
LB = [p1.get(0), p1.get(1) - (r1/2), p1.get(2) - (r1); 
      p2.get(0) - (2*r2), p2.get(1) - (r2/2), p2.get(2); 
      p3.get(0) - (r3), p3.get(1) - (r3/2), p3.get(2) - (r3); 
      p4.get(0) - (2*r4), p4.get(1) - (r4/2), p4.get(2) - (r4); 
      p5.get(0) - (2*r5), p5.get(1) - (r5/2), p5.get(2) - (r5)]; 
UB = [p1.get(0) + (2*r1), p1.get(1) + (r1/2), p1.get(2) + (r1); 
      p2.get(0) + (2*r2), p2.get(1) + (r2/2), p2.get(2) + (2*r2); 
      p3.get(0) + (r3), p3.get(1) + (r3/2), p3.get(2) + (r3); 
      p4.get(0) + (r4), p4.get(1) + (r4/2), p4.get(2); 
      p5.get(0), p5.get(1) + (r5/2), p5.get(2) + (r5)]; 



122 
 

 
[p_opt,fval] = fminsearchbnd(opt_fun, p0, LB, UB, options); 
optimizationError = fval; 
 
vec1_new = Vec3(p_opt(1,1),p_opt(1,2),p_opt(1,3)); %new quantity 
vec2_new = Vec3(p_opt(2,1),p_opt(2,2),p_opt(2,3)); 
vec3_new = Vec3(p_opt(3,1),p_opt(3,2),p_opt(3,3)); 
vec4_new = Vec3(p_opt(4,1),p_opt(4,2),p_opt(4,3)); 
vec5_new = Vec3(p_opt(5,1),p_opt(5,2),p_opt(5,3)); 
S1.set_location(vec1_new); 
S2.set_location(vec2_new); 
S3.set_location(vec3_new); 
S4.set_location(vec4_new); 
S5.set_location(vec5_new); 
 
%% Creation of the new OPTIMAL model  
path = ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\model\']; 
osim = ['HS',num2str(sub),'_optimization_walk',num2str(walk),'.osim'];  
model.initSystem(); 
model.print([path, osim]); 
modelOsim_new = ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\model\',osim];  
model_new = Model(modelOsim_new); 
model_new.initSystem(); 
 
% Creation of GRF file 
extractGRFfromSpheres_v2(lab,motionFile,modelOsim_new,sub,walk,true); 
 
[D_MoCo_new,C_MoCo_new,T_MoCo_new]= readMOTSTOTRCfiles_v1(['C:\Users\ASUS\OneDrive 
- KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\modelledData\walk_',num2st
r(walk),'\'], ['walk_',num2str(walk),'_GRFMOCO_optim.mot']); 
 
%% OPTIMIZED grfm MEASURED (RESPECT TO p_opt)  
if sub == 1 || (sub == 2 && walk == 7) 
    grf_MoCo_opt = [T_MoCo_new.ground_force_vx(startP:endP), 
T_MoCo_new.ground_force_vy(startP:endP), T_MoCo_new.ground_force_vz(startP:endP)]; 
    grm_MoCo_opt = T_MoCo_new.ground_torque_y(startP:endP); 
    cop_x_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.ground_force_px(startP:endP),101); 
    cop_z_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.ground_force_pz(startP:endP),101); 
    if walk == 11  
        grf_MoCo_opt = 
TimeNormalize_v1([T_MoCo_new.('1_ground_force_vx')(startP:endP), 
T_MoCo_new.('1_ground_force_vy')(startP:endP), 
T_MoCo_new.('1_ground_force_vz')(startP:endP)],101); 
        grm_MoCo_opt = T_MoCo_new.('1_ground_torque_y')(startP:endP); 
        cop_x_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.('1_ground_force_px')(startP:endP),101); 
        cop_z_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.('1_ground_force_pz')(startP:endP),101); 
    end 
elseif sub == 4 && walk == 5 
    grf_MoCo_opt = TimeNormalize_v1([T_MoCo_new.ground_force1_vx(startP:endP), 
T_MoCo_new.ground_force1_vy(startP:endP), 
T_MoCo_new.ground_force1_vz(startP:endP)],101); 
    grm_MoCo_opt = T_MoCo_new.ground_torque1_y(startP:endP); 
    cop_x_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.ground_force1_px(startP:endP),101); 
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    cop_z_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.ground_force1_pz(startP:endP),101); 
else  
    grf_MoCo_opt = [T_MoCo_new.ground_force1_vx(startP:endP), 
T_MoCo_new.ground_force1_vy(startP:endP), 
T_MoCo_new.ground_force1_vz(startP:endP)]; 
    grm_MoCo_opt = T_MoCo_new.ground_torque1_y(startP:endP); 
    cop_x_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.ground_force1_px(startP:endP),101); 
    cop_z_MoCo_opt = 
TimeNormalize_v1(T_MoCo_new.ground_force1_pz(startP:endP),101); 
end 
%% FILTERING  
fc = 20; % cut off frequency [Hz] 
fs = 101; % sample frequency [Hz] 
[magnitude,freq] = butter(2,fc/(fs/2)); %2nd order Butterworth low-pass filter 
(20Hz) 
 
