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SOMMARIO

In questo lavoro di tesi si vuole descrivere la teoria e l’implementazione di un modello
di parete basato su un sistema di equazioni differenziali ordinarie applicato alla tecnica
di Large Eddy Simulation (LES). Questa tecnica è stata usata per simulare un flusso
turbolento compressibile in un canale. L’applicazione di un modello che simuli la fisica
di un flusso vicino a parete fa parte della famiglia di approcci chiamati Wall Modelled
Large Eddy Simulation (WMLES) che mirano ad alleggerire il peso computazionale di
una simulazione LES evitandone il compito di dover risolvere le strutture turbolente vi-
cino a parete. La tecnica LES è una tecnica molto versatile capace di catturare la natura
multiscala e non stazionaria di un flusso turbolento ma è spesso inutilizzabile nei solutori
commerciali a causa del suo costo computazionale, soprattutto all’aumentare del numero
di Reynolds.
La tecnica che viene invece utilizzata dalla quasi totalità del mondo dell’industria è la
Reynolds Averaged Navier-Stokes (RANS) che fornisce le caratteristiche del flusso medi-
ate ma è molto meno restrittiva in termini di tempo macchina quindi è l’unica che può
fornire attualmente risultati in tempi ragionevoli per rispondere alle richieste del mercato.
L’intento di questo lavoro di tesi è quello di provare la bontà dell’approccio WMLES in un
tipico flusso di parete (il canale) per provare come questa tecnica possa avere gli stessi van-
taggi della comune LES ad un costo computazionale comparabile a quello di una RANS.
I primi capitoli della tesi sono rivolti a dare le basi dei flussi turbolenti ed in particolare
del flusso in un canale. In seguito vengono analizzati le principali tecniche attualmente
disponibili per la simulazione di flussi con particolare attenzione alla famiglia degli ap-
procci WMLES. Vengono in seguito esposte le equazioni che regolano il modello di parete
scelto e la loro implementazione. Infine sono presentati i risultati per flussi incomprimibili
e comprimibili, traendone le conclusioni che discutono l’efficacia del modello utilizzato.
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Section 1 Introduction

1 Introduction

In our everyday life the majority of both naturally and industrially occurring flows are
turbulent, for example flows in rivers, the flows in pipes and combustion engines, the
flow of the wind around buildings, cars, ships, etc. The ubiquity of turbulence has led
to extensive studies by the scientific community, revealing its very complex nature. To
give a sense of the challenging task that the study of turbulence has posed to scientists
we can cite the words of the prominent fluid dynamicist Horace Lamb, that reportedly said

‘I am an old man now, and when I die and go to heaven there are two matters on which
I hope for enlightenment. One is quantum electrodynamics, and the other is the

turbulent motion of fluids. And about the former I am rather optimistic’.

Mathematically the motion of a fluid is governed by the Navier Stokes equations (A.5)
but unfortunately it’s rarely possible to solve these non-linear partial differential equation
analytically. However, the advent of computers has led to the development of several
numerical methods that through a process called discretization can solve these equations
using a finite number of values. Analyzing a typical turbulent flow physicists have re-
vealed that the size of coherent three-dimensional vortical structures, so-called eddies,
varies from the lentgh of the geometry of the flow to several orders of magnitude less.
This consideration implies that the simulation of a turbulent flow requires a computa-
tional grid that is dense enough to resolve the smallest scales (which is true in the direct
numerical simulation approach, (DNS), however this requirement is often impossible to
satisfy because even the most advanced computers can fail to provide a solution in a rea-
sonable amount of time. This issue has led to the development of turbulence modelling,
which referes to deriving different sets of equations, based on the original Navier-Stokes
equations, where the effect of the smallest eddies on the largest one (that are directly
computed) is represented by new simpler terms.
The most commonly used scale-resolving approach in the academic world is Large eddy
simulation (LES), in which the large eddies are resolved, whereas the smaller ones are
modelled. One of the most important choices in LES approach is the size of the eddies
where to start applying the model, and this decision has to be made in order that the
model can represent effectively the sub-grid scales in any circumstance, trying to be as
coarse as possible to save computational time. One major challenge in this decision is
posed by solid boundaries, where the flow loses part of its momentum due to friction.
Given the fact that in these regions the fluid rapidly transitions from zero at the wall
to the velocity of the free steam, the scales of motion are dynamically important (which
means that they must be resolved by the LES grid) but are also order of magnitude smaller
than the outside of the boundary layer. As a result the majority of the computational
effort is dedicated to the near-wall region.
According to Chapman (1979) [3] and Choi and Moin (2012) [4], who estimated and con-
trasted the number of computational grid points necessary to resolve the near-wall eddies
for direct numerical simulation (DNS), wall-resolved LES (WRLES) and wall-modeled
LES (WMLES), the number of computational grid points scale with the Reynolds num-

ber (based on the streamwise length) as NDNS ∼ Re
37/14
L , Nwr ∼ Re

13/7
L , and Nwm ∼ ReL

for DNS, WRLES, and WMLES respectively. Although WRLES has a more favorable
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Section 1 Introduction

scaling than DNS, the near-quadratic Reynolds number dependence of the number of grid
points renders such an approach infeasible for realistic configurations. Thus, a strategy
where only the outer-layer eddies are resolved and the near-wall eddies scaling in size with
viscous units are modeled is required [2].
This thesis deals with this problem in a turbulent channel flow trying to implement a wall
model which objective is to allow a coarse (not wall-resolved) LES grid but enforcing the
correct local wall shear stress (the friction force between the fluid and the wall per unit
contact area) and heat conduction to the wall. In Chapter 2, the basics of turbulent flows
are reviewed. Chapter 3 introduces some analytical results of turbulent channel flow. Fol-
lowing that, Chapter 4 gives an overview of the main approaches used in the present time
for computational fluid dynamics, focusing on Large eddy simulation (that will be used
for the simulations). In Chapter 5 are presented the various approaches for wall modelled
large eddy simulation and a detailed description of the theory of an ordinary differential
equations wall stress model. Chapter 6 deals with the numerical implementation of the
ODE-based wall stress model and its coupling to the LES technique. In Chapters 7 and
8 are presented the results obtained at Mach = 0.1 and Mach = 1.5 considering various
Reynolds numbers. Finally, concluding remarks are given in Chapter 9.
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Section 2 Turbulent flows basics

2 Turbulent flows basics

Defining turbulence is a challenging task, but according to Lesieur [13] it has three main
features:

• Turbulent flow must be chaotic, so small perturbances to initial conditions lead to
completely uncorrelated fields

• Turbulce has the ability to transport and mix fluid much more effectively than a
comparable laminar flow

• The scales at which this mixing occurs should include a wide range of spatial wave
lengths

It has been shown that turbulence creates and sustains itself in rotational flow, in which
the velocity gradients are able to overcome the damping of molecular viscosity to provide
small initial perturbations that are transformed into larger scale motions [7]. The turbu-
lent motions range in size from the width of the flow geometry to much smaller scales,
which become progressively smaller as the Reynolds number increases. An important
concept in turbulence first introduced by Richardson [21] is the energy cascade, where
the idea is that kinetic energy enters the turbulence at the largest scales of motion and
is then transferred by inviscid processes to smaller scales until it is dissipated by viscous
action. The size of the smallest eddies that are responsible for dissipating the energy has
been investigated by Kolmogorov [11], who developed one of the most important theories
of turbulence research.

