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Abstract

This thesis is aimed at studying direct (i.e., without intermediate flybys)
trajectories to visit different moons of a planetary system. In particular, the
case of study is that of the Galilean moons Europa, Ganymede and Callisto,
first observed by Galileo Galilei in 1610, orbiting around Jupiter. The work
is motivated by the growing interest in the robotic exploration of the Jovian
moons, justified by the possible existence of water beneath their surfaces, and
the consequent need for efficient trajectories with low fuel requirements con-
necting their neighbourhoods. Moreover, due to the intense particle radiation
environment characterizing the Jovian magnetosphere, each moon-to-moon
connection should be fast in terms of time of flight. For the same reason,
the inner Galilean moon Io has been excluded from this work, being strongly
affected by the radiation belts of the gas giant planet.

Two physical models are employed in this study: the circular restricted
three-body problem and the restricted two-body problem. The former is
used to study the spacecraft’s dynamics in the vicinity of the moons, the
primaries being Jupiter and one of its moon and the secondary being the
spacecraft. The latter is employed to approximate the dynamics in regions
far from the moons: in this case, the sole gravity of Jupiter is considered,
neglecting the effects of the moons. Since the circular restricted three-body
problem is employed in the vicinity of the moons, the trajectories we find are
classified as low-energy trajectories. The planar assumption is made, since
the relative inclinations between the orbital planes of the Galilean moons are
much smaller than one degree.

The method to link the several sections where different models are used
is explained. We want to identify trajectories going from Europa (the inner
moon) towards Callisto (the outer moon, among the three considered) passing
by Ganymede (outward journey), and then back to Europa (inward journey).
This two-way journey is called a tour.

To study the trajectory in the vicinity of the moons several mathemat-
ical tools typical of the circular restricted three-body problem have been
employed. In particular, the planar orbits around the equilibrium points,
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their associated phase space structures (invariant manifolds) that regulate
the transport of material to/from them (and provide a conduit between pri-
mary bodies for separate three-body systems), and the trajectories travelling
inside these region (transit orbits) able to execute loops around the moons
without the need for additional fuel. By employing transit orbits in the
vicinity of the moons, we show that the time of flight for each moon-to-moon
connection can be substantially lowered over traditional methods employing
multiple flybys.

The method developed allows to treat the connections between the sev-
eral moon-to-moon sections as a kinematical problem. Such connections has
a cost, which is valued as the norm of the variation in the spacecraft’s veloc-
ity vector (∆V ) to increase/decrease its orbital energy to journey between
consecutive moons. The trajectory minimizing the sum of the required ∆V
is selected. The minimum-∆V trajectory calls for specific relative phases
between the moons which cannot be guaranteed at every instant during the
journey. For this reason we show that parking orbits around Callisto and
Ganymede are needed during the inward journey: these orbits allow to wait
the right time for the required rephasing between the moons. On the other
hand, these rephasing orbits permit to get closer to the moons and spend
more time around them.

With the method employed in this thesis, the cost for each moon-to-
moon connection, measured in km s−1, is about 1 km s−1. Even if this budget
is roughly 40% of the one required by a Hohmann transfer, it is still large to
be performed by means of chemical thrusters: we are currently studying how
to convert the ∆V -manoeuvres to low-thrust arcs using electrical thrusters.

Most of this work has been done at Universitat Politécnica de Catalunya
(UPC) - School of Industrial and Aeronautical Engineering, supported by
an Erasmus scholarship and under supervision of Dr. Elena Fantino and
Dr. Roberto Castelli (Vrije University Amsterdam). The remaining part has
been developed at Purdue University - Department of Aeronautics and As-
tronautics, under supervision of Prof. Kathleen C. Howell, with the support
of a two-months scholarship financed by the Italian Space Agency (ASI).
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Chapter 1

Introduction

The objective of this thesis is to present a method to determine the minimum-
cost direct (i.e., without intermediate flybys) trajectory connecting consec-
utive moons of a planetary system. In particular, an application to the
Galilean moons Europa, Ganymede and Callisto is provided. The motiva-
tion of this work is the contemporary interest in the in situ exploration of the
planetary systems of the giant planets and the consequent need for efficient
trajectories with low fuel requirements enabling the execution of transfers
between their several moons.

Among the future missions sharing the same interest, ESA’s JUICE (ESA,
2014), due to launch in 2022, will execute a series of flybys around Europa
and Callisto, eventually orbiting Ganymede [Grasset et al., 2013]; NASA’s
Europa Mission Plan calls for a spacecraft to be launched to Jupiter in the
2020s: the probe would orbit the gas giant planet every two weeks and ex-
ecute close flybys of Europa [Lam et al., 2015]. Prior to this, the cancelled
JIMO project was characterized by a trajectory with orbits around Europa,
Ganymede and Callisto [Sims, 2006]. Such interest in the design of trajec-
tories to explore the Jovian system was emphasized by the sixth edition of
the Global Trajectory Optimization Competition [Petropoulos, 2013]. No-
table contributions [Colasurdo et al., 2014, Izzo et al., 2013] based on multi-
gravity assist techniques in the framework of the two-body problem allow
several flybys at very low ∆V expense (on the order of tens of ms−1).

By means of the dynamical systems theory, it is possible to find low-energy
(i.e., in the framework of the three-body problem) trajectories connecting dif-
ferent equilibrium points of the three-body problems composed by Jupiter
and its moons. The first study of a low-energy tour of a planetary system is
the Petit Grand Tour (PGT), applied to the exploration of the icy moons of
Jupiter [Koon et al., 2000, Koon et al., 2002]. The aim of the PGT is to find
an itinerary to explore the moons of any planetary system with almost arbi-
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2 CHAPTER 1. INTRODUCTION

trary trajectories. In the quoted papers, a transfer from Ganymede to Europa
is considered (see Fig. 1.1a). The model is the coupled CR3BP, based on the
connection between the Jupiter-Ganymede CR3BP and the Jupiter-Europa
CR3BP. The trajectories of the two systems are linked together by means of
suitable Poincaré sections in the intermediate regions between the two moons,
where a change in velocity is applied. Intersections are sought between the
unstable and stable invariant manifolds of planar Lyapunov orbits around
collinear libration points of the two CR3BPs. These structures act as gravi-
tational conduits able to link the primaries of different three-body systems.
A PGT between Ganymede and Callisto takes 25 days and less than a half
the amount of propellant required by a Hohmann transfer (which has a cost
of 2.8 km s−1). Other attempts to find low-energy connections in planetary
systems led to the Multi-Moon Orbiter (MMO) concept, in which resonant
gravity assists are employed to switch from an orbit around a Jovian moon to
another [Ross et al., 2003, Koon et al., 2000]. In this case, the ∆V require-
ments are very low (less than 10 m s−1) but the time of flight is extremely long
(in the quoted papers the time of flight for a tour of Europa, Ganymede and
Callisto is 4 years). An example of such trajectory is showed in Fig. 1.1b.
[Grover and Ross, 2009] propose a semi-analytical method to decrease the
time of flight of the MMO. Gravity assists are replaced by suitable impulsive
manoeuvres: as a result the travel time is reduced from years to months with
∆V s of 100 ÷ 200m s−1. The investigations of [Lantoine and Russell, 2011]
and [Lantoine et al., 2011] show a systematic way to compute fuel optimal
transfers between the Galilean moons Ganymede and Europa. The strategy
consists in combining resonant gravity assists with manifold tubes. Solutions
are obtained which require 50 m s−1 and take 160÷ 200 days.

Similarly to the PGT approach, in [Fantino and Castelli, 2016a] the in-
variant manifolds of the planet-moon planar Lyapunov orbits are propagated
and eventually approximated with Jupiter-centred Keplerian orbits in regions
far from the moons. Intersections between the corresponding osculating el-
lipses identify possible connections. This method leads to a significant re-
duction in computing time while maintaining a substantial level of accuracy.
Moreover, there is no need for Poincaré sections to find intersections between
invariant manifolds. In the present work transit orbits are employed instead
of invariant manifolds to find a tour of the Galilean moons. These trajec-
tories travel inside the manifold conduits and provide a faster link between
distant point of the three-body system. Besides, transit orbits can execute
loops around the smaller primary without the need for fuel.

Furthermore, this work has roots in another series of papers which laid
the foundations of the low-energy transfers in the Sun-Earth-Moon system.
In [Koon et al., 2001] invariant manifolds are propagated from Lyapunov or-
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(a) PGT concept (b) MMO concept

Figure 1.1: Left: a Petit Grand Tour of the Jupiter moons Ganymede and
Europa [Koon et al., 2000]. Right: the Multi-Moon Orbiter concept for the
Jovian moons, with resonant gravity assists between Europa, Ganymede ad
Callisto [Ross et al., 2003].

bits in the Earth-Moon and Sun-Earth CR3BPs, in search for a low-∆V
intersection (see Fig. 1.2). Other significant contributions were given by
[Zanzottera et al., 2012, Parker and Anderson, 2013].

The thesis is organized in four chapters.

• Chapter 2 defines the CR3BP and the related mathematical tools em-
ployed in this work. In particular, the planar orbits associated to the
equilibrium points, the invariant manifolds and the transit orbits are
explained.

• Chapter 3 describes the method to perform a moon-to-moon connec-
tion, by properly linking the CR3BP in the vicinity of the moons and
the two-body approximation in the inter-moon region between them.
An application to a transfer from Europa to Ganymede (and viceversa)
is presented and the results are discussed.

• Chapter 4 explains how to repeatedly link moon-to-moon connections
with the purpose to identify a two-way journey of the Galilean moons.
The initial phases of the moons required to complete the tour are found
and the rephasing problem is explained.

• Conclusions and final discussions follow in Chapter 5.
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Figure 1.2: The first low-energy transfer to the Moon obtained by coupling
two CR3BPs. The transfer is intended from a LEO to the vicinity of the L2
of the Sun-Earth CR3BP through the stable manifold of a planar Lyapunov
orbit, then from there to a Poincaré section through the unstable manifold
of the same Lyapunov; an impulsive manoeuvre (∆V at patch point) is then
applied to join a trajectory of the stable manifold of a planar Lyapunov orbit
around the L2 point of the Earth-Moon CR3BP [Koon et al., 2001].



Chapter 2

The circular restricted
three-body problem

Introduction. The circular restricted three-body problem (CR3BP) is the
framework of the present work. Exploiting the natural dynamics provided
by this problem offers a wider range of options with respect to the two-
body problem approach, revealing structures that do not exist within the
latter. Its properties are here introduced being them widely used as fun-
damental tools to perform trajectory design. After defining the problem,
the equations of motions are derived using dimensionless coordinates. The
autonomous character of the equations allows to find five points of equilib-
rium (Sect. 2.2). Existence of a first integral for the equations of motion,
related to the conserved mechanical energy, is proven (Sect. 2.3). Studying
the stability of the equilibrium points (Sect. 2.6) and linearising the equa-
tions of motion in their vicinity (Sect. 2.7) reveals the existence of periodic
solutions (Sect. 2.8). Invariant manifold theory is introduced in connection
with the collinear libration points (Sect. 2.9), and their associated planar
periodic orbits (Sect. 2.11). These latter structures, in particular, are cru-
cial in trajectory design and their role of separatrices leads to the definition
of transit orbits (Sect. 2.13). These objects will be used as a means to
find low-energy connections between couples of CR3BPs. Fundamental ref-
erences include [Szebehely, 2012, Gómez and Mondelo, 2001, Gómez, 2001,
Gómez et al., 2001, Gómez et al., 2004, Masdemont and Mondelo, 2004] for
the CR3BP and [Perko, 2013, Parker and Chua, 2012] for the invariant man-
ifold theory.

The circular restricted three-body problem considers three point masses
P1, P2, P3 with P3 (e.g., the spacecraft) negligible with respect to P1 and
P2 (often called primary and secondary respectively or primaries to refer to

5



6 CHAPTER 2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

Figure 2.1: The primaries and the third body in the synodical reference
frame. In this figure Jupiter (P1) and Europa (P2) are represented as
primaries.P3 is the third massless body. With the convention used in the
present work, the smaller primary has negative x coordinate. In this figure,
the coordinates of the primaries are given in normalized units.

both). The problem is further called circular because P1 and P2 are moving
in circular orbits about each other and around their common barycentre.
Therefore, the motion of the masses P1 and P2 is completely known. If the
motion of P3 is constrained to occur in the orbital plane of the primaries, the
problem is also called planar, otherwise it is called spatial.

Let the synodical reference frame (SRF) (Figure 2.1) be the co-moving
frame whose x-axis always contains the two primaries P1 and P2 in fixed
positions, with the origin on their barycentre O; the y-axis lies in the orbital
plane. The primaries are orbiting around each other in a circular orbit of
radius r12. In addition we define the inertial reference frame (IRF) as an
inertial system centered on O. The inertial, angular velocity ω is

ω = ωk (2.1)

where
ω = 2π

T
, (2.2)
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k is the unit vector along the SRF z-axis and T is the period of the primaries

T = 2π r
3/2
12√
GM

, (2.3)

being G = 6.674 08× 10−11 m3 kg−1 s−2 the gravitational constant and M =
m1 +m2 with mi the mass Pi. For convention, the smaller primary is on the
left of the origin, whereas the larger is on the right.1 The mass ratio µ of the
system is defined as

µ = m2

m1 +m2
, (2.4)

being m2 < m1 without loss of generality. Hence, µ is always smaller than
1/2. The equations of motion of P3 in the IRF are given by the Newton’s
second law

m3r̈ = F1 + F2, (2.5)

being

F1 = −Gm1m

r3
1

r1, (2.6)

F2 = −Gm2m

r3
2

r2, (2.7)

r1, r2 the position vector of P3 with respect to P1 and P2 respectively, and
r1, r2 their magnitudes. We can easily rewrite the inertial acceleration r̈ by
means of the acceleration decomposition theorem:

r̈ = aG + arel + ω̇ × r + ω × (ω × r) + 2ω × vrel (2.8)

where vrel = ẋi+ ẏj+ żk is the relative velocity, arel = ẍi+ ÿj+ z̈k the relative
acceleration and aG the acceleration of the barycentre. Since the centre of
mass of any n-body system within a central-force system has constant inertial
velocity it follows that aG = 0. Equation (2.8) can thus be rewritten as:

r̈ = (ẍ− 2ωẏ − ω2x)i + (ÿ + 2ωẋ− ω2y)j + z̈k, (2.9)

where i, j,k are unit vectors along the SRF principal axes. To avoid the de-
pendence of the previous equations on system quantities such as the masses

1It is frequent to find the opposite convention as well, with the smaller primary on the
right and the larger on the left. A π rotation around the z-axis is required to switch from
one representation to the other.



8 CHAPTER 2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

of the primaries or the distance between them, a set of nondimensional pa-
rameters is introduced. In particular we define the distance unit (1du) and
the mass unit (1mu) such that:

(1du) = r12 (2.10)
(1mu) = m1 +m2. (2.11)

We further define the time unit (1tu) to be such that the angular velocity of
the primaries in their orbits is unitary, i.e., ω = 1rad/1tu. In these normal
units we have:

1rad/tu = ω =

√√√√G(m1 +m2)
r3

12
=

√√√√ (1mu)
(1du)3 . (2.12)

Thus, the numerical value of the gravitational constant G is one in these
units. In addition, the coordinates of the primaries becomes P1(µ, 0, 0) and
P2(µ − 1, 0, 0) and the CR3BP becomes a one-parameter problem, the pa-
rameter being µ.

Using these nondimensional units, Eqs. (2.5) and (2.8) becomes respec-
tively:

r̈ = − µ
r3

1
− 1− µ

r3
2

(2.13)

and
r̈ = (ẍ− 2ẏ − x)i + (ÿ + 2ẋ− y)j + z̈k, (2.14)

being the coordinates x, y, z now expressed in normal units. Equating the
right-hand sides of Eqs. (2.13) and (2.14) yields the equations of motion of
the CR3BP in nondimensional units, written in the SRF:

ẍ = 2ẏ + x− (1− µ)(x− µ)
r3

1
− µ(x+ 1− µ)

r3
2

,

ÿ = y − 2ẋ− (1− µ)y
r3

1
− µy

r3
2
,

z̈ = −(1− µ)z
r3

1
− µz

r3
2
.

(2.15)

Since there is not explicit dependence on time in the equations of motion, the
system of differential equations is called autonomous. Moreover, the equa-
tions are nonlinear because of the dependence from the inverse of the third
power of the distances r1 and r2 of P3 from P1 and P2 respectively. Moreover,
for an initial condition belonging to the xy-plane (with ż(t = 0) = 0), the
resulting trajectory will evolve in the same plane solely. Thus, the planar
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circular restricted three-body problem may be studied independently of the
spatial circular restricted three-body problem. Using the vector notation, we
can rewrite the previous system of second-order equations as:

ẋ = f(x), (2.16)

being:
x = {x, y, z, ẋ, ẏ, ż}T (2.17)

and

f(x) =



f1

f2

f3

f4

f5

f6



=



ẋ

ẏ

ż

2ẏ + x− (1− µ)(x− µ)
r3

1
− µ(x+ 1− µ)

r3
2

y − 2ẋ− (1− µ)y
r3

1
− µy

r3
2

−(1− µ)z
r3

1
− µz

r3
2



. (2.18)

The system (2.18) is not analytically integrable over time. A solution can be
numerically approximated, once an initial state x0 is given

x0 =

r0

v0

 (t = 0). (2.19)

Sometimes we will refer to the flow of Eq. (2.16). The flow Φt of f is
defined so that Φt = Φ(x, t) is smooth and d

dt
Φ(x, t)|t=τ = f(Φ(x, τ)).

2.1 Transformations between synodical and
inertial reference frames

Coordinate transformation between reference frames is useful to evaluate the
Keplerian orbital elements at specified points along the integrated trajectory.
The SRF is rotating around the IRF at constant speed ω, as defined in
Eq. (2.2) and, for convenience, the two frames are assumed to be aligned at
the initial time t = t0 = 0.
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Since Keplerian elements are defined in the two-body problem and are
referred to the relative motion of two bodies, a change of origin is required
to centre the system on the given primary. In particular, if

x = {x, y, z, ẋ, ẏ, ż}T (2.20)

represents the state vector in the SRF, we will consider the translation:

xi = x− r̂i, i = 1, 2 (2.21)

where r̂1 = {µ, 0, 0, 0, 0, 0}T and r̂2 = {µ− 1, 0, 0, 0, 0, 0}T for the P1-centered
IRF and the P2-centered IRF respectively. Defining

Xi =
{
X, Y, Z, Ẋ, Ẏ , Ż

}T
(2.22)

the inertial state vector in the Pi-centered IRF, the relation between the two
frames is given by:

Xi = Txi, (2.23)
being

T =

R 03×3

Ṙ R

 , (2.24)

with the submatrices defined as follows:

R =


cos t − sin t 0
sin t cos t 0

0 0 1

 , (2.25)

Ṙ =


− sin t − cos t 0
cos t − sin t 0

0 0 1

 , (2.26)

and 03×3 is the 3× 3 matrix with all the elements equal to zero.

2.2 Equilibrium points
In the SRF we can identify specific points in which the combined gravita-
tional pull exerted by P1 and P2 on P3 is exactly balanced by the centripetal
force required by P3 to rotate with the SRF. These equilibrium locations
are therefore stationary from the perspective of an observer within the SRF:
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placing P3 in one of these locations with zero velocity and zero acceleration
will result in no motion. We can thus find these points by imposing in the
Eqs. (2.15):

ẋ = ẏ = ż = 0, ẍ = ÿ = z̈ = 0, (2.27)
which eventually results in the system:

x− (1− µ)(x− µ)
r3

1
− µ(x+ 1− µ)

r3
2

= 0, (2.28a)

y

[
1− 1− µ

r3
1
− µ

r3
2

]
= 0, (2.28b)

z

[
1− µ
r3

1
+ µ

r3
2

]
= 0. (2.28c)

From Eq. (2.28c), since the term in brackets is always positive, it follows that
z = 0: the equilibrium points lie in the orbital plane of the primaries. Five
solutions exist for their x and y coordinates, divided into two categories:

• Collinear equilibrium points (also known as libration or Lagrangian
points). They are obtained by setting y = 0, i.e., by imposing that the
solution lies on the x axis. In this case, we can rewrite Eq. (2.28a) as:

x− (1− µ)(x− µ)
|x− µ|3

− µ(x+ 1− µ)
|x+ 1− µ|3 = 0, (2.29)

where y = z = 0. This equation takes three possible outcomes, accord-
ing to the sign of the factors (x− µ) and (x+ 1− µ).

