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SOMMARIO 

 

      Lo scopo di questo lavoro consiste nel riprodurre tramite simulazioni numeriche l’evoluzione 

temporale della scia prodotta dalla capsula ExoMars nella fase descent della sequenza EDL (Entry-

Descent-Landing) eseguita su Marte. Come si può leggere nel documento “EXOMARS 2016 – 

Schiaparelli Anomaly Inquiry” [4], elaborato per investigare sul fallimento della missione ExoMars 

2016, in seguito all’apertura del paracadute si sono manifestate oscillazioni laterali della capsula non 

previste. Il paracadute ha funzionato, ma il suo comportamento a Mach 2 non era stato sufficientemente 

studiato. Tali oscillazioni hanno corrotto le misurazioni di assetto e altitudine e portato allo schianto 

della sonda Schiaparelli sulla superficie di Marte. Numerosi studi [5,6,7,8] riconducono l’esibirsi di tali 

instabilità all’interazione tra la scia turbolenta prodotta dalla capsula e l’onda d’urto che si forma di 

fronte al paracadute. La tecnica utilizzata in questo lavoro è la tecnica implicit LES (Large-Eddy 

Simulations). Tale approccio consiste nel simulare solamente i vortici più grandi di un flusso turbolento 

e nel trattare l’effetto prodotto dai vortici più piccoli affidandosi alla dissipazione intrinseca degli schemi 

numerici adottati. In questo modo è possibile trattare i flussi ad elevato Reynolds e ricostruire 

fedelmente la regione turbolenta che si forma in scia ad una capsula in rientro atmosferico. Il solutore 

impiegato è STREAmS, un solutore validato su flussi canonici (canale supersonico, strato limite 

supersonico, interazione tra onda d’urto e strato limite), il quale implementa una formulazione ibrida 

tra schemi conservativi e ricostruzioni WENO. Tale strategia si rivela essere ottimale nel trattamento 

di campi fluidodinamici che presentano discontinuità e regioni turbolente. Il primo capitolo della tesi 

è rivolto a fornire il contesto delle analisi che sono state eseguite, parlando delle problematiche 

riscontrate durante la sequenza EDL della missione ExoMars 2016 e degli aspetti aerodinamici che 

caratterizzano l’interazione tra scia e paracadute. In seguito, il secondo capitolo espone i metodi 

numerici messi in gioco per trattare il flusso di scia. Infine, nel terzo capitolo vengono esposti i risultati 

delle simulazioni lanciate per diversi angoli di attacco della capsula. Con i risultati ottenuti si vuole 

valutare il comportamento della scia, valutare l’efficacia della metodologia implementata e fornire 

quindi supporto ad ulteriori studi volti a comprendere gli aspetti aerodinamici coinvolti nelle fasi di 

rientro atmosferico. 
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CHAPTER 1 

 

INTRODUCTION: failure of Schiaparelli 

 

      “Establishing if life is ever existed on Mars is one of the outstanding scientific questions of our time. 

To address this important goal, the European Space Agency (ESA) has established the ExoMars 

programme to investigate the Martian environment and to demonstrate new technologies paving the 

way for a future Mars sample return mission in the 2020’s”. These words, currently reported on the 

ESA official website [1], present ongoing exploration of the Red Planet wich is being conducted by the 

agency. It can be read that the ExoMars programme consists of two missions, both in cooperation with 

Roscosmos, conceived to ship to Mars: 

 

• the Trace Gas Orbiter (TGO) coupled to the Entry, Descent, and landing Module (EDM), 

known as Schiaparelli, launched on 14 March 2016. 

• the Rosalind Franklin rover with a launch date of 2022. 

 

 

Figure 1.1: ExoMars EDM major components [3]. 

 

The TGO carries scientific instruments to detect methane or other atmospheric trace gases (water 

vapor, nitrogen oxides, acetylene) and orbits approximately at 400 km of altitude searching for 

signatures of biological or geological processes [2]. Schiaparelli is shown in figure 1.1 and was conceived 
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as a demonstration vehicle to validate the Entry, Descent, and Landing (EDL) sequence on Mars in 

preparation for the next mission [3]: 

 

• Entry: after entering the atmosphere, Schiaparelli decelerates because of atmospheric drag, and 

it’s protected from intense aerodynamic heating by a front heat shield. At an altitude of about 

11 km the parachute is deployed while the vehicle is traveling at 1700 km/h. 

• Descent: the module firstly releases the front shield at an altitude of about 7 km, turn on the 

Radar Doppler Altimeter (RDA) to measure the distance to the ground and its velocity relative 

to the surface, then releases the rear cover and parachute system at an altitude of about 1.2 km. 

• Landing: at an altitude of about 1.1 km thrusters are ignited to reduce vehicle speed from 250 

km/h to 4 km/h and then complete the touchdown 

 

Diameter 2.40 m (with front shield) 

1.65 m (without front shield) 

Height 1.80 m 

Mass 577 kg (wet) 

Parachute Disk-Gap-Band canopy, 12 m diameter 

 

Table 1.1: main technical characteristics of Schiaparelli [3]. 

 

On 19 October 2016, Schiaparelli separated from the TGO, entered Mars’s atmosphere but failed the 

EDL sequence and crashed on the surface. Investigations were conducted and on 24 May 2017 ESA 

published an inquiry. It concluded that conflicting information in the onboard computer caused a 

premature ending of the descent phase. As reported on the document “EXOMARS 2016 – Schiaparelli 

Anomaly Inquiry” [4] the deployment and inflation of the parachute caused unexpected lateral angular 

oscillations of the capsule. This resulted in a saturation (the expected measurement range is exceeded) 

of the Inertial Measurement Unit (IMU), corrupting the attitude estimation and determining: 

 

1. Early release of the back shell and parachute system. 

2. Brief firing of the thrusters for only 3 sec instead of 30 sec. 

3. Activation of the onground system as if Schiaparelli had landed (the vehicle was instead in free 

fall from an altitude of about 3.7 km). 
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Figure 1.2: Schiaparelli’s nominal EDL sequence [3]. 

 

David Parker, director of human and robotic exploration, explains “There were clearly a number of 

areas that should have been given more attention in the preparation, validation and verification of the 

entry, descent and landing system”. “Interestingly, had the saturation not occurred and the final stages 

of landing had been successful, we probably would not have identified the other weak spots that 

contributed to the mishap”, notes Jan Woerner, ESA’s Director General. “As a direct result of this 

inquiry we have discovered the areas that require particular attention that will benefit the 2020 mission”. 

The first recommendation stated in the section “Identified Weaknesses and Areas for Improvements” 

of the inquiry [4] lists the following areas as to be improved for the multi-body modelling employed for 

the parachute inflation simulations: 

 

• Riser angle at inflation. 

• Asymmetric inflation. 

• Area oscillations as a function of Mach number. 

• Lateral instability as a function of Mach number. 
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1.1 Supersonic parachutes aerodynamics 

 

Supersonic parachutes are textile devices designed to be deployed in supersonic regimes and to provide 

aerodynamic drag for atmospheric entry vehicles deceleration. Supersonic parachutes have been 

proven to provide [5]: 

 

• Deceleration from supersonic flight to subsonic flight. 