2.1 Kolmogorov’s theory

If we take as l0 the length of the largest eddies and l the length of a general eddy there
are three main hypothesis that lay the foundations of Kolmogorov’s theory:

• The small-scale turbulent motions (l l0) are statistically universal and isotropic

• The statistics of the small-scale turbulent motions (l l0) are uniquely determined
by ν (kinematic viscosity) and (energy dissipation)

• If we define η as the scale where dissipation occurs, the statistics of the small-scale
turbulent motions (η l l0) are uniquely determined by

From this hypothesis it’s possible to divide the scales of turbulent motion in three main
sections (caractherized by the wavenumber k):

• The energy-containing scales, ki, where turbulent energy is introduced to the system

• The inertial sub-range, that is dominated by inertial forces rather than viscosity.
These scales contain and dissipate very little turbulent energy, but transfer the
energy from the largest scales to the smallest

• The dissipative range, kd, in which the scales are smaller than the Kolmogorov scale,
η = (ν3/ )1/4. In this range the viscous effects strongly damp the turbulent motion,
disspating the turbulent kinetic energy into heat
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Section 3 Channel flow

Using dimensional analysis Kolmogorov was able to quantify the turbulent energy spec-
trum in the inertial sub-range, which is expressed graphically as a line of constant slope

E(k) = Ck
2/3k−5/3 (2.1)

where Ck is a universal constant of the order of 1.5. Note that equation (2.1) can only
exist if the Reynolds number is high enough that the energy containing and dissipation
scales are well separated.
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Figure 1: Turbulent energy spectrum (adapted from Hinze [10])

The conversion of bulk fluid kinetic energy into turbulent energy can be divided into
two broad categories: free-shear flows such as mixing layers, jets and wakes and wall-
bounded flows such as boundary layers, pipes and channels. While in free shear flows the
growth of instabilities in essentially an inviscid process and the most energetic structures
are large (hence the small scales tend to obey Kolmogorov’s law), in wall-bounded flows
the limiting influence of a solid boundary on the scales of motion means that primary
instabilities develop through a viscous process, that may or may not induce inviscid sec-
ondary instabilities. The presence of the wall also poses a physical limit to the growth
of the instabilities, so that the resulting vortices are restricted in scale to some fraction
of the distance to the surface. This means that the energetic eddies close to the wall are
small, turbulent energy is added at high wavenumbers and a classical inertial range is
unlikely to exist [7].
The considerations that have been made above on wall bounded flows are directly con-
nected to the necessity of any computational method to resolve the near-wall flow field
to capture correctly the mechanisms of production of turbulence. In the next section we
will define the scales at which the near wall fluctuations take place to motivate the need
to model the near wall region in a suitable way.

3 Channel flow

In this section we consider a turbulent flow through a rectangular duct of height 2h [19].
The mean flow is predominantly in the axial direction.
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Section 3 Channel flow

2h
y

x

z

Figure 2: Sketch of channel flow

The following hypothesis are considered:

• The extent of the channel in the spanwise direction z is large compared to h so that
the flow is statistically independent of z.

• The length of the channel is considerable with respect to its height so that the flow
is fully developed at large x, hence it’s statistically independent of x.

• The flow is statistically stationary.

We analyze the problem of a channel flow with a constant pressure gradient

dp

dx
= a < 0 (3.1)

the Reynolds number of the problem is

Re =
ρ Ub 2h

µ
(3.2)

where Ub = 1/S
R
S
UdS is the mean velocity along the section. The mean velocities in the

three coordinate directions are (U,V,W) with fluctuations (u,v,w) and the mean pressure
is also indicated with the capital P. The mean cross-stream velocity W is zero.

3.1 RANS equations of channel flow

Considering the continuity and momentum equations in the Reynolds Averaged Navier-
Stokes formulation we get

~∇ · ~U = 0

ρ ∂~U
∂t

+ ~U · ~∇~U = −~∇~P + ~∇ · 2µ
~~E − ρ~∇ · h~u~ui

(3.3)

where
~~E =

~∇~U+~∇~UT

2
.

Following the hypothesis listed above (V = 0, ∂
∂x

= ∂
∂z

= ∂
∂t

= 0), the mean continuity
equation reduces to

dV

dy
= 0 (3.4)
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Section 3 Channel flow

since W is zero and U is independent of x. Considering the fact that V is zero a the wall,
this implies that V needs to be zero in the entire domain, so we get V = 0.
The lateral mean momentum equation (y direction) reduces to

∂P

∂y
− ρ

∂

∂y
hv2i = 0 (3.5)

which, with the boundary condition hv2iy=0 = 0, integrates to

P − ρhv2i = Pw(x) (3.6)

where Pw(x) is the mean pressure at the wall. Taking the x derivative on both sides of
equation (3.6) we get

∂P

∂x
=

dPw

dx
(3.7)

that implies that the mean axial pressure gradient is uniform across the flow.
With this result (3.7) we can rewrite the axial mean momentum equation as

dPw

dx
=

∂

∂y
µ
dU

dy
− ρhuvi (3.8)

where we can see that the expression inside square brackets is a shear stress τ(y), that
accounts for both viscous and Reynolds stress (additional stress caused by turbulence).
Since the left hand side of equation (3.8) is a function of x while the right hand side is a
function of y, to satisfy the equation both quantities need to be constant

∂τ

∂y
= const = a =

dPw

dx
(3.9)

that, with the boundary condition τ(0) = τ(2h) = τw, integrates to

τ(y) = τw 1 − y

h
(3.10)

that implies that the shear stress is a linear function of y.
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Figure 3: Profiles of the viscous shear stress (µdU
dy

) and the Reynolds shear stress (ρhuvi)
in turbulent channel flow: DNS data of Vreman [23]: Re = 590

We can also define a skin-friction coefficient as

Cf =
τw

1
2
ρ U2

B

(3.11)

We can observe that the pressure gradient is balanced exactly with the shear stress gra-
dient at the wall

∂τ

∂y
= −τw

h
=

∂Pw

∂x
(3.12)

Considering Figure 3 we can observe that the viscous stress dominates at the wall, a
feature of wall bounded flows that is not present in free shear flows. Also, near the
wall, since the viscosity is an influential parameter, the velocity profile depends upon the
Reynolds number (again in contrast to free shear flows). It’s useful to define near the
wall some parameters using the density ρ, viscosity µ and wall shear stress τw. From this
quantities we can define the friction velocity

uτ =

r
τw
ρ

(3.13)

the viscous lengthscale

δν =
ν

uτ

(3.14)

and the friction Reynolds number

Reτ =
uτ h

ν
=

h

δν
(3.15)
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Section 3 Channel flow

From this quantities we can scale the velocity and wall distance as

U+ =
U

uτ

(3.16)

y+ =
y

δν
(3.17)

This scaling is effective in bringing out the velocity variation near the wall

dU+

dy+
y=0

=
δν
uτ

dU

dy y=0

=
ν

uτ

τw
µ

= 1 (3.18)

3.2 Mean velocity profiles

We can define different regions on the basis of y+

• Viscous wall region (y+ < 50): there is direct effect of molecular viscosity on the
shear stress.

• Outer layer (y+ > 50): the direct effect of viscosity is negligible.

Within the viscous wall region we can define the viscous sublayer (y+ < 5), where the
Reynolds shear stress is negligible compared with the viscous stress. Using the Taylor-
series expansion we can determine the velocity profile in this region

U+(y+) = U+
y+=0

+
dU+

dy+
y+=0

y+ + O(y+) (3.19)

and since we have demonstrated in equation (3.18) that the velocity gradient near the
wall is unitary we can write

U+ = y+ + O(y+) , y+ < 5 (3.20)

that is the law of the wall.
Fully developed channel flow is completely specified by ρ, ν, h, uτ or, equivalently, ρ, ν,
h, dPw

dx
since

uτ = −h

ρ

dPw

dx
(3.21)

From this quantities there are two non-dimensional parameters that can be defined: y
h

and y
δν

(where the first refers to the outer layer and the second to the viscous region).
From these parameters we can write the velocity gradient as

dU

dy
=

uτ

y
Φ

y

h
,
y

δν
(3.22)

Prandtl [20] postulated that, at high Reynolds number, near the wall (y/h << 1) there
is an inner layer which is essentially independent of h, so in we can write

dU

dy
=

uτ

y
Φ

y

δν
(3.23)
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whereas in the outer layer (y/δν >> 1)

dU

dy
=

uτ

y
Φ

y

h
(3.24)

At the boundary between these two regions we can write

lim
y/δν>>1

uτ

y
Φ

y

δν
= lim

y/h<<1

uτ

y
Φ

y

h
=

1

κ
(3.25)

hence in this region Φ has to be a constant that takes the values of 1/κ, where κ is the
von Kármán constant.
Thus, in this region, the mean velocity gradient is

dU

dy
=

uτ

y

1

κ
(3.26)

that with the viscous scaling becomes

dU+

dy+
=

1

κy+
(3.27)

which integrates to

U+ =
1

κ
ln y+ + B (3.28)

where B is a constant. Equation (3.28) is the log law, that is in agreement with experi-
mental results for y+ > 30. Generally the two constants of the law are taken as

κ = 0.41 , B = 5.2 (3.29)

 0
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Figure 4: Near wall profiles of mean velocity: DNS data of Vreman [23]: Re = 590
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Section 3 Channel flow

The region between the viscous sublayer (y+ < 5) and the log-law region (y+ > 30)
is called the buffer layer. It is the transition region between the viscosity-dominated and
the turbulence-dominated parts of the flow.

