
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Data Science

Graph Neural Networks for learning domain

dependent heuristics in automated planning;

enhacing the GOOSE framework

Supervisor Master Candidate
Prof. NicolòNavarin MarenHoschek
University of Padova

Co-supervisor Student ID
2105030

Academic Year
2023-2024

ii

Abstract

In automated planning, heuristics are used to estimate the cost or effort required to reach a goal from
a given state within a planning problem. This thesis focuses on enhancing GOOSE, a learning-based
planning framework that provides various graph representations and heuristics for heuristic searchwith
a planner. GOOSE models the heuristic function using different graph learning approaches. The goal
of this thesis is to improve GOOSE’s performance on the IPC 2023 benchmarking dataset by refining
existing graph learning methods and exploring new ones. Specifically, the improvements target better
handling of domain drift as problems transition from easy tomedium, andmedium to hard. This work
emphasizes modeling domain-dependent heuristics. To enhance existingmodels, we fine-tuned current
GNNs through retraining and explored a multi-heuristic search approach that combines these GNNs
with the hff heuristic. Additionally, we combined retraining with multi-heuristic search. Regarding
changes to the graph learning approach, we incorporated attention mechanisms into the framework by
using relational graph attention layers in theGNNs thatmodel the heuristic function. Furthermore, we
experimentedwith a novel approach calledmasked attention for graphs, which does not rely onmessage
passing for heuristic modeling. We evaluated our models based on the number of solved problems, the
number of nodes expanded by the planner, and the cost of the resulting plans. The results indicate that
multi-heuristic search combined with retraining is most effective for managing domain drift from easy
to medium problems, while the existing WL-GPR kernel models in GOOSE remain the best for hard
problems. For the attention-based approaches, we encountered challenges related to limited training
data and longer inference times compared to the GNNmodels due to their increased complexity. Over-
all, this thesis aims to establish a strong foundation for enhancing domain-dependent search within the
GOOSE framework and suggests directions for future research.

iii

iv

Contents

Abstract iii

List of figures vii

List of tables ix

Listing of acronyms xiii

1 Introduction 1
1.1 Background and Need . 1
1.2 Statement of the Problem . 2
1.3 Methodology . 3

2 Background 5
2.1 Automated Planning . 5

2.1.1 Planning Tasks . 6
2.1.1.1 STRIPS Planning Task . 7
2.1.1.2 FDR Planning Task . 8
2.1.1.3 Lifted Planning Task . 9

2.1.2 Heuristic Functions . 9
2.1.3 Fast Downward Planning System . 10

2.1.3.1 Fast Forward Heuristic . 12
2.2 Graph Learning and Graph Neural Networks . 12

2.2.1 Spatial based Graph Convolutional Neural Networks 14
2.2.2 Relational Graph Neural Networks . 16
2.2.3 Graph Attention Networks . 17
2.2.4 Relational Graph Attention Networks . 19
2.2.5 Expressiveness . 21
2.2.6 Masked Attention for Graphs . 23
2.2.7 Domain Adaptation . 26

2.3 Graphs Optimised for Search Evaluation . 28
2.3.1 Graphs of GOOSE . 29
2.3.2 GNN of GOOSE . 33
2.3.3 Results of GOOSE . 34

2.3.3.1 Domain Dependent Results . 34
2.3.3.2 Domain Independent Results 36

2.4 RelatedWorks . 38
2.4.1 Neural Networks . 39
2.4.2 Graph Neural Networks . 40

v

3 Experiments 43
3.1 Dataset . 43
3.2 Goals of the Experiments . 45
3.3 Experiment Setup . 45
3.4 Baseline Heuristics . 47
3.5 Fine Tuning by Retraining . 48
3.6 Multi-heuristic Search . 50
3.7 Multi-heuristic Search combined with Retraining 51
3.8 Graph Attention Networks . 51
3.9 Masked Attention for Graphs . 53

4 Results 55
4.1 Variance . 55
4.2 Fine Tuning by Retraining . 56
4.3 Multi-heuristic Search . 59
4.4 Multi-heuristic Search combined with Retraining 63
4.5 Relational Graph Attention . 67
4.6 Relational Graph Attention with Retraining . 71
4.7 Masked Attention for Graphs . 73
4.8 Weisfeiler LemanModel . 77

5 Conclusion 81
5.1 Future Work . 82

References 85

Acknowledgments 97

vi

Listing of figures

2.1 Example of a planning task in which blocks need to be stacked in a specific order. By
unstacking Block B from Block A and then stacking Block C onto Block B, the goal
state is reached . 7

2.2 The three phases of Fast Downward’s execution [1] 10
2.3 Node Level Prediction (left), Edge Level Prediction (middle) and Graph Level Predic-

tion (right) [2] . 13
2.4 Concept of message aggregation for a single node from its adjacent neighbor nodes [2] 15
2.5 Diagram for computing the update of a single graph entity [3] 17
2.6 Demonstrating the expressive capabilities of GNNs. a) GNNs share the same feature

embedding ability as NNs, mapping examples from the feature space X to the target
space Y via f b) GNNs’ capability to represent topology involves mapping examples
from the feature space to the target space using f̂, while maintaining the original topol-
ogy between examples. c) The expressive power of GNNs is a combination of their
feature embedding and topology representation abilities, measured by the size of the
intersection ofF andF ′ whenX is random.[4] 22

2.7 The Masked Attention for Graphs (MAG) architecture. An essential component is
deciding whether to process the node features (MAGN) or the edge features (MAGE)
and applying the correct masking strategy. Standard self-attention blocks (S) can be in-
terchanged with masked blocks (M) as required, here a SMSM configuration is shown.
The decoder is required only for tasks at the graph level. [5] 25

2.8 Solving a planning problem with Goose and the Fast Downward planning system . . 28
2.9 Representation of the fact (on b1 b2) as part of the goal in a blocksworld problem,

shown as an SLG graph (a), FLG graph (b), LLG graph (c), and ILG graph (d). The
depicted graphs are all subgraphs focusing solely on the fact (on b1 b2). Complete
graphs for a planning problem are too large for a clear graphical representation. . . . 30

2.10 Architecture of the GNN used in Goose . 33
2.11 Comparison of GOOSE (x-axis) and hFF (y-axis) on number of expanded nodes (left)

and plan cost (right). [6] . 38

3.1 Comparison of the number of solved medium problems for the different graph rep-
resentations provided by GOOSE. As we have 10 problem domains with 30 medium
problems each, the maximum number of problems that could have been solved is 300. 47

3.2 Retraining process used to improve the domain adaptation of the GOOSE GNNs. . 50
3.3 (a) Standard architecture of goose as presented in subsection 2.3.2 (b) GOOSE archi-

tecture incorporating RGAT layers . 52
3.4 Architecture of the MAG model used for the experiments with GOOSE. The MLPs

following each block in the encoder are not depicted. 54

vii

4.1 Thenumberof expandednodes and theplan cost of themediumproblemsofGOOSEstandard
andGOOSEretrain. For problems not solved by one planner, the corresponding metric
is set to the axis limit. Points located in the top-left triangle favor GOOSEretrain, while
those in the bottom-right triangle favorGOOSEstandard. 59

4.2 The number of expanded nodes and the plan cost for GOOSEstandard compared to
GOOSEmh (graphs on the left) and GOOSEretrain compared to GOOSEmh (graphs on
the right) of the medium problems. For problems unsolved by one planner, the cor-
responding metric is set to the axis limit. Points located in the top-left triangle favor
GOOSEmh. 62

4.3 The number of expanded nodes and the plan cost for GOOSEstandard compared to
GOOSEmh−retrain (graphs on the left) and GOOSEmh compared to GOOSEmh−retrain
(graphs on the right) of the medium problems. For problems unsolved by one planner,
the corresponding metric is set to the axis limit. Points located in the top-left triangle
favorGOOSEmh−retrain. 66

4.4 The number of expanded nodes and the plan cost for GOOSEstandard compared to
GOOSEgat (graphs on the left) and GOOSEmh−retrain compared to GOOSEgat (graphs
on the right) of themedium problems. For problems unsolved by one planner, the cor-
responding metric is set to the axis limit. Points located in the top-left triangle favor
GOOSEgat. 69

4.5 Thenumberof expandednodes and theplan cost forGOOSEgat compared toGOOSEgat−retrain
of the medium problems. For problems unsolved by one planner, the corresponding
metric is set to the axis limit. Points located in the top-left triangle favorGOOSEgat−retrain. 73

viii

Listing of tables

2.1 Search algorithms and heuristics used in the Fast Downward Planning System [7][8] . 11
2.2 Overview of Hyperparameters in the Goose Neural Networks 34
2.3 Coverage of planners. The bottom-most row provides their overall IPC 2023 learning

track score. Models marked ‡ are run 5 times with mean scores presented. LAMA-
first is the only planner not performing single-queueGBFS.The top three single-queue
heuristic search planners in each row are indicated by the cell colouring intensity, with
the best one in bold. The best planner overall in each row is underlined.[9] 36

2.4 Coverage of considered planners per difficulty level. The mean and standard deviation
are taken for models with multiple repeats marked by ‡ [9]. 37

2.5 Coverage of planners and GOOSE over various domains. Cell intensities indicate the
top 3 planners per row.[6] . 38

2.6 Overview related works neural networks in automated planning 40
2.7 Overview related works GNNs in automated planning 42

4.1 Coverage of the FastDownward planner usingGOOSEretrain compared to the baseline
heuristics. The top three heuristics in each row are highlighted with cell coloring inten-
sity, with the best one in bold. The maximum number of problems that can be solved
per domain is 90 (30 easy, 30 medium and 30 hard problems), so the maximum overall
achievable coverage is 900. 56

4.2 The first column lists the number of medium and hard problems solved using the
GOOSEretrain heuristic. The remaining columns show the difference in this number
compared tobaselineheuristics. For example, a valueof+20underhblindmeansGOOSEretrain
solves 20 problems more than hblind in that domain. 58

4.3 Coverage of the FastDownwardplanner usingGOOSEmh compared to the baseline and
GOOSEretrain heuristic. The top three heuristics in each row are highlighted with cell
coloring intensity, with the best one in bold. The maximum number of problems that
can be solved per domain is 90 (30 easy, 30 medium and 30 hard problems), so the
maximum overall achievable coverage is 900. 60

4.4 The first column lists the number of medium and hard problems solved using the
GOOSEmh heuristic. The remaining columns show the difference in this number com-
pared to baseline and previously introduced heuristics. For example, a value of +19
under hff means GOOSEmh solves 19 problems more than hff in that domain. The
baseline hblind was omitted because it does not solve any medium or hard problems. . 61

4.5 Coverage of the FastDownward planner using GOOSEmh−retrain as a heuristic com-
pared to the baseline heuristics, GOOSEretrain and GOOSEmh. The top three heuris-
tics in each row are highlighted with cell coloring intensity, with the best one in bold.
The maximum number of problems that can be solved per domain is 90 (30 easy, 30
medium and 30 hard problems), so the maximum overall achievable coverage is 900. . 63

ix

4.6 The first column lists the number of medium and hard problems solved using the
GOOSEmh−retrain heuristic. The remaining columns show the difference in this num-
ber compared to baseline and previously introduced heuristics. For example, a value
of +27 under hff meansGOOSEmh−retrain solves 27 problems more than hff in that do-
main. The baseline hblind was omitted because it does not solve any medium or hard
problems. 65

4.7 Coverage of the FastDownward planner using GOOSEgat as a heuristic compared to
the baseline heuristics,GOOSEretrain,GOOSEmh andGOOSEmh−retrain. The top three
heuristics in each row are highlighted with cell coloring intensity, with the best one in
bold. Themaximumnumber of problems that can be solved per domain is 90 (30 easy,
30 medium and 30 hard problems), so the maximum overall achievable coverage is 900. 67

4.8 The first column lists the number of medium and hard problems solved using the
GOOSEgat heuristic. The remaining columns show the difference in this number com-
pared to baseline and previously introduced heuristics. For example, a value of +26
under hff means GOOSEgat solves 11 problems more than hff in that domain. The
baseline hblind was omitted because it does not solve any medium or hard problems. . 68

4.9 Comparison of the inference times of RGNN and RGATmodels for a graph instance
of a medium problem. All numbers are averages taken by passing themedium instance
100 times through each of the models. 70

4.10 Coverage of the FastDownward planner using GOOSEgat−retrain as a heuristic com-
pared to thebaselineheuristics,GOOSEretrain,GOOSEmh,GOOSEmh−retrain andGOOSEgat.
The top three heuristics in each row are highlighted with cell coloring intensity, with
thebest one inbold. Themaximumnumber of problems that canbe solvedper domain
is 90 (30 easy, 30 medium and 30 hard problems), so the maximum overall achievable
coverage is 900. 71

4.11 The first column lists the number of medium and hard problems solved using the
GOOSEgat−retrain heuristic. The remaining columns show the difference in this num-
ber compared to baseline and previously introduced heuristics. For example, a value of
+11 under hffmeansGOOSEWL−GPR solves 11 problemsmore than hff in that domain.
The baseline hblind was omitted because it does not solve any medium or hard problems. 72

4.12 Number of solved problems for GOOSEMAG−node and GOOSEMAG−edge compared
to the baseline heuristics. All tests were conducted on problems of easy difficulty level
with a timeout of 10minutes per problem. In each domain 30 easy problems were tested. 74

4.13 Validation loss ofGOOSEstandard andGOOSEmag. The ”type” column applies only to
GOOSEmag, indicatingwhether the loss is fromanodeor edgemodel. InGOOSEstandard,
there is no such distinction, so the results are simply repeated for comparison. 75

4.14 Inference time ofGOOSEstandard andGOOSEmag. The ”type” column applies only to
GOOSEmag, indicatingwhether the time is fromanodeor edgemodel. InGOOSEstandard,
ther e is no such distinction, so the results are simply repeated for comparison. 76

x

4.15 Coverage of the FastDownward planner using GOOSEgat−retrain as a heuristic com-
pared to thebaselineheuristics,GOOSEretrain,GOOSEmh,GOOSEmh−retrain andGOOSEgat.
The top three heuristics in each row are highlighted with cell coloring intensity, with
thebest one inbold. Themaximumnumber of problems that canbe solvedper domain
is 90 (30 easy, 30 medium and 30 hard problems), so the maximum overall achievable
coverage is 900. 78

4.16 The first column GOOSEWL−GPR lists the number of medium and hard problems
solved using the GOOSEWL−GPR heuristic. The remaining columns show the differ-
ence in this number compared to baseline and previously introduced heuristics. For
example, a value of +28 under hff means GOOSEWL−GPR solves 28 problems more
than hff in that domain. The baseline hblind was omitted because it does not solve any
medium or hard problems. 79

xi

xii

Listing of acronyms

CNN Convolutional Neural Network

FDR Finite Domain Representation

FLG FDR learning graph

GAT Graph Attention Network

GBFS Greedy Best-First Search

GCNN Graph Convolutional Neural Network

GNN Graph Neural Network

GOOSE Graphs Optimised for Search Evaluation

GPR Gaussian Process Regression

GRNN Graph Recurrent Neural Network

ILG Instance learning graph

IPC International Planning Competition

LLG Lifted learning graph

MAG Masked attention for graphs

MPNN Message Passing Neural Network

MSE Mean Squared Error

PDDL Planning Domain Definition Language

ReLU Rectified Linear Unit

RGAT Relation Graph Attention Network

RGNN Relational Graph Neural Network

SLG STRIPS learning graph

STRIPS Stanford Research Institute Problem Solver

SVR Support Vector Regression

WL Weisfeiler Leman algorithm

xiii

xiv

1
Introduction

1.1 Background andNeed

Planning is an important activity in various domains, ranging from everyday life to complex industrial
processes. It involves deciding on a sequence of actions to achieve specific goals, ensuring efficient and
effective use of resources. In organizational contexts, planning is crucial for project management, strate-
gic decision-making, and operational efficiency. It helps in anticipating potential challenges, optimiz-
ing resource allocation, and aligning efforts towards achieving desired outcomes. The need for planning
arises in environments where multiple variables and uncertainties must be managed to achieve specific
objectives. This necessity spans across fields such as logistics, manufacturing, healthcare, and robotics
[10].

Automated planning, a subfield of artificial intelligence, addresses the complexities associated with
manual planning by utilizing computational techniques to generate plans [11]. This approach is partic-
ularly valuable in scenarios where the planning tasks are too intricate or time-consuming for humans to
handle them efficiently. Automated planning systems can process large amounts of data, evaluate nu-
merous possible action sequences, and select the most optimal plan based on predefined criteria. This
capability is essential in applications such as autonomous vehicles, robotic control, space missions, and
complex scheduling problems. The automation of planning tasks not only enhances accuracy and ef-
ficiency but also frees up human resources to focus on more strategic and creative activities. In this
context, a planner is a software tool that takes a formal description of a planning problem as input and
generates a sequence of actions that achieve a specified goal. Planners use various algorithms and heuris-
tics to efficiently search through the space of possible actions, identifying the most effective sequence
to reach the desired outcome. They are integral components of automated planning systems, enabling

1

them to solve complex problems that require detailed and coordinated action plans [12].
Heuristics play a pivotal role in automated planning by guiding the search process towards optimal so-

lutions. Aheuristic is a problem-solving approach that employs practicalmethods to reachdecisions and
solve problems more quickly when optimal solutions are not feasible [10]. In the context of automated
planning, heuristics are used to evaluate the desirability of different states or actions, helping the system
prioritize which paths to explore. They are essential for reducing the search space and computational
effort required to find a solution, especially in complex and dynamic environments. By estimating the
cost or distance to the goal, heuristics enable the planning algorithm to make informed decisions about
the most promising actions to pursue [12]. Due to the advantages of using heuristics, there are various
planners that support heuristic search. Examples include the Fast Downward planner [1], LAMA [13],
andMetric-FF [14].

Heuristics in automated planning are approached through various strategies to enhance their effec-
tiveness. One common approach is the use of domain-independent heuristics, which do not rely on
specific knowledge about the problem domain but rather utilize general principles applicable to a wide
range of problems. Another strategy involves domain-specific heuristics, which leverage detailed knowl-
edge about the specific characteristics of the problems to provide more accurate and efficient guidance
[12]. Additionally, heuristic functions can be derived through machine learning techniques, where the
system learns from past experiences and data to improve its heuristic evaluations. The development and
refinement of heuristics are ongoing areas of research, aiming to balance the trade-off between compu-
tational efficiency and the quality of the solutions generated [15] [16] [17].

Onenotable framework for automatedplanning that utilizesmachine learning to learnheuristic func-
tions is GOOSE (GraphsOptimized for Search Evaluation) [6] [18]. GOOSE provides both graph neu-
ral networks and kernel-based methods for learning heuristic functions, which can then be employed
by a planner within a heuristic search algorithm. TheGOOOSE framework has demonstrated the capa-
bility to learn both domain-dependent and domain-independent heuristics. However, GOOSE’s per-
formance varies depending on the type of planning problem it is applied to. Despite the substantial
research and development that has already been conducted to enhance the GOOSE framework, this
thesis aims to further improve its performance on a commonly used planning benchmarking dataset
[19]. This involves exploring new techniques and strategies to refine the learning of the heuristic func-
tions, thereby enhancing the overall efficiency and effectiveness of the GOOSE framework in solving
complex planning problems.

1.2 Statement of the Problem

Theprimary aimof this study is to enhance the performance ofGOOSE, a learning-based framework de-
signed for classical automated planning. GOOSE leverages Graph Neural Networks (GNNs) to model

2

heuristic functions, which are crucial in guiding the planner towards promising directions when solving
a planning problem. A more effective heuristic function improves the efficiency of the search process
of the planner and by this enhances its overall performance. Consequently, this research focuses on
optimizing the GNNmodels used as heuristic functions within the GOOSE framework.

TheGNNs inGOOSEperformgraph-level predictions and are frequently calleduponby theplanner
during the search process. Depending on the complexity and size of the planning problem, the planner
may invoke the heuristic function millions of times. This high frequency underscores the importance
of both the accuracy and the evaluation speed of the heuristic function for the planner’s performance.
One of themain challenges is the domain drift between the training and testing data concerning the dif-
ficulty of the problems. In past studies involving GOOSE, this drift has led to suboptimal performance
on previously unseen difficulties during training. Additionally, there are specific domains of planning
problems where the expressive capacity of GNNs is limited in learning effective heuristic functions.

These challenges can hinder the overall effectiveness of the planning process. This study aims to
address these issues, with a primary focus on the domain drift challenge, thereby improving the overall
efficiency and effectiveness of the GOOSE framework.

1.3 Methodology

This study utilizes the dataset from the learning track of the 2023 International Planning Competition
(IPC) [19], which was also employed in a previous study involving GOOSE. The dataset comprises
10 distinct planning domains, each providing up to 99 planning problems for training and 90 prob-
lems for testing. Training problems are categorized as easy, while the test dataset is divided into 30 easy,
30 medium, and 30 hard problems. The difficulty of a planning problem is roughly indicated by the
number of different objects involved, with easy problems having fewer objects than hard problems. All
planning problems are defined in the Planning Domain Definition Language (PDDL) [20]. The trans-
formation of these planning problems from PDDL to graphs for graph learning is performed by the
existing graph transformations in the GOOSE framework.

Themodels are trained on the training dataset, which is further split into training and validation sub-
sets during the training process, using anMSE loss function to fit the models. In this study we train all
models in a domain dependent setting, meaning the models are trained on planning problems of the
same problem domain as they are indented to be tested on. Once trained, the models are saved and in-
tegrated with the FastDownward planner [1]. FastDownward is a heuristic planner capable of utilizing
custom search algorithms and heuristic functions, with the GOOSE framework already providing inte-
gration for its trainedmodels. During the testing phase, the FastDownward planner uses the previously
trained models as heuristics to solve the testing problems. The performance of the different models as
heuristics is evaluated based on the following metrics:

3

• Number of solved problems in the testing dataset: This metric indicates the number of prob-
lems for which the FastDownward planner finds a plan using a givenmodel as a heuristic. Solving
problems is the primary goal in automated planning, making this the most important metric.

• Number of expanded nodes when solving a problem: This metric reflects howmany different
states the planner explored during the search using the heuristic. Fewer expanded nodes suggest
a more effective heuristic.

• Plan cost of the found solution: This metric measures the cost of the plan returned by the
planner, as the planner does not always guarantee finding the optimal solution. Heuristics that
result in lower costs are preferred.

The experiments are divided into two main categories. The first set of experiments aims to enhance
the performance of the currently used GNNs [3] in GOOSE through fine-tuning and multi-heuristic
search. The second set involves architectural changes to themodels, including the use of RGATmodels
[21] and a novel graph learning approach called Masked Attention for Graphs (MAG) [5]. Addition-
ally, we employ a set of baseline heuristics, consisting of common heuristics in automated planning and
the current GOOSE heuristics, against which all models are compared. Finally, we evaluate all the ex-
periments to determine which approach yields the best results. In the evaluation, we specifically focus
on the performance of the medium and hard testing problems, as these difficulties present the greatest
opportunities for improvement based on previous GOOSE studies.

The complete thesis is structured as follows. chapter 2 presents the foundational theories of auto-
mated planning and graph neural networks. It also introduces the GOOSE framework and reviews
related works. chapter 3 details the experiments conducted in this thesis and describes the dataset used
for these experiments. chapter 4 presents the results of the experiments described in chapter 3, along
with a discussion of these findings. Finally chapter 5 provides concluding remarks and suggests possible
directions for future research. The source code for the enhanced version ofGOOSE, alongwith instruc-
tions on how to train and run the various models to replicate the experiments in this thesis, as well as
the trained models and the results discussed herein, are available on GitHub *.

*https://github.com/theMaren/goose_thesis.git

4

https://github.com/theMaren/goose_thesis.git

2
Background

2.1 Automated Planning

Automated planning is a branch of artificial intelligence that deals with creating step-by-step plans to
achieve specific goals, taking into account the current situation and the effects of potential actions.
These actions are carried out by an agent, which could be software or a robot. Automated planning
is particularly useful when the agent operates in a dynamic environment that changes unpredictably
[11]. For instance, in a rescue operation after a natural disaster, there are many people involved and
complex transportation networks to consider. The plan must be flexible and adapt to the current state
of the disaster. Software systems that automatically generate such plans are called planners or planning
systems. There are three main types of planners discussed in the literature:

• Domain-specific planners: These planners are designed or adjusted for a specific planning do-
main. They do not work well, if at all, in other domains.

• Domain-independent planners: These planners are intended to work in any planning domain.
However, in practice, they need some restrictions on the type of planning domain they can han-
dle.

• Configurable planners: These are domain-independent planning engines. They require input
on how to solve problems in certain domains [12].

Creating a plan can be very complex and requires advanced reasoning, which planning systems need
to simulate. Therefore, automated planning systems use AI to help with this task [11]. Automated
planning has been a research topic for over 40 years. Early work, such as the Stanford Research Institute
Problem Solver (STRIPS), focused on representing planning problems in a formal way that computers

5

could process [22]. Today, the focus is on planners that exploit deep neural networks or reinforcement
learning, like AlphaGo [23] and AlphaZero [24], which master games like Go and Chess.

2.1.1 Planning Tasks

A classical planning task [25] is a state transition model Π = 〈S,A, s0,G〉where:

• S is a finite set of states

• A is a finite set of actions

• s0 is the known initial state

• G is a non-empty set of goal states

• Each action a ∈ A is a function a : S → S∪⊥mapping a state s in which the action is applicable
to its successor a(s), and states in which it is not applicable to⊥

Each action has a cost denoted as c(a) ∈ N. In this context, a solution or plan is a sequence of actions
π = 〈a1, . . . , an〉 such that for every i ∈ {1, . . . , n}, si = ai(si−1) 6= ⊥ and sn ∈ G. Essentially, a plan
consists of a series of applicable actions that transition the initial state to a goal state. The total cost of
the plan π is calculated as c(π) =

∑n
i=1 c(ai). A planning task is considered solvable if there is at least

one viable plan. An optimal plan is defined as one with the lowest possible cost, and the model’s cost
is that of the optimal plan. Often, a simple cost structure is used where every action cost c(a, s) equals
1. In this scenario, the plan’s cost corresponds to its length, making the shortest plans the optimal ones
[25].

To illustrate the concept of a classical planning task, consider the following simple scenario involving
three blocks (A, B, and C) which can be placed on a table or on top of each other. In this scenario, the
set of states S includes all possible configurations of the blocks on the table and on each other. The set
of actions A consists of {Stack(x, y),Unstack(x, y)}, where x and y are blocks.

The initial state s0 describes the current position of the blocks, which in our example is defined as:
s0 = {on_table(B), on_table(C), on(B,A)}. The goal stateGdescribes the block orderingwewould like
to achieve and is defined as G = {on_table(A), on_table(B), on(C,B)}. To transition from the initial
state to the goal state, we apply a sequence of actions. The required actions are as follows: First, we
unstack Block B from Block A and place it on the table. Next, we stack Block C on Block B. Figure 2.1
illustrates the transition from the initial state to the goal state.The sequence of actions forms the plan
π = 〈Unstack(B,A), Stack(C,B)〉. Assuming each action has a cost of 1, the total cost of the plan is
c(π) = 1+ 1 = 2, meaning plan π successfully achieves the goal with minimal cost.

6

Figure 2.1: Example of a planning task in which blocks need to be stacked in a specific order. By unstacking Block B from Block A and
then stacking Block C onto Block B, the goal state is reached

2.1.1.1 STRIPS Planning Task

STRIPS (StanfordResearch Institute ProblemSolver) is a formal language for planning in artificial intel-
ligence. STRIPSwas developed to address the need for a systematic and automatedway to generate plans
for autonomous systems. A STRIPS planning task [22] is formally defined as a tupleΠ = 〈P,A, s0,G〉
where:

• P is a finite set of propositions (or facts)

• A is a finite set of actions

• s0 ⊆ P is the known initial state

• G ⊆ P is the goal condition

• A state s is a subset of P and is a goal state ifG ⊆ s

• Anactiona ∈ A is a tuple 〈pre(a), add(a), del(a)〉withpre(a), add(a), del(a) ⊆ P and add(a)∩
del(a) = ∅

In comparison to the classical planning task defined in subsection 2.1.1 the set of states S is replacedby
the set of propositions P in the STRIPS planning task definition. Propositions (or facts) are individual
statements about the world. They represent specific conditions and can be true or false independently
of other propositions. States are collections of propositions. A state is a snapshot of the world at a
particular moment, described by the set of all propositions that are true at that moment [12]. In a
STRIPS planning task, actions have preconditions (pre), positive effects (add), and delete effects (del).
The preconditions of an action a are the propositions that must be true for the action to be executed.
The add effects of an action are the propositions that become true after the action is executed, while the
delete effects are the propositions that become false. Each action has an associated cost c(a) ∈ R. An
action is applicable in a state s if pre(a) ⊆ s, and it results in the successor state s′ = (s\del(a))∪add(a)
[22].

