UNIVERSITA .
DEGLI STUDI = DIPARTIMENTO
DI PADOVA — DI INGEGNERIA

= DELLINFORMAZIONE

University of Padova

DEPARTMENT OF INFORMATION ENGINEERING
Master’s Thesis in ICT for Internet and Multimedia

Design and Evaluation of Machine Learning
algorithms to support Predictive Quality of
Service in Vehicular Networks

Supervisor: Candidate:

Prof. Marco Giordani Filippo Bragato

Co-supervisor:

Dr. Paolo Testolina

Academic Year 2022/2023






Alle persone, vicine o lontane, che in questi anni
hanno costruito la grande famiglia, fatta di affetto,

cura, passione e rispetto, che siamo noi.






Contents

1 Introduction
1.1 Teleoperated Driving . . . . . . . . .. .. ... ... ...
1.2 Predictive Quality of Service . . . . . . . ... .. ... ... ..
1.3 Goal-Oriented Communication . . . . . .. .. .. ... ... ..
1.4  Thesis Objectives and Structure . . . . . . . . . ... ... ...
2 SELMA
2.1 Walkers . . . . .

2.1.1 Custom Walkers Controller . . . . . ... .. ... ...
2.1.2  Map Management . . . . . . . .. ... ... .. ... ..
2.2 Bounding Box . . . . . ...
2.3 Vehicle Management . . . . .. ... ... ... ... ...
24 Results. . . . . .

3 Point Clouds Analysis
3.0.1 Dissimilarity Definition . . . . . .. ... .. ... .. ..
3.1 Different Metrics for the Dissimilarity . . . . . . . .. .. .. ..
3.1.1 Voxelization . . . . . ... ... . 0L
3.1.2 Clusterization . . . . . . . . ... ... ...
3.1.3 Chamfer Distance . . . . . . . .. ... ... ... ...

4 PQoS Framework

4.1 PointPillars and mean Average Precision . . . . . . ... . ...

5

19
19
21
22
23

27
31
33
36
38
40
41

43
44
48
48
93
60

65



4.2 Draco Compression . . . . . . . . ... 70

4.3 Double Deep Q-Learning Network . . . . . . ... .. ... ... 72
4.4 Simulation usingns3 . . . . ..o oL 75
5 Performance Evaluation 79
5.1 Results with One Vehicle . . . . . . . .. ... ... ... .... 79
5.2 Analysis with Multiple Vehicles . . . . . .. ... ... ... .. 83
6 Conclusions 87



List of Figures

2.1

2.2
2.3

24

Class diagram highlighting the relationship between walker and

controller . . . . . . ... L 32
Representation of the vectord . . . . . . . . .. ... ... ... 34
Some examples of the positioning of sensors in Smart Vehicles,
blue dots represent cameras, while green dots represent Light
Detection and Rangings (LiDARs) . . .. ... ... ... ... 40
Example of SEmantic Large-scale Multimodal Acquisitions (SELMA)’s

acquisitions . . . . . .. L. 42

3.1 Evolution of §(Pyy, | P;) as the lag n increases, with v = 1 and

a = 10%, varying the trafficlevel . . . . . .. ... ... ... .. 47
3.2 o(Pyyn | Py) varying traffic density . . . . ... ... 49
3.3 Correlation computed using voxels . . . . . .. ... ... ... 51
3.4  Correlation computed using different voxel sizes . . . . . . . .. 53
3.5 Example of clusters on a point cloud . . . . ... ... ... .. 57
3.6 Dissimilarity computed using 10 clusters . . . . . . ... .. .. 59
3.7 Dissimilarity computed using 100 clusters . . . . . . . .. .. .. 59
3.8 Example of 11, applied to two point clouds of the same series . . 60
3.9 Dissimilarity computed using dcp(Piin | P¢) - - o o 0 0 o oL L 62
3.10 Dissimilarity computed using cumulative ) (Pon | Py) o oo o 63
4.1 Total time needed to encode and decode a point cloud using Draco 71

7



4.2

4.3

5.1

5.2

5.3

5.4
5.5

Mean Average Precision (mAP) of PointPillar using point clouds
compressed with Draco . . . . . .. . .. ... ... .. .....

Reward function changing the delay . . . . . . . ... ... ...

Action probability during the training phase of the Double Deep
Q-Learning Network (D-DQN). . . . . .. ... ... ... ...
Distribution of the reward for D-DQN vs. the constant policies,
during the testing phase. . . . . . . ... ... 0L
Distribution of the delay for D-DQN vs. the constant policies,
during the testing phase. . . . . . . . . .. ... ... ... ...
Action probability during the training phase of the D-DQN.
Distribution of the delay for D-DQN varying the number of

vehicles, during the testing phase. . . . . . . ... ... ... ..



List of Tables

2.1
2.2

4.1
4.2

5.1
5.2

5.3

Parameters used for the simulator . . . . .. .. ... ... ... 35
SELMA’s features . . . . . . . . . . . . ... .. ... ... ... 41
mAP achievable changing Pillar Size . . . . . . ... ... ... 69
Action space A of the D-DQN . . . . . . ... ... ... ... 76
Scenario parameters. . . . . . . . . ... ... 80
Comparison between D-DQN and some constant policies as a

function of several metrics. . . . . . ... ... ... 81
Performance of D-DQN under several metrics, as a function of

the number of vehicles. . . . . . . . . . ... 84



10



List of Algorithms

1 Naivelmplementation(m) . . . . . ... ... ... ... ... .. 37
2 cStarter(m) . ... 37
3 cFinder(m,é(-,),w,0) . . . . 38
4 Lloyd(P, k) o o oo oo 56

11



12



List of Acronyms

6G Sixth Generation

AD Autonomous Driving

AT Artificial Intelligence

AP Average Precision

APP Application

D-DQN Double Deep Q-Learning Network
DNN Deep Neural Network

e2e end-to-end

FoV Field of View

gINB Next Generation Node Base

GT Guida Teleoperata

ICP TIterative Closest Point

iid independent and identical distributed
IoU Intersection over Union

KPI Key Performance Indicator

13



LiDAR Light Detection and Ranging

LOS Line of Sight

mAP Mean Average Precision

MCS Modulation and Coding Scheme

MDP Markov Decision Process

ML Machine Learning

OFDM Orthogonal Frequency Division Multiplexing
PDCP Packet Data Convergence Protocol

PHY Physical

PQoS Predictive Quality of Service

PQS Predizione della Qualita di Servizio

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RL Reinforcement Learning

RLC Radio Link Control

SELMA SEmantic Large-scale Multimodal Acquisitions
SGD Stochastic Gradient Descent

SINR Signal to Interference plus Noise Ratio

TD Teleoperated Driving

UE User Equipment

14



Abstract

This thesis focuses on Teleoperated Driving (TD) applications to enhance road
safety, where vehicles equipped with sensors are remotely controlled by teleop-
erators using real-time data delivered by the network. To perform TD safely,
the network has to satisfy several Key Performance Indicators (KPIs), espe-
cially in terms of delay and reliability, which is not trivial due to the variability
of the network conditions.

To solve this issue, the research community is investigating Predictive Qual-
ity of Service (PQoS) to estimate network conditions and perform adequate
countermeasures in case communication KPIs are not satisfied.

Motivated by the potential of Artificial Intelligence (AI) in PQoS, this
thesis proposes several solutions based on Machine Learning (ML) to per-
form PQoS. First, given the importance of data to train ML algorithms, we
worked on an extension of SELMA, a new multimodal synthetic dataset for
autonomous driving, that we modified to provide multiple correlated series of
samples acquired by sensors moving in an urban environment.

Then, we present two different paradigms to perform PQoS. The first is
based on goal-oriented communication, and exploits the degree of correlation
between point clouds to evaluate when automotive data should be sent. The
second investigates the trade-off between Quality of Service (QoS) and Quality
of Experience (QoE) in the attempt to identify the optimal level of compression
for automotive data. Specifically, the extended SELMA dataset has been used
to train and test our PQoS frameworks, and simulation results show that the
correlation between point clouds can be approximated onboard with an energy-
efficient metric based on the symmetric point-to-point Chamfer Distance, and
that a Reinforcement Learning (RL) agent can effectively take countermeasure

to address communication KPIs while maximizing the QoE.

15



16



Sommario

In questa tesi viene proposto uno studio per migliorare la sicurezza della Guida
Teleoperata (GT). Nella GT i veicoli sono controllati a distanza da un teleop-
eratore, grazie alla trasmissione in tempo reale dei dati raccolti dai sensori del
veicolo. Per garantire la sicurezza nella GT, e necessario che la comunicazione
rispetti una serie di requisiti di affidabilita e latenza, operazione tuttavia com-
plicata dalla variabilita delle condizioni di rete e di canale.

Per questo la comunita scientifica sta studiando il paradigma della Predi-
zione della Qualita di Servizio (PQS) quale strumento in grado di predirre le
condizioni di rete e di modificare i parametri di comunicazione per rispettare
i vincoli di sicurezza.

Visto il successo dell'uso dell”intelligenza artificiale nelle tecniche di PQS,
in questa tesi vengono proposte diverse soluzioni basate sull’apprendimento
automatico per la PQS.