3.3 Reynolds stresses

Analyzing the Reynolds stresses we can clearly see that in the viscous wall region (y+ < 50)
there is the most vigorous turbulent activity, whereas in the log-law region they are
essentially uniform.

-1

 0
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 0  100  200  300  400  500

〈uv〉

〈uu〉

〈vv〉

〈ww〉

k

〈uiuj〉

y
+

R11
R22
R33
R12
k

Figure 5: Reynolds stresses and kinetic energy against y+: DNS data of Vreman [23]:
Re = 590

This consideration implies the need to resolve in detail the viscous wall region, but
happens to be in contrast with how the viscous lengthscale varies with the Reynolds
number. We have showed before that the lengthscale ratio is measured by the friction
Reynolds number Reτ , which increases almost linearly with Re (approximately Reτ ≈
0.09Re0.88). Consequently, at high Reynolds number the viscous lengthscale can be vary
small, thus imposing a real challenge both in simulating and phisically measuring the
flow.

3.4 Turbulent kinetic energy budget

Considering the balance equation for turbulent kinetic energy for a fully developed channel
flow

0 = P − ˜+ ν
d2k

dy2
− d

dy
h1

2
νu · ui − 1

ρ

d

dy
hνp0i (3.30)

where in order the terms are production, pseudo-dissipation, viscous diffusion, turbulent
convection, and pressure transport. It can be shown that the peak production occurs
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Section 4 Computational fluid dynamics

precisely where the viscous stress and the Reynolds shear stress are equal, around y+ ≈ 12
(see Figure 24). At this location Production exceeds dissipation (P/ ≈ 1.8), and the
excess energy produced is transported from turbulent convection both toward the wall
and in the log-law region. Viscous transport carries kinetic energy all the way to the wall,
where occurs the peak dissipation through viscosity:

= ˜ = ν
d2k

dy2
, for y = 0 (3.31)

Figure 6: The turbulent kinetic energy budget in the viscous wall region of channel flow
(Turbulent flows, Pope [19])

4 Computational fluid dynamics

In fluid dynamics, especially for turbulent flows, the large eddy simulation (LES) tech-
nique has become more and more widespread in the academic world for it’s ability to
represent the non-stationary and multiscale nature of turbulence, essentialy replacing the
Reynolds-averaged Navier Stokes (RANS) approach. Infact the need to describe with rel-
ative accuracy non-stationary phenomena is inherently impossible to satisfy with RANS
approach, that moreover has the problem of being non universal (it takes as input some
constants that depend on the particular analyzed flow). The LES approach is conceptually
more advanced than RANS, laying it’s foundations on the hypothesis of the Kolmogorov’s
K41 theory (2.1) where the foundamental hypothesis is that while the larger scale tur-
bulent motions depends on the particular flow geometry, the smallest scales show an
universal behaviour that doesn’t depend on the type of flow analyzed. So the underly-
ing idea of LES technique is to solve the Navier-Stokes equation for a filtered velocity
field Ū(x, t) which is representative of the larger-scale turbulent motions, including in the
equations a model for the influence of the smaller-scale motions. These approaches are
usually benchmarked using the Direct Numercal Simulation (DNS), that consists in di-
rectly discretizing the Navier-Stokes system of equations without introducing any model
for turbulence.
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Figure 7: Turbulent energy spectrum with indications of the modeling introduced by LES,
RANS and DNS. kc is the wavenumber at which it’s introduced the LES filter

4.1 Compressible Large eddy simulation

The Large eddy simulation approach requires four main conceptual steps:

• Define a filtering operator G∆ to decompose the velocity into the sum of a filtered
and a residual (or subgrid-scale, SGS) component. The filtered velocity field rep-
resents the motion of the large eddies while the residual component represents the
small modeled scales.

• Apply the filtering operator to the Navier-Stokes equations to obtain the evolution
of the filtered velocity field.

• Modeling the residual-stress tensor T SGS
ij and the residual energy ESGS

ij to obtain
closure

• Solve numerically the filtered equations, which provides an approximation to the
large-scale motions in one realization of the turbulent flow.

Being φ̄ a filtered flow variable, we define φ̃ the Favre filter of φ as

φ̃ =
ρφ

ρ̄
(4.1)
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Section 4 Computational fluid dynamics

The filtered compressible non-dimensional Navier-Stokes equations, taking into account
the definition (4.1) are (following the notation of Garnier et al. [8])

∂ρ̄
∂t

= −∂ρ̄ũj
∂xj

∂ρ̄ũi
∂t

= − ∂
∂xj

(ρ̄ũiũj + p̄iδij) +
√
γM∞
Re

∂
∂xj

(µ̄d̄ij) − ∂
∂xj

(ρuiuj − ρ̄ũiũj)

∂ρ̄Ẽ
∂t

= − ∂
∂xj

((ρ̄Ẽ + p̃ũj))

+
√
γM∞
Re

γ
γ−1

1
Pr

∂
∂xj

k ∂T̃
∂xj

+ ∂
∂xj

µ̄d̄ijũi − ∂
∂xj

(ρE + p)ui − (ρ̄Ẽ + p̃)ũi

(4.2)
where

dij = µ
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂us

∂xs

δij (4.3)

Comparing the filtered NS equations to the non filtered formulation we recognise two
important contributions, expressed by

T̄ SGS
ij = ρuiuj − ρ̄ũiũj (4.4)

which is the subgrid-scale (SGS) stress tensor, and

ĒSGS
j = (ρE + p)ui − (ρ̄Ẽ + p̃)ũi (4.5)

= ρcpTuj − ρ̄c̄pT̃ ũj +
1

2
T̄ SGS
ij ũj −

1

2
T̄ SGS
kk ũj (4.6)

which is the subgrid-scale energy term.
Equations (4.4) and (4.6) represent the under resolved turbulent contributions due to the
filtering process that needs to be modeled in a suitable way.
Following the Boussinesq’s hypothesis, the deviatoric part of the subgrid-scale stress tensor
T̄ SGS
ij can be written as

T̄ SGS
ij − 1

3
T̄ SGS
kk δij = −2µSGS S̃ij −

1

3
Skkδij (4.7)

where µSGS is the subgrid eddy viscosity, T̄ SGS
kk is the isotropic contribution to the subgrid

stress tensor and S̃ij denotes the resolved strain-rate tensor

S̃ij =
1

2

∂ũi

∂xj

+
∂ũj

∂xi

(4.8)

In the same way, the energy subgrid-scale terms are modeled as

ĒSGS
j = −λSGS

∂T̃

∂xj

+
1

2
T̄ SGS
ij ũj −

1

2
T̄ SGS
kk ũj (4.9)

where λSGS is the subgrid-scale turbulent diffusivity expressed by

λSGS = µSGS
c̄p
PrT

(4.10)
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in which PrT = 0.9 is the turbulent Prandtl number. Collecting the viscosity from both
resolved and subgrid scales in one term we get

µ̄tot = µ(T̃ ) +
Re

√
γM

µSGS (4.11)

and doing the same for the turbulent diffusivity

λ̄tot =
γ

γ − 1

 
µ(T̃ )

Pr
+

Re
√
γM

µSGS

PrT

!
(4.12)

we can now write the filtered Navier Stokes equations with the Bousinessq’s hypothesis

∂ρ̄
∂t

= −∂ρ̄ũj
∂xj

∂ρ̄ũi
∂t

= − ∂
∂xj

(ρ̄ũiũj + p̄iδij) +
√
γM∞
Re

∂
∂xj

(µ̄totd̄ij)

∂ρ̄Ẽ
∂t

= − ∂
∂xj

((ρ̄Ẽ + p̃ũj)) +
√
γM∞
Re

λ̄tot
∂

∂xj
k ∂T̃
∂xj

+ ∂
∂xj

µ̄d̄ijũi

(4.13)

From set of equations (4.13) we can see that the filtering process, in combination with
the Bousinessq hypotesis, intruduces a further unknown (µSGS). The required model for
µSGS needs to universal and exploitable in a wide range of flow situations, thus is the focal
point of LES which is still in study by the turbulence community. The most exploited
model for turbulent eddy viscosity is purely algebraic and reduces to the expression

µSGS = ρ̄(Cm∆)2Dm Ū (4.14)

where Cm is a tuning parameter, ∆ = (∆x∆y∆z)1/3 is the subgrid characteristic lenght
expressing the size of the filter and Dm [·] is the non-linear differential operator of the
model applied to the resolved flow quantities Ū. In this thesis the model taken into
account is the Wall-Adaptive Large-Eddy (WALE) which is described below.