7

2.1.1.2 FDR Planning Task

The Finite Domain Representation (FDR) was developed to efficiently handle a broader range of plan-
ning problems. It offers increased expressiveness, enables more efficient planning algorithms by lever-
aging the structure of finite domains, and provides greater flexibility by allowing partial variable assign-
ments. A FDR planning task [26] is formally defined as the tuple Π = 〈V,A, s0, s⋆〉where:

• V is a finite set of state variables v, each with a finite domainDv

• A is a finite set of actions of the form a = 〈pre(a), eff(a)〉 where pre(a) and eff(a) are partial
variable assignments

• the intial state s0 is a total variable assignment

• the goal condition s⋆ is a partial variable assignment

A partial variable assignment consists of a set of facts, with each variable appearing no more than
once. Each fact is expressed as a pair 〈v, d〉, where v ∈ V and d ∈ Dv. When each variable is included
exactly once, the assignment is referred to as a total variable assignment. An action a can be applied in a
state s if pre(a) ⊆ s, resulting in the successor state s′ = (s∪ eff(a)) \ {〈v, d〉 ∈ s | ∃d′ ∈ Dv, 〈v, d′〉 ∈
eff(a) ∧ d 6= d′} [6].

The primary difference between an FDRplanning task and standard or STRIPS planning tasks is the
use of variable assignments, where each variable can take values from a finite domain. In FDRplanning,
actions are defined by preconditions and effects using these variable assignments, unlike the proposi-
tions used in STRIPS. Considering the block stacking example from section subsection 2.1.1, we define
a variable for the position of each block: V = {posA, posB, posC}. Each of these variables has a finite do-
main. For instance,DposA = {table,B,C},DposB = {table,A,C}, andDposC = {table,A,B}. These
variables are then used to define actions and states. For example, the unstack action from Figure 2.1 can
be defined as follows:

Unstack(B,A) : pre(Unstack(B,A)) = {〈posB,A〉, 〈posA, table〉},

eff(Unstack(B,A)) = {〈posB, table〉}

States are also described using variable assignments. The initial state shown in Figure 2.1 would be
described as follows:

s0 = {〈posA, table〉, 〈posB,A〉, 〈posC, table〉}

Theuse of variable assignments allows for amore structured and compact representation, particularly
when dealing with domains that naturally fit into variable-value pairs.

8

2.1.1.3 Lifted Planning Task

Traditional grounded planning approaches enumerate all possible states and actions explicitly, which
can be computationally expensive and infeasible for large problems. Lifted planning, on the other hand,
works at a higher level of abstraction making the planning process more scalable and flexible. A lifted
planning task [27] is formally defined as the tuple Π = 〈P,O,A, s0,G〉where

• P is a set of first-order predicates

• O is a set of objects

• s0 is the initial state

• G is the goal condition

A predicate P ∈ P can have parameters x1, . . . , xnP , where nP ∈ N is the number of parameters, and
nP depends on the predicate. Some predicates might not have any parameters. A predicate with n pa-
rameters is called ann-ary predicate. Whenwe assign objects fromO or other variables to the parameters
xi, we instantiate the predicate. A predicate where all parameters are assigned objects is called a ground
proposition. The initial state and goal condition are both sets of these ground propositions [6].

An action schema a ∈ A is a tuple 〈Δ(a), pre(a), add(a), del(a)〉. Here, Δ(a) is a set of parameter
variables, andpre(a), add(a), anddel(a) are sets of predicates fromP , instantiatedwith either parameter
variables or objects from Δ(a) ∪O. Just like predicates, an action schema with n parameter variables is
called an n-ary action schema. When all variables in an action schema are assigned objects, it becomes
an action.

2.1.2 Heuristic Functions

Automated planning systems utilize heuristic functions to efficiently guide the search process towards
goal states, enhancing computational efficiency by reducing the number of states evaluated. A heuristic
function, represented as h, provides an estimate h(s) of theminimum cost h∗(s) required to reach a goal
state from a given state s. The heuristic h is admissible if 0 ≤ h(s) ≤ h∗(s) for all states s, indicating
that h(s) = 0 when s is a goal state. When a heuristic function can be computed in polynomial time
and decreases the number of nodes explored by the planning algorithm, the computational effort is
considered worthwhile [10].

One of themost prominent techniques for developing heuristic functions is known as relaxation. In
a planning domainΣ = (S,A, γ), where S is the finite set of states,A is the finite set of actions, and γ(s, a)
is a transition functionmapping each state s and action a to a set of states, and with a planning problem
P = (Σ, s0, g), relaxation involves easing certain constraints that define states, actions, and plans. This
entails modifying limitations on when actions or plans can be applied, what goals they achieve, and

9

increasing the costs of actions and plans. This process results in a relaxed domainΣ′ = (S′,A′, γ′) and a
relaxed problemP ′ = (Σ′, s′0, g′), maintaining the property that for every solution π forP , there exists a
solution π′ forP ′ such that cost(π′) ≤ cost(π). By solving planning problems in Σ′ using an algorithm,
we can create a heuristic function for P as follows: for a given state s ∈ S, solve (Σ′, s, g′) and return
the cost of the solution. If the algorithm consistently identifies optimal solutions, the heuristic function
will be admissible [12].

Similar todomain representations, heuristic functions canbe either domain-specificordomain-independent.
Besides the optimal heuristic h∗, there exist other heuristics like the max-cost heuristic hmax [28], which
estimates the cost to reach the goal by considering the most expensive sub-goal, and the additive cost
heuristic hadd [28], which sums the costs of achieving all individual sub-goals. These alternative heuris-
tics will not be discussed further, as the focus of the later experiments is to model the optimal heuristic
h∗.

2.1.3 Fast Downward Planning System

The Fast Downward planning system is a classical planning system that utilizes heuristic forward search
and hierarchical problem decomposition. Beyond supporting STRIPS planning, it can handle arbitrary
formulae in operator preconditions and goal conditions. It also manages conditional and universally
quantified effects as well as derived predicates (axioms). Fast Downward is a heuristic progression plan-
ner that computes plans by performing heuristic searches in the space of world states that are reachable
from the initial state. The heuristic evaluator works in a hierarchical manner, solving planning tasks by
recursively breaking them down. Starting from the top-level goals, the algorithm delves deeper into the
causal graph until all remaining subproblems become basic graph search tasks. As shown in Figure 2.2
the planner addresses a planning task in three phases: translation, knowledge compilation, and search
[1].

Figure 2.2: The three phases of Fast Downward’s execution [1]

The translation phase takes planning domain and problem files in PDDL format and converts them
into anonbinary format,which ismore suitable forhierarchical planning. It alsonormalizes andgrounds

10

axioms and operators. Most importantly, it uses invariant synthesis methods to find groups of related
propositions that can be encoded as a single multi-valued variable. The output of this phase is a multi-
valued planning task [1].

During the knowledge compilation phase, four essential data structures are created for the search
process. Domain transition graphs illustrate how and when state variables can change their values. The
causal graph depicts the hierarchical relationships between different state variables. The successor gen-
erator identifies which operators can be applied in a given state and lastly the axiom evaluator efficiently
computes the values of derived variables [1].

In the search phase search algorithms for the actual planning are implemented. These search algo-
rithms can use heuristic functions to enhance the planning process. When the planner was first released
in 2006, it included two search algorithms that used heuristic evaluation functions. The first was the
greedy best-first search algorithm using the causal graph heuristic. This heuristic estimates the cost of
reaching a goal froma given search state by solving several subproblemsof the planning task derived from
the causal graph [1]. The secondwas themultiheuristic best-first search, a variant of the greedy best-first
search that combined the causal graph heuristic with the FF heuristic a heuristic from the Hoffmanns’s
planning algorithm [29], improving the search efficiency by using multiple heuristics.

The Fast Downward planner is designed to allow the incorporation of new and custom search algo-
rithms and heuristic functions. Over the years, more algorithms and heuristics have been integrated.
Table 2.1 provides an overview of the currently available search algorithms and heuristic functions in
the Fast Downward planner. It is important to note that not all search algorithms are heuristic-based,
so not all of them can be combined with the listed heuristic functions.

Fast Downward Planning System

Search
Algorithms

A* search (eager), Eager best-first search, Greedy search (eager), Eager weighted A* search, Lazy enforced
hill-climbing, Iterated search, Lazy best-first search, Greedy search (lazy), (Weighted) A* search (lazy)

Heuristics Additive heuristic, Blind heuristic, Context-enhanced additive heuristic, Additive Cartesian CEGAR heuristic,
Causal graph heuristic, FF heuristic, Goal count heuristic, hm heuristic, Max heuristic, Landmark cost
partitioning heuristic, Landmark sum heuristic, Landmark-cut heuristic, Merge-and-shrink heuristic,
Operator-counting heuristic

Table 2.1: Search algorithms and heuristics used in the Fast Downward Planning System [7][8]

The Fast Downward planning system has demonstrated great impact within the field of automated
planning, notably winning the classical track of the 4th International Planning Competition at ICAPS
2004. Over the years, numerous planners have been developed that extend or build upon the FastDown-
ward framework, many of which have received accolades themselves. For instance, the LAMA planner
[13] enhances Fast Downward by employing finite-domain variables and multi-heuristic search, show-
casing its robust capabilities. Delfi [30], a machine learning-based planner, selects from a portfolio of
cost-optimal planners derived from Fast Downward, winning the optimal track at the 2018 Interna-
tional Planning Competition. Additionally, the merge-and-shrink framework [31] was integrated into

11

FastDownward to compute abstraction heuristics for large transition systems, further expanding its util-
ity. The Scorpion planning system [32] is another notable extension, incorporating additional search
algorithms and utilities. The 2023 version of Scorpion was recognized as the runner-up in the optimal
track at the 2023 International Planning Competition.

2.1.3.1 Fast ForwardHeuristic

The Fast Forward (FF) heuristic hff [29] is a prominent heuristic used in planning algorithms, including
the FastDownwardplanner. The primary idea behind the FFheuristic is to estimate the cost to reach the
goal from a given state by simplifying the problem, specifically by ignoring the delete effects of actions.
In other words, it assumes that once an action adds a fact to the state, that fact remains true, regardless
of any subsequent actions that might delete it. This simplification turns the planning problem into a
relaxed version, making it easier to solve. The FF heuristic operates by constructing a relaxed planning
graph, which is a layered graph representing the sequence of actions and states without considering the
delete effects. From this graph, the heuristic extracts a relaxed plan, which serves as an approximation of
the optimal solution. The length of this relaxed plan is used as the heuristic estimate of the cost to reach
the goal from the current state.

By ignoring delete effects, the heuristic can sometimes overestimate the feasibility of reaching the goal.
This can lead to suboptimal plans or longer computation times in cases where the relaxed plan signifi-
cantly diverges from a real executable plan. Additionally, in domains with many negative interactions
between actions, the heuristic might be less accurate, potentially misleading the planner [29]. Despite
these limitations, the FF heuristic has proven to be robust across a wide range of planning domains,
contributing to its popularity and widespread use in automated planning.

Because it is relatively quick in generating estimates, the FF heuristic allows planners to efficiently ex-
plore and navigate large state spaces. Its balance between accuracy and computational efficiency makes
it a valuable heuristic for planners [1]. Consequently, not only does the Fast Downward planner incor-
porate the FF heuristic, but other planners also utilize it. Examples of such planners include LAMA
[13], Metric-FF [14], and Marvin [33]. These planners leverage the FF heuristic to guide their search
processes effectively, benefiting from its ability to provide quick and informative estimates.

2.2 Graph Learning and GraphNeural Networks

The representation of data in the form of graphs has gained significant popularity in recent years due to
its flexible structure and ability to capture complex relationships and interactions. Graph data is utilized
in various domains, including themodeling ofmolecular structures in bioinformatics [34], representing
connections in social networks [35], and product recommendations in e-commerce systems [36].

12

Graph-structured data may consist of an arbitrary number of unordered nodes, each of which can
have an arbitrary number of edges (connections) between them. Capturing information and relation-
ships within these structures is challenging because most deep learning algorithms are designed to cap-
ture patterns in Euclidean data. Additionally, one core assumption of many deep learning algorithms—
the independence of instances—does not hold for graphs, as the instances (nodes) can be linked with
each other by edges [37]. GraphNeural Networks (GNNs) aim to address these challenges to be able to
capture complex relationships in graph-structured data. The most common graph analytics tasks that
GNNs tackle are:

• Node Classification: Aims to learn a model that, given a graph and a set of labels, predicts the
labels of the unlabeled nodes in the graph.

• Link Prediction: Aims to learn a model that can predict unobserved links (edges) in a graph.

• Graph Classification: Operates at the level of the entire graph and aims to learn a model that,
based on a given dataset of graphs, can predict the labels of unseen test graphs [38].

Figure 2.3: Node Level Prediction (left), Edge Level Prediction (middle) and Graph Level Prediction (right) [2]

The concept of graph neural networks was first introduced by Gori et al. [39], where node represen-
tations are learned by exchanging information with neighboring nodes iteratively until a stable equilib-
rium is reached. This initial graph neural network can be classified as a Graph Recurrent Neural Net-
work (GRNN). GRNNs apply the same set of parameters recurrently over nodes in a graph to extract
high-level node representations, and they recurrently exchange information with their neighbors until
a stable equilibrium is reached [37]. GRNNs are capable of handling various graph types, including
acyclic, cyclic, directed, and undirected graphs [40].

With the increasing success of convolutional neural networks (CNNs) in the computer vision do-
main, the concept of convolution has been applied to graph data, leading to the development of graph
convolutional neural networks (GCNNs). The literature distinguishes two main classes of GCNNs:
spectral-based GCNNs and spatial-based GCNNs.

Spectral-based GCNNs have their foundation in graph signal processing [41] [42]. These models
operate by performing convolutions in the spectral domain, as the convolution between two signals

13

can be achieved through the multiplication of their Fourier transforms. However, spectral-based GC-
NNs have some limitations. They can be applied exclusively to undirected graphs, generalize poorly to
new graphs, and face scalability issues due to their reliance on the eigen-decomposition of the Laplacian
matrix, whose dimensions increase with the number of nodes within the graph. Therefore, spectral
GCNNs are not suitable for large-scale graphs [37].

Spatial GCNNs attempt to extend the conventional convolutional operator of CNNs to work with
graph data. They use an approach inherited fromGRNNs, aggregating information from neighboring
nodes to update the current state of the nodes. Because of this exchange of information between nodes
(messages), they are often referred to as message-passing neural networks (MPNNs). Spatial GCNNs
aremore flexible than spectral-basedGCNNs, capable of handling heterogeneous graph types as inputs,
and they scale better than spectral-based GCNNs [37]. Spatial based GCNNs are described in more
detail in subsection 2.2.1.

Apart from GRNNs and GCNNs advanced forms such as graph autoencoders, spatial-temporal
graph neural networks, and Graph Attention Networks have emerged. Graph autoencoders learn ef-
ficient representations of graph data [43], while spatial-temporal GNNs handle data that changes over
time and space, making them useful for tasks like traffic prediction [44]. Graph AttentionNetworks in-
troduce an attention mechanism, allowing the network to weigh the importance of different nodes and
edges, improving performance in various tasks. [45] These advancements demonstrate the versatility
and potential of GNNs in handling diverse and complex graph-based data.

2.2.1 Spatial based Graph Convolutional Neural Networks

Convolution is a specialized kind of linear operation which is used instead of matrix multiplication in
at least one layer when considering standard CNNs. In a convolution operation, a small matrix called
a filter or kernel slides over the input data (such as an image) to produce feature maps. This operation
allows CNNs to detect patterns such as edges, textures, and shapes [46].

Spatial-based methods define graph convolutions based on a node’s spatial relations, meaning they
update a central node’s representationby combining itwith the representations of its neighboringnodes.
The information from neighboring nodes is propagated along the edges of the graph, a concept shared
with GRNNs. However, the key difference is that GRNNs use shared parameters across all layers to
capture dynamic and sequential information in graphs, while spatial GCNNs utilize independent pa-
rameters at each layer to perform localized aggregation of node features based on the graph structure.
The neighborhood of a node can be extended through incremental construction of the architecture
[37]. A. Micheli proposed Neural Networks for Graphs (NN4G), the first work on spatial GCNNs
[47]. NN4G performs graph convolutions by directly summing up a node’s neighborhood informa-
tion and also applies residual and skip connections to retain information across layers. Consequently,

14

NN4G derives its next layer node states by Equation 2.1.

h(k)v = f

W(k)Txv +
k−1∑
i=1

∑
u∈N(v)

Θ(k)Th(k−1)
u

 (2.1)

In this equation, k represents the layer index and f(·) denotes an activation function. ThematricesW
and Θ are learnable model parameters. The term xv refers to the feature vector of node v, while h

(k−1)
u

is the hidden feature vector of node u from the previous layer. Note that h0v = 0.

To further expand on these concept, In 2017, Gilmer et al. introduced the concept of Message Pass-
ing Neural Networks (MPNNs) [48], which serve as a general framework for spatial-based GCNNs.
This approach treats graph convolutions as a message passing process, where information is transferred
directly from one node to another along edges. MPNNs perform K-step message passing iterations to
allow information to propagate further across the graph. The message passing function in an MPNN
is defined as:

h(k)v = Uk

h(k−1)
v ,

∑
u∈N(v)

Mk

(
h(k−1)
v , h(k−1)

u , xevu
) (2.2)

In this equation, Uk(·) andMk(·) are functions with learnable parameters. The variable h(k)v repre-
sents the hidden state of a node v in the k-th layer of the neural network, with the initial hidden state
h(0)v equal to the feature vector of node v, denoted as xv. The term xevu refers to the edge feature vector of
the edge (v, u). Figure 2.4 provides a graphical representation of how a single node aggregates messages
from its neighboring nodes in a MPNN.

Figure 2.4: Concept of message aggregation for a single node from its adjacent neighbor nodes [2]

After obtaining the hidden representations of each node, h(K)v can be used in twoways: it can be sent
to an output layer for node-level prediction tasks, or it can be passed to a readout function for graph-
level prediction tasks. The readout function creates a representation of the entire graphusing the hidden

15

representations of the nodes and is defined as

hG = R(h(K)v |v ∈ G), (2.3)

whereR(·) represents the readout function with learnable parameters [48]. MPNNs have been pro-
gressively extended tomanage edge attributes [48] and graph-level attributes [49]. These advancements
have led to their widespread adoption across various domains of graph data, including bioinformatics
[50, 51], combinatorial optimization [52, 53, 54], and recommender systems [36].

2.2.2 Relational GraphNeural Networks

ARelational GraphNeuralNetwork (RGNN) is a type ofGNN specifically designed formodeling rela-
tional data. It can be used for tasks such as entity classification (both graph and node classification) and
link prediction. RGNNs are intended for use on directed and labeled multi-graphs [3]. They are based
on the concept of message passing and can be seen as a specific example of the standard message passing
framework [48] introduced by Gilmer et al. and already described inmore detail in subsection 2.2.1. In
an RGNNmodel, the forward update calculation for an entity is represented by:

h(k+1)
v = f

∑
r∈R

∑
u∈N r

v

1
cv,r

W(k)
r h(k)u +W(k)

0 h(k)v

 (2.4)

Where f(·) represents the activation function, which introduces non-linearity into the model. The
termW denotes a matrix of learnable parameters, which are optimized during the training process. The
variable h(k)v refers to the hidden state of node v in the k-th layer of the neural network, with d(k) being
the dimensionality of this layer. The constant cv,r is a problem-specific normalization factor that can
either be learned during training or chosen in advance. Finally,N r

v indicates the set of neighbor indices
of node v under relation r ∈ R, which defines the relational structure of the graph [3]. The main dif-
ference of Equation 2.4 from the standard message passing equation is the inclusion of relation-specific
transformations that depend on the type and direction of an edge. This means that for each edge type
and direction, the model learns different weights in each layer. To ensure that the representation of a
node at layer k+1 also relies on the hidden state of the node from the previous layer k, and not just on the
states of neighboring nodes, a single self-connection is added to each node in the data. A neural network
layer update involves evaluating Equation 2.4 in parallel for every node in the graph. Multiple layers can
be stacked to capture dependencies across several relational steps. Figure 2.5 shows the computation of
a single node update in the RGNNmodel.

16

Figure 2.5: Diagram for computing the update of a single graph entity [3]

Since their publication, RGNN models have been applied in various domains. For instance, they
have been used to predict temporal relationships in clinical data [55]. Additionally, RGNN models
serve as encoders for topic modeling tasks [56], and are employed for event causality identification [9].
These applications demonstrate the versatility and effectiveness of RGNNmodels in handling complex
relational data across different fields.

2.2.3 Graph AttentionNetworks

In recent years attentionmechanisms have shown to be very effective in natural language processing and
computer vision. Therefore the attention mechanism has been adopted for GNNs to selectively focus
on key features and filter out irrelevant information. Traditional GNNs tend to treat all neighboring
nodes equally when aggregating and disseminating information, which can be problematic since real-
world graphs often contain noisy connections between unrelated nodes. This noise can result in less
effective node representations. To counter this, the Graph Attention Network (GAT)[45] introduces

17

an attention mechanism that helps the network learn which neighbors are more important.
The attention mechanism is inspired by the human visual system’s process of selectively focusing on

important details. It mimics human cognitive processes to highlight crucial parts of the data [57]. The
general formulation of attention mechanisms [58] can be expressed as:

Attention = f(g(X),X) (2.5)

In this equation, g(·) represents an attention function that identifies significant features, while f(·)
processes the input dataX to extract important information using g(·). The attention function g(·) con-
sists of twomain parts: an alignment function and a distribution function, with f(·) acting as aweighted
sum to produce the final attention value. Essentially, the attention mechanismmaps a sequence of keys
K to an attention distribution α based on queriesQ, with each key having a corresponding valueV [59].
The alignment function,which is crucial to the attentionmechanism, computes the attention alignment
score and is defined as:

scores = Sim(Q,K) (2.6)

Popular alignment functions include Cosine Similarity, Dot Product, Scaled Dot Product, Additive,
andConcat. Thedistribution function then transforms these attention scores into attention coefficients
α. This process can be described by:

α = Norm(scores) (2.7)

Here, Norm(·) refers to a distribution function, with the softmax function being the most com-
monly used method [58].

GATs use local attention to assign different weights to each neighboring node’s representation [45].
By using normalized attention coefficients as relative weights, attention-based GNNs can aggregate and
update node representations through a weighted sum function, which is then passed to subsequent lay-
ers [60]. In terms of node representation, let hkv and hku denote the representations of nodes v andu in the
kth layer, with h0v = x0v representing the input features of node v. Initially, a shared linear transformation
using a weight matrix Θk is applied to each node in the graph. This transformation is followed by an
alignment function that computes the attention alignment score, indicating the significance of neigh-
boring nodes. The attention scores are then converted into attention coefficients through a distribution
function, allowing for comparison across different nodes. The node representations in the graph are up-
dated and aggregated using a weighted sum function. The local attention layer can be mathematically
expressed as follows:

hkv = Θkxkv, hku = Θkxku (2.8)

18

scoreskvu = Sim(hkv, hku) (2.9)

αkvu = Norm(scoresk) (2.10)

hk+1
v = σ

(∑
u∈v

αkvuhku

)
(2.11)

In these equations, σ is the non-linear activation function, and Γv refers to the local neighborhood of
node v, which corresponds to the first-order neighbors in GAT. Sim(·) denotes the alignment function,
and Norm(·) represents the distribution functions.

2.2.4 Relational Graph AttentionNetworks

Relational Graph Attention Networks (RGAT) [21] are an extension of traditional graph attention
models that include relational data. These models operate on graph structures using a self-attention
mechanism that takes into account both the local relational structure and the node features. This ap-
proach allows for dynamically assigning importance to nodes and their properties under specific rela-
tions for different nodes in the graph, making RGATs applicable to a broader range of problems. Their
spectral counterpart is the RGNN described in subsection 2.2.2. RGATs are build on the design of the
GAT layer [45] and extend it to handle relational settings using concepts from RGNNs [3].

In an RGNN each relation provides distinct information. The update rule of the RGNN (Equa-
tion 2.4) does this by giving each node a unique intermediate representation under relation r. RGATs
assume that the attention coefficient between two nodes depends only on the features of those nodes,
up to a neighborhood-level normalization. Given linear transformationsW(r), the logits E(r)v,u for each
relation r are independent and defined as [21]:

E(r)v,u = a
(
g(r)v , g(r)u

)
(2.12)

Logits are the raw, unnormalized scores that themodel produces before applying any activation func-
tion. In Equation 2.12 g(r)v and g(r)u are the distinct intermediate representations of the nodes v and u
under the relation r and a is the attention mechanism. In RGAT different forms of attention mech-
anisms can be used. The additive attention logits [45] are computed by summing the query and key
features, followed by a LeakyReLU activation. Thismethod enhances the interaction between the node
features in an additive manner. On the other hand, the multiplicative attention logits [61] use a simple
multiplication of the query and key scalar values to determine the interaction strength between nodes.

Busbridge et al. introduced two types of RGATs: Within-Relational Graph Attention (WIRGAT)

19

and Across-Relational Graph Attention (ARGAT) [21]. WIRGAT operates on the assumption that
the significance of relations is a global feature of the graph. It achieves this by assigning an independent
probability distribution for each relation r over the nodes neighboring node v. Conversely, ARGAT
operates under the assumption that the significance of relations is a local feature of the graph. It does so
byusing a single probability distribution across thedifferent representations g(r)u for nodesuneighboring
node v. In Equation 2.13, the attention coefficients α(r)v,u are defined for the WIRGATmodel under the
relation r. Similarly, Equation 2.14 defines these coefficients for the ARGATmodel.

α(r)v,u = softmaxu
(
E(r)v,u

)
=

exp
(
E(r)v,u

)
∑

k∈N (r)
v

exp
(
E(r)v,k

) , ∀i, r :
∑

u∈N (r)
v

α(r)v,u = 1. (2.13)

α(r)v,u = softmaxu,r
(
E(r)v,u

)
=

exp
(
E(r)v,j

)
∑

r′∈R
∑

k∈N (r′)
v

exp
(
E(r

′)
v,k

) , ∀v :
∑
r∈R

∑
u∈N (r)

v

α(r)v,u = 1. (2.14)

WhereE(r)v,u is the logit described in Equation 2.12 andN (r)
v is the set of neighboring indices of node v

under relation r. By combining these attention mechanisms from either the ARGAT or theWIRGAT
with the neighborhood aggregation step of the RGNN the following equation for the update of the
hidden state h of the node v is obtained [21]:

h′v = σ

∑
r∈R

∑
u∈N (r)

v

α(r)v,ug(r)u

 ∈ RN×F′ , (2.15)

where σ represents an optional non-linear activation function, α(r)v,u are the attention coefficients from
equationEquation2.13orEquation2.14, andg(r)u are the intermediate representations of nodesuunder
relation r.

Busbridge et al. evaluated the WIRGAT and ARGAT models using both additive and multiplica-
tive attention for transductive and inductive tasks. For the transductive tasks, they used the AIFB and
MUTAG datasets [3] from the Resource Description Framework. For the inductive task, they used the
molecular dataset Tox21 [62]. The performance of RGATs on the tested datasets varied, depending
largely on the type of task. For relational inductive tasks, such as graph classification, the multiplicative
ARGAT model was more effective. In contrast, for transductive relational tasks like knowledge base
completion, especially when node features were absent, spectral methods like RGNNs or theWeisfeiler-
Lehman graph kernels performed better then the RGATmodels. The study concluded that WIRGAT
paired with an additive logit mechanism was slightly superior to ARGAT in transductive tasks. Mean-
while, ARGAT combinedwith amultiplicative logit mechanism performedmarginally better on induc-

20

tive tasks. Importantly, the study did not find any scenariowhere any version ofRGATconsistently out-
performed RGNN. Therefore, it is advised to initially test the training set performance using RGNN
before considering the use of RGAT [21].

2.2.5 Expressiveness

Machine learning problems can be viewed as learning a mapping f∗ from the feature space X to the
target space Y . Typically, f∗ is approximated using a model fθ by optimizing parameters θ. Since f∗ is
usually unknown beforehand, the aim is for fθ to cover a wide range of possible functions f∗. This range
is known as the expressive power of the model and serves as a key measure of its potential [63]. Neural
networks demonstrate significant expressive power, as they can approximate all continuous functions
[64].