In questo contesto, vist I'esigenza di dati per ’allenamento di algoritmi di
intelligenza artificiale, come prima cosa in questa tesi viene proposta un’estensione
del dataset artificiale SELMA. Nell’estensione vengono infatti resi disponibili
dati provenienti da acquisizioni sequenziali di sensori a bordo di veicoli che si
muovono in uno scenario realistico.

Inoltre vengono proposti due diversi paradigmi con cui fare PQS. Il primo,
basato sulla “comunicazione orientata agli obiettivi”, sfrutta la correlazione tra
acquisizioni consecutive di uno stesso sensore per calcolare la rilevanza della
nuova acquisizione; il secondo, basato sul bilanciamento tra compressione e
accuratezza nell’operazione di rilevamento di oggetti, mira a calcolare il livello
di compressione piu adeguato alle condizioni di canale percepite dal veicolo.

L’estensione di SELMA ¢ stata usata per allenare e validare i paradigmi
proposti, ed i risultati empirici dimostrano come sia possibile approssimare
la rilevanza dei dati acquisiti a bordo del veicolo tramite algoritmi che non
richiedono un’eccessiva potenza computazionale, e che sia possibile trovare il
livello di compressione ottimale per la trasmissione dei dati utilizzando un
agente di apprendimento per rinforzo.

17



18



Chapter 1

Introduction

1.1 Teleoperated Driving

In the Teleoperated Driving (TD) setup, vehicles equipped with sensors are
controlled remotely by an agent called a teleoperator, which relies on the net-
work to receive almost real-time data from the vehicle and react accordingly
[1]. It is important to notice that the teleoperator can be a human or a suffi-
ciently powerful machine. Depending on the teleoperator, TD can be exploited
in different situations.

With a human teleoperator, TD is considered a key element for support-
ing autonomous vehicles when the automation fails, letting the teleoperator
control the vehicle whenever the automation system stops working [2]. If a
system/mechanical failure occurs, the automated system will halt the vehicle
at a secure location and establish a connection with an operator center. An
operator at the center can then investigate the cause of the failure and, if
required, assume control of the automated vehicle. This approach offers the
benefit of requiring fewer operators compared to the number of automated
cars, thus removing the necessity for a safety driver within each vehicle [3].

On the other side, when the objective is a working vehicle without an

onboard driver, TD is performed with a server acting as a teleoperator. This

19



approach is cheaper than in the case of Autonomous Driving (AD), and requires

less onboard computational power.

One of the main problems regarding studying TD is the availability of
data. Especially, data are crucial to develop research and perform realistic
simulations, for example to train and test Machine Learning (ML) algorithms
that are required for TD. The most important examples are object detectors,
i.e., ML algorithms that are able to identify and locate objects in samples
gathered from sensors onboard the vehicles; notably, the accuracy of the object
detection operation is fundamental when performing TD with a machine as a

teleoperator.

Therefore, a lot of effort has been spent in trying to obtain automotive
datasets from fully simulated data. In particular in [4] researchers proposed a
fully-simulated dataset based on CARLA, an open-source simulator to support

the development, training, and validation of autonomous driving systems.

Finally, researchers highlighted the feasibility of TD, but there are lots of
critical issues regarding the feasibility of the communication [5], in particular
due to the variance present at the Radio Access Network (RAN). This concern
is justified by the setup of TD: if we imagine transmitting a raw high-resolution
Light Detection and Ranging (LiIDAR) perception every 0.1 s, we need an
approximate average uplink data rate of 250 Mbps. This data rate can be
difficult to handle in resource-constrained networks especially considering the

tight network requirements for TD.

To address this concern, it is crucial to take steps that prevent changes in
network conditions from causing failures in the TD application. In this context,

Predictive Quality of Service (PQoS) has emerged as a viable solution [6].

20



1.2 Predictive Quality of Service

Autonomous systems should always estimate how the environment in which
they operate will evolve to ensure that network Key Performance Indicators
(KPIs), e.g., in terms of throughput, delay, and reliability, are continuously
satisfied. On the other side, the network is known to be prone to high vari-
ability, making the task of predicting the behavior of the network challenging.
The authors in [6] proposed a possible solution to this problem: PQoS. In de-
tail, PQoS is a set of techniques that aims at predictively inferring the future

condition of the network, and to act accordingly in order to always respect the

KPIs.

Notably, PQoS is considered a fundamental tool for the realization of use
cases such as AD and TD [7]. This is motivated by the fact that in an urban
scenario, due to the mobility of User Equipments (UEs), i.e., the vehicles,
network conditions suffer from an even higher variability, and due to the safety
constraints of those applications, the respect of the KPIs is fundamental to

avoid any risk of injuries.

To date, there have been several attempts to model the Quality of Ser-
vice (QoS) from a statistical point of view [8], e.g., using game theory. But,
compared to traditional techniques, ML and Artificial Intelligence (Al) have
been proven to be more effective in their ability to precisely predict the QoS
in short time intervals [9]. However, the ultimate purpose of PQoS is not only
to predict network changes and/or fluctuations but also to react accordingly;
in this sense, due to the stochastic nature of the environment in which vehicles
move and operate, appropriate countermeasures at the network levels have to
be made to make it sure that network requirements are satisfied, As such,
Reinforcement Learning (RL) is clearly amongst the most suitable solutions
to address the issue of PQoS. Several attempts have been made to use RL

[10] and Deep RL [11] to perform PQoS. Still, in the TD scenario, most of

21



literature work contains too many unfeasible and/or simplistic assumptions
to be deployed in a real system. For example in [12] and [10] the proposed
solutions are based on the segmentation of point clouds at the transmitter, but
segmenting point clouds requires more computational power than performing

object detection, and therefore is not achievable at the UE.

1.3 Goal-Oriented Communication

Since the definition of the theory of goal-oriented communication [13] there
has been a growing interest in this topic. This theory proposes a shift in
the telecommunication framework. In particular, communication is no longer
intended as a simple exchange of information but rather as a collective action
to reach a specific goal.

Thanks to its potential, this theory is expected to play a central role in
Sixth Generation (6G) communication networks. For example, the authors in
[14] promote the idea of going beyond the Shannon paradigm, focusing only
on the reception of the relevant information.

Given the growing interest in this perspective, researchers have started
developing new goal-oriented sampling and communication policies in the field
of autonomous systems [15]. In these regards, several theoretical analyses have
been made to prove the effectiveness of goal-oriented communication via Edge
Learning [16] and for resource allocation [17].

Given the attention drawn by goal-oriented communication and the proven
effectiveness of this framework, we believe that a goal-oriented approach could
significantly improve the performances of PQoS. However, in the context of
TD, a definition of how information can be marked as “relevant” is yet missing.
Such a definition is not trivial due to the different types of acquisitions and data
that are used in TD. Therefore, in this thesis, a new definition of “similarity”

based on correlation between subsequent LiDAR acquisitions is proposed, with

22



the objective of computing the value of information of point clouds.

The value of information is expected to play a central role in the transmis-
sion of sensors’ data [18]. In particular, the availability of value of information
in point clouds makes it possible to perform informed decisions on the trans-
mission and priority of data. Still, to this aim, value of the information must
be known at the transmitter and, due to the limited computational power and
resources available onboard the vehicles, this is not trivial. For this reason,
we proposed several metrics to approximate the value of information in a TD
scenario, which do not require hardware-expensive operations to be performed

onboard the vehicles.

1.4 Thesis Objectives and Structure

Based on the above introduction, the main objective of this thesis is to propose
and validate an end-to-end (e2e) framework for performing PQoS in a TD
scenario. The main difference with respect to previous research is the realism
of our approach, meaning that this work will take into account constraints
on the UEs and the RAN that have been previously ignored, specifically the
computational capacity of end users.

First, an analysis of the degree of similarity between subsequent acquisi-
tions of LIDAR data is proposed, and several measures are identified to ap-
proximate this similarity. This is done to compute onboard the value of the
information of new point clouds, thus supporting the principle of goal-oriented
communication, and avoiding the transmission of redundant data. Second, an
analysis of the effects of the compression of point clouds is presented. This
enables the training of an RL agent to perform PQoS based on the trade-off
between QoS and Quality of Experience (QoE). The RL agent is trained and
tested to find the optimal compression mode for point clouds, and simulation

results in ns-3 ensure the realism of the outcomes. We claim that the proposed

23



framework is able to help the vehicles to choose carefully the relevant data to
send based on the scope of TD, thus achieving goal-oriented communication.
The ultimate goal is to reduce the burden of data transmission through the

network, which may improve communication performance.

Since both approaches require the availability of data for training, in this
thesis we used and extended the SEmantic Large-scale Multimodal Acquisi-
tions (SELMA) dataset for autonomous driving research. SELMA [19] is a new
open-source synthetic dataset recently released by the University of Padova,
and is developed to mimic as close as possible a real TD environment. Specifi-
cally, SELMA is a realistic dataset that contains synthetic sensors’ acquisitions
from vehicles in an urban scenario. SELMA consists of data from multiple and
different sensors, town models, weather and traffic conditions, and acquisitions
from different times of the day. As such, thanks to its versatility, it stands out

as an optimal tool for TD research.

