
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea in Fisica

Tesi di Laurea

Superfluorescence Dynamics in Er:YLF

Relatore Laureando

Dr. C. Braggio Alexey Vladimirovic Bortoli Saygashev

Anno Accademico 2018/2019





Contents

1 Introduction 1

2 An elementary theory of superradiance 3
2.1 Spontaneous emission in a two atoms system for d� λ . . . . . . . . . . . . . . . . . . 3
2.2 Extension to N atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Time profile of emitted intensity in superradiance . . . . . . . . . . . . . . . . . 6
2.2.2 Interatomic correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The spacial extension of superradiance: the superfluorescence. The pencil-shaped sample 8
2.4 The influence of dephasing on superfluorescence . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Rare-earth elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Er3+:YLF crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Experimental 11
3.1 Description of experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Peak detection and cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Ringing elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 µ,Γ parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Peak interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.5 Estimation of emitted photon number . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.6 Square dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.7 τR dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Conclusions 19

iii



iv CONTENTS



Chapter 1

Introduction

Spontaneous decay is a phenomenon that has been described for the first time by Dirac, Wigner
and Weisskopf, at the early ages of the development of quantum electrodynamics [5,6]. The theory is
applicable to a multi-body system only when atoms don’t interact during their decay. Dicke introduces
in his seminal paper the case where this assumption doesn’t hold [1].

The results he obtains not only tell that the system emits pulses, but the pulse duration now depends
on 1/N , where N is the number of participating atoms to the process. The pulses temporal profile
is described by a squared hyperbolic secant function. The resulting emission intensity scales as N2.
The atomic system radiates more intensively than the ordinary fluorescent emission, this is the reason
why the process is called superradiance, or by a generalization to extended systems, superfluorescence.
The superradiant emission has preferential escape directions, depending on the atomic sample shape
(Figure 1.1).

Figure 1.1: Comparison between standard fluorescence and superradiance. The main difference between two
emission types are the directionality and intensity time evolution of the pulse. The ordinary fluorescence
is isotropic while the superfluorescent emission shows radiation lobes. Moreover, the ordinary spontaneous
emission follows the exponential decay with a constant τsp time while the superfluorescent pulse has a squared
hyperbolic secant pattern and a 1/N time width, with N the number of atoms. [3]
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2 CHAPTER 1. INTRODUCTION

Superradiance is a collective process and it takes place when the group of excited atoms is left unper-
turbed during the formation of of the macroscopic dipole. A fundamental difference compared to the
spontaneous and stimulated emission processes is that all atoms act together as a single entity and it
isn’t possible to identify single atoms.

This remarkable behaviour is manifest when the atomic coherence of the system, while influenced by
environmental interactions that cause dephasing in atoms, persists for a sufficient interval of time.

Typical dephasing mechanisms, such as collisions in gases or lattice phonon interactions in crystals,
make its experimental observation difficult. A possible solution to this problem is the use of optical
crystals doped with rare-earths that are characterized by long and narrow levels lifetimes.

—

The superfluorescent bursts are the starting point of my work; data are taken from a quantum optics
experiment in the INFN Legnaro National Laboratory (Padova).

I have fitted the electric signals recorded at a photodiode of superfluorescent pulses and have verified
the typical squadred hyperbolic secant form expected from superfluorescence. With the fitted data I
have shown the N -squared dependence of the photon burst intensity and the dependence of the pulse
width following 1/N . I have shown that these results are almost independent on the input laser pump
power and have made an estimate of participating atoms contributing to the superfluorescent emission
with the result of order of 1011 units.



Chapter 2

An elementary theory of superradiance

In this part I will describe superfluorescence from a theoretical point of view using the semiclassical
formalism [1–3], namely using a quantum description of the atomic system and treating classically the
radiation.

I start by considering the decaying rate of a two-level, two isolated atoms system at a distance less
than the radiation emission wavelength (d � λ) and compare it with a system of two uncorrelated
spontaneously emitting atoms (section 2.1).

I then extend the results obtained in the previous section by considering a system of N coherently
emitting atoms (section 2.2). By focusing on the dynamics of the radiation emission in subsection 2.2.1,
I show the main characteristics of a superradiant emission: (i) N2 dependence of the coherent pulses
intensity on the number of participating atoms N , (ii) the temporal profile of the output pulses, (iii)
and 1/

√
N dependence of the pulses duration τR; in subsection 2.2.2 I consider interatomic correlations

of the system.

