
University of Padova

Department of Department ofMathematics

Master Thesis inMaster degree in Data Science

Identification of infesting plants in

monoculture fields through CNNs from

UAV imagery

Supervisor Master Candidate
Lamberto Ballan Francesco Vo
University of Padova

Co-supervisor
Stefano Bazzolo
Dromt S.r.l.

Academic Year
2023-2024

ii

For my family, that always supported me.

iv

Abstract

The identi昀椀cation of infesting plants in monoculture 昀椀elds is a critical task for enhancing crop
yields and promoting sustainable agriculture. This thesis investigates the use of Convolutional
Neural Networks (CNNs) for the automated detection and classi昀椀cation of infesting plants in
agricultural settings using high-resolution imagery obtained from Unmanned Aerial Vehicles
(UAVs). Various CNN architectures, including ResNet50, VGG16, InceptionV3, Inception-
ResNetV2, and DenseNet201, were evaluated to determine their e昀昀ectiveness in distinguish-
ing between crops and infesting plants.
The study demonstrates that DenseNet201 outperforms other models, achieving the highest
accuracy due to its dense connectivity pattern, which ensures e昀케cient gradient 昀氀ow and fea-
ture reuse. This architecture’s ability to learn complex and abstract features makes it particu-
larly adept at handling the variability and complexity present in UAV imagery.
The thesis addresses the challenges of dataset preparation, including data augmentation and
class imbalance, and highlights the potential of integrating UAVs and CNNs for real-time agri-
culturalmonitoring. The impact of false positives (FP) and false negatives (FN) is also carefully
examined, given their signi昀椀cant implications in crop monitoring, by introducing methodolo-
gies to control the values of precision and recall.
The results indicate that this approach can signi昀椀cantly reduce labor costs and enhance crop
management e昀케ciency. Future research directions include improving model generalization
through diverse datasets, exploring advancedCNNarchitectures, developing real-time process-
ing methods, and integrating automated intervention systems. By addressing these areas, the
research aims to contribute to more e昀昀ective and sustainable agricultural practices.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Introduction . 1

1.1.1 Background and motivation . 2
1.1.2 Objectives . 2
1.1.3 Contributions . 3
1.1.4 Structure of the thesis . 4

1.2 Hosting company: Dromt S.r.l. 5

2 Theorical overview 7
2.1 Arti昀椀cial Neural Networks . 7

2.1.1 Introduction to ANNs . 7
2.1.2 History of ANNs . 8

2.2 Convolutional Neural Networks . 9
2.3 Image processing . 11

2.3.1 Image pre-processing . 12
2.3.2 Feature extraction . 13
2.3.3 Image classi昀椀cation . 13

2.4 Fine-tuning . 14
2.4.1 Introduction . 14
2.4.2 Fine-tuning techniques . 15

2.5 Anomaly detection . 16
2.6 False positives and false negatives . 16

3 Task and methodologies 21
3.1 Description of the project . 21
3.2 State of the art . 23

3.2.1 Examples of studies . 23

vii

3.2.2 Challenges . 28
3.3 Dataset . 29

3.3.1 Dataset description . 29
3.3.2 Dataset labelling . 32
3.3.3 Dataset pre-processing . 34
3.3.4 Dataset-v3 . 35

3.4 Models . 36
3.4.1 ResNet . 36
3.4.2 VGGNet . 38
3.4.3 InceptionNet . 39
3.4.4 Inception-ResNet . 40
3.4.5 DenseNet . 40

4 Experimental results 43
4.1 Model parameters . 44
4.2 Dataset v1 . 47
4.3 Dataset v2 . 52
4.4 Dataset v3 . 55
4.5 Tuning methodologies . 57

4.5.1 Tuning the dataset . 60
4.5.2 Tuning the model . 61
4.5.3 Tuning the results . 65
4.5.4 Tuning through post-processing 68

4.6 Comparison between CPU and GPU performances. 68

5 Discussion and future directions 71
5.1 Research 昀椀ndings . 71
5.2 Challenges and limitations . 73
5.3 Future work . 73

6 Conclusion 77

References 79

Acknowledgments 83

viii

Listing of 昀椀gures

2.1 Architecture of a ANN. 8
2.2 2D convolution operation example. 10
2.3 Pooling layer. 10
2.4 Example of Gaussian 昀椀lter. 13
2.5 Example of image classi昀椀cation. 14
2.6 Example of PR curve. 19

3.1 Example of an image with highlighted infesting plants. 22
3.2 Transfer learning compared to learning from scratch. 25
3.3 Infested maize leaves shown in Ishengoma paper. 27
3.4 Example of image taken from the drone. 30
3.5 Example of patches from the 昀椀rst dataset. a) Label infesting. b) Label valeri-

ana. c) Label terrain. 31
3.6 Example of patches from the second dataset. a) Label infesting. b) Label vale-

riana. c) Label terrain. 32
3.7 Example of segmented image. 33
3.8 First dataset balanced. 35
3.9 ResNet block. 37
3.10 Inception modules. 39
3.11 DenseNet architecture. 41

4.1 Loss and accuracy plots for ResNet50. 47
4.2 Loss and accuracy plots for VGG16. 47
4.3 Loss and accuracy plots for InceptionV3. 48
4.4 Loss and accuracy plots for InceptionResNetV2. 48
4.5 Loss and accuracy plots for DenseNet201. 48
4.6 Confusion matrix of DenseNet201 on 昀椀rst dataset test set. Values in the con-

fusion matrix are normalized. 50
4.7 Heatmap visualization on a single patch. 50
4.8 Total image classi昀椀cation using DenseNet201. 51
4.9 Loss and accuracy plots for ResNet50. 52
4.10 Loss and accuracy plots for VGG16. 52
4.11 Loss and accuracy plots for InceptionV3. 53
4.12 Loss and accuracy plots for InceptionResNetV2. 53
4.13 Loss and accuracy plots for DenseNet201. 53

ix

4.14 Comparison between the confusionmatrices ofResNet50 andDenseNet201.
On the left: the confusion matrix of ResNet50. On the right: the confusion
matrix of DenseNet201. Both models were trained on the dataset-v2. 54

4.15 Loss and accuracy plots for DenseNet201 trained on dataset-v3-reduced-50. . 55
4.16 Confusion matrix of DenseNet201 on dataset-v3-reduced-50 test set. Values

in the confusion matrix are normalized. 56
4.17 Confusion matrix of DenseNet201 on dataset-v3 test set. Values in the con-

fusion matrix are normalized. 56
4.18 Manually segmented image. 58
4.19 Segmented image using patches. 59
4.20 a) Segmentation done with model trained on undersampled dataset. b) Seg-

mentation donewithmodel trained on oversampled dataset. c) Segmentation
done with model trained on original dataset. 61

4.21 Confusionmatrix comparisonbetweendi昀昀erent tunedmodels. a)Classweight
infesting set to 1.5. b) Class weight infesting set to 2.5. c) Class weight infest-
ing set to 3.5. Models were trained on dataset-v2. 63

4.22 Combined plot with precision, recall, and F1-score against the class weight
using the data from table 4.6. 63

4.23 Patch used in the example. 65
4.24 Combined plot with precision, recall, and F1-score against the threshold. . . . 66
4.25 Precision-recall curve based on the data present on the table 4.10. Each point

on the curve represents a di昀昀erent threshold value, and the annotations indi-
cate the corresponding threshold. 67

4.26 Example of post processing on the entire image. a) Segmentation done with
model trained on balanced dataset. b) Filtering of single red patches. c) Filter-
ing red patches near the terrain. 69

x

Listing of tables

2.1 Confusion matrix. 18

4.1 Model performance comparison on 昀椀rst dataset. The values are calculated on
the test set. 47

4.2 Model performance comparison on second dataset. The values are calculated
on the test set. 52

4.3 DenseNet201 performances on dataset-v3 and dataset-v3-reduced-50. The
values are calculated on the test set. 55

4.4 Performance metrics on dataset tuning. 61
4.5 Model performance comparison with di昀昀erent weights. The values are calcu-

lated on the test set. 63
4.6 Model performancemetrics for di昀昀erent weights. Themetrics were evaluated

using the test set of dataset-v2. 63
4.7 Model performancemetrics for di昀昀erent weights. Themetrics were evaluated

using the total image test. 64
4.8 Model performancemetrics for di昀昀erent weights. Themetrics were evaluated

using the total image test. 64
4.9 Performancemetrics at di昀昀erent thresholds. Themetricswere evaluated using

the total image test. 66
4.10 Performancemetrics at di昀昀erent thresholds. Themetricswere evaluated using

the total image test. 66
4.11 Performance metrics for di昀昀erent post-processing methods. 68

xi

xii

Listing of acronyms

NDVI Normalized Di昀昀erence Vegetation Index

VARI Visible Atmospherically Resistant Index

SAVI Soil Adjusted Vegetation Index

UAV Unmanned Aerial Vehicle

ANN Arti昀椀cial Neural Network

CNN Convolutional Neural Network

ML Machine Learning

DL Deep Learning

SVM Support Vector Machine

GLM Generalized Linear Model

TP True Positive

FP False Positive

FN False Negative

VGGNet Visual Geometry Group Network

YOLO You Only Look Once

CPU Central Processing Unit

GPU Graphics Processing Unit

xiii

xiv

1
Introduction

1.1 Introduction

Monoculture farming, the practice of growing a single crop species over a large area, has become
a prevalent agriculturalmethod due to its e昀케ciency and economic bene昀椀ts. However, this prac-
tice also presents signi昀椀cant challenges, particularly the infestation of 昀椀elds by unwanted plant
species.
These infesting plants can severely impact crop yields by competing for resources such as wa-
ter, nutrients, and light. E昀昀ective identi昀椀cation and management of these infesting plants are
crucial for maintaining high productivity in monoculture 昀椀elds.
Traditional methods of infesting plant identi昀椀cation and control are labor-intensive and time-
consuming because they rely heavily on visual inspection by experts.
The advent of advanced technologies in the 昀椀eld of computer vision andmachine learning, par-
ticularly Convolutional Neural Networks (CNNs), o昀昀ers a promising alternative for address-
ing this issue. CNNs, a class of deep learning models, have demonstrated remarkable perfor-
mance in various image recognition tasks, making them suitable for identifying di昀昀erent plant
species in agricultural settings [1].
Additionally, the integration of drone technology and Unmanned Aerial Vehicles (UAVs) has
further enhanced the capabilities of these models. UAVs equipped with high-resolution cam-
eras can capture detailed images of large agricultural 昀椀elds, providing extensive and up-to-date

1

data for analysis. This synergy between CNNs and UAVs facilitates precise and e昀케cient iden-
ti昀椀cation of infesting plants, enabling timely interventions and more e昀昀ective infesting plant
management strategies [2].

1.1.1 Background and motivation

Theneed for precise and e昀케cient identi昀椀cation of infesting plants inmonoculture 昀椀elds has led
to signi昀椀cant research interest in the application ofCNNs. Unlike traditional image processing
techniques, CNNs can automatically learn and extract features from images, enabling them to
di昀昀erentiate between crop and infesting plants with high accuracy. This capability is particu-
larly bene昀椀cial in complex 昀椀eld environments where plant species can exhibit signi昀椀cant visual
similarities and variations due to factors such as lighting conditions and plant growth stages.
The integration of UAVs into this framework has further revolutionized agricultural monitor-
ing andmanagement. UAVs equipped with high-resolution cameras and advanced sensors can
capture comprehensive images of agricultural 昀椀elds from various altitudes and angles. This
aerial perspective allows for large-scale data collection in a relatively short period, signi昀椀cantly
enhancing the e昀케ciency and coverage of 昀椀eld monitoring.
UAVsprovide several advantages over traditional ground-basedmethods. They can access di昀케cult-
to-reach areas, 昀氀y over 昀椀elds without disturbing crops, and capture images under varying light
conditions, ensuring consistent data quality. The high-resolution images obtained fromUAVs
can then be processed usingCNNs to identify and classify infesting plants with high precision.
Recent studies have demonstrated the e昀昀ectiveness ofUAVs in agricultural applications. For ex-
ample, Lottes et al. (2018) [3] utilizedUAV-based imagery combinedwithCNNs for crop and
infesting plant classi昀椀cation, achieving signi昀椀cant improvements in detection accuracy and op-
erational e昀케ciency. Similarly, Zhang and Kovacs (2012) [2] reviewed the application of small
UAVs in precision agriculture, highlighting their potential to transform traditional farming
practices by providing detailed and timely information on crop health and infesting plants.
This combination of UAV technology and CNNs enables the development of robust systems
for real-time infesting plant detection and management.

1.1.2 Objectives

The primary objective of this thesis is to develop and evaluate a CNN-based approach for the
identi昀椀cation of infesting plants in monoculture 昀椀elds. This involves several speci昀椀c aims:

2

1. Dataset creation: develop a comprehensive dataset comprising images of crops and var-
ious infesting plant species in a monoculture 昀椀eld. This dataset will include annotated
examples for training and validation of the CNNmodel.

2. Model selection: design and train a CNN model capable of accurately classifying and
di昀昀erentiating between crops and infesting plants. Themodel should be robust enough
to handle variations in image conditions such as lighting and plant growth stages.

3. Transfer learning: utilize transfer learning techniques to enhance the model’s perfor-
mance. By leveraging pre-trained models on large-scale image datasets, the CNN can
achieve better generalization and faster convergence.

4. Performance evaluation: assess the performance of the CNN model in real-world 昀椀eld
conditions. This will involve deploying the model on UAV-captured images and com-
paring its predictions against ground truth data.

5. False positives and false negatives study: conduct a thorough analysis of themodel’s false
positive and false negative rates. Understanding the instances where the model incor-
rectly identi昀椀es infesting plants (false positives) or fails to detect them (false negatives) is
crucial for improving its accuracy and reliability. This study will help in identifying the
limitations of the current approach and in developing strategies to mitigate such errors.

6. Real-time application potential: explore the feasibility of integrating the CNN model
with UAV technology for real-time monitoring and management of infesting plants.
This includes evaluating the computational e昀케ciency of themodel and its ability to pro-
vide timely and actionable insights for farmers.

1.1.3 Contributions

By opting for a classi昀椀cation approach and utilizing transfer learning (as explained in 3), this
thesis tries to navigate these challenges e昀昀ectively, by 昀椀nding a viable path for developing e昀케-
cient and scalable solutions for anomaly detection in agricultural settings.
One of the most signi昀椀cant contributions of this thesis is the creation of a novel dataset specif-
ically tailored for our research objectives. The development of this dataset was not merely a
preparatory step; it constituted a core part of the research, providing a foundation uponwhich
all subsequent analyses and conclusions were built.
Utilizing drone technology presented several advantages, however, it also introduced signi昀椀-
cant challenges, particularly regarding the altitude from which the photos were taken. UAV

3

imaging is critical for capturing comprehensive and broad-view data, but it also complicates
the tasks of image processing and feature extraction.
This research contributes to the 昀椀eld by o昀昀ering insights into the practical application of pre-
trainedmodels for aerial image classi昀椀cation, providing a foundation for future studies aiming
to enhance the automation and accuracy of plant disease and infestation detection.

