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Abstract

In recent times, the utilization of drones has seen a significant increase across both civilian and
military domains. Within themilitary sphere, these UAVs (Unmanned Aerial Vehicles) exhibit
the capacity to engage targets at extended distances, disrupt critical infrastructure, and conduct
comprehensive facility assessments via ISR (Inspection, Surveillance, and Reconnaissance) op-
erations. To prevent such events from happening, it is required a calibrated system to detect
drones and conduct an analysis of their intentions based on their movement and behavior,
while also considering the economic implications of deploying costly missiles for every drone
interception. This is the principal focus of this thesis: after detailed research, some credible
trajectories that could be followed by attacking drones were simulated and fed to a classifying
system with the scope to recognize which patterns were attacks and which were harmless. The
classifier is also supported by a trajectory-forecasting system, that can help direct the decision.
The entire system has then been tested on real-world data to ensure its feasibility in a realistic
scenario
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1
Introduction

Unmanned Aerial Vehicles, or UAVs, are remotely-controlled aircraft that do not require an
onboard pilot to be managed. They can be found in different shapes and sizes, with different
names according to the number of rotors. In recent years there has been a huge increase in
usage of such devices in both civilian and military environments due to their reliability, high
quality of the onboard camera, and intuitive controls. Figures 1.1 and 1.2 show a traditional,
consumer-grade drone and a military drone respectively.

Figure 1.1: DJI Inspire 2 Figure 1.2: General Atomics MQ‐1 Predator

Traditionally, a drone ecosystem is composed of multiple elements, both portable and fixed:

1. DroneHardware: every onboard electronic componentused to control the drone: CPU,
a miscellaneous of sensors such as gyroscopes and accelerators, firmware.
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2. Drone Chassis: every non-electronic component of the drone: it is typically made in
plastic or carbon fiber to provide robustness and prevent additional weight.

3. Ground Control Station: the device used to control the UAV remotely, it could either
be mobile or stationary.

4. Pilot: whoever is controlling the UAV via the GCS.

5. Communication Channel: the transmissionmedium used by the pilot to communicate
with the drone.

The rise ofUAVs owesmuch to their improved battery life, lightweight design, and increased
operational altitude. These technological strides have made drones invaluable in fields like ex-
press delivery [1], search and rescue [2], geographic mapping of hard-to-reach places [3], and
border surveillance [4]. Industries like agriculture, engineering, and defense have all seen sig-
nificant benefits from the versatility of drones.

Yet, there’s a flip side to this coin. While these advancements open doors for positive appli-
cations, they also make UAVs perfectly suitable for misuse. In recent times, we’ve witnessed
an uptick in the not-so-friendly uses of drones, ranging from spying [5] to acts of terrorism
[6]. The very features that make UAVs appealing for good purposes, such as their improved
battery life and portability, also make them attractive for less savory activities. Drones are now
being used to get hacking gear closer to isolated computer systems and even for smuggling ille-
gal goods across borders.
So, while we revel in the positive potential of UAVs, it’s crucial to acknowledge the emerg-

ing threats they bring. The dual nature of these technological marvels highlights the need for
robust cybersecuritymeasures to keep pacewith their expanding use. In response to the escalat-
ing concerns surrounding drone-related incidents, the Federal Aviation Administration (FAA)
has implemented RemoteID [7]. This system enables a flying drone to transmit essential in-
formation to any accessible ground station. As per this regulatory framework, a drone in flight
must continuously relay its pilot ID, current flight location, and altitude to any monitoring
party at intervals of one second or less. This protocol, akin to ADS-B technology employed to
track the location and communications of airplanes, is tailor-made for precise drone tracking.

However, while RemoteID serves the purpose of identifying an approaching drone, it falls
short in providing insights into the vehicle’s intentions. Even with an infrastructure in place
and a UAV properly disclosing its approach, a crucial gap exists in understanding the purpose
behind the vehicle’s proximity. Consequently, beyond merely identifying a drone, it becomes
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imperative to establish amethod for classifying the behavior of these devices as either innocuous
or dangerous. This thesis focuses primarily on addressing this critical aspect.

The underlying objective of this research is to address the pressing need for promptly and
accurately ascertaining the intentions of drones, thereby mitigating the risk of potential at-
tacks. It is imperative to acknowledge that not all approaching drones bear malicious intent.
Given the complexity and cost associated with neutralizing a flying device, especially in scenar-
ios such as a military facility equipped with anti-aircraft systems requiring expensive ammu-
nition, the importance of distinguishing between threatening and non-threatening drones be-
comes mandatory. This differentiation allows for a more targeted and cost-effective response,
focusing countermeasures only on those posing a genuine threat.