4.2 The wall-adaptive Large-Eddy viscosity model

According to Nicoud and Ducros [18], who found a model which exhibit the asymp-
totic behaviour of µSGS ∼ O(y+)3 in the near wall region (which is not respected in the
Smagorinsky model for example), the non-linear differential operator can be defined as

DW Ū =
(Sd

ijS
d
ij)

3/2

(Sd
ijS

d
ij)

5/2 + (Sd
ijS

d
ij)

5/4
(4.15)

where Sd
ij is the traceless symmetric part of the square of the resolved velocity gradient

tensor, defined as

Sd
ij =

1

2

∂ũi

∂xl

∂ũl

∂xj

+
∂ũj

∂xl

∂ũl

∂xi

− 1

3

∂ũm

∂xl

∂ũl

∂xm

δij (4.16)

The constant CW = 0.325 is found by statistical correlations based on DNS benchmarks.
The WALE model also possesses the interesting property that µSGS vanishes if the flow
is two-dimensional, in agreement with the physical behaviour.
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5 WMLES overview

The filtering of the unknowns used in LES leads to the cost of simulation being significantly
less than that of DNS. However, the problem that arise in bounded flows is that in the
inner part of the boundary layers is generated the peak production of turbulence, that
from the smaller scales is carried to the largest ones. If the resolution of the grid cannot
represent the inner-layer dynamics (production, dissipation, streaks, etc.), which is often
the case for high Reynolds number LES simulations to reduce the computational cost, the
resolved outer-layer turbulence cannot be regarded as a representation of reality. This
problem is often referred to as the near-wall problem of LES and it becomes greater as the
Reynolds number increases, because the scale of the inner layer dynamics descreases (see
section 3.3). The wall-modeled large eddy simulation (WMLES) approach is to model the
energetic eddies in the near-wall inner layer, this can be done in a variety of ways that
are represented by the two following categories:

• Hybrid LES/RANS: LES is defined above a certain distance hwall from the wall,
while the near-wall region is modeled with RANS equations.

• Wall-stress models: LES is defined all the way to the wall, but since it doesn’t
resolve the inner-layer dynamics, takes as boundary conditions the shear stress τwall

and the heat flux qwall computed with a simplified set of equations solved in a
independent grid.

Since this thesis is concerned with the implementation of a particular type of wall-stress
model, we will first analyze the different possible approaches before going in the details of
theory and implementation of an ordinary differential equation (ODE) based wall-stress
model.

5.1 Wall stress models

Most wall-stress models are based on the physical principle of momentum conservation in
a nearly parallel shear flow. Since the objective is to avoid resolving any turbulence in the
inner layer, wall-model equations must be written assuming that the flow is on average
aligned with the streamwise direction. According to Larsson et al.[12] the filtered mo-
mentum conservation equation assuming the special case of uniform-density flow aligned
(on average) with the x direction (often referred as turbulent boundary layer equation,
TBLE) results

∂u

∂t
+

∂uuj

∂xj

+
1

ρ

∂p

∂x
=

∂

∂y
(ν + νt,wm)

∂u

∂y
(5.1)

where the eddy-viscosity if often given by a zero-equation mixing-length model like

νt,wm = κuτy 1 − exp −y+/A+ 2
(5.2)

which is derived by Yang et al. [24].
In equation (5.2) κ = 0.41 is the Von Kàrman constant, uτ =

p
τw/ρ is the friction

velocity, y+ = (uτy/νw) is the wall unit and A+ = 17 is a constant of the Van Driest
dumping function, which is

D = 1 − exp −y+/A+ 2
(5.3)
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Section 5 WMLES overview

Equation (5.1) can be simplified with the equilibrium model, where it’s assumed that
the convection and the pressure-gradient balance exactly, thus the left hand side of eq.
(5.1) becomes zero. The resulting ODE has the solution u+ ≈ y+ for y+ . 5 and
u+ ≈ ln(y+)/κ + B (log law) for y+ & 30. There are three main approaches to the
implementation of a wall stress model:

• Algebraic implementation

• Partial differential equations (PDE) implementation

• Ordinary differential equations (ODE) implementation

in which the Algebraic and ODE implementation take advantage of the equilibrium model,
whereas the PDE implementation does not and tries to solve the complete TBLE (5.1).

5.1.1 Algebraic implementation

Algebraic models were the first to be developed, being the simplest. Considering the
log-law (3.28), we can rewrite it as

hui
uτ

− 1

κ
ln

yuτ

ν
−B = 0 (5.4)

where is worth remembering that uτ =
p

τw/ρ. If an approximation of hui can be ob-
tained from the LES solution at the sampling point (y = hwm) which should be placed in
the log-layer, the above expression constitutes a non-linear algebraic equation for the un-
known mean wall shear stress hτwi which can be solved using an iterative procedure (e.g.
Newton-Raphson method). The computed hτwi is then enforced at the wall as a boundary
condition. It’s clear that the advantage of the algebraic implementation is that it requires
much lesser computational cost, but the major drawback is the incorrect modelling of the
wall attached eddies that normally dominate transfer mechanisms in the inertial layer [7].

5.1.2 PDE implementation

The PDE-based wall stress model requires that the full turbulent boundary layer equations
(TBLE) are solved, which are presented in equation (5.1). These equation should be solved
on a separate three dimensional grid spanning the wall-normal distance between the wall
and hwm. The LES velocity and the pressure gradient (which can be assumed constant in
the wall normal direction) at height hwm serve as boundary condition and the filtered wall
shear stress obtained from solving the TBLE is enforced at the wall of the LES domain.
The TBLE have to be complemented by a RANS model for computing νt, that is often a
simple one-dimensional turbulence model.
Despite the potential to be the most accurate type of wall-stress models, the TBLE-
approach has some drawbacks, namely

• The complexity of implementation in a general purpose CFD solver

• Couplong the soulution of two sets of PDEs in a parallel, unstructured setting is
challenging
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• The generation of the embedded grid is difficult to implement for arbitrary geome-
tries

• The cost of WMLES becomes no longer independent of Reτ , because the embedded
grid has to be wall resolved in the wall-normal direction

In general, the insignificant amount of evidence regarding the superiority of these models
compared to simpler approaches is a big factor in the choice of which wall stress model
to use.