• Proper descent rates for Mars’s low-density, thin atmosphere thanks to high ratios between drag 

and parachute mass. 

• Limited canopy oscillations when deployed in unsteady conditions characterizing the wake 

produced by the capsule. 

 

There are different models of supersonic parachutes based on the conditions in wich it is intended to 

be deployed. Table 1.2 shows a list of past and present robotic exploration missions and relative models 

adopted. 

 

 

Table 1.2: past and present robotic exploration missions with supersonic parachutes [5]. 
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Figure 1.3: Schiaparelli DGB parachute during testing [3]. 

 

Schiaparelli used a Disk-Gap-Band (DGB) parachute, the model of supersonic parachute used for EDL 

sequences wich turned out to have been completed successfully like Viking 1 (1976) and Viking 2 

(1978) or, more recently, Huygens (2004) and Stardust (2006). The canopy, shown in figure 1.3, had a 

nominal diameter of 12 meters and was made from nylon fabric, while the lines were made from Kevlar 

[3]. The DGB parachute is designed to be deployed above Mach 1.5 and is observed to exhibit better 

drag and stability performances than other supersonic parachute models [5]. 

 

Supersonic parachutes deployment and inflation can suffer from problems related to instability 

phenomena. Several studies observed complex interdependent phenomena around the two-body 

system consisting of the capsule and the canopy. These include interactions between the wake produced 

by the capsule and the shock wave that originates in front of the canopy. Figure 1.4 shows unsteadiness 

of the flow field around a DGB parachute placed in wake of a Viking capsule. 

 

–

–
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Figure 1.4: unsteady flow fields around a DGB parachute placed behind a Viking capsule [5]. 

 

 

 

Figure 1.5: two-body system consisting of a Viking capsule and DGB parachute [5]. 

 

The main parameters used to evaluate the aerodynamic behavior of supersonic parachutes are drag 

coefficient and stability [5]. First studies on the aerodynamical behavior of parachutes placed in a 

supersonic flow were conducted by Meyer [6] and Maynard [7]. The wake produced by the capsule 

was observed to interact with the bow shock ahead of the parachute, causing large pressure fluctuations 

inside the canopy. Large canopy deformations, including periodic collapse and re-inflation events, 

called cyclical ‘area oscillations’ or ‘canopy breathing instabilities’, occurred leading to poor drag and 

stability performances. Large-eddy simulations were carried out by K. Karagiozis et al. [8] to reproduce 

the canopy area oscillations wich manifests usually for a capsule-parachute systems above Mach 1.5. 

The system being investigated is shown in figure 1.5 and consists of a Viking capsule coupled to a DGB 

parachute. The calculated drag was compared to experimental data and was observed to decrease with 

increasing Mach number. 
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Fig. 1.6: four views of a complete canopy breathing cycle from a simulation at Mach 2 [8]. 

 

A large amount of data from wind tunnel experiments, flight tests, and numerical simulations was 

collected by X. Xue and C. Wen [5] wich provided a systematic review of the unsteady aerodynamics 

of supersonic parachutes:  

 

• Parachutes manifest canopy breathing in a supersonic regime leading to drag decreases.  

• Area oscillations are triggered by the fluctuations characterizing the turbulent wake and 

sustained by the interaction between the wake and the canopy bow shock.  
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• The key parameters affecting parachutes performances are the Mach number, canopy-capsule 

trailing distance, canopy-capsule diameter ratio, canopy configuration and canopy geometric 

porosity. 

• Reynolds number, dynamic pressure and material properties have a limited effect on parachutes 

performances. 

• The DGB parachute exhibit better performances than other model of supersonic parachutes.  

• The angle of attack of the capsule or the canopy produces asymmetrical flow fields around the 

parachute wich intensifies lateral oscillations. 

 

1.2 Wake flow 

 

The purpose of this work is to reproduce the behavior of the wake produced by the ExoMars capsule 

during the descent phase of the EDL sequence performed on Mars. Numerical simulations are 

performed following an implicit large-eddy approach to obtain a precise time-evolution development 

of the supersonic, turbulent wake flow. Different capsule angles of attack are investigated to: 

 

• Evaluate the wake and flow field patterns for different attitudes. 

• Evaluate the capsule stability through aerodynamic coefficients data. 

• Evaluate the wake trailing influence through wake properties profiles at different trailing 

distances. 

 

The supersonic capsule flight is an important fluid dynamic problem wich has applications for 

atmospheric entry vehicles. The flow field wich establishes around an entry capsule in a supersonic 

regime exhibit typical features [9,10]: 

 

• Development of a bow shock ahead of the capsule because of flight speeds above the speed of 

sound. The strong compression induced by the bow shock results in temperature, density, and 

pressure discontinuities wich reach their maximum values at the stagnation point. 

• Development of a near wake recirculation region. Downstream the capsule’s shoulder, the 

detached flow, sundered from the recirculation region by a shear layer (dividing streamline), 

accelerates resulting in an expansion fan. The near wake maintains a laminar nature at some 

Reynolds and Mach ranges [9]. 
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• Development of a recompression shock (trailing shock) behind the capsule resulting from the 

reattachment of the supersonic detached flow. 

• Development of a turbulent wake region characterized by a wide spectrum of vortical structures. 

 

Figure 1.7: sketch of the flow field configuration for a capsule supersonic flight [9]. 

 

This first chapter introduces the framework of this survey and discuss about the aerodynamical aspects 

we want to investigate. The second chapter expose the implemented methodology for treating the wake 

flow and finally, in the conclusion chapter, are exposed the results wich will allow us to evaluate both 

the wake characteristics and the effectiveness of the exploited procedure. 

 

1.3 Turbulence 

 

In fluid dynamics, turbulence [11] is a phenomenon wich manifests itself through chaotic fluctuations 

of the flow properties. The chaotic behavior of turbulent flows comes from the action of unsteady 

vortices intertwined with each other. The onset of this phenomenon is regulated by the Reynolds 

number wich represents the ratio between inertial forces and viscous forces and it is defined as: 

 𝑅𝑒0 = 𝑈0 𝑙0𝜈  

 

(1.1) 
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where 𝑈0 and 𝑙0 are the characteristic velocity and the characteristic length, respectively, of the fluid 

system, while 𝜈 is the kinematic viscosity of the fluid. For an entry capsule 𝑈0 represents the flight 

speed, 𝑙0 represents the capsule’s shoulder diameter while 𝜈 represents the kinematic viscosity of the 

atmosphere. It can be proven with simple experiments [12] that turbulence occurs when the Reynolds 

number tends to become much bigger than the unit, i.e., when 𝑅𝑒0 ≫ 1. From that, we know that flow 

instabilities generate and sustain their self because molecular viscosity is unable to damp velocity 

gradients. The descent phase of an atmospheric entry on Mars is characterized by high Reynolds 

numbers (AMELIA [31]), consequently the wake produced by the capsule is turbulent. Turbulence 

has strong implications on the wake flow’s characteristics: 

 

• It breaks symmetries imposed by the boundary conditions, so the wake flow is asymmetrical 

and unsteady even if the capsule is axysimmetric and the flight speed is constant. 