SELMA is built on top of the CARLA simulator. In particular, in Chap-
ter 2 we developed a new technique to control the behavior of pedestrians,
avoiding problems with traffic management. Other precautions are taken to
regulate the behavior and placement of vehicles on the map so to have realistic
and meaningful mobility patterns. Finally, a new management system for the
bounding boxes has been implemented in SELMA in order to ensure better

performance for object detection.

Then, SELMA is used to study the degree of correlation between point
clouds. In Chapter 3 we provide a theoretical definition of correlation between
point clouds in the context of TD. Then, we propose several techniques to ap-
proximate the correlation between point clouds that can be performed onboard
the vehicles and do not require particularly expensive and/or power-consuming
computer vision operations. The first technique is based on the correlation of
the voxel representations of point clouds. It is really fast but, due to the nature

of point clouds and the specifics of an urban environment, it does not scale

24



well as the number of points in the background increases. The second one
is based on the clusterization of points in the point clouds using an adapted
version of the Lloyd’s k-means algorithm. However, the presence of outliers in
the background also introduces noise and artifacts in this measure. Finally,
the last technique is based on a modified version of the Chamfer Distance, and
was proven to be an accurate metric to measure the correlation of point clouds

compared to its competitors.

In Chapter 4 we present a complete e2e framework for PQoS. Specifically,
point clouds are compressed onboard using Draco, an open-source program
developed by Google. The compression level is chosen by an RL agent that
implements the Double Deep Q-Learning Network (D-DQN) algorithm. The
agent is trained with the network as the environment and with rewards that are
proportional to the KPIs of the application. Notably, the D-DQN is trained
via federated learning, which is a promising approach in 6G. Finally, the com-
pressed point cloud is sent to an edge server, and it is processed to detect
mobile elements in the scene. The detection is done using PointPillars, a com-
mon object detector for point clouds. In this sense, the quality of the detection
is measured in terms of the Mean Average Precision (mAP), which is used to

compute the reward and train the D-DQN.

The D-DQN algorithm is evaluated via simulations in ns-3 in Chapter 5.
Numerical results show that the D-DQN algorithm is able to finely balance
the compression level to maximize the mAP while satisfying most of the KPIs
of the TD application. However, performance degrades quite quickly as the
number of vehicles in the network increases, due to the fact that transmission
resources may not be enough to support data transmissions of point clouds,

although after compression.

To solve this issue, future research should investigate an approach to opti-
mize both the degree of correlation of automotive data (so as to estimate the

level of “new” information in the point clouds, and decide when data should

25



be sent) and the relative level of compression to minimize the size of data, as

discussed in the conclusions in Chapter 6.

26



Chapter 2

SELMA

The core of this thesis is finding new techniques and new approaches to perform
TD. The main problem regarding TD is the heavy burden it leaves on the
network. In particular, the transmission of big unordered structures can lead
to network congestion, and, due to the tight requirements in terms of KPIs
that this application has, congesting the network is not affordable.

Most of the proposed solutions in this thesis are data-driven, meaning that
they required data to work, but also in the sense that data were needed to
validate or fugate some hypotheses.

The dataset needed for this thesis must fulfill some requirements. The
most important requirement is realism, meaning that the dataset must con-
tain samples that reflect a real driving environment, indeed the dataset must
contain all elements that could reasonably be in an urban environment, and
all the mobile elements must move in the city with realistic behavior. This is
crucial to avoid artifacts that could invalidate the proposed solution in a real
environment.

Another fundamental requirement of the dataset is correctness, meaning
that points in the point clouds must be correctly segmented and the position
of the objects in the samples must be known. Furthermore, the dataset must

contain correlated samples, meaning that the dataset must be divided into

27



scenes and each scene must contain subsequent acquisitions of the same sensor

in a dynamic environment.

Finally, to better capture the correlation between subsequent acquisitions,

a high sampling rate is needed.

The last three requirements, given the number of expected frames and the
cost of manually labeling a sample, can not be satisfied by an empirical dataset,

therefore the dataset must be a synthetic dataset.

Unfortunately, none of the existing synthetic datasets fulfills the require-
ments for this thesis [20]. And for this reason, the thesis required the creation

of a new synthetic dataset adequate to the TD scenario, the SELMA dataset.

The simulator chosen to create the SELMA dataset is CARLA [21]. The
CARLA simulator has been employed as a pivotal tool in the creation of an
artificial dataset for TD and AD research. As an open-source simulation plat-
form, CARLA provides a controlled virtual environment that replicates real-
world driving scenarios, enabling the generation of data resembling authentic
driving conditions. This dataset serves as a valuable resource for assessing
and training TD and AD algorithms. The controlled nature of CARLA’s sim-
ulation environment allows for the systematic collection of data under various
scenarios, offering researchers the ability to explore specific aspects of TD and
AD performance. By utilizing CARLA to craft this artificial dataset, the com-
plexities of real-world driving are encapsulated, contributing to the evaluation

and refinement of TD and AD systems.

The CARLA simulator is written in C++ and it is based on the Un-
realEngine, but exposes Python APIs to ease the process of creating simu-
lations. From now on the notation based on the Python APIs will be used
to refer to elements inside CARLA. The convention used to refer to classes is
carla.Class while for methods is carla.Class.method(args). To improve
the readability, when the class is clear from the context, methods are referred

to as method (args).

28



The creation of high-quality datasets is a critical aspect of advancing re-
search in the field of TD and AD. In this chapter, the intricate process of
generating the SELMA dataset is delved into, focusing on the challenges en-
countered and the innovative solutions employed to address them. SELMA
is a comprehensive dataset designed to facilitate research and development in
the realms of TD and AD. This chapter sheds light on the significant steps
taken to refine the dataset’s realism, diversity, and usability, with a particular
emphasis on tackling issues related to pedestrians, bounding boxes, and vehicle

management.

Generating an artificial dataset that accurately mimics real-world scenarios
using the CARLA simulator is a task full of challenges. One of the most promi-
nent obstacles encountered was the inclusion of pedestrians in the dataset.
Since pedestrians constitute a crucial element of road dynamics and safety,
their representation is an essential requirement. However, CARLA’s inherent

handling of pedestrians presented significant missing pieces.

The management of pedestrians within CARLA proved to be far from
straightforward. CARLA’s built-in class, carla.WalkerAIControl, intended
for controlling pedestrian movement, has a behavior that is not suitable for
the creation of this dataset. In particular, it often led pedestrians to cause
problems with their behavior, resulting in both vehicular accidents involving

pedestrians and traffic congestion due to cars waiting for walkers.

In response to the challenges posed by CARLA’s pedestrian management, a
novel solution was introduced: the SmartWalker controller. Unlike
carla.WalkerAIControl, which exhibited suboptimal path selection, the
SmartWalker controller was designed to address these issues comprehensively.
The core concept behind the SmartWalker controller lies in its ability to un-
derstand the proximity of pedestrians to the street and to enable them to walk

without interfering with the traffic flow.

Another critical aspect of the dataset is the accurate representation of

29



bounding boxes for vehicles. While CARLA provides APIs for bounding box
manipulation, issues were encountered related to the representation of two-
wheeled vehicles and pedestrians. The dataset’s focus on object detection ne-
cessitated precise bounding box information. By manually adjusting bounding
box parameters and leveraging saved information, these challenges were over-

come and more accurate bounding box representations were achieved.

The realism extends beyond pedestrian behavior to encompass the over-
all dynamics of the road environment. Issues related to vehicle management,
particularly in preventing the destruction of actors due to accidents or traffic
congestion, are addressed. Adjusting traffic light timings and vehicle spawn
locations, along with introducing randomness to vehicle positioning and be-

havior, contributed to a more realistic and diverse road environment.

Furthermore, the dataset was enriched by introducing Smart Vehicles equipped
with an array of sensors, including cameras and lidars. This addition enhances
the dataset’s suitability for exploring cooperative perception, where data from
multiple sensors are merged to improve environmental understanding. The
placement of these sensors on the vehicles is discussed, and their role in en-

hancing the dataset’s utility for research purposes is highlighted.

The culmination of these efforts resulted in the creation of the SELMA
dataset, a comprehensive resource tailored to TD and AD research. The
dataset’s diverse features, encompassing multiple towns, varying traffic den-
sities, different times of day, and various weather conditions, make it an in-
valuable tool for researchers and practitioners. With its emphasis on realism,
diversity, and the intricacies of pedestrian-vehicle interactions, SELMA offers

a unique platform for advancing the state of the art in autonomous driving.

30



2.1 Walkers

This is not the first attempt to create a synthetic dataset using CARLA, but
the obtained results are inadequate to fulfill the requirements of this thesis,
the main problem is the lack of realism of most datasets based on CARLA,
due to the way in which walkers are implemented in CARLA.

Obtaining realistic data using the CARLA simulator has proven to be chal-
lenging due to the way in which CARLA manages pedestrians, the control of
pedestrians, indeed, is not straightforward. For this reason, some datasets
avoid entirely the problem, not including walkers [22], others instead do not
allow for vehicles to move due to the high number of walkers and lack of

walkers’ control [23].

Since pedestrians are the most vulnerable users of the street and each AD
or TD solution must ensure their safety, including them in the SELMA dataset

was one of the main requirements.

From the implementation point of view, it is important to understand why
the management of walkers is not trivial in CARLA. In fact, CARLA itself
provides a class carla.WalkerAIControl, that takes care of the movement of

pedestrians, but it suffers several issues.