5.1.3 ODE implementation

An alternative to directly solving the TBLE expressed in equation (5.1) is assuming that
the convection and the pressure-gradient balance exactly, thus the left hand side of eq.(5.1)
becomes zero. This assumption is called the equilibrium model, which takes as inputs the
instantaneous velocity, temperature and pressure from LES field at a chosen height hwall

(that should be placed in the log-layer) and gives as outputs the wall stress τwall and wall
heat flux qwall obtained by solving the momentum and total energy equations simplified
using the equilibrium model.

h
wm

h

Wall

U(y)

h
wm

Wall

τ
w

q
w

T
LES

v
LES

Wall Model

LES Field

P
LES

Figure 8: Coupling between LES and wall model

In this model the pressure is assumed to be wall-normal independent and the wall
parallel velocity is calculated as up =

√
u2 + w2 (assuming ~v = (u, v, w)). The two outputs

τwall and qwall are calculated using the parallel velocity and temperature gradients at the
wall (a different approach to evaluate qwall in high speed compressible flows is presented
in section 5.2):

τwall = µw
dup

dy wall

(5.5)

qwall = λw
dT

dy wall

(5.6)

Compared to the Algebraic approach, the ODE implementation has the ability to account
for other physical effects, such as strongly non-adiabatic compressible flow [12]. Another
slight advantage of the ODE implementation is that it produces the right wall-stress even
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when the grid locally approaches traditional LES resolution with resolved viscous and
buffer layers.
The simplified momentum and total energy equations using the equilibrium model for
compressible flow are (the capital U is the averaged wall parallel velocity):

d

dy
(µwm + µt,wm)

dUwm

dy
= 0 (5.7)

d

dy
cp

µwm

Pr
+

µt,wm

Prt,wm

dTwm

dy
= − d

dy
(µwm + µt,wm)Uwm

dUwm

dy
(5.8)

where cp is the specific heat at constant pressure, Pr is the Prandtl number, Prt,wm = 0.9
is the turbulent Prandtl number (a model parameter) and the eddy-viscosity µt,wm is
defined like equation (5.2)

µt,wm = κρwm

r
τw,wm

ρwm

y 1 − exp −y∗/A+ 2
(5.9)

y∗ =
uτy

ν
(5.10)

with the exception that the scaled wall distance y∗ is in semi-local scaling (the dynamic
viscosity changes along y) in order to work in strongly non-adiabatic conditions. Under
the equilibrium assumption, the brackered quantities in eqs. (5.7) and (5.8) are constant
across the wall-modeled layer. These conserved quantities correspond to the sum of the
viscous and turbulent shear stress (in eq. (5.7)) and to the sum of molecular heat con-
duction, turbulent heat transport (left hand side of eq. (5.8)) and aerodynamic heating
(right hand side of eq. (5.8)).
These equations need to be solved in an independent grid that goes from the wall to hwall

and can be stretched near the wall to increase the accuracy of the computation of τwall

and qwall.
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Figure 9: Example of the wall modelled mean velocity in ODE implementation compared
to DNS data of Bernardini [14]: M = 0.1, Reτ = 1000
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Figure 10: Example of the wall modelled mean temperature in ODE implementation
compared to DNS data of Modesti [16]: M = 1.5, Reτ = 500

5.2 Further considerations on the Equilibrium Wall-Modeled
Energy Equation

In the case of compressible flows the energy equation plays an essential role, thus it
needs to be analyzed in more detail to understand what are the important quantities that
regulate the heat flow and their importance in the near-wall region, which is the interest
of WMLES. The energy equation (5.8) can be rewritten as

d

dy
(µwm + µt,wm)Uwm

dUwm

dy
+ cp

µwm

Pr
+

µt,wm

Prt,wm

dTwm

dy
= 0 (5.11)

where the term (µwm + µt,wm)UwmdUwm/dy represents the aerodynamic heating, the term
cpµwm/Pr dTwm/dy the molecular heat of conduction and cpµt,wm/Prt,wmdTwm/dy the
turbulent heat transport. The molecular heat conduction prevails over the turbulent heat
transport close to the wall where y+ (A+)

2/3
(see equation (5.9)). The opposite occurs

relatively far away from the wall, when y+ (A+)
2/3

, where the ratio of molecular to
eddy viscosities is small, µ/µT ∼ 1/(κy+) 1. According to [25] if we evaluate the first
integral of the energy equation from 0 to hwall we get

qw = Uwmτw + cp
µt,wm

Prt,wm

dT

dy y=hwall

(5.12)

where the molecular heat has been neglected on the right hand side because µ/µT =
O(δν/hwall) 1. This equation states that the wall heat flux is the sum of aerodynamic
heating and the turbulent heat transport a the matching location (hwall), with each repre-
sented by the first and second terms on the right-hand side, respectively. This definition
of qw is useful also in adiabatic flows (qw = 0) where the slope of the temperature at the
edge of the wall-modeled layer is not necessarily zero in high speed conditions, where the
aerodynamic heating becomes important because that extra heat must be evacuated to
the bulk flow.
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6 Discretization of the wall-stress model equations

In this section it’s presented the finite volume discretization of equations (5.7) and (5.8).
It’s important to note that the velocity and temperature are located in the centroid of
the cells while their coefficients are located in the faces. There is an exception for velocity
and temperature at the wall and hwall positions that are located respectively in the first
and last face of the grid and accounted as boundary conditions to the non-linear system
that the discretized equations represent, as it will become clear later.

6.1 Discretization of the momentum equation

In the following equations the index j indicates the j-th centroid, whereas the capital J
indicates the J-th face, as shown in the figure below. Let’s collect the sum of the molec-
ular viscosity and turbulent viscosity in a coefficient Ku = (µwm + µt,wm). Considering a
second order finite volume discretization for the momentum equation we get:
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h
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n
wm
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n
wm

∆y

∆y
wall

∆y
h

KJ
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Uj+1 − Uj

∆yJ
−KJ−1

u

Uj − Uj−1

∆yJ−1

= 0 (6.1)

at the wall:

KJ
u

Uj+1 − Uj

∆yJ
−Kwall

u

Uj − Uwall

∆ywall

= 0 (6.2)

and at hwall:

Kh
u

Uh − Uj

∆yh
−KJ−1

u

Uj − Uj−1

∆yJ−1

= 0 (6.3)

These equations represent the following tri-diagonal system, written for this simplified
case of an uniform grid with four cells:

−K̄J
u − K̄wall

u K̄J
u 0 0

K̄J−1
u −K̄J−1

u − K̄J
u K̄J+1

u 0
0 K̄J−1

u −K̄J−1
u − K̄J

u K̄J+1
u

0 0 K̄J−1
u −K̄J

u − K̄h
u



U1

U2

U3

U4

 =


−K̄wall

u

0
0

−K̄h
u

 (6.4)

where it’s been made the substitution K̄J
u = KJ

u /∆yJ to simplify the reading.

6.2 Discretization of the total energy equation

As before let’s introduce a coefficient that simplify the equations: KT = cp
µwm
Pr

+ µt,wm
Prt,wm

.

Considering a second order finite volume discretization for the total energy equation we
get:
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KJ
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(6.5)

at the wall:

KJ
T

Tj+1 − Tj

∆yJ
−Kwall

T

Tj − Twall

∆ywall

=

− KJ
u

Uj+1 + Uj

2

Uj+1 − Uj

∆yJ
−Kwall

u Uwall
Uj − Uwall

∆ywall

(6.6)

and at hwall:

Kh
T

Th − Tj

∆yh
−KJ−1

T

Tj − Tj−1

∆yJ−1

=

− Kh
u Uh

Uh − Uj

∆yh
−KJ−1

u

Uj + Uj−1

2

Uj − Uj−1

∆yJ−1

(6.7)

These equations represent the following tri-diagonal system, written for this simplified
case of an uniform grid with four cells:

−K̄J
T − K̄wall

T K̄J
T 0 0

K̄J−1
T −K̄J−1

T − K̄J
T K̄J+1

T 0
0 K̄J−1

T −K̄J−1
T − K̄J

T K̄J+1
T

0 0 K̄J−1
T −K̄J
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T



T1

T2

T3

T4

 =


rhswall

0
0

rhsh

 (6.8)

where it’s been made the substitution K̄J
T = KJ

T /∆yJ to simplify the reading and rhswall

and rhsh represents the known right hand sides of equations (6.6) and (6.7).
Given the fact that momentum and total energy equations are coupled, they represent a
ODE-system that can to be solved in a segregated fashion:

1. Solve the momentum equation treating µwm and µt,wm as fixed

2. Update τw,wm and µt,wm

3. Solve the energy equation while treating everything except Twm as fixed

4. Update τw,wm, µwm, ρwm and µt,wm

5. Repeat until converge (measured by the values of τw,wm and qwall)

The values of τw,wm and qw,wm are computed using the velocity and temperature at the
first node of the wall model grid:

τw,wm = µw
U1 − Uwall

∆ywall

(6.9)

qw,wm = λw
T1 − Twall

∆ywall

(6.10)

Since both equations are in practice a tridiagonal system they can be solved efficently
by the tri-diagonal matrix algorithm (TDMA). This algorithm has been implemented in
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Fortran 90 as a subroutine of the numerical solver Unsteady Robust All-around Navier-
StOkes Solver (URANOS) [5] [6] [22], which has been realized by my supervisor (prof.
Francesco De Vanna) during his PhD with the purpose of the fluid simulation of com-
pressible viscous flows capable of dealing with moving bodies at high-Mach numbers with
high order accuracy and high resolution.
URANOS has been used to solve the filtered compressible Navier-Stokes equations (for
the theoretical aspects see Garnier et al. (2009) [8]) and it has been chosen to use the
Wall-Adaptive Large-Eddy (WALE) viscosity model (Nicoud and Ducros (1999) [18]) that
is physically consistent to the wall-turbulence theory, which predicts a cubic behaviour in
the wall-inner layer µSGS ≈ O(y+)3. This choice has been made to get acceptable results
in both wall modeled and wall resolved configurations.