• It gives rise to a wide, continuous spectrum of vortical structures leading to a wake region with 

a multi – scale structure. 

 

Vortical structures, also called eddies, are portions of the fluid wich moves with spatial regularity. To a 

vortical structure we can associate a characteristic length (scale) 𝑙 and a characteristic velocity 𝑢𝑙. 
Turbulent motions range in size from the characteristic sizes of the fluid system to much smaller scales 

wich become progressively smaller as the Reynolds number increases. Richardson [13] firstly 

introduced the energy cascade concept: the kinetic energy of the flow enters at the largest scales of 

motion and is transferred through inertial processes to the smallest scales of motion where is dissipated 

by viscous action. The size of the smallest eddies (Kolmogorov’ scale) that are responsible of for 

dissipating the kinetic energy into thermic energy was investigated by Kolmogorov in its K41 theory. 

The Kolmogorov’s K41 theory [14] is founded on three main hypotheses: 

 

• Microscopically, turbulent flows are homogeneous and isotropic, the statistics of the small-scale 

turbulent motions ( 𝑙 ≪ 𝑙0 ) are universal. 

• The statistics of the smallest scales ( 𝑙 ~ 𝜂 ), where energy viscous dissipation occurs, depend 

on energy dissipation 𝜀 and kinematic viscosity 𝜈. 

• The statistics of the intermediate scales ( 𝜂 ≪ 𝑙 ≪ 𝑙0 ), where energy inertial transferring occurs, 

depend on energy dissipation 𝜀. 
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Figure 1.8: scheme of the kinetic energy dissipation occurring in a turbulent flow. 

 

We can define a Reynolds number related to a turbulent motion of scale 𝑙: 
 𝑅𝑒𝑙 = 𝑢𝑙𝑙𝜈  

 

According to Richardson phenomenology [13]: 

 

• 𝑅𝑒𝑙 ≫ 1 for scales where inertial phenomena are preponderant: 𝑙 ~ 𝑙0 and 𝜂 ≪ 𝑙 ≪ 𝑙0. 
• 𝑅𝑒𝑙 ~ 1  for scales where viscous phenomena are preponderant: 𝑙 ~ 𝜂. 

 

One fundamental result of the K41 theory consists in the fact that the Kolmogorov’s scale become 

smaller as the Reynolds number increase, expanding the spectrum of vortical structures [14]: 

 𝑙0𝜂 = 𝑅𝑒03 4⁄
 

 

 

 

 

(1.2) 

(1.3) 
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CHAPTER 2 

 

METHODOLOGY 

 

      This chapter presents the methodological structure wich the current fluid dynamical investigation 

is based on and expose the numerical methods that are implemented. The flow field that establishes 

around an entry capsule during the descent phase of the EDL sequence can be described by the Navier-

Stokes systems of equations, a system of partial differential equations (PDE) wich derives from laws of 

mass, momentum, and energy conservation. This mathematical model can describe a wide variety of 

fluid systems but remaining within the continuum mechanic hypothesis. A fluid can be represented by 

a continuum if the mean free path of molecules, i.e., the mean distance traveled by a molecule between 

collisions with other molecules, is small compared to the characteristic lengths of the fluid system. In 

the high atmosphere this assumption fails. When an entry vehicle enters a planet’s atmosphere it passes 

through layers with progressive levels of atmospheric gas densification [16]: 

 

• At very high altitudes the atmosphere is rarefied, there are practically no collisions between 

molecules in the vicinity of the capsule. 

• At relative low altitudes the atmosphere is dense with respect to the capsule’s size, it behaves as 

a continuum. 

 

To quantify the rarefaction status of the atmosphere with respect to the capsule’s size the Knudsen 

number is used: 

 𝐾𝑛∞ = 𝜆∞𝐿0  

 

where 𝜆∞ is the mean free path of atmospheric gas molecules and 𝐿0 is a characteristic length of the 

capsule. The Knudsen number helps determine whether statistical mechanics or continuum mechanics 

formulation should be used to model a fluid system [16]: 

 

• For 𝐾𝑛 ≫ 1 we have a free molecular flow, and it is described by the statistical theory of gases. 

• For 𝐾𝑛 ≪ 1 we have a continuous flow, and it is described by the classical fluid mechanics 

theory. 

(2.1) 



 14 

Based on the relation existing between Knudsen number, Mach number and Reynolds number we 

know that the Navier-Stokes system of equations is the proper mathematical model to describe the flow 

field around an entry capsule during the descent phase: 

 𝐾𝑛∞ = 𝑀𝑎∞𝑅𝑒∞ √𝛾𝜋2  ,      𝑀𝑎∞ ≪ 𝑅𝑒∞    ⇒    𝐾𝑛∞ ≪ 1 

 

2.1 Mathematical model 

 

The mathematical description of the flow field around the ExoMars capsule wich the current numerical 

model is based on is provided by the Navier-Stokes system of equations derived for an ideal gas. The 

governing equations of compressible flows can be written in the conservative form: 

 

 

 

where ρ represents density, 𝑢𝑖 represents the 𝑖 − 𝑡ℎ velocity component, 𝑝 represents pressure, 𝑇 

represents temperature, 𝐸 represents total energy, and lastly 𝜎𝑖𝑗 represents the viscous stresses tensor, 

wich for newtonian – stokesian fluids can be expressed as: 

 𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 − 23 𝜇 𝜕𝑢𝑘𝜕𝑥𝑘 𝛿𝑖𝑗  ,           𝑒𝑖𝑗 = 12(𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) 

 

where 𝜇 and 𝜆 represents, respectively, dynamic viscosity and thermic diffusivity. Dynamic viscosity is 

calculated using a power-law formulation [17]: 

 𝜇 = 𝐾 (𝜕𝑢𝜕𝑦)𝑛−1 
 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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𝜆 = 𝜇𝑐𝑝𝑃𝑟  

 

The system consists of five equations with seven unknown variables (𝜌, 𝜌𝑢𝑖 , 𝜌𝐸, 𝑝, 𝑇) and needs to be 

completed using an equation of state for the fluid 𝜌 = 𝜌(𝑝, 𝑇) and a constitutive equation for the 

internal energy. For an ideal gas we have: 

 𝑝𝜌 = 𝑅𝑇 

 

where 𝑅 is the specific gas constant while the total energy can be written as: 

 𝐸 = 𝑒 + 12 (𝑢𝑖𝑢𝑖) 
 

Total energy is the sum of kinetic energy 
12 (𝑢𝑖𝑢𝑖) and internal energy 𝑒 wich, for an ideal gas, is a 

function of the temperature: 

 𝑒 = 𝑐𝑣𝑇 = 𝑝𝑅𝛾 − 1 

 

By applying the Buckingham theorem, we can obtain the non-dimensional formulation of the governing 

equations wich is regulated by four non-dimensional groups. The reference quantities (𝐿0, 𝜌0, 𝑇0, 𝑅0) 
are set to the unit (notes that the non-dimensional variables are written with the notation (∙)′ ): 
 

 

 

 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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2.2 Numerical treatment 

 

The Navier-Stokes system of equations represents an analytical description of flows, but fluid dynamical 

simulations are carried out on computers, so a numerical treatment is required. This is done by 

converting differential equations defined in continuous space and time to a system of equations in a 

discretized domain. The computational domain is discretized in a certain number of nodes by a grid 

(mesh) while the computational time interval is subdivided in a certain number of time steps. For 

numerical applications the governing equations are expressed in a vectorial formulation: 

 

 

 

Thus, the system can be seen as a summation of:  

 

• A temporal contribution, related to the temporal variation of the of conservative variables. 