I consider the pencil-shaped case in section 2.3 and explain how the geometry affects the superfluo-
rescence emission dynamics.

In section 2.4 I briefly talk about the role of dephasing on the system and show the necessary conditions
to observe superfluorescent emission. Such conditions can be satisfied in rare-earth doped materials
and spectroscopic properties that are crucial in dephasing are detailed [4]; I briefly conclude focusing
on Er3+:YLF crystal, which has been used in the experimental part of this work.

2.1 Spontaneous emission in a two atoms system for d� λ

Let us consider a system of identical two atoms with two levels; their distance is far less than the
radiation emission wavelength, d � λ, and this condition translates to coherent interaction via elec-
tromagnetic dipolar emission. We suppose at this level that atoms do not de-excite via other channels.
We are going to see the temporal intensity profile I(t) of the emission differs substantially from the
case of two non correlated atoms.

The system has three energy eigenstates: |ee〉 , |m〉 , |gg〉, with |m〉 being a superposition of symmetrical
(|s〉 = |ge〉+ |eg〉)/

√
2 and antisymmetrical |a〉 = (|ge〉− |eg〉)/

√
2 states; by applying the spontaneous

emission rate formula [5, 6]

Γsp =
4

3ε0~

(ω0

c

)3
D2 (2.1)

it is possible to calculate the decay rate of the system. By calculating matrix elements of dipole
interaction operators on atoms 1 and 2, D1 and D2 [2]:

3



4 CHAPTER 2. AN ELEMENTARY THEORY OF SUPERRADIANCE

〈ee|D1 + D2|s〉 = 〈s|D1 + D2|gg〉 = D
√

2

〈ee|D1 + D2|a〉 = 〈a|D1 + D2|gg〉 = 0

or, by using spontaneous emission formula (Equation 2.1):

Γee,s = Γs,gg = 2Γ

Γee,a = Γa,gg = Γee,gg = 0

The probability P (t) of a transition in a spontaneous decay is found by solving:

dP (t)

dt
= −ΓP (t)

which follows to an exponential law
P (t) = e−Γt

In case of two atoms system, by using the found rates, following equations for probability of each state
can be written

dPee(t)

dt
= −2ΓPee(t)

dPs(t)

dt
= −2ΓPee(t)− 2ΓPs(t)

dPa(t)

dt
= 0

dPgg(t)

dt
= −2ΓPs(t)

The resulting probability is therefore:

Pee(t) = e−2Γt

Ps(t) = 2Γte−2Γt

Pa(t) = 0

Pee(t) = 1− (1 + 2Γt)e−2Γt

And the average photon emission intensity I(t):

I(t) = Γee,sPee(t) + Γs,ggPs(t)

= 2Γ(1 + 2Γt)e−2Γt

This result says that the coherent spontaneous emission of two atoms has a fundamentally different
time profile when compared with the spontaneous emission of two isolated atoms, which is:

I(t) = 2Γe−Γt

In case of N atoms the difference in this behaviour becomes even more relevant, as described in the
section 2.2.
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2.2 Extension to N atoms

By modelling the free Hamiltonian Hf,i of each atom of the system, labelled by i = 1, 2, . . . , N , as a
two-level system

Hf,i =

[
1
2~ω0 0

0 −1
2~ω0

]
(2.2)

it is possible to define |e〉 , |g〉 as excited and ground states of each atom, with ~ω0 the difference of
energy between |e〉 and |g〉 states.

Raising and lowering operators are introduced as follows

D+
i = |e〉 〈g| D−i = |g〉 〈e| (2.3)

as well as diagonal operator

D3i =
1

2
(|e〉 〈e| − |g〉 〈g|) (2.4)

that satisfy the following commutation rules

[D3i, D
±
j ] = ±δijD±i [D+

i , D
−
j ] = 2δijD3i (2.5)

In order to describe the system collectively we should make an important but quite restrictive as-
sumption that holds in few cases but allows to understand the main properties of the superfluorescent
system we are going to discuss.

The property is the symmetry by particle exchange inside the system.