6.3 Numerical aspects of wall stress model

The ODE-system described in the previous section needs to be solved from y = 0 to
y = hwall. It has been chosen to use a lightly stretched finite volume grid defined by

yf,J = ∆yw
rJ − 1

r − 1
, J = 0, 1, ..., nwm (6.11)

where r is the stretching parameter and ∆yw is the spacing at the wall, that needs to
be chosen accurately in order to have the first point around y+ ≈ 1. The centroids
coordinates therefore result

yc,J =
yf,J + yf,J+1

2
, J = 0, 1, ..., nwm − 1 (6.12)

so consequently there will be nwm coefficients on grid faces and nwm − 1 velocities and
temperatures on centroids. The choice of nwm, r and y+ ≈ 1 is a trade-off between good
resolution near the wall (i.e. acceptable error) and computational cost while limiting the
stretching parameter.

6.4 Coupling LES to wall stress model

After solving both equations and reaching convergence with the desired tolerance remains
the task to transfer the information of τwall and qwall to LES field. At this stage it’s worth
pointing out that LES grid is uniform and boundary conditions are given using ghost
nodes, which are as many as required by the order of finite differences used in the main
code. To clarify the reading the following figure shows a LES grid with four ghost nodes
that is coupled to a stretched wall-stress model grid at the second internal LES node,
which is at hwm height.
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Figure 11: LES and wall-stress model grids combination

Since the information of τwall and qwall has to be given to the internal domain by
specifying velocities and temperatures in the ghost nodes a first approach would be to
write equations (6.9) and (6.10) with a second order central finite difference for every
ghost node, thus relating it with it’s symmetric internal node

τw,wm = µw
U int
i − U ghost

i

∆yi
(6.13)

qw,wm = λw
T int
i − T ghost

i

∆yi
(6.14)

Solving (6.13) and (6.16) for U ghost
i and T ghost

i we get

U ghost
i = U int

i − τw,wm∆yi
µw

(6.15)

T ghost
i = T int

i − qw,wm∆yi
λw

(6.16)

and with this condition we impose the right wall stress and wall heat flux to the internal
domain. However this implementation tends to convergence problems because ∆yj tends
to be very large due to the poor wall resolution of LES grid, resulting in a large negative
value of U ghost

i that leads to instability.
Another approach is to consider that every LES simulation has a model for the subgrid
viscosity and thermal conductivity (e.g. Smagorinsky, WALE, etc.), that are specified in
every point of the domain to bring the contribution of non resolved eddies. If we solve
equations (6.13) and (6.16) for µeff and λeff (effective values) we can impose them to
LES model at the wall using the values of τwall and qwall computed with the wall stress
model, instead of directly imposing them as boundary conditions

µeff = τw,wm
∆yi

U int
i − U ghost

i

(6.17)

λeff = qw,wm
∆yi

T int
i − T ghost

i

(6.18)

where qw,wm is computed using equation (6.24). In the ghost nodes the required specifica-
tion for velocity and temperature would be imposed using the no slip boundary condition
for the former and the isothermal wall condition for the latter:

ughost
i = −uint

i (6.19)
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vghosti = −vinti (6.20)

wghost
i = −wint

i (6.21)

T ghost
i = 2Tw − T int

i (6.22)

This implementation has proven to be more stable in terms of convergence, but requires
two corrections.

• If we look at equation (6.22), it’s possible that the value of T ghost
i is set in such a

way that the temperature gradient (T int
i − T ghost

i )/∆yi results negative (and con-
sequently the λeff , eq. (6.18)), leading to convergence problems (this possibility is
rare because in the channel the flow is on average hotter than the wall, resulting in
a positive temperature gradient, but nevertheless a temporary colder configuration
can happen). To avoid that we had to set λeff = 0 if it’s negative. This problem
is not encountered in the definition of µeff because the velocity gradient cannot be
negative, given equation (6.19).

• Considering equations (6.17) and (6.18), if velocity and temperature gradients tends
to zero at the wall, µw and λw tends to very high values to assure the right τwall

and qwall, but since a zero velocity or temperature gradient result in a zero τwall and
qwall we have to limit the viscosity and thermal conductivity to prevent them to be
too large. In this implementation it was found that a maximum value of 30 for µeff

and 30 · cp/Pr ≈ 148 for λeff (since λ = µcp/Pr) leads to good results.

However, the simulation in the compressible case has proven to be considerably more
challenging than the incompressible one because the heat generated inside the flow has
to be dissipated in the correct way by the wall model. In particular we found that in
our implementation computing the wall heat flux with equation (6.10) was leading to
a continuous increase of the temperature of the channel, showing that the wall (which
is cooler than the inside of the channel) was incapable to evacuate the heat generated
by the flow, thus preventing it to heating up indefinitely. For this reason we looked if
this problem was addressed in literature finding the expression of qw,wm from [25] that
is derived in section 5.2 which is more suitable to high speed flows because even when
the flow is instantaneously adiabatic qw,wm is not zero, therefore it is capable to still
transfer some heat generated from the flow towards the outside. This implementation has
proven to be more stable, succeeding to reach an equilibrium from the heat generated and
dissipated that gives a stable temperature profile.
To sum up the discussion above our implementation is the following:

• Solve equations (5.7) and (5.8) obtaining the velocity and temperature profiles (con-
vergence is reached when the variation of τw,wm and qw,wm computed with equations
(6.9) and (6.10) is less than a given tolerance)

• Compute τw,wm and qw,wm as

τw,wm = µw
dUwm

dy wall

(6.23)

qw,wm = Uwmτw,wm + cp
µt,wm

Prt,wm

dT

dy y=hwall

(6.24)
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Section 7 Simulation at Mach = 0.1

• Impose the boundary condition of µeff and λeff to the subgrid viscosity V IS(i, j, k)
and thermal conduction LMD(i, j, k) as

V IS(i, jg, k) = 2µeff − V IS(i, ji, k) (6.25)

LMD(i, jg, k) = 2λeff − LMD(i, ji, k) (6.26)

• Impose the no slip condition for velocity and the isothermal wall for temperature
like in the wall resolved case (equations (6.19), (6.20), (6.21), (6.22))

This implementation has also the advantage that by increasing the number of points in
the domain the WMLES progressively becomes a WRLES, so it’s not an independent
approach.

7 Simulation at Mach = 0.1

In this section are presented the results of the simulations computed with URANOS at
various Reynolds numbers. The Mach number is set to 0.1 to avoid any compressible
effects, thus the resulting driven pressure gradient is set equal to dhpi

dx
=

√
γM∞−ub. The

channel sizes are 2πh× 2h×πh and the following boundary conditions are enforced to its
faces:

• Periodic boundary conditions along the stream-wise and the span-wise directions

• No-slip isothermal wall conditions at the top and the bottom side of the domain
(with wall temperature equal to T/T0 = 1)

as shown in the figure below

2h
y

x

z

2πh

πh

Periodic

Periodic

Isothermal wall

Isothermal wall

Figure 12: Sketch of the channel sizes and boundary conditions

The domain was discretized by a uniform Cartesian grid featuring Nx ×Ny ×Nz grid
points, that are listed in the following table:
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Section 7 Simulation at Mach = 0.1

Mach Retarget
τ Retrue

τ Grid points ∆x+ ∆y+ ∆z+

0.1 395 389.2 32x32x16 77.6 24.7 77.6
0.1 590 575.2 48x48x24 77.2 24.6 77.2
0.1 1000 943.1 80x60x40 78.5 33.3 78.5
0.1 2000 1821.0 128x66x64 98.2 60.6 98.2

Table 1: Selection of grid points and the resulting spacing in wall units at different friction
Reynolds numbers

where the number of grid points in the wall-normal direction is chosen such as the
second point (the top boundary in our WMLES implementation) fall within the log-layer
region (y+ > 30); the number of points in the other directions is chosen consequently to
give an acceptable stretching factor. The numerical scheme used is the sixth-order fully
split-convective energy-preserving scheme by Kennedy, Grüber and Pirozzoli (KGP6). To
promote the turbulence transition, the initial conditions for the primitive variables have
been imposed following the procedure proposed by Dan and John [9] (that consists in
superimposing a vortex pair to the analytical solution of the Poiseuille flow).
The solution was advanced in time until a statistical convergence of the flow variables
has been reached. The time step was evaluated employing the Courant- Friedrichs-Lewy
condition and setting a CFL number equal to 0.5 [22].