1.1.4 Structure of the thesis

The thesis is organized as follows: Chapter 2 is a theoretic overview onmachine and deep learn-
ing. Chapter 3 introduces theproblemand the state of the art, and thendescribes themethodol-
ogy, including data collection,model architecture, and training procedures. Chapter 4 presents
the experimental results and performance evaluation of the proposed model. Chapter 5 dis-
cusses the 昀椀ndings, implications, and potential limitations of the study. Finally 6 concludes
the thesis and outlines directions for future research.

4

1.2 Hosting company: Dromt S.r.l.

Dromt is an innovative startup founded in 2021, aiming to revolutionize the commercial
drone sector by transforming drones into autonomous, intelligent, and highly functional tools.
The company’s mission is to simplify and automate the use of drones for a wide range of appli-
cations, making them accessible even to those without speci昀椀c piloting skills.
The heart ofDromt’s innovation is its all-in-one platform, designed to be compatiblewithmost
commercial drones available on the market. This platform integrates both 昀氀ight management
and image analysis, providing an intuitive user interface and fully automated 昀氀ight manage-
ment. From 昀氀ight planning to takeo昀昀, from 昀氀ight to image collection, and from landing to
automatic data download, every aspect is handled e昀昀ortlessly through the platform.
One of the most innovative aspects of the Dromt system is the use of GPS combined with ad-
vanced computer vision-based navigation technologies. This allows drones to operate in areas
where the GPS signal is weak or absent, ensuring precision and reliability. This technology is
particularly useful in complex scenarios, such as densely populated urban areas or geographi-
cally challenging regions, where precise navigation is crucial.
In the agricultural sector, Dromt has found one of its 昀椀rst and most e昀昀ective 昀椀elds of applica-
tion. The platform enables farmers to use drones tomonitor vast agricultural 昀椀elds, identifying
areas of water stress, plant nutrition issues, or infestations. The acquired images are processed
to produce vegetation indices, such as NDVI (Normalized Di昀昀erence Vegetation Index) and
VARI (Visible Atmospherically Resistant Index), and the generated prescription maps guide
agricultural machinery to distribute resources like water and fertilizers optimally, thus improv-
ing crop yields and reducing waste and environmental impacts.
Simultaneously, Dromt is developing applications in other sectors. In the photovoltaicmarket,
the platform is used to identify hotspots and other anomalies in solar panels, which can cause a
reduction in energy e昀케ciency. In the construction sector, drones equipped with Dromt tech-
nology canmonitor theprogress ofwork, identify potential structural issues, and enhancework
safety. In the 昀椀eld of emergency management, drones can be employed to survey areas a昀昀ected
by natural disasters or accidents, providing crucial images for rescue and recovery operations.
Dromt does not limit itself to technology; it is also committed to continuous research and de-
velopment to improve its solutions and expand its applications. With a constant commitment

5

to innovation and sustainability, Dromt is charting a new course for the use of drones in the
commercial and industrial world, promoting not only operational e昀케ciency but also environ-
mental responsibility.

6

2
Theorical overview

2.1 Artificial Neural Networks

2.1.1 Introduction to ANNs

An arti昀椀cial neural network (ANN) is a computational model inspired by the way biological
neural networks in the humanbrain process information. The essence of anANNis to abstract
the functioning of the brain’s neural network and use this abstraction to process information,
learn, and make decisions.
The key components of a ANN are:

• Input units: units that receive signals from the external environment.

• Hidden units: these neurons are located between input and output units and are not
directly observable from outside the network. They play a critical role in the internal
processing of information.

• Output units: these neurons produce the 昀椀nal output of the network.

Neurons are connected through synapses, each connection having a speci昀椀c weight. The
weight is akin to the memory of the neural network and determines the strength and in昀氀uence
of one neuron on another.

7

Adjusting these weights during the learning process allows the network to make better predic-
tions or classi昀椀cations.
Each neuron processes the input it receives using an activation function, which determines
whether it should be activated (昀椀re) or not. This function introduces non-linearity into the
network, enabling it to solve complex problems. [4]

Figure 2.1: Architecture of a ANN.

2.1.2 History of ANNs

The research on Neural Network started when the M-P Model (1943), proposed by McCul-
loch and Pitts, marked the beginning of neural network theory. Hebb’s Rule (1949) suggested
that synaptic strength increases when neurons 昀椀re together, forming the basis for learning and
memory in neural networks.
Rosenblatt introduced the Perceptron (1957), demonstrating the ability to classify input vec-
tors. However, Minsky and Papert, highlighted limitations of simple perceptrons, particularly
their inability to solve non-linear problems like XOR.
After that publication the research on arti昀椀cial neural networks su昀昀ered a heavy blow.
Things started to get better when Hop昀椀eld introduced the Hop昀椀eld Network (1982), using

8

energy functions to prove network stability. The backpropagation algorithmwas developed in
the same period (1986), enabling multi-layer networks to adjust weights e昀昀ectively.
Today, research in neural networks is 昀氀ourishing, due to the development of deep learning
(2006), proposed by Hinton. Deep learning is to construct a machine learning architecture
model with multiple hidden layers, and a large amount of more representative characteristic
information is obtained through large-scale data training. [4]

2.2 Convolutional Neural Networks

ConvolutionalNeuralNetworks (CNNs) are a typeofArti昀椀cialNeuralNetwork (ANN) specif-
ically designed for image pattern recognition tasks. CNNshave gained prominence due to their
impressive performance in these tasks.
The main advantage of CNNs over traditional ANNs is that CNNs reduce the number of pa-
rameters, preventing over昀椀tting. The architecture of aConvolutionalNeuralNetwork consists
of three main layers:

Convolutional layers Convolution is a fundamental operation in signal processing
and machine learning, particularly within convolutional neural networks (CNNs). In image
processing, the discrete convolution operation on a twodimensional array I, like an image, with
a kernel matrix K, can be written as:

S(i, j) = (K ∗ I)(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m,n) (2.1)

The kernel or 昀椀lter is a smaller 2Dmatrix of learnable parameters. During the training process,
the values ofK are adjusted to capture essential features such as edges, textures, or more com-
plex patterns. The kernelK slides over the input image I from the top-left to the bottom-right.
At eachposition (i, j), the element-wisemultiplicationof the kernel values and the correspond-
ing input values is computed and summed up to produce the output value S(i, j).
The result of the convolution operation is a new 2D array S, often referred to as the feature
map or activation map. Each value S(i, j) in this map indicates the presence of a particular
feature detected by the kernel at position (i, j) [5].

Pooling layers Pooling layers perform downsampling operations. The primary function
of pooling layers is to reduce the spatial dimensions of the feature maps, thereby decreasing the

9

Figure 2.2: 2D convolu琀椀on opera琀椀on example.

computational load and the number of parameters in the network. This reduction is achieved
without signi昀椀cantly losing the essential features captured by the convolutional layers. Com-
mon pooling operations include max pooling, which selects the maximum value from a set of
neighboring pixels, and average pooling, which computes the average value. These operations
help in making the representationmore manageable and robust to variations in the input data,
such as translations and distortions.

Figure 2.3: Pooling layer. Example of max pooling.

Fully connected layers Fully-connected layers, also known as dense layers, are analo-
gous to the layers found in traditional arti昀椀cial neural networks (ANNs) 2.1. In a CNN, fully-
connected layers are typically placed towards the end of the architecture. They serve the critical
function of combining the features extracted by the convolutional and pooling layers to pro-
duce the 昀椀nal output. Each neuron in a fully-connected layer is connected to every neuron in
the previous layer, allowing for a comprehensive integration of the learned features. This con-
nectivity enables the network to perform tasks such as classi昀椀cation or regression by mapping
the high-level features to the desired output classes or continuous values.

Non-linearity A convolutional layer usually applies convolution followed by a Recti昀椀ed
Linear Unit (ReLU), which is an activation function used to introduce non-linearity into the
model. The ReLU function is de昀椀ned as:

10

ReLU(x) = max(0, x)

This activation function sets all negative values to zero, allowing the model to capture non-
linearities while maintaining computational e昀케ciency.
After the convolutional and ReLU layers, the 昀椀nal layer of a convolutional neural network of-
ten uses the softmax function to convert the output logits into probabilities for classi昀椀cation
tasks. The softmax function is de昀椀ned as:

softmax(zi) =
ezi∑
j e

zj

where zi represents the input logits, and the denominator is the sumof exponentials of all logits
zj . The softmax function ensures that the output probabilities are in the range [0, 1] and sum
to 1, making them suitable for multi-class classi昀椀cation problems.

CNN architecture A typical CNN architecture involves stacking convolutional layers
interspersed with ReLU activations and pooling layers, followed by fully-connected layers to
generate the 昀椀nal classi昀椀cation output.
CNNs reduce the number of parameters needed compared to traditional ANNs, making them
less prone to over昀椀tting and more e昀케cient for image data. They can be resource-heavy, espe-
cially for large images, requiring careful design choices like resizing input images or adjusting
昀椀lter sizes and strides. [6]

2.3 Image processing

Recent advancements in digital image processing have increasingly leveraged neural networks
due to their robust capabilities in handling complex data and performing various tasks without
the need for prior assumptions about input distributions.
Egmont-Petersen, de Ridder, and Handels (2002) [7] provide a comprehensive review of over
200 applications of neural networks in this domain, highlighting the roles of feed-forward neu-
ral networks. They propose a novel two-dimensional taxonomy that categorizes image process-
ing algorithms by the type of task and the abstraction level of the input data. This taxonomy
encompasses six major tasks: preprocessing, data reduction/feature extraction, segmentation,
object recognition, image understanding, and optimization. The di昀昀erent steps in image pro-
cessing are:

11

1. Preprocessing: set of operations that give as a result a modi昀椀ed image with the same
dimensions as the original image (e.g., noise reduction).

2. Feature extraction: any operation that extracts signi昀椀cant components from an image.
The number of extracted features is generally smaller than the number of pixels in the
input window.

3. Segmentation: anyoperation that partitions an image into regions that are coherentwith
respect to some criterion.

4. Object detection and recognition. Determining the position and, possibly, also the ori-
entation and scale of speci昀椀c objects in an image, and classifying these objects.

5. Imageunderstanding: obtaininghigh level (semantic) knowledgeofwhat an image shows.

2.3.1 Image pre-processing

Pre-processing consists of any operation of which the input consists of sensor data, and of
which the output is a full image. Pre-processing operations generally fall into one of three cate-
gories: image reconstruction (to reconstruct an image fromanumber of sensormeasurements),
image restoration (to remove any aberrations introducedby the sensor, includingnoise) and im-
age enhancement (accentuationof certain desired features, whichmay facilitate later processing
steps such as segmentation or object recognition). [7]
The techniques for color imageprocessing canbedivided in classical andnon-classical approaches.
Classical methods involve 昀椀ltering techniques, that comprise methods such as vector direc-
tional 昀椀lters (VDF) and multichannel edge-enhancing 昀椀lters (MEEF) which are used for noise
removal and edge enhancement, and segmentation like graph-theoretic approaches, mean shift
analysis (MS), andMarkov random 昀椀eld (MRF) models. Statistical mixture models like Gaus-
sian and Dirichlet mixtures are also utilized for modeling image data distributions.
Non-classical approaches encopassNeuralNetworkbased approaches, techniques such asCNN
multilayer structures, competitive learning (CL), and self-organizingmaps (SOM), andWavelet
based approaches: multi-resolution analysis (MRA) using wavelets aids in signal representa-
tion, noise removal, and feature extraction. [8]

12

Figure 2.4: On the right: original image. On the le昀琀: image processed using the Gaussian 昀椀lter.

2.3.2 Feature extraction

Feature extraction can be seen as a special kind of data reduction of which the goal is to 昀椀nd a
subset of informative variables based on image data. Since image data are by nature very high
dimensional, feature extraction is often a necessary step for segmentation or object recognition
to be successful.
Besides lowering the computational cost, feature extraction is also a means for controlling the
curse of dimensionality. When used as input for a subsequent classi昀椀cation algorithm, one
wants to extract those features that preserve the class separability well. [7]
Features are divided into two main categories: local features, that include geometric attributes
such as concave/convex parts, number of endpoints, branches, and joints, and global features,
topological (e.g., connectivity, projection pro昀椀les, number of holes) and statistical properties
(e.g., invariant moments). [9]

2.3.3 Image classification

One of the main problems in computer vision is the image classi昀椀cation problem, which is
concerned with determining the presence of visual structures in an input image. Image classi-
昀椀cation is a task in machine learning where the goal is to categorize an entire image into one of
several prede昀椀ned classes. [10] The process usually involves:

1. Input: the input to the system is an image, which can be represented as a matrix of pixel
values.

2. Feature Extraction: using techniques like Convolutional Neural Networks, features are
extracted from the image. CNNs apply convolutional 昀椀lters to the image to detect pat-
terns such as edges, textures, and more complex structures in deeper layers.

13

3. Classi昀椀cation: the extracted features are fed into a classi昀椀er (typically a fully connected
layer followed by a softmax function) to assign the image to a speci昀椀c class label.

Image classi昀椀cation canbe categorized into threemain types basedon thenature of the labels:

• Binary classi昀椀cation, which involves categorizing images into one of two possible classes.

• Multiclass classi昀椀cation deals with categorizing images into one of several classes. Unlike
binary classi昀椀cation, multiclass classi昀椀cation involves more than two categories.

• Multilabel classi昀椀cation allows for each image to be assigned multiple labels. This type
is essential in scenarios where an image can belong tomore than one category simultane-
ously.

Figure 2.5: Example of di昀昀erent types of image classi昀椀ca琀椀on. From le昀琀 to right: binary classi昀椀ca琀椀on, mul琀椀class classi昀椀ca琀椀on,
mul琀椀label classi昀椀ca琀椀on.

2.4 Fine-tuning

2.4.1 Introduction

While training deep neural networks from scratch can lead to state-of-the-art results, it often
requires large datasets and extensive computational resources. Fine-tuning o昀昀ers an e昀케cient
alternative, enabling the adaptation of pre-trained models to new tasks with less data and re-
duced computational overhead.
Fine-tuning leverages pre-trainedmodels that have already learned awide array of features from
large datasets. This approach is motivated by the idea that early layers of neural networks cap-
ture generic features (such as edges in images) that are applicable across various tasks, while later
layers capture task-speci昀椀c features. By reusing the early layers and only training the later ones,
昀椀ne-tuning can signi昀椀cantly accelerate the training process and improve performance on target
tasks with limited data.

14

Pre-trainedmodels serve as the backbone for 昀椀ne-tuning. Transfer learning, the broader frame-
work encompassing 昀椀ne-tuning, involves transferring knowledge from one domain (source) to
another (target). The success of transfer learning hinges on the similarity between the source
and target tasks.
Research by Yosinski (2014) [11] highlights that the e昀昀ectiveness of transfer learning depends
on the depth at which transfer occurs, with deeper layers beingmore speci昀椀c to the source task.
They also found that transferring features from earlier layers is more bene昀椀cial for dissimilar
target tasks.