While considerable attention has been devoted to the domains of drone detection and track-
ing, as evidenced by works such as [8] and [9], and the challenge of discriminating between
drones and birds has engaged various research groups in the last few years ([10, 11]), the clas-
sification of drones based solely on their behavior remains an under-explored area. This thesis
represents one of the pioneering attempts to bridge this gap by introducing a novel approach
to drone identification centered on behavioral patterns. The study endeavors to demonstrate
the feasibility of deducing UAV intentions through the analysis of flight trajectory data, with
a specific emphasis on distinguishing between Intelligence, Surveillance, and Reconnaissance
(ISR) activities and innocuous behaviors. In the subsequent chapters, the thesis unfolds its
exploration. Chapter 2 reports the current State of the Art methods used for trajectory classifi-
cation and forecasting, and behavior identification. A few additional analyses complementary
to this one are being discussed as well. Chapter 3 reports the specific system that has been de-
fined for this analysis together with the threat model it can present; Chapter 4 defines a Deep
Learning model, outlining the subsequent training and testing phases while Chapter 5 reports
a comprehensive description of the simulated dataset, by thoroughly explaining the structure
of each trajectory. The narrative then progresses to Chapter 6, where the selected method un-
dergoes validation through testing on real-world data. This validation process unfolds in two
phases: initially, trajectories are classified as innocuous or offensive, followed by real-time-like
forecasting of such data. This part is then followed by Chapter 7 where the conclusions are
stated, and Chapter 8 approaches the next steps to further tackle down this problem.
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2
RelatedWorks

This study represents a pioneering effort in simultaneously addressing trajectory classification
and forecasting tasks within the context of Unmanned Aerial Vehicle movement tracking for
behavioral classification purposes. The initial section of the RelatedWorks segment will cover
the contemporary state-of-the-art in trajectory classification and forecasting pertaining to ob-
jects or humans. Subsequently, the second segment will concentrate on supplementary litera-
ture addressing the subject of drone detection and identification. Such analyses are considered
complementary to this research, providing a comprehensive overview of the relevant scholarly
landscape.
Trajectory classificationhas yieldednoteworthyoutcomes through computer visionmethod-

ologies, exemplified by Kontopoulos et al.’s work [12], employing clustering-based approaches
as illustrated by Lee et al.’s contribution [13], and adopting various machine learning tech-
niques such as Support Vector Machines (SVM) and Multilayer Perceptrons (MLPs), as sur-
veyed by da Silva et al. [14]. Additionally, the proliferation of available data has facilitated the
utilization of deep learning models, as evidenced by Kontopoulos et al.’s exploration [15].
Similarly, trajectory forecasting has been subject to rigorous analyses. Salzmann et al. [16]

introduced a framework guided by a modular, graph-structured recurrent model addressing
human-robot interactions in autonomous systems. Giuliari et al. [17] proposed an innovative
approach to enhance trajectory forecasting, substituting Long Short-Term Memory (LSTM)
networks with Transformers [18], motivated by the success of Transformers in Natural Lan-
guage Processing (NLP). Kothari et al. [19] conducted a comprehensive evaluation of deep
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learning-basedmethods for modeling social interactions, introducing a novel benchmark with
evaluation metrics to quantify the physical feasibility of a forecasting model. Even the topic of
human motion trajectory forecasting has been covered, as shown by Rudenko et. al. in their
2020 work [20]. While certain trajectory categories have been predominantly considered in
forecasting studies, the field of cyber-physical systems is gradually being incorporated into this
domain. Zhang et al. [21] addressed the prediction ofmaritime vesselmovements, a theme also
explored by Sorensen et al. [22]. Additionally, Xiao et al. [23] focused on traffic forecasting,
contributing insights that can be integrated into the broader trajectory forecasting discourse.
A similar approach has been followed by Altché and de La Fortelle [24], a study where they
defined an LSTMmodel for highway trajectory prediction.

Simultaneously, the realm of behavior classification has undergone comprehensive scrutiny.
Gutierrez et al. [25] devised an embedded neural network approach for real-time classification
of animal behaviors, facilitating the mapping of their movements and variations in behaviors.
Aoude et al. [26] introduced a driver behavior classificationmethod based onHiddenMarkov
Models and Support Vector Machines, while Riley and Veloso [27] proposed an adaptive ap-
proach to modulate the behavior of a robot in an adversarial environment. Notably, Zhou
et al.’s work in 2019 [28] on ships’ classification based on their behavior, derived from Auto-
matic Identification System (AIS) data, aligns closely with the thematic focus of this research.
The key distinction between Zhou’s work and this very research lies in the incorporation of a
real-time forecasting module within this present work, coupled with a fully modular and cus-
tomizable bespoke model that allows it to scale to any Critical Infrastructure.

The task of drone identification is as intricate as classifying its behavior. Broadly, drone de-
tection primarily employs either acoustic or radar-basedmethods, both of whichwill be briefly
expounded upon. Acoustic methods involve mapping the sound captured by a sensor to a
repertoire of well-known drone-produced noises. However, this approach encounters signifi-
cant limitations in environments with heightened ambient noise levels, such as urban areas or
airports, where distinguishing characteristic drone patterns becomes challenging. Additionally,
the effective range of acoustic methods is constrained to approximately 300meters, proving re-
strictive when drones are operating at high speeds toward a target, as noted in the works of [29]
and [30].

Another drawbackof acousticmethods is their relianceon adatabase of knowndrone sounds,
implementing a signature-based detection approach. Consequently, unknown sounds emitted
by new or modified drone models may go undetected, as discussed in [31]..