if sub == 1 || (sub == 2 && walk == 7) 
    grf_lab = TimeNormalize_v1([T_lab.ground_force_vx(startL:10:endL), 
T_lab.ground_force_vy(startL:10:endL), 
T_lab.ground_force_vz(startL:10:endL)],101); 
    grm_lab = TimeNormalize_v1(T_lab.ground_torque_y(startL:10:endL),101); 
    cop_x_lab = TimeNormalize_v1(T_lab.ground_force_px(startL:10:endL),101); 
    cop_z_lab = TimeNormalize_v1(T_lab.ground_force_pz(startL:10:endL),101); 
elseif sub == 4 
    if walk == 5 
        grf_lab = TimeNormalize_v1([T_lab.ground_force1_vx(startL:10:endL), 
T_lab.ground_force1_vy(startL:10:endL), 
T_lab.ground_force1_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab.ground_torque1_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force1_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force1_pz(startL:10:endL),101); 
    else  
        grf_lab = TimeNormalize_v1([T_lab1.ground_force3_vx(startL:10:endL), 
T_lab1.ground_force3_vy(startL:10:endL), 
T_lab1.ground_force3_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab1.ground_torque3_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force3_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force3_pz(startL:10:endL),101); 
    end 
elseif sub == 2 
    if walk == 9 || walk == 12 
        grf_lab = TimeNormalize_v1([T_lab.ground_force1_vx(startL:10:endL), 
T_lab.ground_force1_vy(startL:10:endL), 
T_lab.ground_force1_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab.ground_torque1_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force1_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force1_pz(startL:10:endL),101); 
    else  
        grf_lab = TimeNormalize_v1([T_lab.ground_force_vx(startL:10:endL), 
T_lab.ground_force_vy(startL:10:endL), 
T_lab.ground_force_vz(startL:10:endL)],101); 
        grm_lab = TimeNormalize_v1(T_lab.ground_torque_y(startL:10:endL),101); 
        cop_x_lab = TimeNormalize_v1(T_lab.ground_force_px(startL:10:endL),101); 
        cop_z_lab = TimeNormalize_v1(T_lab.ground_force_pz(startL:10:endL),101); 
    end 
else % sub == 3 || sub == 6  
    grf_lab = TimeNormalize_v1([T_lab1.ground_force1_vx(startL:10:endL), 
T_lab1.ground_force1_vy(startL:10:endL), 
T_lab1.ground_force1_vz(startL:10:endL)],101); 
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    grm_lab = TimeNormalize_v1(T_lab1.ground_torque1_y(startL:10:endL),101); 
    cop_x_lab = TimeNormalize_v1(T_lab.ground_force1_px(startL:10:endL),101); 
    cop_z_lab = TimeNormalize_v1(T_lab.ground_force1_pz(startL:10:endL),101); 
end 
 
grf_lab = filtfilt(magnitude,freq,grf_lab); 
grf_MoCo_opt = filtfilt(magnitude,freq,grf_MoCo_opt); 
grf_MoCo_opt = TimeNormalize_v1(grf_MoCo_opt,101); 
grf_MoCo_opt_time = 
TimeNormalize_v1(grf_MoCo_opt,length(T_MoCo.time(startP:endP))); 
grm_MoCo_opt = filtfilt(magnitude,freq,grm_MoCo_opt); 
 
