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Chapter 1

Introduction

The classic finite wing theory works with a wake that lives the trailing edge
in the freestream direction, and it’s far away from a physical, force-free wake.

After the knowledge of the complete behaviour of the wing, the wake
shape that it creates, it’s also something important to define.
Since the first studies, have been seek mathematical approaches to be able
to evaluate the shape, and the introduction of panel methods allowed others
and better ways to define the geometry.
The wake itself influences the wing aerodynamic properties, and moreover
the knowledge of the wake shape lead to a better understanding of the large
scale flow behaviour; for example it’s useful for formation flight in which the
rear aircrafts are subjected to a perturbed flowfield generated from the aft
wake.

At the Technische Universität Dresden a three-dimensional low-order
panel method was developed to investigate non-planar wing configurations;
this program is written with Fortran Compiler. All the information about
this could be find in the reference [15].
The panel method is utilized in an aero-structural optimization framework
and is therefore driven towards high computational speed.
This thesis is an improvement of the cited program that seeks to obtain the
correct wake geometry and, once that this is achieved, makes the far field
integration in the Trefftz plane which will be able to produce an accurate
value for the wing induced drag.

1
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Chapter 2

Info About Drag

2.1 Drag

One of the most important things in the airplane design consists in making
the most efficiently flight possible; a good measure of this factor is defined
by the aerodynamic efficiency, represented by the ratio lift to drag L

D .

For this reason the best way to chase it consists in minimizing the drag,
but this is not as simple as it could be thought. In the study of an isolated
profile the definition of lift and drag is enough simply, but when the val-
uation is extended on a complete wing, things start to be different and a
bit complicated; the drag is made by different sources, so there are various
kinds of drag like:

• airfoil profile drag

• skin-friction drag

• separation drag

• wave drag

• wave-drag-due-to-lift

• interference drag

• so forth

Figure 2.1 can make an idea of its varieties.

So many different types of drag have been defined and discussed over the
years, but all of them can be gathered into the two big sources of aerody-
namic forces: the pressure distribution and the shear distribution. Therefore
the drag can be divided into ”Pressure Drag” and ”Friction Drag”.

The first one is defined by the forces due to the pressure acting normal at
the points on the surface; it’s computed with the integral of the flight-path

3



4 CHAPTER 2. INFO ABOUT DRAG

Figure 2.1: Types of Drag

component of the pressure forces.
The second instead depends directly to the viscosity, so it doesn’t exist while
working with hypothesis of an inviscid flow.
All the types of drag found in literature fit in one or in the other big cate-
gories described.

An important factor about drag calculation is that its analytical predic-
tion is much harder than the lift’s one.

The pressure drag can be distinct in its contributes:

• Induce drag (or ”drag-due-to-lift” or ”vortex drag”)

• Wave drag, related to a presence of supersonic region.

• Form drag (or ”boundary-layer pressure drag”)

The induced drag, as the other name defined it, is strongly related to
the lift produced and it’s something that doesn’t exist in the study of an
isolated profile.
A finite wing has more drag than a profile, this is due of the wing-tip vortices
that make a 3D effect; the energy needed to form those vortices in the
flow field behind is taken from the wing as a drag force. The generation
of the wing-tip vortices is associated with a perturbation in the pressure
distribution on the wing; it produces a higher pressure over the bottom and
a lower one over the top of the surfaces (see Figure 2.2)
The induced drag is the penalty paid for the lift production and it could
represent the major component of the total drag, in Figure 2.3 it’s shown
his relevance with the others source of drag.
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(a) Wing view (b) Wing tip vortices

Figure 2.2: Finite Wing

Figure 2.3: Drag contributes
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It’s clear how this drag could increase whenever it’s required a high lift
capacity.

2.2 Effects of a Finite Wing

2.2.1 Downwash

Taking as example a wing simplified with a simple horseshoe vortex system,
the trailing vortex produce a downward velocity w in each span position
y, called downwash or induced velocities, see Figure 2.4. This modifies the
direction of the undisturbed velocity that arrives to the wing by an angle αi
called induced angle of attack, as shown in Figure 2.5.

Figure 2.4: Horseshoe vortex

Figure 2.5: Induced Angle

Instead of coming with the geometric αg the velocity V∞ arrives in the local
profile with the effective angle αeff = αg − αi. This effective incidence
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determines the lift in the section, that is lower then the one of an isolated
profile.

The circulation on the wing increase with the lift coefficient, and so
the quantities w and αi, it follows that the lift in the 3D case increases
less rapidly with the angle of attack than the 2D case, due exactly for the
presence of the trailing edge.

Taking the components of force generated in a section (so per unit
length):

l = ρVeffΓ cos(αi) = ρVeffΓ
V∞
Veff

= ρV∞Γ

d = ρVeffΓ sin(αi) = ρVeffΓ
w

Veff
= ρwΓ

(2.1)

the last is indeed the induced drag, it’s evident how it’s related to the
downwash velocity originated by the trailing vortices.

2.2.2 Consequences of downwash

The induced velocity has two important consequences, the modification of
the flow about the wing and the alteration of its aerodynamics properties.

With the simple assumption of the two-dimensional theory, taking a wing
moving through air (with negligible viscosity) the static pressure of the free
stream ahead is completely recovered behind the wing; this implies that
all the kinetic energy produced by the wing is converted back as pressure
energy, with no drag results.
But this is not the reality, till now it’s like having an isolated profile or
a wing with infinite span. With a real finite wing, at its extremities the
unbalance in the pressure spins the airflow like in Figure 2.2(a), this makes
the appearance of two trailing vortices which could have a reasonable size.
Their generation needs a quantity of kinetic energy that will be not recovered
by the wing system, this represent a lost of energy that the wing lefts behind.
This continuous waste of energy is representative of the induced drag; related
to this principle derives the equation from which this drag is calculated (see
chapter 4).

From eq. (2.1) the total lift and drag become:

L =

∫ b/2

−b/2
ρV∞Γ dy

D =

∫ b/2

−b/2
ρwΓ dy

(2.2)

an absence of induced drag will come only if the wing is working two-
dimensionally or without any production of lift. The vortex system is always
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produced by the basic lifting action of a real wing (with finite-span), the
wing’s properties are adversely modified.
From this it seems that more the wing’s span is high, the more its charac-
teristics could approach the ideal case.

2.3 Reduction of Induced Drag with Non-Planar
Geometry

As said, minimizing the induced drag become an important factor in the
wing design because it can become a relevant part of the total drag during
the flight. For how is explained before, a solution seems to be the increase
the aspect ratio of the wing, but this could be problematic for many factors
like construction, dimension, weight, etc.

Instead of this, a decrease of this drag can be achieved with others kinds of
expedients; one of the most used is the employment of non-planar elements
like winglets, which can lead to the goal without increasing the span.

(a) Winglet (b) Comparison of
Vortex wing

Figure 2.6: Winglet Effects

This is the first sign about how a non-planar geometry could become a
way to build up airplane able to flight with a lower drag respect the standard
aircraft layout. Below in Figure 2.7 it’s shown an example with a wing in
different C configuration with fixed span, area, and total lilt.

When the lifting surface is extended till the centerline to form a box
plane, is the moment in which the upper wing can efficiently carry an upload.

Therefore seems interesting the aerodynamics of non-planar wings sys-
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Figure 2.7: Configuration

tems that form close loops; deleting in this way the tips doesn’t erase the
presence of trailing vortices, but they can lower the induced drag, and apart
this they can stiffen the total structure.
Those new configuration can be divided into the variants:

• Box wing: with the upper and low wings joined by vertical elements.

• Annular box wing: instead of straight components the wing tips are
connected with continuous blend one.

• Cylindrical: with the wing completely shaped like a cylinder.

• Joined wings: the two are placed in different positions and one or both
sweeps to join the other with a continuous surface.

Examples of those new constructions are shown in Figure 2.8

As an example (see reference [11]) the circular ring wing is subjected
to an induced drag that is just 50% less than a planar wing with the same
span and total lift. The Joined one achieved even a great reduction then
the Cylinder, moreover the structure stiffens the structure and the wings
are subjected at lower bending moments.
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(a) Box Wing (b) Box Annular

(c) Box Ring (d) Box Joined

Figure 2.8: Non Planar Configurations



Chapter 3

Panel Method and Wake
Relaxation

3.1 Panel Method

Here a brief explanation about the panel method; more details can be easily
found in ”Low Speed Aerodynamics” [9].