2.4.2 Fine-tuning techniques

The techniques used in 昀椀ne tuning are: feature extraction, fullmodel 昀椀ne-tuning and layerwise
昀椀ne-tuning.
Feature extraction involves freezing the weights of the pre-trained model and only training the
昀椀nal classi昀椀er. This approach is e昀昀ective when the new dataset is small or similar to the origi-
nal dataset. Donahue (2014) [12] demonstrated the power of feature extraction in computer
vision tasks, where a pre-trained CNNwas used to extract features for various image classi昀椀ca-
tion tasks, yielding signi昀椀cant performance improvements with minimal training.
Full model 昀椀ne-tuning involves unfreezing all or most of the layers of the pre-trained model
and retraining them on the new dataset. This method is bene昀椀cial when the new dataset is
large enough to support extensive retraining or when the target task is substantially di昀昀erent
from the original task. Howard and Ruder (2018) [13] popularized this approach with the
Universal LanguageModel Fine-tuning method, which achieved state-of-the-art results in text
classi昀椀cation by 昀椀ne-tuning all layers of a pre-trained language model on target tasks.
Layer-wise 昀椀ne-tuning involves gradually unfreezing layers of the pre-trained model and train-
ing them incrementally. This technique helps stabilize training and prevent catastrophic for-
getting, where themodel loses knowledge of the pre-trained features. This approachwas exten-
sively analyzed by Felbo (2017) [14] in their work on sentiment analysis and emotion detection
in text, demonstrating its e昀昀ectiveness in retaining pre-trained knowledge while adapting to
new tasks.
In computer vision, 昀椀ne-tuning has been widely adopted for tasks such as object detection, im-
age segmentation, and face recognition. For instance, He (2016) [15] demonstrated the use of
昀椀ne-tuning in the ResNet architecture, achieving remarkable improvements in image classi昀椀-
cation and object detection tasks.

15

2.5 Anomaly detection

Anomaly detection, also known as outlier detection, is a critical task in data science and ma-
chine learning that involves identifying rare items, events, or observations that di昀昀er signi昀椀-
cantly from the majority of the data. These anomalies can indicate signi昀椀cant but rare events,
such as fraud detection, network security breaches, equipment failures, or medical condition
deviations. The primary goal is to discover patterns in data that do not conform to expected
behavior.
Anomaly detection is formally de昀椀ned as the identi昀椀cation of data points that deviate from a
well-de昀椀ned notion of normal behavior. According toChandola et al. (2009) [16], an anomaly
is an observation that is inconsistent with the rest of the data. This inconsistency can arise due
to various reasons, including inherent variability in the data, rare but signi昀椀cant events, or even
errors in data collection.
There are several techniques for anomaly detection, broadly classi昀椀ed into three categories: su-
pervised, unsupervised, and semi-supervised methods.

1. Supervised anomaly detection: this approach requires labeled data, where both normal
and anomalous instances are identi昀椀ed. The method involves training a classi昀椀er to dis-
tinguish between normal and anomalous classes. Techniques include decision trees, sup-
port vector machines, and neural networks.

2. Unsupervised anomaly detection: in the absence of labeled data, unsupervisedmethods
are employed. These techniques assume that normal instances are far more frequent
than anomalies and use statistical measures to identify outliers. Common methods in-
clude clustering algorithms (e.g., k-means, DBSCAN), principal component analysis
(PCA), and isolation forests.

3. Semi-supervised anomaly detection: thesemethods use a large amount of unlabeled data
and a small amount of labeled data to build models. This is particularly useful when ob-
taining labeled data is expensive or time-consuming. Blázquez-García et al. (2021) [17]
highlight several semi-supervised techniques that leverage autoencoders and generative
adversarial networks (GANs) for anomaly detection in complex datasets.

2.6 False positives and false negatives

In the realm of deep learning, the concepts of false negatives and false positives are critical to un-
derstanding and evaluating model performance, especially in classi昀椀cation tasks. These terms

16

originate from the confusionmatrix, which is a fundamental tool for assessing the performance
of a classi昀椀er.
A false negative (FN) occurs when a model incorrectly predicts the negative class for an in-
stance that actually belongs to the positive class. Conversely, a false positive (FP) arises when
the model incorrectly predicts the positive class for an instance that actually belongs to the
negative class. These errors have distinct implications depending on the application:

• False negatives (FN): a false negative occurs when the model fails to detect an object
that is present in the image. This type of error is particularly problematic in critical
applications such as disaster management and agricultural monitoring, where missing
an object can lead to severe consequences. For instance, in precision agriculture, failing
to detect a pest infestation can result in substantial crop damage.

• False positives (FP): a false positive occurswhen themodel incorrectly identi昀椀es anobject
that is not present in the image. This type of error can lead to unnecessary actions, such
as wrong reports and warnings.

To evaluate and compare the performance of object detectionmodels, metrics such as preci-
sion, recall, and the F1 score are commonly used:

Precision: measures the proportion of true positive detections among all positive detec-
tions. A higher precision indicates fewer false positives.

Precision =
TP

TP + FP
(2.2)

Recall: the ratio of true positives to the sum of true positives and false negatives. It mea-
sures the ability of the model to identify all positive instances.

Recall =
TP

TP + FN
(2.3)

F1-Score: the harmonic mean of precision and recall, providing a balanced measure of a
model’s performance.

F1-Score = 2×
Precision× Recall
Precision+ Recall

(2.4)

17

Confusion matrix. A confusion matrix is a tool used in machine learning and statistics
to evaluate the performance of a classi昀椀cation algorithm. It is a speci昀椀c table layout that allows
visualization of the performance of an algorithm, particularly in terms of its accuracy and error
rates.
The confusion matrix summarizes the results of a classi昀椀cation by comparing the actual labels
(or classes) with those predicted by the model. The matrix itself is typically a square matrix
with dimensions equal to the number of classes being considered. Table 2.1 shows the typical
structure of a confusion matrix for a binary classi昀椀cation problem.
The confusion matrix is not limited to binary classi昀椀cation and can be extended to multi-class
classi昀椀cation problems, where each class will have its own row and column, leading to ann×n

matrix for n classes. Each element (i, j) of the matrix indicates the number of instances where
the actual class is i and the predicted class is j.

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

Table 2.1: Confusion matrix.

Precision-recall curve The precision-recall curve is a plot that illustrates the trade-o昀昀
between precision and recall for di昀昀erent threshold settings of a binary classi昀椀er.
As we vary the threshold that determines whether a given observation is classi昀椀ed as positive or
negative, both precision and recall will change. The curve is generated by plotting recall on the
x-axis and precision on the y-axis for these di昀昀erent threshold values.
When the threshold is very low, the model classi昀椀es many observations as positive, including
most of the actual positives but also many negatives, leading to high recall but low precision.
As the threshold increases, fewer observations are classi昀椀ed as positive, which reduces the num-
ber of false positives and increases precision, but also increases the number of false negatives,
reducing recall [18].

Conclusion Using thesemetrics, researchers can better understand the trade-o昀昀s between
false negatives and false positives andmake informeddecisions to optimizemodel performance.
These errors are not just statistical inconveniences; they have real-world impacts that must be
carefullymanaged. The choice to reduce false negatives over false positive or vice-versa depends
on the goals of the users based on their own needs and the type of project [19].

18

Figure 2.6: Example of PR curve.

19

20

3
Task and methodologies

3.1 Description of the project

The goal of this project is to recognize infesting plants in a monoculture 昀椀eld from aerial pho-
tographs taken from a drone.
We can consider the described problem as an anomaly detection problem because in this case
we are not interested in recognizing the speci昀椀c infesting plant, but we are only interested in
detecting the presence or not of them in the 昀椀eld. Also, we are not concerned about extremely
accurate localization of the infesting plants. Moreover, from what can be inferred from the
image 3.1, the infesting plants can be very similar tomonoculture plants, making the detection
more di昀케cult. Finally, there wasn’t an already made dataset to work with at the beginning of
the project, so it had to be created from zero.
For these reasons, in this thesis it was decided to treat this problem as a classi昀椀cation problem,
more precisely a multiclass classi昀椀cation problem, where we are going to detect and classify 3
main classes: infesting plants, non-infesting plants and terrain (this will be further explained in
section 3.3). The task does not involve detection or segmentation due to the fact that classi昀椀-
cation is easier to implement and, as shown in 3.3, the dataset for classi昀椀cation can be created
using few images. Detection and segmentation tasks usually require careful labelling of images
to create the desired dataset and the latter should have at least thousands of images in order to
satisfying results.

21

Creating adataset fromscratch is not an easy task and thereforemethods to reduce theworkload
should be considered for these kind of projects. Finally, 昀椀ne-tuning was used on pre-trained
models for classi昀椀cation, also in this case to reduce the number of data for training.
This thesis will also study the impact of false positives and false negatives during classi昀椀cation.
By assessing the cost of each misclassi昀椀cation we can adapt the model to minimize the overall
impact of errors on agriculture. This research will be conducted on 昀椀nding the best range of
parameters to tune the elasticity of the model on false positive/negative detection.

Assumptions and limitations. In this thesis, we assume that when conducting crop
analysis on two consecutive days, the probability that the model fails to detect a pest on the
昀椀rst day and subsequently detects it on the second day or vice versa are independent events.
Speci昀椀cally, the probability of detection on the second day is not conditioned by the outcome
of the 昀椀rst day’s analysis. This assumption simpli昀椀es ourmodel by treating each day’s detection
probability as an isolated event, thereby ignoringpotential temporal dependencies between suc-
cessive days. While this assumption facilitates the development and application of our model,
it represents a limitation of this thesis, as it may not accurately re昀氀ect the dynamics of pest
emergence and detection in real-world scenarios.

Introduction to the state of the art. Before delving into the methodology em-
ployed in this thesis, this section will present a selective review of recent studies on machine
learning and deep learning algorithms for detecting plant infestations.

Figure 3.1: Example of an image with highlighted infes琀椀ng plants.

22

3.2 State of the art

Traditional methods of plant disease detection rely heavily on visual inspections by experts,
which are often time-consuming, subjective, and limited by the availability of trained profes-
sionals. With the advent of advanced machine learning (ML) and deep learning (DL) tech-
niques, the detection of plant diseases has seen signi昀椀cant improvements in accuracy, e昀케ciency,
and scalability. This chapter explores the state of the art in plant disease detection, focusing on
the latest advancements in ML and DLmethodologies.

3.2.1 Examples of studies

Leon et al. (2021) The study of Leon et al. (2021) [20] addresses the critical issue of iden-
tifying diseases and physiological disorders in potato crops, speci昀椀cally focusing on late blight
(caused by Phytophthora infestans) and vascular wilt (caused by Verticillium spp.) using multi-
spectral imagery from drones.
Potato cropsweremonitored in designated plots, with diseases and disorders visually character-
ized and multispectral images were captured using a MicaSense RedEdge camera attached to
a hexacopter drone. Vegetation indices (Normalized di昀昀erence vegetation index (NDVI) and
soil-adjusted vegetation index (SAVI) to cite some) were calculated from the spectral data and
used to discriminate between healthy and diseased plants. Machine learning models, particu-
larly a generalized linearmodel (GLM)and a supervised randomforest classi昀椀er, were employed
to evaluate the discrimination capacity of the indices.
The random forest classi昀椀er showed accuracy rates between 73.5% and 82.5%, with kappa val-
ues ranging from 0.56 to 0.71, and ROC-AUC values from 0.88 to 0.98. Vegetation indices
proved e昀昀ective in distinguishing between healthy plants and those a昀昀ected by diseases.
Even though the random forest model reaches a good level of accuracy, the results aren’t high
enough compared to the results of CNNs shown in the next papers.

Pujari et al. (2016) There has also been research on SVM. For example Pujari et al. (2016)
[21] used Support Vector Machines (SVMs) and Arti昀椀cial Neural Networks (ANNs) for de-
tecting and classifying plant diseases. The approach involves using color and texture features
from images of plant diseases, which are then processed with the described models. The study
focuses on six classes of plant diseases and uses a dataset of 900 sample images.
The paper concludes that the SVM classi昀椀er, with its reduced feature set, provides a reliable

23

and e昀케cient method for the classi昀椀cation of plant diseases (the F1-score reached for SVM is
94.50%).
SVMs are particularly known for their high accuracy and precision in binary and multi-class
classi昀椀cation problems. They are e昀昀ective in high-dimensional spaces and are particularly use-
ful in cases where the number of dimensions exceeds the number of samples. However, the use
of SVM is training large image dataset presents some problems:

• SVMs can struggle with scalability, particularly when dealing with large datasets typical
in image classi昀椀cation tasks. Training time increases signi昀椀cantly with the size of the
dataset, making SVMs impractical for very large-scale image datasets.

• Images often contain highly complex and non-linear patterns. While SVMs can use ker-
nel functions tohandle non-linear data, theymaynot capture the intricacies as e昀昀ectively
as deep learning models, which are speci昀椀cally designed to learn hierarchical representa-
tions.

• SVMs typically require manual feature extraction and selection (done by Pujari in this
paper), which can be labor-intensive and may not always result in the most relevant fea-
tures. Deep learning models, on the other hand, can automatically learn features from
raw image data, leading to potentially better performance.

Mohanty et al. (2016) CNNs have become the cornerstone of deep learning-based plant
disease detection due to their superior performance in image recognition tasks. Research by
Mohanty et al. (2016) [22]usedCNNs to identify 14 crop species and26diseases using apublic
dataset of 54306 images. The models used during training are AlexNet [23] and GoogLeNet
[24].
During preprocessing every image in the dataset is resized to 256 x 256 pixels. Then, the images
are used in 3 di昀昀erent con昀椀gurations: color, original color images, grey-scale and segmented,
where the background is removed. To evaluate model performance and mitigate over昀椀tting,
various train-test splits are used: 80-20, 60-40, 50-50, 40-60, and 20-80. The dataset includes
multiple images of the same leaf from di昀昀erent orientations, and these are handled to ensure
that all images of a particular leaf are either in the training set or the testing set, not both.
The highest overall accuracy was 99.34%, achieved by GoogLeNet using transfer learning on
color images with an 80-20 train-test split. GoogLeNet consistently outperformed AlexNet
across all con昀椀gurations and models trained on color images performed the best. The best

24

results were observed with an 80-20 train-test split but even with more challenging splits like
20-80, the models performed well, demonstrating robustness against over昀椀tting. For instance,
GoogLeNetwith transfer learning on color images achieved an overall accuracy of 98.21%with
a 20-80 split.
An important thing to note is that transfer learning (see 2.4) also consistently outperformed
training from scratch for both models, as we can see in 3.2

Figure 3.2: Transfer learning compared to learning from scratch. Transfer is a more e昀케cient method for training a model.