GNNs extend this concept by adding the inductive bias of permutation invariance [49], which en-
ables them to propagate and aggregate information through the graph’s topology [65]. Unlike feed-
forward neural networks, whose expressive power is limited by their width, GNNs’ expressive power de-
pends not only on their width but also on their ability to utilize graph topology formessage propagation
and node updates. As a result, the expressiveness of GNNs is determined by their feature embedding
ability Figure 2.6 (a), which ensures nodes with different features have distinct embeddings, and their
topology representation ability Figure 2.6 (b), which ensures nodes in different topological positions
have distinct embeddings. Combining the two abilities, describes the overall expressive power of the
GNN Figure 2.6 (c), with the topology representation ability beeing the primary factor in limiting the
expressiveness of GNNs. [4].

Determining whether two graphs share the same structure involves solving the graph isomorphism
problem, which examines if two graphs are topologically equivalent. This problem is notably challeng-
ing and no algorithms for solving it in polynomial time are known [66]. The Weisfeiler-Lehman (WL)
test [67] [68] is a widely usedmethod to address graph isomorphism. TheWL test uses a graph coloring
approach to assign labels to each node. Initially, each node receives a unique color label. In each itera-
tion, the colors of a node and its neighbors are combined into amultiset, which is then hashed into a new
unique color, updating the node’s label. This iterative process continues until the node colors no longer
change, producing a color distribution histogram for the graph. By comparing these histograms, the
WL test can identify if two graphs are isomorphic. While the WL test is efficient for many graphs [69],
it’s important to note that the same color distributions can only suggest but not definitively confirm
graph isomorphism [4].

MPNNs work in a way that is comparable to the WL algorithm. Instead of using natural numbers
for node colors, MPNNs use real vectors known as node embeddings. These embeddings are generated
throughparametric aggregation and combination functions,making them learnable. As a result, GNNs
have an expressive power on par with the WL test [70] [71]. This means that if the WL test cannot

21

differentiate between two graphs, a GNNwill also be unable to distinguish between them.

Figure 2.6: Demonstrating the expressive capabilities of GNNs. a) GNNs share the same feature embedding ability as NNs, mapping
examples from the feature spaceX to the target spaceY via f b) GNNs’ capability to represent topology involves mapping examples

from the feature space to the target space using f̂, while maintaining the original topology between examples. c) The expressive power
of GNNs is a combination of their feature embedding and topology representation abilities, measured by the size of the intersection of
F andF ′ whenX is random.[4]

To apply the concept of expressiveness in the context of MPNNs in automated planning, we can
leverage the relationship between theWL algorithm and description logic. In planning, general policies
and heuristic functions formany classical benchmark domains can be represented using features derived
fromdomainpredicateswith a description logic grammar [72] [73]. TheC2 fragment of first-order logic
allows formulas with only two variables but includes counting quantifiers. This fragment is connected
to the WL algorithm because two nodes in a graph are classified the same by the WL test if they satisfy
the same unary C2 formulas [74] [75]. This means that general policies and heuristic functions can be
learned from planning domain predicates usingMPNNs if these predicates can be expressed in terms of
C2 features.For a better understanding of planning domains expressed as C2 features let us consider the
following two examples [76] for a blocksworld and rovers domain:

In Blocksworld problems, the objective is to stack a set of blocks in a specific arrangement. These
problems are characterized by goals of the formON(x, y), where x and y represent blocks. We can define
these problems using the following features:

22

α = ∃xy(ONG(x, y) ∧ ¬ON(x, y)),

L = ∃xy(ONG(x, y) ∧ (¬CLEAR(y) ∨ ¬HOLDING(x))),

Xk = ∃xy(ONG(x, y) ∧ ηk(x) ∧ ¬CONN2
N[ON2

G,ON](x)),

Yk = ∃xy(ONG(x, y) ∧ ηk(y) ∧ ¬CONN1
N[ON1

G,ON](y))

Here, L indicates whether x is not being held or cannot be placed on y. The featureXk (and similarly
Yk) signifies that there are k blocks above x (or y) and that x (or y) is not above y (or x). These features
only involve up to two variables (x and y) and the counting quantifier k, therefore fitting into the C2

category. Consequently, a MPNN can be used to learn a policy for this problem domain.
For Rovers problems, multiple rovers with different capabilities (such as soil analysis) need to carry

out experiments and report back to the lander. A simpler scenario involves sampling soil at a specific
location. These problems can be characterized by the following features:

P0(r, x) = AT-SOIL-SAMPLE(x),

Pk(r, x) = ∃y(CAN-TRAVERSE(r, x, y) ∧ Pk−1(r, y)),

SPk(r, x) = AT(r, x) ∧ Pk(r, x) ∧ ¬Pk−1(r, x).

To find the nearest capable rover for soil sampling Rk, we need features to determine if the rover is
full Fk, if the soil is not yet sampled S, and if the goal is unmet α. Boolean features Lk are also needed
to indicate the distance from the soil or rover with the sample to a location where data can be sent to
the lander. The formulas SPk(r, x) define the features Rk. Since these formulas use three variables, the
features used to decompose V∗ do not fit into C2. Hence, it is challenging to use a MPNN to learn a
policy in the Rovers domain.

There exist some approaches to overcome the limitations of C2. One method is to use k-GNNs,
specifically with k = 3, where groups of three objects are embedded instead of individual ones [70].
3-GNNs, or 3rd-order Graph Neural Networks, extend the typical GNN architecture by considering
triplets of nodes rather than pairs or individual nodes. This means they can capture more complex rela-
tionships in the data. It has been shown that 3-GNNs have the expressive power of C3 logic, unlike the
C2 power of 1- and 2-GNNs [77]. However, 3-GNNs do not scale well because they need a cubic num-
ber of embeddings and quartic time for message passing. To adress this issue Ståhlberg et al. proposed
an alternative, parameterized version of Relational GNNs R-GNNsthat operates in quadratic time for
message passing while still capturing C3 features [78].

2.2.6 Masked Attention for Graphs

As presented in the previous sectionsGNNsmaking use of different variants of themessage passing algo-
rithms are predominantly used for graph learning due to their adaptability, speed, and effective perfor-

23

mance. However, creating powerful and versatileGNNs requires substantial research and often involves
the development of complex and carefully-selectedmessage passing operators. Despite their strengths, as
discussed in section subsection 2.2.5, message passingGNNs have limitations in terms of expressiveness.
Thus, this section introducesMasked Attention for Graphs (MAG) as an alternative approach to graph
learning, which does not rely on message passing layers but rather uses a classical attention mechanism
with masking to create customized attention patterns.

MAG [5] treats graph learning as a set-based learning task, where the graph structure (i.e., adjacency
matrix) is maintained by masking the pairwise attention weight matrix, focusing only on node or edge
features. AsMAG is based on the idea of learning on sets, it is inspired by the SetTransformer. SetTrans-
formers [79] are attention-based architectures with encoder-decoder structures, designed for learning
on sets. They utilize scaled dot-product and multihead attention mechanisms [61] to formMultihead
Attention Blocks (MABs), Self Attention Blocks (SABs), and Pooling by Multihead Attention (PMA)
blocks. The original Set Transformer architecture [79] is described as ST(X) = Decoder(Encoder(X))
with:

MAB(X,Y) = H+ Linearφ(H)

H = X+Multihead(X,Y,Y)

SAB(X) = MAB(X,X)

Encoder(X) = SABn(X)

PMAk(Z) = MAB(Sk,Linearφ(Z))

Decoder(Z) = Linearφ(SABn(PMAk(Z)))

(2.16)

assuming that a functionMultihead(Q, K, V) [61] for the query, key, and value matrices, is available.
The term Linearφ refers to a linear layer followed by an activation function φ. The notation SABn(·)
signifies n successive applications of a SAB, while Sk denotes a tensor containing k learnable seed vectors,
which are initialized randomly (PMAk produces k vectors).

MAG extends the set transformer by applying a mask to the pairwise attention weight matrix accord-
ing to node or edge adjacency information. When the node adjacencymatrix is utilized, the information
propagation relies on the node featurematrixX, and this approach is calledMAGN.On the other hand,
when the edge adjacency matrix and the edge feature matrix E are used together, the approach is known
as MAGE. In both approaches, the MAB and SAB blocks of the set transformer are substituted with
theirmasked counterparts, known asMSAB. This involves providing the new blocks with amask tensor
of shape B×Nd×Nd forMAGN and B×Ne×Ne forMAGE, where B represents the batch size. For

24

a node u ∈ V, the node-to-node propagation mechanism inMSAB is defined as follows [5]:

MSABu(X,A) =
h∑
j=1

Wj
O

(
Wj

VXNu

)
σ
((

Wj
KXNu

)⊤ (
Wj

Qxu
))

(2.17)

where the parameter h describes the number of attention heads. X denotes the input feature matrix,
and xu is the row associated with node u. XNu refers to the neighborhood of node u ∈ V as specified
by the adjacency matrix, thereby focusing attention on a subset ofX. The matricesWj

O,W
j
V,W

j
K, and

Wj
Q are the weight matrices for outputs, values, keys, and queries, respectively. LastlyA is the adjacency

matrix and σ is the softmax function. In a basic implementation, masking involves replacing the values
of the scaled dot product inside the softmax function with negative infinity (or a very large negative
number for stability) before applying the softmax function. The correct mask for each batch is unique
and must be computed dynamically. For MAGN, the mask represents connections of adjacent nodes
in is therefore equal to the node adjacency matrix. For MAGE, the mask is applied to the set of edges,
permitting only edges that share a common node. Although this computation is more complex than for
theMAGNmask, both types ofmasks can be efficiently computed using tensor operations. A complete
MAGmodel is structuredwith an encoderwhereMSAB and SABblocks are alternated as needed, along
with aPMA-module decoder. Thedecoder is onlynecessary for graph-level tasks, as it functions similarly
to the readout fucntion in GNNs. For node-level tasks, no decoder is required. Figure 2.7 displays a
possible MAG architecture for a graph level task using either the MAGE or MAGN approach. MAG
can utilize either layer or batch normalization and can optionally include MLPs after each multihead
attention block [5].

Figure 2.7: The Masked Attention for Graphs (MAG) architecture. An essential component is deciding whether to process the node
features (MAGN) or the edge features (MAGE) and applying the correct masking strategy. Standard self‐attention blocks (S) can be
interchanged with masked blocks (M) as required, here a SMSM configuration is shown. The decoder is required only for tasks at the
graph level. [5]

25

MAG, despite its straightforward design, consistently outperforms traditional message-passing base-
lines and more intricate Transformer-based methods in various graph benchmarks. In the study by
Buterez et al. [5] out of the MAG approaches, MAGN delivered the best performance on node-level
tasks, while MAGE excelled in graph-level and long-range tasks. Nevertheless, MAG has certain lim-
itations. The implementation relies on either PyTorch’s [80] or xformers’ [81] native flash attention,
which users can choose between. Although both flash attentionmethods are memory-efficient, they do
not support custom attentionmasks. As a result, masks need to be generated during training, which can
be done efficiently but involves squaring the number of nodes or edges as the mask are of dimensions
(Nd,Nd) for nodes and (Ne,Ne) for edges. Additionally, regardless of whether PyTorch or xformers is
used, the mask tensor must be replicated for each attention head, which can create a bottleneck when
replication occurs in the batch dimension [5].

Overall, MAG represents an innovative and promising approach to graph learning that overcomes
the expressiveness limitations of message-passing GNNs. However, its implementation is not yet fully
optimized. Therefore, when comparing MAG to message-passing GNNs, these considerations should
still be taken into account.

2.2.7 Domain Adaptation

This sectiondelves into the challenge of domain adaptation inGNNs. Despite the strong representation
capabilities of GNNs, like other machine learning models, they often struggle with effectiveness and
tend to be overly confident when the test data distribution significantly differs from the training data
distribution [38].

Domain adaptation addresses the out-of-distribution (OOD) problem between a source and a target
domain. In graph learning, OOD scenarios occur when the model encounters graph instances that are
substantially different from those seen during training [82]. OOD generalization [83] aims to improve
the model’s accuracy on instances that deviate from the training data, enabling reliable predictions even
on novel, unseen graph instances. Distribution shifts generally include attributive shifts and structural
shifts. Attributive shifts pertain to changes in the distribution of node attributes, which can arise from
different environments or backgrounds. Structural shifts refer to variations in adjacency matrices due
to changes in connectivity or graph size [38].

One straightforward method to address the OOD issue and achieve domain adaptation is parameter
adaptation. Parameter adaptation, particularly through simple retraining or fine-tuning, involves lever-
aging a GNN pre-trained on source domain data and further training it on target domain data. This
method allows the model to retain useful knowledge from the source domain while adjusting its param-
eters to capture the specific characteristics of the target domain. Fine-tuning is especially effective when
there is a reasonable amount of labeled data in the target domain, as it enables the GNN to refine its
representations and improve performance on target-specific tasks [84].

26

Another approach is instance re-weighting, which addresses domain adaptation by adjusting the in-
fluence of source domain instances based on their relevance to the target domain [85]. This involves
assigning weights to nodes or edges in the source domain to align their distribution more closely with
that of the target domain. Techniques such as Importance Weighting [86] and Kernel MeanMatching
[87] ensure that the training process emphasizes source instances that are more representative of the tar-
get domain. By doing so, instance re-weighting enhances the GNN’s ability to generalize to the target
domain, thus improving its robustness and adaptability in diverse environments.

Adversarial learning is another strategy for handling OOD scenarios. By training the model with
adversarial examples—inputs intentionally crafted to challenge its predictions—themodel learns to rec-
ognize and manage unexpected or unfamiliar data distributions. Adversarial learning has been widely
adopted for OOD generalization [88] to reduce domain discrepancy, and it naturally extends to graph
data. These approaches use adversarial learning to generate effective perturbations that enhance gener-
alization. Some works also introduce a domain classifier trained adversarially to improve the invariance
of graph representations across different domains. For instance, DEAL [88] applies adversarial pertur-
bations to both node attributes and features to adapt source graphs to the target domain.

Subgraph-basedmethods [89] assume that each graph is composed of a crucial part and a non-crucial
part, derived from semantic and environmental information, respectively. To identify subgraphswith es-
sential knowledge, these approaches typically employ causal inference and invariant theory for effective
graph representation learning. Causal inference in subgraph-based methods identifies robust, causally
relevant subgraph patterns by distinguishing cause-and-effect relationships within the graph. This en-
ables the model to focus on critical, invariant features that remain relevant even when the data distribu-
tion changes. Examples ofGNNsusing causal inference tomanage distribution shifts includeCAL [83],
which integrates graph representations into the structural causal graph anduses an attentionmechanism
and representation disentanglement to select causal patterns, and StableGNN [90], which uses a differ-
entiable graph pooling operator for subgraph extraction, optimized with a distinguishing regularizer to
reduce spurious correlations. Invariant theory aims to extend empirical risk minimization to invariant
risk minimization to increase robustness to distribution shifts. For example, SizeShiftReg [91] simu-
lates size shifts using graph coarsening and proposes a simple regularization loss for consistency learning
after coarsening, while GIL [92] learns a mask matrix for subgraph generation and then enforces model
invariance to environment inference using an invariance regularizer.

In conclusion, addressing domain adaptation in graph neural networks is crucial due to the chal-
lenges posed by out-of-distribution data. Several approaches exist beyond those discussed in this section.
The approaches presented here—parameter adaptation, instance re-weighting, adversarial learning, and
subgraph-based methods—offer promising solutions. Each focuses on enhancing the model’s ability
to generalize to new, unseen data by employing various techniques to manage distribution shifts. By
improving the robustness and adaptability of GNNs, these methods contribute to more reliable and

27

accurate predictions in diverse and dynamic environments.

2.3 Graphs Optimised for Search Evaluation

Goose (Graphs Optimized for Search Evaluation) is a learning-based framework for classical planning.
It was first introduced byD. Z. Chen, S. Thiébaux, and F. Trevizan in [6] and further extended by them
in [18]. Goose effectively represents planning tasks using various graph structures. By leveraging these
graph representations, a GNN is employed to generate heuristic functions that facilitate the resolution
of planning problems. GNNs are used because they exhibit great generalization potential; once trained,
they offer outputs for any graph regardless of size or structure. Goose is specifically designed for in-
tegration as a custom heuristic within the Fast Downward planning system. Figure 2.8 illustrates the
interaction between Goose and the Fast Downward planner for solving a planning problem.

Figure 2.8: Solving a planning problem with Goose and the Fast Downward planning system

Goose can learn both domain-dependent and domain-independent heuristics. Domain-dependent
heuristics are tailored specifically to a particular problem domain, meaning that the GNN was trained
onproblems from the same domain it is applied to. Domain-independent heuristics are general-purpose
strategies that can be applied across various problem domains without any customization, meaning that
the GNN is trained on problems from various domains and not only on those it is applied to. Goose
defines novel grounded and lifted graph representations of planning tasks and presents the first method
for learning domain-independent heuristics with only the lifted representation of a planning task, while
also been optimized for runtime with the use of GPU batch evaluation [6]. In addition to heuristics
based onGNN, the 2024 extensionofGoose calledWL-Goose [18] offers an approach to build heuristic
functions based on graph kernels. WL-Goose introduces another lifted graph representation. Based
on this representation and using the Weisfeiler Leman (WL) algorithm, features are generated that are
used with classical machine learning methods (SVMs and Gaussian Processes) to generate heuristics.
WL-Goose focuses on learning domain-specific heuristics and demonstrates that the learned heuristics
outperform current state-of-the-art heuristics while being faster and using fewer parameters.

28

2.3.1 Graphs of GOOSE

Goose offers 4 different graph representations. Two grounded graph representations and two lifted
graph representations. Grounded graph representations, also known as propositional or instantiated
representations, explicitly specify all variables, actions, and states in the planning problem. This de-
tailed representation enumerates every possible state and action, leading to large graph sizes, especially
for problems with many variables and objects. While grounded representations provide a thorough
description, they can be computationally expensive due to their size, causing performance issues in plan-
ning algorithms [93]. For example, in a logistics planning problem, a grounded representation would
list all possible locations for each package and truck and every potential action.

The first grounded representation available in Goose is the STRIPS Learning Graph (SLG) [6]. It
is based on a STRIPS problem 〈P,A, s0,G〉, already described in more detail in subsubsection 2.1.1.1,
and is defined as the graph 〈V,E,X〉with:

• V = A ∪ P,

• E = Epre ∪ Eadd ∪ Edel where for ι ∈ {pre, add, del},

Eι = {(a, p)ι | p ∈ ι(a), a ∈ A},

• X : V → R3 defined by u 7→ [u ∈ P; u ∈ s0; u ∈ G].

In this representation all possible action and object combinations and all possible propositions be-
come a node. Edges with different labels define the preconditions, add effects and delete effects of the
actions. In Figure 2.9 (a), this concept of edge labels is shown by the yellow (preconditions), green (add
effects), and red (delete effects) colored edges. The propositions nodes are assigned different node fea-
tures depending if they are part of the goal (green nodes) or not (blue nodes). By allowing for edge labels,
only one node for each proposition is required to encode the semantics of action effects. Additionally,
three-dimensional node features are sufficient for encoding whether a node corresponds to an action or
proposition, and in the latter case, whether it is true in the initial state and present in the goal state [6].

The second grounded representation is the FDR Learning Graph (FLG) [6], which is based on an
FDR problem 〈V,A, s0, s⋆〉, already described in more detail in subsubsection 2.1.1.2. There already
exists a graph representation called the FDR Problem Description Graph (PDG) [94] that can identify
symmetrical states during the search for FDR problems, but as this graph representation was not de-
signed for learning with GNNs, the FLG extends the PDG representation by adding node features and
edge labels. An FLG is defined as the graph 〈V,E,X〉with:

• V = V ∪
∪

v∈V Dv ∪ A

• E = Evar:val ∪ Epre ∪ Eeff with

29

Evar:val =
∪
v∈V

{(v, d)var:val | d ∈ Dv}

Epre =
∪
a∈A

{(d, a)pre | (v, d) ∈ pre(a)},

Eeff =
∪
a∈A

{(d, a)eff | (v, d) ∈ eff(a)},

• X : V → R5 defined by
u 7→ [u ∈ V; u ∈ A; val(u); true(u); goal(u)]where
val(u) = ∃v ∈ V, u ∈ Dv, true(u) = ∃v ∈ V, (v, u) ∈ s0, goal(u) = ∃v ∈ V, (v, u) ∈ s⋆

An FLG graph introduces the concepts of variable and value nodes. In Figure 2.9 (b) variable nodes
are represented by the grey nodes and facts are considered concrete values of these variables. The value
nodes are again assigned different node features depending wether we deal with an non goal value, un-
achieved or achieved goal value, represented by the different node colors in Figure 2.9 (b). In the FLG
representation, all actions and facts are depicted as nodes. Edges describe preconditions and positive
effects of actions and link the variable and value nodes. In contrast to the SLG representation the delete
effects of actions are not modeled in the FLG representation.

Figure 2.9: Representation of the fact (on b1 b2) as part of the goal in a blocksworld problem, shown as an SLG graph (a), FLG graph (b),
LLG graph (c), and ILG graph (d). The depicted graphs are all subgraphs focusing solely on the fact (on b1 b2). Complete graphs for a
planning problem are too large for a clear graphical representation.

30

The FLG representation is the only representation that uses the Fast Downward planner during the
graph generation phase, as the intermediate planner output from the translation phase facilitates the
representation of the planning problem as an FDR problem.

Lifted graph representations, also known as first-order or relational representations, describe a plan-
ning problem in a more abstract form using relations and quantifiers, without explicitly enumerat-
ing all possible states and actions. This compact representation avoids the combinatorial explosion of
grounded graphs, making it more scalable and flexible for large and complex problems [27]. In the lo-
gistics planning example, a lifted representation would describe generic actions like ”move any truck to
any location” or ”load any package onto any truck,” with specific instances instantiated during the plan-
ning process. The first lifted graph representation offered by Goose is the lifted learning graph (LLG)
[6]. It is based on a lifted problemΠ = 〈P,O,A, s0,G〉 already described in more detail in subsubsec-
tion 2.1.1.3 and is defined as the graphG = 〈V,E,X〉with:

• V = P ∪ O ∪N(A) ∪N(s0 ∪ G)with

N(s0 ∪ G) =
∪

p=P(o1,...,onp)∈s0∪G

{p, p1, . . . , pnp}

N(A) =
∪
a∈A

({a} ∪ {aδ | δ ∈ Δ(a)}) ∪
∪

f∈{pre,add,del}

∪
p=P(δ1,...,δnp)∈f(a)

{pa,f, pa,f,1, . . . , pa,f,np}

The nodes inN(s0 ∪ G) represent the state and goal, along with the ground arguments, shown
as green and yellow nodes in Figure 2.9 (c). N(A) includes all nodes associated with the action
schema, schema argument, predicate argument, and schema predicate nodes, depicted as red and
grey nodes in Figure 2.9 (c).

• E = Eν ∪ Eγ ∪
∪

f∈{pre,add,del} Ef where

Eν = {〈o,P〉ν | o ∈ O,P ∈ P} ∪ {〈a, aδ〉ν | δ ∈ Δ(a), a ∈ A}

Eγ =
∪

p=P(o1,...,onp)∈s0∪G

(
{〈p, pi〉γ | i ∈ [np]} ∪ {〈pi, oi〉γ | i ∈ [np]} ∪ {〈p,P〉γ}

)
Ef =

∪
p=P()∈f(a)

({〈P, pa,f〉f, 〈pa,f, a〉f}∪

∪
p=P(δ1,...,δnp)∈f(a),np≥1

(
{〈P, pa,f〉f} ∪ {〈pa,f, pa,f,i〉f, 〈pa,f,i, aδi〉f | i ∈ [np]}

)
)for f ∈ {pre, add, del}

Eγ represents the grounding edges, illustrated as blue edges in Figure 2.9 (c). These edges con-
nect nodes inP ,O, andN(s0 ∪ G) to depict propositions in the goal and those true in the state,
where predicates are instantiated with objects in the correct arguments.

∪
f∈{pre,add,del} Ef con-

nects nodes inP andN(A) to encode the semantics of action schemas in the graph, exemplified
by the green Eadd edges shown in Figure 2.9 (c). Finally, Eν connects objects to predicates and
schemas to their arguments, indicated by neutral gray edges in Figure 2.9 (c).

31

• X : V → R5+T defined by
u 7→ [u ∈ P; u ∈ O; u ∈ A; u ∈ s0; u ∈ G]‖IF(u)

where ‖ · ‖ denotes vector concatenation, IF(u) = IF(i) for u of the form pi or pa,f,i with f ∈
{pre, add, del}, and IF(u) =

−→0 otherwise. The function IF : N → RT is an index function
defined by a fixed, randomly chosen injective map fromN to the sphere {x ∈ RT | ‖x‖ = 1}.

The LLG graph can be devided into two subgraphs: the instance subgraph and the schema subgraph
which are connected by the predicate nodes. The instance subgraph encodes the instances specific in-
formation which includes the goal state, the current state of a plan, the objects and predicates. With the
objects and the predicates forming a fully connected graph between them. The schema subgraph, on
the other hand, represents the domain actions along with their preconditions and effects [6].

The second lifted representation is the instance learning graph (ILG) [18]. It is also based on a lifted
problemΠ = 〈P,O,A, s0,G〉 already described inmore detail in subsubsection 2.1.1.3 and is defined
as the graphG = 〈V,E, c, l〉with:

• V = O ∪ s0 ∪ G

• E =
∪

p=P(o1,...,onp)∈s0∪G{〈p, o1〉, . . . , 〈p, onp〉}

• c : V → ({ap, ug, ag} × P) ∪ {ob} defined by

u 7→

ob, if u ∈ O;

(ag,P), if u = P(o1, . . . , onp) ∈ s0 ∩ G;
(ap,P), if u = P(o1, . . . , onp) ∈ s0 \ G;
(ug,P), if u = P(o1, . . . , onp) ∈ G \ s0;

• l : E → Nwith 〈p, oi〉 7→ i.

An ILG features a node for each object and combines propositions that hold true in the initial state s0
and the goal conditionG. Propositions are connected to n object nodes that instantiate them, with edge
labels indicating the position of each object in the predicate’s argument list. Figure 2.9 (d) shows this
instantiation using the example of the proposition (on b1 b2) from ablocksworld problem. Node colors
indicate whether a node corresponds to an object (ob), a proposition true in s0 (ap), a proposition in the
goalG (ug), or both (ag), along with its corresponding predicate. Specifically, ug refers to an unachieved
goal, ag to an achieved goal, and ap to a non-goal proposition that is achieved. Note that ILGs do not
consider the transition system of the planning task, as they omit the concept of actions [18].

In the context of Figure 2.9, it is important not to misinterpret the size of the depicted subgraphs,
particularly the LLG representation, which appears to have the most nodes and edges. This larger size
is due to the need to include schema and predicate argument nodes for the lifted representation. When

32

considering the complete graph representation of a planning problem, thismore abstract representation
ultimately results in a smaller graph compared to the two grounded representations. In the grounded
SLG and FLG representations, all possible states and actions are instantiated from the start, leading to
larger graphs. Conversely, in the lifted representations, nodes are added progressively during the search
process, whereas in the grounded representations, only the types of the nodes change but their total
number remains fixed because everything is instantiated from the beginning. The ILG representations
are typically the most concise because they exclude the concept of actions entirely.

2.3.2 GNNof GOOSE

TheGNNcurrently utilized inGoose for representing the heuristic functions, is amessage-passingRela-
tionalGraphNeuralNetwork (RGNN).The implementation of themessage-passing algorithm follows
the method from Schlichtkrull et al. detailed in [3] and is explained in more detail in subsection 2.2.2.
The architecture of the RGNN used in Goose is depicted in Figure 2.10.

Figure 2.10: Architecture of the GNN used in Goose

The embedding layer initially performs a linear transformation of the node features to a higher di-
mension, differing from a ”classical” embedding layer which typically generates vector representations
of the nodes in the graph. The RGNN layer comprises one linear layer applied to the node features and
one linear convolutional layer per edge type and direction. These linear convolutional layers perform
the message passing. Subsequently, an aggregation function collects the passed messages and forwards
them to a ReLU activation function. The possible types of aggregation (e.g., sum, mean, max) and
the number of RGNN layers are hyperparameters of the GNN. Following the RGNN layers, a pooling
layer reduces the graph to an overall structure and features, enabling graph-level predictions. The type of
pooling is also a hyperparameter, with options including sum,mean, andmax. TheMulti-Layer Percep-
tron (MLP) layer consists of two linear layers with a ReLU activation function in between. The MLP
ensures that the final prediction is in the correct format and scale required for the heuristic function.