The second method of drone detection involves the use of radar. High-frequency radar ex-
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hibits high accuracy but is effective only within a limited range, typically up to several tens of
meters. To address this limitation, a system employing a network of smaller drones commu-
nicating with a control station has been proposed. This network can collectively perform de-
tection, tracking, and localization by approaching and monitoring an unidentified drone [32]
[33].

On the other hand, low-frequency radar offers a considerably larger detection range but faces
challenges in detecting smaller objects such as drones [34] [35]. The drawbacks of radar-based
detection include elevated costs, susceptibility to interference from obstacles, diminished de-
tection rates in congested air-spaces, and the complexity of classification or identification [31].
An additional avenue for future work involves an exploration of the field of driver classifi-

cation, which has seen increased research efforts amid the growing interest and investments in
autonomous vehicles. For instance, Bouhoute et al. [36] employ graphical models to represent
driver behavior, employing probabilistic hybrid automata and labeled directed graphs. This
methodology is notable for utilizing transitions of states to define behavior, providing a struc-
tured approach to behavior representation. In the context of drones, these states could serve as
a simplistic means of depicting potential threats. The continual tracking of behavior through
different states post-detection enables the identification of significant behavioral changes, facil-
itating the classification of drones as potentially malicious.

In conclusion, drone detection constitutes a dynamic field of study, marked by continu-
ous evolution and improvement. Various methods with distinct challenges contribute to this
area. Based on considerations of the adversary’s nature and the operational environment, radar-
based detection has been selected as the preferred approach.
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3
System and Threat Model

3.1 Drone Detection toDeactivation Process

In addressing security threats posed by drones, Solomitckii et al. [37] outline a comprehensive
five-stage process for preventing drone attacks: detection, localization, tracking, classification
and identification, and deactivation.

• Detection: The initial step involves becoming aware of objects entering a protected area.

• Localization: Following detection, the precise location of the entering object is deter-
mined.

• Tracking: Once the location is identified, the system tracks the detected object over time.

• Classification: This step involves determining the type of object being tracked, and dis-
tinguishing between relevant and irrelevant types.

• Deactivation: The final stage revolves around deactivating the detected drone, and mit-
igating potential threats.
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3.2 Considered Scenario

This research considers a Critical Infrastructure in need of protection against potential drone
attacks. The CI could encompass various facilities, such as military bases, industrial plants, or
any establishment involved in safety-related operations or safeguarding sensitive content from
external threats. The assumption is that theCI acknowledges thedrone-related threats andopts
to implement the five-stage Solomitckii approach to counter such threats [37]. Specifically:

• The CI deploys a radar-based system for information gathering, a technology renowned
for its accuracy over long distances and under adverse weather conditions.

• The radar system, positioned near the control room, can distinguish drones from other
objects and derive the coordinates of specific drones to create individual location tracks.

While the detection and tracking aspects fall beyond the scope of this work, the focus re-
mains on drone identification. The research introduces an approach to building this identifi-
cation module, addressing a fundamental requirement for Critical Infrastructures. CIs may
need to deactivate drones, a crucial step that should only occur upon the detection of a credi-
ble threat to avoid causing harm to non-threatening entities. Figure 3.1 provides a simplified
overview of the basic system model, emphasizing the importance of drone identification in se-
curing Critical Infrastructures.

Figure 3.1: System Model with a CI equipped with a radar system to protect against ISR drones.
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3.3 ThreatModel

When delineating potential drone-induced threats, six primary threat scenarios align with this
profile: Intelligence, Surveillance, and Reconnaissance operations (ISR), Air Disruption oper-
ations [38], Harassment operations [39], Transportation operations [40], Man-in-the-Middle
(MitM) operations [41], and Attack operations [42]. This research specifically focuses on the
initial set of threats. It is essential to clarify that this investigation is restricted to civilian drones,
exemplified by Unmanned Aerial Vehicles (UAVs) accessible for purchase and general usage.
This stipulation is underpinned by two principal considerations: firstly, civilians may engage
in ISRoperations, as evidenced by instances such as the Frankfurt airport attack that took place
earlier this year [43]; secondly, the technological sophistication ofmilitary drones surpasses the
resources available to private citizens.

In 2013, the Defense Advanced Research Projects Agency (DARPA) commissioned the de-
velopment of the Autonomous Real-Time Ground Ubiquitous Surveillance Imaging System
(ARGUS-IS) project [44]. This project encompassed a wide-area persistent surveillance sys-
tem, featuring a camera system with a remarkable 1.8 Gigapixels of resolution and two sub-
processing systems. Designed to be mounted on military-grade UAVs, this camera system en-
ables detailed video capture, allowing users to collect data and track individual subjects within
the field of regard. Notably, the system possesses the capability to detect human movements,
such as hand gestures, from an altitude of 5km. Consequently, a drone equipped with this
technology could operate above critical infrastructure at considerable heights, potentially be-
ing misconstrued as an airplane and not classified as an attack. Tomaintain a focus on realistic
threats, this research exclusively addresses commercially available drones.