Ferentinos (2018) In the study conducted by Ferentinos (2018) [25], transfer learning
techniqueswere employed to leveragepre-traineddeep learningmodels, such asVGG16,ResNet,
and Inception, for the purpose of plant disease detection and diagnosis. The primary focuswas
on utilizing convolutional neural networks (CNNs) to accurately identify plant diseases from
images of healthy and diseased leaves.
Ferentinos utilized an extensive open database comprising 87,848 images that covered 25 di昀昀er-
ent plant species and 58 distinct classes, which included various plant diseases as well as healthy
plants. The images in the dataset were captured in both controlled laboratory conditions and
real cultivation environments. The database’s diversity ensured that the trained models could
generalize well to real-world scenarios.
To train theCNNmodels, the databasewasdivided into training and testing sets, with an80/20
split. Pre-processing of the images involved resizing and cropping them to 256x256 pixels. Un-
like some prior approaches, grayscale conversion and leaf segmentation were not performed, as
deep learning models have the capability to e昀昀ectively learn relevant features directly from raw
color images.
The best model was VGG16, which achieved a remarkable accuracy of 99.53% in identifying

25

the correct plant disease from leaf images. This high success rate underscores the potential of
transfer learning and CNNs in developing e昀昀ective automated plant disease detection systems.
The inclusion of images captured under real cultivation conditions in the dataset contributed
to the robustness and practical applicability of the trained models.
There are some minor problems found in the study, for example out of the 82 misclassi昀椀ed
images, some were identi昀椀ed as ”faulty” because they did not contain any plant leaves. For in-
stance, certain images were incorrectly registered in the class for tomato with early blight but
were classi昀椀ed by the model as healthy corn due to similar soil textures and the slim appearance
of the corn leaves.
In conclusion, Ferentinos (2018) demonstrates the e昀케cacy of transfer learning and deep learn-
ing methodologies in overcoming the challenges of plant disease detection. The study sets a
foundation for future research and development in integrating such systems into practical agri-
cultural work昀氀ows.

Ishengoma et al. (2022) Ishengoma et al. (2022) [26] proposed a novel hybrid CNN
model aimed at enhancing the speed and accuracy of detecting maize plants infested by fall
armyworms (FAWs) using UAV-based imagery.
The proposed hybrid model combines VGG16 and InceptionV3 in a parallel setup: the input
image is simultaneously applied to both models and the outputs of both models are passed to
the full-connected layers for classi昀椀cation. This design leverages the lower-layer feature extrac-
tion capabilities of both models while only retraining the top layers to minimize training time
and maximize performance.
The study was conducted on maize farms in Morogoro, Tanzania, where UAVs (Unmanned
AerialVehicles)wereused to capturehigh-resolution images ofmaize leaves. Thedataset, which
contains a total of 500 images, included both original and augmented images to balance the
number of healthy and infected samples. After training, we notice that the hybrid approach
reduces the training time by 16% to 44% compared to individual models and achieves an accu-
racy of 96.98%.
This paper shows the possibility of achieving high accuracy in this contextwith amedium-sized
dataset. The hybrid model approach can be leveraged for improving performances.
Even if only the images of the infected maize are shown, we can infer that the di昀昀erent classes
are di昀昀erent from each other, due to the fact that we can see noticeable holes in the leaves of
the infested plants; this makes the classi昀椀cation easier and allows the researchers to reach high
performances.

26

Figure 3.3: Infested maize leaves shown in Ishengoma paper.

Yadav et al. (2023) There are also studies that developed detection algorithms. For ex-
ample Yadav et al. (2023) [27] presented an approach for detecting volunteer cotton plants in
maize 昀椀elds using UAV imagery and the YOLOv3 deep learning algorithm. The method aims
to improve the identi昀椀cation and management of volunteer cotton (VC), which poses signi昀椀-
cant challenges in cotton-producing areas due to its potential to harbor pests and diseases.
The YOLOv3 algorithm is employed due to its superior performance in real-time object detec-
tion. The architecture is built upon Darknet-53, a backbone network with 106 layers in total,
including residual blocks to handle vanishing gradients e昀昀ectively. The model divides the in-
put images into grids and predicts bounding boxes for objects in these grids. It uses prede昀椀ned
anchor boxes and logistic regression for classifying the detected objects.
In this paper mean average precision (mAP) is used as the performance metric. mAP is a com-
monly used metric in object detection tasks to measure the accuracy of a model. It represents
the mean of the average precision (AP) scores for each class in the dataset. The AP for a single
class is calculated as the area under the precision-recall curve, which plots precision against re-
call at various threshold levels. mAP provides a single value that summarizes the performance
of themodel across all classes, making it easier to compare and understand themodel’s e昀昀ective-
ness. For YOLOv3, which is amulti-class object detector, mAP gives a comprehensivemeasure
of accuracy by combining precision and recall.
The use of mAP30 in this study, where the Intersection over Union (IoU) threshold is set to
30%, indicates a lower strictness in matching predicted bounding boxes with ground truth.
This is practical for the application because volunteer cotton plants often grow in groups, and a
lower IoU threshold reduces the risk of missing these plants while ensuring that nearby plants
(even if partially overlapping) are detected. By employing these metrics, the researchers en-
sured that the YOLOv3model could e昀昀ectively detect VC plants in aerial images, achieving an

27

overall accuracy (mAP) higher than 80%. The YOLOv3 model demonstrated high accuracy
in detecting volunteer cotton plants in various conditions. The use of residual blocks and lo-
gistic regression signi昀椀cantly improved the model’s performance, especially in di昀昀erentiating
between maize and VC.

AP calculation

AP =
n−1∑

k=0

[R(k)−R(k + 1)] · P (k)

whereR is recall and P is precision at di昀昀erent thresholds.

mAP calculation

mAP =
1

n′

n′∑

k=1

APk

where n′ is the number of classes.
Even though YOLO seems to be a promising architecture, the problem resides in the creation
of the dataset. In this paper, the dataset required for a detectionmodel needs to have hundreds
of data points. Manual labelling for creating a dataset from scratch can be considered only if
one has the available resources and most importantly, if the goal of one project is to reach high
level of detection, which is not the objective of this thesis.

3.2.2 Challenges

Despite the signi昀椀cant advancements, several challenges remain in the 昀椀eld of plant disease
detection using ML and DLmethods:

1. Data quality and quantity: high-quality labeled datasets are essential for training ro-
bust models. For training a model we need large, well-labeled datasets; this task can be
resource-intensive due to manual data labeling.

2. Generalization: models trained on speci昀椀c datasets may not generalize well to di昀昀erent
environments, crop varieties, or disease manifestations. Addressing this requires the de-
velopment of more generalized models.

28

3.3 Dataset

This segment discusses the dataset, explaining how it was created and the pre-processing steps
used toprepare thedataset for training. This sectionprovides anoverviewof thedata, including
how it was generated and its general characteristics. It details the data structure requirements
of ourmodels and discusses the data processing steps, taking into account the limitations of the
available training resources. This explanation provides a thorough understanding of the data’s
transformation from collection to its 昀椀nal form.

3.3.1 Dataset description

The dataset for this thesis was gathered in a greenhouse from amonoculture 昀椀eld of valerianella
(valerianella locusta). The images were taken during the morning in a single day. They were
captured using two methods:

1. An iPhone 14 camera aimed at the ground fromaheight of 0.5meters. In total 60 images
were collected with this method.

2. A drone-mounted camera directed at the ground from a height of 2 meters. To take
these photos, the drone 昀氀ew over two crop strips at a time and it required two passes to
cover the entire 昀椀eld (昀椀gure 3.4 shows an example of an image taken with this method).
The drone model used is a Mavic3M fromDJI. With this method, instead, we collected
30 images.

Themodels will be tested on images captured by the drone. Images taken from a low height
serve two purposes: they increase the number of data points and provide higher resolution
images, as these images were taken with an iPhone. This approach is bene昀椀cial for testing the
model under easier conditions and to check during the 昀椀rst phases of the project its potential
success in the task. Additionally, having numerous data points can enhance the model’s gener-
alization capability during training.

Each image is divided in a grid of patches, each one of 112x112 pixels. During the initial
phase of the project the size of the patches was chosen to be of 224x224 pixels, which is the
default input size for many CNNs, including ResNet 3.4.1 and DenseNet 3.4.5. Adopting
this patch dimension led to some problems. The main issue was that the patch often captured
more than one class per image; for example there could have been a patch where there were an
infesting plant and crops in the same image. Also, the 昀椀nal segmentation resulted inaccurate
due to the patch being too large and 昀椀nally, having bigger patches reduced the number of data

29

Figure 3.4: Example of image taken from the drone.

points.
Conversely, using a smaller patch dimension, such as 56x56, presented the opposite problem:
an inability to capturemeaningful classes, although it provided a greater number of data points.
Ultimately, a 112x112 patch dimension was chosen as a middle ground between these two op-
tions.
During preprocessing, a given image is divided into smaller, uniformly-sized sections. After be-
ing read, the image is then systematically cropped into smaller segments based on a prede昀椀ned
dimension. These cropped segments are subsequently collected and stored. The patches are
not overlapping. Each patch is cropped from the image in a grid-like manner, with each patch
being directly adjacent to the next. During the process the positions are calculated for each
patch based on 昀椀xed dimensions, ensuring that each segment is distinct and non-overlapping.
In case there is the need to increase the number of infesting labelled images in the dataset it is
possible to manually crop the original image only on the region of interest (in this case, where
the infesting plants are present) and then create the patches from the cropped images. Subse-
quently, a label is assigned to each patch:

1. Infesting: there is the presence of an infesting plant.

2. Valeriana: there is not the presence of an infesting plant.

3. Terrain: there is mainly terrain and not enough culture.

For the iPhone images we can extract about 1000 patches per image, instead for the drone
images we are able to extract approximately 1500 patches. The presence of the label terrain is

30

(a) (b) (c)

Figure 3.5: Example of patches from the 昀椀rst dataset. a) Label infes琀椀ng. b) Label valeriana. c) Label terrain.

helpful during the classi昀椀cation because it was evident during testing that having only 2 classes
increased the percentage of misclassi昀椀cation; for example the patches where there was mainly
terrain were usually classi昀椀ed as infesting.
After this process 2 dataset were created based on the images present, which are going to be
called dataset-v1, that contains only patches from iPhone images and dataset-v2, that contains
both the images from the iPhone and the drone camera.
The project started by evaluating only the iPhone images mainly because the classes were easier
to distinguish from the resulting patches. After testing the model trained on the 昀椀rst dataset,
it was evident that the model did not classify well enough the images from the drone so it was
necessary to expand the dataset further to incorporate also the images captured from the drone.
So in this thesis, the 昀椀rst dataset is used to test the models under simpli昀椀ed conditions and to
check whether of not the models were able to distinguish the di昀昀erent classes. The second
dataset is the main dataset and the model trained on that will be used to evaluate the entire
image.
The昀椀rst dataset contains 6804 entries: 1364 infesting, 916 terrain, 4524 valeriana. The second
dataset contains 10708 entries: 2355 infesting, 1557 terrain, 6796 valeriana.
Not all the images collected in the greenhouse were used for the creation of the datasets. For
the 昀椀rst one, we used 10 images for the creation of the patches and for the second dataset 10
more images from the drone were included. It is important to note that after the creation and
labelling of the patches, not all the valeriana patches were incorporated in the datasets; this
choice was made to avoid unbalancing the datasets too much.
As we can see in 3.6 the patches are more blurred and have less quality compared to the patches
in 3.5; this comes natural due to the height from which the images were taken and therefore
makes the classi昀椀cation harder.

31

(a) (b) (c)

Figure 3.6: Example of patches from the second dataset. a) Label infes琀椀ng. b) Label valeriana. c) Label terrain.

3.3.2 Dataset labelling

At the beginning of the project every patch was manually labelled. The criterion for assign-
ing the patches was the following: a patch was labelled terrain if the terrain covered almost all
of the image, infesting if there was a noticeable presence of infesting plants and all the rest of
patches were assigned to valeriana. Sometimes it was hard to decide whether an image should
be labelled infesting or valeriana: in this case if there was even a small presence of infesting
plant (e.g., the infesting plant was on the upper corner of the patch), the image was labelled in-
festing. This was an arbitrary choice based on the preferred output classi昀椀cation of the model;
an opposite choice could also be made.
This method was very time-consuming and later during the project development another la-
belling method was developed to solve this problem. The proposed method involves manual
segmentation and automatic creation and labelling of the patches. The process involves seg-
menting the image by tracing the infesting plants. Then, the segmented image and the origi-
nal image are subsequently divided into patches following the established method and an algo-
rithm determines if a patch contains part of the infesting plant. A patch is labeled as infesting
if the equivalent segmented patch contains at least 20% of infesting plants in the overall image.
To label the valeriana and terrain classes we start from the original image which is divided in
patches. From each patch we extract the green pixels and if the if the percent of the green pixels
on the overall image is less than 5% the patch is classi昀椀ed as terrain, otherwise it is classi昀椀ed as
valeriana.

32

Figure 3.7: Example of segmented image.

33

3.3.3 Dataset pre-processing

Due to the nature of the dataset the class infestanti is less present compared to the class valeri-
ana; this makes the dataset unbalanced.
When we have an unbalanced dataset, it means that some classes have signi昀椀cantly more sam-
ples than others. For example, in the 昀椀rst dataset we have 70%of the images labeled as valeriana
and only 20% labeled as infesting. Dataset imbalance can be problematic for many reasons:

• The model will naturally try to minimize the overall error during training. if most of
the images are of valeriana, the easiest way for the model to achieve high accuracy is
to predict valeriana for every image. This is because it will be correct 70% of the time,
thus achieving high accuracy. Accuracy, in this case, becomes a misleading metric. A
high accuracymight indicate that themodel is performing well, but in reality, it’s simply
ignoring the minority class.

• By focusing on themajority class (valeriana), themodel doesn’t learn the distinguishing
features of the minority class (infesting). As a result, when it encounters a new image of
an infesting plant, it’s likely to missclassify it as a crop, because it hasn’t learned enough
about what makes infesting plants di昀昀erent from crops.

To solve this issuewe can drop randomly a percentage of imageswith class valeriana in order
to create a more balanced dataset. The drop percentage is set to 70% for the 昀椀rst dataset. The
second dataset is not reduced and therefore used in its entirety in order to use all the available
images. This was done in order to visualize the problems listed before. Also empirical analysis
as shown in Chapter 4 proved that even though somemodels classi昀椀ed all patches as valeriana,
for deeper models this issue did not occur.
Finally, some the metrics explained in 2.6 (precision and recall) will be used alongside accuracy
to get a better evaluation.

Given that the dataset was collected on the same moment of the day, di昀昀erent kind of trans-
formations to the dataset were applied in order to increase the number of data points and to
enhance the performances of themodel under di昀昀erent conditions (e.g., picture taken at di昀昀er-
ent hours, diverse resolutions of the camera)without collecting other data. The data augmenta-
tion is appliedusing ImageDataGenerator fromkeras on the traindataset. The transformations
applied are:

• Zoom: involves either zooming in or out on an image. This helps the model to be in-
variant to di昀昀erent sizes of objects within the image. The zoom range is set to 0.2; this
means zooming can be between 80% and 120%.