In order to satisfy it, all atoms partecipating to the process should feel the same field the system
is going to generate; thus, atoms should be confined in a little volume of space not be affected by
time-delay effects of field propagation; in particular the region length L should be far less than the
generated radiation wavelength:

L� λ. (2.6)

This is the so-called Dicke superradiance model [1]. Superfluorescence, on the other hand, is a process
that acts on an extended body; however, most of the underlying physics doesn’t change.

Now it is possible to describe the system of N particles by introducing the system state vector

|e, e, . . . e〉 =

N⊗
i=1

|e〉 (2.7)

By comparing D+
i , D

−
i , D3i with σ+, σ−, σ3 Pauli matrices it can be shown the system behaves like

a collection of N spin-1
2 entities; this allows to describe the state of the system by using |JM〉 ket,

where J = N
2 interpreted as total angular momentum.

The state |JM〉 is a fully symmetrical and is obtained by applying symmetrization operator on J+M
excited and J −M ground-state particles:

|JM〉 = S |e, e, . . . , e︸ ︷︷ ︸
J+M

, d, d, . . . , d︸ ︷︷ ︸
J−M

〉 (2.8)

that’s possible because of assumptions on particle exchange symmetry.

By introducing collective operators

D± =
∑
i

D±i (2.9)

D3 =
∑
i

D3i (2.10)
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~ω0

|J,−J〉 = |gg . . . gg . . . gg〉
|J,−J + 1〉 = S |eg . . . gg . . . gg〉
|J,−J + 2〉 = S |ee . . . gg . . . gg〉

|J, 0〉 = S |ee . . . eg . . . gg〉

|J,+J − 2〉 = S |ee . . . ee . . . gg〉
|J,+J − 1〉 = S |ee . . . ee . . . eg〉
|J,+J〉 = |ee . . . ee . . . ee〉

〈Hf 〉 = −N
2 ~ω0

〈Hf 〉 = +N
2 ~ω0

Figure 2.1: Superradiance model, described by ladder representation

D2 =
1

2
(D+D− +D−D+) +D2

3 (2.11)

it is possible to define |JM〉 states by their eigenvector relationships

D3 |JM〉 = M |JM〉 (2.12)

D2 |JM〉 = J(J + 1) |JM〉 (2.13)

and describe the action of ladder operators D+, D− on them

D+ |J,M〉 =
√

(J −M)(J +M + 1) |J,M + 1〉 (2.14)

D− |J,M〉 =
√

(J −M + 1)(J +M) |J,M − 1〉 (2.15)

The Hamiltonian of free atoms of the system now can be written as

Hf = ~ω0

N∑
i=1

D3i = ~ω0D3 (2.16)

and the energy of state as |JM〉
〈JM |Hf |JM〉 = ~ω0M (2.17)

The description of the electromagnetic coupling among atoms is approximated to dipole interaction,
so we define the interaction Hamiltonian as

Hint = −ED = −E
N∑
i=1

Di = −Ed
N∑
i=1

(D+
i +D−i ) = −Ed(D+ +D−) (2.18)

The evolution of the system follows a ladder progression of N+1 levels, as shown in Figure 2.1 through
the diseccitation of atoms; only dipolar interaction happens in the model, this way the only possible
transitions are those that raise or lower one atom for each absorbed or emitted photon: ∆M = ±1.

2.2.1 Time profile of emitted intensity in superradiance

To calculate transition rate ΓM,M−1 between states |J,M〉 and |J,M − 1〉 we consider dipole transition
matrix D and spontaneous transition rate [5, 6]

Γsp =
4

3ε0~

(ω0

c

)3
D2 (2.19)

so we can write

DM,M−1 = d 〈J,M − 1|(D+ +D−)|J,M〉 =

= d
√

(J −M + 1)(J +M) (2.20)
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and calculate its matrix elements

ΓM,M−1 = Γsp(J −M + 1)(J +M) (2.21)

We observe that for M ≈ 0 the emission rate of the system is proportional to N2.