 

𝚽′ = ( 𝜌′𝜌′𝑢′𝑖𝜌′𝐸′) 

 

• A convective contribution, related to the transport phenomena associated to velocity and 

pressure fields. 

 

(2.12) 

(2.13) 

(2.11) 
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𝑪′𝑗(𝚽′) = ( 𝜌′𝑢′𝑖𝜌′𝑢′𝑖𝑢′𝑗 + 𝑝′𝛿𝑖𝑗(𝜌′𝐸′ + 𝑝′)𝑢′𝑖 ) 

 

• A diffusive contribution, related to mutual relations between elementary fluid volumes and the 

thermodynamical behavior of the gas. 

 

𝑫′𝑗(𝚽′) = √𝛾𝑀𝑎∞𝑅𝑒∞ ( 
0𝜎′𝑖𝑗𝛾𝛾 − 1 1𝑃𝑟 𝜆′ 𝜕𝑇′𝜕𝑥′𝑖 + 𝜎′𝑖𝑗𝑢′𝑗)  

 

The solver employed to carry out the simulations of the wake flow is STREAmS, a numerical code 

developed by Bernardini et al. [18]. STREAmS is validated for three types of canonical compressible 

flows: supersonic plane channel flow, supersonic boundary layer, shock wave/boundary layer 

interaction. Results are compared with experimental and numerical data from literature. The solver 

discretizes the convective terms using a hybrid energy-preserving/shock-capturing scheme in locally 

conservative form. Take for example the convective flux along the x-direction: 

 𝑓𝑥 = 𝜌𝑢𝜑 

 

where 𝜑 is the transported quantity (𝜑 = 1 for the mass equation, 𝜑 = 𝑢𝑗 for the momentum equation 

in the 𝑗 − 𝑡ℎ direction, 𝜑 = 𝐸 + 𝑝 𝜌⁄  for the energy equation). The streamwise derivative of  𝑓𝑥 on a 

uniform mesh with spacing ∆𝑥 is calculated by means of two intermediate nodes: 

 𝜕𝑓𝑥𝜕𝑥 |𝑖 = 1∆𝑥 (𝑓𝑥,   𝑖+1 2⁄ − 𝑓𝑥,   𝑖−1 2⁄ ) 
 

A three-point averaging operator is defined to calculate the energy-preserving numerical flux at the 

interface 𝑖 + 1 2⁄ : 

 (𝐹, 𝐺, 𝐽̃ )𝑖,𝑙 = 18 (𝐹𝑖 + 𝐹𝑖+𝑙)(𝐺𝑖 + 𝐺𝑖+𝑙)(𝐽𝑖 + 𝐽𝑖+𝑙) 
 

and recasting in conservative form the split formulation of the Eulerian fluxes: 

 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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𝑓𝑥,   𝑖+1 2⁄ = 2∑𝑎𝑙𝐿
𝑙=1 ∑(𝜌, 𝑢, �̃�)𝑖−𝑚,   𝑙𝑙−1

𝑚=0  

 

 

Figure 2.1: sketch of the computational stencil along a generic direction [18]. 

 

where 𝑎𝑙 are the finite difference coefficients for the first derivative of order 2𝐿. The locally conservative 

formulation allows hybridization of the central flux with shock capturing reconstructions. Low-order 

upwind schemes, wich introduce a lot of numerical dissipation, are shock-capturing but yield to low 

accuracy in smooth regions (shock-free) of the field. WENO reconstructions allows to capture shocks 

but maintaining a high-order centered scheme in the rest of the field. The viscous terms are expanded 

to Laplacian form and approximated with a central finite difference scheme: 

 𝜕𝜕𝑥 (𝜇 𝜕𝑢𝜕𝑥|𝑖)|𝑖 = 𝜕𝜇𝜕𝑥|𝑖 𝜕𝑢𝜕𝑥|𝑖 + 𝜇 𝜕2𝑢𝜕𝑥2|𝑖 = 1∆𝑥2 ∑ 𝑎𝑙2𝜇𝑖+𝑙𝑢𝑖+𝑙𝐿
𝑙=−𝐿 + 𝜇𝑖 1∆𝑥2 ∑ 𝑏𝑙𝑢𝑖+𝑙𝐿

𝑙=−𝐿  

 

where 𝑏𝑙 are the finite difference coefficients for the second derivative of order 2𝐿. After the 

discretization process we have a semi-discrete system of ordinary differential equations (ODE) (one 

equation for each mesh node 𝑖𝑗𝑘): 

 𝑑𝚽𝑖𝑗𝑘𝑑𝑡 = 𝑹(𝚽𝑖𝑗𝑘) 
 

where 𝑹 is the vector of residuals. The system is advanced in time using a three-stage, third order 

Runge-Kutta scheme. Thus, the flow field is approximated by a function wich reproduces the time 

evolution of the flow field variables over the mesh nodes at each time step: 

 𝚽𝑖𝑗𝑘(𝑡𝑛)  ⟺  𝚽(𝑥, 𝑦, 𝑧, 𝑡) 
 

where 𝑖 = 1,… , 𝑁𝑥 , 𝑗 = 1, … , 𝑁𝑦 and 𝑘 = 1,… , 𝑁𝑧 are the indexes of the mesh nodes positions while 𝑛 = 1,… , 𝑇𝑛 is the index of the current time step.  

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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2.3 Comparison between DNS, RANS, and LES 

 

Numerical simulations assume great importance in the field of fluid dynamical analyzes because they 

allow to predict and to simulate the behavior of systems too complex for an analytical approach, like 

compressible or incompressible flows. Thanks to Computational Fluid Dynamics (CFD), wich 

develops numerical methods for the treatment of flows, we can carry out numerical experiments, 

analogous to actual laboratory experiments, to evaluate the behavior and the properties of the 

supersonic wake produced by an entry vehicle. The reconstruction of the wake produced by a blunt 

body is complicated by turbulence, a phenomenon that gives rise to a wide spectrum of vortical 

structures wich are burdensome to be solved. There are three main approaches depending on the 

extent to wich turbulence is explicitly described or represented by an a priori model: 

 

• DNS, Direct Numerical Simulations 

• RANS, Reynolds – Averaged Navier – Stokes  

• LES, Large – Eddy Simulations 

 

The main features of these techniques are exposed and compared below. 

 

2.3.1 Direct Numerical Simulations (DNS) 

 

Direct Numerical Simulations (DNS) directly resolve the Navier – Stokes system of equations without 

employing any turbulence closure. This kind of approach allows to obtain the most accurate 

reproduction of turbulent flows because is based on an explicit description of the entire spectrum of 

vortical structures. The basic requirements for DNS are: 

 

• the mesh spacing and the time step must be fine enough to capture the dynamics of the smallest 

vortical structures. 