34

Figure 3.8: First dataset balanced.

• Flip: 昀氀ipping an image can be done horizontally or vertically. This is particularly useful
in cases where the orientation of the object in the image does not a昀昀ect its classi昀椀cation.
In this case the 昀氀ip is applied both horizontally and vertically.

• Brightness intensity: brightness change involves adjusting the brightness levels of an im-
age, making it either lighter or darker. This can help the model be more robust to di昀昀er-
ent lighting conditions.

Finally, every patch is rescaled by a factor of 1/255. Images typically have pixel values in the
range of 0 to 255 for each channel. By rescaling by 1/255, these values are normalized to the
range of 0 to 1. This is done to ensure to have parameters that are in a smaller and consistent
range, which is helpful for stability and faster convergence during training.

3.3.4 Dataset-v3

During the last phases of the project, we collected another sample of photos during a 昀椀eld mis-
sion in the greenhouses. The photos were gathered during the day 8/7/2024 from 11:30 to
16:30 (from late morning to early afternoon). In total, for the valerianella 昀椀eld, 30 new images
were collectedwith a drone using the samemethod described at the beginning of the section 3.3
(model DJI Mavic3M, 2 meters height). Finally, the photos were taken in another greenhouse,
therefore we don’t have an overlapping dataset.
All the new imagesweremanually segmented andprocessedusing the secondmethod explained
in 3.3.2 to create labelled patches. These images were added to the dataset-v2 and the resulting
dataset is going to be called dataset-v3which is the result of 50 segmented images. This dataset

35

contains a total of 62808 entries: 8101 infesting, 4518 terrain, 50189 valeriana. During pre-
processing the drop percentage for the valeriana class was set to 50% in order to preserve the 1:3
ratio between infesting and valeriana classes. The resulting dataset, which is going to be called
dataset-v3-reduced-50, contains a total of 37713 entries: 8101 infesting, 4518 terrain, 25095
valeriana. Finally, the same augmentations were applied.

3.4 Models

This section outlines the technical implementation of neural network models developed for
analyzing the infesting plants dataset. Eachmodel is trained on the dataset and evaluated based
on di昀昀erent kind of parameters. The models used in this project are ResNet50, VGG16, In-
ceptionV3, InceptionResNet and DenseNet201.

3.4.1 ResNet

ResidualNetworks (ResNet) stand out as one of themost in昀氀uential andwidely adoptedmod-
els. ResNet, introduced byHe (2016) [15], addresses the problem of training very deep neural
networks by introducing a novel residual learning framework.
The fundamental breakthrough of ResNet lies in its ability to mitigate the vanishing gradient
problem, which typically hampers the training of deep networks. Traditional CNNs often
struggle to propagate gradients e昀昀ectively when the network depth increases. This leads to de-
graded performance and makes it challenging to optimize the network.
ResNet overcomes this issue by introducing residual blocks. Each residual block consists of a
series of convolutional layers, batch normalization, and ReLU activation functions. What sets
these blocks apart is the identity shortcut connection, which bypasses one or more layers by
performing identity mapping. The output of the residual block is the sum of the input and
the output of the convolutional layers within the block.

y = F(x, {Wi}) + x (3.1)

In the function 3.1, x represents the input to the residual block,F(x, {Wi}) denotes the resid-
ual function, andWi are the weights of the convolutional layers.
When the input data x is passed into the residual block, it is initially processed by one or more
convolutional layers, batch normalization, and ReLU activation functions. These operations
transform the input in some way, which is described by the functionF(x, {Wi}). This resid-

36

ual function represents the output of the convolutional layers in the residual block. It’s called
the ”residual” function because it tries to learn the residual mapping. The idea is that it is eas-
ier for the layers to learn the residual (the di昀昀erence) between the input and the desired output
rather than the entire transformation directly.
The identity shortcut connection is a direct connection that skips the convolutional layers and
directly connects the input to the output. The 昀椀nal output y of the residual block is obtained
by adding the input x to the output of the residual functionF(x, {Wi}). This addition helps
to propagate the input directly to the output, which can alleviate the vanishing gradient prob-
lem and make it easier to train deep networks.
In their paper, He et al. demonstrated that ResNet with 152 layers signi昀椀cantly outperformed

Figure 3.9: ResNet block.

state-of-the-art models on the ImageNet dataset, while still being easier to optimize. This was a
remarkable achievement, as previous architectures struggled to go beyond 20-30 layers without
encountering performance degradation.
Since its inception, several variants of ResNet have been proposed to further enhance its per-
formance and applicability. Some notable variants includeResNet-18, ResNet-34, ResNet-50,
ResNet-101, ResNet-152. These versions di昀昀er in the number of layers, providing a trade-o昀昀
between model complexity and computational e昀케ciency. ResNet-50 and ResNet-101 are par-
ticularly popular in practice due to their balance of accuracy and computational cost [He2016]
[15].
ResNet has been successfully applied to a wide range of computer vision tasks, including im-
age classi昀椀cation; ResNet models consistently achieve top performance on benchmarks like
ImageNet and CIFAR-10.

37

3.4.2 VGGNet

VGGNet, introduced by the Visual Geometry Group (VGG) at the University of Oxford, has
signi昀椀cantly in昀氀uenced the 昀椀eld of computer vision. Presented by Simonyan and Zisserman in
2014, VGGNet achieved remarkable performance on the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) 2014 [28].
VGGNet’s architecture is notable for its simplicity and uniformity. Unlike its predecessors,
which often employed complex topologies, VGGNet relies on very small (3x3) convolution 昀椀l-
ters throughout the network, a design choice that contributes to its clarity and e昀昀ectiveness.
The key idea behind VGGNet is the use of multiple stacked convolutional layers with small
receptive 昀椀elds. The depth of the network is increased by adding more convolutional layers,
with the number of 昀椀lters doubling after every few layers. For instance, VGG-16 and VGG-19,
two popular con昀椀gurations, have 16 and 19 weight layers, respectively.
VGGNet o昀昀erts several advantages, primarily its uniform architecture where the use of small,
uniform convolutional 昀椀lters (3x3) simpli昀椀es the network design and makes it easier to under-
stand and implement and its increased depth which allows it to capture more complex and
hierarchical features, which contributes to its high performance on image recognition tasks.
VGGNet has also become a popular choice for transfer learning.
VGGNet comes in several con昀椀gurations, primarily di昀昀ering in the depth of the network; the
deeper variants, such as VGG-16 andVGG-19, generally achieve better performance at the cost
of increased computational resources.
VGGNet has been successfully applied in numerous computer vision applications, including:

• Image classi昀椀cation: VGGNet’s pre-trainedmodels are extensively used for image classi-
昀椀cation tasks, achieving high accuracy on benchmark datasets such as ImageNet.

• Object detection: VGGNet serves as a backbone for object detection frameworks like
Fast R-CNN and Faster R-CNN, providing strong feature extraction capabilities [Gir-
shick2015] [29], [Ren2015] [30].

• Semantic segmentation: VGGNet-basedmodels, such asFullyConvolutionalNetworks,
have been employed for pixel-wise segmentation tasks, signi昀椀cantly improving the accu-
racy of semantic segmentation [Long2015] [31].

38

3.4.3 InceptionNet

InceptionNet, also known as GoogLeNet, introduced a novel architecture that signi昀椀cantly
advanced the 昀椀eld of deep learning for computer vision. It was developed by Szegedy et al.
(2015) [24] at Google.
The key innovation of InceptionNet is the inception module, which allows the network to
capture multi-scale informationmore e昀昀ectively. Traditional convolutional networks typically
use layers with 昀椀xed 昀椀lter sizes, which may not be optimal for capturing features at di昀昀erent
scales. The inception module, on the other hand, applies multiple 昀椀lters of di昀昀erent sizes to
the same input and concatenates their outputs. An inception module typically includes: 1x1
convolutions, used to reduce dimensionality and computational cost, 3x3 convolutions and
5x5 convolutions, respectively used to capture medium-sized and large features and 3x3 max
Pooling which helps to capture spatial hierarchies and provides additional robustness.
Each of these convolutional and pooling operations is applied in parallel, and their outputs
are concatenated to form the input for the next layer. The architecture of InceptionNet is
deep, consisting of 22 layers, but thanks to the inception modules, it remains computationally
e昀케cient.
The inceptionmodule is designed to approximate a sparse network with a series of dense layers.
This approach helps tomitigate the issue of computational expense that typically accompanies
deep networks. Szegedy et al. (2015) introduced the initial InceptionNet architecture, often
referred to as GoogLeNet (Inception v1) [Szegedy2015]. An example of an inception module
looks as follows:

Concatenate (Conv1x1(x),Conv3x3(x),Conv5x5(x),MaxPool3x3(x))

Where ConvNxN denotes a convolution with anN ×N 昀椀lter.
The advantages of InceptionNet are its ability toperformmulti-scale feature extraction, thanks

Figure 3.10: Incep琀椀on modules.

39

to the inception module which allows the network to capture features at multiple scales, im-
proving its ability to recognize objects of varying sizes and dimensionality reduction, by using
1x1 convolutions, InceptionNet e昀昀ectively reduces the number of parameters and computa-
tional complexity without sacri昀椀cing performance.
The variants of InceptionNet are: Inception v2 and v3 which introduced factorized convo-
lutions and improved training methods [Szegedy2016] [32] and Inception v4 and Inception-
ResNet which combined inceptionmodules with residual connections for better performance
[Szegedy2017] [33].

3.4.4 Inception-ResNet

Inception-ResNet is a hybrid neural network architecture that combines the strengths of In-
ception modules and Residual connections, aiming to improve both the depth and e昀케ciency
of deep learning models. This architecture was introduced by Szegedy et al. (2017) [33] and
has proven to enhance the performance and training speed of deep networks.
Inception-ResNet integrates themulti-scale feature extraction capability of Inceptionmodules
with the residual learning framework popularized by ResNet. The key idea is to combine the
inceptionmodules, which capture features atmultiple scales, with residual connections, which
help in training deeper networks by mitigating the vanishing gradient problem.
By combining inception modules and residual connections, Inception-ResNet can e昀昀ectively
capturemulti-scale featureswhilemaintaining the bene昀椀ts of deepnetworks. Also residual con-
nections facilitate the training of very deep networks by allowing gradients to propagate more
easily through the network.
There are versionsof Inception-ResNet are: Inception-ResNet v1, the initial version and Inception-
ResNet v2, an improved version with deeper architecture and modi昀椀ed inception modules.

3.4.5 DenseNet

DenseNet, short for Densely Connected Convolutional Networks, is a neural network archi-
tecture introduced byHuang et al. (2017) [34]. DenseNet’s design addresses some of the limi-
tations of traditional deep networks by ensuring maximum information 昀氀ow between layers.
DenseNet’s architecture is characterized by dense connectivity between layers. In contrast to
traditional convolutional networks, where each layer has its own set of weights and is only con-
nected to the previous layer,DenseNet connects each layer to every other layer in a feed-forward
fashion. Speci昀椀cally, each layer receives the feature maps of all preceding layers as input, lead-

40

ing to improved feature reuse and learning e昀케ciency.
Formally, the output of the lth layer is de昀椀ned as:

xl = Hl([x0,x1, . . . ,xl−1])

where [x0,x1, . . . ,xl−1] refers to the concatenation of the feature maps from layers 0 to l− 1,
andHl denotes the transformation (composed of Batch Normalization, ReLU, and Convolu-
tion) applied at the lth layer.
The DenseNet architecture o昀昀ers many advantages; dense connectivity ensures that gradients
昀氀owmore easily through thenetwork, facilitating trainingof verydeepnetworks andDenseNet
is parameter-e昀케cient because it does not require learning redundant feature maps, as features
are reused throughout the network. Also the direct connections between layers help to allevi-
ate the vanishing gradient problem, which is common in deep networks.
DenseNet comes in several variants, primarily di昀昀ering in the number of layers and the con-
nectivity pattern: DenseNet-121, DenseNet-169 and DenseNet-201.
DenseNet has been successfully applied in various computer vision tasks, demonstrating its
versatility and robustness but it shines in medical image analysis; DenseNet’s ability to capture
昀椀ne-grained features makes it suitable for medical image analysis, such as tumor detection and
segmentation [Shen2017] [35].

Figure 3.11: DenseNet architecture.

41

42

4
Experimental results

In this chapter we will provide the performance analysis of the models. The models evalu-
ated are: ResNet50, VGG16, InceptionV3, InceptionResNetV2, DenseNet201. These mod-
els were 昀椀ne-tuned using the ImageNet weights and trained on both versions of the dataset 3.3.
In this case, all the layers of the pre-trained model were freezed and we only trained the last
layers, which were added on top of the pre-trained models (see 2.4.2 for reference).
The datasets were augmented as previously described and were divided in training, validation
and test sets. The datasets were initially divided between training and validation with a 80%
and 20% split respectively. Then, the training set was further split to create the test set (80%
and 20% respectively).
Training was conducted over 60 epochs with a learning rate of 1e-5 and a batch size of 32. Pa-
tience was set to 3 and started from epoch 20. Themodels were trained on a GEFORCEGTX
1050 GPU.
Model performance was evaluated on the test set of the dataset using accuracy, precision, and
recall as metrics. For eachmodel, training and validation loss, as well as training and validation
accuracy, are reported (validation is referred to validation set).
The second part of this chapter revolves around themethodologies to tune the number of false
positives and false negatives during and after classi昀椀cation. For this task, a di昀昀erent test was
used, which did not require the previously mentioned dataset-v1 and dataset-v2. The process
and the di昀昀erent test will be explained in detail later in the section 4.5.

43

4.1 Model parameters

Learning rate The learning rate controls the size of the steps the optimization algorithm
takes during training. It determines how quickly or slowly a model converges to a minimum
of the loss function. The learning rate is a hyperparameter that scales the gradient updates
during training. If the learning rate is too high, the model might converge too quickly to a
sub-optimal solution or oscillate around a solutionwithout ever settling down, leading to poor
generalization. Conversely, if the learning rate is too low, the training process will be excessively
slow, and the model might get stuck in local minima, requiring more time to converge to an
optimal solution.
When the learning rate is too high the optimization algorithmmakes large updates to themodel
parameters. This can result in the following issues:

• Over昀椀tting: high learning rates can cause themodel tomemorize the training data rather
than learning the underlying patterns. This is because large steps can skip over or miss
the general trends in the data, leading to high variance in predictions.

• Instability: large updates can cause the loss function to 昀氀uctuate widely or even diverge,
preventing the model from converging to a stable solution.

• Poor generalization: due to the rapid changes in parameter values, the model may not
generalizewell tounseendata, exhibitingpoorperformanceonvalidation and test datasets.

When training the models with a high learning (e.g., 1e-4) all of the issues presented are evi-
dent. On the other hand, very low learning rates make the optimization process painstakingly
slow. Training with a very low learning rate requires a signi昀椀cantly higher number of epochs
to converge, increasing computational costs and time.
An intermediate learning rate, such as 1e-5 o昀昀ers the best solution for convergence, stable train-
ing and generalization.