The premise assumes that an attackermay customize a dronewith a camera andmicrophone
to capture sensitive information regarding Critical Infrastructures. The attacker gathers intel-
ligence by capturing images and videos or via a live video feed. Assumptions regarding whether
the drone internally stores this information or transmits it to the attacker via wireless commu-
nications are withheld, since it does not realistically modify the approach to solving this task.
The collected data can then be utilized to plan subsequent actions or traded to media outlets
for publicity purposes. The collected information encompasses details such as the location of
objects within the CI area, the presence of individuals, the existence of dedicated anti-drone
technologies, and the location of a specific building of interest, among other sensitive data.

For effective ISR operations, the drone is required to maintain proximity to the CI for an
extended duration, accumulating comprehensive data before departing the premises. To facil-

11



itate a broad application of this model, no assumptions are made regarding either the Critical
Infrastructure or the drone itself. It has been established that to avoid swift detection, the drone
does not significantly alter its velocity while approaching the infrastructure, nor does it change
its altitude. This approach ensures applicability across various drone models, accommodating
those capable of flying at considerable altitudes and those constrained to lower heights, while
emphasizing the overarching concept of directionality. It is indeed taken into consideration
the distance between the drone and the buildings since the constant reduction of such metric
would indicate the UAV’s approach.

It is necessary to remember that not every drone approaching a CI necessarily signifies an
impending attack. For instance, a photographer capturing images and videos of an area adja-
cent to the infrastructure for wildlife monitoring or search and rescue purposes does not pose
a disruptive impact on the CI. Acknowledging that the response required to neutralize a flying
device can be costly and operationally challenging (e.g., employing anti-aircraft artillery or mis-
siles) is essential. Thus, distinguishing between indications of an attack and benign activities is
essential.
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4
Classification and Forecasting Framework

The task of behavior identification consists of classifying a trajectory in one of two categories:
attack or innocuous. This means that every traditional approach to trajectory evaluation can
be used, so either the methods employed for trajectory classification (as thoroughly described
by da Silva et.al. [14] and Bian et.al. [45]) and the techniques for trajectory forecasting, as stud-
ied by Shi and Dit-Yan [46] can be applied. On the topic of trajectory forecasting, since the
data this research is being based on is quite straightforward it is possible to obtain good results
while performing such an analysis: given the dangerous orbits, adding a forecasting compo-
nent would allow for quicker identification of a potential attack if the unidentified drone were
to move accordingly to the predicted orbits. For this very reason, a specific LSTM model has
been developed and fine-tuned: the next section will proceed with the description of such ar-
chitecture. Also, due to the modular nature of the work presented, the whole framework can
be fragmented in modules executable one after the other: this pipeline can be better seen in
Figure 4.1.

4.1 LSTM

Long Short-TermMemory networks, or LSTMs [47], represent a category of recurrent neural
networks designed for handling sequential data, particularly excelling in scenarios where un-
derstanding and capturing long-term dependencies are essential (e.g., text comprehension and
generation, speech recognition, etc...) [48].
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In the context of trajectory forecasting, LSTMs prove to be highly effective as seen in the
works of [49, 24]. Their design enables them to model data sequences, making them well-
suited for tasks like time series prediction and trajectory forecasting. What sets LSTMs apart is
their unique ability to retain information over extended sequences: this capacity to capture and
remember temporal relationships in data proves invaluable when predicting future positions
based on previously provided trajectory information.

As an additional point, LSTMs perform well when the trajectories vary in length, as they
can quickly handle sequences of different sizes without sacrificing information; this property
comes in hand when training the model on simulated data characterized by constant length,
and testing it on real data which can be less consistent in terms of extent. In the particular case
of this research, it follows the structure of the LSTM shown below.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

self.model = Sequential()
self.model.add(LSTM(32, input_shape=(self.num_prev_positions, 2),

return_sequences=True))
self.model.add(LSTM(16))
self.model.add(Dense(8, activation='relu'))
self.model.add(Dense(2, activation='linear'))
self.model.compile(loss="mean_squared_error", optimizer='adam')

Listing 4.1: LSTM Model

In the case of this research, this model has been trained and tested only on simulated attack
trajectories. At the same time, the forecasting and classification analyses have been conducted
on real-world data containing both attack and innocuous trajectories.

4.2 Trajectory Forecasting

In the trajectory forecasting task, a critical component is defining future positions as labels, es-
sential for the effective training of the model. This process involves presenting the model with
known x, y coordinates and their corresponding timestamps as input data. Simultaneously,
the labels are determined by the x, y coordinates at timestamps situated further ”in the future.”
This unique approach empowers the LSTM model to establish meaningful associations be-
tween each current position and its anticipated future position. The richness of training data,
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encompassing diverse trajectories, significantly contributes to themodel’s versatility. Exposure
to varied x, y coordinates across different trajectories and time instances enables the LSTM to
grasp the essence of trajectory patterns rather thanfixating on specific instances. This capability
enhances the model’s ability to generalize and make accurate predictions across a range of sce-
narios. After rigorous testing, it was determined that assigning each position in the trajectory
its corresponding label as the position three timestamps in the future strikes a balance between
achieving a non-immediate forecasting horizon and maintaining the granularity necessary for
precise classification. This strategic choice optimally captures the trajectory’s evolution over
time, ensuring the model’s adaptability to diverse patterns while minimizing localized errors.
The decision to use the position three timestamps in the future was found to provide the best
results after all, avoiding both over-dependence on trajectory-specific instances and excessive
generalization.