 

2. Evaluation of estimated GRFs (estim_v3 function) 

This function was used to get the extraction of the estimated GRFs at each iteration of the 

optimization problem. 

function GRF_Torq_new = 
estim_v3(model,p,sub,walk,startingpoint,endingpoint,component) 
% p should be in the form p = [x,y,z] where x = [x.sphere1, x.sphere2, ..., 
x.sphere5]' and y, z are the same. 
% sub is a scalar representing the subject that you want to analyze 
% walk is a scalar representing the walking data that you want to analyze 
% component is a scalar, and it is equal to: 
% 0 --> Fx 
% 1 --> Fy 
% 2 --> Fz 
% 3 --> COPx 
% 4 --> COPz 
% 5 --> My 
% 6 --> Fx, Fy, Fz 
% 7 --> COPx, COPz, My 
% 8 --> 6 + 7 
 
import org.opensim.modeling.*; 
 
sph = model.get_ContactGeometrySet(); 
S1 = sph.get('s1_r'); 
S2 = sph.get('s2_r'); 
S3 = sph.get('s3_r'); 
S4 = sph.get('s4_r'); 
S5 = sph.get('s5_r'); 
 
vec1 = Vec3(p(1,1),p(1,2),p(1,3));  
vec2 = Vec3(p(2,1),p(2,2),p(2,3)); 
vec3 = Vec3(p(3,1),p(3,2),p(3,3)); 
vec4 = Vec3(p(4,1),p(4,2),p(4,3)); 
vec5 = Vec3(p(5,1),p(5,2),p(5,3)); 
S1.set_location(vec1); 
S2.set_location(vec2); 
S3.set_location(vec3); 
S4.set_location(vec4); 
S5.set_location(vec5); 
 
%% Creation of the new model 
path = ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\model\']; 
osim = ['HS',num2str(sub),'_scaled_NewLocSph_walk',num2str(walk),'.osim'];  
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model.initSystem(); 
model.print([path, osim]); 
modelOsim_new = ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\model\',osim];  
   
lab = ['walk_',num2str(walk),'_grf.mot']; 
motionFile = ['Moco_solution_MoCap_',num2str(walk)]; 
extractGRFfromSpheres_v2(lab,motionFile,modelOsim_new,sub,walk,true); 
[~,~,T_MoCo_new]= readMOTSTOTRCfiles_v1(['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\modelledData\walk_',num2st
r(walk),'\'], ['walk_',num2str(walk),'_GRFMOCO_optim.mot']); 
if sub == 1 || (sub == 2 && walk == 7) 
    if walk == 11 
        GRF_Torq_new = 
TimeNormalize_v1([T_MoCo_new.('1_ground_force_vx')(startingpoint:endingpoint), 
T_MoCo_new.('1_ground_force_vy')(startingpoint:endingpoint), 
T_MoCo_new.('1_ground_force_vz')(startingpoint:endingpoint), 
T_MoCo_new.('1_ground_force_px')(startingpoint:endingpoint), 
T_MoCo_new.('1_ground_force_pz')(startingpoint:endingpoint), 
T_MoCo_new.('1_ground_torque_y')(startingpoint:endingpoint)],101); 
    else 
        GRF_Torq_new = 
TimeNormalize_v1([T_MoCo_new.ground_force_vx(startingpoint:endingpoint), 
T_MoCo_new.ground_force_vy(startingpoint:endingpoint), 
T_MoCo_new.ground_force_vz(startingpoint:endingpoint), 
T_MoCo_new.ground_force_px(startingpoint:endingpoint), 
T_MoCo_new.ground_force_pz(startingpoint:endingpoint), 
T_MoCo_new.ground_torque_y(startingpoint:endingpoint)],101); 
    end  
elseif sub == 4 && walk == 5 
    GRF_Torq_new = 
TimeNormalize_v1([T_MoCo_new.ground_force1_vx(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_vy(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_vz(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_px(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_pz(startingpoint:endingpoint), 
T_MoCo_new.ground_torque1_y(startingpoint:endingpoint)],101); 
else 
    GRF_Torq_new = 
TimeNormalize_v1([T_MoCo_new.ground_force1_vx(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_vy(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_vz(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_px(startingpoint:endingpoint), 
T_MoCo_new.ground_force1_pz(startingpoint:endingpoint), 
T_MoCo_new.ground_torque1_y(startingpoint:endingpoint)],101); 
end 
 