Batch size The batch size, which refers to the number of training examples used in one it-
eration to update the model parameters, can signi昀椀cantly in昀氀uence the training dynamics and
overall performance of the model. In the training process, the batch size of 32 is identi昀椀ed as
optimal. This choice balances the trade-o昀昀s between computational e昀케ciency, convergence
stability, and model generalization.
Using a large batch size in training machine learning models can lead to several challenges,

44

including higher memory requirements that may exceed hardware capacity, causing out-of-
memory errors. Additionally, large batch sizes result in more deterministic and smoother gra-
dient updates, which might reduce the model’s ability to generalize to unseen data due to the
lack of gradient noise. While computation per iteration might be faster with large batches, the
time per epoch could be longer since there are fewer iterations per epoch.
Conversely, small batch sizes introduce noisy updates with higher variance, making the train-
ing process potentially less stable and more prolonged. Smaller batches may lead to ine昀케cient
computation as they might not fully utilize the parallel processing capabilities of modern hard-
ware, extending the overall training time and requiringmore epochs for themodel to converge.
The selection of a batch size of 32 represents a well-considered balance between computational
e昀케ciency, convergence stability, and model generalization. It avoids the pitfalls of both very
large and very small batch sizes, ensuring that the training process is both e昀케cient and e昀昀ective.

Epochs An epoch represents a full cycle through the entire training dataset. During each
epoch, themodel processes all training samples, updating its parameters through backpropaga-
tion and gradient descent. The purpose of multiple epochs is to allow the model to re昀椀ne its
parameters progressively, improving its performance with each pass through the data.
If the number of epochs is too low, the model might not have su昀케cient opportunity to learn
the underlying patterns in the data. This can result in under昀椀tting, where the model fails to
capture the complexities of the training data, leading to poor performance on both the train-
ing and validation sets. Under昀椀tting occurs because the model has not had enough iterations
to adjust its weights adequately, resulting in a model that lacks the necessary capacity to make
accurate predictions.
On the other hand, training for too many epochs can lead to over昀椀tting. Over昀椀tting occurs
when the model learns not only the underlying patterns but also the noise and speci昀椀c details
of the training data. While this might result in excellent performance on the training set, the
model’s ability to generalize to new, unseen data diminishes, leading to poor performance on
validation and test sets. Additionally, training for too many epochs is computationally ine昀케-
cient, wasting time and resources.
Usually, the value of epochs is usually set between 50 and 100. This is an indicative number
because if we use patience as a hyperparameter we model will terminate training well before
reaching the maximum number of epochs.

45

Early stopping Early stopping is a regularization technique used during training of ma-
chine learning models to prevent over昀椀tting. It involves monitoring the model’s performance
on a validation set and stopping the training process when the performance ceases to improve.
The parameter patience determines howmany epochs to wait for an improvement before halt-
ing the training.
Early stopping is a safeguard against over昀椀tting by terminating the training process once the
model’s performance on a validation set stops improving. The patience parameter speci昀椀es the
number of epochs to wait after the last improvement before stopping. If the model does not
show improvement in the validationperformancewithin the speci昀椀edpatience period, training
is halted. This approachhelps in 昀椀nding the sweet spotwhere themodel has learned su昀케ciently
but not excessively.
Thepatienceparameter helps avoidpremature terminationof training. Withoutpatience, train-
ing might stop as soon as the model experiences a minor 昀氀uctuation or temporary plateau in
performance, whichmight not accurately represent its overall learning trend. By allowing a few
additional epochs, patience provides the model with an opportunity to overcome short-term
stagnations and potentially reach a better performance.
Choosing to start monitoring for early stopping from epoch 20 is a strategic decision. Early
epochs are typically characterized by signi昀椀cant improvements as the model quickly learns ba-
sic patterns in the data. Monitoring for early stopping from the very beginning might result in
premature termination. By waiting until epoch 20, we allow the model to settle andmake sub-
stantial initial progress. This setup ensures that early stopping is applied only after the model
has had enough time to stabilize its learning curve.

46

4.2 Dataset v1

Table 4.1: Model performance comparison on 昀椀rst dataset. The values are calculated on the test set.

Model Accuracy Precision Recall Time
ResNet50 67.3% 73.7% 51.2% 3min 42s
VGG16 85.3% 86.3% 84.8% 6min 7s
InceptionV3 86.4% 86.4% 85.4% 3min 52s
InceptionResNetV2 87.5% 88.3% 80.1% 4min 9s
DenseNet201 90.1% 90.9% 89.3% 4min 52s

Figure 4.1: Loss and accuracy plots for ResNet50.

Figure 4.2: Loss and accuracy plots for VGG16.

47

Figure 4.3: Loss and accuracy plots for Incep琀椀onV3.

Figure 4.4: Loss and accuracy plots for Incep琀椀onResNetV2.

Figure 4.5: Loss and accuracy plots for DenseNet201.

48

The plots on the left represent the loss on the training set and validation set over the epochs.
Having the two losses alignedmeans that themodel is not over昀椀tting and instead it is generaliz-
ing well the images on the dataset. Having a training loss that decreases rapidly but a validation
loss that is increasing instead of decreasing means that the model is over昀椀tting.
The plots on the right, instead, visualize the accuracy both on the training and validation sets
over the epochs.
Plot analysis:

• ResNet50: the loss and accuracy plots for ResNet50 indicate moderate performance,
with some昀氀uctuation in the validation accuracy and loss over epochs. Themodel achieves
an accuracy of 67.3%, indicating room for improvement, particularly in recall where it
scores 51.2%.

• VGG16: the model shows better performance with an accuracy of 85.3%. The training
and validation accuracy curves are closely aligned, suggesting good generalization. The
loss and accuracy plots show consistent improvement over epochs. Also, the precision
and recall are both high, indicating balanced performance across di昀昀erent classes.

• InceptionV3 and InceptionResNetV2: these models perform similarly close to VGG16
with a slightly better accuracy at 86.4% and 87.5% respectively. The precision-recall bal-
ance is well-maintained, and the models converge smoothly as seen in the loss and accu-
racy plots.

• DenseNet201: the best-performing model with a remarkable accuracy of 90.1%. Preci-
sion and recall are also very high.

The best performing model is DenseNet201 with an accuracy of 90.1% on the test set. We
can see on the confusionmatrix 4.6 the results for each class. For this project we associate value
0 as the infesting class, value 1 as the terrain class and value 2 as the valeriana class. The model
easily distinguish the class terreno from the other classes; without toomany surprises the errors
occur mostly between the classes infestanti and valeriana: these classes are very similar to each
other and the error in the classi昀椀cation can be explained on the similarity of the images on the
dataset.
The average training time for the models is 4 minutes per models. VGG16 has the highest
training time of 6min 7s followed by DenseNet201 with 4min 52s. As we can see, training
time is not an issue for this dataset if we can parallelize the training on images using a GPU.

49

Figure 4.6: Confusion matrix of DenseNet201 on 昀椀rst dataset test set. Values in the confusion matrix are normalized.

Figure 4.7: Heatmap visualiza琀椀on on a single patch using DenseNet201. The model clearly is able to dis琀椀nguish the promi‐
nent features of the image.

After training, themodel is used to classify the entire image. The process follows a similar ap-
proach to the dataset creation as described in section 3.3. Speci昀椀cally, the images are segmented
into patches, each with dimensions of 112 x 112 pixels. Subsequently, each individual patch is
classi昀椀ed using the trained model (see 昀椀gure 4.8 as an example). Currently, the results are only
qualitative because we lack a test to evaluate the performance of the full image classi昀椀cation.
Section 4.5 will attempt to solve this.

50

Figure 4.8: Total image classi昀椀ca琀椀on using DenseNet201. The red patches represent the infes琀椀ng class, the blue patches the
terrain class.

51

4.3 Dataset v2

Table 4.2: Model performance comparison on second dataset. The values are calculated on the test set.

Model Accuracy Precision Recall Time
ResNet50 70.3% 72.1% 67.3% 10min 5s
VGG16 86.4% 87.8% 84.3% 11min 56s
InceptionV3 87.2% 87.8% 86.8% 11min 34s
InceptionResNetV2 81.0% 90.0% 71.5% 13min 38s
DenseNet201 89.6% 89.9% 89.3% 12min 44s

Figure 4.9: Loss and accuracy plots for ResNet50.

Figure 4.10: Loss and accuracy plots for VGG16.

52

Figure 4.11: Loss and accuracy plots for Incep琀椀onV3.

Figure 4.12: Loss and accuracy plots for Incep琀椀onResNetV2.

Figure 4.13: Loss and accuracy plots for DenseNet201.

53

Theplot analysis reveals thatDenseNet201 consistently outperforms theothermodels across
both datasets, demonstrating superior accuracy, precision, and recall. The training and valida-
tion curves for DenseNet201 show smooth convergence, indicating robust learning and gen-
eralization. ResNet50, while improving slightly with dataset-v2, remains the least accurate,
particularly struggling with recall. VGG16 and InceptionV3 perform comparably well, with
close alignment of training and validation metrics, suggesting e昀昀ective learning. Inception-
ResNetV2 exhibits strong performance with balanced precision and recall, though slightly less
accurate than DenseNet201.
If we inspect the confusion matrix of ResNet50 4.14, we see that the model tended to classify
all the patches in one single class, in this case valeriana. This can be a problem in unbalanced
datasets (like the one we are using now) because a model can get high accuracy by just classify-
ing all images with one label. This problem can be solved by using deeper models, in this case
DenseNet.

Figure 4.14: Comparison between the confusion matrices of ResNet50 and DenseNet201. On the le昀琀: the confusion matrix
of ResNet50. On the right: the confusion matrix of DenseNet201. Both models were trained on the dataset‐v2.

54

4.4 Dataset v3

Table 4.3: DenseNet201 performances on dataset‐v3 and dataset‐v3‐reduced‐50. The values are calculated on the test set.

Dataset Accuracy Precision Recall Time
dataset-v3-reduced-50 90.3% 90.3% 90.1% 33min
dataset-v3 92.5% 92.5% 92.4% -

Figure 4.15: Loss and accuracy plots for DenseNet201 trained on dataset‐v3‐reduced‐50.

For dataset-v3-reduced-50, only DenseNet201 was trained and tested, as it had been the best
model for all the previous datasets. In this case, our goal is to verify if the results observed earlier
remain consistent with a larger dataset.
We can see that the results for the model are very similar compared to the same performances
on the previous datasets. For example, the aggregated accuracy for all the classes is 90.3% for
DenseNet201 trainedondataset-v3-reduced-50 and89.6% for the samemodel trainedondataset-
v2.
Considering only the infesting class, 4.16 the model achieved a precision of 92.5% and a recall
of 73.1%, which combined give a F1-score of 81.7% (these values are calculated on the unnor-
malized confusion matrix, see 2.6 for reference).
For the full dataset dataset-v3, where data balancing was not applied, we have overall a higher
accuracy of 92.5% due to the fact that we have many samples from the valeriana class, which
increases the performances. In fact, if we inspect each class individually we see that for the in-
festing class we have lower performances: the precision is 90.2% and the recall is 65.7%. The
F1-score is 76.0%which is lower of the value calculated in the reduced dataset. On the contrary,

55

for the valeriana class, the values of precision, recall and F1-score are respectively 93.1%, 97.8%
and 95.4%.

Figure 4.16: Confusion matrix of DenseNet201 on dataset‐v3‐reduced‐50 test set. Values in the confusion matrix are nor‐
malized.

Figure 4.17: Confusion matrix of DenseNet201 on dataset‐v3 test set. Values in the confusion matrix are normalized.

56

4.5 Tuning methodologies

One of the goal of this project is to research and analyze the methodologies for reducing the
number of false positives and false negatives after classi昀椀cation. In in our agricultural setting
these classi昀椀cation errors can lead to many problems:

• A false positive occur when the true label of an image is not infesting but we classify if as
the latter. This means that we wrongly identify a crop as an infesting plant. This error
can lead to false alarms; if we alert the specialist to check for infesting plants but none are
present, it results in a waste of time and resources. The metric used to visualize the rate
of false positives is precision: a high precision indicates a low number of false positives,
instead a low precision indicates the contrary.

• A false negative occur when the true label of an image is infesting but we classify it as
non infesting (we don’t catch the infesting plant). This error can lead to undetected
infestations spreading unchecked, potentially causing signi昀椀cant damage to crops and
consequently increasing costs. The metric used to visualize the rate of false negatives is
recall.

Precision and recall should be balanced, but it often occurs that when we try to increase
one metric, the other decreases. To address this trade-o昀昀, we can use the F1-score, which is the
harmonicmeanofprecision and recall. TheF1-score provides a singlemetric that balances both
precision and recall, giving us a more comprehensive evaluation of the model’s performance.
By optimizing for the F1-score, we ensure that our model maintains a good balance between
precision and recall. After the classi昀椀cation 4 methodologies were applied to modify the level
of classi昀椀cation on infesting plants:

1. Modify the dataset.

2. Modify the model during training.

3. Apply a di昀昀erent threshold during the classi昀椀cation of a single patch.

4. Apply post-processing on the full image after classi昀椀cation.

57

Total image test. The tuning methods were evaluated using a test image that was man-
ually labeled. The labeling process (illustrated in 4.18) is similar to the process explained in
subsection 3.3.2 (secondmethod: manual segmentation and automatic labelling). After divid-
ing the image in patches and labelling them, the values of the labels are saved on amatrix where
each entry (determined by row and column indexes) represents a single patch. Each entry can
have 2 values: 0 for infesting and 1 for non infesting. This matrix, which we are going to call
test label matrix is used to evaluate themetrics for the total image classi昀椀cation. It is important
to note that this test image was not used for the creation of dataset-v1 or dataset-v2.
To evaluate the tuningmethodologies, another images di昀昀erent from the test image previously
described is divided in patches and each patch is classi昀椀ed using the previously trained model.
Therefore, each patch can be labelled as infesting, terrain or valeriana and we create another
labelmatrix. Using this label matrix and the test label matrix we count the number of true posi-
tives, false positives and false negatives only for the class infesting. From these values, we obtain
precision, recall and F1-score. We calculate these values only on the infesting class because we
are not focusing on the other classes for the following reason: the main goal of our analysis is
to identify and manage the infesting plants. Therefore, our primary interest lies in the perfor-
mance of the model with respect to detecting these infesting plants accurately and e昀케ciently.
Finally, for this test, we are not interested in reaching the same accuracy on the dataset-v2 test
set, because for the total image test we are only interested in detecting the infesting plants with-
out being too accurate on predicting the complete bounding box. The 昀椀gure 4.19 allows us
to visualize all the bounding boxes of the infesting plants. As said before, these boxes are just
indicative of the location of the infesting plants.

Figure 4.18: Manually segmented image.

58

Figure 4.19: Segmented image using patches.