4.3 Trajectory Classification

The capabilities of an LSTM model do not limit its application to the field of forecasting, as
the model can also be used to classify time series. In the case of this research, the approach
used consisted in defining an error metric, computing for each forecasted trajectory the error
accordinglywith the chosenmethod, and comparing such errorswith one another to figure out
eventual dependencies. This approach turns out to be very efficient in distinguishing between
attack trajectories and innocuous trajectories, since once provided a model that was trained on
attack trajectories only it can be safely assumed that the error in forecasting such trajectory will
be lower than the one computed for the innocuous trajectories, so when established the line of
distinction between the two categories, the error computed during the trajectory forecasting
task allows for a trajectory classification too.

The error metric selected is the Mean Absolute Error (or MAE), defined as follows.

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣

where the absolute value of the difference represents the distance between the predicted
value for the label (e.g., what the model supposes will be the position 3 timestamps from the
current one) and the real value of such label (the actual position). Thismetric has been selected
as it describes the error between paired observations expressing the same phenomenon, hence
perfectly fitting the trajectory forecasting task. Specifically, the Mean Absolute Error (MAE)
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Figure 4.1: Representation of the Framework’s pipeline

metric has been exclusively employed for the classification of real-world trajectories. Following
the training and testing phases on synthetic data, the model’s MAE for each authentic orbit
was computed. Orbits with an error exceeding a threshold of 8 were identified as innocent
trajectories, while those below the specified threshold were categorized as potential attacks.

This approach facilitated a linear classification of both trajectory types, achieving a perfect
accuracy of 100% in classification on each occasion.

4.4 Pipeline Visualization

The selection of a Deep Learning approach for this research was motivated not only by the
abundance of simulated data, enabling effective model performance, but also by the modu-
larity inherent in such architectures. The primary objective of this work was to establish a
scalable framework that could readily adapt to diverse real-world scenarios. Given the inherent
variability of critical infrastructure layouts and the need for tailored calibrations, a one-size-fits-
all model would encounter challenges in accommodating every possible condition. To address
this, the research adopts the pipeline illustrated in Figure 4.1.

The initial segment of the pipeline involves code utilization to customize the structure of
Critical Infrastructure, a topic elaborated upon in Chapter 5. Subsequently, the generation of
attack trajectories takes place, adjusting according to the specific structure defined in the prior
step of the pipeline. The concluding phase of the framework involves training the model on
these dynamically generated trajectories.

This approach facilitates versatility in addressing the problem, as the model can be precisely
trained on trajectories crafted to align with the specific premises of each unique case.
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5
Dataset

Due to the particular nature of this research, it is quite difficult to obtain logs of drones in-
specting an infrastructure for processing; for this reason, the majority of the tests have been
conducted on simulated data generated using custom scripts in Python. A hypothetical infras-
tructure is indicated on a 2D plane as a circle for simplicity of representation, and developed as
described below:

• Building center: it is indicated as a red dot in the graphs, it can be considered as the center
of the infrastructure. A 360° radar could be placed here to maximize the coverage, or it
can also simply be taken as a reference point.

• No Fly Zone: the infrastructure per se. No unauthorized devices have permission to
fly on its premises, so whatever enters this area will immediately get shot down. It is
indicated as a circular zone for simplicity purposes, but it can be customized for every
specific infrastructure. In a real-world case, it could be surrounded by walls, cameras,
and other defensive mechanisms.

• Notification Radius: the amount of area surrounding the infrastructure that can be ac-
tively covered by a defensive mechanism, e.g., a radar. It is not the entire area the radar
can cover, but it is the portion that will trigger the classification model even though the
drone is still far from performing an attack. In this specific instance, the radius is 1.5
times the size of the no-fly zone. Since this pipeline is fully modular it can be easily cus-
tomized, and every trajectory will be generated again with the updated values.
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The assumption is that every object detected inside the no fly zone must be taken down as
they could get physically too close to sensitive buildings, but a drone could be performing a
reconnaissance mission of the premises of the CI without drawing near too close: for this rea-
son, a series of trajectories that follow a suspicious behavior limited to the notification radius
have been defined and simulated, and they are described below. The trajectories are represented
(and plotted) in a similar way to what a radar could show in terms of positioning.

5.1 Trajectories

To provide a diversity of movement, four trajectories have been designed, each representing a
different approach to performing an attack. It is believed that the majority of ISR operations
can indeed be tracedwithin these 4 orbits. Themodel has been trained on 400 trajectories prop-
erly divided into the aforementioned typologies. Each trajectory is composed of 100 points
(each representing one timestamp): this granularity can be changed also according to the size
of the infrastructure to defend, the amount of area that the radar can cover, the amount of
error we can accept, and other characteristics specific to each case.