1. The solution lies between the primaries, i.e., x−µ+1 > 0, x−µ <
0. Equation (2.29) is simplified as:

x+ (1− µ)
(x− µ)2 −

µ

(x+ 1− µ)2 = 0. (2.30)

With the substitution u = x+1−µ, Eq. (2.30) eventually becomes:

u5 + u4(µ− 3) + u3(3− 2µ)− u2µ+ 2µu− µ = 0. (2.31)

This is an algebraic 5th-degree equation. Using Sturm’s theorem
[Sturm, 1835], we can prove that there is only one (positive) real
solution, when µ is very small, being this condition verified in the
majority of real cases (see Appendix A for further details), and this
solution corresponds to the L1 point. The exact x coordinates can-
not be found analytically but can be determined numerically using
u0 = (µ/3) 1

3 as an initial condition for Eq. (2.31) [Moulton, 2012].
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2. The solution lies on the left of the smaller primary, i.e., x−µ+1 <
0, x− µ < 0. In this case, the quintic equation is:

u5 + u4 + (µ− 3) + u3(3− 2µ) + u2µ− 2µu+ µ = 0. (2.32)

With similar considerations, it can be proven that a single real
solution exists, and its value is calculated numerically from the
initial condition u0 = −(µ/3) 1

3 [Moulton, 2012]. The resulting
point is L2.

3. The solution lies on the right of the larger primary, i.e., x−µ+1 >
0, x− µ > 0. With the same notation, L3 is found by solving:

u5 + u4 + (µ− 3) + u3(3− 2µ) + u2(µ− 2) + 2µu− µ = 0

using the initial condition u0 = 7µ
12

[
1 + 23

84

(7µ
12

)2]
[Moulton, 2012].

• Triangular equilibrium points. These points are found after observing
that r1 = r2 = 1 is a solution of Eqs. 2.28a, 2.28b. Hence, two more
equilibrium points are located at the vertexes of two equilateral trian-
gles (displayed with a dotted line in Fig. 2.2). Their coordinates are

clearly: x = µ − 1
2, y = ∓

√
3

2 . The point with positive y is L4, the
other is L5.

A representation of these points is given in Fig. 2.2 for the Earth-Moon
system.

2.3 Jacobi constant
Equations (2.15) can be rewritten in a more compact form by means of the
effective potential Ω. Ω is the sum of centrifugal potential and gravitational
potential, often added to a constant term, i.e.,

[
1
2µ(1− µ)

]
, the meaning of

which will be clarified later:

Ω = 1
2(x2 + y2) + 1− µ

r1
+ µ

r2
+
[1
2µ(1− µ)

]
. (2.33)

Thus, equations (2.15) become
ẍ− 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz,

(2.34)
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Figure 2.2: Position of the five equilibrium points for the Earth-Moon CR3BP
(µ = 0.121 506 683× 10−1). L4 and L5 are located at the vertices of two equal
equilateral triangles of unit side. The sizes of the Earth and the Moon are
not to scale.

where the notation Ωx means differentiation with respect to x. In terms of
Ω, the vector field f(x) (Eq. (2.18)) is given by:

f(x) =



ẋ

ẏ

ż

2ẏ + x+ Ωx

y − 2ẋ+ Ωy

Ωz



, (2.35)

In addition, we observe that the location of the equilibrium points can also
be written as the solution of

∇Ω = 0. (2.36)

Consider now the sum ẋẍ + ẏÿ + żz̈. We can rewrite it as the total
derivative of Ω and then of the kinetic energy with respect to time. From
Eqs. (2.2) and then Eq. (2.34):

ẋẍ+ ẏÿ + żz̈ = ẋ(2ẏ + Ωx) + ẏ(−2ẋ+ Ωy) + żΩz = dΩ
dt
. (2.37)
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Alternatively:
ẋẍ+ ẏÿ + żz̈ = d

dt

1
2(ẋ2 + ẏ2 + ż2). (2.38)

Therefore:
d

dt

1
2(ẋ2 + ẏ2 + ż2) = dΩ

dt
. (2.39)

Introducing now the arbitrary constant J , the last equation can be integrated
as follows

1
2(ẋ2 + ẏ2 + ż2) = Ω− J

2 . (2.40)

Manipulating this equation using (2.33) yields to the following result:

J = x2 + y2 + 2(1− µ)
r1

+ 2µ
r2

+ [µ(1− µ)]− (ẋ+ ẏ2 + ż2). (2.41)

This is the expression for the Jacobi constant J . Sometimes we will refer to
J as the energy, implicitly referring to the value E = −J/2. The constant
term [µ(1− µ)] provides J = 3 at points L4 and L5. From Eq. (2.40) we can
rewrite Eq. 2.41 in terms of Ω:

J = 2Ω− v2, (2.42)

with v2 = x2 + y2 + z2.

2.4 Zero velocity surfaces
Even though the motion of P3 cannot be determined analytically, its motion
is bounded under certain conditions. From Eq. (2.42), when J < 2Ω(x, y, z)
the velocity becomes imaginary. Thus, the components x, y and z of the po-
sition vector must be such that 2Ω(x, y, z) ≥ J . Regions in space where that
constraint is not respected are denoted as forbidden regions. The bound-
ary of the forbidden region is a set of three-dimensional zero-velocity sur-
faces (ZVSs) which vary as functions of J (Fig. 2.3b). A projection of these
zero-velocity surfaces onto the xy-plane results in the so called zero-velocity
curves (ZVCs) (Fig. 2.3a). The region surrounding the larger primary is of-
ten defined as interior region (or Hill’s region), the region in the vicinity
of the smaller primary as P2 region, and the region beyond the ZVCs as
exterior region. Identifying with JLi

the value of the Jacobi constant at Li
(i = 1, 2, . . . , 5), it can be verified that:

JL1 > JL2 > JL3 > JL4 = JL5 . (2.43)
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(a) Zero-velocity curves (b) Zero-velocity surfaces

Figure 2.3: ZVCs and ZVSs (a three-dimensional cut on a xz-plane is dis-
played) for the Earth-Moon system with J = 3.17 (Earth and Moon are not
to scale). Coordinates are expressed in nondimensional units (NU). At this
energy level, P3 is allowed to move inside the whole realm of interior region,
P2 region and exterior region.

Varying J over the intervals between consecutive values of JLi
yields different

possible morphologies for the ZVCs. At higher values of J , P3 is confined
around one of the two regions around P1 or P2, depending on the initial
conditions (Fig. 2.4a). As J decreases, a gateway through L1 arises; for
values lower than JL1 (Fig. 2.4b), the L1 gateway opens and expands: P3 can
now move between the inner region and the P2 region. Further decreasing the
Jacobi constant below JL2 (Fig. 2.4c) and JL3 (Fig. 2.4d) opens the gateways
nearby L2 and L3 respectively. For JL4 , JL5 < J < JL3 P3 can move towards
the exterior region (Fig. 2.4e) and eventually in the whole space for values
greater than JL4 = JL5 (Fig. 2.4f).

2.5 The state transition matrix

The state transition matrix (STM) is a useful tool to study the behaviour of
the system (2.16) in response to a perturbation in the initial state relative
to a particular reference solution. Assume that

x0(t) = {x0(t), y0(t), z0(t), ẋ0(t), ẏ0(t), ż0(t)}T (2.44)
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(a) JL1 < J (b) J = JL1

(c) J = JL2 (d) J = JL3

(e) JL4 , JL5 < J < JL3 (f) J = JL4 = JL5

Figure 2.4: Zero-velocity curves for several values of the Jacobi constant for
the Earth-Moon system. Earth and Moon are not to scale.
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is a reference solution to Eq. (2.16), i.e., ẋ0 = f(x0). Then, a nearby solution
x(t) = x0(t) + δx(t) can be represented via a Taylor series such that:

ẋ = ẋ0 + δẋ = f(x0) + ∂f
∂x

(x0)δx + H.O.T. (2.45)

When the higher order terms (H.O.T) are neglected a linear system of dif-
ferential equations is produced for δx such that:

δẋ = A(t)δx0. (2.46)

The matrix A(t) = ∂f
∂x

(x0) has the following structure:

∂f
∂x

(x0) = A(t)



∂f1
∂x0

∂f1
∂y0

∂f1
∂z0

∂f1
∂ẋ0

∂f1
∂ẏ0

∂f1
∂ż0

∂f2
∂x0

∂f2
∂y0

∂f2
∂z0

∂f2
∂ẋ0

∂f2
∂ẏ0

∂f2
∂ż0

∂f3
∂x0

∂f3
∂y0

∂f3
∂z0

∂f3
∂ẋ0

∂f3
∂ẏ0

∂f3
∂ż0

∂f4
∂x0

∂f4
∂y0

∂f4
∂z0

∂f4
∂ẋ0

∂f4
∂ẏ0

∂f4
∂ż0

∂f5
∂x0

∂f5
∂y0

∂f5
∂z0

∂f5
∂ẋ0

∂f5
∂ẏ0

∂f5
∂ż0

∂f6
∂x0

∂f6
∂y0

∂f6
∂z0

∂f6
∂ẋ0

∂f6
∂ẏ0

∂f6
∂ż0


. (2.47)

By using the vector field of the CR3BP represented by Eqs. (2.35), the pre-
vious matrix A(t) takes the form:

A(t) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Ωxx Ωxy Ωxz 0 2 0
Ωyx Ωyy Ωyz −2 0 0
Ωzx Ωzy Ωzz 0 0 0


, (2.48)

where we used the notation Ωpq = ∂2Ω
∂p∂q

for the second-order partial deriva-
tives of the effective potential (2.33) (they are listed in Appendix B). In
general, this 6 × 6 matrix is evaluated along the reference trajectory and is
time-varying. The solution to Eq. (2.46) has the general form:

δx(t) = Φ(t, t0)δx(t0), (2.49)
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where Φ(t, t0) is the state transition matrix (or matrizant). The expression
in Eq. (2.49) linearly relates variations in the trajectory at time t to the
initial perturbation at time t0. Hence, the components of the STM are the
partial derivatives of the state at time t with respect the state at time t0:

Φ = ∂x
∂x0

. (2.50)

In other words,

Φ(t, t0) = Φij =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


. (2.51)

Given some initial perturbation δx(t0) of the reference initial state x0(t0),
the STM predicts the variation δx(t) of the state x0(t) at a later time t. It
has the following general properties:

Φ(t0, t0) = I, (2.52)
Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), (2.53)
Φ(t0, t1) = Φ−1(t1, t0). (2.54)

Substituting Eq. (2.49) into the differential equations (2.46) yields the fol-
lowing differential equation for the STM:

Φ̇(t, t0) = A(t)Φ(t, t0). (2.55)

So far, only variations of the state have been considered. However, vari-
ations with respect to a reference might also include time. In this case,
Eq. (2.49) becomes:

δx(t) = Φ(t, t0)δx(t0) + ∂x
∂t
δt

= Φ(t, t0)δx(t0) + fδt. (2.56)

Hence, given a variation δx0 from a reference trajectory and variation in time
δtf , Eq. (2.56) predicts the final state at tf as sketched in Fig 2.5.
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Figure 2.5: Perturbation of the state δx0 from the reference xref(t0) leads to
the variation δxf of the state xref(tf ) by means of Eq. (2.56).

2.6 Stability of the equilibrium points
To analyse the behaviour of Eq. (2.15) in the vicinity of the equilibrium
points the concept of stability must first be defined. The motion around
an equilibrium point is defined stable if, when a particle initially in that
point is perturbed, its subsequent motion remains bounded within a “small”
neighbourhood of the equilibrium point itself.

In the equilibrium points of the CR3BP, the matrix A in Eq. (2.48) is
constant (see Appendix B). Hence, from the fundamental theorem of linear
systems [Perko, 2013], the solution to Eq. (2.46) can be expressed as:

δx(t) = eA(t−t0)δx(t0). (2.57)

Hence, A can be rewritten in the form A = SΛS−1 where the columns of
S are the eigenvectors vi of A and the matrix Λ is diagonal with elements
equal to the corresponding eigenvalues λi (i = 1, . . . 6). Then, Eq. (2.57)
with t0 = 0 can be rewritten as

δx = S eΛ S−1 δx0. (2.58)

Now, if A admits n distinct eigenvalues2, the previous equation can be rewrit-
2if the eigenvalues are not all distinct, Eq. (2.60) has the solution

δx(t) = S diag[λi(t− t0)] S−1
[
I + Nt+ · · ·+ Nk−1tk−1

(k − 1)!

]
δx0 (2.59)

where N = A − P, with P = Sdiag(λi)S−1. The order k is chosen such that Nk−1 6=
0, Nk = 0.
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ten as:
δx(t) = S diag[λi(t− t0)] S−1δx0. (2.60)

It is clear from this equation that the eigenvalues λi of the matrix A govern
the behaviour of δx(t). On the basis of the sign of <(λi) we can classify
different stability conditions at the equilibrium points.

• All the eigenvalues have <(λi) < 0: the point is stable.

• All the eigenvalues has <(λi) > 0: the point is unstable.

• There exist some <(λi) > 0 and some <(λi) < 0. The point is called a
saddle and it is unstable.

• All the eigenvalues has zero real part. The point is called centre and it
is stable.

In general, if Real(λ) 6= 0 for all the eigenvalues the point is called hyperbolic.
Moreover we talk about the centre part when referring to specific eigenvalues
with zero real part; similarly the saddle part stands for pairs of opposite
eigenvalues with non-zero real part. For the CR3BP, the stability conditions
are here analysed.

1. Coordinate transformation. It is more convenient to carry out the study
from a reference frame centered at the given equilibrium point. So we
define a transformation of coordinates consisting in a translation of the
origin from the synodical barycentric frame to Li (i = 1, . . . , 5). The
axes are kept parallel to the original ones:

x

y

z

 =


a

b

0

+


ξ

η

ζ

 (2.61)

where {a, b, 0}T is the position vector of the ith Lagrangian point and
ξ = δx, η = δy, ζ = δz. Velocities and accelerations of the third body
in this new frame are the same as in the original one:

ẋ

ẏ

ż

 =


ξ̇

η̇

ζ̇

 ,

ẍ

ÿ

z̈

 =


ξ̈

η̈

ζ̈

 . (2.62)
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Thus, the equations of motion (2.34) remain unchanged in the coordi-
nates (ξ, η, ζ): 

ξ̈ − 2η̇ = Ωξ,

η̈ + 2ξ̇ = Ωη,

ζ̈ = Ωζ .

(2.63)

2. Taylor series expansion of the effective potential around Li. The three-
dimensional Taylor expansion of the effective potential around the ith
Lagrangian point is:

Ω = Ω0 + Ω0
ξξ + Ω0

ηη + Ω0
ζ + H.O.T. (2.64)

being Ω0 = Ω|Li
the potential function evaluated at Li.

3. Linearization of the equations of motion. Substituting Eq. (2.64) in
Eq. (2.63) and neglecting the higher-order terms yields:


ξ̈ − 2η̇ = Ω0

ξξξ + Ω0
ξηη + Ω0

ξζζ,

η̈ + 2ξ̇ = Ω0
ηξξ + Ω0

ηηη + Ω0
ηζζ,

ζ̈ = Ω0
ζξξ + Ω0

ζηη + Ω0
ζζζ.

(2.65)

Here the first-order partial derivatives of Ω disappear due to Eq. (2.36).
Moreover, being the second-order derivative a continuous function, the
mixed derivatives are equal (Schwarz’s theorem): Ωpq = Ωqp. After
introduction of the vectorial notation

x =



x1

x2

x3

x4

x5

x6



=



ξ

η

ζ

ξ̇

η̇

ζ̇



, (2.66)

Eq. (2.65) takes the following more compact form

ẋ = A0x, (2.67)
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in which:

A0 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Ω0
ξξ Ω0

ξη Ω0
ξζ 0 2 0

Ω0
ηξ Ω0

ηη Ω0
ηζ −2 0 0

Ω0
ζξ Ω0

ζη Ω0
ζζ 0 0 0


. (2.68)

The matrix A0 has the same structure as (2.48). However, since it is
evaluated at a specific position, i.e., an equilibrium point, it is constant.

4. Analysis of the eigenvalues. The stability of the system of differential
equations (2.67) can be studied through the analysis of the associated
characteristic equation:

det(A0 − λI) = 0, (2.69)

in which λ represents the generic eigenvalue. The analysis is similar for
collinear and triangular libration points.

• Collinear libration points. Since η = ζ = 0, from Appendix B we
easily infer that Ω0

ξη = Ω0
ηζ = Ω0

ξζ = 0. Moreover, the signs of the
pure second-order derivatives are as follows:

Ω0
ξξ > 0, Ω0

ηη < 0, Ω0
ζζ < 0. (2.70)

Equation (2.69) becomes:

(λ2 − Ω0
ζζ)[(λ4) + λ2(4− Ω0

ξξ − Ω0
ηη) + Ω0

ηηΩ0
ξξ] = 0. (2.71)

By means of the substitutions:

Λ = λ2, (2.72a)

β1 = 2−
Ω0
ξξ + Ω0

ηη

2 , (2.72b)

β2 = −Ω0
ξξΩ0

ηη, (2.72c)

the characteristic equation takes the form

(Λ− Ω0
ζζ)(Λ2 + 2β1Λ− β2

2). (2.73)
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Its roots are:
Λ1 = −β1 +

√
β2

1 + β2
2 > 0, (2.74a)

Λ2 = −β1 −
√
β2

1 + β2
2 < 0, (2.74b)

Λ3 = Ω0
zz < 0. (2.74c)

Hence, the eigenvalues are:

λ1,2 = ±
√

Λ1 = ±ν, (2.75a)

λ3,4 = ±
√

Λ2 = ±iωp, (2.75b)

λ5,6 = ±
√

Λ3 = ±iωv. (2.75c)
Overall the collinear equilibrium points behave linearly as the
product of two centres (due to eigenvalues λ3,4 and λ5,6) by a
saddle (due to eigenvalues λ1,2). This means that in the vicin-
ity of these points we deal with bounded orbits, associated with
the central part, but also with escape trajectories which depart
exponentially from the neighbourhood of the collinear points for
t → ±∞, and are due to the saddle part. In particular, λ3,4 give
rise to planar periodic orbits, λ5,6 to vertical periodic orbits while
the saddle part due to λ1,2 is associated with stable/unstable in-
variant manifolds.
The instability behaviour of the collinear libration points has a key
role in the study of the natural dynamics of the libration region,
due to the saddle part. This allows to define dynamical structures
responsible for transport of material to/from the neighbourhood
of the libration points. For this reason, their behaviour will be
further investigated in the next sections.
• Triangular equilibrium points. In this case, the mixed second-

order derivatives are not all zero. They can easily be computed
since the position of L4 and L5 are known exactly:

Ω0
ξξ = 3

4 , (2.76a)

Ω0
ηη = 9

4 , (2.76b)

Ω0
ξη = 3

√
3

2

(1
2 − µ

)
, (2.76c)

Ω0
ξη = 3

√
3

2

(1
2 − µ

)
, (2.76d)

Ω0
ξη = Ω0

ηζ = 0. (2.76e)
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Repeating the procedure used for the collinear equilibrium points
leads to the following characteristic equation:

λ4 + λ2 + 27
4 µ(1− ν) = 0. (2.77)

Hence, setting Λ = λ2:

Λ1,2 =
−1±

√
1− 27µ(1− µ)

2 . (2.78)

There exists a critical value of µ, which we call µcrit, such that
when µ > µcrit, λ12 > 0 and the point is unstable:

µcrit = 1
2

(
1−
√

69
9

)
≈ 0.038521. (2.79)

This critical value is rather high: for instance, the mass ratio of the
CR3BPs composed by the Sun and each of the eight planets of the
Solar System is smaller than µcrit, implying that the corresponding
triangular points are stable.

2.7 Linearised solutions around the collinear
points

To write the linearised equation of motion around the collinear points, Eq. (2.63)
is first rearranged. We define the variable γ as the distance of Li (i = 1, 2, 3)
from the closest primary. Hence, for L1 and L2, γ is the distance from P2,
while for L3 it is the distance from P1. The second-order derivatives of the
potential are derived in Appendix B.

• For L1, r0
1 = 1− γ, r0

2 = γ and x = µ− 1 + γ. It follows:

Ω0
ξξ = 1 + 2(1− µ)

(1− γ)3 + 2µ
γ3 , (2.80a)

Ω0
ηη = 1− (1− µ)

(1− γ)3 −
µ

γ3 , (2.80b)

Ω0
ζζ = − (1− µ)

(1− γ)3 −
µ

γ3 . (2.80c)
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• For L2, r0
1 = 1 + γ, r0

2 = γ and x = µ− 1− γ.

Ω0
ξξ = 1 + 2(1− µ)

(1 + γ)3 + 2µ
γ3 , (2.81a)

Ω0
ηη = 1− (1− µ)

(1 + γ)3 −
µ

γ3 , (2.81b)

Ω0
ζζ = − (1− µ)

(1 + γ)3 −
µ

γ3 . (2.81c)

• For L3, r0
1 = γ, r0

2 = 1 + γ and x = µ+ γ.

Ω0
ξξ = 1 + 2(1− µ)

γ3 + 2µ
1 + γ3 , (2.82a)

Ω0
ηη = 1− (1− µ)

γ3 − µ

1 + γ3 , (2.82b)

Ω0
ζζ = −(1− µ)

γ3 − µ

1 + γ3 . (2.82c)

We then define the constant c2 [Richardson, 1980] as:

c2 =


1
γ3

[
µ+ (1− µ)γ3

(1∓ γ)3

]
, L−1 ,L+

2

1
γ3

[
1− µ+ µγ3

(1 + γ)3

]
, L3.