• the computational domain and the simulation time must be large enough to capture the 

dynamics of the largest vortical structures. 

 

The Kolmogorov’s K41 theory [14] allows to estimate how the computational cost of a DNS grows with 

the Reynolds number. For an object with a characteristic dimension 𝐿0, hit by a flow of velocity 𝑈0, the 

domain must have sizes 𝐿𝑥 ~ 𝐿𝑦 ~ 𝐿𝑧 ~ 𝐿0 along 𝑥, 𝑦 and 𝑧 directions, respectively. 
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Figure 2.2: sketch of a sphere with a diameter 𝐿0 hit by a flow of velocity 𝑈0 and the relative 

computational domain. 

 

Taking the 𝑥 direction, for a uniform, Cartesian grid the spacing must be ∆𝑥 =  𝐿𝑥 𝑁𝑥⁄ , where 𝐿𝑥 ~ 𝐿0 
and ∆𝑥 ~ 𝜂 (𝜂 represents the Kolmogorov’s scale). The total number of grid nodes grows as 𝑅𝑒9 4⁄ : 

 𝑁𝑥 = 𝐿𝑥∆𝑥 ~ 𝐿0𝜂  ~ 𝑅𝑒3 4⁄  

 𝑁𝑥 ~ 𝑁𝑦  ~ 𝑁𝑧 
 𝑁𝑡𝑜𝑡 = 𝑁𝑥 𝑁𝑦  𝑁𝑧 ~ 𝑅𝑒9 4⁄  

 

The total number of grid nodes is repeated for 𝑁∆𝑡 times: 

 𝑁∆𝑡 =  𝑇∆𝑡 =  𝑇0𝜏𝜂  ~ 𝑅𝑒1 2⁄   ,               𝑇0 = 𝐿0𝑈0 

 

where 𝑇 is the simulation time, ∆𝑡 is the time step and 𝜏𝜂 is the characteristic time of the Kolmogorov’s 

scale. Finally, we obtain that the computational cost grows about as 𝑅𝑒3: 

(2.23) 
(2.24) 
(2.25) 

(2.26) 
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  𝑁∆𝑡 𝑁𝑡𝑜𝑡  ∝  𝑅𝑒1 2⁄  𝑅𝑒9 4⁄  =  𝑅𝑒11 4⁄  ~ 𝑅𝑒3 
 

Direct numerical simulations are possible only for flows characterized by moderate Reynolds numbers 

and are typically exploited on canonical flows studies for basic research on turbulence. 

 

2.3.2 Reynolds-Average Navier-Stokes (RANS) 

 

In contrast to direct numerical simulations, wich fully resolve turbulence, Reynolds-average simulations 

only resolve the mean flow while all the turbulent scales are treated with an a priori model. The mean 

flow recovers the symmetries, so a Reynolds-average simulation led to two-dimensional, steady solutions 

for symmetrical and steady boundary conditions. Indeed, the gradients characterizing the mean flow 

requires much coarser meshes than a DNS. The computational cost is drastically reduced, making the 

RANS approach suitable for industrial applications. This numerical technique is based on the Reynolds 

decomposition of the flow field variables. Taking for example the 𝑖 − 𝑡ℎ velocity component 𝑢𝑖(�̅�, 𝑡), 
it can be expressed as the sum of the mean velocity 𝑈𝑖(�̅�, 𝑡) and the residual fluctuating velocity 𝑢𝑖′(�̅�, 𝑡) 
: 

 𝑢𝑖(�̅�, 𝑡) =  𝑈𝑖(�̅�, 𝑡) +  𝑢𝑖′(�̅�, 𝑡)  ,        𝑈𝑖(�̅�, 𝑡) = 〈𝑢𝑖(�̅�, 𝑡)〉 
 

The mean operator is a Reynolds operator and has a set of properties: 

 〈𝑢𝑖′(�̅�, 𝑡)〉 = 0 

 〈𝑈𝑖(�̅�, 𝑡)〉 = 𝑈𝑖(�̅�, 𝑡) 
 

A Reynolds-average simulation solve the Reynolds-Average Navier-Stokes (RANS) equations wich are 

derived by applying the Reynolds operator to the governing equations. The key issue of this approach 

arises from the impossibility to close the system of RANS equations. Let’s consider the incompressible 

case: 

(2.27) 

(2.28) 

(2.29) 
(2.30) 
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RANS equations govern the mean flow and are derived by applying the Reynolds operator at both the 

left-hand-side and right-hand-side of the Navier-Stokes system of equations: 

 

 

 

Now we have four equations and ten unknown variables: 𝑃, 𝑈𝑖 and the six independent components 

of the Reynolds stresses tensor (the tensor is symmetrical): 

 

〈𝑢𝑖′𝑢𝑗′〉 = [ 〈𝑢′2〉 〈𝑢′𝑣′〉 〈𝑢′𝑤′〉〈𝑣′𝑢′〉 〈𝑣′2〉 〈𝑣′𝑤′〉〈𝑤′𝑢′〉 〈𝑤′𝑣′〉 〈𝑤′2〉 ] 
 

The Reynolds stresses tensor follow from the application of the Reynolds operator to the convective 

term: 

 〈 𝜕𝜕𝑥𝑗 (𝑢𝑖𝑢𝑗)〉 = 〈 𝜕𝜕𝑥𝑗 [(𝑈𝑖 + 𝑢𝑖′)(𝑈𝑗 + 𝑢𝑗′)]〉 = 

 = 𝜕𝜕𝑥𝑗 [〈𝑈𝑖𝑈𝑗〉 + 〈𝑈𝑖𝑢𝑗′〉 + 〈𝑢𝑖′𝑈𝑗〉 + 〈𝑢𝑖′𝑢𝑗′〉] = 

 = 𝜕𝜕𝑥𝑗 (𝑈𝑖𝑈𝑗) + 𝜕𝜕𝑥𝑗 〈𝑢𝑖′𝑢𝑗′〉 
 

It’s not possible to close the system form first principles, thus it’s necessary to find a model for the 

Reynolds stresses in terms of mean flow quantities. This can be reached by decomposing the Reynolds 

stresses tensor in its spheric and its deviatoric part: 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
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 −〈𝑢𝑖′𝑢𝑗′〉 = −23𝑘𝛿𝑖𝑗 + 𝑏𝑖𝑗 ,      𝑘 = 12 〈𝑢𝑖′𝑢𝑖′〉 
 

where 𝑘 is the turbulent kinetic energy and 𝑏𝑖𝑗 is the deviatoric part. In 1887, Boussinesq [19] 

formulated the turbulent – viscosity hypothesis that says: the principal effect of the Reynolds stresses is 

to add a “turbulent” viscosity to the flow. By analogy with molecular viscosity: 

 𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜈𝑒𝑖𝑗  ,           𝑒𝑖𝑗 = 12(𝜕𝑢𝑖𝜕𝑥𝑗 + 𝜕𝑢𝑗𝜕𝑥𝑖) 

 

where 𝜈 is the cinematic (molecular) viscosity, and it’s a fluid property, the deviatoric part of the 

Reynolds stresses tensor become proportional to the mean deformation tensor: 

 −〈𝑢𝑖′𝑢𝑗′〉 = −23𝑘𝛿𝑖𝑗 + 2𝜈𝑇𝐸𝑖𝑗  ,          𝐸𝑖𝑗 = 12(𝜕𝑈𝑖𝜕𝑥𝑗 + 𝜕𝑈𝑗𝜕𝑥𝑖) 

 

where 𝜈𝑇 is the turbulent viscosity and it depends on the flow field. Now we have four equations and 

five unknown variables (𝑃, 𝑈𝑖 and 𝜈𝑇(�̅�, 𝑡)). It’s necessary to introduce a model for the turbulent 

viscosity yielding to a certain number of arbitrary constants. The nature of the assumptions underlying 

a Reynolds – average closure causes that the results of such simulations are not always regarded with 

data, and experimental support is required for confidence.  