At this point we can evaluate I(t), the mean intensity of emitted photons when the system decays.
Since the interaction is approximated as dipolar it is assumed that each transition takes place via
emission of a single photon with a transition rate ΓM,M−1. We can consider the mean total emission
time of n = J −M decayed photons as

t̄(n) =
J∑

M=J−n+1

Γ−1
M,M−1 (2.22)

by using Equation 2.21 and replacing the sum with the integral, while considering J large enough we
get

t̄(n) = Γ−1

∫ J

J−n

dM

(J −M + 1)(J +M)
(2.23)

Solving Equation 2.23 is possible to explicitly write the number of decayed atoms as n(t̄)

n(t̄) = J + J tanh[ΓJ(t̄− tD)] (2.24)

tD =
1

Γ

ln(2J)

2J
(2.25)

At this point we are able to describe the mean radiation intensity as function of time, where the mean
time t̄ is replaced by t and J = N

2 :

Ī

~ω0
=

dn(t)

dt
= Γ

1

4
N2 sech2

[
Γ

1

2
N(t− tD)

]
(2.26)

tD =
1

Γ

lnN

N
. (2.27)

This result shows strong differencies in a cooperative spontaneous emission, compared with ordinary
fluorescence:

• The pulse form in time is a hyperbolic secant squared, compared to a decreasing exponential;

• The pulse duration now is proportional to N−1, it results in a faster emission in case of more
participating atoms; in the ordinary case the pulse time is independent of N ;

• The pulse maximum intensity is proportional to the square of emitting units N2, instead of just
to their number N .

• Now there is a delay time (tD) during which a macroscopic dipole build up.

2.2.2 Interatomic correlation

The correlation part plays an important role as the emission is coherent and most of atoms of the
ensemble should participate to the superradiant process to obtain the square dependence as provided
in Equation 2.21.

To evaluate the correlation between atoms we are going to estimate the value of 〈JM |D+
i D
−
j |JM〉.

Let’s start by considering

〈JM |D+D−|JM〉 = 〈JM |
∑
i 6=j

D+
i D
−
j |JM〉+ 〈JM |

∑
i

D+
i D
−
i |JM〉
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from Equation 2.14, Equation 2.15 we get

〈JM |D+D−|JM〉 = (J −M + 1)(J +M)

while
〈JM |

∑
i

D+
i D
−
i |JM〉 = 〈JM |

∑
i

D2
i −D2

3i +D3i|JM〉 = J +M

using the symmetry by exchange on particles it’s possible to write

〈JM |
∑
i 6=j

D+
i D
−
j |JM〉 = N(N − 1) 〈JM |D+

i D
−
j |JM〉

finally obtaining, by rearrangement

〈JM |D+
i D
−
j |JM〉 =

J2 −M2

N(N − 1)
(2.28)

We can observe that when M ≈ 0 and the system irradiates with rate proportional to N2 the corre-
lation between pairs of atoms, in mean, is maximum with value 〈JM |D+

i D
−
j |JM〉 ≈ 1

4 .

2.3 The spacial extension of superradiance: the superfluorescence.
The pencil-shaped sample

From this moment it is necessary to consider the atomic system under study as spacially extended;
Equation 2.6 doesn’t hold anymore and all assumptions based on this hypothesis are not valid. In
order to describe the considered system, quantization of electromagnetic field is required, as well as
considerations on atomic distribution and evolution of field variables in quantum domain (Maxwell-
Bloch and master equations). This description is provided by a more extended bibliographic material
[2], [3], [7].

A realistic and quite general approximation of a common case superfluorescent system is named pencil
shaped sample case, in which longitudinal size of active part of the atomic ensemble (L) is far greater
than the transversal one (2w).

L� w � λ (2.29)

Moreover geometric conditions are modelled by assuming Fresnel numbers close to one

F =
πw2

Lλ
≈ 1 (2.30)

which allows to have a balance between a single diffraction mode of emission and not having too
much divergent transverse field; in this case it’s possible to treat the problem approximately as one
dimensional and ignore transversal effects [3, p. 335]

With all these assumptions it is possible to define a constant µ that takes in account the effects of the
extended geometry:

µ =
3

8π
Ω0 (2.31)

with Ω0 = λ2/πw2, which is diffraction solid angle of emitted dipolar radiation, that influences the
emission rate ΓN by changing it to µΓN .