(2.83)

In the quoted paper, higher-order terms are taken into account; the value
c2 used here is the first-order approximation. Comparing (2.83) with Eqs.
(2.80), (2.81) and (2.82) we see that Ω0

ξξ = 2c2 + 1 , Ω0
ηη = 1− c2, Ω0

ζζ = −c2.
Therefore, we can rewrite (2.63) as

ξ̈ − 2η̇ − (2c2 + 1)ξ = 0,
η̈ + 2ξ̇ + (c2 − 1)η = 0,
z̈ + c2z = 0,

(2.84)

and matrix A0 from equation (2.67) can be written as:

A0 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2c2 + 1 0 0 0 2 0
0 1− c2 0 −2 0 0
0 0 −c2 0 0 0


. (2.85)
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The third equation in system (2.84) is independent from the other two. It
means that the motion in the vertical direction is not influenced by the
motion in the xy plane. Being the matrix A0 constant, the general solution
of (2.84) is 

ξ

η

ζ

 =
n∑
i=1


ξ0i

η0i

ζ0i

 e
λit, (2.86)


ξ̇

η̇

ζ̇

 =
n∑
i=1


ξ̇0i

η̇0i

ζ̇0i

 e
λit, (2.87)

where n = 6 is the dimension of the state vector x in Eq. (2.67). The
stability of this problem is similar to what seen in Sect. 2.6. The 4th-order
characteristic equation is for the motion on the xy plane is

λ4 − λ2(c2 − 2) + 1 + c2 − 2c2
2 = 0 (2.88)

and its solutions:

λ1,2 = ±

√√√√c2 − 2 +
√
c2(9c2 − 8)
2 , (2.89)

λ3,4 = ±

√√√√c2 − 2−
√
c2(9c2 − 8)
2 . (2.90)

For the motion along the z direction:

λ5,6 = ±i√c2. (2.91)

It is easy to verify that λ1,2 are real while λ3,4 are complex. Therefore λ1 and
λ2 are associated with exponential solutions whereas λ3, λ4, λ5 and λ6 are
related to harmonic oscillations. Substituting

λ1,2 = ±ν, (2.92)
λ3,4 = ±iωp, (2.93)
λ5,6 = ±iωv, (2.94)

yields the general linearised solution around the collinear points:
ξ(t) = ξ01e

νt + ξ02e
−νt + ξ03 cos(ωpt) + ξ04 sin(ωpt),

η(t) = η01e
νt + η02e

−νt + η03 cos(ωpt) + η04 sin(ωpt),
ζ(t) = ζ01 cos(ωvt) + ζ02 sin(ωvt).

(2.95)
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ξ0i and η0i are not independent but related by Eq. (2.84). Upon substituting
Eqs. (2.95) into Eqs. (2.84) and defining

k1 =
ν2
p − 1− 2c

2ν , (2.96)

k2 = −
ω2
p + 1 + 2c

2ωp
, (2.97)

we notice that:

η01 = k1ξ01, (2.98a)
η02 = −k1ξ02, (2.98b)
η03 = −k2ξ04, (2.98c)
η04 = k2ξ03. (2.98d)

Thus we rewrite (2.95) as:

ξ(t) = ξ01e

νt + ξ02e
−νt + ξ03 cos(ωpt) + ξ04 sin(ωpt),

η(t) = k1ξ01e
νt − k1ξ02e

−νt − k2ξ04 cos(ωpt) + k2ξ03 sin(ωpt),
ζ(t) = ζ01 cos(ωvt) + ζ02 sin(ωvt),

(2.99)

where ν, ωp, ωv are those obtained in Sect. 2.6.
By appropriate selection of the initial values ξ0i, η0i and ζ0i at time t0 = 0,

it is possible to isolate specific behaviours. If ξ01 = ξ02 = 0, from Eqs. (2.98a)
and (2.98b) it follows that η01 = η02 = 0. Calling

ξ03 = Ax cosφxy, (2.100a)
ξ04 = −Ax sinφxy, (2.100b)
ζ01 = Az cosφz, (2.100c)
ζ02 = −Az sinφz, (2.100d)

with

Ax =
√
ξ2

03 + ξ2
04, (2.101a)

Az =
√
ζ2

01 + ζ2
02, (2.101b)

tanφxy = ξ04

ξ03
, (2.101c)

tanφz = ζ02

ζ01
, (2.101d)
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the motion is bounded and contains only oscillating terms:


ξ(t) = Ax cos(ωpt+ φxy),
η(t) = k2Ax sin(ωpt+ φxy),
ζ(t) = Az cos(ωvt+ φz).

(2.102)

As already noticed, the motion in the vertical direction is uncoupled from
the x and y motion. Moreover, the frequency and the phase of the motion
is the same in x and y: the projection of the trajectory onto the xy-plane is
therefore an ellipse. If Az 6= 0 the z-motion slowly traces out an elliptical
cylinder shape. These linear solutions are called Lissajous trajectories and
are quasi-periodic orbits [Howell and Pernicka, 1987]. Choosing an initial
condition such that Az = 0 provides a planar periodic orbit, called planar
Lyapunov orbit (PLO). Since we will deal with the planar CR3BP, we are
interested in these orbits. With Ax = 0, the solution is a vertical Lyapunov
orbit: at the first-order it reduces to a one-dimensional motion in z, whereas
to obtain a three-dimensional orbit, higher-order terms must be included.
Halo orbits and their quasi-periodic counterparts known as quasi-halos are
three-dimensional periodic orbits obtained by considering higher-order terms
in the equations of motion [Howell, 1984]. Examples of Lissajous, planar
and vertical Lyapunov and Halo orbits are illustrated in Fig. 2.6. On the
other hand, selecting ξ03 = ξ04 = 0 (hence η03 = η04 = 0) allows to isolate
the unstable divergent behaviour is isolated. Using the substitution ex =
cosh x+ sinh x and calling

ξ01 + ξ02 = Bx coshχ, (2.103a)
ξ02 − ξ02 = Bx sinhχ, (2.103b)

with

Bx = 2
√
ξ01ξ02, (2.104a)

tanhχ = ξ01 − ξ02

ξ01 + ξ02
, (2.104b)

the motion on the xy-plane results unbounded and described by the hyper-
bolic equations ξ(t) = Bx cosh(ωp + χ),

η(t) = k2Bx sinh(ωpt+ φ).
(2.105)
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(a) Planar Lyapunov orbits around L2 (b) Vertical Lyapunov orbits around L2

(c) Halo orbits around L1 (d) Quasi-halo orbits around L1

(e) Lissajous orbit around L1

Figure 2.6: Examples of orbits around the libration points L1 and L2 in the
Earth-Moon system [Alessi et al., 2010].



30 CHAPTER 2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

2.8 Computation of PLOs with the symme-
try method

Equations (2.99) represent a linearisation of the nonlinear system (2.15)
around the collinear points, therefore they are an adequate approximation of
the motion only in close proximity of the equilibrium points. If one wants to
obtain a valid solution far from the equilibrium point, nonlinear terms must
be introduced in the equations of motion. For instance, Linsted-Poincarè
procedures use Legendre polynomials to approximate the inverse of the dis-
tance involved in Eqs. (2.15); see for example [Farquhar and Kamel, 1973]
for an application to Earth-Moon L2. However, there is an alternative to
compute an orbit far from the equilibrium point and we can still use the
linearised equations to obtain suitable initial conditions.

From Eqs. (2.99) with ξ01 = ξ02 = 0ξ(t) = ξ03 cos(ωpt) + ξ04 sin(ωpt),
η(t) = −k2ξ04 cos(ωpt) + k2ξ03 sin(ωpt).

(2.106)

The velocities are:ξ̇(t) = −ξ03ωp sin(ωpt) + ξ04ωp sin(ωpt),
η̇(t) = k2ξ04ωp sin(ωpt) + k2ξ03ωp sin(ωpt).

(2.107)

At t = 0

ξ(t = 0) = ξ03, (2.108a)
η(t = 0) = −k2ξ04. (2.108b)

Imposing that the initial condition lies on the x-axis results in ξ04 = 0.
Substituting these conditions in Eqs. (2.107) at t = 0 yields:

ξ̇(t = 0) = ξ04ωp = 0, (2.109a)
η̇(t = 0) = k2ξ03ωp. (2.109b)

The symmetry with respect to the x-axis is guaranteed by themirror theorem.

Theorem 1. (The mirror theorem) If n point masses are acted upon
their mutual gravitational forces only, and at a certain epoch each radius
vector from the center of mass of the system is perpendicular to every velocity
vector, then the orbit of each mass after that epoch is a mirror image of its
orbit prior to that epoch. Such a configuration of radius and velocity vectors
is called a mirror configuration [Roy, 2004].
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Since such mirror configuration occurs at t = 0 (see Eqs. (2.109)), as a
result of the previous theorem and to guarantee the periodicity, a new mirror
configuration must occur at the next intersection with the x-axis: the result-
ing PLO will be symmetric with respect to the x-axis. As a consequence, it
is necessary to consider only one half of the orbit, i.e., the part with positive
y.

Using Eq. (2.56) with t = T/2, we represent the relationship between the
variation δx at time t = T/2 with respect to the initial state δx0, being T
the period of the PLO:

δx(T/2) = Φ(T/2)δx0 + f(T/2)δt(T/2). (2.110)

The initial condition at t = 0 will be x0 = {ξ03 + xLi
, 0, 0, 0, k2ξ03ωp, 0}T,

being xLi
the x coordinate of the ith collinear point; ξ03 must be adequately

small since this value was found under linear approximation. The initial guess
for the y component of the velocity is chosen according to Eq. (2.109b). We
then integrate until the trajectory cuts the x-axis again: the time it takes is a
first approximation of half the period of the orbit. Since the initial condition
ẏ0 was just a guess, at t = T/2 the trajectory will have, in general, ẋ 6= 0.
Therefore, a variation at t = 0

δx0 = {0, 0, 0, 0, δẏ0, 0}T , (2.111)

will cause a variation at t:

δx = {δx, δy, 0, δẋ, δẏ, 0}T . (2.112)

In other words, we let ẏ0 vary with everything else fixed (x0) or null (y0, z0, ẋ0, ż0)
and we aim to change properly x, y, ẋ, ẏ and half the period. The differen-
tial corrections to apply are derived by substituting (2.111) and (2.112) into
Eq. (2.110): 

∂x

∂y

0
∂ẋ

∂ẏ

0



=



Φ15∂ẏ0 + f1∂t

Φ25∂ẏ0 + f2∂t

Φ35∂ẏ0 + f3∂t

Φ45∂ẏ0 + f4∂t

Φ55∂ẏ0 + f5∂t

Φ65∂ẏ0 + f6∂t



. (2.113)

Since the only non-zero term in Eq. (2.111) is δẏ0, the only STM components
that appear in Eq. (2.113) are Φi5 (i = 1, . . . , 6). At t = T/2 we have y = 0
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Figure 2.7: Application of differential corrections to compute a PLO around
Earth-Moon L2. The initial half-PLO (displayed in orange) is computed
using the linear approximation at t = 0. The algorithm converges in a few
steps, once |δẏ0| falls below a given tolerance (in this case 10−10).

and the corresponding variation will be zero as well. Moreover we want to
correct ẋ with a variation opposite to the current value at t = T/2. In other
words:

δy = 0, (2.114a)
δẋ = −ẋ. (2.114b)

Substituting in equation (2.113) and rearranging yields to:

δt = −Φ25

f2
δẏ0, (2.115a)

δẏ0 = − ẋf2

f2Φ45 − f4Φ25
. (2.115b)

The variation ∂ẏ0 is applied to obtain a new initial guess for the y component
of the velocity at t = 0: ẏ0 = ẏ0 + ∂ẏ0. The procedure is repeated until
convergence (i.e., the algorithm is stopped when δẏ0 falls below a sufficiently
small value). Figure 2.7 shows an example of half PLO for the Earth-Moon
system around L2. Once the initial condition for the converged PLO has been
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(a) PLOs familiy around L1 (b) PLOs familiy around L2

Figure 2.8: PLO families around L1 and L2 for the Earth-Moon system (Moon
at 3×). A constant step increment δx = 4e−4 has been used 160 times each.
Only one PLO every four is displayed for clarity. Notice that PLOs around
L2 are bigger than orbits around L1.

obtained, it is possible to evaluate its period (as a consequence of periodicity,
it is clearly two times the time of flight from the initial condition to the next x-
axis crossing) and then, through Eq. (2.41), the value of the Jacobi constant.
Eventually, we can generate a second PLO, whose initial state vector will be:

x0 = {x0 + δx, 0, 0, 0, ẏ1, 0}T , (2.116)

where δx is a small increment in the x-coordinate , ẏ1 is the converged y
velocity of the previous PLO. Its value must be small enough to prevent a
possible divergence at the following step. By repeating this process, a family
of PLOs can be generated. In Figs. 2.8a and 2.8b a family of PLOs for the
Earth-Moon system around L1 and L2 respectively is displayed.

2.9 Invariant manifolds of equilibrium points
The topic of manifolds is vast, with numerous texts devoted to study their
properties. In the present work, only two particular kinds of manifold are
of interest, i.e., the stable and the unstable manifold. Nevertheless, we will
introduce the center manifold theorem as a proof of existence of stable/un-
stable invariant manifold in our case of interest. To have a general idea,
suppose a limit set L exists for the system (2.15), where a “limit set” might
be an equilibrium point. In [Parker and Chua, 2012] the stable and unstable
manifold associated with L are locally defined as follows:
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Definition 1. The stable manifold W S
loc(L) of a limit set L is the set of all

the x in the neighbourhood of L that approach L as t→∞.

Definition 2. The unstable manifold WU
loc(L) of a limit set L is the set of

all the x in the neighbourhood of L that approach L as t→ −∞.

Besides, we talk about center manifold when referring to the set of x
whose behaviour is not influenced by either the attraction of the stable man-
ifold or the repulsion of the unstable manifold. Before exploring manifolds
related to the collinear points of the CR3BP, we recall here the general so-
lution to the system (2.46) around an equilibrium point:

δx = eA(t−t0)δx(t0). (2.117)

The eigenvalues of matrix A are used to identify the character of stability of
the motion around the equilibrium point (see Sect. 2.6). Now, let w = uj+ivj
be a generalized eigenvector of the matrix A corresponding to the eigenvalue
λj = aj + ibj. Then, calling n the dimension of the space:

• ES = Span {uj,vj|aj < 0} is called the stable subspace of Rn;

• EU = Span {uj,vj|aj > 0} is called the unstable subspace of Rn;

• EC = Span {uj,vj|aj = 0} is called the center subspace of Rn;

i.e., Es, Eu and Ec are the subspaces of Rn spanned by the real and imaginary
parts of the generalized eigenvectors wj corresponding to eigenvalues λj with
negative, zero and positive real part respectively. The three subspaces fill
the entire phase space

Rn = Es ⊗ Eu ⊗ Ec, (2.118)
i.e., calling nS, nU and nC the dimensions of the three subspaces, nS + nU +
nC = n. Moreover, the three subspaces are invariant under the flow Φt: if
an initial condition x0 is contained in one of the three subspaces at t = 0 it
will remain in that subspace for every t ∈ R. As proved in Sect. 2.7, collinear
libration points exhibit non-hyperbolic behaviour, in other words nC > 0.
The existence of stable/unstable as well as center manifolds is proved by the
Center manifold theorem [Guckenheimer and Holmes, 1983].

Theorem 2. (Center Manifold Theorem). Let f be a Cr vector field on
Rn (i.e., it is continuous up to its rth derivative) vanishing at the equilibrium
point xeq

3, so that f(xeq) = 0 and let A = Df(xeq) be the Jacobian matrix in
3[Guckenheimer and Holmes, 1983] reports "vanishing at the origin". Here the origin

has been shifted to the equilibrium point.



2.10. POINCARÉ MAPS AND SECTIONS 35

the equilibrium point. Let the stable, center and unstable invariant subspaces
spanned by the eigenvalues of A be Es, Ec and Eu respectively. Then, there
exist Cr stable and unstable invariant manifolds W S

loc and WU
loc, tangent to

Es and Eu at xeq and a Cr−1 center manifold WC tangent to EC tangent to
xeq. These manifolds are all invariant under the flow of f .

Calling vs and vu the eigenvectors associated with two eigenvalues with
negative and positive real parts respectively, it is possible to produce the
local stable and unstable manifolds associated to the equilibrium point by
introducing a small perturbation relative to the equilibrium point xeq in the
direction of the corresponding eigenvalue. Thus, the step along the eigenvec-
tor is computed as

xs+ = xeq + d
vs

‖vs‖
, (2.119a)

xs− = xeq − d
vs

‖vs‖
, (2.119b)

xu+ = xeq + d
vu

‖vu‖
, (2.119c)

xu− = xeq − d
vu

‖vu‖
, (2.119d)

where d may be interpreted as a small distance away from the equilibrium
point. If d is too large, the perturbation is not a close approximation to
the state that actually exists along the manifold. Should d be too small,
long integration times are required to globalize the manifolds, due to their
asymptotic nature, leading to accumulation of numerical error. The local
stable and unstable manifold are globalized by numerically propagating the
states defined in Eqs. (2.119) with the equations of the CR3BP backward
and forward in time respectively. This is qualitatively outlined in Fig. 2.9.

2.10 Poincaré maps and sections
Poincaré maps (also called first-return maps) were first introduced by Henry
Poincaré to study the stability of periodic orbits [Perko, 2013, Poincaré, 1882].
Nowadays, they are a useful tool in the analysis and visualization of dynam-
ical systems as they evolve. Consider an autonomous n-dimensional contin-
uous system

ẋ = f(x), (2.120)
where for the CR3BP n = 6. Recall that the flow Φt is defined by f such
that Φt(x) = Φ(x, t) is smooth and d

dt
(Φt(x, t))|t=τ = f(Φ(x, t)). Define
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Figure 2.9: Global stable and unstable manifold of an equilibrium point of
the CR3BP. Signs + and − refer to the direction of the perturbation in
Eqs. (2.119). The black arrows represent the stable and unstable eigendirec-
tions. The dotted black lines represent the stable and unstable subspaces Es

and Eu which are parallel to the corresponding eigenvectors and approximate
Wloc.

Σ1 ∈ Rn ans Σ2 ∈ Rn as (n − 1)-dimensional hypersurfaces (also called
surfaces of section or Poincaré sections) that represent cross sections of the
dynamical flow Φt. A Poincaré map P is a mapping from one surface of
section to another one, i.e., P : Σ1 → Σ2 [Villac and Scheeres, 2003]. The
hypersurfaces are often selected such that Σ1 = Σ2: in this case the Poincaré
map is a mapping of subsequent intersections with one hypersurface. Tra-
ditional Poincaré sections are defined as planes in position space (for ex-
ample Σ = {x : x = µ− 1, z = 0}) but they can be any surface in general.
An example of a Poincaré map is reported in Fig. 2.10 for a periodic solu-
tion γ∗ of minimum period T for the system (2.16) that possesses a state
x∗ located along the trajectory. In this case Φt(x∗, t) = Φt+T (x∗, t0) and
x∗(t0) = x∗(t0 + T ). Hence, γ∗ in Fig. 2.10 represents a periodic orbit that
intersect Σ always in the same point x∗ ∈ Σ, being P (x∗) = x∗. The point
x∗ is defined fixed point [Parker and Chua, 2012]. A small perturbation from
the initial state x∗ to the state x1 will result in a mapping P (x1) 6= x1 as
showed in Fig. 2.10. Poincaré maps can be employed to visualize periodic
orbits in the neighbourhood of equilibrium points., i.e., to visualize the center
manifold associated with the point itself. In Fig. 2.11 an example is reported
for the point L1 of the Earth-Moon system at four different energy levels.
The exterior curve in each plot is the PLO with the prescribed energy. For
energies close to that of the equilibrium point, the map is composed by the
Lissajous intersections surrounding the vertical Lyapunov orbit. Halo orbits



2.11. INVARIANT MANIFOLDS FOR PERIODIC ORBITS 37

Figure 2.10: The Poincaré section Σ is used to map the initial states x∗ and
x1 using the Poincaré map P : Σ→ Σ. For a periodic orbit P (x∗) = x∗.

appear at a specific energy level (J = 3.15 in this case). Like the vertical Lya-
punov orbit, they are also surrounded by other trajectories, the quasi-halo
orbits.