%% Creating GRF 
switch component 
    case 0 
        GRF_Torq_new = GRF_Torq_new(:,1)'; 
    case 1 
        GRF_Torq_new = GRF_Torq_new(:,2)'; 
    case 2 
        GRF_Torq_new = GRF_Torq_new(:,3)'; 
    case 3 
        GRF_Torq_new = GRF_Torq_new(:,4)'; 
    case 4 
        GRF_Torq_new = GRF_Torq_new(:,5)'; 
    case 5 
        GRF_Torq_new = GRF_Torq_new(:,6)'; 



126 
 

    case 6 
        GRF_Torq_new = GRF_Torq_new(:,1:3); 
        GRF_Torq_new = reshape(GRF_Torq_new,[1,size(GRF_Torq_new,1)*3]); 
    case 7  
        GRF_Torq_new = GRF_Torq_new(:,4:6); 
        GRF_Torq_new = reshape(GRF_Torq_new,[1,size(GRF_Torq_new,1)*3]); 
    case 8 
        GRF_Torq_new = reshape(GRF_Torq_new,[1,size(GRF_Torq_new,1)*6]); 
end 
end 
 

3. GRFM and COP extraction (extractGRFfromSpheres_v2 function) 

function extractGRFfromSpheres_v2(grfFile,motionFile,osimFile,sub,walk,new) 
%INPUTS 
%grfFile: from 'lab measurement' needed only for labels 
%motionFile: IK 
%osimFile: model path 
%sub and trial (walk) 
%new = Boolean; it indicates if it is of the new optimized model or not 
%OUTPUT 
%file cointaining the GRFs 
 
ik_path = ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\modelledData\walk_',num2st
r(walk),'\']; 
grfpath = ['C:\Users\ASUS\OneDrive - KU 
Leuven\Cristina_erasmus\testData\TBM_H0',num2str(sub),'\experimentalData\walk_',nu
m2str(walk),'\']; 
[data, names, ~] = readMOTSTOTRCfiles_v1(ik_path, strcat(motionFile,'.sto'));  
[data_grf, names_grf, ~] = readMOTSTOTRCfiles_v1(grfpath,grfFile); 
 
% Add fiber length name in the sto file 
C2 = [repmat({''}, 120,1) ;repmat({'/fiber_length'},78,1)]; 
names_new = strcat(names', C2); 
names_new(121:145,:) = []; 
names_new(end-3:end, :) = []; 
names_new = names_new'; 
data_new = data; 
data_new(:, 121:145) = []; 
data_new(:, end-3:end) = []; 
statesFile = strcat([motionFile '_wFiber.sto']);  
generateMotFile_v3(data_new, names_new, [ik_path, statesFile]) 
newStatesTraj=StatesTrajectory(); 
import org.opensim.modeling.* 
 
model = Model(osimFile); 
model.initSystem(); 
 
ikStatesTraj=newStatesTraj.createFromStatesStorage(model, [ik_path, statesFile]); 
time = data_new(:,1); 
 
SF1 = model.getForceSet().get('SmoothSphereHalfSpaceForce_s1_r'); 
SF2 = model.getForceSet().get('SmoothSphereHalfSpaceForce_s2_r'); 
SF3 = model.getForceSet().get('SmoothSphereHalfSpaceForce_s3_r'); 
SF4 = model.getForceSet().get('SmoothSphereHalfSpaceForce_s4_r'); 
SF5 = model.getForceSet().get('SmoothSphereHalfSpaceForce_s5_r'); 
 
for i = 0:ikStatesTraj.getSize()-1 
    mState = ikStatesTraj.get(i); 
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    model.realizeVelocity(mState); 
    clear f_sphere1 
    clear f_sphere2 
    clear f_sphere3 
    clear f_sphere4 
    clear f_sphere5 
 