Using the CARLA notation, carla.WalkerAIControl is an invisible Actor
attached to a Walker, which is itself an Actor.
The carla.WalkerAIControl is not rendered in the simulation by any means
and it is only responsible for the movement of Actors. The interactions between

carla.Walker and carla.WalkerAIControl are shown in Fig. 2.1.

In particular, through the method go_to_location(destination) it is
possible to set the new destination of the walker and let the controller take

care of the movement of the Actor.

Even though in these terms the process seems trivial, there are several

issues to overcome.

31



carla.Actor
id
parent
Y Y
carla.Walker < carla.WalkerAIController
apply control (c) < parent: carla.Walker
get control () ———— go_to location(dest)

Figure 2.1: Class diagram highlighting the relationship between walker and
controller

The main problem is related to how the carla.WalkerAIControl chooses the
path that the walker must follow.

In particular, the controller often makes the pedestrian cross the street
even when the destination is on the same sidewalk as the walker. This leads
to several problems for the simulation.

Since CARLA’s map are relatively small and with a relatively high number
of junctions, cars waiting for people to cross the road create strong congestion
in the road network, that propagate around the map until any car is barely
moving.

Another problem with the carla.WalkerAIControl is that it does not
take care of the distance between the walker and the street, meaning that the
controller does allow pedestrians to walk really close to the street. But, the
probability of ignoring pedestrians must be set to 0%, otherwise, the simulation
will inevitably experience a pedestrian hit by a car, and when the probability
is set to 0%, several issues in the mobility of the cars arise due to the presence
of pedestrians close to the street.

When the probability is set to 0% a car, seeing that a person is too close

32



to the street, will slow down and eventually stop even if the pedestrian is not
walking towards the street, creating the same congestion problem as before.
So one of the main things to take care of when designing the behavior of
pedestrians is that they must walk at least at some distance to the street,
without this requirement the simulation will not be realistic.
For this reason, the use carla.WalkerAIControl was avoided, and a con-

troller for the walkers able to deal with all those problems was implemented.

2.1.1 Custom Walkers Controller

Following the rationale of CARLA, a class to deal with this task was created,
the name of the class is SmartWalker, and as carla.WalkerAIControl, each
instance of SmartWalker must be linked to a Walker.

As stated before one of the most important pieces of information to consider
is the distance between walkers and the street. This information was modeled
as a vector d € R® whose entries are the Euclidean distance between the
walkers and the closest point of the street in specific directions.

To formalize the definition of the vector d, the function ¢(w, ) is defined.
¢ is a function that takes in input w, a position on the projection of the map
in a 2D plane, and 6, an angle measured clockwise with respect to the north,
and gives the position c¢(w, 0) of the closest point of the road in the direction

6, starting form position w as stated in Eq. 2.1.

c:R?*x [0,27] — R? 21)
2.1
w, 0 — c(w,0)

Given the ¢ function, being w the position of the walker, the i-th entry of

the vector d is defined as follows:

dli] = [|w, c(w,in/4)]o, (2.2)

33



so d contains information of the distance in directions spaced by 45 degree.
Experimentally, It can be seen that this level of resolution is enough given
the fact that towns in CARLA have perpendicular streets and sidewalks that

follow cardinal directions. A representation of d is shown in 2.2.

North

Street

Sidewalk

Street

Figure 2.2: Representation of the vector d

The vector d is used for taking decisions on the direction towards which
the walker has to move.

Each instance of SmartWalker is then defined by a state s, an integer that
represents the status of the walker (e.g.: they are going far from the street,
they are walking towards his next waypoint, they have arrived at his waypoint,
and so on).

Finally, each SmartWalker has a variable that represents the direction 6,
that the walker is following, which has the same convention as the angle in the
¢ function.

The behavior of the waker can be summarized with the following rules:

34



e At the beginning of the simulation the walker is spawned at the center

of the sidewalk and is assigned to a random direction 6,, = U(0, 27).
o Walks towards 6,, for p meters.

e If the distance between the walker and his next waypoint is less than the

threshold «, the walker has arrived at its destination.

When it arrives, the SmartWalker will choose the next direction, being

6., the actual direction and j : 6, = jm/4, the direction chosen is

ew = ’ (argml?x{bk mod8|k € {(j - 2)7] - 17 s vj + 2}}) (23)

I

e If at any time, any entry of d is less than o, the walkers turn to the
opposite direction. Being d; < o, the walker will move towards 6, =

(44 k) /4 for p meters.

e If at any time the distance between the walker and its next waypoint
is non-decreasing with respect to the distance measured in the previous
time step, the walker is considered unable to move and walks toward

0, + .

For the simulations, I used the parameters described in Table 2.1.

Symbol Description Value

o Distance to see if 0.5m
walker has arrived

p Distance to 1.0m
differentiate walkers

o Distance to see if 0.5m
walker is close to
the street

Table 2.1: Parameters used for the simulator

35



2.1.2 Map Management

carla.Map.get_waypoint was used to compute ¢(w,6), get_waypoint is a
method that returns the type of lane at a specific carla.Location.

This is once again a problem because the vector d must be computed at
each time step for each walker, and to compute d the function get_waypoint
must be evaluated several times.

CARLA’s calls on the carla.Map object are heavily time-consuming, and
the straightforward implementation of the described procedure required ap-
proximately three weeks for 120 seconds of simulation time.

Since that was not affordable, the computation of ¢(w,#) must be imple-
mented in a smarter way. The idea was to create a data structure containing
an approximate value of ¢(w,0) for each w on the sidewalk and for each 6 in
0,7/4,...,77/4].

First get_waypoint was used to sample the map in a regular grid. Then a
bidimensional array with boolean entries was created, the array contains True
if and only if the sampled point associated with the entry is a sidewalk.

This data structure contains all the information needed to compute ¢(w, 6)
on each point of the grid. For convenience, let ¢(w, @) be the function that
approximates ¢(w, ) considering only the points on the grid.

Also in this case, the naive algorithm reported in Alg. 1 was too slow to
compute ¢(w, ) in a reasonable time.

With a grid of size n x n the Algorithm 1 takes O(n®) operation, because
we have O(n?) points on the grid, and, for each point, the most inner loop is
repeated O(n) times.

The idea to solve it using dynamic programming is that all consecutive
points on the sidewalk along a direction share the same ¢(w, 6).

For example, being w a point on the sidewalk with a known ¢é(w, ), we
know that if the closest point to w on direction §# — 7 (called w’) is on a

sidewalk, it is ensured that ¢(w’, 6) = ¢(w, 0).

36



Algorithm 1: Naivelmplementation(m)

Data: m: structure containing true if the point is on a sidewalk
Result: ¢(w, 6) approximating c(w, 6)

¢(w,0) =Null VO € |[0,7/4,...,77/4], Vw on sidewalks;

for 0 € [0,7/4,...,77/4] do

for w on grid do
S+ W,

while m[s] do
| s < closest point to s on the grid on direction 6;
end
é(w,0) +s;
end
end

Thanks to this, we can write a dynamic program version of the naive algo-

rithm, reported in Alg. 2 and Alg. 3.

Algorithm 2: cStarter(m)

Data: m: structure containing true if the point is on a sidewalk
Result: ¢(w, 0) approximating c(w, 0)
¢(w,0) =Null V0 e€[0,7/4,...,7n/4], Vw on sidewalks;
for 6 € [0,7/4,...,77/4] do

for w on grid’s border do

| ¢é(w,0) < cFinder(m,¢(+, ), w,0);

end

end

Here is important to notice that Alg. 2 calls O(n) times Alg. 3, and Alg. 3
calls itself O(n) times before returning to Alg. 2.

This leads to the fact that the complexity of this solution is O(n?), and
since we have O(n?) points to analyze this is the best result we can achieve in
terms of asymptotic complexity.

By storing the result of this procedure in a proper data structure and by
letting the SmartWalker controller access this data structure I was able to
significatively speed up the time needed for the computation and realize a

dataset containing realistic walkers.

37



Algorithm 3: cFinder(m, ¢(-,-), w, 0)
Data: m: structure containing true if the point is on a sidewalk,
¢(+, +): structure storing the results,
w: the position of the walker,
0: the direction toward what we are looking to.
Result: ¢(w,0)
s < closest point to s on the grid on direction 6,
if m[s| then
| return cFinder(m,é(-,-),s,0)
else
| return s
end

2.2 Bounding Box

Another major problem with the data generated using CARLA is that they
are mainly thought to perform point cloud segmentation. In fact, thanks to
the possibility of programmatically labeling the point clouds while generating
them, CARLA is particularly suitable for this type of dataset.

But for the scope of this thesis, I needed to perform object detection on
the point clouds, and for this objective having segmented point clouds is not
enough.

Also in this case CARLA exposes some APIs to work with the bounding
boxes of Actors in the Map, but unfortunately, the native API suffers from
several issues.

The first and most serious problem was related to bikes and motorbikes.
In particular, the CARLA management of two-weels vehicles is completely
different from the management of cars.

Each Actor instance in the CARLA engine has a location. In the case of
cars, the location is the point on the plane where the car touches the ground,
in the middle of the car (at half the length and width of the vehicle).