2.11 Invariant manifolds for periodic orbits
Let us assume that a certain periodic orbit Γ of period T exists around an
equilibrium point of the system (2.16):

Γ : X = γ(t), 0 ≤ t ≤ T (2.121)

in which the time interval T is the minimum period corresponding to Γ. For
such an orbit, the same state occurs after the period T , i.e., Γ(t0+T ) = Γ(to),
or equivalently x(t0) = x(t0) = x(t0 + T ). Thus, a periodic orbit may be
entirely represented by any point along the orbit. In particular, consider the
mapping P : Σ→ Σ that maps the state from x(k) at the time nT to x(k+1)
at the time (n + 1)T , where k = nT, k + 1 = (n + 1)T, n ∈ Z. From this
mapping, Γ appear as a single fixed point x(nT ) = x((n+ 1)T ) = x∗ on the
map P . Then, the map can be linearised relative to x∗:

δx(k + 1) = DP (x∗)δx(k). (2.122)

Equation (2.122) is a discrete time representation of the evolution of solu-
tions in the vicinity of x. The matrix DP (x∗) is the STM corresponding



38 CHAPTER 2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

Figure 2.11: Poincaré map representation of the center manifold associated
to L1 for different Jacobi constants in the Earth-Moon CR3BP (adapted from
[Gómez and Mondelo, 2001]).

to one period along the orbit, i.e., DP (x∗) = Φ(T, 0). This matrix is called
monodromy matrix. By means of the Floquet’s theorem [Floquet, 1883], we
can relate this matrix to the stability of the orbit itself. In particular, the
above mentioned theorem allows to rewrite the STM as:

Φ(t) = Z(t)eRt, (2.123)

where R and Z are square matrices with the same dimension as A, R is
constant and Z is non-singular, differentiable and periodic with period T .
Being Φ(0) = I then Z(0) = I. The eigenvalues of R are called characteristic
exponents of Γ, the eigenvalues of the matrix eRt are called characteristic
multipliers of Γ. We then define the monodromy matrix M as:

M = Φ(T ), (2.124)

The monodromy matrix is the STM after one period of Γ. Applying the
theorem of Floquet to M provides:

M = Φ(T ) = Z(T )eRt = Z(0)eRt = eRt. (2.125)

Therefore, the monodromy matrix allows to determine the characteristic mul-
tipliers of Γ that correspond to the eigenvalues of M . Lyapunov’s theo-
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rem [Burton, 1966] states that if λ is an eigenvalue of the monodromy ma-
trix then λ−1 is also an eigenvalue. Moreover, the monodromy matrix as-
sociated with any periodic solution possesses at least one unit eigenvalue
[Steves et al., 2006]. Hence, as a consequence of Lyapunov’s theorem, two
eigenvalues are equal to 1.

The behaviour of the manifold is determined by the eigenvectors of M
wi = ui + ivi associated with the eigenvalues λi = ai + ibi. In a similar way
to the previous section for equilibrium points we define:

• the stable subspace: Es(Γ) = {uj,vj|aj < 0};

• the unstable subspace: Eu(Γ) = {uj,vj|aj > 0};

• the center subspace: Es(Γ) = {uj,vj|aj = 0}.

Besides, the local stable W s
loc(Γ) and unstable W u

loc(Γ) manifolds of Γ are
defined respectively as:

W s
loc = {x ∈ U |Φt → Γ for t→ +∞ and Φ(t) ∈ U ∀ t ≥ 0} , (2.126)

W u
loc = {x ∈ U |Φt → Γ for t→ −∞ and Φ(t) ∈ U ∀ t ≥ 0} , (2.127)

being U a neighbourhood of Γ and φt the flow of the equations of the motion
of the dynamical system. Then, we define the stable and unstable global
manifolds as:

W s(Γ) =
⋃
t≤0

φt(W s
loc(Γ)), (2.128)

W u(Γ) =
⋃
t≥0

φt(W u
loc(Γ)). (2.129)

In other words:

• The global stable manifold is the locus of points that tends asymptot-
ically to the periodic orbit in the future, for t→ +∞.

• The global unstable manifold is the locus of points that tends asymp-
totically to the periodic orbit in the past, for t→ −∞.

Besides, each manifold is invariant under the flow Φt.

2.12 Computation of the invariant manifolds
of a periodic orbit

In this section we provide a practical recipe for the computation of stable
and unstable IMs associated with a PLO around a libration point.
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1. Numerically propagate the orbit within N discretized of points (prefer-
ably equally spaced in time); xi = x(ti) represent the state at the time
ti (i = 1, . . . , N) and x1 represents the state corresponding to the time
t = T , being T the period of the PLO.

2. From the monodromy matrix, compute the characteristic multipliers
of Γ, and their corresponding eigenvectors. The eigenvector vs(x1)
associated with the positive real eigenvalue gives the direction of the
stable manifold, whereas the eigenvector vu(x1) associated with the
negative real eigenvalue is related to the unstable manifold of Γ.

3. Since the eigenvectors represent a variation from the local state, their
evolution at time t with respect to t0 = T can be computed through
the STM. Therefore, for the ith point of the periodic orbit, compute
the stable and unstable eigendirection by multiplying the local STM
by vs(x1)
‖vs(x1)‖ and vu(x1)

‖vu(x1)‖ respectively:

vsi = Φ(ti, T ) vs(x1)
‖vs(x1)‖ , (2.130)

vui = Φ(ti, T ) vu(x1)
‖vu(x1)‖ , (2.131)

where the subscript i refers to the eigenvector corresponding to the
state xi.

4. Using the directions computed in the previous step, apply a small per-
turbation ε ≈ 10−6 to jump locally from the periodic orbit to the sta-
ble/unstable manifold:

xsi = x(ti)± εvs(x1), (2.132)
xui = x(ti)± εvu(x1). (2.133)

This is qualitatively represented in Figs. 2.12a. Each manifold thus has
two branches, each identified by one of the two signs in Eq. (2.132) (see
Fig. 2.12b). There is not direct correspondence between the sign used
in Eqs. (2.132) and the effective direction of propagation of the global
manifold, since it depends on the energy level of the PLO. In other
words, if for a given Jacobi constant J1 the branch corresponding to
+ε propagates towards P2 for another J2 6= J1 the resulting manifold
may propagate in the opposite direction.
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(a) Positive and negative eigendirections
calculated at the first and second point
of the numerically integrated PLO. The
dimensions of the vectors are here exag-
gerated for the sake of clarity.

(b) Globalization of IMs with the two
branches corresponding to +ε and −ε.

Figure 2.12: Example of two IM branches.

5. Globalize the manifold by integrating each initial state found at the
previous step for a given time or until the intersection with a given
Poincaré section.

6. Repeat steps 2, 3, 4, 5 for i = 1, . . . , N .

The complete sets of stable and unstable IMs corresponding to each fixed
point along the PLO are often called manifold tubes. This descriptor origi-
nates from the appearance of IMs projection onto position space; however,
these structures exist in the higher six-dimensional space and cannot be pre-
cisely defined as three-dimensional objects. When working with the planar
CR3BP, IMs become four-dimensional object, since the z component of po-
sition and velocity is not considered.

Some examples are provided in Fig. 2.13 for the collinear points L1 and
L2 in the Earth-Moon system for the planar CR3BP. For some energy levels
and depending on the radius of P2, such as in Fig. 2.13a, the manifold tube
could impact the smaller primary. Notice how the IMs tend to fold around
P2 inside the inner region.
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(a) IMs originating from PLO around
Earth-Moon L1. J = 3.18067, propa-
gation time: 23.05 days.

(b) IMs originating from PLO around
Earth-Moon L2. J = 3.19238, propa-
gation time: 17.39 days.

(c) Stable IM originating from PLO
around Earth-Moon L2. J = 3.19238,
propagation time: 38.26 days.

Figure 2.13: Different morphologies of IMs originating from PLOs around L1
and L2 points of the Earth-Moon system.
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2.13 Transit orbits
A key feature of the IMs of PLOs is that they act as separatrices for the
flow through the equilibrium region, i.e., they separate two distinct types of
motion: transit orbits (TOs), which moves inside the manifold tubes, and
non-transit orbits, which are those outside the tubes [Gómez et al., 2004,
Koon et al., 2001, Corrêa et al., 2004, Conley, 1968]. Moreover, only TOs
can travel between the interior and the exterior region, thus controlling the
transport of material to and from the L2 bottleneck. In Fig. 2.14 examples
of transit and non-transit orbits are provided for the Earth-Moon planar
CR3BP. A stable IM has been integrated from a PLO with the same Jacobi
constant J around L2 until the Poincaré section Σ = {x : x = µ− 1}, where
the components (y, ẏ) are determined (see Figs. 2.14a, 2.14c). Initial condi-
tions for the TO are obtained by taking a point inside the stable manifold cut
(as showed in Fig. 2.14a) and then selecting the component ẋ = ẋ(y, ẏ, J),
by means of Eq. (2.41):

ẋ =
√
x2 + y2 + 2(1− µ)

r1
+ 2µ
r2

+ µ(1− µ)− ẏ2 − J (2.134)

being J the Jacobi constant of the corresponding stable IM. By propagating
this state forward in time, a TO travelling inside the IM is generated. As
showed in Fig 2.14b, the TO is inside the planar projection of the stable IM
represented in blue until it reaches the PLO region, then it continues inside
the unstable IM represented in red. As a consequence, all TOs will pass inside
the region defined by the PLO itself. Similarly, taking an initial condition
just outside the manifold cut (Fig. 2.14c) leads to a non-transit orbit, i.e.,
one which do not access the exterior region but loops back towards P2.
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(a) Poincaré section and initial condition
for transit orbit

(b) Transit orbit

(c) Poincaré section and initial condition
for non-transit orbit

(d) Non-transit orbit

Figure 2.14: Examples of TOs for the Earth-Moon planar CR3BP (J =
3.182003). On the left the Poincaré sections of the stable manifold and the
initial condition chosen to generate a transit or non-transit orbit. On the
right, these Poincaré sections are depicted as a gold line and the correspond-
ing transit/non-transit orbits are represented in black. We observe that for
the non-transit orbit the initial condition has been chosen just at a small dis-
tance from the boundary of the manifold cut. W S−

L2 , WU−
L2 , WU+

L2 represent
the stable IM in the inner region, the unstable IM in the inner region and
the IM in the outer region, respectively.



Chapter 3

Model and method

Introduction. In this chapter the method to find trajectories connecting
consecutive moons of a planetary system is introduced. Two physical models
are used: the CR3BP is employed to study the dynamics of the spacecraft
in the vicinity of the moons (intra-moon space) while the two body approx-
imation is used in the inter-moon space between them, by considering the
sole gravity of the larger primary. The geometry of the problem and the
definition of the boundary between the intra-moon space and the inter-moon
space is described in Sect. 3.1. We use two different approaches for trajec-
tory propagation inside the intra-moon space, i.e., by means of TOs and IMs
(Sect. 3.2). The method to identify possible connections in the inter-moon
space is described in Sect. 3.3. An application to a transfer between Europa
and Ganymede (and viceversa) is reported in Sect. 3.4. The analysis of the
results follows in Sect. 3.5.

3.1 Moon-to-moon connections: the approach
In the present work we aim at finding low-energy transfers (i.e., conceived
in the framework of the CR3BP) between consecutive moons of a planetary
system. Such connections are carried out by propagating low-energy tra-
jectories in the neighbourhood of each moon towards the other moon and
identifying the intersections between couple of trajectories. The purpose is
to evaluate the minimum-cost connection, being the cost the difference in
velocity in the intersection between two trajectories. These trajectories are
generated as IMs or TOs and propagated in the so called coupled CR3BP
[Koon et al., 2008, Castelli, 2012] according to which there is no influence
between the two CR3BPs involved from a dynamical viewpoint, being their
relationship merely kinematical. The coupling is made by the appropri-

45
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Figure 3.1: A planetary-system with three moons (M1, M2, M3) orbiting
around a planet P . The planet-centered IRF is represented in black, while
the SRFs of each moon are represented in red (the x-axes are in the direction
of the vector connecting the planet to the moon). The intra-moon space is
defined by the regions inside each CI (represented in blue), where the CR3BP
is used. Outside, defining the inter-moon space, the two-body approxima-
tion is adopted. The orbits of the moons are assumed circular, one of the
conditions for the applicability of the CR3BP.

ate transformation of coordinates between the two SRFs of two consecutive
moons. In the quoted papers the two restricted models are directly con-
nected, i.e., the phase states (position and velocity vectors) in one synodical
frame are converted into phase states in the other synodical frame when a
given Poincaré section is reached. In this work, however, the space where
the CR3BP is used is limited to circular regions (whose borders are called
circles of influence (CIs)) around each moon: we call these regions the intra-
moon space; in the remaining space, called inter-moon space the two-body
model is adopted (see Fig. 3.1). In other words, each connection between
two consecutive moons implies a intra-moon branch inside the CI of the first
moon, two inter-moon branches where the intersection takes place, and a final
intra-moon branch inside the CI of the second moon. The coordinate sys-
tem adopted when describing the inter-moon dynamics is the planet-centered
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IRF1. In order to perform the coupling, a coordinate change is applied from
each SRF to the planet-centered IRF at the boundary between the inter-
moon and intra-moon space, i.e., at the CI. This transformation requires a
translation from the barycentre of the planet-moon system to the centre of
the planet and a rotation about the z-axis by the angle between the x-axes
of the SRF and the X-axis of the IRF. However, in this work we ignore the
first translation, being the centre of mass of the planet-moon system within a
negligible distance from the centre of the planet in the majority of real cases
(for example, each planet-moon barycentre of the Galilean moons is three
to six orders of magnitude smaller than the radius of Jupiter). The overall
coupling between two moons depends on the angle swept by the x-axis of the
SRFs with respect to the X-axis of the IRF. However, we choose to orient
the IRF so that one of the two x-axes coincides with the inertial X-axis at
t = 0: this allows to remove the dependence on one of the two angles. There-
fore, the transformation has just one degree of freedom, represented by the
relative phase α0 between the two x-axes at t = 0, as sketched in Fig. 3.2 for
two consecutive moons of a planetary system. Moreover, since the angular
velocities of the moons are constant, we can choose the angle α0 at any fixed
time to completely parametrise the model. We can use this parameter to
map all the possible relative orientations between two moons in search for
the optimal trajectory which links them.

Regardless the method to propagate the trajectories in the intra-moon
space (i.e., IMs or TOs), the procedure to connect two points in the CIs of
two consecutive moons in the inter-moon space is the same. The method
exploiting IMs is the same developed in [Fantino and Castelli, 2016a]; we
derive the algorithm for the inter-moon connection from the same paper. The
procedure with TOs is introduced as a possible enhancement to the previous
one. The results of the two methods are then compared and discussed.

3.2 Motion in the intra-moon space
An outward connection between two moons by means of IMs is conceived
as a trajectory leaving a PLO around P2 of the inner moon through the
unstable manifold and approaching a PLO around P1 of the outer moon
through the stable manifold. Similarly, an inward connection is intended
as a trajectory leaving a PLO around P1 of the outer moon through the

1To be precise, this frame is more generally a planet-centered fixed axes frame. In
fact, in some application (e.g., Jupiter and the Galilean moons), the origin is accelerated,
being the planet itself in circular motion around another body (e.g., the Sun in the case
of Jupiter).
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Figure 3.2: The coupled CR3BP for two consecutive moons M1 and M2 in
circular motion around the planet P at constant angular velocity. The plot
outlines the coupling at the time t = 0, with the x1-axis aligned with the
inertial X-axis. The angle α0 between the two SRFs parametrises the model.
For the sake of illustration, the forbidden region corresponding to the value
of the Jacobi constant for two PLOs around P1 or P2 is represented.
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(a) Stable IM. (b) Unstable IM.

Figure 3.3: Stable and unstable IMs originating from a PLO around P1 (left)
and P2 (right), integrated until the CI (represented in purple). The ZVCs
are represented in green.

unstable manifold and approaching a PLO around P2 of the inner moon
through the stable manifold. PLOs are varied according to a certain energy
discretization, leading to a database to be used in the trajectory design. The
intra-moon space, where the CR3BP is used, is defined by the radius of the
CI. We define this radius rCI for a given moon as the radius of the Laplace
sphere [Roy, 2004] multiplied by a convenient factor k:

rCI = kr0

(
m

M

)
, (3.1)

being r0 the orbital radius of the moon, m its mass and M the mass of
the planet. The value of k is selected in such a way that it contains, with
due margin, all the Lyapunov orbits of the database. For each PLO of the
database, the corresponding stable (or unstable) IM is propagated until in-
tersection with the CI using the method described in Sect. 2.12 (see Fig. 3.3).
The phase states collected on the CIs are transformed to the planet-centered
IRF and considered as initial conditions for backward/forward propagation.

In the case of the TOs, instead of leaving/approaching the PLO, the
trajectory passes through it (Sect. 2.13). For this reason, we select initial
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Figure 3.4: 8 × 21 grid around a PLO. Only points (x0, y0) inside the Lya-
punov orbit are selected as initial conditions for trajectory propagation. The
components (ẋ0, ẏ0) of the velocity vector v are selected through Eq. (3.2)
for a given angle β.

conditions for the TOs directly inside the area enclosed by each PLO of the
database by means of a nX × nY grid (see Fig. 3.4). Since each PLO is
computed numerically as a set of points, an analytical representation of the
PLO is needed to distinguish between points inside or outside the grid: this is
obtained by approximating the PLO through a parametric cubic spline (see
Appendix D). Only points inside the grid are selected as initial positions. For
a given position (x0, y0) and a value of the Jacobi constant J , the magnitude
of the initial velocity is constrained by Eq. (2.41):

v =
√
ẋ2 + ẏ2 =

√
x2 + y2 + 2(1− µ)

r1
+ 2µ
r2

+ [µ(1− µ)]− J. (3.2)

Therefore, once selected an angle β (see Fig. 3.4) between the velocity direc-
tion and the positive x-axis, the velocity components of the initial state ẋ0
and ẏ0 are given by: ẋ = v cos β,

ẏ = v sin β,
(3.3)

where β ∈ [0, 2π[. We call nβ the number of angles in which the range [0, 2π[
is discretized. A given initial state for a TO is therefore a function of the
position (x0, y0) on the grid, the Jacobi constant J and the angle β. Varying
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the position on the grid and the remaining two parameters permits to define a
set of initial states (x0, y0, ẋ0, ẏ0) to be integrated by means of Eqs. 2.15 until
intersection with the CI. Eventually, the phase states at the CI are converted
from the SRF to the planet-centered IRF using the transformation presented
in Sect. 2.1.

3.3 Motion in the inter-moon space
The two-body approximation in the planet-centered IRF substitutes the
CR3BP when dealing with the spacecraft’s dynamics beyond the CI, i.e.,
in the inter-moon space. The initial states on the CI expressed in the planet-
centered IRF are used as initial conditions for backward/forward Keplerian
orbit propagation. No matter the time direction, these Keplerian orbits are
ellipses with a focus on the planet’s centre. Any Keplerian orbit can be
parametrised by means of the five classical orbital elements, i.e., the semi-
major axis a, the eccentricity e, the inclination i, the right ascension of the as-
cending node Ω, the argument of periapsis ω. Additionally, the true anomaly
indicates the geometric position along the ellipse. In planar approximation,
however, the inclination and the right ascension of the ascending node are
irrelevant, therefore ω is measured from the X-axis to the periapsis of the
ellipses and the so-called Keplerian elements set just consists of a, e, ω and θ
(see Fig. 3.5). The semimajor axis and the eccentricity provide the shape of
the ellipse, and as such are fixed for a given state on the CI. The argument
of periapsis depends only on the relative orientation between the x-axis with
the XY -plane at the given time. In other words, a change ∆α in the orien-
tation of the SRF produces an equivalent change ∆ω = ∆α of the argument
of periapsis of the resulting ellipse. For a proof see Appendix C.

Given two moons, the procedure to find possible connections is now pre-
sented. For a choice of two PLOs, one on each CR3BP, IMs and TOs are
integrated with the method described in the previous section. For a choice of
α0 the phase states are collected on the two CIs and converted into Keplerian
elements sets. Connections between moons are then sought by looking at the
geometrical intersections between all the possible combinations of ellipses
from the two CIs. Consider now the generic Cartesian implicit equation for
an ellipse:

ax2 + bxy + cy2 + dx+ ey + f = 0. (3.4)
Dividing the left and right-hand side of Eq. (3.4) by f , it turns out that a
generic ellipse is a function of five parameters. If we fix the coordinates of
the focus, two of these five parameters can be written as some functions f1
and f2 of the remaining ones. In other words, an ellipse E1 with a fixed focus
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Figure 3.5: An elliptical orbit with a focus on the planet P. Its orientation
with respect to the IRF (represented in black) is defined by the argument of
periapsis ω, i.e., the angle between the inertial X-axis and the periapsis of
the ellipse. The position r and the velocity v of a point with true anomaly
θ are also shown.
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Figure 3.6: Possible intersections between two ellipses sharing the same focus:
none, two identical (A ≡ B), two distinct A 6= B, respectively on the left,
center, right.

can be written as a function of three parameters:

a1x
2 + b1xy + c1y

2 + f1(a1, b1, c1)x+ f2(a1, b1, c1). (3.5)

If we know three different points A1, A2 and A3 of E1, a unique set of a1, b1
and c1 defining E1 can be found. Suppose another ellipse E2 shares the same
focus of E1; its Cartesian equation becomes:

a2x
2 + b2xy + c2y

2 + f1(a2, b2, c2)x+ f2(a2, b2, c2). (3.6)

If E2 intersects E1 in A1 A2 and A3, then a1 = a2, b1 = b2, c1 = c2 and E1
coincides with E2. Therefore, the maximum number of intersection between
two different ellipses sharing the same focus is two. In case of one solution
the two ellipses are tangent. All the possible situations are represented in
Fig. 3.6.