This is a numerical technique that allows the treatment of geometries to
solve the potential flow problem and follows the hypothesis of inviscid in-
compressible flow.
The panel method is based on a surface distribution of source and doublet
elements, and consists in finding the strength of those elements.

3.1.1 Formulation

Take in consideration a body defined by its boundaries SB immersed in a
potential flow (see Figure 3.1), in the outer region V is located the flow of
interest, the irrotational equation of continuity in the body’s frame in terms
of total potential Φ∗ is:

O2Φ∗ = 0 (3.1)

Figure 3.1: Potential Flow

The general solution of this equation is constructed like:

11
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Φ∗(x, y, z) =
−1

4π

∫
SB

[
σ

(
1

r

)
− µn̂ · O

(
1

r

)]
dS + Φ∞ (3.2)

Where n̂ is the normal vector at the surface SB and Φ∞ the freestream
potential defined by Φ∞ = (Ux∞ x+ Uy∞ y + Uz∞ z).
The source elements represent the thickness of the body and the doublet
ones stand for the lifting properties.

The solution is not uniquely defined; to reach the result, boundaries
condition must be applied. In three dimensional cases this is not enough to
specify a solution, other decision must be defined as about the combination
of source, doublet and the wake’s displacement.

With a wake made by doublets the eq. (3.2) become:

Φ∗(x, y, z) =
1

4π

[∫
body + wake

µn̂ · O
(

1

r

)
dS −

∫
body

σ

(
1

r

)
dS

]
+ Φ∞

= Φ + Φ∞
(3.3)

Φ is called the perturbation potential.

3.1.2 Boundary Condition

This is done by imposing zero flow normal to the surface.

Neaumann Boundary Condition

Through the Neumann condition the zero normal velocity component on

SB, defined by
∂Φ∗

∂n
= 0, is done in a direct way:

O (Φ + Φ∞) · n̂ = 0 (3.4)

A second condition is imposed in the far field, where the flow disturbance
due to the body diminishes:

lim
r→∞

OΦ = 0 (3.5)

where r = (x, y, z) is the position of a point; this condition is automatically
satisfied.
Using eq. (3.2) the velocities field is defined by:

OΦ∗(x, y, z) =
1

4π

{∫
body + wake

µO

[
∂

∂n

(
1

r

)]
dS −

∫
body

σO

(
1

r

)
dS

}
+Φ∞

(3.6)
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Then the condition in eq (3.4) is rewritten:

1

4π

{∫
body + wake

µO

[
∂

∂n

(
1

r

)]
dS −

∫
body

σO

(
1

r

)
dS

}
· n̂ = 0 (3.7)

This must be satisfied on each surfaces control points, producing in this way
a system of algebraic equations.

Moreover for a closed body, nullifying the normal velocity makes the
potential inside the body become Φ∗i = const. which could be easily imposed
as zero.

Dirichlet Boundary Condition

The perturbation potential Φ is specified everywhere in the body; placing a
point inside it the eq. (3.3) become:

Φ∗i (x, y, z) =
1

4π

[∫
body + wake

µ
∂

∂n

(
1

r

)
dS −

∫
body

σ

(
1

r

)
dS

]
+ Φ∞ (3.8)

the eq. (3.4) in terms of the inner potential is rewritten:

Φ∗i = (Φ + Φ∞)i = const.

=
1

4π

[∫
body + wake

µ
∂

∂n

(
1

r

)
dS −

∫
body

σ

(
1

r

)
dS

]
+ Φ∞ = const.

(3.9)

This equation makes the indirect boundary condition. A way to obtain a
solution consists in specifying the inner potential as Φ∗i = (Φ + Φ∞)i = Φ∞
so:

1

4π

[∫
body + wake

µ
∂

∂n

(
1

r

)
dS −

∫
body

σ

(
1

r

)
dS

]
= 0 (3.10)

This is justified by taking in consideration the Neumann condition
∂Φ∗

∂n
= 0,

that is equivalent to:
∂Φ

∂n
= −n̂ ·U∞ (3.11)

In the potential flow the difference between the normal derivative of external
and internal potentials is:

−σ =
∂Φ

∂n
− ∂Φi

∂n

so in the case studied:

− σ =
∂Φ∗

∂n
− ∂Φ∗i

∂n
(3.12)

assuming Φ∗i = 0 the source is rewritten as

σ = n̂ ·U∞ (3.13)
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3.1.3 Set of Linear Algebraic Equations

With those conditions, together with a choice in which combination of source
and doublet to use, the solution of the problem is assumed to be unique; the
wake must be treated as well, a complete explanation of this will be found
on chapter 5.5.
The system is now discretized with N panels on the body and with NW on
the wake; the boundary condition must be specified at each element in its
collocation point (see Figure 3.2); the eq. (3.7) become:

N∑
k=1

1

4π

∫
body panel

µn̂ · O
(

1

r

)
dS

+

NW∑
l=1

1

4π

∫
wake panel

µn̂ · O
(

1

r

)
dS

−
N∑
k=1

1

4π

∫
body panel

σ

(
1

r

)
dS = 0

(3.14)

For each collocation point it’s the sum of the influences of all body panels k

Figure 3.2: Body Surface with Panel Elements

and wake panels l; the integration is now limited to a single panel, moreover,
choosing a unity strength the influence depends solely on the geometry.
Taking one wing panel the coefficients are rewritten:

1

4π

∫
k

∂

∂n

(
1

r

)
dS ≡ Ck

−1

4π

∫
k

(
1

r

)
dS ≡ Bk

(3.15)
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Figure 3.3: Panel’s Influence

Computing the influence of all panel on each point:

N∑
k=1

Ckµk +

NW∑
l=1

Clµl +

N∑
k=1

Bkσk = 0 (3.16)

This equation is numerical equivalent to the boundary condition; further-
more though the Kutta condition the wake doublet can be expressed in
terms of the wing’s one. Generally the panels at the trailing edge follows
µwake = µup − µlow, with arbitrary panels: µt = µr − µs; in terms of the
matrix it become:

Ctµt = Ct(µr − µs)

This relation can be used to modify the doublet coefficients matrix:

Ak = Ck panels not at TE

Ak = Ck ± Ct panels at TE

the sing ± depend if the panel is upper or lower at the trailing edge.
For each control points the linear algebraic equation become:

N∑
k=1

Akµk = −
N∑
k=1

Bkσk (3.17)

taking all the control points it became a matrix system:
a11 a12 ... a1N
a21 a22 ... a2N
... ... ... ...
aN1 aN2 ... aNN



µ1
µ2
...
µN

 = −


b11 b12 ... b1N
b21 a22 ... b2N
... ... ... ...
bN1 bN2 ... bNN



σ1
σ2
...
σN


(3.18)
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With the values of sources evaluated by eq. (3.13) the eq. (3.18) are rewrit-
ten: 

a11 a12 ... a1N
a21 a22 ... a2N
... ... ... ...
aN1 aN2 ... aNN



µ1
µ2
...
µN

 =


RHS1
RHS2
...

RHSN

 (3.19)

Then doublet values µi are computed solving the matrix equation.

3.2 Relaxation Process

Till the firsts years of the aerodynamic studies, ways to define the wake’s
shape have been sought; with simple wing even applying a mathematical
method that predict the evolution of the vortex flow behind the wing.
With the application of the panel method more improvement was achieved.

The true shape can be reached with two different methods:

• spatial-relaxation;

• time-stepping.

The first starts with an hypothetical wake shape from which begin to
reallocate its nodes with an iterative process.
The time-stepping instead considers a wing moving forwards at a constant
velocity U∞ and with it, repositioning the wake that evolves at each time
step.

Searching information about the difference between this two, the only
thing found is that the second is more suitable for the study of unsteady mo-
tion, but information about difference like speed of convergence, reliability
or other of the two methods haven’t been found.

The process takes advantage of the panel method application; the most
recent applications use high order elements capable of a better representation
of the system wing, coupled with this comes the wake schematization.

Some article in the ”American Institute of Aeronautics and Astronautics
Journal (AIAA)” have a brief description about the treatment of the wake
and the methods to reach its roll-up (see [6], [14], [13], [4], [7]).

To achieve the best shape approximation in those reports are applied
different methods.

One way described in [6] use a wake made by a vortex sheet, and at fixed
time steps employs an adaptive curvature paneling scheme to evaluate the
geometry in a section, this is said that can provide a good definition of the
nodes.