Each trajectory is characterized by the following features:

• timestamp: a temporal indication used to show how often the position varies. In the
case of these particular trajectories, the resolution is 1 second.

• x_coordinate: the x component of the drone’s position on the plane during each times-
tamp.

• y_coordinate: the y component of the drone’s position on the plane during each times-
tamp.

• distance_to_infrastructure: the minimum distance between the drone and the CI dur-
ing each timestamp.

To following features are provided as labels to the LSTM:

• Future_X_3: the X component of the position three timestamps from the current one.

• Future_Y_3: the Y component of the position three timestamps from the current one.

It will now follow a thorough description of each trajectory, how they are represented, and
what the model can learn from them.
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5.1.1 Straight Trajectory

Figure 5.1: Straight Trajectory

Themost simple trajectory possible, this orbit indicates an objectmoving toward theCritical
Infrastructure following a straight line without any major divergences. The initial point and
final point are outside both the no fly zone and the notification radius, therefore emulating a
vehicle approaching the infrastructure from the outside, getting closer, and then leaving the
area. It is possible that in some cases the drone flew over the no fly zone in the simulated orbit:
those cases are considered as attacks since in a realistic scenario that drone would immediately
get shot down. This trajectory also teaches the model how to interpret the consecutive points
that make up a straight line.
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Figure 5.2: Circular Trajectory

5.1.2 Circular Trajectory

Another simple and intuitive trajectory, this circularmotion indicates a drone keeping the same
distance to the infrastructurewhile surveilling it. This scenario represents a drone that was able
to elude the defensive systems from targeting it as it entered the notification radius, and that
got detected while already inside the area covered by the drone. In a realistic case it is unlikely
that the UAV would be able to perform an entire 360° analysis of the premises before being
recognized and tear down, but the full circular motion can help the model understand the
features indicating this consequential sequence of positions.

5.1.3 Spiral Trajectory

An improvement to the simple circular trajectory, this orbit represents a drone being detected
as beginning its movement from outside the notification radius of the infrastructure going
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Figure 5.3: Spiral Trajectory

towards the no fly zone while exploring the entire infrastructure and its neighboring facilities,
reaching a 360° coverage. Themaindifferencewith theCircularTrajectory is thenoticingof the
UAV that takes place while the drone is still not in the notification radius; this allows to better
define and comprehend the entire movement of the device, and consequently, it can improve
the attack detection time and precision. The number of circles of the spiral is randomly picked
between 2 and 4 for each orbit to further diversify the trajectories.

5.1.4 Mixed Trajectory

This is the trajectory that can better indicate a surveilling behavior between the ones listed so
far, as it is a combination of them. It shows a potential attacker reaching the CI in the quickest
way possible (via a straight line) that then changes the behavior of the drone to slowly discover
the infrastructure by covering a circular-like trajectory for some time, and in the end it leaves
the premises again rapidly (via a straight line). The circular portion is an half-circle, but if can
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Figure 5.4: Mixed Trajectory

be extended or reduced in dimensions accordingly with the requirements of each specific case.
Once again, this is yet another aspect of the developed pipeline that can be customized.

5.2 Real-Data Trajectories

In addition to simulated trajectories, themodels underwent testingwith real-world data. These
trajectories are not publicly available since they were captured bymembers of the Dutch Army
for internal research purposes. The drone used in this specific recording is a DJI Inspire 2
(shown in Figure 1.1, it is a case of military environments using civilian available technology
for military purposes). The soldiers employed a truck as a Critical Infrastructure target to base
their recordings on a physical facility for further reference. The data collection and processing
were conducted using the SignalQuietUniversal IntruderRecognition Equipment (SQUIRE)
radar, developed by Thales [50], and a parser has been used to transform the raw format in
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which the radar provides the data to a format compatible with the main programming lan-
guages. For compatibility purposes, the only features that are being extracted from the logs
are the x and y coordinates together with the timestamps; in this case, the sampling resolution
is not precisely set to 1 second every time due to the conversion error from the parser, but it
still is comprised between 1 and 5 seconds hence acceptable. An additional feature is the dis-
tance_to_infrastructure, computed to ensure continuity with the format of data themodel was
trained on. The setting onwhich such trajectories have been canbe seen in Figure 5.5: the truck
is mimicking the Critical Infrastructure around which the drone is being flown. Figure 5.6 on
the other hand shows the position of the radar device with respect to the ”infrastructure”.

Figure 5.5: Aerial picture of the CI while being scouted by the ISR drone

Figure 5.6: Aerial picture of the radar setup

23



5.2.1 Attack Pattern

Figure 5.7: Attack Trajectory

The attack pattern shown in Figure 5.7 represents a drone executing a simile-rounded mo-
tion around a specific target situated approximately at the coordinates (1100, 650). The UAV
follows theorbit in a clockwise direction, initially approaching the infrastructure along a straight
line. Subsequently, it pauses in motion for a few timestamps before adopting a different direc-
tion toward the critical infrastructure. Following this segment, the drone gradually closes in
on the building while retracing its previous path back to the starting point, completing the
triangular motion in the process.