7.1 Pressure-driven turbulent channel

To reproduce numerically a channel flow, the mean pressure gradient must be imposed
(it’s also possible to impose the mean wall shear stress, see equation (3.9)). This condition
is imposed expressing the mean pressure gradient in term of non-dimensional reference
quantities. Considering the definition of the bulk velocity as the volume integral of the
u-momentum divided by the volume integral of the density:

ub =

R
V
ρudVR

V
ρdV

(7.1)

we can express the mean pressure gradient as a function of the deficit between a refernce
speed u∞ and the bulk speed

dP

dx
= u∞ − ub = F (7.2)

which defines suitable forcing terms for the Navier-Stokes system of equations

ST = {0, ρF , 0, 0,F} (7.3)

that can be added to the right-hand-side of the Navier Stokes equations to enforce that the
bulk speed of the channel fits dynamically the reference speed u∞. This implementation
allow the application of periodic boundary conditions along both stream and span-wise
directions avoiding any synthetic turbulence injection at the inflow position. Finally, the
reference speed u∞ can be expressed as a function of the Mach number according to the
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Section 7 Simulation at Mach = 0.1

expression u∞ =
√
γM∞ while the Reynolds number associated with the bulk velocity

can be defined as

Reb =
2ubh

ν∞
. (7.4)

Figure 13: Visualization of the WMLES simulation of the turbulent channel at Reτ =
2000. Here the Q-criterion shows the 1.5 iso-contours of the second invariant of the
velocity-gradient. The color map refers to the non-dimensional z-vorticity component

The following graphs show the scaled velocity u+ and the Reynolds stresses huiuji
against y+ for the friction Reynolds numbers listed in Table 4.

7.2 Reτ = 395

Figure 14: Example of velocity contour of a turbulent channel flow: M = 0.1, Re = 395
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Figure 15: Mean velocity and Reynolds stresses against y+: DNS data of Moser et al.
[17]: Reτ = 395

7.3 Reτ = 590

Figure 16: Example of velocity contour of a turbulent channel flow: M = 0.1, Re = 590

28



Section 7 Simulation at Mach = 0.1

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500

u
+

y
+

u
+
 WMLES

u
+
 DNS

(a) Mean velocity u+

-2

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

〈uiuj〉

y
+

R11 WMLES
R22 WMLES
R33 WMLES
R12 WMLES
R11 DNS
R22 DNS
R33 DNS
R12 DNS

(b) Reynolds stresses

Figure 17: Mean velocity and Reynolds stresses against y+: DNS data of Vreman [23]:
Reτ = 590

7.4 Reτ = 1000

Figure 18: Example of velocity contour of a turbulent channel flow: M = 0.1, Re = 1000
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Figure 19: Mean velocity and Reynolds stresses against y+: DNS data of Bernardini et
al. [14]: Reτ = 1000

7.5 Reτ = 2000

Figure 20: Example of velocity contour of a turbulent channel flow: M = 0.1, Re = 2000
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Figure 21: Mean velocity and Reynolds stresses against y+: DNS data of Bernardini et
al. [14]: Reτ = 2000

7.6 Comments to the results

Overall the results are in good agreement with the DNS data, showing only small disagree-
ments especially in the mean velocity profile, that is found to have a positive mismatch
with the DNS data in the inner part of the channel that is more prominent as Reτ in-
creases. Looking at the Reynolds stresses, the fluctuations of resolved turbulence away
from the wall are obtained in a reasonable agreement with the DNS data whereas the
near-wall fluctuations in the unresolved-inner layer are not computed. This implies that
the wall model works as expected, creating physically realistic fluctuations of the resolved
turbulence without resolving the near-wall region.
The real advantage of WMLES approach can be seen comparing it to the number of
points required using the DNS and WRLES approaches. For example looking at the data
presented in Table 2 of Modesti [16] we can see that in a channel of sizes 6πh× 2h× 2πh
at Re = 999 were used 2048 × 384 × 1024 points, which is approximately 700 times more
the number of total points used in our implementation (see Table 4). Furthermore this
advantage in computational cost is observed also compared to a wall resolved LES, that
requires a spacing in the wall normal direction of y+ < 1 (like DNS) but accepts a more
coarse grid in the other directions.

WMLES WRLES DNS
Mach Reτ ∆x+,∆y+,∆z+ ∆x+,∆y+,∆z+ ∆x+,∆y+,∆z+

0.1 395 77.6 × 24.7 × 77.6 40 × 1 × 20 7.2 × 1 × 4.8
0.1 590 77.2 × 24.6 × 77.2 40 × 1 × 20 4.8 × 1 × 2.4
0.1 1000 78.5 × 33.3 × 78.5 40 × 1 × 20 9.2 × 1 × 6.1
0.1 2000 98.2 × 60.6 × 98.2 40 × 1 × 20 9.2 × 1 × 6.2

Table 2: Comparison of the spacing in wall units needed to perform a WMLES, WRLES
and DNS simulation at different friction Reynolds numbers. The DNS data are reported
from Moser [17], Vreman [23] and Bernardini [14]
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8 Simulation at Mach = 1.5

In this section are presented the results of the simulations computed with URANOS at
M = 1.5 and two Reynolds numbers (500 and 1010). The channel sizes are 2πh×2h×πh
and the boundary conditions enforced to its faces are the same as the incompressible
case. The domain was discretized by a uniform Cartesian grid featuring Nx × Ny × Nz

grid points, that are listed in the following table:

Mach Retarget
τ Retrue

τ Grid points ∆x+ ∆y+ ∆z+

1.5 500 496.4 40x40x20 78.5 25.0 78.5
1.5 1010 1013.4 80x80x40 79.3 25.3 79.3

Table 3: Selection of grid points and the resulting spacing in wall units for the selected
friction Reynolds numbers

The following graphs show the scaled velocity u+, the Reynolds stresses huiuji and
the temperature against y+ for the friction Reynolds numbers listed in Table 3.

8.1 Re = 500

Figure 22: Example of velocity contour of a turbulent channel flow: M = 1.5, Re = 500
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Figure 23: Mean velocity, Reynolds stresses and mean temperature profiles against y+:
DNS data of Modesti et al. [15]: Reτ = 500

8.2 Re = 1010

Figure 24: Example of velocity contour of a turbulent channel flow: M = 1.5, Re = 1010
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Figure 25: Mean velocity, Reynolds stresses and mean temperature profiles against y+:
DNS data of Modesti et al. [15]: Reτ = 1010

8.3 Comments to the results

In both cases we can see that the mean velocity profile is well predicted at the first point
near the wall by the wall stress model but there is a positive mismatch going through
the center of the channel. The Reynolds stresses are very well predicted, considering, like
the previous section, that the near wall region is not resolved so its expected a departure
from DNS data. The temperature profile is in good agreement with the DNS data (it has
a positive mismatch in the Re = 500 case and a negative one in the Re = 1010 case)
but the model fails to predict accurately the temperature in the near wall region, thus
needs to be further investigated. Like in the incompressible case it’s worth pointing out
the great advantage that the WMLES gives in terms of computational cost, which can be
seen in the next table where WMLES grid size is compared to the WRLES and DNS one.