Table 2.2 provides an overview of the hyperparameters in the Goose neural networks. In the exper-
iments described in [6] a GNN with hyperparameter combination of 8 layers, 64 hidden units, sum
pooling method, and mean aggregation function was used. In contrast in the experiments comparing
Goose with the extensionWL-Goose a GNNwith hyperparameter combination of 4 layers, 64 hidden
units, sum pooling method, and mean aggregation function was used [18].

33

Table 2.2: Overview of Hyperparameters in the Goose Neural Networks

Hyperparameter Meaning Possible Values

pool Pooling function used by the pooling layer for
readout

sum, mean, max

nhidden Number of hidden units in the RGNN layers Integer values
nlayers Number of RGNN layers Integer values
aggr Aggregation method used in the message

passing
sum, mean, max

The RGNNs in Goose are trained using the ADAM optimizer [95], a batch size of 16, and a Mean
Squared Error (MSE) loss function. The learning rate is scheduled by extracting 25% of the training
data, starting with an initial learning rate of 0.001, and is reduced by a factor of 10 if the loss on this data
subset does not decrease over the last 10 epochs. Training is stoppedwhen the learning rate drops below
10−5.

TheRGNNs inGoose aim to estimate theheuristich∗, whichdescribes the cost of the remainingplan
and, if all actions have an equal cost of 1, also the length of the remaining plan. In terms of expressiveness,
MPNNs have some limitations regarding the prediction of the heuristic h∗. MPNNs are unable to
learn h∗ with the Goose graph representations and cannot learn a relative or absolute approximation of
h∗ across all planning problems [6]. However, MPNNs can approximate h∗ within certain subclasses
of planning tasks. These subclasses include tasks that belong to the C2 fragments of first-order logic
because, as already discussed in subsection 2.2.5, MPNNs can learn C2 features.

2.3.3 Results of GOOSE

2.3.3.1 Domain Dependent Results

Experiments were conducted using the dataset from the learning track of the 2023 International Plan-
ning Competition (IPC) [19]. All actions in the problem domains in the dataset have a unit cost. Each
domain featured instances categorized into easy, medium, and hard difficulties based on the number of
objects in each instance. In each domain, the training set contained up to 99 easy instances. The test
set consisted of 30 instances from each difficulty level — easy, medium, and hard — that were not part
of the training set. The models were trained domain dependent exclusively on easy data but were tested
across all difficulty levels [9].

GNNs with max and mean aggregation functions were used as heuristic functions, both using four
message-passing layers, 64 hidden dimension, and sum pooling function. For the WL-Goose models,
which incorporate theWL-algorithm and graph kernels, the regressionmodels consideredwere support
vector regressionwith the dot product kernel (SVR) and the radial basis function kernel (SVR∞), aswell
as Gaussian process regression (GPR) with the dot product kernel. Both the Goose and theWL-Goose
models use the ILG graph representation to represent the planning problems. EachGOOSEmodel and

34

SVRmodel underwent training and evaluation five times, withmean scores reported, whereas the GPR
model, due to its deterministic nature, was trained and evaluated only once [9].

To establish baseline heuristics, the study used the domain-independent heuristic hFF (subsubsec-
tion 2.1.3.1) andMuninn [76][96] another GNN architectur for planning, which was adapted to learn
heuristics for use in Greedy Best-First Search (GBFS). Additionally, the LAMA planner [13] was in-
cluded as a robust satisficing planner baseline, utilizing its first plan output along with multiqueue
heuristic search and other optimization techniques. All planners were allowed a maximum of 1800
seconds per evaluation problem. For the execution the study used for the Non-GNNmodels a cluster
equippedwith single IntelXeon3.2GHzCPUcores and an 8GBmemory limit, for theGOOSEmodels
an NVIDIA RTXA6000 GPU and for Muninn an NVIDIA A10 GPUwere used [9].

The score of a planner in the IPC for a solved task is the ratioC∗/C, whereC is the cost of the cheapest
discovered plan and C∗ is the cost of a reference plan. The score for an unsolved task is 0. The overall
score of a planner is the sum of its scores for all tasks [19]. So the higher the score the better the planner
performed. The coverage measures the number of tasks a planner can solve within a given set. The
optimal coverage for a problem domain in the IPC 2023 dataset would be 90. An analysis of the total
coverage and IPC scores in Table 2.3 reveals that SVR and GPR outperform the other single queue
heuristic planners but they can’t surpas LAMA-first multiqueue heuristic search.

At a domain-specific level, SVR and GPR outperformMuninn and GOOSE GNNs across nine do-
mains. They also either match or exceed LAMA’s performance in four domains. Notably, GPR gener-
ates more optimal plans than LAMA in five domains, while LAMAoutperformsGPR in only three do-
mains (Rovers, Satellite, and Spanner). LAMA’s poor performance in the Spanner domain is attributed
to its heuristics lacking informativeness, causing it to operate like a blind search and thus yielding better
plans only in solvable problems [9]. Moreover, SVR and GPR either outperform or match hFF in six
and seven domains, respectively. GOOSE GNNs surpass hFF in three domains, LAMA-F only in the
blocksworld domain, and GPR only in the Transport domain. GNNs with the max aggregation func-
tion show a slight performance edge over the mean aggregation function, solving 15 problems more in
total, with the most significant differences in the childsnack and spanner domains.

As the complexity of problems increases, the number of problems solved by the planners decreases,
as illustrated in Table 2.4. This trend is particularly pronounced in the context of domain drift, which
seems to pose significant challenges for the different planners. This difficulty is expected, given that the
GNNs and regression models based on kernels are only trained on easy problems. Consequently, these
models struggle to adapt effectively to domains featuringmedium and hard problems, as their heuristics
follow a different distribution then the once seen in the easy training data. GPR is the top performer
among the single queue heuristics because it translates best to medium and hard problems. Conversely,
the performance differences among the different single queue heuristics is not that significant when
considering only the easy problems.

35

Table 2.3: Coverage of planners. The bottom‐most row provides their overall IPC 2023 learning track score. Models marked ‡ are run
5 times with mean scores presented. LAMA‐first is the only planner not performing single‐queue GBFS. The top three single‐queue
heuristic search planners in each row are indicated by the cell colouring intensity, with the best one in bold. The best planner overall in
each row is underlined.[9]

2.3.3.2 Domain Independent Results

For domain-independent heuristic learning the problems and domains from the 1998 to 2018 IPC
dataset [97] were used. Five models were trained with optimal plans featuring unit costs, which were
generated by Scorpion [32], an advanced classical planning system that enhances the capabilities of Fast
Downward. The GNNmodels used in the experiments comprised of 64 hidden dimensions, 8 RGNN
layers, usingmean aggregation and a sumpooling function [6]. As graph representations the SLG, FLG
anf LLG representations where used. Each representation was trained and tested separately to ensure
thorough evaluation. The ILG representation was only developed later. The same holds for the WL-
Goose kernel method so for them no domain independent results are available.

For comparison domain-dependent heuristic learningwas also performed using the samemodels and
graph representations, with adjustments made to the training process to suit the domain-dependent
approach. In both training approaches, the models were initially trained on easy problems within the
domains and later tested on easy, medium, and hard problems. In the study for all Goose models the
training and execution of the GOOSE models was performed using a single NVIDIA GeForce RTX
3090GPU.The evaluation process involved comparisons against several baselinemethods: blind search,
Fast Downward’s eager GBFS with the hFF heuristic [29] , and the domain-dependent STRIPS-HGN

36

Table 2.4: Coverage of considered planners per difficulty level. The mean and standard deviation are taken for models with multiple
repeats marked by ‡ [9].

[98]. STRIPS-HGN was configured according to the parameters from the original study but used the
same dataset as GOOSE, and it was invoked from Fast Downward’s eager GBFS for heuristic evaluation.
The other baselines were run on CPUs. All baselines and GOOSE models were executed with a 600-
second timeout and 8GB of main memory [6].

Table 2.5 displays the coverage results for different planners, with the number in parentheses indi-
cating the maximum possible coverage for each domain. Except for Sokoban, the domain-independent
GOOSEoutperforms blind search, suggesting that the learned domain-independent heuristics are infor-
mative. The most effective graph representation in the domain-independent GOOSE models appears
to be the SLG representation. This is likely because, compared to the LLG representation, SLG pro-
vides more information for the MPNN to learn the domain-independent heuristics without causing
overfitting, which can occur with the more detailed FLG structure.

Figure 2.11 compares the number of expanded nodes and the plan cost for the most effective Goose
models in both domain-dependent and domain-independent experimental setups, as well as the hFF

heuristic. Points in the bottom-right triangles indicate a preference for hFF, while points in the top-left
triangles indicate a preference for GOOSE. For configurations that do not solve a problem, the value is
set to the maximum of the plot’s axis. As observed in Figure 2.11, the domain-independent GOOSE
with SLGgenerates higher quality plans and expands fewer nodes than hFF in theVisitAll andVisitSome
domains. However, compared to their domain-dependent counterparts, the domain-independent ver-
sions generally solve fewer problems, making the hFF heuristic preferable in more domains [6].

37

Table 2.5: Coverage of planners and GOOSE over various domains. Cell intensities indicate the top 3 planners per row.[6]

Figure 2.11: Comparison of GOOSE (x‐axis) and hFF (y‐axis) on number of expanded nodes (left) and plan cost (right). [6]

2.4 RelatedWorks

Neural networks have been increasingly applied in planning domains, offering various methods to ad-
dress the challenges of solving planning tasks. By leveraging the strengths of neural networks in learning
from data and recognizing patterns, these approaches enhance the structured, goal-oriented nature of
planning. This section explores the related works that highlight the synergy between planning and neu-
ral networks. It is divided into two parts: the first provides an overview of the use of different neural
network models, such as CNNs and feedforward models, in planning. The second part specifically fo-
cuses on GNNs, which have become more popular in recent years and are also the architecture used by
Goose.

Most neural approaches aim to learn either a generalized policy or a heuristic function. In the con-

38

text of planning generalized policies are mostly developed through reinforcement or imitation learning
to create decision-making strategies that can adapt to a variety of problem instances, enabling real-time
action selection in dynamic environments. In contrast, heuristic functions are learned through super-
vised learning to estimate the cost from a given state to the goal, guiding search algorithms by providing
cost estimates that optimize the exploration of the state space. While generalized policies focus on di-
rectly determining the next action, heuristic functions indirectly influence the sequence of actions by
shaping the search path, both contributing to efficient and effective planning.

2.4.1 Neural Networks

Over the years different neural architectures have been applied in automated planning. ASNet [15]
introduces a neural network architecture designed for learning domain-dependent generalized policies
in probabilistic planning problems. Utilizing weight sharing and binary vector representations derived
from PPDDL descriptions, ASNet achieves the capability to generalize across different problem sizes
within the same domain. Shen et al. [16] further enhance ASNet’s capabilities by integrating it with
Monte-Carlo Tree Search (MCTS), improving both generalization beyond trained problem distribu-
tions and navigation efficiency within the search space.

Groshev et al. [17] employ CNNs to learn generalized policies for the Sokoban domain, leveraging
graphical representations of problems. The policies derived from theCNNs can also be used as heuristic
functions in directed search algorithms, demonstrating CNNs’ adaptability in spatial reasoning tasks.

Delfi [30], the onlineportfolioplanner thatwon theoptimal trackof the 2018 International Planning
Competition (IPC), treats planning tasks as images and employs CNNs to predict the probability of a
planner successfully solving a given task within specified time and memory constraints.

Generalized Heuristic Networks (GHNs) [99] propose a method to learn generalizable heuristics
in the absence of symbolic action models. By predicting actions and plan lengths from abstract state
representations consisting of vectors andmatrices, GHNs facilitate heuristic learningwithout requiring
domain-specific knowledge, showcasing neural networks’ flexibility in heuristic generation.

Ferber et al. [100] introduce domain-dependent heuristic functions, hBoot andhAVI, based on residual
networks. These heuristics leverage bootstrapping and approximate value iteration during training data
generation, comparing per-domain and per-instance learning approaches. Their findings indicate that
per-instance learning generally outperforms per-domain learning in heuristic accuracy and effectiveness.

Chrestien et al. [101] focused on improving the loss function rather than enhancing the neural net-
work models. Their approach utilizes ranking loss functions instead of absolute loss functions, based
on the idea that the efficiency of a heuristic in forward search algorithms is controlled by the ranking of
the states in the open list. This means it is more crucial for the heuristic to rank the states correctly than
to achieve high accuracy. Their method of using a ranking loss can be integrated with various neural
network approaches.

39

Silver et al. [102] explore the use of GPT-4 to automatically generate domain-specific Python pro-
grams that solve planning tasks. This approach not only automates task-specific programming but also
enhances program performance through automated debugging. In certain domains, GPT-4 outper-
forms traditional planningmethods like FastDownward, showcasing the potential of LLMs in automat-
ing and optimizing planning processes.

In summary, neural networks have been utilized in planning for candidate planner selection and for
learning both generalized policies and heuristic functions. These models typically focus on domain-
dependent learning, training on problemswithin the same domainwhere they will be applied. With the
advent of powerful GPT-based LLMs, there may be increased interest in leveraging the capabilities of
LLMs in planning. Table 2.6 provides a summary of the papers discussed in this section.

Approach Category Learning Outcome Domains

ASNet [15] [16] Action Schema
Network

Domain-dependent generalized
policy

CosaNostra Pizza, Blocksworld, Triangle
Tire World

E. Groshev et al.
(2018) [17]

CNN Domain-dependent generalized
policy and heuristic function

Sokoban

Delfi [30] CNN Candidate planner selection Domains of the classical tracks of all IPC,
Genome Edit Distance Domain, Domains
from Conformant-to-Classical Planning
Compilation and Finite-State Controller
Synthesis Compilation

GHNs [99] FNN Domain-dependent heuristic
function

Blocksworld, Childsnack, Ferry, Goldminer,
Grid, Gripper, Grippers, Logistics, Miconic,
Sokoban, Sokoban2, Spanner, and Visitall.

hBoot, hAVI [100] Residual network Domain-dependent heuristic
function

Blocks, Depots, Grid, Npuzzle, Pipes-nt,
Rovers, Scanaly, Storage, Transport, Visitall

T. Silver et al.
(2023) [102]

LLM (GPT 4.0 and
GPT 3.5)

Domain-dependent generalized
policy

Delivery, Forest, Gripper, Miconic, Ferry,
Spanner, Heavy

Table 2.6: Overview related works neural networks in automated planning

2.4.2 GraphNeural Networks

GraphNeural Networks have been increasingly applied in planning domains, exploiting their ability to
capture relational dependencies and structures within problems. This section reviews notable contribu-
tions in this field, highlighting advancements and limitations of GNN-based approaches.

Groshev et al. [17] employed GCNNs to learn generalized policies for the Traveling Salesman Prob-
lem. Their approach learns generalized policies that can also serve as heuristic functions within directed
search algorithms, showcasing the utility of GNNs in combinatorial optimization tasks.

TORPIDO (Transfer of Reactive Policies Independent of Domains) [103] learns a transformation
from the state and action spaces to latent state and action spaces and then accelerates policy learning by
usingGCNNs. Analyses ofTORPIDOhave shown that it is constrained to transferringpolicies only be-
tween problems of identical size, a limitation addressed by Garg et al. with TRAPSNET [104]. TRAP-

40

SNET uses the Asynchronous Advantage Actor-Critic (A3C) framework to facilitate neural transfer
across different problem sizes in RDDLMarkov Decision Processes (MDPs).

STRIPS-HGN[98]marks thefirstGNNapproach thatwas able to learndomain-independentheuris-
tics from scratch. In STRIPS-HGN, planning problems are modeled as grounded hypergraphs and
hypergraph networks are trained over state-value pairs derived from optimal plans.

SYMNET [105] addresses relationalMarkovDecision Processes (RMDPs) formulated in theRDDL
language by representing problems as dynamic Bayesian networks and training Graph Attention Net-
works (GATs) to derive domain-dependent policies. Despite its initial promise, SYMNET’s effective-
ness is hindered in some planning competition domains due to incomplete graph information during
construction. This led to the development of SYMNET2.0 [106], which enhances graph construction
with position-based graphs. SYMNET2.0 showed improved performance compared to SYMNET but
struggled to learn policies that exploit long-range dependencies. This led to the introduction of SYM-
NET3.0 [107], which incorporates influence graphs to capture long-range dependencies.

Ma et al. [108] propose GNN-based methods for candidate planner selection and adaptive schedul-
ing, utilizing lifted abstract structure graphs (ASGs) and grounded problem description graphs (PDGs)
to encode planning tasks. They evaluate Graph Convolutional Networks (GCNs) and Gated Graph
Neural Networks (GGNNs), highlighting their applicability in diverse planning scenarios.

Rivlin et al. [109] explore the use of GATs and deep reinforcement learning for learning generalized
planning policies capable of handling larger problem instances from scratch without relying on pre-
existing solutions or heuristics. This approach underscores the potential of GNNs in autonomously
learning effective planning strategies.

Teichteil-Königsbuch et al. focus onResource-Constrained Project Scheduling Problems (RCPSPs),
proposing a GNN-based framework called SIREN [110]. Combining graph transformer models with
schedule generation schemes, SIREN generates feasible solutions across various sizes and structures of
RCPSPs, demonstrating the versatility of GNNs in complex scheduling problems.

RelationalGraphNeuralNetworks (R-GNNs) [78] offer a newmethod for enhancing the expressive
power of GNNs in classical planning scenarios. R-GNNs can extend expressive capabilities to C3 fea-
tures, which are essential for solving problems in specific domains, without the high memory and time
requirements of 3-GNNs. Additionally, experimental results indicate that R-GNNs generalize better
than edge-transformers.

In summary GNNs have been applied to a variety of planning domains, focusing on learning both
heuristic functions andgeneralizedpolicies. Among thedifferentGNNarchitectures,GATshave emerged
as the most popular choice in planning at the moment. Ongoing research for GNNs in planning is fo-
cused towards enhancing graph representations, adapting to more complex problems beyond the train-
ingdata, and exploring transfer learning anddomain-independent learning. These efforts aim todevelop
heuristics or policies that can be applied across different domains. Table 2.7 provides a summary of the

41

papers discussed in this section.

Approach Category Learning Outcome Domains

E. Groshev et al.
(2018) [17]

GCNN Domain-dependent generalized
policies
Domain-dependent heuristic

traveling salesman problem

TORPIDO [103] GCNN Domain-dependent generalized
policies

SysAdmin, Game of Life, Navigation

TRAPSNET
[104]

GAT and fully
connected network

Domain-dependent generalized
policies

SysAdmin, Game of Life, Academic Advis-
ing

STRIPS-HGN
[98]

Hypergraph network Domain-dependent and independent
heuristic functions

8-puzzle, Sokoban, Ferry, Blocksworld, Grip-
per, Zenotravel

SYMNET [105] GAT Domain-dependent generalized
policies

Academic Advising, Crossing Traffic, Game
of Life,Navigation, Skill teaching, Sysadmin,
Tamarisk, Traffic, Wildfire

T. Ma et al. (2019)
[108]

GCNN and Gated
graph network

Candidate planner selection domains of the classical tracks of all IPC,
genome edit distance (GEDP) domain, do-
mains from conformant-to-classical plan-
ning compilation and finite-state controller
synthesis compilation

O. Rivlin et al.
(2020) [109]

GAT Domain-dependent generalized
policies

Blocksworld, Satellite, Logistics, Gripper,
ferry

SYMNET 2.0
[106]

GAT Domain-dependent generalized
policies

Academic Advising, Crossing Traffic, Game
of Life, Navigation, Skill Teaching, Sysad-
min, Tamarisk, Traffic, Wildfire, Recon, Tri-
angle Tireworld, Elevators

SIREN [110] Graph transformer
model

Domain-dependent heuristic RCPSP instances from psplib

SYMNET 3.0
[107]

GAT Domain-dependent generalized
policies

Deterministic Navigation, Stochastic Corri-
dor Navigation, Extreme Academic Advis-
ing, Safe recon, Pizza Delivery, Stochastic
Wall

R-GNNs [78] RGNN Domain-dependent generalized
policies

Blocks, Grid, Gripper, Logistics, Miconic,
Rovers, Vacuum, Visitall

Table 2.7: Overview related works GNNs in automated planning

42

3
Experiments

3.1 Dataset

All experiments were performed using the dataset from the learning track of the 2023 International
Planning Competition (IPC) [19] which includes the following ten domains of planning problems:

• Blocksworld: Classic planning problems that involve a set of blocks that must be stacked in a
specific order. The goal is to achieve a target configuration of blocks starting from an initial, often
random, configuration using a robotic arm.

• Childsnack: These problems involve planning the preparation and delivery of snacks to children.
The goal is to ensure that all children receive their desired snacks within a set timeframe, consid-
ering constraints such as ingredient availability and preparation time.

• Ferry: In these problems, a ferry needs to transport vehicles and passengers between different
locations. The challenge is to devise an optimal sequence of trips to move all items to their desti-
nations while adhering to the ferry’s capacity constraints.

• Floortile: The task is to lay floor tiles in a specified pattern on a grid. The plannermust determine
the sequence of tile placements to achieve the desired final pattern, considering constraints such
as tile orientation and positioning rules.

• Miconic: These problems involve the operation of an elevator system in a building. The objective
is to transport passengers to their desired floors efficiently, minimizing waiting and travel times
while adhering to elevator capacity limits.

• Rovers: In these scenarios a set of robotic rovers on an extraterrestrial surface needs to be con-
trolled. The goal is to collect data from various locations, handle different scientific instruments,
and transmit the collected data back to a base station while managing the rovers’ resources.

43

• Satellite: The task is to manage a satellite’s operations to capture images of specified targets on
Earth. The planner must schedule the satellite’s activities, such as camera activation and data
transmission, while considering constraints like orbital dynamics and resource limitations.

• Sokoban: In these puzzle-like problems, an agentmust pushboxes to designated storage locations
within awarehouse. The challenge is to find a sequence ofmoves that positions all boxes correctly
without getting stuck or blocking essential pathways.

• Spanner: These problems involve a set of workers whomust use spanners to assemblemachinery
parts. The goal is to determine the sequence of actions required to complete the assembly, taking
into account the availability of spanners and the dependencies between assembly steps.

• Transport: The task is to transport goods between different locations using a fleet of vehicles.
The planner must optimize the routes and loading schedules to ensure timely delivery while con-
sidering constraints such as vehicle capacities and travel times.

Each domain includes instances categorized into easy, medium, and hard difficulties based on the
number of objects in each instance. For example, easy blocksworld problems consist of 5 to 30 blocks,
medium problems range from 35 to 150 blocks, and hard problems contain 160 to 500 blocks. For each
domain, the training set includes up to 99 easy instances. The test set consists of 30 instances for each
difficulty level — easy, medium, and hard — that were not part of the training set. The IPC provides
a Python generator script for each domain that generates the problems. We will use the same problems
that were previously generated for the experiments described in subsection 2.3.3.

The generatedplanningproblems aredefinedusing thePlanningDomainDefinitionLanguage (PDDL)
[20], a standard language used to specify planning problems and domains, including the initial state,
goal state, objects, and domain of the planning problem. Listing 3.1 shows an example of a blocksworld
problemdefined in PDDL.Additionally, for every problemdomain, a domain file in PDDL is provided,
detailing the predicates and actions of the domain. The solutions to the planning problems in the train-
ing dataset are provided as .plan files, which contain the sequence of actions that constitutes the solution
to a planning problem.

Listing 3.1: PDDL Example ‐ Blocksworld problem

; ; b a s e c a s e
; ;
(d e f i n e (p rob l em b l o c k swo r l d −02)
(: domain b l o c k sw o r l d)
(: o b j e c t s b1 b2 − o b j e c t)
(: i n i t

(arm−empty)
(c l e a r b2)

44

(on− t a b l e b2)
(c l e a r b1)
(on− t a b l e b1)

)
(: g o a l (and

(c l e a r b2)
(on b2 b1)
(on− t a b l e b1)

)))

3.2 Goals of the Experiments

Theprimary goal of the experiments conducted in this thesis is to enhance the estimation of the heuristic
function using GNNs, thereby improving the overall performance of the GOOSE framework. From
the current results achievedwithGOOSEdescribed in subsubsection 2.3.3.2 and subsubsection 2.3.3.1,
two main areas have been identified for improvement.

Firstly, there is the challenge of domain adaptation. When training on easy problems but testing
across easy, medium, and hard problems, the performance of GOOSE on medium and hard problems
suffers. The focus of this thesis is to address this domain adaptation issue. By exploring different ap-
proaches such as retraining and multiheuristic search, the aim is to improve performance on medium
and hard problems while maintaining good performance on easy problems. Secondly, there are specific
domains, such as floortile, where GOOSE struggles to solve even easy problems. This issue likely stems
from the limited expressiveness of the current GNN model. Although the main focus is on improv-
ing domain adaptation, exploratory experiments will be conducted to test more expressive models for
learning on graphs to address this secondary issue.

Throughout all experiments, it is crucial to remember that the objective is to estimate a heuristic
function used by a planner. The heuristicmust be evaluated thousands ormillions of times by a planner,
depending on the problem size, to solve a problem within a certain time limit. Thus, the experiments
must focus not only on the accuracy of theGNNsbut also on their evaluation speed to achieve an overall
improvement in the number of solved problems.

3.3 Experiment Setup

Unless otherwise specified in the detailed experiment descriptions, the following setup and configura-
tions were used for the experiments in this thesis.

45

The GNNs employed follow the architecture described in subsection 2.3.2. Two hyperparameter
configurations were utilized: one with 64 hidden units and 4 RGNN layers, and another with 32 hid-
den units and 2 RGNN layers. In both cases, the pooling function was set to sum, and the aggregation
function was set to mean. The first configuration was chosen because it had proven effective in domain-
dependent testing in a previous GOOSE study [18]. The second configuration aimed to investigate
whether GNNs with fewer parameters could enhance performance due to their faster evaluation by the
planner. To enable this comparison, the aggregation and pooling functions were kept consistent across
both models. Hyperparameter tuning was not conducted, as the primary goal was to improve perfor-
mance on medium and hard problems. Tuning the hyperparameters on the easy training dataset was
not expected to yield significant improvements for domain adaptation to medium and hard problems.

The graph generation step of theGOOSE framework remains unchanged. During training, informa-
tion about the initial and goal states is taken from the PDDLproblemfiles, and the states of the solution
are generated based on the provided solution in the .plan files. All states are then represented in the se-
lected graph representation using the GOOSE framework. During testing, the states that need to be
represented as graphs and for which heuristics need to be calculated are returned by the Fast Downward
planner. These states are determined by performing a heuristic search using the eager Greedy Best-First
Search (GBFS) algorithm of the Fast Downward planner with the custom GOOSE heuristics. Eager
GBFS is a heuristic search algorithm used in the context of planning to identify the shortest path or the
most efficient sequence of actions to achieve a goal. It operates by expanding the most promising node
first, based on a heuristic function that estimates the cost from the current node to the goal [1]. For the
GOOSEGNNs, the heuristic evaluation of successor states can be parallelized onGPU for each opened
node, enhancing evaluation efficiency [6].

For training, the graphs of the easy training problems are split into training and validation datasets
with a ratio of 85% training and 15% validation and processed in batches of 16. The training process
utilizes anMSE loss function, consistent with the previous GOOSE studies [6] [9]. Models are trained
using the ADAM optimizer with an initial learning rate of 0.001, reduced by a factor of 0.1 if the vali-
dation loss did not improve for 10 epochs. This approach allows for quick initial convergence and finer
adjustments as training progresses, improving generalization and preventing overfitting. Early stopping
is employed with a minimum learning rate threshold of 1 × 10−6, ensuring efficient training by halt-
ing once improvements cease. For the case that early stopping is not reached, the maximum number of
training epochs is set to 500.

Testing of the models is conducted with a timeout of 20 minutes per problem. In previous studies,
timeouts of 10 minutes [6] and 30 minutes [9] were used. Thus, 20 minutes is deemed a reasonable
amount of time for solving planning problems while ensuring testing times remain manageable within
the time constraints of the thesis. If a problem in the testing dataset can not be solved within 20 min-
utes, it is counted as not solved. Experiments are performed domain-dependently, meaning that for

46

each planning domain, a separate GNN model is trained and tested only on problems from that do-
main. Domain-dependent training was chosen as in the previous GOOSE studies it solved more prob-
lems, providingmore starting points for improvement. Additionally, the literature review in section 2.4
showed that most works focus on domain-dependent heuristics and policies, offering more resources.
Domain-independent training and testing could be explored in future work. All experiments were run
on a cluster with an Nvidia RTX A5000 GPU and a single Intel Xeon 1.9 GHz CPU with a memory
limit of 16GB.