5.2.2 Innocuous Behavior

The innocuous orbit illustrated in Figure 5.8 adopts a notably linear approach, missing the seg-
mented and concentrated characteristics observed in the attack trajectory. This linear pattern,
lacking the distinct presence of revolutions around a building, leads to the assumption of safety
associated with the innocuous trajectory.
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Figure 5.8: Innocuous Trajectory
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6
Evaluation

This chapter delineates the processing phase of the research and unveils the core of the pipeline.
Initially, the training and testing procedures of the LSTMmodel on synthetic data will be ex-
pounded upon. Subsequently, the model’s performance will be assessed on real-world trajec-
tories, encompassing both classification and forecasting tasks. The interdependence between
these twoanalyseswill be elucidated. Accompanying the textual descriptions, numerous graphs
will be presented to visually underscore the efficacy of these tests. This approach aims to pro-
vide a comprehensive understanding of the model’s capabilities and insights into its real-world
applicability.

6.1 Training

Themodel underwent trainingonapproximately 400 trajectories, evenlydistributedwith around
100 instances for each predefined attack category. The dataset was subjected to reshaping to
alignwith themodel’s structure, and a scaling operationwas applied tomitigate dependency on
specific feature values, such as the distance from the infrastructure. The dataset has been par-
titioned into training and test sets, following an 80/20 distribution ratio; the model has been
fitted on the data by computing 30 epochs with a batch_size of 16, a validation_split of 0.1 (to
further prevent overfitting) and patience = 5 to avoid performing useless calculations. After
computing the loss, which in this case is the mean_squared_error, the weights of the model
are saved and then reloaded to ensure portability, and then it follows the sole testing with the
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real-world trajectories.

6.2 Testing

The primary goal of the training of the model was to instruct the network in interpreting vari-
ations in feature values without fixating on the specific numerical values. The results are en-
couraging: the test loss on the data is 0.011, indicating that the LSTM can both learn the data
on which it’s being trained and it is also not overfitting. Some visual results of the forecasting
can be seen in Figures 6.1 and 6.2.

6.3 Real data testing

Following the loading of weights computed during training on synthetic data, the model is
presently undergoing testing with real-world trajectories. The variable length of each orbit,
representing data received and preprocessed by an actual radar, poses no challenges related to
the length of each time series due to the adaptable nature of the LSTM, as previously detailed
inChapter 4. During the analysis phase, themodel was tested on a total of 10 trajectories simu-
lating attacks and 5 innocuous orbits. For simplicity, this report focuses on a subset of 8 attack
trajectories and 1 innocuous orbit, as all safe trajectories yielded the same result. The trajecto-
ries exhibit diverse lengths, ranging from aminimum of 111 timestamps (equivalent to slightly
less than 2 minutes of flight data) to a maximum of 300 timestamps (approximately 5 minutes
of flight data). On average, these trajectories comprise 200 timestamps, equivalent to around 3
minutes of flight data. Figure 6.3 depicts the forecasting results on the attack trajectory, while
Figure 6.4 indicates the performance of the LSTMwhen it comes to innocuous orbits.
The model demonstrates a quick adaptation to changes in the trajectory pattern, adjusting

its direction accordingly. Notably interesting is the fact that the LSTM, drawing knowledge
solely from simulated trajectories, showcases remarkable adaptability to changes in the real tra-
jectory patterns. This suggests that the simulated attack strategies were chosen wisely, captur-
ing characteristics that align with the potential actions of a genuine attacker.

Examining the attack trajectory, it becomes apparent that the model’s predictions exhibit
slightly sparser results. This characteristic arises from the labeling scheme, where the predicted
positions consist of being the positions 3 timestamps further from the current one. Conse-
quently, the model, while providing accurate global predictions, may exhibit occasional local-
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(a) Predicted X coordinate (dotted red line) for the straight trajectory compared to the actual X coordinate.

(b) Predicted Y coordinate (dotted yellow line) for the straight trajectory compared to the actual Y
coordinate.

Figure 6.1: Simulated Linear Attack Trajectory Forecasting
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(a) Predicted X coordinate (dotted red line) for the spiral trajectory compared to the actual X coordinate.

(b) Predicted Y coordinate (dotted yellow line) for the spiral trajectory compared to the actual Y
coordinate.

Figure 6.2: Simulated Spiral Attack Trajectory Forecasting
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(a) Predicted X coordinate (dotted red line) for the REAL attack trajectory compared to the actual X
coordinate.

(b) Predicted Y coordinate (dotted yellow line) for the REAL attack trajectory compared to the actual Y
coordinate.

Figure 6.3: Real Data Attack Trajectory Forecasting
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(a) Predicted X coordinate (dotted red line) for the REAL safe trajectory compared to the actual X
coordinate.

(b) Predicted Y coordinate (dotted yellow line) for the REAL safe trajectory compared to the actual Y
coordinate.

Figure 6.4: Real Data Innocuous Trajectory Forecasting
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ized variances, manifested as brief impulsive peaks, particularly when the trajectory experiences
subtle smoothness fluctuations over time.