34



Section 8 Simulation at Mach = 1.5

WMLES WRLES DNS
Mach Reτ ∆x+,∆y+,∆z+ ∆x+,∆y+,∆z+ ∆x+,∆y+,∆z+

1.5 500 78.5 × 25.0 × 78.5 40 × 1 × 20 9.2 × 1 × 6.1
1.5 1010 79.3 × 25.3 × 79.3 40 × 1 × 20 9.3 × 1 × 6.2

Table 4: Comparison of the spacing in wall units needed to perform a WMLES, WRLES
and DNS simulation at different friction Reynolds numbers. The DNS data are reported
from Modesti et al. [15]

35



Section 9 Conclusions

9 Conclusions

The goal of this thesis was to determine the applicability and practicality of an ODE-
based modelling technique for LES of channel flows. We tested our implementation in
both incompressible and compressible case finding a general good agreement with DNS
data, with the expected log-layer mismatch of velocity and temperature profile that is
still not well understood (see section 3.2 of Larsson et al. [12]). The compressible case
has proven to be the most difficult to model due to the difficulty to impose the right
boundary condition for the wall heat flux (that has the difficult task to provide an averaged
thermal equilibrium even if the temperature gradient is modelled) and its sensitivity to
the grid. We think that some challenges that had to be faced during the implementation
of boundary conditions where due to the fact that the code has been developed with a
finite differences method, but in turn this is a unique feature that is rarely found in other
implementations especially with the intent to keep the numerical scheme as general as
possible (i.e. not made ad hoc for the wall-modelling approach). However we verified
in every simulation the real advantage of this approach: the computational cost. While
the accuracy of LES is undoubtedly better than that of equivalent RANS simulations in
most cases, the cost is at least an order of magnitude higher. In this context, WMLES
reduction of computational cost makes it comparable to RANS approach but keeping
the multiscale and non stationary features of LES. In an industry where calculation turn
around times have to be measured in at most a few days (while LES typically requires
some weeks), WMLES can be a real breakthrough in the prediction of every type of flow
whose unsteady, multiscale and fluctuating nature needs to be simulated in a reasonable
amount of time. These growing markets ensure a future for this methodology, while its
implementation in the mainstream of commercial CFD will be possible by methodological
advances and increased computational resources.
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A Appendix - Navier-Stokes Equations

A.1 Divergence Theorem

The integral over a closed surface δV of the product of a vector field F with the normal
n to the surface is equal to the integral over the volume enclosed by the surface V of the
divergence of the field: Z

δV

F · n̂dA =

Z
V

~∇ · FdV (A.1)

A.2 Reynolds transport theorem

Consider a volume V delimited by a closed surface δV , both time dependent. The
Reynolds transport theorem states that given a function of space and time F (~x, t), the
total derivative of the integral over a time varying volume of the function is equal to the
integral over the same volume of the partial derivative of the function in time added to
the surface integral of the function multiplied by the dot product between the velocity of
the surface b and its normal n.

d

dt

Z
V (t)

F (~x, t)dV =

Z
V (t)

∂F (~x, t)

∂t
+

Z
δV (t)

F (~x, t)~b · n̂dA (A.2)

The first term represents the time variation of the function in the volume, while the second
accounts for the time variation of the contour of the volume itself.

A.3 Conservation of mass

The law of conservation of mass states that the time variation of mass in a certain control
volume has to be zero [1], so we can write:

dM

dt
= 0 , where M =

Z
V

ρ dV (A.3)

using the Reynolds transport theorem A.2 for the function ρ(~x, t) we get:

d

dt

Z
V

ρ dV =

Z
V

∂ρ

∂t
dV +

Z
δV

ρ~u · n̂dA = 0 (A.4)

then applying the divergence theorem A.1 for the second therm we get:Z
V

∂ρ

∂t
dV +

Z
V

~∇ · (ρ~u)dV =

Z
V

∂ρ

∂t
+ ~∇ · (ρ~u) dV = 0 (A.5)

and differentiating we obtain the law of conservation of mass:

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 (A.6)

that using the index notation becomes:

∂ρ

∂t
+

∂ρuj

∂xj

= 0 (A.7)

37



Section A Appendix - Navier-Stokes Equations

A.4 Conservation of Momentum

The law of conservation of momentum ~Q = m~u states that its variation in time is equal
to the sum of external forces:

d~Q

dt
=
X

~Fe (A.8)

where the momentum is defined as

~Q =

Z
V

ρ~udV (A.9)

we can use the Reynolds transport theorem A.2 and the divergence theorem A.1 to write
the first part of the equation A.8 as:Z

V

∂ρ~u

∂t
+ ~∇ · ρ~u~u dV =

X
~Fe (A.10)

The external forces can be divided in volume forces and surface forces:

X
~Fe =

(
d~Fe,V = ρ~fdV

d~Fe,A = ~tndA =
~~T · n̂dA

For newtonian fluids,
~~T has the following expression:

~~T = −p
~~I + 2µ

~~E − 2

3
µ ~∇ · u ~~I = −p

~~I +
~~Σ (A.11)

where
~~I is the identity matrix and

~~E = 1
2

~∇~u + ~∇~uT . substituting all the forces in the

A.10 and differentiating we get the law of conservation of momentum:

∂ρ~u

∂t
+ ~∇ · (ρ~u~u) = ρ~f − ~∇~p + ~∇ · ~~Σ (A.12)

that written in the index notation becomes:

∂ρui

∂t
+

∂(ρuiuj)

∂xj

= ρfi +
∂

∂xj

(−pδij + Σij) (A.13)

A.5 Conservation of energy

The law of conservation of energy states that the time variation of the total energy of the
system is equal to the amount of heat transmitted to the system plus the total work done
to the system.

dET

dt
= Q̇ + Ẇ (A.14)

The total energy can be expressed as the sum of the internal energy and the kinetic energy:

ET =

Z
V

ρ e +
u2

2
dV (A.15)

38



Section A Appendix - Navier-Stokes Equations

using the Reynolds theorem, its variation in time can be written as:

d

dt

Z
V

ρ e +
u2

2
dV =

Z
V

(
∂

∂t
ρ e +

u2

2
+ ~∇ · ρ e +

u2

2
~u

)
dV (A.16)

the heat term Q̇ =
R
S
dq̇ can be divided in volume and surface type:

dq̇ =

(
dq̇V = ρQdV

dq̇S = −~q · n̂ dS

the same can be done for the work:

dẆ =

(
dẆV = ρ~f · ~u
dẆS = ~u · ~tn dS = ~u · ~~T · n̂ dS

substituting the heat and work term in the A.15 (remembering the expression A.11) and
differentiating we get the law of conservation of energy:

∂

∂t
ρ e +

u2

2
+ ~∇· ρ e +

u2

2
~u = ρQ− ~∇· q+ ρ~u · ~f − ~∇· (~up) + ~∇· (~u~~Σ) (A.17)

Noting that ~∇ · (~up) can be expressed as:

~∇ · (~up) = ρ
D

Dt

P

ρ
− ∂p

∂t
(A.18)

where D/Dt is the total derivative, we can bring the pressure term to the left:

D

Dt
ρ e +

p

ρ
+

u2

2
= ρQ− ~∇ · q + ρ~u · ~f + ~∇ · (~u

~~Σ) +
∂p

∂t
(A.19)

we can define entalpy as h = e + p
ρ

and write the final expression of the energy law:

D

Dt
ρ h +

u2

2
= ρQ− ~∇ · q + ρ~u · ~f + ~∇ · (~u

~~Σ) +
∂p

∂t
(A.20)

using the index notation it becomes:

∂

∂t
ρ h +

u2

2
+

∂

∂xj

ρ h +
u2

2
uj = ρQ− ∂~q

∂xj

+ ρuifi +
∂(uiΣij)

∂xj

+
∂p

∂t
(A.21)

We can finally write the Navier-Stokes equation in index notation:

∂ρ
∂t

+
∂ρuj
∂xj

= 0

∂ρui
∂t

+
∂(ρuiuj)

∂xj
= ρfi + ∂

∂xj
(−pδij + Σij)

∂
∂t

h
ρ h + u2

2

i
+ ∂

∂xj

h
ρ h + u2

2
uj

i
= ρQ− ∂~q

∂xj
+ ρuifi +

∂(uiΣij)

∂xj
+ ∂p

∂t
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This system consists in 5 equation in 7 unknowns, so to become solvable with must write
two other equations. For an ideal gas these equations are:(

p
ρ

= RT

e = cvT
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