The others use panel elements with a distributed vorticity or curved
panel, so high order elements.
Those articles are not so strictly helpful for our purpose, but they have
useful hints that can be applied.
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3.2.1 Points Evaluation

The theory behind the process is rather simple, being the wake tangential
to the flowfiled all the vortex line of the sheet are stream line and they must
satisfy their equation:

dy

dx
=
v + Uy
u+ Ux

dz

dx
=
w + Uz
u+ Ux

(3.20)

where the [Ux Uy Uz] are the components of the stream velocity U∞ and
[u v w] those of the induced velocity in a generic system of reference.

The spatial-relaxation process becomes an iterative procedure in which,
taking a point in the wake, the next one in the freestream direction (x-
coordinate) is evaluated by the integration of the eq. (3.20).
From each step the displacement are is shed downstream to adapt the entire
wake like in Figure 3.4.

Figure 3.4: Recollocation Scheme
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Chapter 4

Induced Drag Calculation

The induced drag can be calculated by a pressure integration on the wing
surface, but in this way the results obtained are not enough accurate for a
well examination of the wing behaviour.
This kind of problem with the integration is due of the fact that for some
wing configuration the computation of the integration involves subtractive
cancellation, this causes a loss of accuracy when computing small variation
of small quantity.

An alternative way consists in the far-field method, evaluating the drag
through the Trefftz plane.

4.1 Equation development

As noted in section 2.2.2 an expression for the induced drag can be obtained
from the momentum conservation.
Von Karman said that by surrounding a wing with a control volume, the
conservation principles could be applied for the induced drag calculation.

For the derivation of the equation it’s taken the control volume in Fig-
ure 4.1 fixed in the inertial reference frame of the wing and moving with the
constant velocity U∞ of the undisturbed flow. Without any external forces,
the conservation of momentum in the volume is given by:

F =
DP

Dt
= − d

dt

∫∫∫
ρV dv −

∫∫
ρV (V · n̂) ds = 0 (4.1)

With the hypothesis of inviscid and steady-state flow the equation be-
come: ∫∫

pn̂ ds = −
∫∫

ρV (V · n̂) ds (4.2)

The purpose of this project is the study of the drag, so only the compo-
nent on x direction is necessary for the equation; in this way:

19
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Figure 4.1: Control Volume

∫∫
pnx ds = −

∫∫
ρVx(V · n̂) ds (4.3)

This is for all the surfaces of the control volume; now the contribution
of each integral is evaluated individually.

S8 & S9

For a force-free wake aligned everywhere with the local flow there is no
pressure difference and the scalar product (V · n̂) is zero n the wake surfaces
so:

∫∫
S8

pnx ds+

∫∫
S9

pnx ds = 0∫∫
S8,S9

ρVx(V · n̂) ds = 0

(4.4)

S7

This is the one that surrounds the wing, in this surface it’s true that (V ·n̂) =
0 and the pressure integrals: ∫∫

S7

pnx ds = D (4.5)

For an inviscid and subsonic flow this drag represents the induced drag Di.
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The remaining component

The others surfaces are the ones of the volume, and the normal takes values:
for S3, S5 ,S2 and S4 nx = 0, on S1 nx = −1 and on S6 it’s nx = 1.
For the next steps it’s useful make in evidence the perturbation components
from the freestream ones; respectively (u, v, w) and U∞ for the velocities and
p, p∞ for the pressures. The complete expression of the eq. (4.3) become:

Di +

∫∫
S6

(p− p∞) ds−
∫∫

S1

(p− p∞) ds =

−
∫∫

S3

ρ(U∞ + u)w ds+

∫∫
S5

ρ(U∞ + u)w ds+

+

∫∫
S2

ρ(U∞ + u)v ds−
∫∫

S4

ρ(U∞ + u)v ds+

+

∫∫
S1

ρ(U∞ + u)2 ds−
∫∫

S6

ρ(U∞ + u)2 ds

(4.6)

For a stationary flow, the mass conservation through the volume is defined
from: ∫∫

ρ(V · n̂) ds = 0 (4.7)

in terms of the perturbation velocities:

∫∫
S3

ρw ds−
∫∫

S5

ρw ds−
∫∫

S2

ρv ds+

∫∫
S4

ρv ds+

−
∫∫

S1

ρ(U∞ + u) ds+

∫∫
S6

ρ(U∞ + u) ds = 0

(4.8)

inserting this on the eq. (4.6) yelds:

Di +

∫∫
S6

(p− p∞) ds−
∫∫

S1

(p− p∞) ds =

−
∫∫

S3

ρuw ds+

∫∫
S5

ρuw ds+

∫∫
S2

ρuv ds−
∫∫

S4

ρuv ds+

+

∫∫
S1

ρu(U∞ + u) ds−
∫∫

S6

ρu(U∞ + u) ds

(4.9)

When the size of the control volume is increased the contribute of the
surfaces from 1 to 5 becomes very small, and neglecting those therms the
equation change into:

Di = −
∫∫

S6

(p− p∞) ds−
∫∫

S6

ρu(U∞ + u) ds (4.10)
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The next step consists in finding a relationship between the pressure and
the velocity on S6, this is done using the Bernoulli’s equation.
For any subsonic freestream, assuming small perturbation and isentropic
flow, a second-order form of the equation is defined by:

p− p∞ =
1

2
ρ∞

(
2uU∞ + (1−M2

∞)u2 + v2 + w2

)
(4.11)

Inserting this in the eq. (4.10) results:

Di =
1

2
ρ∞

∫∫
S6

(
2uU∞ + (1−M2

∞)u2 + v2 + w2

)
ds−

∫∫
S6

ρu(U∞ + u) ds

=
1

2
ρ∞

∫∫
S6

(
2uU∞ −M2

∞u
2 + (u2 + v2 + w2)

)
ds−

∫∫
S6

ρu(U∞ + u) ds

(4.12)

This become:

Di =
1

2
ρ∞

∫∫ (
(M2
∞ − 1)u2 + v2 + w2

)
ds (4.13)

neglecting the Mach number:

Di =
1

2
ρ∞

∫∫ (
−u2 + v2 + w2

)
ds (4.14)

Also the wake is parallel to the freestream and it can be assume that
u2 � v2 + w2; the u-component can be ignored.

The flow is a potential flow, so the velocities could be written with it in
this way:

∫∫
(u2 + v2 + w2) ds =

∫∫ {(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2}
ds

=

∫∫
∇φ · ∇φds

(4.15)

It holds that ∇φ · ∇φ = ∇ · φ∇φ − φ∇2φ, in addition ∇2φ = 0 outside
the wake, so : ∫∫

(u2 + v2 + w2) ds =

∫∫
∇ · φ∇φds (4.16)

separating the components into the cross flow and the freestream:∫∫
∇ · φ∇φds =

∫∫ {
(∇ · φ∇φ)xy +

∂

∂x

(
φ
∂φ

∂x

)}
ds

=

∫∫ {
(∇ · φ∇φ)xy + φ

∂u

∂x
+ u2

}
ds
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Using the Gauss’ theorem it’s possible relates the surface integral into a
line integral following its rule:

∫∫
∇ · a ds =

∮
a · n̂ dl so:∫∫

∇ · φ∇φds =

∮
φ(∇φ · n̂) dl =

∮
φ

(
∂φ

∂n

)
dl (4.17)

Furthermore if the control volume is large enough the perturbation velocities
will vanish everywhere except on the wake, so in the eq. (4.12) will remain
only the element linked to the line integral on the surface S6:

Di =
1

2
ρ∞

∮
φ

(
∂φ

∂n

)
dl (4.18)

The path of the integration follows what is shown in Figure 4.2:

Figure 4.2: Line Integral

Given that the volume is big enough the contribute on line A-D vanishes,
also the integrals along A-B and C-D cancel each other; therefore only the
contribution of the path that contains the wake will gain a value to the
integration. In addition of this, the potential φ on the wake is equal to the
jump of potential shed from the wing at the trailing edge (∇φ)TE , and the
∂φ

∂n
it’s nothing else but the downwash velocity w.

The eq. (4.18) could be rewritten as:

Di =
1

2
ρ∞

∫
wake

(∇φ)TEw dl (4.19)

This is the final equation that will be used to evaluate the induced drag.