If an intersection between two ellipses exist, the magnitude ∆V of the dif-
ference in velocity at the intersection point is the magnitude of the impulse
to be applied by the propulsion system of the spacecraft to change from one
orbit to another and eventually accomplish the task of connecting the two
CR3BPs. If more than one intersection exists, two possible paths connect-
ing the two moons are available, and the ∆V s at the two intersections are
different. Figure 3.7 shows two ways to connect the CIs of two moons by
means of the two paths provided by intersections A and B. This procedure
should be repeated for all the PLOs of the database in each CR3BP and re-
quires varying α0 from 0 to 2π according to some discretization. Comparing
all the possible combinations of ellipses allows to find the initial conditions
providing the minimum-∆V . This may become time-consuming if the reso-
lution taken to discretize the angle α0, the individual PLO (or the related
grid, in case of TOs) and the energy level of the Lyapunov family is narrow.
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Figure 3.7: Two possible paths (indicated with orange and green arrows)
from the CI of moon M1 to the CI of moon M2 through the intersections A
and B, respectively. The two ellipses share the same focus, represented by
the planet P .

However, a closer look allows to simplify the problem and, in turn, reduce
the amount of computations. We start by writing the polar equation of the
ellipse, providing the distance r of the spacecraft to the focus as a function
of the true anomaly θ:

r = p

1 + e cos θ , (3.7)

being p = a(1 − e2) the semilatus rectum of the ellipse. At the intersection
points A and B between two ellipses defined by the orbital sets (a1, e1, ω1)
and (a2, e2, ω2) (see Fig. 3.8), the orbit equations can be written as:

r = p1

1 + e1 cos θ1
, (3.8a)

r = p2

1 + e2 cos θ2
, (3.8b)

in which r is the distance of the intersection from the planet, θ1 and θ2 are
the true anomalies of the intersection point, calculated from the apse lines
given by ω1 and ω2, respectively. The angular displacement between the two
apse lines is

∆ω = θ2 − θ1, (3.9)
hence

cos(θ2) = cos(θ1 + ∆ω) = cos θ1 cos ∆ω − sin θ1 sin ∆ω. (3.10)
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Figure 3.8: Intersection point between two ellipses sharing the same focus.
The radius r is the same in this point, while the true anomalies θ1 and θ2
vary according with the two argument of perigee ω1 and ω2 (referred to the
inertial X-axis).

From Eqs. (3.8) and (3.10) it follows

p1 − p2 + cos θ1 [p1e2 cos ∆ω − p2e1] = sin θ1(p1e2 sin ∆ω) (3.11)

or, in a more compact form

k1 + k2 cos θ1 = k3 sin θ1, (3.12)

where we made the substitutions:

k1 = p1 − p2, (3.13a)
k2 = p1e2 cos ∆ω − p2e1, (3.13b)
k3 = p1e2 sin ∆ω. (3.13c)

Squaring both the members of Eq. (3.12) and rearranging yields:

(cos θ1)1,2 =
−k1k2 ± |k3|

√
k2

3 + k2
2 − k2

1

k2
2 + k2

3
. (3.14)

The values found in Eq. (3.12) are the cosines of the true anomalies of A and
B measured from the apse line given by ω1. Solutions exist and are real only
if the discriminant is positive:

k2
3 + k2

2 − k2
1 ≥ 0, (3.15)
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where the equality
k2

3 + k2
2 − k2

1 = 0, (3.16)
corresponds to the tangency condition between the two ellipses. From (3.12):

sin θ1 = k1 + k2 cos θ1

k3
, (3.17)

hence, the correct quadrant of the angle θ1 can be found using (3.14) and
(3.17). Once the two intersections are found, the radial and perpendicular
components of the velocity are computed for each orbit:

vr,ij = µ

h
e sin θij, (3.18a)

v⊥,ij = µ

h
(1 + e cos θij). (3.18b)

The first index i represents the orbit (i = 1, 2) and the second index j
represents the intersection (j = 1, 2). Hence, we can write the velocity at
each intersection as:

vij = vr,ijûr,ij + v⊥ijû⊥,ij, (3.19)
being ûr,ij and û⊥,ij the radial and perpendicular unit vectors. Therefore
∆vj (j = 1, 2) is given by:

∆vj = v2j − v1j. (3.20)

The condition on the discriminant (Eq. (3.15)) translates into a condition for
∆ω to be satisfied, i.e., the two ellipses intersect only in a limited range of
values for ∆ω:

τ ≤ ∆ω ≤ 2π − τ, (3.21)
with τ ∈ [0, 2π[. The value of τ depends only on the shape of the two
ellipses and can be explicitly calculated in terms of ai and ei (i = 1, 2)
from the tangency condition, given by Eq. 3.16. For τ > 0 the domain of
intersections is limited by the geometrical configurations for which the ellipses
are mutually tangent (Fig. 3.9), i.e., ∆ω = τ and ∆ω = 2π−τ . On the other
hand, if τ = 0 no tangency condition exists and the two ellipses always
have two intersections, regardless their relative orientation. In principle,
one should vary ∆ω for each pair of ellipses and then choose the value that
minimizes the ∆V = ‖∆v‖ at one of the two intersections. Actually, as
our intuition suggests, the minimum-∆V values corresponds to the tangency
configuration. In order to prove it, we analysed the behaviour of ∆V as a
function of ∆ω for several pairs of ellipses, varying the semimajor axis and
the eccentricity. For each pair, the value of τ has been determined and, by
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Figure 3.9: Relative angular displacement ∆ω between the arguments of
periapsis of two ellipses when they are mutually tangent. The configuration is
symmetrical and the two ellipses are tangent for ∆ω = τ (left) or ∆ω = 2π−τ
(right).

varying ∆ω between τ and 2π − τ with a certain discretization the value
of ∆V has been computed at every intersection. The results show that if
τ > 0, ∆V has two equal minima when ∆ω lies at either limit of the domain,
i.e., when the two ellipses are mutually tangent. For all the other values
of ∆ω, the cost is higher. In particular, ∆V is maximum when ∆ω = π,
that is when the two apse lines are opposite (see Fig. 3.10). This behaviour
always appears at least when the eccentricities are smaller than 0.2. In our
case, since the ellipses studied are an extension of the motion originating in
the vicinity of the libration points, their path in the IRF must inherit the
behaviour of the corresponding equilibrium points, which move in circular
orbits around the planet. Therefore, these orbits are expected to have low
eccentricities and this guarantees the applicability of the intersection pattern
shown in Fig. 3.10.

The procedure here presented is therefore completely analytical and al-
lows to connect two states on the CIs without the need to propagate them
numerically.

3.4 Application: from Europa to Ganymede
and viceversa

In this section we present an application of the method to the case of a
transfer between two consecutive Galilean moons, Europa and Ganymede.
The orbits of the four Galilean moons are represented to scale in Fig. 3.11.
Their relevant orbital parameters are listed in Table 3.1. Connections are
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Figure 3.10: ∆V at the intersections between two ellipses versus their relative
orientation ∆ω. The two different curves (solid and dashed) stand for the
∆V s at the two different intersections A and B. The minima correspond to
the tangency configuration while the maximum is for ∆ω = π.
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Figure 3.11: The orbits of the Galilean moons (the equatorial radii of Jupiter
and the moons are not to scale).

sought by means of IMs and TOs in the intra-moon space. In the case of
IMs, the transfer connects two PLOs, one around L2 of Jupiter-Europa and
the other around L1 of Jupiter-Ganymede. On the other hand, when dealing
with TOs, the trajectory links one point inside a PLO around L2 of Jupiter-
Europa and one inside a PLO around L1 of Jupiter-Ganymede. PLOs are
taken from two databases of 95 orbits (see Fig. 3.12), each discretized in 99
points. The Jacobi constant for PLOs around P2 ranges from 3.001631769881
to 3.003593748544, while for PLOs around Ganymede P1 the range is from
3.005357382121 to 3.007543590510 (sorted from 1 to 95 in increasing en-
ergy order, i.e., deceasing Jacobi constant). The CIs have radii of 38 905 km
for Europa and 97 409 km for Ganymede, both corresponding to k = 4 in
Eq. (3.1). The best coupling between the two CR3BPs is that which mini-
mizes ∆V at the intersection point between the two ellipses at their tangent
configuration in the inter-moon space. A common time event scheme is set
up for IMs and TOs and is reported in Table 3.2.

3.4.1 Invariant manifolds
When designing a connection from Europa to Ganymede by means of IMs,
the unstable IM of a Jupiter-Europa PLO is propagated to the CI around
Europa and the stable IM around Jupiter-Ganymede is propagated to the
CI around Ganymede. The stability must be reversed when dealing with
the transfer from Ganymede to Europa. Using two databases of 95 PLOs,
with each PLO discretized in 99 points (using a constant time-step), leads to
more than 88 million possible intersections. However, only pairs in which the
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Moon Orbital radius Orbital Period Mass ratio
[105 km] [days] [10−4]

Io 4.2180 1.8 0.470542991630
Europa 6.7110 3.6 0.252865845179

Ganymede 10.7040 7.2 0.780632933465
Callisto 18.8270 16.7 0.566808592975

Table 3.1: The second and the the third column represent the orbital radii
and periods of the Galilean moons, respectively. The fourth column lists
the mass ratios mi/(mi + M), being mi the mass of the moon and M =
0.189 813× 1028 kg the mass of Jupiter.

Figure 3.12: The database of PLOs around L2 in the Jupiter-Europa CR3BP
(left) and around L1 in the Jupiter-Ganymede CR3BP (right) shown in their
respective SRF. The maximum amplitude in the y direction of the largest
PLO and its minimum distance to the moon are displayed.
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Time event Description

T0 Initial condition on Europa’s PLO
T1 Leaving Europa’s CI
T2 ∆V
T3 Entering Ganymede’s CI
T4 Initial condition on Ganymede’s PLO

Table 3.2: Description of the main time events. Events T0, T1, T3, T4 occur
in the intra-moons space, while T2 represent the impulsive ∆V to be applied
in the inter-moon space. Events T0 and T4 are associated with points on the
PLO in the case of IMs, and with points inside the PLO for TOs.

periapsis of the outer ellipse is smaller than the apoapsis of the inner ellipse
are selected. In the case of the connection from Europa to Ganymede, the
total number of intersections to be analysed according with this criterion is
drastically reduced to about 9 millions, corresponding to 10% of the total
amount. Figures 3.13 and 3.14 show the eccentricities, the semimajor axes
and the periapsis/apoapsis for the transfer from Europa to Ganymede and
viceversa. As predicted, the eccentricities of the resulting ellipses are very
small (smaller than 0.14 for this application) thus enabling the application
of the algorithm described in Sect. 3.3. Moreover, each pair of ellipses have
a strictly positive value of τ , meaning that a tangency configuration always
exists and represents the minimum-∆V solution for each possible transfer.
A plot representing the minimum-∆V of each pair of ellipses is showed in
Fig. 3.15 for the transfer from Europa to Ganymede and viceversa. The
absolute minimum is ∆VMIN = 0.8814 km s−1 for both the outward and in-
ward transfer. It is obtained for the PLO number 95 in both the databases,
corresponding to the highest energies of the database. The minimum-cost
trajectories are shown in Fig. 3.16. The times of flight using the time events
described in Table 3.2 are reported in Table 3.4. As we can see from the last
row, also the time of flight is the same for both transfer directions: as one
may predict, the problem is symmetric. Hence, even the orbital elements of
the two minimum-∆V transfer ellipses are the same: they are reported in
Table 3.5.
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Figure 3.13: Eccentricities, semimajor axes and apo/periapsis for trajecto-
ries leaving the unstable IM around Jupiter-Europa L2 (left column) and ap-
proaching the stable IM around Jupiter-Ganymede L1 (right column). Each
value in the plot is a function of the discretization index on each PLO (rang-
ing from 1 to 99).
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Figure 3.14: Eccentricities, semimajor axes and apo/periapsis for trajecto-
ries leaving the unstable IM around Jupiter-Ganymede L1 (left column) and
approaching the stable IM around Jupiter-Europa L2 (right column). Each
value in the plot is a function of the discretization index on each PLO (rang-
ing from 1 to 99).
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Figure 3.15: The cost of the cheapest transfers (corresponding to tangent
ellipses) from Europa to Ganymede (left) and Ganymede to Europa (right)
as functions of the combination index (ranging from 1 to ≈ 9 millions) with
the IMs method inside the CI. The absolute minima are displayed within a
red circle. For the sake of clarity, one coupling every 500 is showed in this
map to prevent an excessive superposition of points.

Figure 3.16: The transfer from Europa to Ganymede (left) and viceversa
(right) as viewed from the Jupiter-centred IRF with the IMs method inside
the CI. The time events Ti(i = 1, . . . , 5) refers to the time scheme reported
in Table 3.2. The trajectory in the neighbourhood of Europa is plotted in
red until time event T2 (where the ∆V is applied). Moreover, the trajectory
is represented with a dashed line as long as the spacecraft is inside the CI
while it is a continuous line on the Keplerian ellipses.
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3.4.2 Transit orbits
In the case of using TOs to construct the transfer, the initial conditions
required for propagation in the intra-moon space are selected inside the PLOs
of the database. This is done by means of a grid of points, as described in
Sect. 3.3. Grids are computed with the following criteria:

1. the border of the grid is tangent to the PLO;

2. the distance between two consecutive points on the grid is constant in
both the directions x and y.

As a consequence of the second criterion above mentioned, nY will vary
according to the y-amplitude of the PLO. Each grid is then completely
parametrized by nX and nβ. For this application, we choose a grid dis-
cretization with nX = 5. To select these angles β, discrete values in the
range R− = [π/2, 3π/2] are chosen if the TOs are moving towards L2 for-
ward in time; on the other hand if the TOs are moving towards L1 forward in
time, values in the range R+ = [3π/2, π/2] are selected. Since a TO crosses
the equilibrium regions flowing inside the spatial bi-dimensional projection of
the same-energy manifold tube, the right angular range can be inferred look-
ing at the motion provided by the latter. Analysing the manifold tubes for
a transfer from Europa to Ganymede, we deduce that the range R− must be
chosen (see Fig. 3.17). For this application we select nβ = 3 with the velocity
angles β1 = 3π/4, β2 = π and β3 = 5π/4. Similarly, the reverse transfer from
Ganymede to Europa requires the range R+ and we select β4 = 3π/4, β5 = π
and β6 = 5π/4. Exploiting the entire range of 95 PLOs for each database
with the designated values of nX and nβ, the maximum number of possible
couplings raises to more than 290 millions (see Table 3.3), considerably more
than the previous case with IMs. Moreover, if one wants to double both the
planar and the angular resolution, this number increases by a factor 64. Even
if the actual number of intersections is reduced after applying the criterion of
the apoapsis/periapsis, the overall computing time may still be high. How-
ever, from the previous results for IMs, we observed that the minimum-∆V
trajectory is generated for the highest energies (i.e., for the last orbits in the
database); hence our intuition suggests to limit the range of the databases to
the higher energies: for this application only PLOs from 70 to 95 are taken
into account (Table 3.3). This will reduce the overall possible couplings to
about 17 millions, which is the same order of magnitude as the correspond-
ing value in the case of IMs (9 millions). The minimum-∆V in this case is
∆VMIN = 0.5145 km s−1 in both directions and, again, it is associated with
the highest energies of the two databases. A plot with the transfers in the
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(a) Velocity directions for a grid point
inside a PLO around Ganymede

(b) Velocity directions for a grid point
inside a PLO around Europa

Figure 3.17: Selected velocity directions for the transfer from Europa to
Ganymede using TOs, i.e., β1 = 3π/4, β2 = π, β3 = 5π/4 (represented by
three black arrows). These values are the same for all the grid points inside
the PLOs around Europa (a) and Ganymede (b).

Figure 3.18: Transfer from Europa to Ganymede (left) and viceversa (right)
as viewed from the Jupiter-centred IRF with the TOs method inside the
CI. The time events Ti(i = 1, . . . , 5) refer to the time scheme reported in
Table 3.2. The trajectory in the neighbourhood of Europa is plotted in red
until time event T2 (where the ∆V is applied). Moreover, the trajectory is
represented with a dashed line as long as the spacecraft is inside the CI and
with the continuous on the Keplerian ellipses.
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Europa database Ganymede database

1÷ 95

Total initial conditions 16425 17625
Min linear resolution 2802 km 3741 km
Max linear resolution 297 km 914 km

Average linear resolution 1337 km 2312 km

70÷ 95

Total initial conditions 3834 4521
Min linear resolution 2802 km 3743 km
Max linear resolution 1890 km 2942 km

Average linear resolution 2355 km 3336 km

Table 3.3: Significant parameters for the database of PLOs around Europa
and Ganymede using nX = 5 and nβ = 3. The table shows the difference
between two sets of PLOs taken into account: from PLO 1 to 95 and from
PLO 70 to 95. In the first case about 290 millions possible intersections can
be found, in the second case only 17 millions. Since nX is fixed, the linear
resolution will vary depending on the dimensions of the current PLO. As a
consequence, the smaller PLO of the database is associated to the maximum
resolution value.
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Time event Europa to Ganymede Ganymede to Europa
[days] [days]

IMs

T0 0 0
T1 3.82 6.54
T2 4.68 7.67
T3 5.85 8.58
T4 12.38 12.38

TOs

T0 0 0
T1 0.29 0.77
T2 1.07 1.71
T3 2.00 2.49
T4 2.78 2.78

Table 3.4: Time events for the coupling between Europa and Ganymede (and
viceversa) when IMs and TOs are employed for propagation in the intra-moon
space.

Jupiter-centred IRF is reported in Fig. 3.18. The main time events are re-
ported in Table 3.4. Eccentricities, semimajor axes and the values of ∆ω in
this case are reported in Table 3.5.

3.5 Results
We have verified the physical validity of the solutions in the case of IMs by
propagating the initial state on the PLO around L2 of Europa forward in time
to the manoeuvre point in the Jupiter-Europa CR3BP, and the final state
on the PLO around L1 of Ganymede backwards in time to the manoeuvre
point in the Jupiter-Ganymede CR3BP. The propagation time is of 4.68 days
over the former segment and 7.70 days over the latter. The distance between
the endpoints of the two segments is of 7000 km, which is equivalent to the
accumulation of a speed error of 6 m s−1 over the whole transfer (7000 km /
14.48 days). This error, due to the Keplerian approximation of the CR3BP
model, is negligible when compared with the size of the computed manoeuvre
(0.88 km s−1).
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Keplerian ellipses
From/to Europa CI From/to Ganymede CI

IMs
Eccentricity 0.11854803 0.14374662

Semi-major axis 7.780× 105 km 9.001× 105 km
∆ω 295.19◦

TOs
Eccentricity 0.15159419 0.16323860

Semi-major axis 8.114× 105 km 8.843× 105 km
∆ω 329.67◦

Table 3.5: Eccentricities, semimajor axes and ∆ω of the osculating ellipses
connecting Europa to Ganymede and viceversa.

The numerical code has been written with Matlab R2015b on a Lenovo
Laptop computer with Intel Core i7-4510U, 2.6 GHz CPU and Windows 10.
Numerical integrators are written in C++ and then integrated in Matlab as
binary MEX files to reduce the computing time. Matlab Parallel Computing
Toolbox is used to increase performances. The computations are performed
in two phases. In the first phase, after discretizing the PLOs, IMs and
TOs are integrated until the two CIs: the integration of IMs requires 11 s,
while 20 s are required for TOs (in this case, most of the time is spent to
compute the grids and to write the output file). In the second phase, the
minimum-cost intersections of all the possible pairs of ellipses are determined
and the cheapest trajectory is identified; this phase requires about 70 s (88
millions possible couplings) for IMs and 40 s for TOs (17 millions possible
couplings). By comparing data from Table 3.4, the transfer performed by
means of TOs is clearly faster than the corresponding coupling with IMs
(2.78 days versus 12.38 days) as well as cheaper in terms of ∆V (514.5 m s−1

versus 881.4 m s−1). In particular, TOs do not wind around the PLO (Figs.
3.19c and 3.19d). Therefore, they provide a faster path from the initial
condition to the CI (and viceversa) when compared with IMs (Figs. 3.19a
and 3.19b). The short time-of-flight provided by TOs makes them more
feasible for a real mission. In fact, the intense particle radiation belts of the
Jovian magnetosphere, which extend almost to the orbit of Ganymede, may
represent a serious obstacle to the practical implementation of trajectories
that spend many days in the inter-moon space.
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(a) Europa inter-moon, IMs (b) Ganymede inter-moon, IMs

(c) Europa inter-moon, TOs (d) Ganymede inter-moon, TOs

Figure 3.19: Europa-to-Ganymede minimum-∆V transfers in the intra-moon
space of Europa (a) and Ganymede (b) using IMs; Figs. (c) and (d) are the
analogous trajectories computed with TOs. The CI is represented in red
in each case. For the sake of clarity, the two PLOs corresponding to the
minimum-∆V solution are represented in Figs. (c) and (d).