As presented in subsection 2.3.1, GOOSE provides four different graph representations (SLG, FLG,
LLG, ILG). Due to resource constraints (shared usage of the cluster) and time limitations of this thesis,
not all experiments can be conducted for all graph types. Therefore, the experiments focuse on a single
graph type: the ILG graph type. This graph type was chosen because, under the described experiment
settings using the standard GOOSE setup, it is able to solve the most medium and hard problems as
shown in Figure 3.1, indicating its suitability for domain adaptation. Additionally, it is typically the
smallest representation in terms of the number of nodes and edges, consuming less memory compared
to especially the grounded representations.

Figure 3.1: Comparison of the number of solved medium problems for the different graph representations provided by GOOSE. As we
have 10 problem domains with 30 medium problems each, the maximum number of problems that could have been solved is 300.

3.4 Baseline Heuristics

To establish a foundation for evaluating the performance of the tested heuristics, we will conduct base-
line experiments using the following heuristics:

47

• hblind: The hblind heuristic is a simple, uninformed heuristic defined as hblind(n) = 0. This heuris-
tic assigns a value of zero to every state n, providing no guidance to the search process. Conse-
quently, all states are treated as equally desirable, and the search algorithm relies solely on other
factors, such as the cost of actions in cost-based algorithms or the depth of states in depth-first
search. Any heuristic proposed in this workmust outperform hblind to be considered informative.

• hff: Thehff heuristic, detailed in subsubsection2.1.3.1,will beused as abaselinedue to itswidespread
use and extensive study within the planning community, providing a well-established standard
for evaluating the performance of new heuristics. Furthermore, as it relies on relaxed planning
graphs and graph algorithms, it offers a comparison to a non-neural network heuristic.

• GOOSEstandard: The standard GOOSE heuristic presented in [6], configured with 64 hidden
units and 4 RGNN layers, utilizing a mean aggregation function and sum pooling, will be eval-
uated. The objective is to surpass the performance of this heuristic, especially on medium and
hard problem instances.

All baseline heuristics are usedwith eagerGBFS search, but only the heuristicGOOSEstandard can par-
allelize the evaluationof successor states on theGPUfor eachopenednode. Theother baseline heuristics
are evaluated using eager GBFS search on the CPU. Overall these baseline heuristics provide a compre-
hensive framework for assessing the effectiveness of the proposed heuristics. The comparison will help
demonstrate the strengths and weaknesses of the new approaches in a variety of planning scenarios.

3.5 Fine Tuning by Retraining

The primary assumption underlying most machine learning algorithms, including the GNNs intro-
duced in this thesis, is the independent and identically distributed (iid) nature of the data. This assump-
tion is violated when the GNN models are trained on easy problems but tested on both medium and
hardproblems. Theheuristics of themediumandhardplanningproblems followdifferent distributions
compared to easy problems, presenting a challenge for generalization. To enable the GNN to adapt to
newdata distributions, we can use the domain adaptationmethods introduced in subsection 2.2.7. One
of the methods introduced there is fine-tuning through retraining. We chose this method for domain
adaptation because it is the most convenient to integrate into the GOOSE framework.

Wegenerate a secondmediumandharddataset for the fine tuningwith retraining approach. The IPC
dataset includes a generator script for each domain that can be used to generate new problems. Thus,
we can create 30 new medium and hard problems for the fine tuning. To maintain the same difficulty
level as the initial medium and hard problems, we will use the same number of objects in each problem
but vary the initial and goal states. This can be achieved by changing the random seeds in the generator
script. For example, if the third problem in the initial medium blocksworld dataset involved stacking 42
blocks in a specific order, the third problem in the new medium test dataset will also involve 42 blocks,
but the order of the blocks in the initial and goal states will be different. We are generating these new

48

medium and hard datasets, to be able to use their problems in the retraining and then afterwards still
have the initial medium and hard dataset for testing. By performing the retraining on a different dataset
we ensure fairness in comparing model performance by testing on the same completely unseenmedium
and hard problems that the current GOOSE approach uses.

The initial training of the GNN is still conducted on the training set of easy problems. It is known
from the results presented in subsection 2.3.3 that the GOOSE framework despite distribution shifts in
certain planning problem domains can solve at least a few problems in the medium and hard difficulty
levels. We aim to leverage this by applying the GNNs trained on easy problems to our newly gener-
ated medium training dataset and then using the solvable problems for retraining the network. The
retraining process leverages the fact that problems are approximately ordered by difficulty within their
respective levels. For instance, the first medium problem is easier to solve than the 15th medium prob-
lem, which is easier than the 30th, as the size of the problems increases within the difficulty level. We
begin by attempting to solve the first 10 medium problems of the new medium dataset because, due to
the difficulty ordering, the likelihood of solving those problems is higher than for the later ones. Solved
problems, along with their solutions, are added to a retraining dataset, while unsolved problems are
moved to a retesting dataset. If the retraining dataset contains solved problems, these problems, com-
bined with the original easy training problems, are used for retraining. So for the retraining we have a
training dataset containing easy andmedium problems. Including the easy problems ensures the model
retains its initial knowledge and remains effective for easy problems. These problems will persist in the
retraining dataset for all subsequent retraining iterations. After retraining, the unsolved problems are
retested to determine if the improved network can now solve some of these problems. This process con-
tinues iteratively for the next set of 10 problems until all 30 medium problems have been tested at least
once. Then, the same process will be applied to the hard problems. Figure 3.2 illustrates the process of
retraining a GNN in GOOSE.

It is crucial to note that one solved medium or hard problem does not equate to just one new graph
for training. Each state of the solution, effectively each step, is represented as a graph. For instance,
a medium problem with a solution length of 80 steps will contribute 80 new graphs to the retraining
dataset. The described retraining approach should be well applicable in the GOOSE framework, as
despite the addition of new data during retraining the dataset remains to be of relatively small size and
the configuration of the GNNs, which are designed to be compact to be fast to evaluate, are also fast to
train. The marginal training time compared to testing time ensures efficiency in adapting the model to
new and more complex domains. Once the entire retraining process is completed, the obtained models
are tested again on the initial medium and hard datasets to compare their performance to the previous
GOOSE experiments. Through iteratively retraining and retesting, theGNNs are expected to hopefully
have improved there performance, adapting to the distribution shifts and enhancing its capability to
solve medium and hard problems more effectively.

49

Figure 3.2: Retraining process used to improve the domain adaptation of the GOOSE GNNs.

3.6 Multi-heuristic Search

The Fast Downward planner supports multi-heuristic search, which means it can leverage multiple
heuristics to solve a problem. These heuristics are combined by the planner using a weighted sum,
with different weights assigned to each heuristic based on their perceived accuracy or importance [1].
Therefore, we evaluate how combining GOOSEwith another heuristic will affect the number of solved
problems in the test dataset, with the aim of increasing this number.

For this purpose, we use the hff heuristic, a standard heuristic within the FastDownward planner and
also one of our baseline heuristics, as presented in detail in subsubsection 2.1.3.1. The multi-heuristic
search can also be used with eager GBFS search, so the search algorithmwill remain the same. Since the
hff heuristic is not implemented for parallelized evaluation on GPU, the multi-heuristic search will run
only on the CPU. Combining hff heuristic evaluation on the CPU while evaluating GOOSE GNNs
on the GPU is not feasible due to the implementation constraints of eager GBFS search in the Fast
Downward planner. Expanding the planner implementation to handle this or evaluating hff on GPU
would have exceeded the time limitations of this thesis.

We still decided to choose the hff heuristic as the second heuristic for the multi-heuristic experiments
with GOOSE for two main reasons: first, as it is already used as a baseline heuristic, we are familiar
with the setup and how to correctly call the heuristic. Second, from the results presented in subsub-
section 2.3.3.2, we know that hff demonstrates superior performance over GOOSE in the satellite and
transport domains. This suggests that graph-based techniques in some domains uncover insights that
current GNNs fail to capture. Conversely, in domains such as blocksworld and spanner, GOOSE ex-
hibits clear advantages over hff. The idea is that by combining these two heuristics, their complementary
strengths are leveraged. For instance, in the satellite domain, Fast Downward assigns a higher weight to
hff, while in the blocksworld domain, GOOSE would be weighted more. By this approach, we aim to
achieve an overall enhancement in the framework’s performance across various domains.

50

3.7 Multi-heuristic Search combinedwith Retraining

Based on the ideas from the previous sections, the next logical step to enhance the performance of the
GOOSE frameworks involves combining the multi-heuristic search and the retraining. The rationale
behind this strategy is to potentially solve a greater number of hard andmedium-level problems by lever-
aging both GOOSE and the hff heuristic together. This expanded pool of solved problems can subse-
quently enhance the effectiveness of the GNN through retraining processes. Moreover, domains where
previous retraining efforts did not yield improvements due to a scarcity of solved medium problems
could now benefit from the combined influence of the GNNs and hff. It is anticipated that this ap-
proach will enable GOOSE to demonstrate enhanced performance in these domains during retraining
phases. The retraining methodology will follow the same approach that is presented in section 3.5, fo-
cusing solely on the retraining of GOOSE’s GNNs, as the hff heuristic relies exclusively on graph-based
algorithms without trainable parameters.

For the retraining process, we will again use the newly generated medium and hard datasets, as pre-
sented in section 3.5. This approach ensures fairness and comparability to the current GOOSEmethod-
ology because using the same dataset for retraining and testing might give the models an unfair advan-
tage if problems used for testing have already been seen during retraining. The strategy of using multi-
heuristic search with retraining represents an effort to maximize potential improvements within the
current GNN architecture. Subsequently, the forthcoming sections will explore changes to the archi-
tecture of the GNN and the use of more expressive models.

3.8 Graph AttentionNetworks

As presented in subsection 2.4.2 of the related works, GAT models have gained significant popularity
for learning heuristics and generalized policies in planning tasks. To leverage this, we aim to incorporate
the attention mechanism into the GOOSE framework to selectively focus on key features and filter out
irrelevant information.

Given that all graph types inGOOSEare relational graphs andwewould like to retain the information
providedby the relational graphdata. Wewill useRGAT layers introduced in subsection 2.2.4 instead of
standardGAT layers. From the theoretical background, we know that there are two possiblemodel con-
figurations for RGATmodels: WIRGAT and ARGAT. Additionally, we can choose between additive
and multiplicative attention mechanisms. For inductive tasks, ARGAT with multiplicative attention
is known to perform better, while for transductive tasks, WIRGAT with additive attention is slightly
superior. In our case, as we are modeling a heuristic function with a GNN that performs graph-level
predictions on during training unseen graphs, we are dealing with an inductive task. Therefore, we will
employ ARGAT layers with a multiplicative attention mechanism.

51

Implementation-wise, switching from anR-GCN to anRGATmodel involves replacing theRGNN
layers with RGAT layers. The embedding layer, pooling layer, and MLP of the model architecture will
remain unchanged as shown in Figure 3.3. For the RGAT layers, we utilize the RGATConv class from
PyTorch Geometric [111]. To implement an ARGATwith multiplicative attention using this class, we
need to set thehyperparametersattention_mechanism = "across-relation" andattention_mode
= "multiplicative-self-attention".

Figure 3.3: (a) Standard architecture of goose as presented in subsection 2.3.2 (b) GOOSE architecture incorporating RGAT layers

The experiments for the RGATGOOSE models follow the standard GOOSE methodology, which
involves initially training the model on easy problems and then testing it on easy, medium, and hard
problems. Additionally, the retraining approach presented in section 3.5 is employed. This method-
ology allows us to evaluate whether the RGAT model initially performs better on medium and hard
problems due to its ability to capture important patterns across all difficulty levels, or if it performs
worse due to increased complexity and longer processing times by the planner. Furthermore, by apply-
ing the retraining approach, we aim to assess how well the RGATmodel can be fine-tuned with a small
amount of data and how effectively it can adapt to new patterns. For the evaluation of the retraining ap-
proach, we use the additional generated medium and hard training datasets to ensure fairness, ensuring
that the model is tested on unseen problems during training, thus maintaining comparability with the
initial GOOSEmodels.

RGAT models are still MPNNs, which have the expressiveness of the C2 fragment of first-order
logic. Therefore, it cannot be expected that using an RGAT model will increase performance in prob-
lem domains that do not fall within the C2 class of first-order logic. Additionally, as indicated in sub-
section 2.2.4, RGAT models do not consistently outperform R-GCN models. Therefore, we need to
thoroughly investigate the results obtained with the RGATmodels to determine whether any improve-
ment can be achieved in our specific context.

52

3.9 Masked Attention for Graphs

In these experiments, we aim to evaluate the performance of the GOOSE framework using the MAG
model introduced in subsection 2.2.6, known for its more expressive modeling capabilities. The objec-
tive is to understand if a more expressive model like MAG enhances GOOSE’s performance, keeping
in mind that greater expressiveness does not always translate to better results due to the significant time
required for heuristic evaluation, which may occur millions of times during a single planner run.

TheMAGmodel will be integrated into theGOOSE framework by replacing the currentGNNused
for heuristic evaluation. The use of the Fast Downward planner byGOOSEwill remain unchanged. In-
stead, the MAG model will be employed for evaluating the heuristics of given states within the Fast
Downward planner, instead of the GNNs. This approach will also be applied to the training process,
where the training configuration and data will remain the same, but the MAG model will be trained
instead of the GNN model. When representing the planning problems as GOOSE graphs, minor ad-
justments are required in the graph generation process. Specifically, we need to generate an edge feature
matrix to use as inputwhen applyingMAGE, as the current implementation lacks thismatrix. The edge
features will represent the different edge types of the GOOSE graphs. Additionally, we need to change
the representation of the edge indices from a list of 2D tensors, where each list entry represents tensors
of a different type, to a single 2D tensor representing the edges and another 1D tensor holding the edge
type information. This format aligns with the requirements of theMAG implementation. As an orien-
tation for the MAGmodel configuration, we use the setup used by Buterez et al. in their study [5] for
benchmarking on graph-level tasks. The encoder is composed of threemasked self-attention blocks and
two self-attention blocks. Each block in the encoder is followed by aMLP, as recommended by Buterez
et al. . Both the MLPs and the encoder blocks have 256 hidden dimensions, and the encoder blocks
utilize 16 attention heads. Given the graph-level nature of our task, a decoder is required. We employ
a single pooling by multihead attention block in the decoder, which also uses 256 hidden units and 16
attention heads. Notably, none of the blocks or MLPs incorporate dropout. Batch normalization is
used as the normalization technique throughout the model.Figure 3.4 illustrates the architecture of the
MAG model used in our experiments. For the sake of image size and readability, the MLPs following
each block in the encoder are not depicted.

53

Figure 3.4: Architecture of the MAG model used for the experiments with GOOSE. The MLPs following each block in the encoder are
not depicted.

While the implementation used in the study by Buterez et al. for graph level task is the MAG based
on xformers, we switch to the PyTorch version ofMAG to avoid compatibility issues with the GOOSE
framework. In Buterez et al. study, the MAGE variant of MAG performed best for graph-level tasks.
Wewill test bothMAGEandMAGNapproaches to determinewhether node-based or edge-based repre-
sentations yield better results withGOOSE, given that the graphs of our datasets typically containmore
node features than edge features.

Due to the time constraints of this thesis, the MAG experiments will be the final ones conducted.
Consequently, we may not have the opportunity to run these experiments across all domains and diffi-
culty levels. Despite this limitation, we aim to gather valuable insights from theMAG experiments that
we do manage to complete. Specifically, we hope to identify problem domains where GOOSE previ-
ously encountered challenges that could be better addressed with MAG. These preliminary results will
help determine whether further exploration of the MAG approach is a possibility for future work.

54

4
Results

4.1 Variance

All results presented in the following sections that utilize GNN-based heuristics are non-deterministic,
particularly those involving retraining. During retraining, different weights may be produced in each
iteration, leading to varying outcomes. In a previous study on GOOSE [18], all GNN-based variants
of GOOSE were run five times, and the average coverage was reported. However, due to the time con-
straints and limited computational resources available for this thesis, it was not feasible to replicate that
approach. Instead, most experiments were repeated at least twice. The results presented are from the
first run of each experiment, while the additional runs were used to estimate the variance. Variances
can occur across all metrics, including the number of problems solved, the number of expanded nodes,
and the cost of the generated plans. We assumed the variance to be consistent across all 10 problem do-
mains in an experiment, and the variance was estimated across all difficulty levels. In practice, there may
be deviations between the variances of individual problem domains and different difficulty levels, as
the Fast Downward planner tends to performmore consistently on easier problems, meaning that small
variations in heuristics have a lesser impact. However, with only two experiment runs, we could not con-
firm this, so we opted to estimate the variance across all difficulty levels. The results obtained using the
heuristics hblind, hff, and GOOSEWL−GPR are deterministic, meaning that rerunning the experiments
yields identical outcomes. Therefore, we do not report variance for these experiments.

55

4.2 Fine Tuning by Retraining

The experiments toobtain the results forGOOSEwithfine-tuningby retraining, referred to asGOOSEretrain,
were conducted as described in section 3.5. We applied retraining before testing on medium and hard
problems. However, we did not perform any retraining for the easy problems, as the initial training
problems are already easy problems, meaning the training and testing distributions are the same, so re-
training is not necessary. Therefore, no performance difference is expected between GOOSEretrain and
GOOSEstandard on easy problems. The overall coverage - number of problems solved in the complete
testing dataset including easy, medium and hard problems - by GOOSEretrain compared to the baseline
approaches hblind, hff, andGOOSEstandard is shown in Table 4.1. ForGOOSEstandard andGOOSEretrain,
an estimate of the variance is provided. For example, the reported variance for GOOSEstandard is±0.9,
indicating that each result above the variance row has an uncertainty of approximately one problem
solved more or less.

Domain h b
lin

d

hf
f

G
O
O
SE

sta
nd

ar
d

G
O
O
SE

re
tr
ai
n

blocksworld 8 27 61 53
childsnack 9 25 13 13
ferry 11 60 66 64
floortile 3 12 1 1
miconic 30 90 84 83
rovers 15 34 28 41
satellite 12 62 23 32
sokoban 28 36 31 34
spanner 30 30 34 61
transport 9 39 35 43

variance 0 0 ± 0.9 ± 1.9

all 155 421 373 425

Table 4.1: Coverage of the FastDownward planner usingGOOSEretrain compared to the baseline heuristics. The top three heuristics in
each row are highlighted with cell coloring intensity, with the best one in bold. The maximum number of problems that can be solved per
domain is 90 (30 easy, 30 medium and 30 hard problems), so the maximum overall achievable coverage is 900.

Importantly, GOOSEretrain outperforms hblind, confirming that it can be considered an informative
heuristic. Additionally, GOOSEretrain outperforms GOOSEstandard, solving 425 problems compared to

56

373. The most significant improvement is observed in the spanner domain, where GOOSEretrain solves
27 more problems than GOOSEstandard. GOOSEretrain performs similarly to the hff heuristic, with 425
and 421 problems solved, respectively. While GOOSEretrain shows a clear advantage in the spanner and
blocksworld domains, hff performs better in the satellite and childsnack domains. Given the variance as-
sociatedwith theGOOSEretrain results, the overall performance of these twoheuristics can be considered
equally.

As the primary goal of this thesis is to enhance the performance on medium and hard problems.
Table 4.2 presents the number of medium and hard problems solved by GOOSEretrain. For the base-
line models hblind, hff and GOOSEstandard the table indicates the number of problems solved compared
to GOOSEretrain. For instance, the +6 in the rovers domain in the hff medium column signifies that
GOOSEretrain solved 6 more medium rovers problems then hff was able to solve. On contrary the -7 in
miconic domain in the hff hard column signifies that GOOSEretrain solved 7 problems less then hff. We
can observe that the improvement made compared to hblind is equal to the number of solved problems
by GOOSEretrain in both the medium and hard domain meaning that hblind does not manage to solve
any medium or hard problem therefore every solved problem being an improvement.

Detailed analysis reveals that GOOSEretrain solves 38 more medium problems than the hff heuris-
tic and 47 more than the GOOSEstandard heuristic. GOOSEretrain shows improvements in five out of
ten problem domains compared to GOOSEstandard. Notably, in the spanner domain, the retraining
process enabled GOOSEretrain to solve all 30 medium problems, significantly surpassing the four prob-
lems solved by GOOSEstandard. In the ferry and miconic domains, all models, including GOOSEretrain,
solve all medium problems, indicating that retraining does not compromise previously learned patterns.
Conversely,GOOSEretrain, likeGOOSEstandard, fails to solve any medium or hard floortile or childsnack
problems, which makes sense as when we cannot solve a single medium problem there is no chance
of improvement through retraining. The only performance decline for GOOSEretrain in the medium
problems can be observed in the blocksworld domain, where it solves 20 problems compared to 28 by
GOOSEstandard, suggesting potential model confusion due to retraining. Compared to the other base-
lines,GOOSEretrain does not offer a significant performance advantage for the hard problems. The issue
appears to be that even though the models are retrained on the medium problems when available, tran-
sitioning to the hard problems still results in domain drift, with very few hard problems being solved.
These few solved hard problems are likely insufficient to help the RGNNmodels overcome the domain
drift in the retraining. In the upcoming sections, we will investigate whether multi-heuristic search
or multi-heuristic search with retraining can address this issue and potentially further improve perfor-
mance on medium and hard data.

57

GOOSEretrain hblind hff GOOSEstandard

Domain medium hard medium hard medium hard medium hard

blocksworld 20 3 +20 +3 +20 +3 -8 0
childsnack 0 0 0 0 0 0 0 0
ferry 30 4 +30 +4 0 -2 0 +1
floortile 0 0 0 0 0 0 0 0
miconic 30 23 +30 +23 0 -7 0 -1
rovers 11 0 +11 0 +6 0 +10 0
satellite 9 0 +9 0 -21 -2 +9 0
sokoban 5 0 +5 0 -1 0 +3 0
spanner 30 1 +30 +1 +30 +1 +26 +1
transport 13 0 +13 0 +4 0 +7 0

all 148 31 +148 +31 +38 -7 +47 +1

Table 4.2: The first column lists the number of medium and hard problems solved using theGOOSEretrain heuristic. The remain‐
ing columns show the difference in this number compared to baseline heuristics. For example, a value of +20 under hblind means
GOOSEretrain solves 20 problems more than hblind in that domain.

In addition to evaluating overall planner performance anddetailed performance onmediumandhard
problems, it is interesting to examine the number of expanded nodes and the cost of the plans found.
By comparing the number of expanded nodes and plan costs of theGOOSEstandard heuristic to those of
GOOSEretrain, we can assess potential quality improvements in domains like miconic and ferry, where
the number of solved medium problems is equal. Figure 4.1 illustrates this comparison focusing on
mediumproblems due to their higher quantity of solved problems compared to hard problems and to re-
main readability compared towhen including problems of all difficulty levels. The experiments revealed
a variance of±35 in the number of expanded nodes and±1.5 in plan cost when using GOOSEstandard.
ForGOOSEretrain, the variances were±41.3 and±2.3, respectively. Since the differences in variance are
relatively small, comparing the results shouldbe valid. Thefigure demonstrates that, regarding expanded
nodes, a significant number of data points is located in the top-left triangle, indicating fewer nodes ex-
pandedusingGOOSEretrain. This is especially evident in themiconicdomain (purple datapoints), where
both heuristics solve all problems, butGOOSEretrain requires fewer expanded nodes, signifying more ef-
ficient heuristic performance.

In terms of plan cost, equivalent to plan length since all actions have a cost of 1 in our benchmarking
domains, the two heuristics exhibit similar performance. Minor deviations are observed in the transport
domain, favoringGOOSEretrain, and the spanner domain, favoringGOOSEstandard, for problems solved
by both heuristics but overall, the plan costs remain very similar. In summary,GOOSEretrain enables the
planner to operate more efficiently, expanding fewer nodes while achieving plans of equivalent cost to
those found usingGOOSEstandard.

58

Figure 4.1: The number of expanded nodes and the plan cost of the medium problems ofGOOSEstandard andGOOSEretrain. For
problems not solved by one planner, the corresponding metric is set to the axis limit. Points located in the top‐left triangle favor
GOOSEretrain , while those in the bottom‐right triangle favorGOOSEstandard.

4.3 Multi-heuristic Search

This section presents the results obtained by combining the hff heuristic and theGOOSEstandard heuris-
tic for multiheuristic search using the Fast Downward planner. The experiments were conducted as
described in section 3.6. In the following presentation of the results, the multiheuristic approach will
be referred to asGOOSEmh.

The overall performance of the Fast Downward planner using GOOSEmh as a heuristic, compared
to the baseline heuristic and the GOOSEretrain heuristic presented in the previous section, is shown
in Table 4.3. Importantly GOOSEmh clearly outperforms hblind so it can be considered an informa-
tive heuristic. In addition it also outperforms the other baseline heuristics and manages to outperform
GOOSEretrain, solving 442 problems compared to 425. Examining the individual domains, we find that
GOOSEmh generally achieves coverage between that of hff andGOOSEstandard. This can be explained by
the planner assigning different weights to each heuristic based on their performance during the search.
Exceptions are the spanner and transport domains, whereGOOSEmh solves more problems than either
GOOSEstandard or hff alone. In these cases, the planner leverages information from both heuristics to
achieve superior performance. Notably, in the transport domain, GOOSEmh outperforms all other
heuristics. As our primary goal was to improve the performance on medium and hard problems, we
will closely examine how GOOSEmh performed in these categories compared to the baseline heuristics
and GOOSEretrain. Table 4.4 shows the number of solved medium and hard problems for GOOSEmh

and how this number differs from the baseline heuristics andGOOSEretrain. The baseline heuristic hblind
was omitted as we know from the previously presented results that it does not solve anymedium or hard
problems, so comparisons are not that informative.

59

Domain h b
lin

d

hf
f

G
O
O
SE

sta
nd

ar
d

G
O
O
SE

re
tr
ai
n

G
O
O
SE

m
h

blocksworld 8 27 61 53 49
childsnack 9 25 13 13 18
ferry 11 66 63 64 63
floortile 3 12 1 1 9
miconic 30 90 84 83 81
rovers 15 34 28 41 36
satellite 12 62 23 32 46
sokoban 28 36 31 34 36
spanner 30 30 34 61 56
transport 9 39 35 43 48

variance 0 0 ± 0.9 ± 1.9 ± 0.8

all 155 421 373 425 442

Table 4.3: Coverage of the FastDownward planner usingGOOSEmh compared to the baseline andGOOSEretrain heuristic. The top
three heuristics in each row are highlighted with cell coloring intensity, with the best one in bold. The maximum number of problems
that can be solved per domain is 90 (30 easy, 30 medium and 30 hard problems), so the maximum overall achievable coverage is 900.

We observe that for medium problems, GOOSEmh yields significant improvements compared to hff

andGOOSEstandard, solving 41 and 50more problems, respectively. This improvement is mainly due to
GOOSEmh leveraging the strengths of both heuristics. For example, hff performs well in the satellite do-
main where GOOSEstandard struggles, and the opposite is true for the blocksworld domain. GOOSEmh

solves 19 problems in the blocksworld domain and 16 in the satellite domain at a medium level. While
not achieving top performance in any single domain, GOOSEmh maintains a balanced overall perfor-
mance across most domains, unlike the single heuristics which tend to fail in some domains. Compared
toGOOSEretrain, the overall performance ofGOOSEmh onmediumproblems is similar, withGOOSEmh

solving overall three more problems. Given the variance in the results, this difference is considered negli-
gible. A closer look at thedomains reveals that the satellite domainbenefitsmost fromthemulti heuristic
search, while the rovers and spanner domains benefit more from retraining.

For hard problems, GOOSEmh does not show any performance advantage compared to the other
models. This is likely because the single heuristics hff and GOOSEstandard do not perform well on hard
problems. Whichmakes combining them risky as they aremore likely to bemisleading, thusmisguiding
the search of the FastDownward planner and ultimately leading to fewer solved problems. Additionally,

60

when both heuristics perform poorly, it becomes harder for the planner to assign appropriate weights
to them, as it needs to determine which is the least ineffective heuristic.