The coefficient of the induce drag is calculated with the standard for-
mula:

CDi =
Di

q∞Sref
(4.20)
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where q∞ =
1

2
ρ∞V

2
∞ is the dynamic pressure and Sref the reference area

of the wing, it could be the plan area or the wetted area, depends on the
choices made.
Calling the integral

∫
wake(∇φ)TEw dl = IDi and substituting eq. (4.19) into

the (4.20) the induce drag coefficient becomes now:

CDi =

1

2
ρ∞IDi

1

2
ρ∞V 2

∞Sref

=
IDi

V 2
∞Sref

(4.21)

4.2 Integration of the Induced Drag

Obtained the right equation, the next step consists in producing the numer-
ical integration. Here enter the relaxation process with which the shape on
the wake will be defined.
The condition of infinity of the position for the Trefftz plane is obviously
impossible, it is shown in reference [17] that the plane must be far enough
downstream of the lifting system to make valid the assumption in eq. (4.19);
placing it at approximately 15 or 16 semispans from the wing is the common
choice made in all the reports found; also to take count of a representative
infinite wake the remain of it is extended till 30 semispans.

As will be explained in chapter 5.4 the section of the Trefftz plane is
defined from the wake’s creation.
Following the advise in [17] in order to evaluate the wake’s properties a
couple of survey points are placed above and below the wake as exposed in
Figure 4.3. This is done using the midpoints of the panels and constructing

Figure 4.3: Wake’s Integration
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the control points from them (like what explained in the chapter 5.6).
The velocity in a station point will be the average of the two control

points.
The final step consists in applying a numerical method to solve the in-

tegral (4.19); the best choice should be use the trapezoidal rule.

Trapezoidal Rule of Integration

For a generic function f(x) defined in the extremes a and b (Figure 4.4) the
integration is defined:

Figure 4.4: Trapezoidal rule 1

∫ b

a
f(x) dx = (b− a)

(
f(a) + f(b)

2

)
(4.22)

for a better estimation the length of integration can be divided in elements:

∫ b

a
f(x) dx =

∑
∆xn

(
f(xi) + f(xi+1)

2

)
(4.23)

Application on the Wake

For the evaluation of the induced drag the integral becomes:

I =
∑

dl

(
µawa + µbwb

2

)
(4.24)

Where dl is the distance from two point, w the velocity and µ the doublet
intensity shed from the trailing edge of the wing.
Furthermore the elements dl are the distance between the two midpoints;
they are evaluated through a fictitious curvilinear coordinate that follows
the shape of the wake like Figure 4.6



26 CHAPTER 4. INDUCED DRAG CALCULATION

Figure 4.5: Trapezoidal rule 2

Figure 4.6: dl wake
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With the geometry known it’s an easy task; the midpoints are simply cal-
culated with the wake’s points, then the distance between them is defined
through dl = l1 + l2.
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Chapter 5

Description of the program

The basic program written by Dipl.-Ing. Uwe Schuster applies a low order
panel method to the study of a wing with an arbitrary geometry, evaluating
its aerodynamic properties.
The surface is simplified by a distribution of source and doublet made by
constant strength. The hypothesis of work are based on an inviscid, incom-
pressible fluid in a steady state. A complete description of the program can
be found in reference [15].

What will be here explained is an improvement of this program with the
purpose of evaluating the real wake shape.

5.1 Iteration Process

The relaxation process follows those steps:

1. create the control points on the first wake rows of nodes

2. evaluate the velocity in those points induced by:

• the wing

• the entire wake

• the velocity of the flow U∞

3. define the velocity at each node from the average of the one on the
control points

4. displace the next nodes tangent to the velocities

5. repositioning all the downstream nodes

6. define the new distribution of singularities

7. start again from the next row of nodes

29



30 CHAPTER 5. DESCRIPTION OF THE PROGRAM

5.1.1 Points Integration

The points of the wake must satisfy the condition of the streamlines:

dy

dx
=
v + Uy
u+ Ux

dz

dx
=
w + Uz
u+ Ux

To achieve a solution those equation must be integrated through a nu-
merical method; the most used is the Euler method because is rather simple
and required not much calculation. Another one here applied follows the
trapezoidal scheme, it’s a 2 step method; the stability and reliability are
higher than the Euler one, but required the double of the computational
burden.
Calling f(x, y) e f(x, z) the functions with the velocities, the evaluation of
the next point with the Euler way become:

yi+1 = yi + f(x, y)∆x zi+1 = zi + f(x, z)∆x (5.1)

Instead through the 2-step for the z component:

zi+1 = zi + f(x, z)∆x

zi+1 = zi +
∆x

2
(f(x, z) + f(xi+1, zi+1))

(5.2)

the length ∆x is the distance in x-coordinate from the point in analysis and
the next one.

With complex geometry or to avoid any risk of divergence with the de-
velopment of the iterations, it’s introduced an under-relaxation factor f, a
correction value that lightens the updated solution reducing any error that
could occur with the process. Following this idea the next point’s position
is corrected like:

dy = f(y∗i+1 − yn−1i+1 )

dz = f(z∗i+1 − zn−1i+1 )
(5.3)

Where y∗i+1 and z∗i+1 are the points evaluated from the (5.1) or (5.2); yn−1i+1

and zn−1i+1 are instead the position of the nodes in the previously iteration; as
cited in [17] using a value of f = 0.5 is suitable for the solution (for simple
geometry f = 1 works well).

5.2 Seeking convergence

In the process there are two big variables that continue changing.
The wake shape is modified at each step and due to the new geometry
configuration the distribution of singularities is modified too.
Starting from this configuration the initial singularities are evaluated.
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5.2.1 Geometry Convergence

While the process continuous the reposition of the wake, a criterion to stop it
it’s necessary. The simplest way consists in defining a tolerance, checking it
after each complete movement. The value selected is 0.001 b/2, proportional
to the wing span.

Then after each nodal displacement the program checks both the ∆z and
∆y movements finding the maximum one and saving it in a vector; after a
complete iteration the biggest displacement is found again in this vector.
When this maximum value remains under the tolerance for three complete
iteration the wake is considered converged to its finally shape and the iter-
ation stops.

5.2.2 Singularities Convergence

Once again, the wake is in a constant geometric change, this is a thing that
affects the doublet distribution on the wing, and then the µ on the wake
itself. So the proper way to approach this problem should be calculates
again the influence coefficients C V Strip and the singularities after each
movement of row but, because of the high number of panels in the system
wake-wing, doing this takes a lot of computational time, so a way to save it
may be plays with the recalculation.

Moreover during the firsts iterations the wake is subjected whit the
biggest displacements, so it’s supposed that here the relevance of the doublet
distribution should be much more influential, and due to this it’s setted that
in those steps the recalculation of the influence coefficients and of course the
singularities will happen more frequently. With the progress of the itera-
tions the gap between one recalculation and the next will increase following
what are explained in the table (5.1):

iteration nth recalc step

1 - 5 5

6 - 10 10

11 - ... 20

Table 5.1: Singularity recalculation

There will be a moment in which the changing of the singularities will be
irrelevant for the calculation, so a check on the convergence of those is
inserted.

After each complete wake movement the doublets that are shed from the
wing are calculated and compared with the ones of the previously iteration;
if the maximum value of those (∆µ)TE is less than the chosen tolerance
mu toll the doublets are considered converged and from the next cycle
the influence coefficients and the singularities will be evaluated only after a
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complete movement. This only to not let any little influence of change to
get lost from one iteration to the next.

For this purpose the logical variable mu recalc is inserted; from the
beginning it’s setted up .true. and when the convergence is reached it will
be imposed as .false. erasing the recalculation process.
Furthermore, exist cases like wings with large aspect ratio, in which the
effect of the wake roll-up on the wing loading is negligible (found by Suciu
and Morino [5]) so there’s no need of the recalculation of the singularities
and this procedure could be stopped since the beginning with the logical
variable.
So the relevance of the singularities redefinition depends on the wing shape
besides the wake geometry.

5.3 Coordinate System

The derivation of the drag formula explained in Chapter 4 is made in a
coordinate system that has the x-coordinate parallel to the U∞ direction;
the Trefftz plane is also orthogonal to it.
So it have been chosen to change the default frame of reference and start
working on this.

With the hypothesis that the velocity comes with no other inclination
that the standard angle of attack α, the new system (VCS) can be obtained
with a simple rotation in the y-coordinates; taking a generic angle θ the
change of frame is obtained with the matrix:

[
R(θ)

]
=

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


In our case the rotation is done with the angle θ = −α like in Figure 5.1, so
taking a generic point P (xP , yP , zP ), its coordinates in the new frame are
rewritten: xP∞yP∞

zP∞

 =
[
R(−α)

]xPyP
zP


To start working with this new frame the conversion is applied to the

vector AdvWingPoints; with the wing points written here all the others
variables in the program will follow this frame (the wake too is build from
those points, this will be explained in 5.4.1).