Chapter 4

Tour of the Galilean moons

Introduction. In this chapter we aim at finding a trajectory visiting the
Galilean moons Europa, Ganymede and Callisto (i.e., a tour of the Galilean
moons) by repeatedly applying the coupled CR3BP between consecutive
moons. Starting from an initial state in the neighbourhood of the inner
moon, i.e., Europa, our goal is to find a trajectory towards the outer moon,
i.e., Callisto, passing by Ganymede (outward journey); then, the trajectory
comes back to the initial state (in the SRF) in the vicinity of Europa passing
again by Ganymede (inward journey). The method to link multiple CR3BPs
(Sect. 4.1) and to find the optimal connection (Sect. 4.2) is explained. A key
issue in the design of the tour is identifying the right match of the initial
phase angles of the several moons: as a matter of fact, the connection be-
tween two consecutive moons requires that a certain relative phase exists at
the beginning of the transfer. When linking more inter-moon connections,
the issue of the relative phase is even more critical because it implies times
given by the synodical period of more than two moons, which is a large value.
Therefore, once the initial phase angles for the outward journey are fixed,
suitable parking orbits (rephasing orbits) around Ganymede and Callisto are
designed to accomplish the inward journey (Sect. 4.3). The complete tour is
illustrated and discussed in Sect. 4.4.

4.1 Preliminary considerations
To find connections between multiple Galilean moons, four coupled CR3BPs
are taken into account, i.e., from Europa to Ganymede, from Ganymede to
Callisto, from Callisto to Ganymede and from Ganymede to Europa. The
whole trajectory is constructed by joining different intra-moon and inter-
moon branches. Clearly, each intra-moon leg is conceived in the proper

71
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Figure 4.1: Example of TFB and TBB propagated from an initial condition
in the neighbourhood of Jupiter-Europa L2. The arrows point towards the
positive time direction.

coupled CR3BP model. Inside the intra-moon space, TOs are used instead
of IMs trajectories, because of the noticeable time-of-flight reduction provided
by the former (see Sect. 3.5).

According to the method described in Sect. 3.2, let x1
0,x2

0,x3
0,x4

0 be four
initial states around Jupiter-Europa L2, Jupiter-Ganymede L1, Jupiter-Callisto
L1 and Jupiter-Ganymede L2, respectively, expressed in their SRFs. From
each xi0, two branches of a TO, rather than one, are now considered: the
time-forward branch (TFB) and the time-backward branch (TBB), as shown
in Fig. 4.1. The former is obtained by propagating xi0 in the positive time
direction, the latter in the negative time direction.

The tour of the Galilean moons is made up of:

1. a TFB originating from x1
0 until the CI of Europa,

2. two inter-moon branches connecting the CI of Europa and the CI of
Ganymede,

3. a TBB connecting the CI of Ganymede to x2
0,

4. a TFB connecting x2
0 and the CI of Ganymede,

5. two inter-moon branches connecting the CI of Ganymede and the CI
of Callisto,

6. a TBB connecting the CI of Callisto and x3
0,



4.1. PRELIMINARY CONSIDERATIONS 73

7. a rephasing orbit connecting x3
0 to itself,

8. a TFB connecting x3
0 and the CI of Callisto,

9. two inter-moon branches connecting the CI of Callisto and the CI of
Ganymede,

10. a TBB connecting the CI of Ganymede and x4
0,

11. a rephasing orbit connecting x4
0 to itself,

12. a TFB connecting x4
0 and the CI of Ganymede,

13. two inter-moon branches connecting the CI of Ganymede and the CI
of Callisto,

14. a TBB connecting the CI of Europa to x1
0.

Steps 1, 3, 4, 6, 7, 8, 10, 11, 12 occur in the intra-moon space of the respective
moons, the remaining ones occur in the inter-moon space. The outward
journey connects x1

0 to x3
0 (from step 1 to 6); the inward journey connects x3

0
to x1

0 (from step 7 to 14). The tour is closed because the final step ends up
at the same state x1

0 of the first step. A change in velocity with magnitude
∆Vij is required during steps 2, 5, 9, 11 in order to connect xi0 and xj0. We
define ∆VTOT as the sum of the four ∆Vij:

∆VTOT = ∆V12 + ∆V23 + ∆V34 + ∆V41. (4.1)

Similarly, the total time of flight TOFTOT is defined as:

TOFTOT = TOF12 + TOF23 + TOF34 + TOF41, (4.2)

being TOFij the time required to connect xi0 to xj0. Additionally, we call
∆V C

reph and ∆V G
reph the ∆V s required for the rephasing around Ganymede

and Callisto respectively; TCreph and TGreph are the times of flight of the corre-
sponding rephasing orbits.

The morphologies requested for the TOs inside the intra-moon space of
each moon verify the following set of constraints:

• Inside the intra-moon space around Europa, the TO approaches the
moon and leaves it through the L2 gateway (see Fig. 4.2a).

• Inside the intra-moon space around Ganymede, during the outward
journey, the TO approaches the moon through the L1 gateway, it makes
a complete turn around the moon and leaves it through the L2 gateway
(see Fig. 4.2b).
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• Inside the intra-moon space around Callisto, the TO approaches and
leaves the moon through the L1 gateway (see Fig. 4.2c).

• Inside the intra-moon space around Ganymede, during the inward jour-
ney, the TO approaches the moon through the L2 gateway, it makes a
complete turn around the moon and leaves it through the L1 gateway
(see Fig. 4.2d).

• The TO does not impact the moon inside any intra-moon space.

• The minimum altitude with respect to the moon’s surface must be
grater than a given limit for safety reasons. We set this limit to 50 km
(the same value is employed in [Colasurdo et al., 2014]).

We call C the above set of constraints. Accordingly, the states x1
0,x2

0,x3
0,x4

0
are said C-connected if the corresponding TOs satisfy the condition imposed
by C and:

• a connection between x1
0 and x2

0 exists in the coupled CR3BP between
Europa and Ganymede,

• a connection between x2
0 and x3

0 exists in the coupled CR3BP between
Ganymede and Callisto,

• a connection between x3
0 and x4

0 exists in the coupled CR3BP between
Callisto and Ganymede,

• a connection between x4
0 and x1

0 exists in the coupled CR3BP between
Ganymede and Europa.

A sketch of four C-connected states is represented in Fig.4.3.

4.2 The optimal connection
In this section, the algorithm used to find the optimal C-connected states is
explained. It is divided into two main steps.

1. A first set of grids with nX = 10 and nβ = 30 is generated around
the four relevant Jupiter-moon Lagrangian points. Using the criteria
described in Sect. 3.2, velocity angles β are selected in the range ∆β1 =
[3π/4, 5π/4] for grids around Jupiter-Europa L2, Jupiter-Ganymede L1
and Jupiter-Callisto L1; the range ∆β2 = [−π/4, π/4] is used for grids
around Jupiter-Ganymede L2. Only the last 35 PLOs of each PLO-
database are taken into account to generate grids: this choice is justified
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(a) TO morphology around Europa. (b) TO morphology around
Ganymede (outward journey).

(c) TO morphology around Callisto. (d) TO morphology around
Ganymede (inward journey).

Figure 4.2: TOs morphologies required to satisfy the constraints C. TFBs
and TBBs are represented in blue and black, respectively. The CI for each
moon is represented in red. The Lagrangian points are marked with red dots.
The sizes of the moons are not to scale.
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Figure 4.3: Four C-connected states. Each coloured line represents a link
between two initial conditions in a coupled CR3BP verifying the constraints
C.

by the fact that TOs providing couplings between consecutive moons
with low ∆V are those with higher energies. The total amount of
initial conditions provided by each database at the planar and angular
resolution considered is reported in Table 4.1. From Table 4.1, the
amount of theoretical connections verifying the constraints C is about
13× 1015; among them, 29 billions are C-connected. This number can
be further reduced to approximately 3 × 105 if only connections with
∆Vij < 1.1 km s−1 (ij = 12, 23, 34, 41) are taken into account. We call
T1 the set of C-connected states x1

0,x2
0,x3

0,x4
0 verifying the additional

constraint on ∆Vij: they are represented in Fig. 4.4a as a function of
∆VTOT and TOFTOT. ∆VTOT ranges from 4.272 km s−1 to 4.463 km s−1;
TOFTOT ranges from 46.63 days to 47.76 days. The minimum-∆VTOT
connection is characterized by the following parameters:

∆VTOT = 1.044 + 1.111 + 1.096 + 1.021 = 4.272 km s−1, (4.3)
TOFTOT = 3.982 + 14.888 + 17.616 + 10.629 = 47.116 days, (4.4)

β1
01 = 225◦, (4.5)
β1

02 = 135◦, (4.6)
β1

03 = 135◦, (4.7)
β1

04 = −41.9◦, (4.8)
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Europa Ganymede-out Callisto Ganymede-in

T1

Total ICs 232080 269760 272580 257520

ICs verifying C
6088 10924 28429 9450
(2.6%) (4%) (10.4%) (3.6%)

Average planar res. 1085 km 1590 km 2404 km 1746 km
Angular resolution 3◦ 3◦ 3◦ 3◦

T2

Total ICs 5040 5040 2880 5040

ICs verifying C
1724 1333 1809 1185

(34.2%) (26.4%) (62.8%) (23.5%)
Average planar res. 122 km 197 km 277 km 193 km
Angular resolution 0.3◦ 0.3◦ 0.3◦ 0.3◦

Table 4.1: Total number of initial conditions (ICs), ICs verifying the set
of constraints C, average linear resolution and angular resolution for the
sets T1 and T2. The data are organized in four columns, representing the
grids around Jupiter-Europa L2 (Europa), Jupiter-Ganymede L1 (Ganymede-
out), Jupiter-Callisto L1 (Callisto) and Jupiter-Ganymede L2 (Ganymede-
in), respectively. The amount of ICs verifying the constraints C is a small
percentage of the ICs available (especially for the set T1). The average linear
resolution is clearly higher in the case of T2. The angular resolution associated
to T2 is one order of magnitude larger than that of T1.
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Europa Ganymede-out Callisto Ganymede-in

NPLO 86 85 95 85
β [degree] 226.42 134.2105 133.8947 −42.3703

J 3.0018724817 3.0055926754 3.0047941710 3.0054564204
Min altitude [km] 2966.911 10690.407 16498.978 10628.1610

Table 4.2: Index of the PLO-database, velocity angle β, Jacobi constant and
minimum altitude provided by initial conditions in the set T min ∆V

2 .

being β1
0i the angle β associated with xi0. We call T min ∆V

1 the four initial
conditions in the set T1 providing the minimum-∆VTOT connection.
Furthermore, N i

PLO is the database index of the ith (i = 1, . . . , 4) initial
condition in the set T min ∆V

1 .

2. A new set of sub-grids with nX = nY = 5, and nβ = 20 is computed
in the neighbourhood of the four xi0 ∈ T min ∆V

1 , (i = 1, . . . , 4). (see
Fig. 4.5). Velocity angles β are selected in the range ∆β3 = [β0i −
3, β0i + 3] deg, being β0i (i = 1, . . . 4) given by Eqs. (4.5), (4.6), (4.7)
and (4.8). Only PLOs in the range [N i

PLO−3, N i
PLO +3] are considered.

From Table 4.1, the amount of theoretical couplings between states
verifying the constraints C is about 5× 1012; among them, 3.2 billions
are C-connected. This number can be further reduced to roughly 105

if only connections with ∆Vij < 1.1 km s−1 are taken into account. We
call T2 the set of initial conditions providing such connections: they
are represented in Fig. 4.4b as functions of ∆VTOT and TOFTOT. The
minimum-∆VTOT connection is characterized by

∆VTOT = 1.028 + 1.099 + 1.096 + 1.005 = 4.227 km s−1, (4.9)
TOFTOT = 3.941 + 14.871 + 17.586 + 10.660 = 47.058 days. (4.10)

We call T min ∆V
2 the set of four initial conditions providing the minimum-

∆VTOT connection. Other relevant parameters for T min ∆V
2 are reported

in Table 4.2.

The set of initial states provided by T min ∆V
2 is regarded as the optimal con-

nection. The TOs in the intra-moon space of the four moons associated with
this connection are represented in Fig. 4.6.



4.2. THE OPTIMAL CONNECTION 79

(a) T1 connections.

(b) T2 connections.

Figure 4.4: Connections in the set T1 and T2 as functions of ∆VTOT and
TOFTOT. The connections with the minimum ∆VTOT are marked with a red
dot.
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Figure 4.5: 5×5 sub-grid around the (x, y) components of an initial condition
xi0 associated to a given PLO. ∆x is the x-amplitude of the PLO. The size
of the sub-grid is 0.05∆x.

4.3 Rephasing
The optimal connection T min ∆V

2 has been defined as the one that which min-
imizes the total sum of ∆V s accumulated in each stage of the tour. As dis-
cussed in Chapt. 3, the design of each inter-moon leg of trajectory includes
the relative phase α0 of the two moons under consideration at the initial
time (see Appendix E). When the Europa-to-Ganymede and Ganymede-to-
Callisto connections are linked together for the outward journey, it is straight-
forward to find a set of initial phases of the three moons at the time t0 = 0
(when the spacecraft leaves x1

0) to guarantee the connection from x1
0 to x3

0.
In the case of xi0 ∈ T min ∆V

2 (i = 1, . . . , 4) the initial phases α(t0) for the
three moons are:

αE(t0) = 180◦, (4.11a)
αG(t0) = 260.5◦, (4.11b)
αC(t0) = 244.6◦. (4.11c)

Here the subscripts E,G,C refer to Europa, Ganymede and Callisto, respec-
tively. However, the next coupling between x3

0 and x4
0, i.e., between Callisto

and Ganymede at the beginning of the inward journey, requires a relative
phase between Callisto and Ganymede that does not correspond with that
at the end of the outward journey. The same problem occurs for the final
connection between x4

0 and x1
0. To address this issue the idea is to “park” the

spacecraft on some orbits (rephasing orbits) around Callisto and Ganymede
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(a) TO around Europa. (b) TO around Ganymede (outward
journey).

(c) TO around Callisto. (d) TO around Ganymede (inward jour-
ney).

Figure 4.6: TOs related to the selected connection T min ∆V
2 in their respective

intra-moon region. The reference frames are the SRFs of the three moons.
The CIs of the four moons are represented in red.
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during the inward journey and wait for the right rephasing of the moon re-
quired by the optimal connection. The insertion into the rephasing orbits
is carried out through impulsive manoeuvres, the magnitudes of which add
propellant to the existing budget. Besides, the total time of flight over the
tour increases. In this case, the two required rephasing time TCREPH, TGREPH
around Ganymede and Callisto, respectively, are:

TCreph(n) = 4.243 + nT syn
CG , (4.12a)

TGreph(n) = 5.0576 + nT syn
GE , (4.12b)

with n ∈ N. The first term of Eqs.(4.12) depends on the initial conditions xi0
(i = 1, . . . , 4) given by T min ∆V

2 , the second is the synodical period between
Callisto and Ganymede (T syn

CG ) or Ganymede and Europa (T syn
GE ), i.e., the time

needed to repeat the same relative phases between two moons. These periods
are:

T syn
CG = 2π

ωG − ωC
= 12.524 days, (4.13a)

T syn
GE = 2π

ωE − ωG
= 7.055 days, (4.13b)

being ωE, ωG, ωC the orbital angular velocities of Europa, Ganymede and
Callisto, respectively. Hence, the rephasing time is made up by a constant
term and a multiple of the synodical period.

If the initial and final point of the rephasing orbit are the same and
coincide with a point of the TOs around the moon, then the rephasing time
given by Eqs. (4.12) does not change when such point is varied along the
TO itself (for a proof see Appendix F). For example, given the TO around
Callisto, the rephasing orbit can start at any point before and after x3

0.
We take advantage of this fact to find possible rephasing orbits around

Callisto and Ganymede (during the inward journey) minimizing the total
∆VREPH required. The idea is to find possible rephasing orbits starting from
points below a given altitude from each moon, by applying three ∆V s: the
first is used to reduce velocity magnitude of the spacecraft for insertion into a
non-diverging trajectory around the moon (i.e., a trajectory able to execute
several revolutions around the moon without escaping the P2 region), the
second one aiming at changing the velocity vector to correct the time of flight
of the rephasing orbit, which must coincide with that given by Eqs. (4.12) at
the end of the rephasing manoeuvre, and the final is used to increase again
the magnitude of the spacecraft’s velocity for insertion in the original TO.

The algorithm is the same for the two moons and it is divided in the
following steps.
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Figure 4.7: Initial points (represented as red dots) for rephasing orbits are
chosen below a given altitude hmax from the moon along the TFB of the TO.
The circumference of radius hmax is represented in blue. This figure shows
the case of the TO around Callisto.

1. The TFB of the TO is propagated from the initial state xi0 (i = 3, 4),
according to some time discretization.

2. We select a set of states xi = (ri,vi) (being ri = (xi, yi) and vi =
(ẋi, ẏi)) along the TFB, such that

ri − rM < hmax, (4.14)

being ri the magnitude of ri, rM the equatorial radius of the moon M
and hmax an arbitrary value of maximum altitude (see Fig. 4.7). Clearly
card({xi})1 depends on hmax and the discretization used to propagate
the TFB.

3. For each vi we consider the corresponding flight path angle γi (see
Fig. 4.8). γi is varied in a range ∆γi = [γi − δγ, γi + δγ] (δγ > 0)
according to some discretization. We call vij the jth velocity direction
provided by γj ∈ ∆γi.

4. In turn, we let the magnitude of each velocity vector vij vary in a
given range ∆vij = [vij − δv−, vij + δv+] (δv−, δv+ > 0) with some dis-

1the symbol card(S) represents the cardinality of the set S.
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Figure 4.8: The flight path angle γ of a spacecraft orbiting around P2 with
velocity x is defined as γ = arctan vr

v⊥
, being vr and v⊥ the radial and per-

pendicular components of v, respectively.

cretization. We call vijk the kth magnitude of the jth velocity direction
associated with the point ri.

5. Each state sijk = (ri,vijk) is integrated over three revolutions around
the moon. If the trajectory escapes the P2 region, the state sijk is
rejected. Otherwise, we call ∆V 1

ijk the magnitude of the difference in
velocity to change the state from xi to sijk. We call dn (n = 1, 2, 3)
the distance between the endpoint of the nth revolution and ri (see
Fig. 4.9).

6. If dN < dmax ∀N = 1, 2, 3, with dmax arbitrary small, the state sijk is
stored in the database D1. Moreover, we call T nijk the time of flight to
complete the nth revolution. Since dmax is small, T 1

ijk ≈ T 2
ijk ≈ T 3

ijk.

7. We define the nondimensional time performance parameter ηijk as

ηijk = Treph

T 1
ijk

− round
(
Treph

T 1
ijk

)
, (4.15)

where the operator round(a) rounds a to the nearest integer. From this
definition it follows that ηijk ∈ [−1/2, 1/2]. When ηijk = 0, Treph is a
multiple of T 1

ijk. If ηijk > 0 (< 0) the last revolution of the rephasing
orbit will take more (less) time than that required by Treph.

8. States sijk ∈ D1 such that ηijk ∈ [η−, η+] (with η− < 0, η+ > 0 and
|η−|, |η+| arbitrary small) are stored in a database D2. Each state
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Figure 4.9: In black, the TO around Callisto generated by x3
0 ∈ T min ∆V

2 . In
blue, the first revolution around the moon of a possible rephasing orbit prop-
agated from the state sijk = (ri,vijk). The distance between the endpoint of
such trajectory and ri is called d1.
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sijk ∈ D2 is propagated over m revolutions such that

m = arg min
m∈N

∣∣∣∣∣TMreph −
m∑
n=1

T nijk − Tmijk

∣∣∣∣∣ , (4.16)

where arg min
x

f(x) := {x | ∀y : f(y) ≥ f(x)}. In other words, the states
sijk ∈ D2 are propagated until approximately one more revolution is
needed to reach the required rephasing time.

9. The (m+ 1)th-revolution is propagated over a rotation of π rad around
the moon; we call sfijk = (rfijk,v

f
ijk) the state at this point. Let T fijk be

the total time of flight from the initial state sijk until sfijk. A single-
shooting algorithm with control on the velocity is used to target the
initial position ri from vfijk with a constraint on the time of flight (see
Appendix G for a detailed description of this algorithm). In particular,
the time of flight TOFshooting required by the algorithm to close the
rephasing orbit is:

TOFshooting = TMreph − T
f
ijk. (4.17)

The output of the single-shooting algorithm is the velocity vshooting
ijk

necessary to reach ri from vfijk. The required ∆V for this manoeuvre
is:

∆V 2
ijk =

∥∥∥vshooting
ijk − vfijk

∥∥∥ . (4.18)

10. Eventually we evaluate the last change in velocity ∆V 3
ijk to return to

the original state xi

11. Steps from 2 to 10 are repeated for every i = 1, . . . , card({xi}), j =
1, . . . , card(∆γi), k = 1, . . . , card(∆vij).

12. The rephasing orbit minimizing ∆V TOT
ijk = ∆V 1

ijk + ∆V 2
ijk + ∆V 3

ijk is
chosen.