 

2.3.3 Large-Eddy Simulations (LES) 

 

Large-eddy simulations are on some middle ground between direct numerical and Reynolds-average 

simulations because they only resolve large vortical structures. This kind of approach finds its reason 

to be in the fact that the statistics of the largest scales (𝑙 ~ 𝐿0) are dependent on the geometry of the 

fluid system while the statistics of the small scales (𝑙 ≪ 𝐿0) are universal. Thus, large-eddy simulations 

allow simultaneously to treat high Reynolds number flows and to obtain a precise reproduction of 

turbulence. Conceptually, a low-pass filter is applied to the flow field variables, then only turbulent 

motions larger than the filter scale are explicitly described. The large-eddy approach goes through three 

main steps: 

 

(2.35) 

(2.36) 

(2.37) 
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1. Define a filtering operator 𝐺∆ to decompose flow field variables into the sum of a filtered term, 

representing the motion of large eddies, and a residual term, representing the motion of small 

eddies. 

2. Apply the filtering operator to the Navier-Stokes equations to derive the governing equations of 

the filtered flow field. 

3. Solve the filtered Navier-Stokes equations to obtain a simulation of large eddies characterizing 

the turbulent flow. 

 

Being �̅� a filtered fluid dynamic variable, the Favre filter of 𝜙 is defined as: 

 �̃� = 𝜌𝜙̅̅ ̅̅�̅�  

 

Based on the definition of the Favre filter, the filtered non-dimensional Navier-Stokes system of 

equations for compressible flows is derived as follows [20]: 

 

 

 

Comparing the current system to the original non-filtered formulation it can be found an additional 

term in the momentum conservation equation and an additional term in the energy conservation 

equation. These terms are, respectively, the divergence of the subgrid-scale (SGS) stress tensor, 

expressed as: 

 �̅�𝑖𝑗𝑆𝐺𝑆 = 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅ − �̅��̃�𝑖�̃�𝑗 
 

and the divergence of the subgrid-scale (SGS) energy term, expressed as: 

(2.38) 

(2.39) 

(2.40) 
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 �̅�𝑗𝑆𝐺𝑆 = (𝜌𝐸 + 𝑝)𝑢𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (�̅��̃� + �̃�)�̃�𝑖 = 𝜌𝑐𝑝𝑇𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ − �̅�𝑐�̅��̃��̃�𝑗 + 12 �̅�𝑖𝑗𝑆𝐺𝑆�̃�𝑗 − 12 �̅�𝑘𝑘𝑆𝐺𝑆�̃�𝑗 
 

wich represent the under resolved, residual terms of the filtering process. The treatment of the subgrid 

terms lead to two different LES techniques: 

 

• Explicit LES: residual terms are treated with an a priori model. Explicit descriptions of subgrid-

scale terms were proposed by Smagorinski [21] or Nicoud and Ducros [22] who brought the 

Wall-Adaptive Large-Eddy viscosity model (WALE). 

• Implicit LES: the effect of residual terms is emulated by the intrinsic numerical dissipation. The 

implicit LES approach is followed in this work to simulate the wake region. An example of 

implicit LES implementation can be found in the work carried out by Bernardini et al. [24]. 

 

2.4 Immersed Boundary Method 

 

The term “Immersed Boundary Method” (IBM) refers to a numerical approach originally developed 

by Peskin [25] in his studies regarding cardiac mechanics and the relative blood flow. Peskin’s idea was 

to remove the process of re-meshing at each time step by performing simulations on a fixed, Cartesian 

grid wich did not conform to the geometry of the heart. Then, a novel procedure was formulated to 

impose the effect of the immersed boundary on the flow. The conventional approach makes use of 

structured or unstructured grids fitting the solid boundaries. First, a surface grid covering the boundaries 

is generated, then the surface nodes are employed as reference points to generate a volume grid that 

covers the fluid domain by excluding the body. In contrast, the current approach makes use of Cartesian 

grids covering the entire fluid domain and including the volume occupied by the body. A structured, 

non-body conformal grid is obtained, and the immersed boundary is represented by a surface grid by 

means of that fluid nodes and solid nodes are identified. In this case wall conditions must be imposed 

indirectly through a modification of the Navier – Stokes equations because the mesh did not adhere to 

the body’s surface. An immersed boundary method allows to ease the meshing process and to increase 

the computational efficiency using structured, Cartesian grids. The problem consists in the fact that 

imposing the boundary conditions is not straightforward in IB methods. In addition, alignment between 

the grid lines and the body surface in body – conformal grids allow better control of the grid resolution 

in the vicinity of the body [26]. 

 

(2.41) 
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Figure 2.3: Eulerian grid and distribution of the Lagrangian grid points over a sphere for an IBM 

module [28]. 

 

Although the use of body – fitted unstructured grids provides a highly effective meshing strategy, for 

this work an immersed boundary method is considered because [29]: 

 

• Robust and reliable high – resolution schemes are easily implemented on structured Cartesian 

grids. 

• There is some numerical evidence that for strong shocks, standard numerical schemes applied 

on unstructured grids suffer from dispersive and dissipative errors larger than those resulting 

from the use of high – resolution schemes on structured grids. 

 

Since Peskin introduced this method, numerous modifications and refinements have been proposed 

[27, 28, 29]. In most of them, the concept is to use a Eulerian mesh for the flow field simulation, wich 

is coupled with a Lagrangian representation of the immersed boundary. The Lagrangian points can 

move, or not (fixed geometries), independently of the Eulerian flow, and the corresponding immersed 

boundary exerts a singular force on the fluid. IB methods are proven to ease the meshing process, 

especially for flows investing moving objects. Uhlmann [27] developed an IBM that proved 

computational efficiency for simulations of particle laden viscous incompressible flows. It works by 

means of two distinct grids: a fixed, uniform, Cartesian grid, referred as the Eulerian grid, coupled to a 
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moving, surface grid, referred as the Lagrangian grid, attached to the particles. Boundary conditions on 

the surface of a particle cannot be imposed directly but instead by forcing the governing equations with 

a term wich activates in the vicinity of the particle.  