Each Actor contains an instance of the class BoundingBox, which is char-

acterized by a location and an extent. The location is the offset of the location

38



of the center bounding box with respect to the location of the Actor. This
value is expressed in the coordinate system of the vehicle, and so the rotation
of the vehicle does not affect this value. The extent, instead, is half of the

length of the side of the bounding box.

Two-weel vehicles, instead, have the location of the actor in the back right
corner of the vehicle, their associated bounding boxes do not compensate in
the x-y plane for this, and they usually have the extent equal to 0 in different

dimensions.

For this reason, bounding boxes of motorcycles are usually wrong and create
a lot of trouble when reconstructing the scene. To avoid this an empirical

approach has been used.

The first step was to save all the correct information of bounding boxes
(namely the extent and the location) in a JSON file. To gather this information
the debugger available in CARLA was used and values of the extent and the

location were manually tweaked.

Then, when saving the features of the bounding box during the simulation,
the values in the actors were ignored, and instead, the values in the JSON file

were used.

Another similar problem was related to pedestrians. In particular, the
extent of the bounding boxes of most pedestrians was the same, even thou

pedestrian models have significantly different sizes.

For this reason, most of the points in LiDAR acquisitions were outside of
the bounding boxes. In this case, the the same techniques as the motorcycles
were used, and, after creating the suitable bounding box parameters for each

pedestrian, the problem was solved.

39



(a) Toyota Prius (b) Jeep Wrangler Rubicon

Figure 2.3: Some examples of the positioning of sensors in Smart Vehicles,
blue dots represent cameras, while green dots represent LiDARs

2.3 Vehicle Management

To refine the dataset, some adjustments to the way vehicles are managed were

made.

The main problem was with the fact that vehicles that can not properly
move are removed from the scene, and this is not acceptable in a realistic

dataset.

The main source of the destruction of Actors is the involvement in a car
accident. In most cases, the TrafficManager of CARLA is enough to prevent
car accidents, but in some cases, more attention is required, especially when
spawning vehicles.

The first thing is to avoid spawning vehicles on junctions because, in that
case, the behavior of the Traffic Manager is unpredictable. Furthermore, if cars
are spawned too close to a traffic light, they will ignore it at the beginning of
the simulation, causing road accidents.

Another situation leading to the destruction of a vehicle happens when one
still vehicle is in the way of another vehicle. This can happen consistently on

short roads that end with a traffic light.

To address this issue, the timing of traffic lights in the simulations was

40



adjusted, and the number of spawned vehicles was modified, interpreting this
occurrence as a clear indicator of city congestion.

For the purpose of obtaining more realistic data, the average distance be-
tween each vehicle and the one ahead was also modified to match real-world
conditions. Additionally, the vehicles were programmed to randomly deviate
from the center of the lane, replicating human driving behavior.

Finally, 15% of the cars in the simulation are equipped with sensors, We
refer to them as Smart Vehicles. Each Smart Vehicle has 7 cameras and 3
lidars. Cameras are placed to cover all the surroundings of the vehicle. One
LiDARs is placed on top of the car (with a Field of View (FoV) of 360 degrees),
and the other two are placed near the headlights of the car and have a FoV of

270 degrees. Some examples are shown in Fig. 2.3.

2.4 Results

Feature Description

Towns TownO1_0Opt, Town02_0pt, Town03_0pt

Smart Vehicles The dataset contains sensors’ data for over 200 vehicles

Sensors For each Smart Vehicle there are 7 RGB cameras, 7 depth
cameras, 7 segmentation cameras, and 3 lidars

Traffic None, Low, Medium, High

Daytime Noon, Sunset, Night

Weather The dataset contains samples of 7 different weather
conditions

Table 2.2: SELMA’s features

As reported in Tab. 2.2, SELMA has a strong variability under several
aspects. The most relevant for this thesis is the number of different vehicle
data we can analyze.

Furthermore SELMA is a great dataset for exploring AD and TD using

41



simulation, and the publication of this dataset could fuel the research on those
topics. In particular, thanks to the availability of data from different vehicles
(Fig. 2.4), SELMA enables the studying of cooperative perception, which con-

sists of merging data from different sensors to improve the understanding of

the environment and the scene [24].

Figure 2.4: Example of SELMA’s acquisitions

42



Chapter 3

Point Clouds Analysis

One of the main requirements for 6G mobile systems, is the shifting towards a
decentralized orchestration. The network is expected to support 107 users for
each km? in order to grant a pervasive connection. But to coordinate the com-
munication among all those devices, end terminals need to make autonomous
network decisions, avoiding a central orchestrator [25].

Indeed, 6G will let end users autonomously decide the numerology of the
transmission, adapting on their own to the status of the network, according to
a decentralized paradigm [26].

In the context of TD, it is easy to see that one of the biggest advantages
that vehicles have for taking this type of decision is the availability of data.
In particular, they can inspect and process data before sending them, taking
advantage of the information they can retrieve to make informed decisions on
communication.

For instance, considering point clouds, vehicles have the possibility to
choose the compression level before sending data, or if the point cloud is con-
sidered not enough informative they could also decide to discard it and analyze
the next one.

This perspective left some open questions. In particular, due to the specifi-

cations of teleoperated driving, we expect vehicles with limited computational

43



power to impose harsh limitations on the type of preprocessing that can be
done at the transmitter.

Ideally, knowing the position of every object in the surrounding of the
vehicle will lead to the most informed decision, but performing object detection
is considered too computationally demanding for the vehicle. For this reason,
the choice of the operations to perform on the point cloud is not clear yet.

Following this rationale, the core idea of this chapter is to analyze different
types of metrics to try to infer the quantity of new information present in the
point cloud with respect to previous acquisitions, limiting the computational
power needed to compute this value.

In order to formalize this question we need to formally define our target.
The aim is to develop a fast algorithm to quantify the dissimilarity between
point clouds. Calling P the point cloud acquired at time k, we define the
dissimilarity as 6(Pyi,, | Py).

To the best of our knowledge, a proper definition of 6(P;y,, | P;) is not
present in the literature, due to the fact that this measure is context-dependent.
Therefore a definition of 6(P;y, | P;) will be presented in Sec. 3.0.1, while in
Sec. 3.1 will be proposed some metrics to approximate the dissimilarity defined

in Sec. 3.0.1, that are computationally compliant with the capacity of vehicles.

3.0.1 Dissimilarity Definition

Given the unordered nature of point clouds, having a coherent dissimilarity
measure based on the point cloud itself is almost impossible, and could lead
to undesired results.

For example, a LIDAR mounted on the top of a vehicle, during each acqui-
sition frame, registers a large number of points in close proximity to the car.
Those points will be mainly related to the vehicle itself or the street. When
the vehicle moves, the points of the vehicle and the street will change at each

acquisition, due to the movement of the sensor. This brings big changes in the

44



point cloud. Those changes are only linked to the information that the car is
moving, and this information is known to the receiver. Meaning that this huge
change in the point cloud does not have a semantic meaning for the receiver.

Another important thing to consider is that most of the points in the point
clouds are related to static objects, such as the street, buildings, or other
elements in the city. Consecutive point clouds may differ greatly, as they
capture the same static objects from different points of view.

This explains why the mere position of points is not enough informative
when measuring the dissimilarity between point clouds, and more meaningful
metrics must be found processing those points.

In the context of TD, the main interest is being able to identify the exact
location of mobile objects in the scene, since we can assume that the receiver
has a complete tridimensional map of the static elements of the environment.

It is important for the dissimilarity measure to be able to capture this in-
formation. For this reason, the proposed solution to compute the dissimilarity
is based on the positions of mobile elements in the scenes.

We denote the set of mobile elements visible from the lidar at time ¢ as
M. An object m is considered visible from the LiDAR if the object is in Line
of Sight (LOS) of the LiDAR and the point cloud contains a minimum of v
points belonging to object m. Subsequently, the function p,(m) is introduced,
which associates each object m with its position at time ¢ within the coordinate
system of the LiDAR.

Given two time instants ¢ and ¢ + n and their related set M; and M,

the union of those sets M; U M., can be partitioned into three sets:

o M;NM,,, represents all mobile objects that are present in both acqui-
sitions. Indeed, it represents the information shared between different
acquisitions.

o M\ M, represents all mobile objects that are present at time ¢ but not

45



at time t + n, that are object exiting the range of the LiDAR, or objects
not visible anymore. This represents information that was present at

time t, but not at time ¢ + n, i.e., it is outdated information.

o M., \ M, represents all mobile objects that are present at time t + n
but not at time ¢. This is the “new” information, the one that was not

available at time ¢, but at time ¢ + n is available.

Furthermore, it is important to notice that objects in M; N M;,,, might
be in completely different positions in the two time instants. This leads to the
necessity of including this information in 9.

Also the position of objects in M, \ M, is crucial because having really
far new objects in LOS is not as relevant as having new close objects. In the
context of TD, indeed, an unseen element that appears in close proximity to
the vehicle can cause damage to the vehicle and the object itself.