This algorithm is used to find the optimal rephasing orbit around Callisto and
Ganymede using the parameters listed in Table 4.3. The available rephasing
orbits are represented in Fig. 4.11 by means of the two parameters ∆V TOT

ijk

and η, for η ∈ [η−, η+]. The cost of the minimum-∆V TOT rephasing orbits
are:

∆V C
reph = 104.539 + 13.578 + 92.039 = 210.157 m s−1, (4.19a)

∆V G
reph = 158.562 + 30.889 + 138.577 = 328.038 m s−1. (4.19b)

The optimal rephasing orbits are showed in Fig. 4.11 in the respective SRF.
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Ganymede Callisto

n 1 1
Treph [days] 16.77 12.11
hmax [km] 20000 15000
δγ [degree] 3 3

card(∆γi) 100 100
δv− [km s−1] 0.08vij 0.08vij
δv− [km s−1] 0.2vij 0.2vij
dmax [NU] 1× 10−4 1× 10−4

η− −0.1 0.1
η+ −0.1 0.1

Table 4.3: Parameters used in the algorithm to find the optimal rephasing
orbit around Ganymede and Callisto.

(a) Rephasing orbits around Callisto (b) Rephasing orbits around Ganymede

Figure 4.10: Available rephasing orbits around Callisto (left) and Ganymede
(right) as a function of ∆V TOT

ijk and η. The two minimum-∆V rephasing
orbits are marked with a red dot.
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(a) Optimal rephasing orbit around Callisto.

(b) Optimal rephasing orbit around Ganymede.

Figure 4.11: Optimal rephasing orbits around Ganymede (top) and Callisto
(bottom). The original TO is represented as a black dotted trajectory. The
rephasing orbit is showed as a continuous blue line from sijk to sfijk. The
remaining part of the rephasing orbit, where the single-shooting algorithm is
applied to link sfijk and ri, is represented with a continuous red line. In each
case, on the right-side of the figure, a close-up view around ri is shown. The
black circles mark the points where the ∆V s are applied. The sizes of the
moons are not to scale.
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4.4 Analysis of the results
The total ∆V of the tour is calculated by summing the results of Eqs. (4.9)
and (4.19):

∆V = 4.227 + 0.210 + 0.328 = 4.765 km s−1. (4.20)
Similarly, the total TOF is:

TOF = 47.058 + 16.767 + 12.113 = 75.938 days. (4.21)

The resulting outward journey is showed in Fig. 4.13; the inward journey
is represented in Fig. 4.14. Figs. 4.15 show the altitude and velocity of the
spacecraft with respect to time inside the four intra-moon regions. Velocities
are given in the moon-centred inertial reference frames. As represented in
these figures, the velocity of the spacecraft never exceeds 1.1 km s−1, and the
maximum velocity is reached at the minimum-altitude point. For the sake of
comparison, the velocity at the periapsis of a flyby-hyperbola ranges between
1.4 km s−1 and 1.7 km s−1, when the hyperbolic excess speed is calculated
using Hohmann transfers between consecutive moons and the periapsis of
the hyperbola is equal to the minimum-altitude reached by the given TO.
The time of flight spent inside the Laplace sphere in the case of a flyby-
hyperbola is between 1 and 6 hours; in the case of TOs this time is between 7
hours and 2.3 days. These values are further increased when rephasing orbits
are considered, thus providing more opportunities for scientific exploration
around the moons.

The time and ∆V performances of the trajectory obtained must be com-
pared with the state of the art in this field. The size of the manoeuvres
for each inter-moon connection is about 1 km s−1. This value is larger than
the ∆V -budget of [Lantoine and Russell, 2011] and [Lantoine et al., 2011].
However, our method generates solutions in the class of high-∆V , low-time-
of-flight transfers. Our ∆V budget can be directly compared with the PGT
reported in [Gómez et al., 2004] (from Ganymede to Europa with a cost of
1.2 km s−1) and with [Campagnola et al., 2014] (from Callisto to Europa with
1.1 km s−1). There is agreement between ∆V budgets found in this thesis and
those reported in the quoted papers. The added value presented in this work
is twofold. Firstly we identified the minimum-∆V solution of this category
using a method which combines efficiency and accuracy. Secondly, we re-
duced significantly the time of flight in the inter-moon region, with respect
to other methods employing IMs and multiple flybys. This is a merit of
TOs which do not spend any additional time winding around the PLOs at
the beginning and the end of the moon-to-moon transfer. For the sake of
comparison, the time of flight required for the sole connection between Eu-
ropa and Ganymede found in this study is about 4 days (Eq. (4.10)), while
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in [Gómez et al., 2004] the transfer between the same moons employing IMs
requires 25 days. It is worth recalling that the intense particle radiation envi-
ronment characterizing the Jovian magnetosphere puts serious limitations to
the feasibility of long-duration tours. Therefore, our low-time-of-flight tour is
in agreement with the requirement of reducing the accumulation of radiation
dose.

Besides, our large manoeuvres are perfectly attainable by means of elec-
trical thrusters, which nowadays constitute a mature and widely used space-
craft technology. In this context, the trajectory would become a long spiral
between the orbits of the moons to be connected. The solution presented
here for each moon-to-moon connection would constitute the initial guess,
and the initial relative lunar configuration would be employed to generate
the boundary conditions. In terms of propellant consumption, the resulting
low-thrust transfers would result in some tens of m s−1.

Lastly, exploiting the natural dynamics provided by the CR3BP, more
constraints can be added to the TO morphology inside the intra-moon space
of the moons; for example the requirement of more than one revolution
around the moon can be introduced. In Fig. 4.12 we provide an example
of two TOs completing five revolutions around Europa and Ganymede, while
verifying the remaining set of constraints C defined in Sect. 4.1. No additional
∆V is required for these trajectories.
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(a) TO completing five revolutions
around Ganymede.

(b) TO completing five revolutions
around Europa.

Figure 4.12: Examples of TOs making five revolutions in the intra-moon
space of Ganymede (left) and Europa (right). The CI of the two moons is
represented in red. The arrows indicate the time direction of the TO. These
trajectories are found using the same method described Sect.4.1 and do not
require any additional ∆V .
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Figure 4.13: The outward journey of the Galilean moons provided by initial
conditions T min ∆V

2 as viewed from the Jupiter-centred IRF. The orbits of the
three moons are represented as dotted circles. The intra-moon branches are
represented in blue, the inter-moon branches are represented in light-blue.
The trajectory connects sequentially the states x1

0, x2
0 and x3

0. The locations
of the required ∆V12 and ∆V34 are represented with red circles.
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Figure 4.14: The inward journey of the Galilean moons provided by initial
conditions T min ∆V

2 as viewed from the Jupiter-centred IRF. The orbits of
the three moons are represented as dotted circles. The intra-moon branches
are represented in blue, the inter-moon branches in light-blue, the rephasing
trajectories in green. The trajectory connects sequentially the states x3

0, x4
0

and x1
0. The locations of the required ∆V34 and ∆V41 are represented with

red circles.
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(a) TO around Europa. (b) TO around Ganymede (outward jour-
ney).

(c) TO around Callisto. (d) TO around Ganymede (inward jour-
ney).

Figure 4.15: Altitude (blue) and velocity (red) of TOs of the set T min ∆V
2

in each moon-centred inertial reference frame. The maximum velocity never
exceeds 1.1 km s−1 in every case and such velocity is reached at the minimum
altitude.



Chapter 5

Conclusions

The method presented in this thesis allows to determine the minimum-cost
direct low-energy trajectories between consecutive moons of a planetary sys-
tem. This method has been repeatedly applied to find a tour of the Galilean
moons Europa, Ganymede and Callisto.

The Keplerian approximation employed in the inter-moon space offers
conspicuous savings in computing time over traditional approaches based on
intersecting invariant manifold trajectories. The computations are entirely
analytical and explicit and no numerical approximation is made (except for
IMs and TOs propagation).

The minimum-cost solution requires the occurrence of specific values of
α0 to connect two consecutive states xi0 and xj0, i.e., specific relative orbital
geometries between the moons at the time of departure from the state xi0.
These values affect the initial phases of the moons at the beginning of the
outward journey as well as the rephasing times required during the inward
journey. Solutions with cost above the absolute minimum may be chosen
if they correspond to more convenient values of α0 relative to the mission
requirements. Hence, in general, the method lends itself to trade-off between
cost and other parameters (including time of flight).

The cost to link four C-connected states is at the level of 1 km s−1 in each
inter-moon connection. This value is large in comparison with those obtained
with the high-energy patched conics published in the open literature. How-
ever different methods are used in the two cases. In this case we are dealing
with low-energy transfers, i.e., the resulting trajectories between the moons
are direct, hence faster. In addition, we replaced invariant manifolds, used in
the original method [Fantino and Castelli, 2016b], with transit orbits, which
further reduce the time of flight in each moon-to-moon connection. In fact,
they do not wind around the same-energy PLO as invariant-manifold trajec-
tories do. Moreover, in this context, the solution yields results in agreement

95
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with previous studies [Gómez et al., 2004, Campagnola et al., 2014] and it
also identifies the minimum-cost solution of this category. Indeed, for this
application, it is impossible to further reduce the ∆V in the inter-moon con-
nection to values lower than 1 km s−1. Besides, such large manoeuvres are
perfectly attainable by means of electrical thrusters, which nowadays consti-
tute a mature and widely used spacecraft technology. The conversion from
the impulsive manoeuvres found in this work to equivalent low-thrust arcs is
currently under development.

The key feature of the analytical method here presented is the tan-
gency configuration of the inter-moon Keplerian ellipses associated with the
minimum-∆V connection between consecutive moons. This configuration
can be found because only one degree of freedom exist in the coupled CR3BP,
i.e., the relative phase α0 between the x-axes of the two SRFs. In particular,
instead of scanning all the possible values of α0 only two values are selected,
i.e., the ones which guarantee the tangency configuration between the in-
volved inter-moon ellipses. In turn, α0 dictates the relative phase between
the moons at the beginning of the connection. When the four moon-to-
moon connections are linked together, we proved that parking orbits (that
we called rephasing orbits) around Callisto and Ganymede are necessary to
match the phases of the moons at the end of the outward journey with the
optimal angles α0 associated to the inward journey. Such orbits have been
computed in the framework of the CR3BP for the two Jupiter-moon systems.
∆V s required to insert the spacecraft in these orbits range from 210 m s−1

to 330 m s−1. Despite the need for additional fuel, rephasing orbits actually
have two pros. Firstly, more time can be spent in the vicinity of the moons
at low altitudes, secondly they provide more flexibility to the method. In
fact, such trajectories can be employed around any moon, thus allowing to
repeat the tour more than once.

Our choice to study the planar problem was justified by the fact that the
relative inclinations between the orbital planes of the Galilean moons never
exceeds one degree. In real cases, however, the most interesting observation
orbits around the moons are characterized by non-zero inclinations with re-
spect to the orbital plane. For this reason additional ∆V s could be required
to change the orbital inclinations in case of an orbit insertion around a moon.

A final remark on the domain of applicability of the method here pre-
sented is due. The Keplerian approximation has been illustrated here in the
context of the low-energy transfers between Jovian moons, but its capabil-
ity is much wider. It can be employed in any context in which a dominant
center of attraction is present: for instance, in the realm of geocentric orbits,
whenever a rendezvous or an orbit change is sought, in the optimization of
high-energy patched-conics tours of multi-moon systems, and in the design
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of interplanetary deep space manoeuvres.
I would like to mention that this thesis has been presented to the XV

workshop in Celestial Mechanics which took place in Manresa, Spain. Ad-
ditionally, a paper about this work is under development for submission to
Acta Astronautica.
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Appendix A

Lagrange quintic equation

We recall here Eq. (2.31)

u5 + u4(µ− 3) + u3(3− 2µ)− u2µ+ 2µu− µ = 0, (A.1)

where
u = x− µ+ 1. (A.2)

In this section we prove that this 5th-order equation has only one positive
real solution, which is related to the x-coordinate of the Lagrangian point
L1. The case for the other points L2 and L3 can be treated similarly.

To achieve that goal we recall the Sturm chains and the Sturm’s theorem.
A Sturm chain is a finite sequence of polynomials:

p0, p1, . . . , pm (A.3)

of decreasing degree which satisfies the following properties:

• p0 = p is square free (i.e. it has no repeated roots),

• if p(ξ) = 0 then sign(p1(ξ)) = sign(p′1(ξ)),

• if pi(ξ) = 0 for 0 < i < m then sign(pi−1(ξ)) = −sign(pi+1(ξ)),

• pm does not change in sign.

We can choose the following polynomials to respect the above mentioned
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conditions:
p0(x) := p(x), (A.4)
p1(x) := p′(x), (A.5)
p2(x) := −rem(p0, p1), (A.6)
p3(x) := −rem(p1, p2), (A.7)

...
pm(x) := −rem(pm−2, pm−1), (A.8)

where rem(pi, pj) is the remainder of the polynomial division of pi by pj and
m is the minimal number of divisions required to obtain a zero reminder (m ≤
deg(p)). According with Sturm theorem, given a Sturm chain p0, . . . , pm of
a polynomial p ad denoting with σ(ξ) the number of sign changes (ignoring
zeros) in the sequence p0(ξ), p1(ξ), . . . , pm(ξ) then the number of distinct
roots of p in the half open interval (a, b] (with a < b) is σ(a) − σ(b). If p
is not square free, the same conclusion holds whenever neither a or b is a
multiple root of b. However, if we consider ]−∞,+∞[ as interval, the square
free condition does not hold.

In this case we apply the Sturm theorem to find the number of real roots
of equation (A.1) in the interval [−∞,+∞[. To evaluate the polynomial
behaviour at infinity, only the coefficient of the higher-degree term needs to
be taken into account. For this reason, from p2 on, only the first coefficient
is reported. Thus, the Sturm chain results:
p0 = u5 + u4(µ− 3) + u3(3− 2µ)− u2µ+ 2µu− µ, (A.9)
p1 = 5u4 + 4(µ− 3)u3 + 3(3− 2µ)u2 − 2µu+ 2µ, (A.10)

p2 =
[
µ+ 2µ

(
µ

25 −
3
25

)]
u3 + . . . , (A.11)

p3 =
[

25 (12µ4 − 42µ3 − 96µ2 + 45µ)
4 (2µ2 − 2µ+ 3)2

]
u2 + . . . , (A.12)

p4 =
[

4µ (µ− 1) (2µ2 − 2µ+ 3)2 (−80µ4 + 112µ3 + 1174µ2 − 720µ+ 729)
25 (−20µ4 + 40µ3 + 220µ2 − 240µ+ 81)2

]
u+

+ . . . , (A.13)

p5 = 25 (−20µ4 + 40µ3 + 220µ2 − 240µ+ 81)2

64 (−80µ6 + 240µ5 + 822µ4 − 2044µ3 + 3807µ2 − 2745µ+ 1458)2 +

(A.14)

+ (−448µ4 + 896µ3 + 6032µ2 − 6480µ+ 6561)
64 (−80µ6 + 240µ5 + 822µ4 − 2044µ3 + 3807µ2 − 2745µ+ 1458)2 +

+ . . . . (A.15)



103

Evaluating p1, p2, p3, p4, p5 to −∞ and +∞, assuming µ � 0 produces the
sequence of signs (− + + + −+) and (+ + − + + +) respectively, thus
the sign variations are σ(−∞) = 2 and σ(+∞) = 1: the total number of
real roots is σ(−∞) − σ(+∞) = 2 − 1 = 1. Considering now the first
polynomial (A.9) we notice that limu→−∞ p0 = −∞, limu→+∞ p0 = ∞ and
p0(u = 0) − µ < 0. Therefore, the only real root of this quintic equation is
positive. From the variable conversion (A.2) it turns out that x > µ+ 1, i.e.
the solution lies on the right of the smaller primary.
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Appendix B

Second-order partial derivatives
of the effective potential

We list here the second-order partial derivatives of the effective potential Ω
(Eq. (2.33)):

Ωxx = 1− 1− µ
r3

1
− µ

r3
2

+ 3(1− µ)(x− µ)2

r5
1

+ 3µ(x+ 1− µ)2

r5
2

, (B.1)

Ωxy = 3(1− µ)(x− µ)y
r5

1
+ 3µ(x+ 1− µ)y

r5
2

, (B.2)

Ωxz = 3(1− µ)(x− µ)z
r5

1
+ 3µ(x+ 1− µ)z

r5
2

, (B.3)

Ωyy = 1− (1− µ)
r3

1
− µ

r3
2

+ 3(1− µ)y2

r5
1

+ 3µy2

r5
2
, (B.4)

Ωyx = Ωxy, (B.5)

Ωyz = 3(1− µ)yz
r3

1
+ 3µyz

r5
2
, (B.6)

Ωzz = −(1− µ)
r3

1
− µ

r3
2

+ 3(1− µ)z2

r5
1

+ 3µ(x+ 1− µ)
r5

2
, (B.7)

Ωzx = Ωxz, (B.8)
Ωzy = Ωyz. (B.9)
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B.1 Sign of the second-order partial deriva-
tives at the collinear equilibrium points

The characteristic equation (2.71) of the linearised system (2.65) is here
recalled in (x, y, z) coordinates:

(λ2 − Ω0
zz)[(λ4) + λ2(4− Ω0

xx − Ω0
yy) + Ω0

yyΩ0
xx] = 0, (B.10)

where Ω0
pq are the second-order partial derivatives ∂2Ω

∂p∂q
of the potential (2.33)

in the collinear point of interest. To gain more insight into the stability of
the collinear point the signs of Ωxx, Ωyy and Ωzz are required.

In the collinear points, y = z = 0. Therefore, from Eq. (B.7) it is clear
that Ω0

zz < 0. Examining the expression of Ω0
xx and Ω0

yy from Eqs. (B.1) and
(B.4) we can rewrite this term in the collinear points as:

Ωxx(x, 0, 0) = 1 + 2(1− µ)
r3

1
+ 2µ
r3

2
, (B.11)

Ωyy(x, 0, 0) = 1− 1− µ
r3

1
− µ

r3
2
, (B.12)

being r1 = |x − µ| and r2 = |x + 1 − µ| evaluated at L1, L2 and L3. It
is apparent that Ω0

xx > 0. The sign of the remaining term Ωyy is taken
into account separately for the three collinear equilibrium points. Recall
from Eq. (2.36) that all first partials are zero in the equilibrium points. In
particular:

Ωx = x− (1− µ)(x− µ)
|x− µ|3

− µ(x+ 1− µ)
|x+ 1− µ|3 = 0. (B.13)

The discussion that follows is based on [Szebehely, 2012].

L1. For this point x−µ < 0 and x+1−µ > 0. Therefore r1 = |x−µ| = µ−x
and r2 = |x+ 1− µ| = x+ 1− µ. Hence we can rewrite Eq. (B.13) as:

x+ 1− µ
r2

1
− µ

r2
2

= 0, (B.14)

from which:
(1− µ)
r2

1
= µ

r2
2
− x. (B.15)

Substituting this term into Eq. (B.12) yields:

Ω0
yy = 1− 1

r1

(
µ

r2
2
− x

)
− µ

r3
2

(B.16)

= 1− 1
r1

(
µ

r3
2
− x

)
, (B.17)
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being r1 + r2 = 1. By replacing x = µ − r1 in Eq. (B.17) the latter reduces
to the form

Ω0
yy = µ

r1

(
1− 1

r3
2

)
, (B.18)

being r2 < 1 it follows that Ω0
yy < 0.

L2. For this point x−µ < 0 and x+1−µ < 0. Therefore r1 = |x−µ| = µ−x
and r2 = |x+ 1− µ| = −(x+ 1− µ). Hence we can rewrite Eq. (B.13) as:

x+ 1− µ
r2

1
+ µ

r2
2

= 0, (B.19)

from which:
(1− µ)
r2

1
= − µ

r2
2
− x. (B.20)

Substituting this term into Eq. (B.12) yields:

Ω0
yy = 1− 1

r1

(
− µ
r2

2
− x

)
− µ

r3
2

(B.21)

= 1− 1
r1

(
µ

r3
2
− x

)
, (B.22)

being r1 − r2 = 1. From this point the procedure is the same as in the case
of Eq. (B.17) and thus, again, Ω0

yy < 0.

L3 For this point x−µ > 0 and x+1−µ > 0. Therefore r1 = |x−µ| = x−µ
and r2 = |x+ 1− µ| = x+ 1− µ. Hence we can rewrite Eq. (B.13) as:

x− 1− µ
r2

1
− µ

r2
2

= 0, (B.23)

from which:
(1− µ)
r2

1
= x− µ

r2
2
. (B.24)

Substituting this term into Eq. (B.12) yields:

Ω0
yy = 1− 1

r1

(
x− µ

r2
2

)
− µ

r3
2

(B.25)

= 1− 1
r1

(
x− µ

r3
2

)
, (B.26)



108 APPENDIX B. DERIVATIVE OF THE POTENTIAL

being r1−r2 = −1. By replacing x = µ+r1 in Eq. (B.26) the latter expression
reduces to the form

Ω0
yy = − µ

r1

(
1− 1

r3
2

)
, (B.27)

being r2 < 1 it follows that Ωyy0 < 0.