By introducing

τR =
1

µΓN
(2.32)

we get from Equation 2.26
I

~ω0
=
N2µΓ

4
sech2

[
1

2τR
(t− tD)

]
(2.33)
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2.4 The influence of dephasing on superfluorescence

The theory considered until now has assumed an interatomic distance far less than the radiation
wavelength or a perfectly symmetric configuration among atoms, which are ideal conditions for the
generation of a superfluorescent beam; in practical cases the symmetry requirements are never perfectly
satisfied. The consequence is the dephasing of atomic Bloch vectors of the system; this takes place
because dipole-dipole interactions between atoms causes shifts of atomic energy levels. In addition
possible local asymmetries of the field affect the coherence of atoms and consequently the construction
of a macro-dipole that pre-exists superfluorescence.

This dephasing influence is describes as inhomogeneous broadening of the transition and the key
parameter is T ∗2 , which quantifies the time that elapses before Bloch vectors start to lose coherence
among them in the system from a fully excited state. [4, p. 523]

The coherence of the system is fundamental; if lost, the system doesn’t emit through superfluorescence
but behaves as a standard spontaneous emission.

For this reason

τR � T ∗2 (2.34)

is necessary to have a superfluorescent pattern [7, p. 1519].

Another condition is due to the extended nature of the system (d > λ): in order to have a full
participation of atoms, the field generated should be able to influence all parts of the system. Due to
the finite speed of light, which has to cross the whole length of the system, this requirement translates
to:

L/c . τR. (2.35)

To make an example in our pencil-shaped sample L ≈ 5 mm implying τR > ps, well satified in the
experiments described in the following.

2.5 Rare-earth elements

In this work rare-earth elements are used as medium for generation of superfluorescent beams.

It’s worth asking about the reasons for the use of such media. First of all, due to their electronic
structure: the orbitals 5s, 5p are complete, while 4f is not; this happens because of the high angular
momentum, which places 4f levels above the other two in terms of energetic ordering; it results that
4f active levels are spacially surrounded and shielded from most environmental interactions by 5s, 5p
electrons; this particular configuration allows 4f level transitions to be good candidates to observe
superfluorescence [8, p. 17].

Disturbing interactions on electrons are caused by to different energetic conditions which electrons
undergo, which breaks the global symmetry of the system and makes more difficult the creation of
the global dipole of the system; the action of close atoms in most cases are caused by electronic and
nuclear spin-orbit coupling, hyperfine splitting, phonon transfer in a crystal, atomic scattering energy
transfer in gases; the influence of these factors directly acts on the generation of the superfluorescent
beams and can be quantified by measuring the inhomogeneous linewidth of the radiation.

A particular case of usage of rare-earth elements is when they are placed into an optical crystal as
dopant; the crystal structure helps the system to have a more symmetric structure while having a
degree of freedom in choosing the concentration of rare-earth materials. The crystal field also acts as
environmental influence on rare-earth electrons by slightly perturbing their energy levels and by making
possible to do transitions which would be impossible to observe with pure elements; these transitions
lifetimes can be of order of milliseconds and combined with orbital shielding and other crystal effects
(like non-Kramers’ doublets creation) allow to improve the coherence time a lot [8, p. 17].
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Figure 2.2: Er3+:YLF levels taken in account during the experiment; curvy transition is non-radiative; the
measured superfluorescent emission is 1532 nm line.

Lastly, crystals are useful purely from the experimental point: unlike gases, which need to be contained
by optical interfaces and have a controlled pressure, crystals don’t need specific setup to be ready to
use in optical experiments and can be managed quite easily.

2.5.1 Er3+:YLF crystal

A particular rare-earth - crystal configuration was used in this experiment, erbium ion (Er3+) with
yttrium lithium fluoride matrix (LiYF3), also called Er3+:YLF.

The most relevant crystal transitions are observed in the infrared region of the spectrum; in particular,
the observed experimental transition used to produce superfluorescence is 4I13/2

4I15/2, with a
group of multiple transitions localized in 1500 - 1600 nm region.



Chapter 3

Experimental

In this part I study and analyse data taken from superfluorescence experiments that take place in Leg-
naro National Laboratory (INFN-LNL) using a rare-earth doped crystal Er3+:YLF as active medium.

In section 3.1 I describe the experimental setup.

I analyse the collected experimental data in section 3.2 by selecting (subsection 3.2.1), filtering (sub-
section 3.2.2) and fitting with the expected hyperbolic secant squared curve (subsection 3.2.4).