GOOSEmh hff GOOSEstandard GOOSEretrain

Domain medium hard medium hard medium hard medium hard

blocksworld 19 0 +19 0 -9 -3 -1 -3
childsnack 0 0 0 0 0 0 0 0
ferry 30 3 0 -3 0 0 0 -1
floortile 0 0 0 0 0 0 0 0
miconic 30 21 0 -9 0 -3 0 -2
rovers 6 0 +1 0 +5 0 -5 0
satellite 16 0 -14 -2 +16 0 +7 0
sokoban 6 0 0 0 +4 0 +1 0
spanner 26 0 +26 0 +22 0 -4 -1
transport 18 0 +9 0 +12 0 +5 0

all 151 24 +41 -14 +50 -6 +3 -7

Table 4.4: The first column lists the number of medium and hard problems solved using theGOOSEmh heuristic. The remaining
columns show the difference in this number compared to baseline and previously introduced heuristics. For example, a value of +19
under hff meansGOOSEmh solves 19 problems more than hff in that domain. The baseline hblind was omitted because it does not
solve any medium or hard problems.

As observed on the medium problems, GOOSEmh and GOOSEretrain exhibit similar overall perfor-
mance. Therefore, we will also evaluate the number of expanded nodes and the cost of the found
plans of the medium problems to determine if these metrics indicate a preferable approach. Figure 4.2
compares the number of expanded nodes and the plan costs for GOOSEmh against GOOSEstandard and
GOOSEretrain. The variances of GOOSEmh are with ±39.1 for the expanded nodes and ±1.4 for the
plan cost similar to the variances of GOOSEstandard and GOOSEretrain, so they should not falsify the
comparison. Data points in the upper left triangle represent problems where GOOSEmh is favored. In
comparison to GOOSEstandard, GOOSEmh generally requires fewer expanded nodes across all domains
except the blocksworld domain, making it the preferred heuristic. The plan costs for GOOSEmh and
GOOSEstandard are very similar, with minor deviations favoring GOOSEstandard in the spanner domain
andGOOSEmh in the transport domain.

When comparing GOOSEmh with GOOSEretrain, GOOSEretrain is generally the preferred heuristic
in terms of the number of expanded nodes. Specifically, performance in the miconic domain is very
similar, while in the transport domain, preference varies from problem to problem. The most signif-

61

icant differences are observed in the spanner, blocksworld, and rovers domains, where GOOSEretrain
usually expands fewer nodes and is thus the preferred heuristic. Regarding plan cost, both GOOSEmh

and GOOSEretrain produce relatively similar results. While there are some outliers where one heuristic
finds a significantly better solution, there is no consistent occurrence where one heuristic consistently
finds cheaper plans across an entire problem domain.

Figure 4.2: The number of expanded nodes and the plan cost forGOOSEstandard compared toGOOSEmh (graphs on the left) and
GOOSEretrain compared toGOOSEmh (graphs on the right) of the medium problems. For problems unsolved by one planner, the
corresponding metric is set to the axis limit. Points located in the top‐left triangle favorGOOSEmh.

Overall, we can summarize thatGOOSEmh provides amore balanced performance across all domains,
particularly withmediumproblems. It has fewer domains where it fails to solve any problems compared
to other heuristics. This is becauseGOOSEmh delivers decent performance in any domain where either
GOOSEstandard or hff perform well, effectively leveraging the strengths of both heuristics. In terms of
the overall number of medium problems solved, GOOSEmh performs similar to GOOSEretrain. How-
ever, when considering the number of expanded nodes as an additional quality metric, we conclude
that GOOSEretrain is more efficient than GOOSEmh for medium problems. For hard problems, we ob-
served thatGOOSEmh does not show a performance improvement. This is likely because the individual
heuristics, GOOSEstandard and hff, only manage to solve a few problems on their own, and GOOSEmh

cannot significantly benefit from combining these two heuristics.

62

4.4 Multi-heuristic Search combinedwith Retraining

As demonstrated in the previous sections, incorporating retraining or utilizing multiheuristic search
within the GOOSE framework enhances performance compared to theGOOSEstandard approach. Con-
sequently, we combined these two methods to investigate whether this would lead to further perfor-
mance improvements. This section presents the results achieved using multiheuristic search combined
with retraining. The experiments were conducted as described in section 3.7, and this combined ap-
proach is referred to asGOOSEmh−retrain.

Table 4.5 illustrates the overall coverage using GOOSEmh−retrain as a heuristic compared to the pre-
viously presented heuristics and the baseline heuristics. Importantly, GOOSEmh−retrain outperforms
hblind, proving that theheuristic is informative. Furthermore, consideringoverall performance,GOOSEmh−retrain

successfully outperformsbothGOOSEretrain andGOOSEmh by solving40moreproblems thanGOOSEretrain
and 23 more problems thanGOOSEmh.

Domain h b
lin

d

hf
f

G
O
O
SE

sta
nd

ar
d

G
O
O
SE

re
tr
ai
n

G
O
O
SE

m
h

G
O
O
SE

m
h−

re
tr
ai
n

blocksworld 8 27 61 53 49 57
childsnack 9 25 13 13 18 18
ferry 11 66 63 64 63 64
floortile 3 12 1 1 9 9
miconic 30 90 84 83 81 79
rovers 15 34 28 41 36 43
satellite 12 62 23 32 46 53
sokoban 28 36 31 34 36 36
spanner 30 30 34 61 56 60
transport 9 39 35 43 48 46

variance 0 0 ± 0.9 ± 1.9 ± 0.8 ± 1.8

all 155 421 373 425 442 465

Table 4.5: Coverage of the FastDownward planner usingGOOSEmh−retrain as a heuristic compared to the baseline heuristics,
GOOSEretrain andGOOSEmh. The top three heuristics in each row are highlighted with cell coloring intensity, with the best one in
bold. The maximum number of problems that can be solved per domain is 90 (30 easy, 30 medium and 30 hard problems), so the maxi‐
mum overall achievable coverage is 900.

63

Adetailed anaylsis of individual domains reveals that in the satellite, rovers, andblocksworld domains,
GOOSEmh−retrain solves more problems than either GOOSEretrain or GOOSEmh. This suggests that by
combining retraining with multiheuristic search, we leverage the strengths of both approaches to solve
problems that neitherGOOSEmh norGOOSEretrain could solve independently. The likely reason for this
improvement is that retraining the network based on the results of the multiheuristic search tailors the
networks specifically for this search method. In contrast, the RGNNs used in theGOOSEmh approach
are not specifically trained for multiheuristic search but are the same as those used in GOOSEstandard.
In other domains, the performance ofGOOSEmh−retrain is very similar to that ofGOOSEmh, indicating
that in those domains retraining does not create a performance gain but also does not result in any infor-
mation loss. Similar to the previously presented heuristics, GOOSEmh−retrain outperforms all baseline
heuristics.

A detailed examination of the performance onmedium and hard problems, as displayed in Table 4.6,
reveals that compared toGOOSEretrain,GOOSEmh, andGOOSEstandard, theGOOSEmh−retrain approach
either improves or maintains performance on medium problems across nearly all domains. This results
in an overall improvement of 72 more solved medium problems compared to GOOSEstandard, 25 more
thanGOOSEretrain, and24more thanGOOSEmh. Whencompared to thehff heuristic,GOOSEmh−retrain

underperformsonly in the satellite domain, solving7 fewerproblems. In all other domains,GOOSEmh−retrain

matches or exceeds the performance of hff on medium problems. The most significant improvements
GOOSEmh−retrain achieves in the transport and rovers domains. In these domains, retraining appears
to mitigate domain drift and enhance overall performance the most. Similar to the other heuristics
GOOSEmh−retrain does not solve any medium problems in the childsnack or floortile domains. An im-
provement in those domains usingGOOSEmh−retrain could not be expected becauseGOOSEmh also fails
to solve problems in these domains, leaving no examples for retraining to improve performance.

Regarding hard problems, GOOSEmh−retrain does not perform as well as on medium problems. It
solves fewerhardproblems compared tohff andGOOSEretrain, andhas aperformance similar toGOOSEstandard
and GOOSEmh. This could be due to several reasons: first, retraining is ineffective if no hard problems
are solved initially, which is the case for most domains. Additionally, combining heuristics that individ-
ually do not performwell canmislead and slowdown the search, as it seems to be difficult for the planner
to identify the least suboptimal heuristic in the multiheuristic search. From the same issue already the
performance of the GOOSEmh heuristic on hard problems is affected. Moreover, since two heuristics
need to be evaluated for each state, the search process is slower compared to evaluating a single heuristic
like hff. WhileGOOSEmh−retrain can compensate for this slower evaluation speed onmedium problems
by overcoming domain drift with retraining, this is not feasible for most domains in the hard problems.
Given the increased complexity of hard problems the number of evaluations of the heuristic increases
making the evaluation speed increasingly important.

64

GOOSEmh−retrain hff GOOSEstandard GOOSEretrain GOOSEmh

Domain medium hard medium hard medium hard medium hard medium hard

blocksworld 27 0 +27 0 -1 0 +7 0 +8 0
childsnack 0 0 0 0 0 0 0 0 0 0
ferry 30 4 0 -2 0 +1 0 0 0 +1
floortile 0 0 0 0 0 0 0 0 0 0
miconic 30 19 0 -11 0 -5 0 -4 0 -2
rovers 13 0 +8 0 +12 0 +2 0 +7 0
satellite 23 0 -7 -2 +23 0 +14 0 +7 0
sokoban 6 0 0 0 +4 0 +1 0 0 0
spanner 30 0 +30 0 +26 0 0 -1 +4 0
transport 14 0 +5 0 +8 0 +1 0 -2 0

all 173 23 +63 -15 +72 -4 +25 -5 +24 -1

Table 4.6: The first column lists the number of medium and hard problems solved using theGOOSEmh−retrain heuristic. The remaining
columns show the difference in this number compared to baseline and previously introduced heuristics. For example, a value of +27
under hff meansGOOSEmh−retrain solves 27 problems more than hff in that domain. The baseline hblind was omitted because it does
not solve any medium or hard problems.

We also conduct an analysis of the number of expanded nodes and the cost of the plans generated us-
ing GOOSEmh−retrain as an heuristic for the medium-sized problems. Figure 4.4 presents a comparison
of the number of expanded nodes and plan costs when using GOOSEmh−retrain versus GOOSEstandard,
andGOOSEmh−retrain versusGOOSEmh as heuristics. The variances ofGOOSEmh−retrain arewith±41.2
for the expandednodes and±2.2 for theplan cost similar to the variances ofGOOSEstandard andGOOSEmh,
so they should not mislead the comparison. Compared to GOOSEstandard, GOOSEmh−retrain generally
outperforms GOOSEstandard in terms of the number of expanded nodes across all domains, with the
exception of the blocksworld and ferry domains. In the ferry domain, the distribution is relatively bal-
anced: for approximately half of the problems, GOOSEstandard results in fewer expanded nodes, while
for the other half, GOOSEmh−retrain leads to fewer expanded nodes. Therefore, there is no clear pref-
erence for one heuristic over the other in this domain. In the blocksworld domain, GOOSEstandard re-
sults in fewer expanded nodes for the majority of problems. However, since this is the only domain
whereGOOSEstandard is preferred, we can conclude that, overall,GOOSEmh−retrain is the more effective
heuristic in terms of reducing the number of expanded nodes by the Fast Downward planner. When
comparing GOOSEmh−retrain with GOOSEmh, we observe a significant reduction in the number of ex-
panded nodes in the spanner domain when using GOOSEmh−retrain. In other domains, the perfor-
mance is more balanced: for some problems, GOOSEmh−retrain results in fewer expanded nodes, while
for others, GOOSEmh is more efficient. Considering the overall data distribution the graph indicates
that GOOSEmh−retrain is generally the preferred heuristic as we have more data points in the top left

65

triangle. Regarding the plan costs, there is no significant difference between the plans generated by
GOOSEmh−retrain and those generated by GOOSEstandard, with most data points located close to the
identity line. This suggests that neither heuristic consistently produces more optimal plans. In the
comparison between GOOSEmh−retrain and GOOSEmh, the data points are slightly more scattered, par-
ticularly in the satellite domain, where there is a noticeable variation in plan costs. However, there is
no clear tendency favoring either heuristic overall. Thus, we conclude that there is no definitive winner
betweenGOOSEmh−retrain andGOOSEmh in terms of producing more optimal plans.

In conclusion, GOOSEmh−retrain performs very well on medium-sized problems, effectively combin-
ing the strengths of the previously tested heuristics, GOOSEmh and GOOSEretrain. Notably, it outper-
forms both GOOSEmh and GOOSEstandard in terms of the number of expanded nodes, as it requires
fewernodes tobe expandedonaverage formediumproblems. Theplan costs generatedbyGOOSEmh−retrain

are comparable to those foundusingGOOSEmh andGOOSEstandard. Onhard problemsGOOSEmh does
not perform as well as on the medium problems and does not manage any other heuristic except hblind.
In the hard problems, the benefits of retraining diminish, and the faster evaluation time of the single
heuristics result in a small performance advantage. In addition the combination of individual heuris-
tics used in the multiheuristic search, which already do not perform well on difficult problems, likely
misguides and slows down the search process, reducing the overall effectiveness of the planner.

Figure 4.3: The number of expanded nodes and the plan cost forGOOSEstandard compared toGOOSEmh−retrain (graphs on the left)
andGOOSEmh compared toGOOSEmh−retrain (graphs on the right) of the medium problems. For problems unsolved by one planner,
the corresponding metric is set to the axis limit. Points located in the top‐left triangle favorGOOSEmh−retrain.

66

4.5 Relational Graph Attention

The previously presented results explored the potential of enhancing the performance of the standard
RGNN Models within the GOOSE framework. In this section we discuss the outcomes achieved by
transitioning from RGNN to RGATmodels described in subsection 2.2.4. The experiments followed
the methodology outlined in section 3.8, with this approach referred to asGOOSEgat.

Table 4.7provides a comparisonof theoverall coverageof theFastDownwardplannerusingGOOSEgat
as a heuristic, alongside the results of the previously tested heuristics and baseline heuristics. The re-
sults show thatGOOSEgat surpasses hblind in the overall coverage, confirming its status as an informative
heuristic, and also outperforms GOOSEstandard. However, when compared to the other baseline ap-
proache hff, the performance of GOOSEgat is inferior. Similarly, GOOSEgat performs worse than our
previously tested heuristicsGOOSEmh,GOOSEmh−retrain, andGOOSEretrain.

Domain h b
lin

d

hf
f

G
O
O
SE

sta
nd

ar
d

G
O
O
SE

re
tr
ai
n

G
O
O
SE

m
h

G
O
O
SE

m
h−

re
tr
ai
n

G
O
O
SE

ga
t

blocksworld 8 27 61 53 49 57 55
childsnack 9 25 13 13 18 18 20
ferry 11 66 63 64 63 64 64
floortile 3 12 1 1 9 9 1
miconic 30 90 84 83 81 79 83
rovers 15 34 28 41 36 43 31
satellite 12 62 23 32 46 53 31
sokoban 28 36 31 34 36 36 32
spanner 30 30 34 61 56 60 55
transport 9 39 35 43 48 46 39

variance 0 0 ± 0.9 ± 1.9 ± 0.8 ± 1.8 ± 0.9

all 155 421 373 425 442 465 411

Table 4.7: Coverage of the FastDownward planner usingGOOSEgat as a heuristic compared to the baseline heuristics,GOOSEretrain ,
GOOSEmh andGOOSEmh−retrain. The top three heuristics in each row are highlighted with cell coloring intensity, with the best one
in bold. The maximum number of problems that can be solved per domain is 90 (30 easy, 30 medium and 30 hard problems), so the
maximum overall achievable coverage is 900.

Notably, the childsnack domain is the only problem domain where GOOSEgat shows superior per-

67

formance compared to the previously presented heuristics but it does also not outperform the base-
line heuristic hff. In the other domains GOOSEgat either matches the performance of previously tested
heuristics or falls short, offering no improvement. Furthermore, GOOSEgat also does not enhance the
performance in the floortile domain where most of the other heuristics have also shown suboptimal
performance. The overall performance ofGOOSEgat suggests that incorporating attentionmechanisms
into the heuristic models does not enhance the heuristic’s effectiveness. We will again conduct a more
detailed analysis of the medium and hard problem instances to assess whether GOOSEgat also exhibits
suboptimal performance in these cases, or if improvements can be identified. Table 4.8 presents a com-
parison of the performance of GOOSEgat on medium and hard problems against the baseline mod-
els and GOOSEmh−retrain, our so far best-performing heuristic on medium problems. For readability,
GOOSEmh andGOOSEretrain have been omitted from the table.

GOOSEgat hff GOOSEstandard GOOSEmh−retrain

Domain medium hard medium hard medium hard medium hard

blocksworld 26 0 +26 0 -2 -3 -1 0
childsnack 0 0 0 0 0 0 0 0
ferry 30 4 0 -2 0 +1 0 0
floortile 0 0 0 0 0 0 0 0
miconic 30 23 0 -7 0 -1 0 +4
rovers 0 0 0 0 0 0 0 0
satellite 1 0 -29 -2 +1 0 -22 0
sokoban 0 0 0 0 0 0 0 0
spanner 25 0 +25 0 +21 0 -5 0
transport 9 0 0 0 +3 0 -5 0

all 121 27 +22 -11 +23 -3 -33 +4

Table 4.8: The first column lists the number of medium and hard problems solved using theGOOSEgat heuristic. The remaining columns
show the difference in this number compared to baseline and previously introduced heuristics. For example, a value of +26 under hff
meansGOOSEgat solves 11 problems more than hff in that domain. The baseline hblind was omitted because it does not solve any
medium or hard problems.

Contrary to theoverall performance results,GOOSEgat demonstrates anotable advantageonmedium
problemsbyoutperforminghff by33 instances, primarily due to its strongperformance in theblocksworld
and spanner domains, which compensates for its weaker results in the satellite domain. However, on
hard problems, hff once again outperforms GOOSEgat. GOOSEgat also surpasses GOOSEstandard on
mediumproblems andperforms similarly onhardproblems,making it a preferable choiceoverGOOSEstandard.

68

In comparison to GOOSEmh−retrain, GOOSEgat performs worse on medium problems, solving signifi-
cantly fewer instances. As a result,GOOSEmh−retrain remains the best-performing heuristic for medium
problems, withGOOSEgat solving 33 fewer instances.

In terms of the number of expanded nodes and the cost of the plans, Figure 4.4 illustrates that in
themiconic domain,GOOSEgat outperformsGOOSEstandard andGOOSEmh−retrain by expanding fewer
nodes andgeneratingplanswith lower costs. However, inother domains,GOOSEstandard andGOOSEmh−retrain

are preferable heuristics when considering the number of expanded nodes. Regarding plan costs, the
performance of the heuristics across the other domains is comparable, with no significant differences
observed. Overall, compared toGOOSEstandard,GOOSEgat can be justified as the preferred heuristic be-
cause it solvesmore problems andfinds cheaper plans, even though itmay require expandingmore nodes
in some domains. On the other hand, when compared toGOOSEmh−retrain, despiteGOOSEgat finding
cheaper plans in the miconic domain, it is not considered the preferred heuristic due to its significantly
lower success in solving medium-sized problems and its lack of advantage in the number of expanded
nodes across all domains. The variances of GOOSEgat, with±34.5 for expanded nodes and±1.55 for
plan cost, are similar to those ofGOOSEstandard andGOOSEmh−retrain. Therefore, they should not affect
the validity of the comparisons made.

Figure 4.4: The number of expanded nodes and the plan cost forGOOSEstandard compared toGOOSEgat (graphs on the left) and
GOOSEmh−retrain compared toGOOSEgat (graphs on the right) of the medium problems. For problems unsolved by one planner, the
corresponding metric is set to the axis limit. Points located in the top‐left triangle favorGOOSEgat.

Although attention-based models are popular in the literature for automated planning, the applica-

69

tion of RGAT layers within the GOOSE framework on our benchmarking dataset does not provide a
performance advantage compared to the previously presented heuristics. To understand the suboptimal
performance ofGOOSEgat onmedium difficulty problems, we examined the inference time of themod-
els. Table 4.9 presents the inference time needed by the model of each problem domain to process one
graph instance of amediumproblem through theRGNNmodels used inGOOSEstandard,GOOSEretrain,
GOOSEmh andGOOSEmh−retrain and theRGATmodels used inGOOSEgat. The data indicates that, ex-
cept for the floortile domain, theRGATmodel consistently has a slower inference time compared to the
RGNNmodel. The fact that GOOSEgat cannot solve the problem in the floortile domain, despite hav-
ing a better inference time, is likely related to the expressiveness limitations of the model. As discussed
in the theory, RGAT models have the same level of expressiveness as RGNNmodels, and the floortile
domain probably requires a more expressive model, making the inference time advantage negligible. In
all other domains, the RGAT models demonstrate a faster inference time, with RGAT models taking
approximately 1.7 times longer on average. This extended inference time is likely a reason for the sub-
optimal performance of GOOSEgat on medium and hard problems, as the number of evaluated states
rises in the medium and hard problems and thus the inference time becomes more important because
the heuristic is used more often.

Domain RGNN RGAT Difference
blocksworld 0.0120 0.0285 +0.0165
childsnack 0.0512 0.0751 +0.0239
ferry 0.0128 0.0145 +0.0017
floortile 0.0610 0.0355 -0.0255
miconic 0.1298 0.2766 +0.1468
rovers 0.0175 0.0903 +0.0728
satellite 0.0467 0.1182 +0.0715
sokoban 0.0386 0.0416 +0.0030
spanner 0.0156 0.0306 +0.0150
transport 0.0758 0.0772 +0.0014
Average Time 0.0461 0.07881 +0.03271

Table 4.9: Comparison of the inference times of RGNN and RGAT models for a graph instance of a medium problem. All numbers are
averages taken by passing the medium instance 100 times through each of the models.

Overall, we can conclude that GOOSEgat is not the optimal choice for our objective of enhancing
performance on medium and hard problems. It is clearly outperformed by our previous approach,
GOOSEmh−retrain on medium problems and on hard problems already fromGOOSEstandard. Addition-
ally, in terms of overall planner performance, GOOSEgat does not achieve better results than any of the
heuristics we previously presented. The likely reason for the suboptimal performance of GOOSEgat is

70

the longer inference time associated with the RGATmodel compared to the RGNNmodels. However,
it is important to note that GOOSEgat still outperforms hblind in overall planner performance, which
means it can still be considered an informative heuristic.

4.6 Relational Graph Attentionwith Retraining

In the previous section, we presented the results of replacing RGNN layers with RGAT layers in our
models. As discussed in section 3.8, we also explored the combination of RGATmodels with retraining
to evaluate the effectiveness of attentionmechanisms during fine-tuning. This approachwill be referred
to asGOOSEgat−retrain. Similar to the previously tested retraining heuristics, retraining in this context is
applied only tomedium and hard problems, aiming tomitigate the domain drift from the easier training
problems. For easyproblems, retraining is not triggered,meaning the results ofGOOSEgat−retrain on easy
problems are expected to be the same as those achieved byGOOSEgat.

Domain h b
lin

d

hf
f

G
O
O
SE

sta
nd

ar
d

G
O
O
SE

re
tr
ai
n

G
O
O
SE

m
h

G
O
O
SE

m
h−

re
tr
ai
n

G
O
O
SE

ga
t

G
O
O
SE

ga
t−

re
tr
ai
n

blocksworld 8 27 61 53 49 57 55 40
childsnack 9 25 13 13 18 18 20 20
ferry 11 66 63 64 63 64 64 64
floortile 3 12 1 1 9 9 1 1
miconic 30 90 84 83 81 79 83 83
rovers 15 34 28 41 36 43 31 32
satellite 12 62 23 32 46 53 31 32
sokoban 28 36 31 34 36 36 32 33
spanner 30 30 34 61 56 60 55 51
transport 9 39 35 43 48 46 39 40

variance 0 0 ± 0.9 ± 1.9 ± 0.8 ± 1.8 ± 0.9 ± 1.8

all 155 421 373 425 442 465 411 396

Table 4.10: Coverage of the FastDownward planner usingGOOSEgat−retrain as a heuristic compared to the baseline heuristics,
GOOSEretrain ,GOOSEmh ,GOOSEmh−retrain andGOOSEgat. The top three heuristics in each row are highlighted with cell color‐
ing intensity, with the best one in bold. The maximum number of problems that can be solved per domain is 90 (30 easy, 30 medium and
30 hard problems), so the maximum overall achievable coverage is 900.

71

Thus, any improvements are anticipated only in the medium and hard difficulty levels. Table 4.10
compares the coverage of the Fastdownward planner using GOOSEgat−retrain as a heuristic against pre-
viously presented heuristics and the baseline heuristics.We can observe that GOOSEgat−retrain manages
to outperform hblind so we can consider it an informative heuristic. It is also evident that, in terms of
overall performance, retraining does not enhance the heuristics compared to GOOSEgat; in fact, fewer
problems are solved. This is primarily due to the blocksworld domain, where 15 fewer problems are
solvedwithGOOSEgat−retrain thanwithGOOSEgat. The retraining process appears to negatively impact
the blocksworld domain, possibly causing some crucial information to be lost. In the other domains,
GOOSEgat−retrain performs on par with GOOSEgat, but does not surpass it, resulting in overall poorer
performance compared toGOOSEgat. The only heuristicsGOOSEgat−retrain manages to outperform in
terms of the overall performance are hblind andGOOSEstandard.

Table 4.11 also highlights the results for medium and hard problems where we hoped to see improve-
ments using GOOSEgat−retrain. We compare GOOSEgat−retrain against the baseline heuristics, the best-
performing heuristic on medium problems so far,GOOSEmh−retrain, andGOOSEgat, the version of the
heuristic without retraining. The only heuristic outperformed by GOOSEgat−retrain on medium prob-
lems isGOOSEstandard; all other heuristics achieve similar or better performances, with the blocksworld
domain again being the primary area of weakness for GOOSEgat−retrain. On hard problems, the situ-
ation is similar, with GOOSEgat−retrain only slightly outperforming GOOSEmh−retrain by solving four
additional problems, but it performs similarly or worse in other domains.

GOOSEgat−retrain hff GOOSEstandard GOOSEmh−retrain GOOSEgat

Domain medium hard medium hard medium hard medium hard medium hard

blocksworld 11 0 +11 0 -17 -3 -16 0 -15 0
childsnack 0 0 0 0 0 0 0 0 0 0
ferry 30 4 0 -2 0 +1 0 0 0 0
floortile 0 0 0 0 0 0 0 0 0 0
miconic 30 23 0 -7 0 -1 0 +4 0 0
rovers 3 0 -2 0 +2 0 -10 0 0 0
satellite 2 0 -28 -2 +2 0 -21 0 +1 0
sokoban 3 0 -3 0 +1 0 -3 0 0 0
spanner 21 0 +21 0 +17 0 -9 0 -4 0
transport 10 0 +1 0 +4 0 -4 0 +1 0

all 110 27 0 -11 +9 -3 -63 +4 -17 0

Table 4.11: The first column lists the number of medium and hard problems solved using theGOOSEgat−retrain heuristic. The remaining
columns show the difference in this number compared to baseline and previously introduced heuristics. For example, a value of +11
under hff meansGOOSEWL−GPR solves 11 problems more than hff in that domain. The baseline hblind was omitted because it does
not solve any medium or hard problems.

72

The results presented suggest that retraining attention models is not an optimal approach in our use
case. The heuristicGOOSEgat−retrain fails to outperformGOOSEgat, the non-retrained version, and also
exhibits worse performance compared to most of the other heuristics we previously introduced, as well
as the baseline heuristics. Figure 4.5 underlines thatGOOSEgat−retrain offers no significant performance
advantage overGOOSEgat. In terms of plan cost and thenumber of expandednodes,GOOSEgat−retrain is
the preferred heuristic for only a few problems. For themajority of problems,GOOSEgat eithermatches
or outperforms GOOSEgat−retrain with respect to both expanded nodes and plan cost. Moreover, con-
sidering the additional time required to generate a separate training dataset and conduct the retraining
process, the results ofGOOSEgat−retrain do not justify the extra effort compared to other heuristics. The
suboptimal performance with retrainingmight be linked to the increased complexity introduced by the
attention mechanism. During retraining, attention weights may become less stable or overfit to specific
patterns, which could lead to a decline in performance if the model overly focuses on relationships that
do not generalize well. In conclusion, retraining the RGATmodel is not the most effective strategy for
enhancing the GOOSE framework, as other heuristics have demonstrated greater effectiveness.

Figure 4.5: The number of expanded nodes and the plan cost forGOOSEgat compared toGOOSEgat−retrain of the medium problems.
For problems unsolved by one planner, the corresponding metric is set to the axis limit. Points located in the top‐left triangle favor
GOOSEgat−retrain.