Appendix C

Rotation of ellipses

In the following, we derive the relationship between two planet-centered el-
lipses generated by one and the same state vector on the CI at two dif-
ferent orbital phases of the moon. Let x = (x, y, ẋ, ẏ)T be a state vector
on the CI in synodical coordinates. Denote by X1 = (X1, Y1, Ẋ1, Ẏ1)T and
X2 = (X2, Y2, Ẋ2, Ẏ2)T two state vectors in the planet-centered inertial frame
obtained by s when the orbital phases of the moon (i.e., the planet-centered
angles from the X-axis to the location of the moon) are α1 and α2, respec-
tively. Also, let Σ1 and Σ2 be the two elliptical orbits, with focus at the
planet, passing through X1 and X2, respectively. We are going to prove that
Σ1 and Σ2 have the same shape (i.e., they have the same semimajor axis
and eccentricity) and are related by a rotation of angle ∆α = α2 − α1, i.e.,

ω2 = ω1 + ∆α. Denoting R(α) =

 cosα − sinα
sinα cosα

 the rotation matrix of

angle α, we show that

i) (X2, Y2)T = R(∆α)(X1, Y1)T

ii) (Ẋ2, Ẏ2)T = R(∆α)(Ẋ1, Ẏ1)T .

i) Let us consider the trajectory passing through x at time t = T in the
rotating frame. In the same time units in the planet-centered inertial frame,
the trajectory is given by X

Y

 (t) = κR(β(t))

 x

y

 (t), (C.1)

where the constant κ is the scaling factor from normalized to physical units
and β(t) = β+t, being β the relative phase of the rotating frame with respect
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to the inertial frame at time t = 0. If at time t = T the orbital phase of the
moon is αi (i = 1,2), then the phase at time t = 0 is βi = αi − T . Hence, in
the planet-centered inertial frame we consider two trajectories X1

Y1

 (t) = κR(β1 + t)

 x

y

 (t), (C.2)

and  X2

Y2

 (t) = κR(β2 + t)

 x

y

 (t). (C.3)

Since the rotations form a group, R(β2 +t) = R(β1 +t+∆α) = R(∆α)R(β1 +
t). Thus,  X2

Y2

 (t) = R(∆α)

 X1

Y1

 (t). (C.4)

The last expression, evaluated at t = T , gives i). Differentiation and time
units rescaling yield ii). This proof neglects the distance between the center
of mass of the planet-moon system and the center of the planet. In the cases
under study this distance does not exceed a few tens of km.



Appendix D

Parametric cubic splines

A cubic spline is, by definition, a continuous piecewise cubic curve with
continuous first-order and second-order derivatives. Moreover, a cubic spline
is called relaxed if the second-order derivative is zero at each endpoint. The
following considerations partially follow [McKinley and Levine, 1998].

Consider a set of N points (xi, yi), as represented in Fig. D.1a. We want
to connect all these points through a piecewise continuous cubic function
as showed in Fig. D.1b. The cubic function connecting these points will be
parametric and defined as

P : < → <2, (D.1)
t 7→ (x(t), y(t)) = (b1x + b2xt+ b3xt

2 + b4xt
3, b1y + b2yt+ b3yt

2 + b4yt
3).
(D.2)

At each point (xi, yi) , Pi = (xi, yi), where Pi is supposed known and given
by the coordinates of ith point. The total number N of points defines N − 1
intervals; the parameter t can vary in each interval [i − 1, i] from 0 to li1,
being:

li =
√

(xi − xi−1)2 + (yi − yi−1)2. (D.3)
Moreover, we assume that in each interval of the type [i− 1, i]

P(0)[i−1,1] = Pi−1 = (xi−1, yi−1), (D.4a)
P(li)[i−1,i] = Pi = (xi, yi). (D.4b)

For the sake of simplicity, the following equations will refer only to one of
the two components of Eq. (D.2) (the extension to the second component is
immediate), thus we will evaluate

P (t) = b1 + b2t+ b3t
2 + b4t

3. (D.5)
1In other sources you may also find a variation from 0 to 1.
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(a) Set of numbered points (b) Cubic spline connecting the points

Figure D.1: An example of a parametric cubic spline.

Consider the interval [1, 2]. From Eq. (D.4):

P (t = 0) = P1 = b1, (D.6)
P (t = l2) = P2 = b1 + b2l2 + b3l

2
2 + b4l

3
2. (D.7)

Substituting Eq. (D.6) in Eq. (D.7) yields:

P2 = P1 + b2l2 + b3l
2
2 + b4l

3
2. (D.8)

The first and second-order derivatives of D.5 are respectively:

P ′(t) = b2 + 2b3t+ 3b4t
2, (D.9)

P ′′(t) = 2b3 + 6b4t. (D.10)

In the interval [1, 2]:

P ′(t = 0) = P ′1 = b2, (D.11)
P ′(t = l2) = P ′2 = b2 + 2b3l2 + 3b4l

2
2. (D.12)

Substituting (D.11) in (D.12):

P ′(t = l2) = P ′2 = b2 + 2b3l2 + 3b4l
2
2 = P ′1 + 2b3l2 + 3b4l

2
2. (D.13)

Considering now Eqs. (D.8) and (D.13) it is possible to write a system of two
equations in the two unknowns b3 and b4:

b3 + b4l2 = P2 − P1

l22
− P

′
1
l2
,

2b3 + 3b4l2 = P
′
2
l2
− P

′
1
l2
.

(D.14)



113

The solutions are:

b3 = 3(P2 − P1)
l22

− 2P ′
1

l2
− P ′2
l2
, (D.15)

b4 = 2(P1 − P2)
l32

+ P ′1
l22

+ P ′2
l22
. (D.16)

Hence, substituting the results into Eq. D.5 and considering Eqs. (D.6) and
(D.11) provide:

P (t)[1,2] = P1 + P
′

1t+
[

3(P2 − P1)
l22

− 2P ′
1

l2
− P

′
2
l2

]
t2+ (D.17)

+
[

2(P1 − P2)
l32

+ P
′
1
l22

+ P
′
2
l22

]
t3. (D.18)

Now, considering a generic interval [i− 1, i], Eq. (D.18) can be rewritten as:

P (t)[i−1,i] = Pi−1 + P
′

i t+
[

3(Pi − Pi−1)
l2i

−
2P ′

i−1
li
− P

′
i

li

]
t2+ (D.19)

+
[

2(Pi−1 − Pi)
l3i

+ P
′
i−1
l2i

+ P
′
i

l2i

]
t3. (D.20)

Considering now two adjacent intervals [i− 1, i], [i, i+ 1]:
P

′′

[i−1,i](li) = 2b3 + 6b4lk, (D.21)
P

′′

[i,i+1](0) = 2b3. (D.22)

Being P ′′

[i−1,i](li) = P
′′

[i,i+1](0) (it is the same point, viewed from consecutive
intervals) it follows that, considering Eqs. (D.15) and (D.16):

li−1P
′

i−1 + 2(li−1 + li)P
′

i + liP
′

i+1 = 3
liti+1

[
l2k(Pi+1 − Pi) + l2k+1(Pi − Pi−1)

]
.

(D.23)
This equation can be written for each knot. In other words, it is possible to
write a system of N − 2 equations in N unknowns P ′

1, P
′
2, ..., P

′
n:

l3 2(l2 + l3) l2 0 0 · · · 0
0 l4 2(l3 + l4) l3 0 · · · 0
0 0 l5 2(l4 + l5) l4 · · · 0
... ... . . . . . . . . . ... ...
0 · · · lN−2 2(lN−3 + lN−2) lN−3 0 0
0 · · · 0 lN−1 2(lN−2 + lN−1) lN−2 0
0 · · · 0 0 lN 2(lN−1) lN−1





P
′
1

P
′
2

P
′
3
...

P
′
N−2

P
′
N−1

P
′
N



=



114 APPENDIX D. PARAMETRIC CUBIC SPLINES

=



3
l2l3

[
l22(P3 − P2) + l23(P2 − P1)

]
3
l3l4

[
l23(P4 − P3) + l24(P3 − P2)

]
...
...
...

3
l3l4

[
l23(P4 − P3) + l24(P3 − P2)

]
3

lN−1lN

[
l2N−1(PN − PN−1) + l2N(PN−1 − PN−2)

]



(D.24)

The last two equations can be found by assuming that P ′′

[1,2](0) and P ′′

[N−1,N ](lN)
are known. From equations (D.9) and (D.10):

P
′′

[1,2](t = 0) = 2b3 = 2
[

3(P2 − P1)
l22

− 2P ′
1

l2
− P

′
2
l2

]
, (D.25)

P
′′

[N−1,N ](t = lN) = 2b3 + 6b4tN = 2
[

3(PN − PN−1)
l2N

−
2P ′

N−1
l2

− P
′
N

lN

]

+ 6
[

2(PN−1 − PN)
l3N

+ P
′
N−1
l3N

+ P
′
N

l2N

]
lN . (D.26)

It is eventually possible to rearrange these equations to obtain the last two
relations for the system (D.24) in order to obtain a N×N system; supposing
both the second derivatives are zero at the endpoints (relaxed cubic spline)
the previous equations become:

2P ′
1 + P2

′ = 3(P2 − P1)
l2

,

P
′
n−1 + 2P ′

n = 3
ln

(Pn − Pn−1).
(D.27)

Equations (D.24) and (D.27) are a system of N equations in the N unknowns
{x} = {P ′

1, P
′
2, ..., P

′
n} in the form

[A]{x} = {b}, (D.28)

and can be solved numerically. Once the unknown {x} is found, by means of
equation (D.20) it is easy to find the value of x(t) and y(t) in each interval.

Moreover, supposing we want to find a point (x0, y0) of which only one
coordinate is known, the following algorithm can be used.
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1. Suppose x0 is known (the procedure for y0 known is identical). Firstly,
it is necessary to find what intervals contain the value x0. This can be
done by verifying if, in the interval Ii = [i− 1, i]:

x(t = 0) ≤ x0 ≤ x(t = li). (D.29)

2. In each interval found in step 1, apply Newton-Raphson algorithm in
order to find:

t0 : x(t0) = x0. (D.30)

In general, more than one t0 can be found in each interval. In this
application, being the length of the interval very small it is almost
impossible to find two values of t0 inside a single interval.

3. With the values of t0 found at step 2, just calculate

y0 = y(t0). (D.31)
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Appendix E

Relative phase between two
moons

Consider the coupled CR3BP between two consecutive moons M1 and M2 of
a planetary system with central planet P , and a trajectory connecting a state
x1 in the neighbourhood of P -M1 L2 with a state x2 in the neighbourhood of
P -M2 L1. We aim at finding the relative phase between the two moons at the
initial time (i.e., when P3 leaves x1

0) to guarantee the connection between x1
0

and x3
0. Positive angles are measured anticlockwise from the inertial X-axis

of the planet-centered IRF (see Fig. E.1). Let ωP1 and ωP2 = ωP1 + ∆ω be
the arguments of periapsis of the two inter-moon ellipses connecting the CI of
M1 and M2, where ∆ω is the optimal difference between the two arguments
of periapsis, given in Sect.3.3. Hence, when P3 reaches the CI of M2, the
angle swept from x1 is σ1 = ω2 + θ2 = ω1 + ∆ω + θ2, being θ2 the true
anomaly of P3 relative to the second inter-moon ellipse when it reaches the
CI of M2. Calling ∆t2 the time required to reach x2 from the CI of M2 and

δ = arctan yCI

|xCI|
, (E.1)

with (xCI, yCI) the SRF-coordinates at the CI of M2, the phase of M2 when
P3 reaches its CI is:

∆α12 = σ1 + δ + ∆t2
2π
TM2

, (E.2)

being TM2 the period of M2. Therefore the angle α0 is:

α0 = ∆α12 − ω2TOF12, (E.3)

being ω2 the angular velocity of M2 and TOF12 the time of flight from x1
0 to

x2
0.
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Figure E.1: A transfer from the inner moon M1 to the outer moon M2. The
trajectory is represented as a dotted blue line. ω1 and ω2 = ω1 + ∆ω are the
arguments of periapsis of the two inter-moon ellipses. θ1 and θ2 represent
the true anomaly at the CI intersection of M1 and M2 with respect to the
two apse line given by ω1 and ω2 respectively. δ is the angular displacement
between the position of P3 at the intersection with the CI of M2 and the
actual position of M2 at that instant.



Appendix F

Rephasing period

We consider here the connection between Callisto and Ganymede during the
inward journey. The case for the Ganymede-to-Europa connection is similar.
Let ∆αout

0 and ∆αin
0 be the difference between the phases of Ganymede and

Callisto at the end of the outward journey, and the one required to start the
inward journey, the latter dictated by the optimal connection between x3

0 and
x4

0. Moreover, let ∆αout(t) and ∆αin(t) be the relative phases at any time
t before/after the state x3

0 along the TO around Callisto when the initial
condition ∆αout

0 and ∆αin
0 is applied, respectively. Clearly:

∆αout(t) = ∆αout
0 + (ωG − ωC)t, (F.1a)

∆αin(t) = ∆αin
0 + (ωG − ωC)t, (F.1b)

with ∆αout(t) ∈ [0, 2π[ and ∆αin(t) ∈ [0, 2π[. Eq. (F.1b) represents the
required relative phase between Callisto and Ganymede at the generic instant
t 6= 0 (i.e., by starting the rephasing orbits from other states x 6= x3

0).
Similarly, Eq. (F.1a) represents the relative phase between the same moons at
the generic instant t 6= 0 during the outward journey. Clearly, the rephasing
time Treph is such that:

∆αout(t+ Treph) = ∆αin(t). (F.2)

Combining Eq. (F.2) with Eqs. (F.1) it follows:

Treph = ∆αout
0 −∆αin

0
ωC − ωG

. (F.3)

Since ∆αout
0 −∆αin

0 = ∆αout
0 −∆αin

0 +2πn, (n ∈ N), we can rewrite Eq. (F.3)
as

Treph = ∆αout
0 −∆αin

0
ωC − ωG

+ n
2π

ωC − ωG
. (F.4)
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The second term on the right-hand of Eq. (F.4) is the synodic period between
Ganymede and Callisto: it is the time required by the two moons to return in
the same configuration of relative phase. Therefore, the rephasing period is
made up of two terms, the first one depending on the initial conditions pro-
vided by the C-connected states considered and the second one (the synodic
period) independent from it.

Eventually, we observe that Eq. (F.4) is independent from t. Therefore,
the rephasing orbit can be found at any time t 6= 0, i.e., for other points
(x, y) 6= (x, y)3

0 along one of the two branches of the TO around x3
0.



Appendix G

Single-shooting algorithm

Trajectory design in the CR3BP necessitate extensive use of numerical tech-
niques, since analytical solutions are not available. A general differential
correction procedure based on Newton’s method is here presented and devel-
oped. The goal is a fixed end state to be reached by variation of the initial
state. Consider a general design vector X of n free variables Xi at the initial
time t0

X = {X1, X2, . . . , Xn}T (G.1)
subjected at the final time tf to a set of m equality constraints:

F(X) =



F1(X)
F2(X)

...
Fm(X)


= 0 (G.2)

and p inequality constraints:

FIN(X) =



F IN
1 (X)
F IN

2 (X)
...

F IN
p (X)


< 0. (G.3)

A possible set of design variable could be position, velocity and time while
the constraints vector may include path restrictions on position and velocity,
or energy requirements on the Jacobi constant. An example of inequality
constraint could be a specific requirement on the flight path angle γ, i.e.,
γmin < γ < γmax. Then, an algorithm is developed such that, starting from
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an initial guess X0 of the design variables it will converge towards the true
solution satisfying the constraints F(X) = 0. Expanding the constraints to
a first order Taylor series yields:

F(X) ≈ F(X)0 +DF(X0)(X−X0) + o(||X−X0||2) (G.4)

where X is assumed to be close to X0 and DF(X0) is the Jacobian matrix

DF = ∂F(X)
∂X

=



∂F1
∂X1

∂F1
∂X2

. . . ∂F1
∂Xn

∂F2
∂X1

∂F2
∂X2

. . . ∂F2
∂Xn... ... . . . ...

∂Fn

∂X1
∂Fn

∂X2
. . . ∂Fn

∂Xn

∂F IN
1

∂X1

∂F IN
1

∂X2
. . .

∂F IN
1

∂Xn

∂F IN
2

∂X1

∂F IN
2

∂X2
. . .

∂F IN
2

∂Xn... ... . . . ...
∂F IN

p

∂X1

∂F IN
p

∂X2
. . .

∂F IN
p

∂Xn



(G.5)

evaluated at the point X0. The minimum size of this matrix is m × n and
the maximum size is (m + p) × n: the j-th (j = m + 1, . . . , p) row is only
evaluated if the j-th inequality is violated, i.e., F IN

j > 0, otherwise it is
removed from DF at the current iteration step. Since F(X) has to satisfy
the constraint (G.2) F(X) = 0, neglecting the higher order terms, Eq. (G.5)
can be rewritten as an iterative function, i.e.,

F(Xi) +DF(Xi)(Xi+1 −Xi) = 0. (G.6)

Calling q the actual number of rows at the i-th iteration m ≤ q ≤ m + p,
in case n = q the Jacobian matrix is a square and the iteration process is
reduced to a simple matrix inversion, that is:

Xi+1 = Xi −DF(X0)−1F(Xi). (G.7)

Conversely, if n > q an infinite number of solution is available; in this case
the solution is evaluated through the least squares method:

Xi+1 = Xi −DX(Xi)T
[
DF(Xi)DXT

i

]−1
F(Xi). (G.8)

The matrixDX(Xi)T
[
DF(Xi)DXT

i

]−1
is often called pseudo-inverse matrix.

In both the cases (G.7) and (G.8) the iteration process is repeated until the
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constraint vector falls below an arbitrary small tolerance ||F(Xi)|| < ε. The
norm of the full constraint vector may not always yield the best performance,
hence this criterion can be adjusted accordingly if necessary. Equations (G.7)
and (G.8) yield the same result as that found by Eq. (2.115) being this new
formulation more general in term of the constraints applied.

In summary we can summarize the algorithm as follows:

1. Determine the free variable vector X, according with the problem re-
quirements and choose an adequate initial solution guess X0.

2. Define the constraints equalities vector F(X) and the inequality vector
FIN(X).

3. Define the complete (m+ p)× n Jacobian matrix DF(X).

4. At each iteration step evaluate the proper number q of rows of the
Jacobian matrix and use equation (G.7) or (G.8) if n = q or n > q
respectively.

5. Iterate until ||F(Xi)|| < ε.

If p = 0 (all the constraints are generated as equality) and the initial guess
X0 is sufficiently close to a true solution, the algorithm will converge quadrat-
ically. We talk about single shooting techniques because only changes to the
initial guess are applied, leaving unperturbed the rest of the trajectory.

G.1 Example: fixed-time single shooting
We provide here an application of the single-shooting technique in the frame-
work of the planar CR3BP with control on the initial velocity and constraints
on the final state. Let

X =

X1

X2

 =

ẋ0

ẏ0

 (G.9)

be the control vector on the initial velocity. The position components {x0, y0}
are fixed at the initial time t0. The target point at the final fixed time tf is
fixed, hence the constraints vector can be written as

F(X) =

F1

F2

 =

xf − xT

yf − yT

 , (G.10)
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Figure G.1: An example of single shooting problem. From the initial fixed
point (x0, y0) the final target (xT, yT) must be reached by variations on the
initial velocity (ẋ0, ẏ0).

being {xf , yf}T = {x(tf ), y(tf )}T the final state at time tf and {xT, yT}T the
desired final state at the same time. By variation of the initial state, i.e.,
varying the initial velocity components, we want to reach the desired target
point. The problem is sketched in Fig G.1. Since there are not inequality
constraints, p = 0 and the dimension of the Jacobian matrix is m×n = 2×2:

DF = F(X)
∂X

=


∂F1

∂X1

∂F1

∂X2
∂F2

∂X1

∂F2

∂X2

 . (G.11)

The components of the Jacobian matrix can be calculated by substituting
Eqs. (G.9) and (G.10) into Eq. (G.11):

∂F1

∂X1
= ∂(xf − xT)

∂ẋ0
= ∂xf
∂ẋ0

= Φ14, (G.12a)

∂F1

∂X2
= ∂(xf − xT)

∂ẏ0
= ∂xf
∂ẏ0

= Φ15, (G.12b)

∂F2

∂X1
= ∂(yf − yT)

∂ẋ0
= ∂yf
∂ẋ0

= Φ24, (G.12c)

∂F2

∂X2
= ∂(yf − yT)

∂ẏ0
= ∂yf
∂ẏ0

= Φ25, (G.12d)
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being Φij the components of the STM from Eq. (2.51) evaluated at the final
time t = tf . Therefore, we can rewrite the Jacobian matrix as:

DF = F(X)
∂X

=

Φ14 Φ15

Φ24 Φ25

 . (G.13)

It is straightforward to invert this matrix:

DF(X) = 1
det(DF(X))

 Φ25 −Φ15

−Φ24 Φ14

 . (G.14)

We can now apply the iterative process described by Eq. (G.7) from a suitable
initial guess X0.

This technique is the same as that employed in the derivation of Eq. (2.56).
Thus, the solution obtained through this new formulation is equivalent to the
result from Eq. (2.56).
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