Important fact

Now that the coordinate system is changed, particular attention must be
taken in the calculations, precisely where there’s the need of the angle of
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Figure 5.1: Change in coordinate system

attack like the subroutines PanelStrengths, AeroCoeff and Evaluation, and
when the unitary undisturbed velocity U∞ (called OnsetFLow) is defined.
For how the calculation are build, now it must be set α = 0o because the
flows direction is now the same as the x-coordinate.

5.4 Creation of the Wake

5.4.1 Wake geometry

The points that define the wake are build up starting from the wing ones,
those are now written in the stream coordinate system so the new points
will be related to it too.
Searching in literature, something useful have been found about how create
the wake; in the article in reference [2] is explained how its length can be
separated in different regions:

• Adjoin zone;

• Near Field;

• Far Field.

The first region in the one attached to the trailing edge and it’s made
with shorter panels; this due to the fact that any kind of error on the shape
in the proximity of the trailing edge will be propagated to the downstream
compromising the results of the analysis.
The most important fact about this zone regards the first row of panels,
because its meaning consists in the satisfaction of the Kutta condition: the
velocity that exits from the profile trailing edge must be tangent to it. So
the first row of points that originate the panels are build in the direction of
the local bisector of each profile end (see Figure 5.2), and it won’t be moved
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during the iteration process; this is enough to guarantee it.
This row is made smaller then the others in the adjoin region, it’s sets to be
0.05 b/2.

The Near Field is the region where the wake starts to roll-up itself, and
it’s said that it extends itself till 6 semispans from the trailing edge.
Here the panels have a higher density, meaning that there are more rows in
the streamwise direction, again like the Adjoing region this is done because
any kind of errors in the shape will be propagated downstream.

In the Far Field the Trefftz Plane takes place, and for this reason it have
been choose to divide this region into two, the first called Far Field 1 till
the plane position and the second, Far Field 2, till the end of the wake. The
motivations of this are based on the wake section; the numerical integration
of the induced drag (eq. (4.24)) is high sensitive to the wake shape obtained,
so the introduction of the first region seems a reasonable solution to gain a
better control on the geometry.

Discretization of the Wake

The free variables for the wake’s discretization are the length of the fields
and the number of panels to use in each of the region described before:

• WakeLength ;

• NearField ;

• TP Position ;

• NPAdjoin ;

• NPNearField ;

• NPFarField 1, NPFarField 2.

The firsts three define the wake region dimensions, the lasts their paneling.
WakeLength is the complete length of the wake and it’s inserted in the

input file, most of the studies put it equal to 30b/2, a reasonable length that
simulate an infinite wake; the second sets the extension of the Near Field;
TP Position is the one that impose where the Trefftz plane is placed,
commonly at 16 b/2.

In the Adjoin zone, the total length depends in the number of panels
selected (NPAdjoin); the first row, as explained is fixed, for the others it’s
chosen to set the panel length equal to 0.05 b/2.
The other variables define the number of panels from which discretize the
related regions.

The wake created in this way it’s also the one that represents the initial
geometry for the iteration, and represents itself a crucial factor; this initial
shape could facilitate the process or not. In reference [17] it’s said that a
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suitable first wake is placed with an angle of inclination equal to α/2 like in
Figure 5.2.
So the first row is the only one placed following the bisector, and from the
second the inclination of the downstream points follows the addition of this
angle.

Figure 5.2: Initial Wake

5.4.2 Trefftz plane coordinates

The purpose of this project is the integration on the Trefftz plane after the
relaxation process; as explained in chapter 4 the intersection with the wake
here will individuate the points to be studied.
So one problem consists on a method to define this section in a simple way.

As explained till now the wake points displacement depends on the ge-
ometry of the wing, more precisely from the trailing edge ones, the position
from which they are shed; for example with a swept wing the wake points
in the same row will have different x-coordinates, and individuate the posi-
tion (xTP , yTP , zTP ) of the necessary wake points could become complicated.
The solution chosen consists in the creation of those points ad hoc.

First of all the wing’s trailing edge points are scanned to find the most
backward one and from it’s calculated the x-coordinate where place the
plane. Then the program goes on normally till the second to last row of
nodes in the Far Field 1 and the next one is placed with all its nodes at the
same x-coordinate xTP ; from this the right displacements ∆y and ∆z are
evaluated to continue the correct points placement in yTP and zTP .

Furthermore their position ii TP in the vector WakePoints is saved, so
the cross-section will be easily found when it will be needed. After this the
wake creation goes on creating the remains points in the Far Field 2.

5.5 Paneling of the Wake

Once the geometry is created the next step consist in adapting it for the
panel treatment.
All the nodes are gathered into quadrilateral panels, those are numbered
following on strip at a time, from the begin to the end of it like in Figure 5.4.

The panels count continues from the wing ones. For each of them all the
geometric properties are defined: corner points, local coordinate system, the
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Figure 5.3: Trefftz Plane positioning

Figure 5.4: Wake Paneling

rotational matrix and corner points in the local coordinates.

5.5.1 Singularity intensity in the wake

With the panel methods the panels in the wake are defined through doublets,
the intensities imposed are related to the wing singularities distribution.

As explained in ”Low Speed Aerodynamics” [9], from the Kutta condi-
tion in the wake is shed a singularity µ of constant intensity equal to the
value assumed at the trailing edge; taking a strip of the wing and making
particular attention on the two panels that form the end of the wing (see
what is shown in Figure 5.5) the panel ends up to have a strength of:

µup − µlow − µwake = 0 (5.4)

that leads obviously at:

µwake = µup − µlow (5.5)

Moreover the wake will not produce any lift, writing the Kutta-Joukowski
theorem it holds:

∆F = ρV × γ = 0 (5.6)
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Figure 5.5: Doublet in the Wake

with V the local velocity and γ the vortex intensity; this formula is equal
to 0 only when the vectors are parallel. An equivalent representation of the
wake with doublet is achieved with γwake = −∆µwake, the eq. (5.6) become:

V ×∆µwake = 0 (5.7)

then the condition for the wake panels is:

µwake = constant (5.8)

5.5.2 Treatment of the panels

The wake is then represented with a sheet of doublet panels and it have
been suggested to take advantage of the doublet - vortex ring equivalence
with: Γ = µ as described again in [9].

So each side of the ring will now be treated like a single and simple vortex
segment; and in this way the schematization for the calculation become
something like Figure 5.7.

With this new configuration some more observation can be made in order
to save computational time.

Vortex Ring

In a same strip with the same doublet intensity all the adjacent panel ele-
ments will erase their effect one another during a normal calculation; this is
done as note in the Figure 5.7, all those elements have the same Γi but with
opposite signs.

In order to avoid useless calculation and in this way save time, the stan-
dard treatment of the rings is modified.
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Figure 5.6: Doublet Vortex Ring equivalence

Figure 5.7: Wake with Vortex Rings
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There are two distinction in the vortex panels, the ones in the middle of the
wake which have active only the vortex in the segments 2− 3 and 4− 1 like
in Figure 5.8; and those in the first row in which exists the vortex in 1− 2
too (Figure 5.9), these segments are here maintained because they keep the
balance of the wing trailing edge doublets.
The effects make by the elements 3 − 4 in the last row are negligible, their
influence in the shape and in the numerical results are so small that they
can be omitted in the computation.

Figure 5.8: General Vortex Panel

Vortex Segment

The utilization of this element follow again what explained in the ”Low
Speed Aerodynamics”[9], this is represented as Figure 5.10

and produce the induced velocity:

Vind = (u, v, w) =
Γ

4π

r1 × r2
| r1 × r2 |2

r0 ·
(
r1
r1
− r2
r2

)
(5.9)

where r0 = r1 − r2

Like the original program, the factor
1

4π
will be omitted avoiding in this

way computational errors and saving time.



40 CHAPTER 5. DESCRIPTION OF THE PROGRAM

Figure 5.9: First row Vortex Panel

Figure 5.10: Vortex Segment
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Singularities Treatment

Figure 5.12 shows how the control points are placed near the nodes of the
vortex segment, but one big problem is that this is a place of singularity
in which the equation of the velocity produce a value that goes to infinity;
furthermore during the relaxation other control points could happen to be
near another vortex segment.

A solution to this problem appears to be the employment of a viscous
core model on the vortex segment. At first sight this seams to be incom-
patible with the hypothesis of potential flow models but, as found out in
the references [1] and in [17], the panel method is only a mathematical ap-
proach for matching the boundary condition and gives a solution for the
specific flow field and not a representation of it; this expedient will not
invalidate the process, instead is something that help to reach a solution.

The velocities are then modified from the standard Biot-Savart law using
the Lamb–Oseen vortex model in this way:

Vinduced = VB.S.