6.4 Real-time forecasting

In response to the promising outcomeswitnessed in real-data forecasting, an additional testwas
conducted to evaluate the model’s performance in real-time trajectory classification. Trajecto-
ries were incrementally provided to themodel, one timestamp at a time, simulating what radar-
recorded data would appear as in a realistic scenario. The primary objective was to compute
the model’s efficiency in real-time classification, specifically in discerning whether trajectories
represent attacks or innocuous behavior. The determination of attack or innocuous classifica-
tion hinged on the Mean Absolute Error (MAE). The classification depends on whether the
MAE surpasses a manually set threshold, established based on training results. This evaluation
culminated in the generation of Table 6.1. An impressive outcome emerged as every trajec-
tory identified as an attack exhibited classification within a range of 5 to 23 timestamps, with
an average of 10 timestamps required. Conversely, the sole innocuous trajectory subjected to
LSTM scrutiny consistently maintained its classification as safe from the initial timestamp to
the last, further highlighting the robustness of the model’s classification capabilities. Figure
6.5 represents how the variation in positioning of the UAV would be classified: the initial 5
positions follow a pattern recognized by the model: this lowers the Mean Average Value until
it gets below the chosen threshold, triggering the attack scenario (reported in color red).

Track ID Attack Detection Time
track_251 17 timestamps
track_268 8 timestamps
track_311 5 timestamps
track_404 6 timestamps
track_443 5 timestamps
track_447 6 timestamps
track_454 7 timestamps
track_500 23 timestamps
track_0 not detected

Table 6.1: Number of timestamps required to classify as attack each real data trajectory
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Figure 6.5: A graphic visualization of how the radar would classify this specific trajectory: the first 5 positions lower the
MAE error to allow to predict this trajectory as an attack.
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7
Conclusion

In this research, the endeavor to address the challenge of UAV behavioral identification based
solely on external observation data has been undertaken. A comprehensive exploration of be-
havioral classification challenges and an examination of the current trajectory forecasting and
classification landscape have been presented.

To navigate this intricate problem, a dedicated deep learning model has been meticulously
developed. The model undergoes rigorous training and testing phases leveraging synthetically
generated data tailored explicitly for this research. These synthetic trajectories are intention-
ally diverse, aiming to encompass various potential attack scenarios and optimize the model’s
threat detection capabilities. Encouragingly, the results showcase the feasibility of this analyti-
cal approach, revealing minimal errors in trajectory forecasting.

Themodel’s effectiveness is further scrutinized through the evaluation on a set of real-world
trajectories sourced from military data. This evaluation encompasses trajectories outlining
both attack vectors and benign paths, providing valuable insights into the model’s real-world
applicability.

The identical trajectories were employed for real-time classification, simulating the live data
stream a radarmight receive. Impressively, themodel adeptly classified all the attack trajectories
as intended, accomplishing this task within a matter of seconds.
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8
Future Works

This research marks one of the first efforts in classifying UAV behavior exclusively based on
radar-captured information, devoid of direct access to the drone itself. The nascent nature of
this field underscores its significant unexplored terrain, with anticipated growing importance,
particularly in light of current geopolitical developments. Notably, the scarcity of features com-
posing the trajectories generated in this study is attributable to the inherent challenges in craft-
ing accurate attack paths with limited references. The shortage of real data trajectories further
compounds this challenge, emphasizing the need for continued exploration in this domain.
Future investigations could leverage Software in theLoop (SITL) simulations, utilizing tools

such as Gazebo [51] orMatlab [52], to expedite data collection and ensure the viability of deep
learning models. Additionally, a complementary approach involves accessing a comprehensive
military dataset containing examples of both attack and innocuous trajectories. Such a dataset
could serve as inspiration for research teams to refine simulations, though challenges persist in
precisely defining what constitutes an ”attack”. Moreover, platforms like Kaggle host datasets
containing drone flight data. This data, derived from readings of individual sensors such as
accelerometers, Inertial Measurement Units (IMUs), and others, can be leveraged to augment
the dataset with additional innocuous trajectories [53]. Integrating this information into the
research dataset offers an opportunity to enhance the diversity and realism of the innocuous
trajectory samples, contributing to a more robust analysis and classification model.

Machine learning methodologies, such as Support Vector Machines or Decision Forests,
present viable alternatives that circumvent the need for extensive data as shown in [54] and [55]
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respectively. These models possess a high likelihood of accurate classification. Furthermore,
probabilistic approaches could enhance development by accounting for potential variations in
pilot behavior [56, 57].
An additional avenue for future work involves an exploration of the field of driver classifi-

cation, which has seen increased research efforts amid the growing interest and investments in
autonomous vehicles. For instance, Bouhoute et al. [36] employ graphical models to represent
driver behavior, employing probabilistic hybrid automata and labeled directed graphs. This
methodology is notable for utilizing transitions of states to define behavior, providing a struc-
tured approach to behavior representation. In the context of drones, these states could serve as
a simplistic means of depicting potential threats. The continual tracking of behavior through
different states post-detection enables the identification of significant behavioral changes, facil-
itating the classification of drones as potentially malicious.
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