59

4.5.1 Tuning the dataset

As 昀椀gure 4.14 shows, when the training data has a disproportionate number of instances in
di昀昀erent classes, the model may become biased towards the majority class, leading to a higher
number of false negatives or false positives in the minority class.
To solve this issue techniques such as oversampling the minority class, undersampling the ma-
jority class, and data augmentation can help balance the dataset and reduce bias [36].
In this test we tried undersampling the majority class and oversampling the minority classes.
A test was conducted by comparing three models: a DenseNet201 trained on the dataset-v2
where undersampling is applied to the valeriana class (the number of data points of the ma-
jority class was brought to the same number of the data points of the minority class), which
from now we are going to refer as undersampled-dataset-v2, a DenseNet201 trained on the
dataset-v2 where oversampling is applied to the minority classes (infesting and terrain) and a
DenseNet201 trained on the usual dataset-v2. Oversampling is performed by sampling the
minority classes with replacement: each time we draw a sample from the dataset, the original
sample remains in the dataset. Thus, each data point can be drawn again in subsequent draws.
The performance metrics reveal notable di昀昀erences. These results indicate that the 昀椀rst model,
trained on the undersampled dataset, was more e昀昀ective in correctly identifying positive in-
stances, but it also had a higher number of false positives compared to the second model. The
precision of the 昀椀rst model was 41.8%, which was lower than the second model’s precision of
62.5%. However, the recall of the 昀椀rst model was signi昀椀cantly higher at 37.8% compared to the
secondmodel’s recall of 20.3%. This suggests thatwhile themodel trained of the undersampled
dataset might generate more false alarms, it is more reliable in identifying true positive cases.
The disadvantage of using undersampling is that we are deleting many samples from the vale-
riana class and therefore reducing the generalization capability of the model.
Using the oversampled dataset, we observe a di昀昀erent balance of performance metrics. The
model trained on this dataset achieved a true positive count of 42, a signi昀椀cant improvement
over the other models. However, this came with an increase in false positives, reaching 114,
which greatly impacted its precision, resulting in a precision score of 26.9%. Despite this, the
recall was the highest among the threemodels, at 56.8%, indicating that the oversampledmodel
was the most e昀昀ective at identifying true positive cases. The F1-score of 36.5% for the oversam-
pled model falls between the scores of the other two models.
According to Buda et al. (2018) [36] while both oversampling and undersampling can be ef-
fective, oversampling generally performs better in the context of CNNs, especially when used

60

to completely eliminate class imbalance. Undersampling, though sometimes e昀昀ective, has the
drawback of discarding potentially useful data. While this can be true for many cases, oversam-
pling in this case resulted in a very high number of false positives, leading to a classi昀椀cation
where many data points are wrongly classi昀椀ed.
In the next sections, we will discuss other techniques that attempt to solve this task without
interfering with the dataset.

Model True positives False negatives False positives Precision Recall F1-score

Undersampled dataset-v2 28 46 39 41.8% 37.8% 39.7%
Oversampled dataset-v2 42 32 114 26.9% 56.8% 36.5%
Original dataset-v2 15 59 9 62.5% 20.3% 30.6%

Table 4.4: Performance metrics on dataset tuning.

(a) (b) (c)

Figure 4.20: a) Segmenta琀椀on done with model trained on undersampled dataset. b) Segmenta琀椀on done with model trained
on oversampled dataset. c) Segmenta琀椀on done with model trained on original dataset.

4.5.2 Tuning the model

There are variousways to tune the level of false positive and false negative classi昀椀cations bymod-
ifying the model parameters. One e昀昀ective method is to adjust the class weights of the model.
According to Johnson et al. (2009) [19] in imbalanced datasets, the model tends to be biased
towards the majority class because it dominates the training process. To mitigate this, one can
assign higher weights to the minority classes. By doing so, the learning algorithm penalizes
misclassi昀椀cations of minority class instances more heavily, thereby encouraging the model to
improve its performance on these underrepresented classes. This approach ensures that the
model pays more attention to the minority class during training, which can enhance recall but

61

often at the expense of precision. This is because the model becomes more aggressive in pre-
dicting the minority class, leading to more false positives.
In this test all the class weights were set to 1 and the DenseNet201 was trained on the full
dataset-v2. Then, the weight for the class infesting was gradually increased and the model re-
trained on the same conditions. The results are shown in 4.6. We can see that increasing the
weight of theminority class gradually increases the number of true and false positives and at the
same time reduces the number of false negatives (recall improves at the cost of precision). This
pattern continues until weight 3.5 and after that point there is not substantial improvement in
the model; in fact, the F1-score slightly dropped at weight equal to 4.
The models were then tested on the complete image (total image test 4.5). Comparing the
results from the two tables 4.6 and 4.8, we can observe how the model’s performance on in-
dividual patches translates to performance on complete images. Increasing the weight of the
minority class (infesting) improves recall in both scenarios, albeit at the cost of precision, which
is consistent with our observations on individual patches.
For instance, in table 4.6, increasing the weight from 1.5 to 3.0 improves recall from 76.2%
to 83.4%, but decreases precision from 84.1% to 74.4%. Similarly, in table 4.8, we see recall
improve from 35.1% to 50.0% when the weight increases from 1.5 to 3.0, but precision drops
from 48.2% to 34.3%. Additionally, the F1-score shows a peak at di昀昀erent weight values in
both tests. For individual patches, the F1-score peaks at 1.5 with a value of 80.0%, whereas for
complete images, it peaks at a weight of 3.0 with a value of 40.7%. This suggests that the opti-
mal class weight might di昀昀er based on whether the model is evaluated on patches or complete
images.
In conclusion, tuning the class weights enhances recall by increasing the number of true posi-
tives but also raises the number of false positives, thereby reducing precision, thus con昀椀rming
the results found by Johnson et al. (2009) [19]. This behavior is evident both in the patch test
and in the total image test.

62

Table 4.5: Model performance comparison with di昀昀erent weights. The values are calculated on the test set.

Weight True positives False negatives False positives Precision Recall F1-Score
1.0 340 131 54 86.3% 72.2% 78.6%
1.5 359 112 68 84.1% 76.2% 80.0%
2.0 369 102 85 81.3% 78.3% 79.8%
2.5 388 83 118 76.7% 82.4% 79.4%
3.0 393 78 135 74.4% 83.4% 78.7%
3.5 396 75 135 74.6% 84.1% 79.0%
4.0 394 77 155 71.8% 83.7% 77.3%

Table 4.6: Model performance metrics for di昀昀erent weights. The metrics were evaluated using the test set of dataset‐v2.

(a) (b) (c)

Figure 4.21: Confusion matrix comparison between di昀昀erent tuned models. a) Class weight infes琀椀ng set to 1.5. b) Class
weight infes琀椀ng set to 2.5. c) Class weight infes琀椀ng set to 3.5. Models were trained on dataset‐v2.

Figure 4.22: Combined plot with precision, recall, and F1‐score against the class weight using the data from table 4.6.

63

Table 4.7: Model performance metrics for di昀昀erent weights. The metrics were evaluated using the total image test.

Weight True positives False negatives False positives Precision Recall F1-Score
1.5 26 48 28 48.2% 35.1% 40.6%
2.0 23 51 36 39.0% 31.1% 34.6%
2.5 30 44 51 37.0% 40.5% 38.7%
3.0 37 37 71 34.3% 50.0% 40.7%
3.5 31 43 88 26.1% 41.9% 32.1%
4.0 38 36 94 28.8% 51.4% 36.9%

Table 4.8: Model performance metrics for di昀昀erent weights. The metrics were evaluated using the total image test.

64

4.5.3 Tuning the results

To further adjust the level of classi昀椀cation one can directly apply a di昀昀erent threshold over the
classi昀椀cation of a single patch. The softmax layer assigns to each image a percentage for each
label and these percentages add up to 1; these values indicate how much the model is certain
that the image belongs to a speci昀椀c class.
To apply a di昀昀erent threshold on classi昀椀cation means that the model will not choose the class
with highest percentage, but it will, 昀椀rst of all, check if the given class surpass the value to assign
that label and, if not, it will choose the class with highest percentage from the remaining classes.
Using this method, we canmake the model more aggressive by applying a low threshold, allow-
ing it to detect infesting plants with the slightest presence. Conversely, we canmake the model
more conservative by increasing the threshold, ensuring it only detects infesting plants when it
is very certain.
For example, when the trained model classi昀椀es the image 4.23 the predictions are:

0.46483302

0.00149037

0.5336766

Without setting a threshold, the model classi昀椀es the patch as valeriana since this class has the
highest probability at 53.4%. However, if we lower the threshold for the infesting class to 0.4,
the model will label the image as infesting because its probability of 46.5% exceeds the 40%
threshold. Conversely, if we set the threshold to 0.5, the model will not classify the image
as infesting and will instead select the class with the next highest probability from the other
classes. The table 4.10 and the accompanying graph 4.24 summarize the performance metrics

Figure 4.23: Patch used in the example.

of a model tested on an image, where di昀昀erent thresholds were applied to the output proba-
bilities. The metrics considered include precision, recall, and F1-score for thresholds ranging
from 0.1 to 0.9.
As the threshold increases, precision improves from 5.9% to 100%, while recall decreases from
86.8% to 2.6%. The F1-score, which balances precision and recall, peaks at an intermediate

65

threshold (0.4) with a value of approximately 38.0%. The F1-score maintains a high value be-
tween 0.4 and 0.7. Beyond this interval, the F1-score drops rapidly.
Low thresholds (0.1 - 0.3) yield high recall but lowprecision, intermediate thresholds (0.4 - 0.6)
provide a balance between precision and recall, and high thresholds (0.7 - 0.9) result in high pre-
cision but low recall.
Finally, the graph 4.25 represents the the precision-recall curve based on the data present in
the table 4.10. The curve helps visualize how the model’s performance varies with di昀昀erent
classi昀椀cation thresholds, allowing us to draw the same conclusions as with the graph 4.24.

Table 4.9: Performance metrics at di昀昀erent thresholds. The metrics were evaluated using the total image test.

Threshold True positives False negatives False positives Precision Recall F1-score
0.1 33 5 525 5.9% 86.8% 11.1%
0.2 31 7 282 9.9% 81.6% 17.7%
0.3 30 8 159 15.9% 78.9% 26.4%
0.4 26 12 73 26.3% 68.4% 38.0%
0.5 18 20 34 34.6% 47.4% 40.0%
0.6 13 25 17 43.3% 34.2% 38.2%
0.7 11 27 7 61.1% 28.9% 39.3%
0.8 7 31 1 87.5% 18.4% 30.4%
0.9 1 37 0 100.0% 2.6% 5.1%

Table 4.10: Performance metrics at di昀昀erent thresholds. The metrics were evaluated using the total image test.

Figure 4.24: Combined plot with precision, recall, and F1‐score against the threshold.

66

Figure 4.25: Precision‐recall curve based on the data present on the table 4.10. Each point on the curve represents a di昀昀erent
threshold value, and the annota琀椀ons indicate the corresponding threshold.

67

4.5.4 Tuning through post-processing

Finally, we canwork on the full image directly by doing post processing after the segmentation.
There are several ways to implement this method but the simplest one is to map the patches as
a matrix and, for each entry of thematrix, assign a value based on the label. After we have done
this, we can implement simple processing techniques, for example:

1. Filter single red patches. Single points can be seen just as misclassi昀椀cation errors.

2. Filter red patches that are near the terrain. The model tends to overclassify the patches
near the terrain as infesting. Patches near the terrain are less important to detect so we
can apply this operation to remove them.

Using the 昀椀rstmethod, the precision improved signi昀椀cantly to 60.0%, but the recall dropped
to 32.4%, yielding an F1-score of 42.1%. For the second method, the precision increased to
50.0% while maintaining the same recall of 37.8% resulting in an F1-score of 43.1%.
These variations highlight the trade-o昀昀s between precision and recall across di昀昀erent methods
of handling the dataset, with the the second one achieving the best balance as indicated by its
highest F1-score. However, it is evident that these operations can only reduce the number of
false positives, thus improving only the precision.

Scenario True positives False negatives False positives Precision Recall F1-score

Test image 28 46 39 41.8% 37.8% 39.7%
Post-processing 1 24 50 16 60.0% 32.4% 42.1%
Post-processing 2 28 46 28 50.0% 37.8% 43.1%

Table 4.11: Performance metrics for di昀昀erent post‐processing methods.

4.6 ComparisonbetweenCPUandGPUperformances.

In this brief sectionwewill explore the advantages of using aGPU versus a CPU on these tasks:

1. Training the model on dataset-v2.

2. Classifying a new image that was not used for the creation of the datasets.

68

(a) (b) (c)

Figure 4.26: Example of post processing on the en琀椀re image. a) Segmenta琀椀on done with model trained on balanced dataset.
b) Filtering of single red patches. c) Filtering red patches near the terrain.

For these tasks the GEFORCE GTX 1050 GPU was used. For the 昀椀rst task, we see that if
we train DenseNet201 without a GPU, the training time requires 34min 55s. By using a GPU,
we reduce the time to 12min 44s, resulting in a 63.5% reduction of training time.
For the second task, we still use DenseNet201 to classify the entire image, by dividing it in
patches and classifying every patch singularly using the model. To implement the GPU classi-
昀椀cation we employ batch processing, which is a method of executing multiple data processing
tasks simultaneously as a single group, or batch, instead of handling each task one by one.
Without the GPU, the time required is 6min 20s and with the GPU the time is equal to 20s,
reducing the classifying time by 94.7%. As we can see, this approach is particularly bene昀椀cial in
deep learning, where GPUs can handle large batches of data e昀케ciently, leading to signi昀椀cant
time savings.
Batch processing reduces time with a GPU because it leverages the parallel processing capa-
bilities of the GPU, which is designed to handle thousands of operations simultaneously. By
processing a large group of data points (such as image patches) in a single batch, the GPU can
e昀케ciently distribute the computational workload across its many cores, signi昀椀cantly reducing
the overhead associated with individually processing each data point.
In conclusion, the use of GPUs is very important during classi昀椀cation because during a 昀椀eld
operationwe require to classify a vast number of images collected from the drone, reducing the
time to classify each image makes the task feasible for the company.

69

70

5
Discussion and future directions

5.1 Research findings

Best model. The research presented in this thesis demonstrates the potential of Convolu-
tionalNeuralNetworks (CNNs) for the identi昀椀cationof infestingplants inmonoculture 昀椀elds.
By leveraging high-resolution imagery fromUnmannedAerial Vehicles (UAVs) and deep learn-
ing techniques, we developed a system capable of distinguishing between crops and various
infesting plant species with high accuracy.
The analysis demonstrated thatDenseNet201outperformedothermodels likeResNet50,VGG16,
InceptionV3, and InceptionResNetV2. DenseNet’s architecture, characterized by its dense
connectivity pattern, allows each layer to receive direct input from all preceding layers. This
connectivity pattern ensures maximum information 昀氀ow between layers, which helps in better
gradient propagation andmitigates the vanishing gradient problem often encountered in deep
networks.
This feature is particularly bene昀椀cial for our task of distinguishing between crops and infest-
ing plants, which can be highly variable in appearance and often intermingled within the same
昀椀eld. The dense connections enable the model to learn more complex features and represen-
tations, making it more adept at di昀昀erentiating between subtle di昀昀erences in plant structures
and textures. We can see the advantages of deeper models:

• Feature hierarchies: deeper models can learn more abstract and high-level features. In

71

the context of plant identi昀椀cation, this means the model can better recognize intricate
patterns and distinctions between di昀昀erent plant types, which is essential for accurately
identifying infesting plants among crops.