 

2.4.1 The Direct Forcing Method 

 

The Direct Forcing Method (DFM), firstly introduced by Uhlmann [27], consists of directly forcing the 

Navier – Stokes system of equations by adding a source term that simulates the presence of a solid 

body. Let’s consider the vectorial formulation of the system: 

 𝜕𝚽𝜕𝑡 + 𝜕𝑪𝑗(𝚽)𝜕𝑥𝑗 − 𝜕𝑫𝑗(𝚽)𝜕𝑥𝑗 = 𝑺(𝚽) 
 

Being {𝒙𝑏𝑙 }𝑙=1𝑛  a collection of Lagrangian points, such as the surface nodes covering the immersed 

boundary, the source term can be expressed as: 

 𝑺(𝚽) = {0, 𝜌ℱ𝑖 , 𝜌ℱ𝑖𝑢𝑖}𝑇 ,           𝑖 = 1,… , 3 

 

where ℱ𝑖 is an Eulerian field defined as: 

 ℱ𝑖(𝒙) = { 𝑢𝑖 − �̅�𝑖𝑙      𝑖𝑓    ‖𝒙 − 𝒙𝑏𝑙 ‖ → 00                  𝑖𝑓    ‖𝒙 − 𝒙𝑏𝑙 ‖ → ∞ 

 

Here 𝑢𝑖 and �̅�𝑖𝑙 represent, respectively, the velocity component along the 𝑖 − 𝑡ℎ direction and a target 

velocity at the boundary location 𝒙𝑏𝑙 . In this way, the source term act as a dumping contribution, forcing 

the solution of the Navier – Stokes system of equations to respect the wall conditions. From a numerical 

point of view, forced equations are commonly treated with a predictor – corrector strategy: 

 

• First, a predictor step integrates the equations without considering the source term, computing 

a guess solution 𝚽∗ that solve the system: 

 𝜕𝚽∗ 𝜕𝑡 + 𝜕𝑪𝑗(𝚽∗ )𝜕𝑥𝑗 − 𝜕𝑫𝑗(𝚽∗ )𝜕𝑥𝑗 = 0 

 

(2.42) 

(2.43) 

(2.44) 

(2.45) 
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• Then, a corrector step imposes the source term by solving the equation: 

 𝜕𝚽∗𝜕𝑡 = 𝑺(𝚽∗) 
 

2.4.2 The Ghost Point Forcing Method 

 

The Ghost Point Forcing Method (GPFM) consists of directly modifying the flowfield variables in the 

vicinity of the body-fluid interface to impose the wall conditions. That is implemented by means of a 

set of points, called ghost points, hidden behind the immersed boundary. The DFM represent an 

optimal strategy to impose Dirichlet boundary conditions and solve pressure and velocity fields. The 

GPFM instead can deal with both Dirichlet and Neumann boundary conditions and is efficient for 

imposing no-flux boundary conditions like adiabatic boundary conditions or impermeable conditions. 

The computational scheme that we can find in the work presented by Boukharfane et al. [29] goes 

through the following main steps: 

 

• Identification of the ghost points within the solid boundaries. 

• From each ghost point, a vector normal to the nearest boundary segment is built to locate the 

image of the corresponding ghost point in the fluid domain. 

• The values of the flow field variables at each image point are interpolated from the surrounding 

grid points. 

• The interpolated values obtained for the image points are used to settle the values at the 

corresponding ghost points to ensure the desired boundary conditions at the fluid – solid 

interface. 

 

Firstly, the immersed boundary must be represented by a set of Lagrangian points. The solid’s surface 

is discretized as a polyhedron employing the stereo – lithography format (STL). As shown in figure 2., 

the coordinates of the three vertices 𝑆𝑘 of each elementary triangle 𝑇𝑙 allow to define the associated 

Lagrangian point as its center of gravity. Once the Cartesian computational grid is generated, a flagging 

step that discriminates between fluid and solid nodes is performed: given a point 𝑃 with coordinates (𝑥1, 𝑥2, 𝑥3) and a polyhedron, 𝑃 is a solid node if it is located inside the polyhedron and viceversa. The 

point – in – polyhedron identification can be carried out by tracing a line from 𝑃 to any point 𝑆, wich 

is located sufficiently far from the polyhedron, and then counting the total number of intersections. If 

(2.46) 
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The values of the flow field variables at the embedded ghost points are imposed by using the values at 

the neighboring fluid nodes. As shown in figure 2., from each ghost point a vector normal to the nearest 

boundary triangle is built to locate the image of the corresponding ghost point that belongs to the fluid 

domain. The flow field variables at each image point are then interpolated from the surroundings 

computational nodes. The corresponding flow field variables are subsequently used to set variables at 

ghost points to ensure the requisite boundary conditions. From a general point of view, the specification 

of the boundary conditions may be considered based on the following transport equation: 

 𝑎 𝜕𝜑𝜕𝑛 + 𝑏𝜑 = 𝑐 
 

where n represents the coordinate along the direction normal to the immersed boundary and 𝑐 
represents the desired boundary value. The value of any conservative variable 𝜑 at a ghost point is set 

from the one calculated at the corresponding image point given the boundary conditions that is desired 

at the immersed boundary. To impose a Dirichlet type boundary condition the coefficients are set to 𝑎 = 0 and 𝑏 = 1, while for a Neumann type boundary condition they are set to 𝑎 = 1 and 𝑏 = 0. 

 

 

Figure 2.5: Ghost-Point Forcing Method implementation [29]. 

 

 

 

(2.49) 
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CHAPTER 3 

 

RESULTS 

 

      This chapter presents the results of the simulations computed with STREAmS at various angles of 

attack: 0°, 5°, 10° and 15°. In accordance with the non-dimensional formulation wich is implemented, 

the resulting values are non-dimensional and indicate variations of the flow field variables with respect 

to the upstream flow values. Simulations are set to 𝑀𝑎∞ = 2 and 𝑅𝑒∞ = 106 to reproduce the flight 

conditions occurring for the terminal part of the descent phase. Setting parameters were deduced by 

ExoMars AMELIA investigation of Mars’ atmosphere [31]. The computational domain, shown in 

figure 3.1, is configured as a square cuboid. Domain sizes are 20 𝑑 ×  10 𝑑 ×  10 𝑑, where 𝑑 

corresponds to the capsule’s maximum diameter. The mesh consists of a Cartesian, non-body 

conformal, structured grid featuring 2048 ×  672 ×  672 grid point for a total of 924 844 032 grid 

points. The distribution of the grid points isn’t uniform because are thickened around the capsule to 

capture the intense gradients characterizing the turbulent wake region. 

 

 

Figure 3.1: sketch of the domain sizes and nodes distribution; on the walls non – reflective boundary 

conditions are imposed because the capsule flow is not bounded. 

1.1 Flow field 

𝑑 
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The flow field around the capsule is visualized through two-dimensional contours of temperature and 

density fields snapped at a generic instant in time. Figure 3.2 shows the main features of the supersonic 

capsule flow: 

 

• The bow shock ahead of the capsule. 

• The near – wake recirculation region. 

• The recompression shock. 

• The vortical structures characterizing the wake. 

 

 

 

Figure 3.2: temperature field for 𝐴𝑜𝐴 = 0° (zoom on near capsule flow field features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. The bow shock downstream temperature is about 1.5 times higher than upstream 

temperature, in line with normal shock jump relations at Mach 2. 