Geometrical and spontaneous emission coefficients are estimated with the available data (subsec-
tion 3.2.3) and using the whole information I compare the experimental theoretical and theoretic
behaviour, like square dependence of intensity (subsection 3.2.6) and variable superfluorescent peak
width behaviour (subsection 3.2.7); I give an estimate of the emitting number of atoms in the sample
(subsection 3.2.5).

3.1 Description of experimental setup

We have recorded temporal profiles of the emitted photon bunches to experimentally verify the hy-
perbolic secant squared dependence intensity in time, 1/

√
I dependence of superfluorencent time τR

on the photon rate and intensity N2 dependence of the pulses.

The used experimental apparatus (Figure 3.1), as schematically shown in Figure 3.2, includes the
following parts:

• The 1% Er3+ concentration, 5x5x5 mm3-volume Er3+:YLF crystal.

• The continuous wave Ti:sapphire laser, with ring cavity stabilization; the laser is frequency
tunable, with 0.1× 10−3 nm wavelength stabilization and 10 MHz linewidth. The maximum
input power is 400 mW. The waist width, obtained with knife-edge measurement, is w = 163 µm.

• The cryogenic apparatus, composed by superfluid helium-4 that surrounds the crystal and opti-
cally interfaces with the external environment; the helium is mantained in a superfluid state at
the temperature of 2.17 K, by taking away the gaseous helium, with the use of a pump; in this
state the phonon excitation in the crystal is reduced and the bubble formation, that disturbs the
optical measurement, is avoided; sensors monitor in real time the helium temperature, heating
rate and residual gas pressure.

• The superfluorescent dynamics is investigated with an InGaAs photodiode detector (Thorlabs
DET10C responsivity: 1.0 A/W, rise time 10 ns) with input longpass filter with a cut-on wave-
length of 1300 nm. The photodiode is connected to an oscilloscope, which records the experi-
mental data (10000 points per each pulse measurement, ∆t = 0.05 ns between two points).

The reported measurement of the laser input wavelength is of 808.992 nm, which is the 4I15/2
4I9/2

transition from Figure 2.2.

11
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Figure 3.1: Cryogenic and measurement parts of the experimental setup; the window under the cryostat is
where the crystal is located during the experiment.

Figure 3.2: Simplified scheme of the experimental setup.
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Figure 3.3: One of the extracted superfluorescent peaks by peak detection and cutting algorithms

3.2 Data analysis

The experimental data are five time series groups that include 150-320 time series of triggered super-
fluorescent pulses each; every group is discriminated by input laser power; a time series is a single
superfluorescent burst measured by a photodiode and registered by an oscilloscope.

I have applied the analysis procedure to a single group, then replicated for other four.

3.2.1 Peak detection and cutting

An algorithm has been used to select and identify the superfluorescent peaks from the data.

The peak detection algorithm selects 101-st to 200-th points with highest y (intensity) values out of
10000, finds their mean x (time) values and translates the data to align the peak time value to 0; this
way it makes use of y-axis symmetry in the region near the peak while it doesn’t consider peak spike
values which have an asymmetric and non-uniform distribution of points.

The cutting procedure is done considering the intensity 〈yb〉 as the mean intensity of 1500 left and
1500 right points of the time series; then the time interval of 10000 points is divided in 100 points
subintervals Ii = {(x, y)100i+0, (x, y)100i+1, (x, y)100i+2, · · · , (x, y)100i+99}; for each interval the mean
of intensity 〈y(Ii)〉 as well as the standard deviation σ(y(Ii)) are calculated; starting from the left and
moving forward for each subinterval the condition 〈y(Ii)〉 > 〈yb〉 + σ(y(Ii)) is checked, the first time
it is true the cut is done and data on the right are taken; the same algorithm is applied moving from
right to left and taking the remaining data on the left.

This algorithm reduces 10000 points to 2500-4000 depending on the peak width.

3.2.2 Ringing elimination

Some peaks in the sample exhibit oscillations, as shown in Figure 3.4. In the literature these oscillations
are ascribed to ringing, an inherent process in superfluorescencence [4].

In my analysis I have used only the data without this ringing effect.

The following algorithm is used to find and eliminate peaks with the occurring ringing. First of all
the peak is smoothed by applying three times a mean filter by averaging 40 points around each point
of the peak; then the data intensity (I) is normalized by the peak height (calculated as the mean of
intensity coordinates of 50 highest intensity around the peak). A list of differences of intensities is
calculated, then this operation is repeated on the last list; at this point their modulus is calculated.
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Figure 3.4: One of peaks affected by ringing; the continuous line is data after three applications of the mean
filter.