• Improved learning: DenseNet’s approach of connecting each layer to every other layer
encourages feature reuse, which improves learning e昀케ciency and model performance.
This reduces the risk of over昀椀tting, evenwith relatively smaller datasets, by ensuring that
all layers contribute to learning robust features.

• Gradient 昀氀ow: the direct connections between layers in DenseNet ensure that gradi-
ents 昀氀ow more smoothly during backpropagation, facilitating the training of very deep
networks. This is crucial for capturing the detailed and varied patterns present in UAV
imagery of agricultural 昀椀elds.

False positives and false negatives. The exploration of various tuning methodolo-
gies has highlighted the relationship between precision and recall in the classi昀椀cation of infest-
ing plants in agriculture. By modifying the dataset, training parameters, classi昀椀cation thresh-
olds, and applying post-processing techniques, the research aimed to balance the reduction of
false positives and false negatives. The results showed that di昀昀erent approaches have distinct
impacts on model performance.
Undersampling the majority class improved recall but lowered precision. It is advisable to use
this technique only when necessary, that is to say when the ration between infesting and valeri-
ana classes is higher than 1:3, because if we delete data points from the dataset we may reduce
the generalization capabilities of the dataset.
Adjusting the model class weights also demonstrated a trade-o昀昀 between precision and recall,
with anoptimal balance achieved at speci昀椀cweight settings. Applying a thresholdon thepredic-
tions allowed tuning of the model’s aggressiveness in detecting infesting plants, demonstrating
that lower thresholds increased recall at the cost of precision, and vice versa. Thresholding can
be considered the best method for this task because it is the easiest to apply, as it does not re-
quire modifying the dataset or the model and because it allows us to achieve various levels of
precision and recall with little intervention.
Finally, post-processing techniques signi昀椀cantly improved precision but did not enhance recall.
Overall, the methodologies underscore the necessity of a tailored approach depending on the
speci昀椀c agricultural application and the relative importance of precision versus recall. The com-

72

prehensive evaluation using the F1-score provided a balanced metric, guiding us in optimizing
the model for e昀昀ective strategies for detecting infesting plants.

5.2 Challenges and limitations

One of the signi昀椀cant challenges faced during this studywas the preparation and preprocessing
of the dataset. The high variability in plant appearances and the similarities between the crops
and the infesting plants required extensive data augmentation and careful labeling to ensure
the model’s e昀昀ectiveness. Balancing the dataset to prevent class imbalance was also crucial in
achieving reliable performance.
Despite the promising results, there are some limitations to our approach. The performance
of the CNNmodels heavily depends on the quality and quantity of the training data. Incon-
sistent data quality due to varying weather conditions or UAV 昀氀ight patterns can a昀昀ect the
model’s accuracy. To solve this issue one has to label a large quantity of images that comprise
the di昀昀erent stages of development of infesting plants and di昀昀erent lightning conditions; fur-
thermore it would be helpful to test the model on di昀昀erent altitudes inside and outside the
greenhouse.
Additionally, the computational resources required for training and deploying these models
can be signi昀椀cant andmay limit fast processing of the images. Having aGPU to train themodel
is mandatory to save time and to test di昀昀erent models on diverse datasets quickly. In addition
to that, the classi昀椀cation on the full image also can’t be done sequentially (patch classi昀椀cation)
if the desired goal is cover large areas of the 昀椀eld using UAVs; for this reason the use of GPUs is
necessary for this purpose.
It is also suggested not to further reduce the dimension of the patches. 112x112 pixel patches
are a good compromise for both training and evaluation because they can capture the presence
of infesting plants in a very precise ways; having larger patches can lead to images that capture
too much information di昀케cult to classify, on the contrary having smaller patches leads to the
opposite problem: it is di昀케cult to understand the class of a small patch. For this reason, the
昀椀nal segmentation can’t be more precise.

5.3 Future work

Dataset. Futurework should focuson improving the generalization capabilities ofDenseNet
by incorporatingmore diverse datasets that include di昀昀erent crop types, infesting plant species,

73

and environmental conditions. Applying transfer learning techniques and domain adaptation
strategies can also improve model robustness across various agricultural settings.

Models. Investigating more advanced CNN architectures, such as E昀케cientNet or vision
transformers [37], couldpotentially yieldbetter performance. Thesemodels havedemonstrated
state-of-the-art results in various image recognition tasks and may o昀昀er further improvements
in detecting and distinguishing infesting plants.

Classification. A natural progression of this project should be classifying the di昀昀erent
species of infesting plants instead of classifying all of them as infesting.
Another contribution can be on solving this problem directly performing detection or segmen-
tation, without the need of patch extraction. Advanced detection models like YOLO [38] are
able to recognize objects inside an image in a easy manner; YOLO is an object detection algo-
rithm known for its speed and accuracy, and its integration with UAVs has led to signi昀椀cant
advancements in various 昀椀elds, including agriculture [39]. However, these models require a
high amount of labelled data, andwithout the use of patches onewould have tomanually label
thousand of images.

Temporaldependencies. One signi昀椀cant area for futurework is to address the limitation
related to the assumption of independence in daily pest detection probabilities. In this thesis,
we assumed that the probability of detecting a pest on the secondday is independent ofwhether
it was detected on the 昀椀rst day. This simpli昀椀cation, while useful for initial model development,
overlooks the potential temporal dependencies that could exist between successive days of crop
analysis. Future research should focus on developing and integrating models that account for
these temporal dependencies.

Real-time processing. Also developingmethods for real-time image processing and anal-
ysis is essential for practical deployment. Implementing edge computing solutionswhereUAVs
process images on-board and provide immediate feedback to farmers could signi昀椀cantly en-
hance the system’s usability. Additionally, integrating this technology with existing precision
agriculture platforms could facilitate comprehensive crop management and decision-making.

End-user feedbacks. Most importantly conducting extensive 昀椀eld trials and gathering
feedback from end-users, such as farmers and agronomists, will provide valuable insights into

74

the system’s e昀昀ectiveness and usability. Iterative improvements based on real-world feedback
can help re昀椀ne the technology and make it more user-friendly.

75

76

6
Conclusion

This thesis investigates the application of Convolutional Neural Networks (CNNs) for iden-
tifying infesting plants in monoculture 昀椀elds using high-resolution imagery from Unmanned
Aerial Vehicles (UAVs). The primary goal was to enhance crop monitoring and infesting plant
management practices through image recognition technologies.
The dataset creationwas one of the critical components of this study. A comprehensive dataset
comprising images of crops and various infesting plant species in monoculture 昀椀elds was con-
structed. This dataset provided a robust foundation for training and evaluating theCNNmod-
els. The use of UAVs for image acquisition o昀昀ered several advantages, including the ability to
capture high-resolution images over large areas, which is essential for e昀昀ective cropmonitoring.
In termsofmodel development, severalCNNarchitectureswere explored. Among these,DenseNet
showed promising results due to its dense connectivity patterns that help inmitigating the van-
ishing gradient problem and improving feature propagation. The transfer learning approach,
which involved 昀椀ne-tuning pre-trainedmodels on our speci昀椀c dataset, proved to be e昀昀ective in
achieving high classi昀椀cation accuracy.
Despite the promising results, several challenges were encountered during the research. One of
the primary challenges was the variability in image quality due to di昀昀erent environmental con-
ditions such as lighting, shadows and the di昀昀erent stages of growth of infesting plants. These
factors can signi昀椀cantly a昀昀ect the performance of the models. To address this, various image
preprocessing techniques, such as augmentation, were applied to improve the robustness of
the models.

77

Another challenge was the class imbalance in the dataset, where the number of images of cer-
tain infesting plant species was signi昀椀cantly lower than others. This issue was addressed using
techniques such as undersampling, to balance the dataset and improve the model’s ability to
detect minority classes.
The research also highlighted the importance of considering false positives and false negatives
in the evaluation process. By analyzing the trade-o昀昀s between these types of errors, the models
were 昀椀ne-tuned to achieve an optimal balance that minimizes both false positives and false neg-
atives.
In conclusion, this thesis presents a step towards the use of deep learning techniques for im-
proving agricultural practices. By addressing the challenges and exploring future directions,
the research lays the groundwork for developing practical, e昀케cient, and scalable solutions for
crop monitoring management. The 昀椀ndings contribute to the broader goal of promoting sus-
tainable agriculture.

78

References

[1] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,”Com-
puters and electronics in agriculture, vol. 147, pp. 70–90, 2018.

[2] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for pre-
cision agriculture: a review,” Precision agriculture, vol. 13, pp. 693–712, 2012.

[3] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, “Uav-based crop and
weed classi昀椀cation for smart farming,” in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 3024–3031.

[4] Y.-c. Wu and J.-w. Feng, “Development and application of arti昀椀cial neural network,”
Wireless Personal Communications, vol. 102, pp. 1645–1656, 2018.

[5] G. Ian, “Deep learning-ian goodfellow, yoshua bengio, aaron courville-google books,”
2016.

[6] K. O’shea and R. Nash, “An introduction to convolutional neural networks,” arXiv
preprint arXiv:1511.08458, 2015.

[7] M. Egmont-Petersen, D. de Ridder, and H. Handels, “Image processing with neural
networks—a review,” Pattern recognition, vol. 35, no. 10, pp. 2279–2301, 2002.

[8] S. Bhattacharyya, “A brief survey of color image preprocessing and segmentation tech-
niques,” Journal of Pattern Recognition Research, vol. 1, no. 1, pp. 120–129, 2011.

[9] G. Kumar and P. K. Bhatia, “A detailed review of feature extraction in image processing
systems,” in 2014 Fourth international conference on advanced computing & communi-
cation technologies. IEEE, 2014, pp. 5–12.

[10] R. Chauhan, K. K. Ghanshala, and R. Joshi, “Convolutional neural network (cnn) for
image detection and recognition,” in 2018 昀椀rst international conference on secure cyber
computing and communication (ICSCCC). IEEE, 2018, pp. 278–282.

79

[11] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?” Advances in neural information processing systems, vol. 27, 2014.

[12] J. Donahue, Y. Jia, O. Vinyals, J. Ho昀昀man, N. Zhang, E. Tzeng, and T. Darrell, “Decaf:
A deep convolutional activation feature for generic visual recognition,” in International
conference on machine learning. PMLR, 2014, pp. 647–655.

[13] J. Howard and S. Ruder, “Universal language model 昀椀ne-tuning for text classi昀椀cation,”
arXiv preprint arXiv:1801.06146, 2018.

[14] B. Felbo, A.Mislove, A. Søgaard, I. Rahwan, and S. Lehmann, “Usingmillions of emoji
occurrences to learn any-domain representations for detecting sentiment, emotion and
sarcasm,” arXiv preprint arXiv:1708.00524, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[16] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM com-
puting surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[17] A.Blázquez-García, A.Conde,U.Mori, and J.A.Lozano, “A reviewonoutlier/anomaly
detection in time series data,” ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–
33, 2021.

[18] J. Cook and V. Ramadas, “When to consult precision-recall curves,” The Stata Journal,
vol. 20, no. 1, pp. 131–148, 2020.

[19] J.M. Johnson andT.M. Khoshgoftaar, “Survey on deep learning with class imbalance,”
Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.

[20] W. A. León-Rueda, C. León, S. G. Caro, and J. G. Ramírez-Gil, “Identi昀椀cation of dis-
eases and physiological disorders in potato via multispectral drone imagery using ma-
chine learning tools,” Tropical Plant Pathology, pp. 1–16, 2021.

[21] D. Pujari, R. Yakkundimath, and A. S. Byadgi, “Svm and ann based classi昀椀cation of
plant diseases using feature reduction technique,” IJIMAI, vol. 3, no. 7, pp. 6–14, 2016.

80

[22] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based
plant disease detection,” Frontiers in plant science, vol. 7, p. 215232, 2016.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi昀椀cation with deep con-
volutional neural networks,” Advances in neural information processing systems, vol. 25,
2012.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2015, pp. 1–9.

[25] K. P. Ferentinos, “Deep learningmodels for plant disease detection anddiagnosis,”Com-
puters and electronics in agriculture, vol. 145, pp. 311–318, 2018.

[26] F. S. Ishengoma, I.A.Rai, and S.R.Ngoga, “Hybrid convolutionneural networkmodel
for a quicker detection of infested maize plants with fall armyworms using uav-based
images,” Ecological Informatics, vol. 67, p. 101502, 2022.

[27] P. K. Yadav, J. A. Thomasson, R. Hardin, S. W. Searcy, U. Braga-Neto, S. C. Popescu,
D. E.Martin,R.Rodriguez, K.Meza, J. Enciso et al., “Detecting volunteer cottonplants
in a corn 昀椀eld with deep learning on uav remote-sensing imagery,” Computers and Elec-
tronics in Agriculture, vol. 204, p. 107551, 2023.

[28] K. Simonyan andA.Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[29] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on com-
puter vision, 2015, pp. 1440–1448.

[30] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,”Advances in neural information processing systems,
vol. 28, 2015.

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2015, pp. 3431–3440.

81

[32] C. Szegedy, V. Vanhoucke, S. Io昀昀e, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2818–2826.

[33] C. Szegedy, S. Io昀昀e, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and
the impact of residual connections on learning,” in Proceedings of the AAAI conference
on arti昀椀cial intelligence, vol. 31, no. 1, 2017.

[34] G. Huang, Z. Liu, L. Van DerMaaten, and K. Q.Weinberger, “Densely connected con-
volutional networks,” in Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 2017, pp. 4700–4708.

[35] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual re-
view of biomedical engineering, vol. 19, pp. 221–248, 2017.

[36] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance
problem in convolutional neural networks,” Neural networks, vol. 106, pp. 249–259,
2018.

[37] S. Khan,M.Naseer, M.Hayat, S.W. Zamir, F. S. Khan, andM. Shah, “Transformers in
vision: A survey,” ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1–41, 2022.

[38] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B.Ma, “A review of yolo algorithm developments,”
Procedia computer science, vol. 199, pp. 1066–1073, 2022.

[39] C. Chen, Z. Zheng, T. Xu, S. Guo, S. Feng, W. Yao, and Y. Lan, “Yolo-based uav tech-
nology: A review of the research and its applications,”Drones, vol. 7, no. 3, p. 190, 2023.

82

Acknowledgments

During my internship and subsequently for my thesis research I had the pleasure to work with
Dromt. During this periodwhere I worked closely together with the company I had the oppor-
tunity to learn from talented people and to familiarize with the startup’s working environment.
I would like to thankmy colleagues inDromt for helpingme researching and providingme the
appropriate technology, helping creating the dataset from images captured from their drones
and 昀椀nally for the assistance in writing this thesis.

83