    f_sphere1= SF1.getRecordValues(mState); 
    for j = 0:f_sphere1.getSize()-1 
        Forces_sphere1(i+1,j+1) = f_sphere1.get(j); 
    end 
    f_sphere2= SF2.getRecordValues(mState); 
    for j = 0:f_sphere2.getSize()-1 
        Forces_sphere2(i+1,j+1) = f_sphere2.get(j); 
    end 
    f_sphere3= SF3.getRecordValues(mState); 
    for j = 0:f_sphere3.getSize()-1 
        Forces_sphere3(i+1,j+1) = f_sphere3.get(j); 
    end 
    f_sphere4= SF4.getRecordValues(mState); 
    for j = 0:f_sphere4.getSize()-1 
        Forces_sphere4(i+1,j+1) = f_sphere4.get(j); 
    end 
    f_sphere5= SF5.getRecordValues(mState); 
    for j = 0:f_sphere5.getSize()-1 
        Forces_sphere5(i+1,j+1) = f_sphere5.get(j); 
    end 
end 
 
Forces_All=Forces_sphere1+Forces_sphere2+Forces_sphere3+Forces_sphere4+Forces_sphe
re5; 
ForcesAll_Time=time; 

 
oa_GRF_data=zeros(size(Forces_All,1),7); 
oa_GRF_data(:,1)=ForcesAll_Time; 
oa_GRF_data(:,2:7)=-1*Forces_All(:,7:12); 
 
oa_GRF.nr=size(Forces_All,1); 
oa_GRF.nc=size(data_grf,2); 
oa_GRF.labels=names_grf; 
oa_GRF.data=zeros(oa_GRF.nr,oa_GRF.nc); 
oa_GRF.data(:,1)=oa_GRF_data(:,1); 
 
oa_GRF.data(:,2:4)= oa_GRF_data(:,2:4);  
if sub == 1 || sub == 2 || (sub == 4 && walk == 5) 
    if walk == 11  
        oa_GRF.data(:,2) = oa_GRF.data(:,2); 
        oa_GRF.data(:,4) = -oa_GRF.data(:,4); 
    else 
        oa_GRF.data(:,2) = oa_GRF.data(:,2); 
        oa_GRF.data(:,4) = oa_GRF.data(:,4); 
    end 
elseif sub == 3 || (sub == 4 && walk == 2)  
    oa_GRF.data(:,2) = -oa_GRF.data(:,2); 
    oa_GRF.data(:,4) = oa_GRF.data(:,4); 
else  
    oa_GRF.data(:,2) = -oa_GRF.data(:,2); 
    oa_GRF.data(:,4) = -oa_GRF.data(:,4); 
end 
 
oa_GRF.data(:,5)=oa_GRF_data(:,7)./oa_GRF_data(:,3); 
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oa_GRF.data(:,7)=-1*(oa_GRF_data(:,5)./oa_GRF_data(:,3)); 
if sub == 1 
    oa_GRF.data(:,15)=oa_GRF_data(:,6) + (oa_GRF.data(:,5).*oa_GRF_data(:,4)) - 
(oa_GRF.data(:,7).*oa_GRF_data(:,2)); 
else 
    oa_GRF.data(:,9)=oa_GRF_data(:,6) + (oa_GRF.data(:,5).*oa_GRF_data(:,4)) - 
(oa_GRF.data(:,7).*oa_GRF_data(:,2)); 
end  
 
for i=1:oa_GRF.nr 
    for j=1:oa_GRF.nc 
        if isnan(oa_GRF.data(i,j)) 
            oa_GRF.data(i,j)=0; 
        end 
    end 
end 
oa_GRF.inDeg='no'; 
 
if new == false 
    generateMotFile_v3(oa_GRF.data, oa_GRF.labels, [ik_path, 'walk_' num2str(walk) 
'_GRFMOCO.mot']) 
else  
    generateMotFile_v3(oa_GRF.data, oa_GRF.labels, [ik_path, 'walk_' num2str(walk) 
'_GRFMOCO_optim.mot']) 
end  
end  
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