Therefore, to sum up all those considerations, the following formula, based
on the Euclidean distance ||-||2, is proposed to compute the dissimilarity. In
this formula My, is the set of visible elements at time k, py(m) is the position
at time k of the object m and « is the parameter that controls how close new

objects must be to be considered new important elements

§(Prin | Pt) = Z [Pe+n(m) —pe(m)[|l2+ Z

TTLEMtﬂMt+71, mEMt+n\Mt

el Y
Some real examples of the evolution of §(P;., | P;), obtained with the
SELMA dataset, are reported in Fig. 3.1. Each line reports the evolution of
(Pt | P:) as the lag n between point clouds increases, with different levels
of traffic. In particular, this plot was obtained with v = 1 and a = 10%.
Some general consideration on §(Py, | P¢) can be inferred from the infor-

mation present in Fig. 3.1.

e The dissimilarity between a point cloud and itself is 0. This is easily

46



----- Medium

_ 9200 High

[l

ji»

& 100 -

s e

0

| | | | | |
0 20 40 60 80 100

Figure 3.1: Evolution of §(P;., | P;) as the lag n increases, with v = 1 and
a = 10*, varying the traffic level

verifiable from the formula, since the M sets are the same, and the

positions of mobile elements are the same. 6(P; | P;) =0 VP;,.

e The number of mobile elements influences the measure in the simulation.
Indeed, § grows faster for higher traffic scenarios. Even if this is generally
true, there are some situations where this might not be exact (let’s think,
for example, of situations where there are lots of vehicles stopped at a

traffic light).

e 0 is generally non-decreasing with respect to n, but also in this case there
are situations in which this is not true. For example when the cardinality

of My, IMy| =0, IMy1] =1 and |[Myy2| =0,

«

m = 0(Piy1 | Pt) > 0(Pyyo | Py) = 0. (3.2)

But, on the transmitter side, the computation of §(P;, | P;) requires an
onboard object detector and tracker, which is not feasible due to their high
computational demands. As a result, the necessity arises to identify rapid

algorithms that can approximate 9.

47



In Sec. 3.1 several methods to approximate 0 are defined and analyzed. This
process is done assuming the position and orientation of the sensor known at
each time step. This is justified by the fact that the vehicle is equipped with a
precise GPS, but it can be relaxed. Indeed the movement of the vehicle can be
inferred by performing registration on the point clouds, which means aligning
the point clouds until points are superposed with each other. Also in this case
we have lots of possible implementations, and with a simple Iterative Closest

Point (ICP) technique, we could remove this assumption [27].

3.1 Different Metrics for the Dissimilarity

3.1.1 Voxelization

The first algorithm proposed is directly linked to correlation. For this reason,
it is not a dissimilarity measure, but a similarity one.

The similarity o can be thought of as the reciprocal of the dissimilarity ¢

1
U(Pt+n ’ P;) = S

—(Pt—l—n P (3.3)

Since the dissimilarity exhibits linear behavior, the behavior of the similarity
is hyperbolic, as shown in Fig. 3.2.
The standard definition for the correlation between two discrete signals U,

V' in [0, 7] is the following:

> WU =0)V[t]-V)

te[0,T

IS wn-op S i - vy

t€[0,7) t€[0,7]

r(U,V)

And even though the extension for tridimensional signals in R? is trivial,

the problem is that point clouds are not structured and the formula can not

48



0.5 -

|'l --- Low
A R R B TS Medium
0.4 ': High
B0
o [
+ Vv
A 02
b L
0.1-
0 | "'-‘---»----.‘...*.T.‘.T.—.r.-..—-\...____________,__

Figure 3.2: 0(Pyy, | P;) varying traffic density

be applied directly.

To stick with this correlation definition it is necessary to sample the point
clouds in the tree dimension and quantize them. This process is known as
voxelization.

The voxel representation of point clouds, or of 3D objects, is well-known in
computer vision. It is based on the same principle of pixels where the signal of
the image is approximated with a bidimensional matrix. The position of the
pixel is encoded in its column and row index, while the value itself contains
information about the light intensity of the point.

In the voxel case, the structure is a tridimensional matrix, with each dimen-
sion of the matrix representing a direction in R?, and the entry itself represents
information about the points inside the volume covered by that voxel.

The key parameter for voxelizing a point cloud is the resolution. As for
images, we can make each voxel represent an arbitrary amount of volume, and
by changing the resolution of the representation we get different results.

In SELMA dataset, the maximum dimension of point clouds is (200 m x
200 m x 50 m). Voxelizing them with a resolution of 20 m, meaning that each

voxel represents a cube with side 20 m, means losing almost all the information

49



present in the point cloud. On the other side, with a resolution of 1 mm, we
get a structure with 2 - 10'® voxels, that is simply not tractable.

The other main feature of the voxelization is the meaning of the entries of
the tridimensional matrix. For grey images, the intensity level of light is used.
For point clouds, different choices can be made, two of which are presented in
this paragraph. The first and most simple is a boolean structure, that has an
entry equal to true if and only if there is at least one point inside the volume
associated with each voxel. On the other side, we can express in the entry of
the voxel the number of points in the point cloud associated with that voxel.

The first implementation is referred to as “Simple” and the second one
as “Cumulative”, and the associated functions that transform point clouds in
voxel representations vs(P) and v.(P) respectively.

Two possible ways to compute the similarity between point clouds based

on those functions can now be defined, that are respectively:

0s(Pryn | Pt) = 7(vs(Py), v5(Prin)) (3.5)

and

0c(Piyn ’ P;) = T(Uc(Pt)avc(Pt—f—n))' (3.6)

However, to assess their performance, it is necessary to visualize their be-
havior using the same set of point clouds employed in Fig. 3.2, to see whether
os and o, are good approximations of . The obtained results for both o, and
0. concerning their variations with respect to n are presented in Fig. 3.3.

Upon observation, the anticipated hyperbolic pattern is evident, and the
correlation seems to exhibit minimal sensitivity to the chosen voxelization type.
Henceforth, the choice is made to employ the “Simple” voxelization method,
since it is faster to compute and due to the boolean structure is also less
computationally demanding.

However, the behavior of the ¢ curve corresponding to the High traffic

50



1- —O'S(Pt+'rl,|Pt)
--- Uc(Pt+n|Pt)

— Low
= 0.8 - — Medium
f@ High
ot
§ 0.6 -
0.4 -

|
0 20 40 60 80 100

Figure 3.3: Correlation computed using voxels

condition reveals a steeper inclination. Ideally, this would be accompanied by
a lower ¢ hyperbolic curve. Contrary to expectations, the plot suggests that
the newly introduced samples in this series hold comparatively lower values.

This is because, due to the high traffic, the car remains still. For this rea-
son, the points related to the landscape are not changing throughout different
acquisitions. Furthermore, since most voxels contain only the landscape and
not mobile elements, we can say that o, and o, are not approximations for o,
which is instead only based on the position of mobile elements.

There are other operations that can be easily performed to improve those
results.

First, changing the dimension of voxels might give better results. In par-
ticular, the plot in Fig. 3.3 is generated with cubic voxels of side 50 cm. As
already mentioned, changing the dimension of the voxels correspond to chang-
ing the resolution. Specifically, a higher resolution can better capture small
changes in the mobile object, while a lower resolution can overcome the noise
produced by small changes in the points related to the background due to the
evolution of the FoV.

Furthermore, a large number of points belongs to the street. The relative

ol



position of the LiDAR with respect to the car p; is known and constant. In
most cases, the car is almost perfectly aligned in the x-y plane with the street;
therefore, points related to the street can be removed before the voxelization.
This operation simply consists of removing all the points whose z-coordinate
is below —p; before aligning the point cloud with the reference system of the
world.

To be more robust and to remove also sidewalks and other static elements
all points below —p; + ¢ are removed. This procedure was checked visually
ensuring that in this way almost every point related to the street is deleted,
losing a negligible fraction of points related to mobile elements.

The pruning function is denoted as II and is defined as follows:

I(P)={pifp,>—p +¢ VpeP}. (3.7)

Therefore, also the definition of similarity changes:

ou(Prin | Py) = (v (TI(Py)), vs(II(P110)))- (3.8)

The value of the dimension of voxels vs is omitted from the formula for clarity.

The results for oy (P4, | P:), computed on the same data as the previous
plot, are reported in Fig. 3.4.

It is clear that oy (Pyy,, | Py) is not a good approximation of o. The main
problem is with the fact that the correlation of the point clouds in the scenario
with high traffic is higher than the correlation with fewer vehicles.

As expected different values of vs produce completely different results.
Indeed, the higher vs, the higher the correlation due to the lack of resolution.
But also in this case the outcome is too dependent on the points of static
objects. For this reason, the correlation computed on the voxels is not a
suitable choice for this procedure.

Trying again to use the voxels to compute this metric the background

52



—vs=01m
---vs=1m
— Low

— Medium

|
0 20 40 60 80 100

n

Figure 3.4: Correlation computed using different voxel sizes

should be removed completely. To do so, the presence of a complete tridimen-
sional map of the area must be ensured at the transmitter, and this requirement
is not so easy to satisfy.

Furthermore also removing all the points of the background, the quanti-
zation introduced by the voxels could lead to undesired behavior. Indeed the
movement, of a vehicle of the first vs will lead to a drastic decrease in the
correlation, while the following movement will not be so effective in changing
the correlation.

Thus, in this context, voxelization is not a proper way to compute the

similarity between different point clouds.