4.7 Masked Attention for Graphs

This section presents the results obtained using theMAGmodel described in subsection 2.2.6, replacing
the previously used GNNmodels for heuristic modeling in GOOSE. The experiments were conducted
as detailed in section 3.9. The approach is referred to asGOOSEMAG−node orGOOSEMAG−edge depend-
ing on whether the MAGmodel is based on the node features or edge features.

Due to time constraints, wewere unable to complete experiments for all difficulty levels and problem
domains. While we trained models for all domains, we could not finish testing for all of them. There-
fore, the following preliminary results are shown only for the easy difficulty level across five domains:

73

Blocksworld, Floortile, Miconic, Rovers, and Sokoban. The domains were selected based on specific
characteristics. Miconic was chosen because in the previous experiments nearly all heuristics performed
well in this domain, hoping that the same is true for the MAG models. Blocksworld and Rovers were
included because GOOSEstandard performs well, but hff does not, allowing us to evaluate the effective-
ness of MAGmodels. Floortile and Sokoban were selected as GOOSEstandard performs poorly in these
domains due to limited expressiveness since these domains do not fall into the C2 subclass of first-order
logic. This allows us to assess if MAG can enhance expressiveness. Due to time constraints, we used a
10-minute timeout for solving each problem, instead of the 20 minutes used in previous experiments,
to expedite the testing process. Baseline heuristics include hblind and GOOSEstandard, both performed
with a 10-minute timeout per problem. We evaluatedbothMAGapproaches: GOOSEMAG−edge, which
uses edge features and the edge adjacency matrix as a mask, andGOOSEMAG−node, which uses node fea-
tures and the node adjacency matrix as a mask. Table 4.12 shows the number of solved problems for
the baseline heuristics, GOOSEMAG−node, and GOOSEMAG−edge for the domains Blocksworld, Floor-
tile, Miconic, Rovers, and Sokoban at the easy difficulty level.

Analyzing the results, we observe that the performance ofGOOSEMAG−edge andGOOSEMAG−node is
suboptimal, as they are outperformed by hblind in all domains. This suggests that these models maymis-
lead the planner’s search process. The only domain where they manage to outperform GOOSEstandard
is Sokoban. Overall, GOOSEMAG−node and GOOSEMAG−edge solve only 38 and 39 problems, which is
significantly fewer problems than the baseline models manage to solve. This indicates that theMAG ap-
proach does notworkwell as a heuristic. There is almost no difference in the number of solved problems
between GOOSEMAG−node and GOOSEMAG−edge, providing no clear indication of which approach is
more suitable as a heuristic in GOOSE.

baseline MAG

Domain hblind GOOSEstandard GOOSEMAG−node GOOSEMAG−edge

blocksworld 8 30 2 2
floortile 2 0 0 0
miconic 30 30 18 19
rovers 15 26 5 5
sokoban 27 1 13 13

all 82 87 38 39

Table 4.12: Number of solved problems for GOOSEMAG−node and GOOSEMAG−edge compared to the baseline heuristics. All tests were
conducted on problems of easy difficulty level with a timeout of 10 minutes per problem. In each domain 30 easy problems were tested.

To investigate the suboptimal performance of GOOSEMAG, we will first examine the validation loss.

74

Table 4.13presents a comparisonof the validation loss for theGOOSEMAGmodels and theGOOSEstandard
models. Since training could be completed for all problem domains, we can compare the validation
losses across all domains. ForGOOSEMAG, the loss for both the edge and node approaches is shown, as
indicated by the ”type” column.

Domain Type GOOSEstandard GOOSEMAG Difference
blocksworld Node 0.24 2.78 +2.54

Edge 0.24 3.46 +3.22
ferry Node 0.01 0.82 +0.81

Edge 0.01 0.73 +0.72
floortile Node 0.78 0.99 +0.21

Edge 0.78 1.08 +0.30
miconic Node 0.85 0.74 -0.11

Edge 0.85 0.95 +0.10
rovers Node 1.01 1.17 +0.16

Edge 1.01 1.04 +0.03
satellite Node 0.09 0.65 +0.56

Edge 0.09 0.60 +0.51
sokoban Node 47.41 36.33 -11.08

Edge 47.41 27.24 -20.17
spanner Node 1.63 2.19 +0.56

Edge 1.63 1.96 +0.33
transport Node 0.80 1.57 +0.77

Edge 0.80 1.42 +0.62

Table 4.13: Validation loss ofGOOSEstandard andGOOSEmag. The ”type” column applies only toGOOSEmag , indicating whether the
loss is from a node or edge model. InGOOSEstandard , there is no such distinction, so the results are simply repeated for comparison.

In most domains, the loss is significantly higher than in GOOSEstandard, suggesting that the model
does not effectively capture the heuristic function. One possible reason for this is the limited amount
of data. As attention mechanisms add complexity to the model, and considering that the MAG mod-
els have more parameters than the RGNNmodels used inGOOSEstandard they typically require a larger
amountof trainingdata tofitwell. For example theGOOSEstandardRGNNmodleused for theblocksworld
domainhas 54721 trainableparameters compared to1794529 trainableparameters of theGOOSEmag−node

model used for the blocksworld domain. An exception to the higher validation loss is the Sokoban do-
main, where the validation loss, although still high compared to other domains, shows clear improve-
ment withMAG in both the node and edge approach. This explains the results in Table 4.12, where the
Sokoban domain is the only domain where the GOOSEMAG heuristics outperform the GOOSEstandard

75

heuristic. Additionally, in the Miconic domain, the MAGmodel results in a better validation loss. To
gain further insights intowhyGOOSEMAG still performs significantly worse thanGOOSEstandard in this
domain, the next step is to examine the inference time.

Table 4.14 presents the inference time of the GOOSEMAG models compared to the GOOSEstandard
models. It is evident that the inference time for allGOOSEMAGmodels is significantly higher than that of
the RGNNmodels used inGOOSEstandard. On average, the inference time for theGOOSEMAG models
is approximately 36 times longer than for theGOOSEstandard models.

Domain Type GOOSEstandard GOOSEMAG Difference
blocksworld Node 0.012 1.7700 1.7580

Edge 0.012 1.8581 1.8461
ferry Node 0.0128 1.7863 1.7735

Edge 0.0128 1.7389 1.7261
floortile Node 0.061 1.7328 1.6718

Edge 0.061 1.7369 1.6759
miconic Node 0.1298 1.7255 1.5957

Edge 0.1298 1.7132 1.5834
rovers Node 0.0175 1.7137 1.6962

Edge 0.0175 1.8539 1.8364
satellite Node 0.0467 1.7207 1.6740

Edge 0.0467 1.7443 1.6976
sokoban Node 0.0386 1.7083 1.6697

Edge 0.0386 1.7403 1.7017
spanner Node 0.0156 1.7031 1.6875

Edge 0.0156 1.7536 1.7380
transport Node 0.0758 1.7042 1.6284

Edge 0.0758 1.7349 1.6591
Average 0.0455 1.7466 1.7011

Table 4.14: Inference time ofGOOSEstandard andGOOSEmag. The ”type” column applies only toGOOSEmag , indicating whether the
time is from a node or edge model. InGOOSEstandard , ther e is no such distinction, so the results are simply repeated for comparison.

Given that the heuristic may be evaluated millions of times by the Fast Downward planner when
solving a problem, this substantially higher inference time can significantly slow down the search pro-
cess. This is a key explanation for the poor performance of the GOOSEMAG models and is probabaly
the reasonwhy despite a better validation loss in themiconic domain theGOOSEMAG heuristic still per-
forms worse then the GOOSEstandard heuristic. The primary reason for the extended inference time is
the generation of the node and edge feature matrices, as well as the creation of the masks needed for the

76

attention mechanism. Once these elements are generated, the forward pass itself does not take much
longer than the forward pass through the RGNNmodels of GOOSEstandard. Therefore, if we can find
a way to optimize the generation of the feature matrices and the masks within the GOOSE framework,
performance may improve.

Overall, we can conclude that the current GOOSEMAG−node and GOOSEMAG−edge approaches lead
to suboptimal performance on easy problems and do not outperform the baseline heuristics. In the
way they are currently implemented, they are not effective heuristics and are not viable alternatives to
our previously presented approaches. We could not discern a clear difference in the performance of
theGOOSEMAG−node andGOOSEMAG−edge models, providing no indication of which approachmight
workbetterwithin theGOOSE framework. The suboptimal performance of theGOOSEMAG heuristics
is due to two main reasons. Firstly, the MAG models do not fit the data as well as the RGNN models
ofGOOSEstandard, as indicated by their higher validation losses. This is likely because theMAGmodels
have significantly more parameters and would require more data to achieve a better fit. Secondly, the
generation of the feature matrix and masks results in much higher inference times for the GOOSEMAG

models compared to the GOOSEstandard models, which significantly slows down the planner’s search
process. Before further exploring theGOOSEMAG approaches, either amore optimized implementation
of thematrix generationneeds to be integrated into theGOOSE framework, ormore training data needs
to be available. Ideally, both improvements should be made before continuing exploring the approach.
With the current setup, further exploration is likely not worthwhile.

4.8 Weisfeiler LemanModel

For thefinal comparison,wewill evaluate theperformanceof thepreviously introducedheuristics against
one of the latest enhancements to the GOOSE framework: the WL-kernel models. Specifically, we will
focus on the model utilizing Gaussian Process Regression (GPR) with a dot product kernel, as this ap-
proach demonstrated the best performance in a domain-dependent setting according to themost recent
GOOSEstudy, as outlined in subsubsection2.3.3.2. This approachwill be referred to asGOOSEWL−GPR.

Table 4.15 presents the overall coverage of GOOSEWL−GPR in comparison to the baseline heuristics
and the heuristics introduced in this thesis. SinceGOOSEWL−GPR is a deterministic model, no variance
is reported. In terms of the overall performance GOOSEWL−GPR manages to outperform all baseline
heuristics aswell as heuristics presented so far in this thesis. The closest competitor in termsof overall per-
formance is GOOSEmh−retrain, which still solves approximately 20 fewer problems. However, some of
our previously introduced heuristics surpassGOOSEWL−GPR in specific domains, including transport,
rovers, and sokoban. Additionally, hff achieves better performance in the satellite and floortile domains.
In the remaining five domains, GOOSEWL−GPR emerges as the best-performing heuristic, particularly
excelling in the ferry and spanner domains. The superior performance of GOOSEWL−GPR can be at-

77

tributed to its ability to solve a significantly higher number of hard problems. As shown in Table 4.16,
GOOSEWL−GPR outperforms other heuristics in the number of solved medium and hard problems,
solving a total of 68 hard problems, 37more than the next best-performing heuristicGOOSEretrain. Ad-
ditionally, GOOSEWL−GPR delivers strong results on medium problems, being the only heuristic capa-
ble of solving any medium childsnack problems. However, in terms of overall performance onmedium
problems, it is outperformed byGOOSEmh−retrain, particularly in the transport domain.

Domain h b
lin

d

hf
f

G
O
O
SE

sta
nd

ar
d

G
O
O
SE

re
tr
ai
n

G
O
O
SE

m
h

G
O
O
SE

m
h−

re
tr
ai
n

G
O
O
SE

ga
t

G
O
O
SE

ga
t−

re
tr
ai
n

G
O
O
SE

W
L−

G
PR

blocksworld 8 27 61 53 49 57 55 40 70
childsnack 9 25 13 13 18 18 20 20 29
ferry 11 66 63 64 63 64 64 64 75
floortile 3 12 1 1 9 9 1 1 2
miconic 30 90 84 83 81 79 83 83 90
rovers 15 34 28 41 36 43 31 32 36
satellite 12 62 23 32 46 53 31 32 53
sokoban 28 36 31 34 36 36 32 33 33
spanner 30 30 34 61 56 60 55 51 71
transport 9 39 35 43 48 46 39 40 29

variance 0 0 ± 0.9 ± 1.9 ± 0.8 ± 1.8 ± 0.9 ± 1.9 0

all 155 421 373 425 442 465 411 396 488

Table 4.15: Coverage of the FastDownward planner usingGOOSEgat−retrain as a heuristic compared to the baseline heuristics,
GOOSEretrain ,GOOSEmh ,GOOSEmh−retrain andGOOSEgat. The top three heuristics in each row are highlighted with cell color‐
ing intensity, with the best one in bold. The maximum number of problems that can be solved per domain is 90 (30 easy, 30 medium and
30 hard problems), so the maximum overall achievable coverage is 900.

The likely reason for the superior performance of GOOSEWL−GPR is its very fast evaluation time.
Kernel models are quick to train and evaluate, which provides a significant advantage in more difficult
problems. Typically, as problem difficulty increases, the planner evaluates the heuristic more frequently,
making the speed of evaluation crucial. In terms of expressiveness, as discussed in subsection 2.2.5, the
WL kernel models share the same expressiveness as GNNs. This might explain why GOOSEWL−GPR

does not perform well in the floortile domain, where a more expressive model is likely required.
Overall, the performance ofGOOSEWL−GPR compared to other GNN-based heuristics tested in this

78

research appears very promising. Future work could explore approaches such as retraining or multi-
heuristic search using kernel models instead of GNNs to determine whether these methods can further
enhance the performance of kernel based heuristics as they have proven to work for GNN based heuris-
tics.

GOOSEWL−GPR hff GOOSEstandard GOOSEretrain GOOSEmh−retrain

Domain medium hard medium hard medium hard medium hard medium hard

blocksworld 28 12 +28 +12 0 +9 +8 +9 +1 +12
childsnack 5 0 +5 0 +5 0 +5 0 +5 0
ferry 30 15 0 +9 0 +27 0 +11 0 +11
floortile 0 0 0 0 0 0 0 0 0 0
miconic 30 30 0 0 0 +6 0 +7 0 +11
rovers 6 0 +1 0 +5 0 +5 0 -7 0
satellite 23 0 -7 -2 +23 0 +14 0 0 0
sokoban 4 0 -2 0 +2 0 -1 0 -2 0
spanner 30 11 +30 +11 +26 +11 0 +10 0 +11
transport 0 0 -9 0 -6 0 -13 0 -14 0

all 156 68 +46 +30 +55 +53 +18 +37 -17 +45

Table 4.16: The first columnGOOSEWL−GPR lists the number of medium and hard problems solved using theGOOSEWL−GPR heuris‐
tic. The remaining columns show the difference in this number compared to baseline and previously introduced heuristics. For example,
a value of +28 under hff meansGOOSEWL−GPR solves 28 problems more than hff in that domain. The baseline hblind was omitted
because it does not solve any medium or hard problems.

79

80

5
Conclusion

Thiswork explored various approaches for enhancing theGOOSE framework to solve problems in auto-
mated planning, particularly focusing onmitigating domain drift that occurs when domain-dependent
heuristics, trained on simpler problems, are applied tomore complex ones. Therefore we introduced six
newheuristics: GOOSEretrain,GOOSEmh,GOOSEmh−retrain,GOOSEgat,GOOSEgat−retrain, andGOOSEmag.
Most of these were further developments of previously implemented heuristics in GOOSE based on
RGNN models. We conducted a comparative analysis of these heuristics against each other and three
baseline heuristics—hblind, hff and GOOSEstandard —evaluating them based on coverage of the Fast-
Downward planner, the number of expanded nodes by the planner, and the cost of the resulting plans
when using the heuristics. In addition we provided a comparison to theGOOSEWL−GPR heuristic one
of the most recently published heuristics in the GOOSE framework. All our proposed heuristics, ex-
ceptGOOSEmag, outperformed the previously used RGNNmodel (GOOSEstandard). However, not all
of them managed to surpass all the baseline heuristics as they were outperformed by hff in terms of the
overall performance. The kernel-based heuristic, GOOSEWL−GPR, remained the most effective over-
all, although GOOSEmh−retrain closely followed, particularly excelling in medium-difficulty problems.
This suggests that retraining andmulti-heuristic search are promising approaches formitigating domain
drift between training on easy and testing on medium-difficulty problems. Our introduced heuristics
did not achieve significant improvements on the hard problems. The limited number of retraining prob-
lems hindered the effectiveness of retraining, andmulti-heuristic search slowed down the search process,
which is critical in more complex scenarios. The heuristics GOOSEgat and GOOSEgat−retrain, which
incorporated attention mechanisms to the framework, did not perform that well due to the longer in-
ference times and increased model complexity that results in more trainable parameters which would
benefit from more training data. Similarly, the novel approach in GOOSEmag, which provides more

81

expressiveness because it does not rely on message passing, faced challenges due to high inference times
and likely also requires more training data, as suggested by the relatively high validation losses.

In summary, we developed multiple heuristics that effectively reduced domain drift from easy to
mediumproblems,withGOOSEmh−retrain showing thebest performance. The attention-based approaches
were hindered by limited training data and increased complexity, leading to fewer solved problems. On
harder problems, we observed less improvement, with the kernel model GOOSEWL−GPR maintaining
its status as the best-performing heuristic, likely due to its fast evaluation time.

5.1 FutureWork

This thesis focused on domain-dependentmodel training, wheremodels were trained and tested within
the same problem domain. However, previous GOOSE studies have demonstrated the feasibility of
learning domain-independent heuristics. A direction for future work could involve replicating the ex-
periments described in this thesis using a domain-independent approach. This would entail training a
model on data from multiple domains and testing it across all those domains. Such an approach could
provide valuable insights into whether multiheuristic search with retraining still yields the best results
in a broader context or if models with attention mechanisms exhibit better performance in a more gen-
eralized setting.

Exploring the integration of theGOOSEWL−GPR heuristic, which has shown to outperformmultiple
of our heuristics in the experiments, into themultiheuristic search framework could be another promis-
ing direction for future research. This could involve incorporating it as a third heuristic or replacing
one of the current heuristics. Evaluating this integration could reveal whether it leads to further perfor-
mance improvements and potentially refine the multiheuristic search strategy for better optimization
results. The retraining approach could as well be applied to the GOOSEWL−GPR models to evaluate if
retraining also helps the kernel models to overcome the domain drift. Given that these models are very
fast to train, the retraining process would not be particularly time-consuming. Additionally, a deeper
exploration of the MAG approach could be valuable. Our findings indicated that one of the primary
drawbacks of the MAG approach is the time required to generate feature and adjacency matrices. Op-
timizing this process could enhance the overall effectiveness of the MAG approach. Investigating more
efficientmethods for generating thesematricesmight lead to better performance outcomes. This would
be especially interesting in domains such as floortile, whereGNNs face limitations due to expressiveness
constraints. By addressing these computational challenges, theMAGapproach could yield better results
and expand its applicability across a wider range of problem domains.

In conclusion, while this thesis has laid a strong foundation in domain-dependent heuristic search,
there remains a wealth of opportunities for expanding and enhancing the current methodologies. By
exploring domain-independent approaches, optimizing the MAG framework, and integrating kernel

82

methods to the multiheuristic search future research can further push the boundaries of what is achiev-
able with the GOOSE framework.

83

84

References

[1] M. Helmert, “The Fast Downward Planning System,” Journal of Artificial Intelligence Research,
vol. 26, pp. 191–246, Jul. 2006, arXiv:1109.6051 [cs]. [Online]. Available: http://arxiv.org/
abs/1109.6051

[2] B. Khemani, S. Patil, K. Kotecha, and S. Tanwar, “A review of graph neural networks: concepts,
architectures, techniques, challenges, datasets, applications, and future directions,” Journal
of Big Data, vol. 11, no. 1, p. 18, Jan. 2024. [Online]. Available: https://doi.org/10.1186/
s40537-023-00876-4

[3] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling, “Modeling
Relational Data with Graph Convolutional Networks,” Oct. 2017, arXiv:1703.06103 [cs, stat].
[Online]. Available: http://arxiv.org/abs/1703.06103

[4] B. Zhang, C. Fan, S. Liu, K. Huang, X. Zhao, J. Huang, and Z. Liu, “The Expressive Power
of Graph Neural Networks: A Survey,” Aug. 2023, arXiv:2308.08235 [cs]. [Online]. Available:
http://arxiv.org/abs/2308.08235

[5] D. Buterez, J. P. Janet, D. Oglic, and P. Lio, “Masked Attention is All You Need for Graphs,”
Feb. 2024, arXiv:2402.10793 [cs]. [Online]. Available: http://arxiv.org/abs/2402.10793

[6] D. Z. Chen, S. Thiébaux, and F. Trevizan, “Learning Domain-Independent Heuristics for
Grounded and Lifted Planning,” Dec. 2023, arXiv:2312.11143 [cs]. [Online]. Available:
http://arxiv.org/abs/2312.11143

[7] M. Helmert and S. Richter, “Doc/Evaluator - Fast Downward Homepage.” [Online]. Available:
https://www.fast-downward.org/Doc/Evaluator

[8] M. Helmert, S. Richter, and J. Seipp, “Doc/SearchAlgorithm - Fast Downward Homepage.”
[Online]. Available: https://www.fast-downward.org/Doc/SearchAlgorithm

[9] S. Chen and K. Mao, “Explicit and implicit knowledge-enhanced model for event causality
identification,” Expert Systems with Applications, vol. 238, p. 122039, Mar. 2024. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0957417423025411

[10] H. Geffner and B. Bonet, “Classical Planning: Full Information and Deterministic Actions,”
in A Concise Introduction to Models and Methods for Automated Planning, H. Geffner and

85

http://arxiv.org/abs/1109.6051
http://arxiv.org/abs/1109.6051
https://doi.org/10.1186/s40537-023-00876-4
https://doi.org/10.1186/s40537-023-00876-4
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/2308.08235
http://arxiv.org/abs/2402.10793
http://arxiv.org/abs/2312.11143
https://www.fast-downward.org/Doc/Evaluator
https://www.fast-downward.org/Doc/SearchAlgorithm
https://www.sciencedirect.com/science/article/pii/S0957417423025411

B. Bonet, Eds. Cham: Springer International Publishing, 2013, pp. 15–36. [Online]. Available:
https://doi.org/10.1007/978-3-031-01564-9_2

[11] I. Partalas, D. Vrakas, and I. Vlahavas, “Reinforcement Learning and Automated Planning: A
Survey,” Artificial Intelligence for Advanced Problem Solving Techniques, Jan. 2012.

[12] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting, 1st ed. Cambridge
University Press, Jul. 2016. [Online]. Available: https://www.cambridge.org/core/product/
identifier/9781139583923/type/book

[13] S. Richter and M. Westphal, “The LAMA Planner: Guiding Cost-Based Anytime Planning
with Landmarks,” Journal of Artificial Intelligence Research, vol. 39, pp. 127–177, Sep. 2010,
arXiv:1401.3839 [cs]. [Online]. Available: http://arxiv.org/abs/1401.3839

[14] J.Hoffmann, “TheMetric-FF Planning System: Translating ”IgnoringDelete Lists” toNumeric
State Variables,” Journal of Artificial Intelligence Research, vol. 20, pp. 291–341, Dec. 2003,
arXiv:1106.5271 [cs]. [Online]. Available: http://arxiv.org/abs/1106.5271

[15] S. Toyer, F. Trevizan, S. Thiébaux, and L. Xie, “Action Schema Networks: Generalised
Policies with Deep Learning,” Dec. 2017, arXiv:1709.04271 [cs]. [Online]. Available: http:
//arxiv.org/abs/1709.04271

[16] W. Shen, F. Trevizan, S. Toyer, S. Thiebaux, and L. Xie, “Guiding Search with Gen-
eralized Policies for Probabilistic Planning,” Proceedings of the International Symposium on
Combinatorial Search, vol. 10, no. 1, pp. 97–105, 2019, number: 1. [Online]. Available:
https://ojs.aaai.org/index.php/SOCS/article/view/18507

[17] E. Groshev, M. Goldstein, A. Tamar, S. Srivastava, and P. Abbeel, “Learning Generalized
Reactive Policies using Deep Neural Networks,” Jul. 2018, arXiv:1708.07280 [cs]. [Online].
Available: http://arxiv.org/abs/1708.07280

[18] D. Z. Chen, F. Trevizan, and S. Thiébaux, “Return to Tradition: Learning Reliable Heuristics
with Classical Machine Learning,” Mar. 2024, arXiv:2403.16508 [cs]. [Online]. Available:
http://arxiv.org/abs/2403.16508

[19] J. Seipp and J. Segovia-Aguas, “International Planning Competition 2023,” 2023. [Online].
Available: https://ipc2023-learning.github.io/

[20] D. McDermott, M. Ghallab, A. Howe, C. A. Knoblock, A. Ram,
M. Veloso, D. S. Weld, and D. Wilkins, “PDDL-the planning domain def-
inition language,” 1998. [Online]. Available: https : / /www . semanticscholar .

86

https://doi.org/10.1007/978-3-031-01564-9_2
https://www.cambridge.org/core/product/identifier/9781139583923/type/book
https://www.cambridge.org/core/product/identifier/9781139583923/type/book
http://arxiv.org/abs/1401.3839
http://arxiv.org/abs/1106.5271
http://arxiv.org/abs/1709.04271
http://arxiv.org/abs/1709.04271
https://ojs.aaai.org/index.php/SOCS/article/view/18507
http://arxiv.org/abs/1708.07280
http://arxiv.org/abs/2403.16508
https://ipc2023-learning.github.io/
https://www.semanticscholar.org/paper/PDDL-the-planning-domain-definition-language-McDermott-Ghallab/d82c6b8081343b2eae63d45feefe630233ad60e1
https://www.semanticscholar.org/paper/PDDL-the-planning-domain-definition-language-McDermott-Ghallab/d82c6b8081343b2eae63d45feefe630233ad60e1

org / paper / PDDL-the-planning-domain-definition-language-McDermott-Ghallab /
d82c6b8081343b2eae63d45feefe630233ad60e1

[21] D. Busbridge, D. Sherburn, P. Cavallo, and N. Y. Hammerla, “Relational Graph Attention
Networks,” Apr. 2019, arXiv:1904.05811 [cs, stat]. [Online]. Available: http://arxiv.org/abs/
1904.05811

[22] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of theorem proving
to problem solving,” Artificial Intelligence, vol. 2, no. 3, pp. 189–208, Dec. 1971. [Online].
Available: https://www.sciencedirect.com/science/article/pii/0004370271900105

[23] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529,
no. 7587, pp. 484–489, Jan. 2016, publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/nature16961

[24] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “Mastering Chess
and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” Dec. 2017,
arXiv:1712.01815 [cs]. [Online]. Available: http://arxiv.org/abs/1712.01815

[25] H.Geffner andB.Bonet,AConcise Introduction toModels andMethods forAutomatedPlanning,
ser. Synthesis Lectures on Artificial Intelligence and Machine Learning. Cham: Springer
International Publishing, 2013. [Online]. Available: https://link.springer.com/10.1007/
978-3-031-01564-9

[26] M. Helmert, “Concise finite-domain representations for PDDL planning tasks,” Artificial
Intelligence, vol. 173, no. 5, pp. 503–535, Apr. 2009. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0004370208001926

[27] P. Lauer, A. Torralba, D. Fišer, D. Höller, J. Wichlacz, and J. Hoffmann, “Polynomial-Time
in PDDL Input Size: Making the Delete Relaxation Feasible for Lifted Planning,” in
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Montreal,
Canada: International Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp.
4119–4126. [Online]. Available: https://www.ijcai.org/proceedings/2021/567

[28] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial Intelligence, vol. 129, no. 1,
pp. 5–33, Jun. 2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0004370201001084

87

https://www.semanticscholar.org/paper/PDDL-the-planning-domain-definition-language-McDermott-Ghallab/d82c6b8081343b2eae63d45feefe630233ad60e1
https://www.semanticscholar.org/paper/PDDL-the-planning-domain-definition-language-McDermott-Ghallab/d82c6b8081343b2eae63d45feefe630233ad60e1
http://arxiv.org/abs/1904.05811
http://arxiv.org/abs/1904.05811
https://www.sciencedirect.com/science/article/pii/0004370271900105
https://www.nature.com/articles/nature16961
http://arxiv.org/abs/1712.01815
https://link.springer.com/10.1007/978-3-031-01564-9
https://link.springer.com/10.1007/978-3-031-01564-9
https://www.sciencedirect.com/science/article/pii/S0004370208001926
https://www.sciencedirect.com/science/article/pii/S0004370208001926
https://www.ijcai.org/proceedings/2021/567
https://www.sciencedirect.com/science/article/pii/S0004370201001084
https://www.sciencedirect.com/science/article/pii/S0004370201001084

[29] J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan Generation Through
Heuristic Search,” Journal of Artificial Intelligence Research, vol. 14, pp. 253–302, May 2001,
arXiv:1106.0675 [cs]. [Online]. Available: http://arxiv.org/abs/1106.0675

[30] M. Katz, S. Sohrabi, and H. Samulowitz, “Delfi: Online Planner Selection for
Cost-Optimal Planning,” 2018. [Online]. Available: https://www.semanticscholar .
org/paper/Del%EF%AC%81%3A-Online-Planner-Selection-for-Cost-Optimal-Katz-Sohrabi/
43d2dd86ee01fb14536d86c6bfac3bc3dada270f

[31] S. Sievers, “Merge-and-Shrink Heuristics for Classical Planning: Efficient Implementation
and Partial Abstractions,” Proceedings of the International Symposium on Combinatorial Search,
vol. 9, no. 1, pp. 90–98, 2018, number: 1. [Online]. Available: https://ojs.aaai.org/index.php/
SOCS/article/view/18450

[32] J. Seipp, T. Keller, and M. Helmert, “Saturated Cost Partitioning for Optimal Classical
Planning,” Journal of Artificial Intelligence Research, vol. 67, pp. 129–167, Jan. 2020. [Online].
Available: https://www.jair.org/index.php/jair/article/view/11673

[33] A. I. Coles and A. J. Smith, “Marvin: A Heuristic Search Planner with Online Macro-
Action Learning,” Journal of Artificial Intelligence Research, vol. 28, pp. 119–156, Feb. 2007,
arXiv:1110.2736 [cs]. [Online]. Available: http://arxiv.org/abs/1110.2736

[34] W. Ju, Z. Liu, Y. Qin, B. Feng, C. Wang, Z. Guo, X. Luo, and M. Zhang, “Few-
shot Molecular Property Prediction via Hierarchically Structured Learning on Relation
Graphs,” Neural Networks, vol. 163, pp. 122–131, Jun. 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608023001685

[35] Y. Xu, L. Zhu, J. Li, F. Li, and H. Shen, “Temporal Social GraphNetwork Hashing for Efficient
Recommendation,” IEEE Transactions on Knowledge and Data Engineering, vol. PP, pp. 1–14,
Jan. 2024.