50 largest elements are summed together, if the sum is bigger than a threshold value, then the peak
is considered too much irregular and is discarded. This procedure is applied for all peaks.

3.2.3 µ,Γ parameters estimation

µ estimates the geometrical contribution to the superfluorescent lifetime and is dependent on the
diffraction angle Ω0, as reported in Equation 2.31, which gives:

µ =
3

8π2

(
λ

w

)2

= (4.17± 0.04) · 10−6

Γ rate is calculated as inverse of spontaneous lifetime T1 = 15.3 ms of atoms:

Γ =
1

T1
=

1

0.0153 s
= (65.4± 0.7)

1

s

As result:

µΓ = (2.72± 0.04) · 10−4 1

s

3.2.4 Peak interpolation

Each filtered superfluorescent peak time series has been interpolated using the form suggested by the
theory (Equation 2.33):

y = a · sech2 (bt+ d) + c (3.1)

Example data examples with their interpolations are provided in Figure 3.5. We observe that the
stronger the photon emission intensity implies the sharper emission peak. The FWHM of the peaks
is approximately 30-60 ns.

Fast pulses have a fall time ≈ 10 ns and the photodiode has a comparable rise time (10 ns). This may
limit the observation of faster pulses in this experiment.
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Figure 3.5: Examples with different intensities and peak time widths, P = 400 mW

3.2.5 Estimation of emitted photon number

An estimate of the number of emitted photons is done by applying Equation 2.33.

b =
1

2τR
=
µΓN

2

By using the coefficient b from Equation 3.1 interpolations N is related to all known variables:

N =
2b

µΓ

Since b is in order of 107 − 108 s−1, N ≈ 1011 units (Figure 3.6).

3.2.6 Square dependence

With the parameters found in subsection 3.2.4 the verification of the square dependence of intensity
(I) to a quantity proportional to the number of the partecipating atoms (NµΓ) is possible. Observed
data satisfy the parabolic behaviour when fit, as shown in Figure 3.6.

Superfluorescence appears only from a starting value of N ≈ 2 · 1011 atoms dependent to chosen the
crystal and other experimental conditions.

A more suitable form to evaluate time evolution of the superfluorescent emission intensity (Equa-
tion 2.33) replaces N2 factor with N(N −N0):

I

~ω0
=
N(N −N0)µΓ

4
sech2

[
1

2τR
(t− tD)

]
(3.2)

3.2.7 τR dependence

The time independent part of Equation 3.2 can be inverted as τR function of intensity I as:

τR =
a

I

[
1 +
√

1 + bI
]

(3.3)

Data from the interpolation of subsection 3.2.4 are used to evaluate the intensity of the photon emission
(I) versus the superfluorescent time of pulses (τR) and to verify Equation 3.3 by interpolation.
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Figure 3.6: Parabolic dependence graph of intensity on N emitting units. The input laser powers are, in order,
208 mW, 280 mW, 356 mW, 400 mW, 400 mW
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Figure 3.7: Intensity (I) vs superfluorescence time (τR) graph, different input laser powers are compared.

As shown in Figure 3.7, the superfluorescent time τR distribution is in the range of 5−25 ns. Compared
with the spontaneous emission lifetime of the system T1 = 15.3 ms, this results in an acceleration of
0.6− 3 · 106 times.

The graph also shows the τR − I dependence is barely affected by the pump laser input power.
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Chapter 4

Conclusions

Superfluorescence is an electromagnetic emission with a specific temporal characteristics that depend
on the number of the participating atoms. These characteristics are totally different compared to the
standard spontaneous emission and totally depend on the quantum coherence of the system.

In this work I have analysed experimental data and showed their peculiar superfluorescence charac-
teristics that include:

• the sech2(t) temporal evolution of superfluorescent pulses;

• the N2 dependence of the maximum peak intensity on the number of atoms;

• the 1/
√
I dependence of the peak width (superfluorescent time) which being not much dependent

on the input laser power;

with different input laser powers. Data reasonably agree with the theoretical results. I also have
estimated the number of the participating atoms in the pulses.

Experimental results are in agreement with the presented superfluorescence theory.
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