 

Temperature (figures 3.3 and 3.4) and density (figures 3.5 and 3.6) instant fields for different angles of 

attack point out that: 

 

• The wake is deflected from both the axis of the capsule and the direction of the upstream 

flow by the recompression shock (i.e., for a counterclockwise rotation of the capsule the 

wake exhibits a clockwise deviation). 

• The near wake recirculation region become shorter, and the recompression shock 

approaches the capsule. 
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Figure 3.3: temperature field for different angles of attack: 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
 

 

 

Figure 3.4: temperature field for different angles of attack (zoom on near capsule flow field features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
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Figure 3.5: density field for different angles of attack: 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
 

 

 

Figure 3.6: density field for different angles of attack (zoom on near capsule flow field features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
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Figure 3.7: visualization of the wake region for 𝐴𝑜𝐴 = 5° with Q-criterion: 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
 

Mean Mach contours reported for different angles of attack, shown in figure 3.8, highlight the 

supersonic and subsonic regions of the flow field. Contours point out that the subsonic region matches 

the hot region of the wake (figures 3.3 and 3.4). It can be observed that for a raising angle of attack the 

extension of the subsonic region become shorter and the recompression shock approaches the capsule. 

This could be since for a wider angle of attack the capsule cross section becomes tighter, resulting in a 

closer reattachment of the detached flow. 

 

 

 

Figure 3.8: Mean Mach contours for different angles of attack (zoom on near capsule flow field 

features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
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Turbulent kinetic energy (eq. 2.35) contours reported for different angles of attack, shown in figure 3.9, 

highlight the intensity of turbulent fluctuations within the flow field. Both the bow shock and the 

recompressions shock exhibit a steady behavior. Turbulent fluctuations concentrate in the region where 

the interaction between recompression shock and wake occurs to then propagate in the wake region. 

Such interaction is symmetrical for 𝐴𝑜𝐴 = 0° but become asymmetrical and more intense when the 

angle of attack increase. Lastly, it can be observed that the wake deflects where turbulent fluctuations 

are more intense. 

 

 

 

Figure 3.9: turbulent kinetic energy contours for different angles of attack (zoom on near capsule flow 

field features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106.  
 

In figures 3.10 and 3.11 are shown the root mean squares of density and pressure fluctuating fields, 

respectively. It can be observed strong fluctuations where the interaction between recompression shock 

and wake occurs. Fluctuations concentrate where the wake is deflected by the recompression shock 

and intensifies for a raising angle of attack. Indeed, density and pressure fields exhibit fluctuation astride 

the recompression shock. A further observation consists in the fact that the near wake recirculation 

region seems to conserve a laminar structure. 
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Figure 3.10: root mean square of fluctuating density field for different angles of attack (zoom on near 

capsule flow field features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106.  
 

 

 

Figure 3.11: root mean square of fluctuating pressure field for different angles of attack (zoom on 

near capsule flow field features): 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106.  
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1.2 Aerodynamic coefficients 

 

Oscillations in the flow field and their influence on capsule stability are evaluated through temporal 

evolutions of force and moment coefficients. The temporal evolution of drag coefficient, shown in 

figure 3.12, is almost constant (oscillations are limited to ~0.5%). The temporal mean value of drag 

coefficient doesn’t change for the different angles of attack that have been simulated: 𝐶𝑑̅̅ ̅ ≅ 1.57. The 

temporal evolutions of lift and moment coefficients, shown in figure 3.13 and 3.14, exhibit wider 

fluctuations with respect to drag coefficient. The temporal mean value of lift and moment coefficients 

raise with the angle of attack (for angles of attack different from 0° the flow field become asymmetrical).  

The Fourier analysis of the temporal evolutions of lift coefficient, shown in figure 3.15, highlight a 

principal oscillation around a Strouhal number 𝑆𝑡 = 0.2 (corresponding to ~25 𝐻𝑧) wich is repeated 

for all the angles of attack that have been simulated. High frequency and low frequency patterns are 

recognizable. It can be observed that for 𝐴𝑜𝐴 = 10° and 𝐴𝑜𝐴 = 15° we have a second peak wich 

moves towards higher frequencies. More in general, for a raising angle of attack the content of higher 

frequencies increase. 

 

 

Figure 3.12: temporal evolutions of drag coefficient for different angles of attack: 𝑀𝑎∞ = 2, 𝑅𝑒∞ =106. 
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Figure 3.16: dynamic pressure profiles at different trailing distances for different angles of attack: 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 

 

Figure 3.17: streamwise velocity profiles at different trailing distances for different angles of attack: 𝑀𝑎∞ = 2, 𝑅𝑒∞ = 106. 
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CHAPTER 4 

 

CONCLUSIONS 

 

      In this work we performed numerical simulations to reproduce the time-evolution development of 

the wake produced by the ExoMars capsule during the descent phase of the EDL sequence on Mars. 

We referred to the ExoMars 2016 failed mission [4] to observe the aerodynamical phenomena 

occurring in the part of the sequence wich the parachute is intended to be deployed. Simulation setting 

parameters (𝑀𝑎∞ = 2 and 𝑅𝑒∞ = 106) were deduced by ExoMars AMELIA investigation of Mars’ 

atmosphere [31]. To obtain a precise reconstruction of the turbulent wake we followed the implicit 

LES approach wich allows the treatment of high Reynolds flows. To cope the high computational cost 

involved, remarkably less than a DNS but still significant if compared to a RANS, we launched the 

simulations on CINECA MARCONI100 cluster. A complete simulation required from 5 to 10 days of 

computing. Launching and postprocessing of the results both took place remotely through Fortran 90 

codes. The solver employed to perform the simulations is STREAmS [18], a high-fidelity solver 

validated on three types of canonical compressible flows (supersonic plane channel flow, supersonic 

boundary layer, shock wave/boundary layer interaction) wich exhibited high accuracy on an IBM 

module featuring about 109 nodes. STREAmS makes use of a hybrid energy-preserving/shock-

capturing scheme in locally conservative form. WENO reconstructions implemented on STREAmS 

allows to capture shocks but maintaining a high order centered scheme in the rest of the field. This 

turned out to be an optimal strategy to treat the flow field around the supersonic capsule characterized 

by shock discontinuities and turbulent regions. Simulations have been successful and showed the wake 

behavior and properties for different angles of attack investigated: 0°, 5°, 10° and 15°. Two-

dimensional contours of flow field variables highlighted the wake flow changing configuration for the 

different angles of attack wich have been analyzed. Indeed, capsule stability and wake trailing influence 

were evaluated through temporal evolutions of aerodynamic coefficients and wake properties profiles 

at different trailing distances, respectively. Main findings regarded: 

 

• Wake deflecting path. 

• Turbulent fluctuations concentration regions. 

• Bow shock and recompression shock oscillating behaviors. 

 

• Flow field principal oscillation frequencies. 
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• Wake trailing distance of influence. 

 

Results demonstrated the validity of the methodology wich has been implemented. The numerical 

procedure followed in carrying out this work revealed optimal for reproducing the flight conditions 

occurring for entry capsules. Results that have been achieved do not complete the comprehension of 

the aerodynamical phenomena wich manifest around a capsule-canopy system but can support further 

studies (different Mach conditions, simulations of the capsule coupled to a canopy, etc.) regarding 

ExoMars EDL sequence. 
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