(
1− exp

(
−r2

r2c (t)

))
(5.10)

where:

• r is the radial distance from the vortex element;

• rc(t) =
√

4νt is the core radius of the vortex ;

• ν is the effective core viscosity.

The time dependency is defined through t =
xTE
U∞

, with xTE the distance

from the vortex source (trailing edge).
The behaviour of the tangential velocity with the standard vortex equa-

tion and with this correction is shown in Figure 5.11, for this example a
vorticity Γ = 1 is used.

It’s clear how the velocity near the singularity goes to infinity, instead
with the core model it will slowly go to zero, deleting completely the problem.
This is useful to avoid an erratic behaviour of the wake.

Other methods to define a vortex core exist, like the Rankine model; but
as found in the reference [16], it’s said that the Lamb-Oseen is one of the
best that can accurate describe the vortex velocity field.
Another method often applied consists in avoiding to take in consideration
the self-induced strength of a vortex while the nodes near it are moved.
Note that using a small viscosity and a small offset become the same thing
as deleting the self-induction.

With the employment of this modification, when the vortex ring is called
one important parameters introduced with the inputs is the visc model
logical variable, which is in chief of the activation of the viscous core model
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Figure 5.11: Tangential Velocity

correction; the meaning in the use of this variable stands in the two different
needs of the wake’s properties.
While the process calculates the velocities in the wake control points this
is necessary for the reasons just explained, but in the recalculation of the
influence coefficients all the wing control points are far enough from the
vortex segments, away for any kind of singularity problems made by the
vortex rings. Those extra calculations are no longer needed, so the core will
not be taken in consideration.

5.6 Definition of the control points

Those are the points in which the induced velocity is evaluated; the relax-
ation process requires to move the wake nodes so it’s chosen to place four
of them around each geometric point, two above and two behind the nearby
panels.

Corner Points

In the panel method one of the most problematic actions is the definition
and the collocation of the control points. Many books and scientific articles
talk about the mathematical and physical approach of this method but when
it’s time to explain about the control points they just speak vaguely about
them.
In the relaxation process this is a critical fact, because we need to evaluate
the velocities and these depend strictly on the points in which they are
calculated.
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A solution about how to create the control points in doublet panel corners
have been found in the report [8]; from these formulas little changes have
been made in order to make the displacement proportional to the local chord
like the control points on the wing.
Taking in consideration the point P4 the four points are calculated from the
following expressions:

Pc = P4 + αD̂ (5.11)

where

D̂ =
D̂1 + D̂2

| D̂1 + D̂2 |

~D1 = n̂⊗ (P1 − P4) D̂1 =
~D1

| ~D1 |

~D2 = n̂⊗ (P4 − P3) D̂2 =
~D2

| ~D2 |
α = ε× chord

Here n̂ is the normal in the panel, ε the offset choose and chord the local
wing chord as said.

Calling the amount of displacement Padd = αD̂ = (dx, dy, dz), its com-
ponents are used to create more then one control point like in Figure 5.12

Figure 5.12: Control Points

It’s selected to place the Pc at the same x coordinate of the node, so the
dx will not be used; then playing with dy and dz the points are created.

Doing this for the row of panels it will produce four control point for
each node, see Figure 5.13. In the first and last panel, having no adjacent
panel, a couple of extra control points are generated from the same.
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Figure 5.13: Control Points on the Nodes

Midpoints

For the drag integration there’s the need to use control points constructed
from the midpoints, they are made following the scheme found in the same
report as the others point just used:

Pc =
1

2
(P4 + P3) + αD̂ (5.12)

where

~D = n̂⊗ (P4 − P3) D̂ =
~D

| ~D |
α = ε× chord

Like before, this is used to create a couple of control points up and down
the panel using on time n̂ and the other −n̂. In order to place them on the
Trefftz plane, the component dx will not be used.

Figure 5.14: Mid Control Points
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5.7 Calculation of the Singularities Coefficients

As explained in section 5.2.2 the matrices of the influence coefficients must
be redefined each time; but taking a look on the original subroutine used for
this purpose and the variables that change in the relaxation process, it can
be modified to fulfil in a better way it’s goal during the iteration, saving in
this way computational time.

By the definition of matrix coefficient follows that this is strictly depen-
dent from the geometry.
The matrix for the source system B V remain the same all the time, it
depends solely from the wing shape; the case is different for the one defined
by the doublet system: C V strip. This is defined by the distribution of
doublets both in the wing and in the wake; then the attention must be fo-
cus on the possibility to split it in the two origins: C V strip wing and
C V strip wake.

So the first one remains always the same as the source matrix, and only
the latter needs to be recalculated. For this purpose little change in the
original subroutine have been made, separating the doublet treatments and
making only the calculation that are really needed.

The strength for the new set of singularities are defined with the standard
calls of PanelStrengths.

5.8 Integration in Trefftz Plane

This part follows the method that have been described in chapter 4.2.
In the integration a relevant factor has been found; while in the study of
the wing aerodynamic properties and the wake shape the value 1

4π has no
influence, in the integration this is relevant. The results order change by a
factor of 101; to give a numerical example takes in consideration the induced
drag coefficient integrated with the flat wake:

• without 1
4π : CDi = 7.903 · 10−4

• with 1
4π : CDi = 9.932 · 10−3

The second one seems to be more reasonable with the value obtained from
the Lifting Line Theory (see chapter 6.3).

The intentions in this project are only the treatment of the wake and
its integration; so, without trying to change the choices in the wing pro-
gram, will be introduce two subroutine that correct the values obtained:
Correction 4pi Strengths and Correction 4pi Vel.

So before entering in the Drag Integration the previously influence co-
efficients are modified and the new singularity strengths calculated; in the
same way inside the subroutine the velocities are corrected before being used
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in the calculation.
Then the integration can be achieved.



Chapter 6

Final Results

The way suggested to check the validation of the program written and the
drag calculated, consists in the verification of the coefficient obtained from
a simple wing with its theoretical value.

6.1 Introduction to Prandtl’s Theory

Applying the Prandtl’s Lifting Line Theory the aerodynamics properties of
a wing could be calculated; for ours purpose only the induced drag definition
is needed, and we will focus on its evaluation.
The complete explanation of this can be found in all the major aerodynamics
books like those in references [3] and [10].

As briefly exposed in 2.2.1, an actual finite wing can be defined with a
superposition of horseshoe vortex elements of various strengths as in Fig-
ure 6.1.
Known the vorticity distribution Γ(y), lift, induced drag and induced drag
coefficient can be evaluated:

L = ρ∞V∞

∫ b/2

−b/2
Γ(y) dy

Di = ρ∞V∞

∫ b/2

−b/2
Γ(y)αi(y) dy

CD,i =
Di

q∞S
=

2

V∞S

∫ b/2

−b/2
Γ(y)αi(y) dy

(6.1)

Where αi is the induced angle of attack.

The condition of minimum drag is achieved through an elliptical distri-
bution of vorticity:

47
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Figure 6.1: Prandtl’s lifting line theory

Γ(y) = Γ0

√
1−

(
2y

b

)2

that leads to write:

L = ρ∞V∞Γ0
b

4
π

Γ0 =
4L

ρ∞V∞bπ

Γ0 =
2V∞SCL

bπ

(6.2)

With this lift distribution the induced angle of attack is constant along the
span, and it could be written as:

αi =
CL
πAR

(6.3)

Substituting eq. (6.2) and (6.3) into (6.1) produce:

CD,i =
C2
L

πAR
(6.4)

As said, this is valid only for an hypothetical elliptical distribution that
it’s not achieved every time. This must be generalised for any other lift
distribution.
The generic form of the drag coefficient is:

CD,i =
C2
L

πAR
(1 + δ)

=
C2
L

eπAR

(6.5)

where the variable e is called span efficiency factor.
The values assumed are always e 6 1; the condition e = 1 it comes in the
case of elliptical lift distribution, here the drag will have the minimal value
and this is the reason why this kind of distribution is normally sought.
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6.2 Span efficiency

The values of e depend only on the wing geometry and in many book it
could be found the graphical function of δ with the variation of AR and
the ratio of root and tip chord. But those are small graphics in which it’s
hard to pull out a correct information; the solution seems to calculates this
parameters from the start.
This is explained in many book, what will be applied now follows what found
in ”Foundation of Aerodynamics”[3] when it describes the behaviour of an
arbitrary circulation distribution of vorticity.