[36] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou, “AliGraph: A
Comprehensive GraphNeural Network Platform,” Feb. 2019, arXiv:1902.08730 [cs]. [Online].
Available: http://arxiv.org/abs/1902.08730

[37] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey
on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 1, pp. 4–24, Aug. 2019, arXiv:1901.00596 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1901.00596

88

http://arxiv.org/abs/1106.0675
https://www.semanticscholar.org/paper/Del%EF%AC%81%3A-Online-Planner-Selection-for-Cost-Optimal-Katz-Sohrabi/43d2dd86ee01fb14536d86c6bfac3bc3dada270f
https://www.semanticscholar.org/paper/Del%EF%AC%81%3A-Online-Planner-Selection-for-Cost-Optimal-Katz-Sohrabi/43d2dd86ee01fb14536d86c6bfac3bc3dada270f
https://www.semanticscholar.org/paper/Del%EF%AC%81%3A-Online-Planner-Selection-for-Cost-Optimal-Katz-Sohrabi/43d2dd86ee01fb14536d86c6bfac3bc3dada270f
https://ojs.aaai.org/index.php/SOCS/article/view/18450
https://ojs.aaai.org/index.php/SOCS/article/view/18450
https://www.jair.org/index.php/jair/article/view/11673
http://arxiv.org/abs/1110.2736
https://www.sciencedirect.com/science/article/pii/S0893608023001685
https://www.sciencedirect.com/science/article/pii/S0893608023001685
http://arxiv.org/abs/1902.08730
http://arxiv.org/abs/1901.00596

[38] W. Ju, S. Yi, Y. Wang, Z. Xiao, Z. Mao, H. Li, Y. Gu, Y. Qin, N. Yin, S. Wang, X. Liu, X. Luo,
P. S. Yu, and M. Zhang, “A Survey of Graph Neural Networks in Real world: Imbalance,
Noise, Privacy and OOD Challenges,” Mar. 2024, arXiv:2403.04468 [cs]. [Online]. Available:
http://arxiv.org/abs/2403.04468

[39] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,”
in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., vol. 2.
Montreal, Que., Canada: IEEE, 2005, pp. 729–734. [Online]. Available: http://ieeexplore.ieee.
org/document/1555942/

[40] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini, “The Graph
Neural Network Model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, Jan.
2009. [Online]. Available: http://ieeexplore.ieee.org/document/4700287/

[41] A. Sandryhaila and J. M. F. Moura, “Discrete Signal Processing on Graphs,” IEEE Transactions
on Signal Processing, vol. 61, no. 7, pp. 1644–1656, Apr. 2013, arXiv:1210.4752 [physics].
[Online]. Available: http://arxiv.org/abs/1210.4752

[42] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The Emerging Field
of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and
Other Irregular Domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, May
2013, arXiv:1211.0053 [cs]. [Online]. Available: http://arxiv.org/abs/1211.0053

[43] T. N. Kipf and M. Welling, “Variational Graph Auto-Encoders,” Nov. 2016, arXiv:1611.07308
[cs, stat]. [Online]. Available: http://arxiv.org/abs/1611.07308

[44] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Networks: A Deep
Learning Framework for Traffic Forecasting,” in Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, Jul. 2018, pp. 3634–3640, arXiv:1709.04875 [cs, stat].
[Online]. Available: http://arxiv.org/abs/1709.04875

[45] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
Attention Networks,” Feb. 2018, arXiv:1710.10903 [cs, stat]. [Online]. Available: http:
//arxiv.org/abs/1710.10903

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, ser. Adaptive computation and
machine learning. Cambridge, Massachusetts: The MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

89

http://arxiv.org/abs/2403.04468
http://ieeexplore.ieee.org/document/1555942/
http://ieeexplore.ieee.org/document/1555942/
http://ieeexplore.ieee.org/document/4700287/
http://arxiv.org/abs/1210.4752
http://arxiv.org/abs/1211.0053
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1709.04875
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://www.deeplearningbook.org

[47] A. Micheli, “Neural Network for Graphs: A Contextual Constructive Approach,” IEEE
Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, Mar. 2009. [Online]. Available:
http://ieeexplore.ieee.org/document/4773279/

[48] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural Message
Passing for Quantum Chemistry,” Jun. 2017, arXiv:1704.01212 [cs]. [Online]. Available:
http://arxiv.org/abs/1704.01212

[49] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra,
P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational inductive biases, deep
learning, and graph networks,” Oct. 2018, arXiv:1806.01261 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1806.01261

[50] I. Bica, H. Andrés-Terré, A. Cvejic, and P. Liò, “Unsupervised generative and graph
representation learning for modelling cell differentiation,” Scientific Reports, vol. 10, no. 1,
p. 9790, Jun. 2020, publisher: Nature Publishing Group. [Online]. Available: https:
//www.nature.com/articles/s41598-020-66166-8

[51] L. Wang, Z.-H. You, Y.-M. Li, K. Zheng, and Y.-A. Huang, “GCNCDA: A new method for
predicting circRNA-disease associations based on Graph Convolutional Network Algorithm,”
PLoS Computational Biology, vol. 16, no. 5, p. e1007568, May 2020. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266350/

[52] N. Karalias and A. Loukas, “Erdos Goes Neural: an Unsupervised Learning Framework for
Combinatorial Optimization on Graphs,” Mar. 2021, arXiv:2006.10643 [cs, stat]. [Online].
Available: http://arxiv.org/abs/2006.10643

[53] C. K. Joshi, T. Laurent, and X. Bresson, “An Efficient Graph Convolutional Network
Technique for the Travelling Salesman Problem,” Oct. 2019, arXiv:1906.01227 [cs, stat].
[Online]. Available: http://arxiv.org/abs/1906.01227

[54] Z. Li, Q. Chen, and V. Koltun, “Combinatorial Optimization with Graph Convolutional
Networks and Guided Tree Search,” Oct. 2018, arXiv:1810.10659 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1810.10659

[55] O.G. Sierra, A.A.Galaz,M.O.Martín, J. A.Rodríguez, andA.A. Barriuso, “TemporalRelation
Prediction from Electronic Health Records Using Graph Neural Networks and Transformers
Embeddings,” in Artificial Intelligence for Healthy Longevity, A. Moskalev, I. Stambler, and

90

http://ieeexplore.ieee.org/document/4773279/
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1806.01261
https://www.nature.com/articles/s41598-020-66166-8
https://www.nature.com/articles/s41598-020-66166-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266350/
http://arxiv.org/abs/2006.10643
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1810.10659

A. Zhavoronkov, Eds. Cham: Springer International Publishing, 2023, pp. 143–152. [Online].
Available: https://doi.org/10.1007/978-3-031-35176-1_7

[56] B. Zhu, Y. Cai, and H. Ren, “Graph neural topic model with commonsense knowledge,”
Information Processing & Management, vol. 60, no. 2, p. 103215, Mar. 2023. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0306457322003168

[57] M.-H. Guo, T.-X. Xu, J.-J. Liu, Z.-N. Liu, P.-T. Jiang, T.-J. Mu, S.-H. Zhang, R. R. Martin,
M.-M. Cheng, and S.-M. Hu, “Attention Mechanisms in Computer Vision: A Survey,”
Computational Visual Media, vol. 8, no. 3, pp. 331–368, Sep. 2022, arXiv:2111.07624 [cs].
[Online]. Available: http://arxiv.org/abs/2111.07624

[58] C. Sun, C. Li, X. Lin, T. Zheng, F. Meng, X. Rui, and Z. Wang, “Attention-based graph neural
networks: a survey,” Artificial Intelligence Review, vol. 56, no. 2, pp. 2263–2310, Nov. 2023.
[Online]. Available: https://doi.org/10.1007/s10462-023-10577-2

[59] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, “An Attentive Survey of Attention
Models,” Jul. 2021, arXiv:1904.02874 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1904.
02874

[60] J. Gasteiger, S. Weißenberger, and S. Günnemann, “Diffusion Improves Graph Learning,” Apr.
2022, arXiv:1911.05485 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1911.05485

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention Is All You Need,” Aug. 2023, arXiv:1706.03762 [cs]. [Online].
Available: http://arxiv.org/abs/1706.03762

[62] A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter, “DeepTox: Toxicity Prediction
usingDeepLearning,” Frontiers in Environmental Science, vol. 3, Feb. 2016, publisher: Frontiers.
[Online]. Available: https://www.frontiersin.org/journals/environmental-science/articles/10.
3389/fenvs.2015.00080/full

[63] L. Wu, P. Cui, J. Pei, and L. Zhao, Eds., Graph Neural Networks: Foundations, Frontiers, and
Applications. Singapore: Springer Nature, 2022. [Online]. Available: https://link.springer.
com/10.1007/978-981-16-6054-2

[64] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of
Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, Dec. 1989. [Online]. Available:
https://doi.org/10.1007/BF02551274

91

https://doi.org/10.1007/978-3-031-35176-1_7
https://www.sciencedirect.com/science/article/pii/S0306457322003168
http://arxiv.org/abs/2111.07624
https://doi.org/10.1007/s10462-023-10577-2
http://arxiv.org/abs/1904.02874
http://arxiv.org/abs/1904.02874
http://arxiv.org/abs/1911.05485
http://arxiv.org/abs/1706.03762
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2015.00080/full
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2015.00080/full
https://link.springer.com/10.1007/978-981-16-6054-2
https://link.springer.com/10.1007/978-981-16-6054-2
https://doi.org/10.1007/BF02551274

[65] K. Oono and T. Suzuki, “Graph Neural Networks Exponentially Lose Expressive Power
for Node Classification,” Jan. 2021, arXiv:1905.10947 [cs, stat]. [Online]. Available: http:
//arxiv.org/abs/1905.10947

[66] J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem. Boston, MA:
Birkhäuser, 1993. [Online]. Available: http://link.springer.com/10.1007/978-1-4612-0333-9

[67] B. Weisfeiler and A. Leman, “The reduction of a graph to canonical form and the algebra which
appears therein,” nti, Series, no. 2, pp. 12–16, 1968.

[68] L. Babai and L. Kucera, “Canonical labelling of graphs in linear average time,” in 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979), Oct. 1979, pp. 39–46, iSSN:
0272-5428. [Online]. Available: https://ieeexplore.ieee.org/document/4567999

[69] L. Babai, P. Erdo˝s, and S. M. Selkow, “Random Graph Isomorphism,” SIAM Journal on
Computing, vol. 9, no. 3, pp. 628–635, Aug. 1980, publisher: Society for Industrial and Applied
Mathematics. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/0209047

[70] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe,
“Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks,” Nov. 2021,
arXiv:1810.02244 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1810.02244

[71] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?” Feb.
2019, arXiv:1810.00826 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1810.00826

[72] A. Fern, R. Givan, and S. Yoon, “Approximate Policy Iteration with a Policy Language
Bias: Solving Relational Markov Decision Processes,” Journal of Artificial Intelligence Research,
vol. 25, pp. 75–118, Jan. 2006, arXiv:1109.2156 [cs]. [Online]. Available: http://arxiv.org/abs/
1109.2156

[73] M. Martín and H. Geffner, “Learning Generalized Policies from Planning Examples Using
Concept Languages,” Applied Intelligence, vol. 20, no. 1, pp. 9–19, Jan. 2004. [Online].
Available: https://doi.org/10.1023/B:APIN.0000011138.20292.dd

[74] J.-Y. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the number of variables
for graph identification,” Combinatorica, vol. 12, no. 4, pp. 389–410, Dec. 1992. [Online].
Available: https://doi.org/10.1007/BF01305232

[75] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. Reutter, and J. P. Silva, “The Logical
Expressiveness of GraphNeural Networks,” Sep. 2019. [Online]. Available: https://openreview.
net/forum?id=r1lZ7AEKvB

92

http://arxiv.org/abs/1905.10947
http://arxiv.org/abs/1905.10947
http://link.springer.com/10.1007/978-1-4612-0333-9
https://ieeexplore.ieee.org/document/4567999
https://epubs.siam.org/doi/abs/10.1137/0209047
http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1109.2156
http://arxiv.org/abs/1109.2156
https://doi.org/10.1023/B:APIN.0000011138.20292.dd
https://doi.org/10.1007/BF01305232
https://openreview.net/forum?id=r1lZ7AEKvB
https://openreview.net/forum?id=r1lZ7AEKvB

[76] S. Ståhlberg, B. Bonet, and H. Geffner, “Learning General Optimal Policies with Graph Neural
Networks: Expressive Power, Transparency, and Limits,” May 2022, arXiv:2109.10129 [cs].
[Online]. Available: http://arxiv.org/abs/2109.10129

[77] M. Grohe, “The Logic of GraphNeural Networks,” Jan. 2022, arXiv:2104.14624 [cs]. [Online].
Available: http://arxiv.org/abs/2104.14624

[78] S. Ståhlberg, B. Bonet, and H. Geffner, “Learning General Policies for Classical Planning
Domains: Getting Beyond C2,” Mar. 2024, arXiv:2403.11734 [cs]. [Online]. Available:
http://arxiv.org/abs/2403.11734

[79] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh, “Set Transformer: A Framework
for Attention-based Permutation-Invariant Neural Networks,” May 2019, arXiv:1810.00825
[cs, stat]. [Online]. Available: http://arxiv.org/abs/1810.00825

[80] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style,
High-Performance Deep Learning Library,” Dec. 2019, arXiv:1912.01703 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1912.01703

[81] B. Lefaudeux, F. Massa, D. Liskovich, W. Xiong, V. Caggiano, S. Naren, M. Xu, J. Hu,
M. Tintore, S. Zhang, P. Labatut, D. Haziza, L. Wehrstedt, J. Reizenstein, and G. Sizov,
“xFormers: A modular and hackable Transformer modelling library,” 2022. [Online]. Available:
https://github.com/facebookresearch/xformers

[82] H. Li, X. Wang, Z. Zhang, and W. Zhu, “OOD-GNN: Out-of-Distribution Generalized
Graph Neural Network,” Dec. 2021, arXiv:2112.03806 [cs]. [Online]. Available: http:
//arxiv.org/abs/2112.03806

[83] Y. Sui, X. Wang, J. Wu, M. Lin, X. He, and T.-S. Chua, “Causal Attention for Interpretable
and Generalizable Graph Classification,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and DataMining, Aug. 2022, pp. 1696–1705, arXiv:2112.15089 [cs].
[Online]. Available: http://arxiv.org/abs/2112.15089

[84] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A Brief Review of Domain Adap-
tation,” in Advances in Data Science and Information Engineering, R. Stahlbock, G. M. Weiss,
M. Abou-Nasr, C.-Y. Yang, H. R. Arabnia, and L. Deligiannidis, Eds. Cham: Springer Inter-
national Publishing, 2021, pp. 877–894.

93

http://arxiv.org/abs/2109.10129
http://arxiv.org/abs/2104.14624
http://arxiv.org/abs/2403.11734
http://arxiv.org/abs/1810.00825
http://arxiv.org/abs/1912.01703
https://github.com/facebookresearch/xformers
http://arxiv.org/abs/2112.03806
http://arxiv.org/abs/2112.03806
http://arxiv.org/abs/2112.15089

[85] C. Cortes, Y. Mansour, and M. Mohri, “Learning Bounds for Importance Weight-
ing,” in Advances in Neural Information Processing Systems, vol. 23. Curran Associates,
Inc., 2010. [Online]. Available: https://papers.nips.cc/paper_files/paper/2010/hash/
59c33016884a62116be975a9bb8257e3-Abstract.html

[86] M. Sugiyama, M. Krauledat, and K.-R. Müller, “Covariate Shift Adaptation by Importance
WeightedCross Validation,” Journal ofMachine LearningResearch, vol. 8, no. 35, pp. 985–1005,
2007. [Online]. Available: http://jmlr.org/papers/v8/sugiyama07a.html

[87] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, B. Schölkopf, J. Candela,
M. Sugiyama, A. Schwaighofer, and N. Lawrence, “Covariate Shift by Kernel Mean Matching,”
Dataset Shift inMachine Learning, 131-160 (2009), Jan. 2009.

[88] N. Yin, L. Shen, B. Li, M. Wang, X. Luo, C. Chen, Z. Luo, and X.-S. Hua, “DEAL: An
Unsupervised Domain Adaptive Framework for Graph-level Classification,” in Proceedings
of the 30th ACM International Conference on Multimedia, ser. MM ’22. New York, NY,
USA: Association for Computing Machinery, 2022, pp. 3470–3479. [Online]. Available:
https://doi.org/10.1145/3503161.3548012

[89] Y.-X. Wu, X. Wang, A. Zhang, X. He, and T.-S. Chua, “Discovering Invariant Rationales
for Graph Neural Networks,” Jan. 2022, arXiv:2201.12872 [cs]. [Online]. Available: http:
//arxiv.org/abs/2201.12872

[90] S. Fan, X. Wang, C. Shi, P. Cui, and B. Wang, “Generalizing Graph Neural Networks
on Out-Of-Distribution Graphs,” Mar. 2024, arXiv:2111.10657 [cs]. [Online]. Available:
http://arxiv.org/abs/2111.10657

[91] D. Buffelli, P. Liò, and F. Vandin, “SizeShiftReg: a Regularization Method for Improving
Size-Generalization in Graph Neural Networks,” Oct. 2022, arXiv:2207.07888 [cs]. [Online].
Available: http://arxiv.org/abs/2207.07888

[92] H. Li, Z. Zhang, X. Wang, andW. Zhu, “Learning Invariant Graph Representations for Out-of-
Distribution Generalization,” Advances in Neural Information Processing Systems, vol. 35, pp.
11 828–11 841, Dec. 2022. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2022/hash/4d4e0ab9d8ff180bf5b95c258842d16e-Abstract-Conference.html

[93] M. Ghallab, D. Nau, and P. Traverso,Automated Planning: Theory and Practice. Elsevier, May
2004, google-Books-ID: eCj3cKC_3ikC.

[94] N. Pochter, A. Zohar, and J. Rosenschein, “Exploiting Problem Symmetries in State-Based
Planners,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25, no. 1, pp.

94

https://papers.nips.cc/paper_files/paper/2010/hash/59c33016884a62116be975a9bb8257e3-Abstract.html
https://papers.nips.cc/paper_files/paper/2010/hash/59c33016884a62116be975a9bb8257e3-Abstract.html
http://jmlr.org/papers/v8/sugiyama07a.html
https://doi.org/10.1145/3503161.3548012
http://arxiv.org/abs/2201.12872
http://arxiv.org/abs/2201.12872
http://arxiv.org/abs/2111.10657
http://arxiv.org/abs/2207.07888
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4d4e0ab9d8ff180bf5b95c258842d16e-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4d4e0ab9d8ff180bf5b95c258842d16e-Abstract-Conference.html

1004–1009, Aug. 2011, number: 1. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/8014

[95] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017,
arXiv:1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.6980

[96] S. Ståhlberg, B. Bonet, and H. Geffner, “Learning General Policies with Policy Gradient
Methods,” Proceedings of the International Conference on Principles of Knowledge Representation
and Reasoning, vol. 19, no. 1, pp. 647–657, Aug. 2023, conference Name: Proceedings of
the 20th International Conference on Principles of Knowledge Representation and Reasoning.
[Online]. Available: https://proceedings.kr.org/2023/63/

[97] F. Pommerening and A. Torralba, “IPC 2018,” 2018. [Online]. Available: https:
//ipc2018-classical.bitbucket.io/

[98] W. Shen, F. Trevizan, and S. Thiébaux, “Learning Domain-Independent Planning Heuristics
with Hypergraph Networks,” Nov. 2019, arXiv:1911.13101 [cs]. [Online]. Available: http:
//arxiv.org/abs/1911.13101

[99] R. Karia and S. Srivastava, “Learning Generalized Relational Heuristic Networks for Model-
Agnostic Planning,” Oct. 2020, arXiv:2007.06702 [cs]. [Online]. Available: http://arxiv.org/
abs/2007.06702

[100] P. Ferber, F. Geißer, F. Trevizan, M. Helmert, and J. Hoffmann, “Neural Network Heuristic
Functions for Classical Planning: Bootstrapping and Comparison to Other Methods,”
Proceedings of the International Conference on Automated Planning and Scheduling, vol. 32, pp.
583–587, Jun. 2022. [Online]. Available: https://ojs.aaai.org/index.php/ICAPS/article/view/
19845

[101] L. Chrestien, T. Pevný, S. Edelkamp, and A. Komenda, “Optimize Planning Heuristics to
Rank, not to Estimate Cost-to-Goal,” Oct. 2023, arXiv:2310.19463 [cs]. [Online]. Available:
http://arxiv.org/abs/2310.19463

[102] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. P. Kaelbling, and M. Katz, “Gener-
alized Planning in PDDL Domains with Pretrained Large Language Models,” Dec. 2023,
arXiv:2305.11014 [cs]. [Online]. Available: http://arxiv.org/abs/2305.11014

[103] A. Bajpai, S. Garg, and Mausam, “Transfer of Deep Reactive Policies for MDP Planning,” Oct.
2018, arXiv:1810.11488 [cs]. [Online]. Available: http://arxiv.org/abs/1810.11488

95

https://ojs.aaai.org/index.php/AAAI/article/view/8014
https://ojs.aaai.org/index.php/AAAI/article/view/8014
http://arxiv.org/abs/1412.6980
https://proceedings.kr.org/2023/63/
https://ipc2018-classical.bitbucket.io/
https://ipc2018-classical.bitbucket.io/
http://arxiv.org/abs/1911.13101
http://arxiv.org/abs/1911.13101
http://arxiv.org/abs/2007.06702
http://arxiv.org/abs/2007.06702
https://ojs.aaai.org/index.php/ICAPS/article/view/19845
https://ojs.aaai.org/index.php/ICAPS/article/view/19845
http://arxiv.org/abs/2310.19463
http://arxiv.org/abs/2305.11014
http://arxiv.org/abs/1810.11488

[104] S. Garg, A. Bajpai, andMausam, “Size Independent Neural Transfer for RDDL Planning,” Apr.
2019, arXiv:1902.03081 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1902.03081

[105] S. Garg and A. Bajpai, “Symbolic Network: Generalized Neural Policies for Relational MDPs,”
Jun. 2020, arXiv:2002.07375 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2002.07375

[106] V. Sharma, D. Arora, F. Geißer, Mausam, and P. Singla, “SymNet 2.0: Effectively handling
Non-Fluents and Actions in Generalized Neural Policies for RDDL Relational MDPs,” in
Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence. PMLR,
Aug. 2022, pp. 1771–1781, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.
press/v180/sharma22a.html

[107] V. Sharma, D. Arora, Mausam, and P. Singla, “SymNet 3.0: Exploiting Long-Range Influences
in Learning Generalized Neural Policies for Relational MDPs,” in Proceedings of the Thirty-
Ninth Conference on Uncertainty in Artificial Intelligence. PMLR, Jul. 2023, pp. 1921–1931,
iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v216/sharma23c.html

[108] T. Ma, P. Ferber, S. Huo, J. Chen, and M. Katz, “Online Planner Selection with Graph
Neural Networks and Adaptive Scheduling,” Nov. 2019, arXiv:1811.00210 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1811.00210

[109] O.Rivlin, T.Hazan, andE.Karpas, “GeneralizedPlanningWithDeepReinforcementLearning,”
May 2020, arXiv:2005.02305 [cs]. [Online]. Available: http://arxiv.org/abs/2005.02305

[110] F. Teichteil-Königsbuch, G. Povéda, G. G. d. G. Barba, T. Luchterhand, and S. Thiébaux, “Fast
and Robust Resource-Constrained Scheduling with Graph Neural Networks,” Proceedings of
the International Conference on Automated Planning and Scheduling, vol. 33, pp. 623–633, Jul.
2023. [Online]. Available: https://ojs.aaai.org/index.php/ICAPS/article/view/27244

[111] “torch_geometric.nn.conv.RGATConv — pytorch_geometric documentation.” [Online].
Available: https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.
nn.conv.RGATConv.html#torch_geometric.nn.conv.RGATConv

96

http://arxiv.org/abs/1902.03081
http://arxiv.org/abs/2002.07375
https://proceedings.mlr.press/v180/sharma22a.html
https://proceedings.mlr.press/v180/sharma22a.html
https://proceedings.mlr.press/v216/sharma23c.html
http://arxiv.org/abs/1811.00210
http://arxiv.org/abs/2005.02305
https://ojs.aaai.org/index.php/ICAPS/article/view/27244
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGATConv.html#torch_geometric.nn.conv.RGATConv
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGATConv.html#torch_geometric.nn.conv.RGATConv

Acknowledgments

I would like to express my gratitude tomy advisor, Prof. NicolòNavarin of the University of Padova,
for his invaluable guidance and support throughout the duration of this research. I am also grateful
to Andrea Micheli and Elisa Tosello from the FBK research institute, whose insights into automated
planning greatly enhanced my understanding of the subject. Their constructive feedback on my results
was instrumental to the success of this work. I would also like to thank my BDMA colleagues for their
support and for the countless unforgettable memories we created together throughout the program.
I am equally thankful to my friends back home, who, despite the distance, were always there for me.
Lastly, I owe my deepest gratitude to my family, whose unwavering support has been a constant source
of strength throughout this journey.

97

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background and Need
	Statement of the Problem
	Methodology

	Background
	Automated Planning
	Planning Tasks
	STRIPS Planning Task
	FDR Planning Task
	Lifted Planning Task

	Heuristic Functions
	Fast Downward Planning System
	Fast Forward Heuristic

	Graph Learning and Graph Neural Networks
	Spatial based Graph Convolutional Neural Networks
	Relational Graph Neural Networks
	Graph Attention Networks
	Relational Graph Attention Networks
	Expressiveness
	Masked Attention for Graphs
	Domain Adaptation

	Graphs Optimised for Search Evaluation
	Graphs of GOOSE
	GNN of GOOSE
	Results of GOOSE
	Domain Dependent Results
	Domain Independent Results

	Related Works
	Neural Networks
	Graph Neural Networks

	Experiments
	Dataset
	Goals of the Experiments
	Experiment Setup
	Baseline Heuristics
	Fine Tuning by Retraining
	Multi-heuristic Search
	Multi-heuristic Search combined with Retraining
	Graph Attention Networks
	Masked Attention for Graphs

	Results
	Variance
	Fine Tuning by Retraining
	Multi-heuristic Search
	Multi-heuristic Search combined with Retraining
	Relational Graph Attention
	Relational Graph Attention with Retraining
	Masked Attention for Graphs
	Weisfeiler Leman Model

	Conclusion
	Future Work

	References
	Acknowledgments