3.1.2 Clusterization

The second approach taken into analysis is based on clusterization. The pres-
ence of an element on the street changes the density of acquired points. Indeed
each element, still or mobile, when acquired by a LiDAR, creates a volume in
the point cloud where points are more densely distributed. This dense region
is the zone corresponding to the surface of the object facing the LiDAR.

On the other side, this also creates a shadow, a region where there are no

33



LiDAR points due to the fact that the LOS is blocked by the object.

This behavior can be exploited to compute an approximation of
d(Piin | Pi). The core idea is to cluster the point clouds and use the clusters

to compute the dissimilarity between point clouds.

The principle of using clusters to reduce the dimensionality of a dataset
is really well known in the literature [28]. Recalling the definition of clusters,
elements belonging to the same cluster are similar to each other, while elements

belonging to different clusters significantly differ from each other.

Thanks to this feature, all the elements of a cluster can be approximated
with a single element that represents the average behavior of all the points

inside the cluster.

In the context of point clouds, the coordinates of the points themselves
serve as their defining features. This configuration is widely recognized, and
numerous studies have been conducted on this subject [29]. Therefore, a brief

overview of the key concepts pertinent to this study will be provided.

To begin, it is essential to establish a measure of similarity or dissimilarity
among points within the point clouds. Given their characterization in R?, the
distance metric is a suitable choice for dissimilarity. Specifically, the focus
will be on the Lo-distance, or Euclidean distance, to facilitate the creation of

clusters containing closely located points.

The subsequent consideration is the identification of the most representa-
tive element within each cluster. Given that the clusters are formed based
on the Euclidean distance, a logical choice is to select the point that mini-
mizes the sum of distances to all other points within the same cluster. This
point, denoted as pc, optimally satisfies the following minimization criterion

for cluster C:

> lue =l (3.9)

ceC

This point, referred to as the centroid of the cluster, is straightforward to

o4



calculate. Notably, it can be demonstrated that the coordinates of the centroid
correspond to the arithmetic mean of the coordinates of all points encompassed

within the cluster.
This identified point, referred to as the centroid of the cluster, can be easily

calculated. It is noteworthy that the coordinates of this centroid align with

the arithmetic mean of the coordinates of all the encompassed points within

> e

ceC
e = : (3.10)
|C]

the cluster.

While performing this type of analysis, some researches introduce a further
constraint, that is the belonging of the centroid to the cluster. In this case,

computing ¢ requires an additional step, and it can be found as:

[le = arg;gueréz [ (3.11)

ceC
This is done to ensure the fact that the most representative point of the
cluster belongs to the cluster itself. But this might lead to suboptimal results

in the context of point clouds.

The objective of this clusterization is, indeed, to partition the point cloud
into clusters representing objects, taking advantage of the inhomogeneity in-
troduced by the presence of objects. LiDAR points only represent positions
on the surface of the object. If we think of the entire object and we want to
approximate it with a point the natural idea is the center of mass, which is

not on the surface of the object.

This is the intuitive explanation of why the first definition of the centroid

is more suitable to represent clusters.

From a technical point of view, the point cloud is partitioned using Lloyd’s
k-means algorithm [30]. The choice of this algorithm is related to the fact that

it lets the user choose a priori the number of clusters, and this is crucial when

95



comparing clusters from different point clouds.
Lloyd’s k-means algorithm is conceptually really simple, given the set of
points P and the number of clusters k, at the beginning k centroids are ini-

tialized, then two steps are repeated until convergence is reached:
e Fach point is assigned to the closest centroid.

e The position of each centroid is assigned to the mean of the coordinates

of all the points inside the cluster.

This procedure is known to be generally really fast, and therefore particularly
suitable for this use case. The pseudocode of the algorithm is reported in

Alg. 4.

Algorithm 4: Lloyd(P, k)

Data: P: the set of points

k: the number of clusters

Result: P is partitioned in k clusters

i1, - . . it centroids are initialized;

while each point is in the same cluster as the previous iteration do
Vp € P, cluster(p) < closest p;;
Vi e [1,k|, p; < mean coordinates of the points in the cluster;

end

This procedure is also known to be really sensitive to the initialization of
the centroids, and the most common solution is using k-means++ to initialize
the centroids [31].

Initializing Lloyd’s centroids with the k-means++ algorithm holds signif-
icant importance in enhancing the efficiency and effectiveness of the k-means
clustering process. Traditional k-means starts with randomly chosen initial
centroids, which can lead to suboptimal clustering results and slow conver-
gence, particularly for complex or unevenly distributed data.

In contrast, k-means++ intelligently selects initial centroids based on a

probability distribution that prioritizes points that are far apart from each

56



Figure 3.5: Example of clusters on a point cloud

other. This initial placement promotes a more balanced distribution of cen-
troids across the data space, which in turn increases the likelihood of converg-

ing to a better final clustering solution.

By strategically initializing centroids using k-means++-, the algorithm tends
to reach a global or near-global optimum faster, reducing the chances of get-
ting stuck in suboptimal local minima and thus producing more reliable and

consistent clustering outcomes.

Furthermore, the k-means++ initialization method contributes to the over-
all stability and reproducibility of clustering results.

Finally, the identification of clusters related to the same object in different
point clouds is necessary for the procedure. The key element to take into
account is that mobile elements are moving, but since the acquisition rate
of LiDAR is really high, between subsequent acquisitions the shift of mobile
objects is really limited.

So, when computing 6(Pyy,, | Py), P, clusterization is initialized with k-
means—++, while Vi € [1,n] the clusterization of P, is initialized with the

centroids found at P,.;, ;. In this way, if clusters are still recognizable, the

a7



centroids corresponding to the same object will have the same index in the

whole procedure.

Finally, recalling the fact that the clustering procedure on P, returns an ar-
ray C, with k centroids, we can define the dissimilarity measure
dc(Pyyy | Py) as the sum of distances between centroids related to the same

object,

Oc(Prin | Pr) = Z ICe[i], Ceanld]l2- (3.12)

Intuitively k should be the number of elements present on the street in
order to get the best results. Unfortunately, k£ can not be known a priori on
the transmitter, and the computation needed to extrapolate %k from the point

cloud is too complex to be affordable on this setup.

There are tools from the clustering literature, such as the silhouette co-
efficient [32], that could solve this problem, but the operations needed the
compute the silhouette coefficient introduce a significant overhead in the time
needed for the procedure. Meaning, that in this context, hardcode a reasonable

value can be the solution.

In Fig. 3.6 and Fig. 3.7, are shown the results of this dissimilarity measure

computed on the same set of point clouds used in the other plots of this chapter.

The first important thing to remark on is that this measure is really noisy.
Especially when the number of clusters is really low, the noise introduced by
the fact that objects are not always correctly identified by the algorithm is
really large.

Another important note is that the higher the number of clusters, the higher
the time needed to converge to the solution, and this imposes a bound on the
number of clusters that are practically computable at the UE.

Finally, here the same problem of voxels can be recognized: dc(Pyip | Py)
depends more on the points of the background than on the points related to

the mobile elements, and this explains why the sequence with high traffic have

o8



6C(Pt+n | Pt)

oy ket
TR
-'Ql \

|
0 20 40 60 80 100

Figure 3.6: Dissimilarity computed using 10 clusters

600 - --- Low o
- ! '
----- Medium T
. ]
. High - [ ‘.‘
- 'l| ,‘l
- 1
& 400 i
S | Vo Wy
< I I vt
: TR IR
\ 1 1 7
&', O v 1,". ROIRTY N
5 200 - [ T PR
- i ! ’
’/‘/\l-’
.l\,
0 "
| | | | | |
0 20 40 60 80 100

n

Figure 3.7: Dissimilarity computed using 100 clusters

the lowest dissimilarity.

Furthermore, this procedure violates the assumption of the k-means algo-
rithm, that the cluster must be convex, as there is not any theoretical guarantee

on the shape of clusters. In most LiDAR point clouds, objects are not strictly

To overcome this issue, we could use clustering algorithms that do not need

the convexity of the cluster. And to this purpose, DBSCAN [33] has been

99



tested, it gives better results (because playing with the definition of distance
clusters can be found only on close mobile elements), but is computationally
too demanding to be performed at the transmitter.

To sum up, also this definition of dissimilarity does not satisfy our require-
ments, and, in order to finally find an acceptable approximation of (P, | Py),

a change of perspective is needed to exploit different tools.

3.1.3 Chamfer Distance

Figure 3.8: Example of I, applied to two point clouds of the same series

To understand the last proposed dissimilarity measure, the starting point
is the symmetric point-to-point chamfer distance. This metric has been widely
adopted in this context [12], and it is one of the most common dissimilarity
measures for point clouds.

The symmetric point-to-point chamfer distance C'Dyy,,, measures the dis-
similarity between two point clouds. It is a function that takes in input two
arbitrary sets of points, without any limitation on the number of points in-
side each set, referred as P and Q, and returns a value in R*. The higher

CDgym (P, Q), the more the two point clouds differ from each other.