It starts with a representation with a Fourier series of the arbitrary
symmetrical circulation distribution

Γ =
1

2
m0scsV∞

∞∑
n=1

Ansin(nθ) (6.6)

the subscript s define the values on the symmetry plane, c it’s the chord and
m0 is the slope of the graphic Cl − α of the airfoil.
Some passages here are avoided, if interested the could be easily found in
the book.
The expression of the angle of attack is written:

(α− αL=0) =
csm0s

cm0

∞∑
n=1

Ansin(nθ) +
csm0s

4b

∞∑
n=1

nAn
sin(nθ)

sin(θ)
(6.7)

an expression of the induced drag coefficient become:

CDi = (CDi)elliptic

∞∑
n=1

nA2
n

A2
1

(6.8)

with

(CDi)elliptic =
C2
L

πAR

CL = π2
A1

2

(6.9)

eq. (6.8) is rewritten:

CDi = (CDi)elliptic(1 + δ) (6.10)

where:

δ =
∞∑
n=2

nA2
n

A2
1

(6.11)

So the solution of the problem become find out all the coefficients An.
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Evaluation of the coefficients An

Working with a rectangular wing build with the same profile makes the
things easier, the chord and the slope will not change in the span-wise di-
rection.

The infinite series will be stopped at a chose value of n, then the equation
(6.7) must be satisfied at each θ = cos−1(2y/b). Having halted the series,
and due to the symmetry, n station point θ0 are defined on one half of the
span. In this way the equation produces the system:

[a]{An} = {α} (6.12)

that can be solved for the unknown An.

6.3 Wing for validation

It’s chosen to deal with a rectangular wing with no swept or dihedral angle,
the sections are made with symmetric profile.
The wing used has the following properties:

• AR = 4

• c = 500

• span = 2000

• α = 5o

• profile NACA 0015

The choice of symmetrical airfoils makes simplification in the calculation of
the coefficients An in eq. (6.7) :

- cs = c

- m0s = m0

- αL=0 = 0o

Note that m0 = 2π from the theory of the profile explained in [10].
For the calculation of the factor δ explained in the previously section,

a little matlab program for the generic Lifting Line has been made. The
results have been compared with the examples shown in ”Foundations of
Aerodynamics” [3] and they agree with them; to reach a better definition
of the data the Fouries series is defined using a n = 1000; use higher values
make no better resolution.
So following eq. (6.8), (6.9) e (6.11) the values found are:

• δ = 0.028476875151218
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• CL = 0.351543059967817

• (CDi)elliptic = 0.009834384708527

• CDi = 0.010114437254061

The span efficiency become e = 0.972311603849108

6.3.1 Testing the Subroutine

To proof the right operation of the drag integration its subroutine has been
first tested with the flat wake (Figure 6.2), obtaining as result CDi = 1.0005·
10−2.
This is enough near the expected one to reassure on the accuracy of the
relaxed wake integration.

Figure 6.2: Flat Wake Integration

6.4 Results

The result of the drag integration is strictly dependent to the geometry
reached; but this is not so simple to achieve.
As described in chapter 5.5.2 a way to solve the singularity problem is the
viscous core; but this is also something that must be taken in highly con-
sideration.
The value chosen for the viscosity ν modify the core radius length (Fig-
ure 6.3); so this will become a way to define the space region of the vortex
segment influence, this is a factor that has a strongly effect on the converged
shape; as found in reference [12] a solution could be making this parameter
varying and examine its effects.
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Figure 6.3: Core Rudius

Radius Core Influence

Taking fixed the value of the wake paneling and the control points offset, in
the Figure 6.4 and 6.5 is shown the effect made by different values of the
viscosity.

But despite the good section the drag coefficients evaluated are merely
the half of the expected value.

In Figure 6.6 is shown the behaviour of the CDi calculated with the
variation of the core dimension; from some point the shape starts to act
strange and the panels to cross themselves, maybe because the control points
are no longer well treated from the singularities, and the results leak in
reliability, as example the shape in Figure 6.5(b) defined a result of CDi =
9.251 · 10−3.
The coefficient increase with the core decreasing; but with it the penetration
shown up.

Trying not to use the viscous model but instead deleting the self-induction,
the shape is the one in Figure 6.5(c), but downstream the wake presents in-
terpenetration, it has produced CDi = 5.114 · 10−3.

Offset Influence

It could be interesting observe the influence of the offset given to the control
points respect of a fixed radius core.

It’s setted to use the values 1e−2, 1e−3, 1e−4 and 1e−5; the result trend
is shown in Figure 6.7.
With small cores the coefficient increases with the control point approaching.
But in both simulations the penetration problem remains the same.
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(a) ν = 1

(b) ν = 0.5

Figure 6.4: Radius Core Influence on the Shape a
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(a) ν = 0.1

(b) ν = 0.01

(c) Without self-induction

Figure 6.5: Radius Core Influence on the Shape b
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Figure 6.6: Radius Core Influence on CDi

Figure 6.7: Offset Influence

Panels Influence

Now, the value for the core model is fixed at ν = 0.5, the wake discretization
is made to vary in such a way to be able to observe its influence on the wake
shape and the drag coefficient achieved.

In Figure 6.8 and reffig:prove 0.5 b are shown some results, the title of
each figure represents the schematization according to chapter 5.4.1.
Figure 6.9(b) is made with an offset of 1e−1, the others with 1e−2; smaller
ones make no differences.

In the firsts three the geometry maintain itself good, with the increase
of panels it’s even able to roll-up itself a discrete number of time without
any problem. The last one instead presents interpenetration.
But, even though this good behaviour, the integration doesn’t produce the
hoped values:

(a) CDi = 4.23 · 10−3

(b) CDi = 5.07 · 10−3

(c) CDi = 4.76 · 10−3

(d) CDi = 2.91 · 10−3
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(a) 1-10-10-10

(b) 10-40-40-20

Figure 6.8: Panels Influence on the Shape a
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(a) 20-100-100-20

(b) 10-40-40-20 offset 1e−1

Figure 6.9: Panels Influence on the Shape b
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Others attempts have been made with smaller value for the core. But
now biggest problems are born: the presence of the panels interpenetration.
Changing the number of panels used and the offset of the control points
seems to produce no kind of benefits in the geometry; this panels intersection
manifests itself in most of the simulation, and despite such problem, with
the increase of the rows the integration produce results near the right one.
The sections in Figure 6.10 are made with a ν = 0.01, and the produced:

(a) CDi = 1.082 · 10−2

(b) CDi = 1.188 · 10−2

(a) 10-50-50-20 offset 1e−3

(b) 10-40-40-20 offset 1e−5

Figure 6.10: Sections with correct CDi 1

Instead, trying with simply avoiding the self-induced vorticity (note
again that it’s equal to use small core and small offset) the problem mani-
fested itself once more.
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Attempting to seek a reasonable shape (like in Figure 6.11) with different
panel lengths the perforations always shown up; while the initial roll-up
seems to produce a good shape, downstream this attitude won’t never be
maintained.
Moreover, like before the integration presents correct values with the pres-
ence of penetrations (see Figure 6.12).

(a) CDi = 6.129 · 10−3

(b) Downstream penetration

Figure 6.11: ”Correct Shape” with no self-induction

Points Integration Influence

In the program has been inserted another method to evaluate the point po-
sitions, one based on the trapezoidal rule 5.1.1.
With an iterative process one problem could be the propagation of the nu-
merical errors, and this 2-step method has a higher reliability than the Euler
1-step.
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(a) CDi = 1.0001 · 10−2

(b) CDi = 1.1870 · 10−2

Figure 6.12: Sections with correct CDi 2
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The negative side is the computational time, with the supplement of the
second step the calculation time is doubled and this could be relevant in
complex analysis.

Nevertheless, it has been applied with the same conditions used in the
Figures 6.4(b), 6.5(a) and 6.10(a); the shapes achieved are compared in
Figure 6.13.

With the biggest core the wake achieves a higher roll-up, but in the
others cases the interpenetration seems to be enhanced. The coefficients
calculated remain similar of the ones made by Euler method.

6.5 Attempts with complex geometry

Now program has been applied with an arbitrary non-planar wing, despite
the well known wrong results; it’s setted with the same conditions that in
the previously example made a ”good geometry”.

With a C-wing in Figure 6.14, the wake convected itself as in Figure 6.15
where there are the sections made in different positions. Figures 6.16 and
6.17 show the results with a winglet.

Now the geometry doesn’t remain acceptable on its entire length, even
if with the simple wing there were no kind of problems; the wake seems
to create more than one vortex region, that the continuous geometry can’t
describe properly and again the interpenetration problem presents itself once
more.
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(a)

(b)

(c)

Figure 6.13: Points Integration Influence on the Shape
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Figure 6.14: C-Wing
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(a) Section 2 b
2

(b) Section 4 b
2

(c) Section Trefftz Plane

Figure 6.15: C-Wing Wake’s Sections
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Figure 6.16: Wing with Winglet
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(a) Section 2 b
2

(b) Section 4 b
2

(c) Section Trefftz Plane

Figure 6.17: Wing with Winglet Wake’s Sections
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Final Comments

The assumption of the viscous core seems to be the best way to produce a
wake with a good shape, able to show the roll-up effect; but this geometry
is not enough to allow the exact integration of the induced drag coefficient
through the Trefftz plane; the high radius core value is unrealistic in a real
flowfield.
The geometry is highly influenced by the reduction of the core radius, or
by the avoiding of the self-induction, and following this path the integration
result become nearer the theoretical ones; but with it the problem of panel
interpenetration become relevant.

This phenomenon is something that could shown up in the panel method;
as an example in the reference [1] the shape achieved in Treffz plane is the
one in Figure 7.1; and, again despite the problem, it produce a right value
for the drag coefficients, but the penetration isn’t considered as a ”problem
that invalidate the results”.

Figure 7.1: Interpenetration Problem

In the reality from a vortex element there is a transition region where
the fluid goes through a turbulent state before sets itself into a laminar one.
This is a phenomenon that is not taken in consideration in an inviscid study
and its influence in the seeking of the real shape could be relevant.
The singularity treatments through a core radius is only a way to avoid the
infinity problem, and not something that can simulate the real comportment
of a fluid.

Panels that end up crossing themselves shouldn’t be something realistic,
they represent a material region; so the acceptability of those results haven’t
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enough reliability.



Appendix A

Description of the
Subroutines

Here a list of the subroutine created and modified with a brief description

A.1 Subroutines Modified

This thesis is an implementation of a program written by Dipl.-Ing. Uwe
Schuster, so few subroutines have been modified to be adapted to the relax-
ation scheme.
The titles of the paragraphs represent the name of the relative subroutine

Source velocity

Given that in different points of the program there’s the need of the calcu-
lation of the velocities, to be able to do this simpler all the row of codes
concern the source panels have been gathered in a single block.

Wing & Wake QuadrilateralDoubletStrip

The original treatment of all the doublet have been change for the same
reason as the source system and for the motivation explained in 5.7.
The first collects all the equations and subroutines needed to calculate the
velocity component due to the wing’s doublet distribution, the second one
is instead used just for the wake’s doublet.

IntroducePanels

The only modification here made consists in adding the vector P in the
output, those points are used in the creation of the control points.
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InfluenceCoeff

As explained in 5.7 the calculation of the matrix have been separated in its
two components, and the C V strip wing is added to the output variables
to be used in the next recalculation of the coefficients.

A.2 Subroutine Created

GKS to VCS

This is the subroutine that make the change in the coordinate system (5.3; it
sized the input vector, calculates the rotational matrix for the defined angle
and than makes the multiplication to obtain the vector in the new frame.

Wake Relaxation

This is the main part of program for the convection process. It required for
input the wing geometry and the variables for the panel method analysis.
For the process are also introduced the offset of the control points, the
complete length of the wake and the position of the Trefftz plane.
Inside are defined the variable in charge for the convergence, tolerance saves
step. The procedure begins creating the initial conditions on geometry and
singularities distribution. Logical variables mu recalc, test RK2 define
the way to go on with the iteration.

The output variables will be of course the new wake configuration with
the all others needed for the remain part of the program that analyzes the
wing’s aerodynamics properties.

While the iteration is going on, on the display will be shown at each step
the maximum displacement done, the tolerance chosen and the change in
the doublets shed in the wake.

Zero WakePoints

Once the paneling properties are setted (chapter 5.4.1) this starts to create
the geometry of the ”zero wake” from which begin the iteration.
It scans the AdvWingPoints to get the reference coordinate to place the
Trefftz plane; with the variables imposed for the paneling starts to calculate
all the geometric characteristics and starts to build up row by row all the
wake’s nodes.

The output is represented with the vector WakePoints and the location
within it of the points that make the intersection with the plane (ii TP).
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Semispan calc

It’s a simple subroutine that define the semispan; it creates a vector with
all the y-coordinate of the trailing edge wing points and finds the maximum
value in it. This represents the span of or the semispan if it’s true the
symmetry condition.

Control Point

Giving in input the the geometric informations of a panel (points P and
rotation matrix) and the ones for the offset (local chord ad offset quantity)
this subroutine defines the displacements Padd needed to creates the control
points in the panel’s nodes, as explained in 5.6.

Define Control Point

This is where all the control points are created.
For the the specific row in the iteration the panels in analysis are individu-
ated for the call of the previously subroutine and then for all the nodes P4

and P3 the control points are produced as described again in 5.6.

In the end the output will be a vector in which are defined the four
control points for all the geometric wake’s nodes in the row.

VelocitiesCalculation

This subroutine is the one headed to the calculation of the velocities induced
by the source, wing’s doublets and wake’s vortex rings system; it’s created
to work with a set of control points as input. This is sized and then a do
cycle begin to calculate the velocities for each point.

Define velocities

Here the velocities in the wake’s nodes are defined. The major inputs are
the control points made in Define Control Point and the infinity velocity;
in each geometric points it’s associated the average of the velocities calcu-
lated through VelocitiesCalculation and then the U∞ is added to obtain the
complete velocity.

Displacement Eulero

In this subroutine the integration of the nodes displacement takes place; it
follows the Euler scheme.
The inputs are represented by the vector with the wake points and the
velocities previously evaluated. Then the next point position is evaluated
for the entire row following (5.1) and the displacement achieved is imposed
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to the all points downstream, recreating in this way the new wake geometry
and replacing the old coordinates in WakePoints.

This subroutine also check the majors displacement in both y and z-
coordinate and then the biggest one, this value d max is used for the con-
vergence control.

C V strip Recalculation

This follows what described in 5.7 the matrix C V strip wake related to
the new wake geometry is calculated anew and added to C V strip wing
to create the new C V strip in order to update the singularities.

Mu TE Calculation

As the name says its aim consists in calculate the doublet intensities µ
spread from the trailing edge to the wake. The major use of this subroutine
is related to the convergence about the singularities, when after a com-
plete movement the difference from the previously iteration is calculated
and checked in the convergence loop.

Wake visc VortexRing

Here we take count of the wake’s doublet, as explained in chapter 5.5 the
panels are treated as Vortex Rings in the way described. The logical in-
put visc model set the choice of the use of the viscous core to avoid the
singularity problem.

CorrectWakePanels

It follows the scheme of the original IntroducePanels and upgrades all the
wake panel properties after each movement.

Correction 4pi Strengths

As the name says and as has been explained in chapter 5.8 this will correct
the coefficients calculated.
The inputs consist in the two matrices B V and C V strip, these will be
sized and then the components are modified with the product 1

4π ; the new
output matrices are so created.

Correction 4pi Vel

This works in the same way as the previous one, the input is the velocity
vector which includes all the row nodes velocities calculated, it sizes it and
corrects the elements with the 1

4π factor.
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Drag integration

In this subroutine the integration in the Trefftz plane take place, it follows
what explained in the chapter 4.2. The index ii TP is finally used here to
catch the points in the plane.

Now the control points are based from the mid points, the displacements
to add for their construction are calculated from the formulas shown in 5.6.
For the integration, at the mid points are associated again the average of
the two velocities. The jump in the singularities is defined through the
Mu TE Calculation.

The application of the trapezoidal rule needs the distance between nodes,
this follows the length of the wake (see chapter 4.2)

Drag Integration Surface

This is a try on application of the surface integral from (4.14).

First Wake

This is different way to make the first iteration, some articles like [4] suggests
that in the beginning it could be suitable to displace the nodal points taking
in consideration only the upstream system influence. The singularities are
recalculated after a chosen interval.

Upstream Wake

Here a copy of the wake is made, but taking in account the upstream ele-
ments.

Displacement Trapezoidal

This one is in charge to compute the next point position with the other
method explained through the eq. (5.2).

Step Wake

Here all the variables of the wake and of the panels are cloned for the first
step of the RK2; otherwise the properties from the previously iteration will
get lost.

Read WakePoints $ Read singularities

The program saves in files .dat with the wake and singularities results, those
subroutine are build in order to read those data and recreate the vector for
the analysis.
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