60



To understand how it works, firstly the distance between a point p and a
set of points () must be introduced. The minimum distance between the point
and any point belonging to the set will be used as the distance between a point

and a set:

d(p, Q) = min ||p, q||-. 3.13
(p, Q) {1%1(51“27(1\’2 (3.13)

CDgym(P, Q) is the sum of the distance of all the points in P from Q and
all the points in Q from P,

CDym(P,Q) =) d(p,Q)+ ) d(q,P). (3.14)

peP 7€Q

The problem in applying directly this dissimilarity measure is that it suffers
heavier than other proposed metrics the noise introduced by the background.
As previously stated, the number of points related to the background is orders
of magnitude bigger than the number of points of mobile objects, so some

modifications must be done before using this metric in this context.

First of all, symmetry is not useful for the dissimilarity. In particular, given

the point clouds P; and P, the sum ) d(p, Py.,) represents how far are

pEP
the old points to the new point cloud. This is related to the old information,
but as stated before there is no need to take into account objects that are no

longer present.

On the other side, to overcome the problem related to the points in the
background a filtering action is needed. The most promising solution is pruning
every point that is further than 20 m from the position of the sensor and below
the level of the street. In this way, a lot of outliers are removed and the measure

is less noisy.

To sum up, the new pruning function is defined as

IL.(P)=A{pifp, >—p+c VpeP and |p,ps|l2 < 20}, (3.15)

61



3 - --- Low
----- Medium
— High
Ao
I
t
&
S 1
o .
07 A et il _-

|
0 20 40 60 80 100

Figure 3.9: Dissimilarity computed using dcp(Piyn | Pt)

with p; relative position of the LIDAR with respect to the car and p, absolute

position of the sensor at time 7.

A new dissimilarity measure can then be defined:

Sep(Prn | P = Y d(p, M (Py)). (3.16)

PEMt 4 (Pttn)

dcp(Piin | Py) was tested on the same point clouds of this chapter. This
metric is indeed able to capture the difference between different levels of traffic

as reported in Fig. 3.9.

The only problem is that this measure has a periodic behavior. In a stan-
dard urban environment, a set of vehicles is moving forming a lane. Fixing the
initial time ¢, and the positions of all vehicles in the lane at this instant, dcp
increases until vehicles are in the furthest positions from the ones recorded at
time t. But then, since cars are moving in a lane, after reaching the maximum
distance, they get closer to the positions registered at time ¢, and therefore the

d0cp decreases.

To overcome this problem and make the dissimilarity non-decreasing a

62



cumulative sum version of dcp(Pyip | Py) can be defined,

8(Pt+n | Pt) = Z5CD(Pt+n | Pt)' (3~17)
i=1
In Fig. 3.10 is plotted the evolution of this metric. The biggest problem is
that after some time it diverges from the expected behavior.
In this context, expecting to send point clouds periodically and therefore
bounding the maximum value that n can take, & (Piyn | Py) is a sufficiently

good approximation of the dissimilarity.

106
1.0~ --- Low
""" Medium
0.8 - High
o,
— 0.6 -
IS
y
& 04-
S
0.2 - ) P
0.0 - ——mmoamitiommmmmT T -

Figure 3.10: Dissimilarity computed using cumulative & (Piin | Py)

63



64



Chapter 4

PQoS Framework

In the previous chapter, the emphasis was on determining which point clouds
were worth transmitting for the purpose of TD, while others were deemed
redundant. Now, the attention shifts towards compression. The underlying
query for this chapter is: “To what extent point clouds can be compressed
while retaining their essential information?”

To address this query, the initial step is to introduce the complete frame-
work that underpins this work.

In the TD scenario vehicles are equipped with some onboard sensors, each
vehicle is capable of performing simple operations and it aims to transmit data
to an edge server.

The edge server is then responsible for deciding how the car should move.

To programmatically decide how the car should move the edge server must
be able to correctly identify objects in the scene. And from a computational
point of view, this operation is demanding in terms of time and resources.
For this reason, this can not be done at the UE. Assuming to have more
computational power on the edge server, this operation is easily done if the
task is ofHoaded.

On the other side, offloading this operation is time-consuming due to the

transmission. Raw point clouds are big unordered data structures that are not

65



easy to effectively compress in a lossless fashion.

There are plenty of different methods to compress point clouds, but only a
few of them are suitable for this application. G-PCC [34], for example, even if
can reach really high levels of compression is not suitable for this application,
because this compression is heavily time-consuming.

In other studies [35], Draco, a 3D compression algorithm, has been identi-
fied as one of the most promising solutions to tackle this problem.

This chapter will deeply analyze the performances achievable with different
levels of compression, trying to find the best trade-off between compression and

accuracy.

4.1 PointPillars and mean Average Precision

First, is important to understand the main metric for the framework which is
the mAP. The mAP is generally used to compute the quality of a prediction.
However, since the quality of the prediction in this framework is dependent on
all the operations involved, the mAP is the most suitable metric to measure
the QoE experienced with this framework.

mAP is a widely used evaluation metric in the field of computer vision,
specifically for assessing the performance of object detection algorithms [36].
It quantifies the accuracy of an object detection system by considering both
precision and recall across multiple levels of confidence thresholds.

To understand the mAP, the knowledge of precision and recall is needed.
Precision is the ratio of true positive detections (objects that are correctly
identified) to the total number of positive detections (true positives and false
positives). It measures the accuracy of positive predictions. Recall, on the
other hand, is the ratio of true positive detections to the total number of
ground truth objects (true positives and false negatives). It measures the

ability to correctly identify all relevant objects.

66



The precision-recall curve is created by varying the confidence threshold for
positive predictions and computing precision and recall values at each thresh-
old. Average Precision (AP) is then calculated by computing the area under
this precision-recall curve. It summarizes the algorithm’s ability to balance

precision and recall across different levels of confidence thresholds.

In the case of study, there are multiple object classes that need to be
detected. mAP extends the concept of AP to account for multiple classes. For
each class, AP is computed independently, and then the mean of these AP
values is taken to compute the overall mAP. This accounts for variations in

detection performance across different classes.

Object detection frameworks often use mAP as a benchmark to compare
the effectiveness of different algorithms. Higher mAP scores indicate better

performance in accurately localizing and classifying objects.

In this scenario, the process of classifying detections as true positives, false
positives, or false negatives involves assessing the spatial overlap between pre-
dicted bounding boxes and ground truth bounding boxes. This is typically

achieved using a measure called Intersection over Union (IoU).

IoU is a metric used to quantify the degree of overlap between two bounding
boxes. It is calculated as the ratio of the volume of the intersection between
the two boxes to the volume of their union. In object detection, if the IoU
between a predicted bounding box and a ground truth bounding box exceeds a
certain threshold (in this case 0.5), the prediction is considered a true positive.
If the IoU is below the threshold, the prediction is treated as a false positive.
Ground truth bounding boxes that do not have corresponding predictions are
labeled as false negatives.

Since the precision-recall curve may not be densely sampled at all possible
confidence thresholds, the mAP is often calculated by interpolating the pre-
cision values at a finite set of recall levels. This interpolation process yields

a smoother curve and provides a more stable measure of performance. This

67



approach is known as interpolation of precision at different recall levels, in this
work 11 recall levels are used, evenly spaced in [0, 1].

The mAP is particularly suitable for this analysis because it is a comprehen-
sive metric, that represents the accuracy obtained with the entire procedure.
It is important to notice that the mAP is only related to object detection, but
the outcome of the object detector is influenced by each step in the procedure,
so the mAP can be used as an end-to-end metric for the framework.

At the receiver, in order to compute the location of objects inside the
transmitted point cloud, the object-detection is implemented with PointPillars
137].

PointPillars is designed to solve the challenges of detecting objects in com-
plex 3D environments, such as those encountered in TD.

In PointPillars point clouds are preprocessed into a new representation
before undergoing the process of detection. By exploiting a structured grid
representation PointPillars can achieve high precision and fast detection.

During this preprocessing, a regular grid is applied to the x-y plane of the
point cloud. The grid is made of parallel planes with a fixed distance. This
distance takes the name of pillar size p.

This grid defines a set of parallelepipeds known as “pillars.” Information
coming from all points inside each pillar is aggregated, forming a bidimensional
representation of the point cloud.

In essence, the process of pillar creation in PointPillars involves transform-
ing raw point cloud data into a structured grid format, where each grid cell
embodies information about the objects in the scene. This is crucial when
combined with the compression, and an analysis of the interaction between
pillars and the compression is proposed in Sec. 4.2.

Once this representation is obtained, the detection is done using a series
of convolutional layers, to first extract features from the grid representation

and then to locate objects. To speed up the computation PointPillars takes

68



advantage of sparse convolutional layers, since in most pillars there are not
points and therefore there is no information in the pillar.

Finally, the ncural network architecture of PointPillars is tailored for mul-
titasking. It predicts the presence of objects within each grid cell while con-
currently refining bounding box parameters if an object is detected. This
dual functionality eases the object detection pipeline and contributes to the
network’s performance.

PointPillars has been trained and tested on the KITTI dataset [38]. Since
SELMA has features that are really different from the ones of KITTI, retraining
the algorithm on the new dataset was necessary.

Furthermore, since samples are assumed independent and identical dis-
tributed (iid) during the training, PointPillar was not trained with the version
of SELMA presented in this thesis, but an older version specifically designed
for this purpose [19]. This version contains samples of various acquisitions,
but samples are not time correlated as in the case of the new SELMA.

The old version of SELMA was split into three sets, the train set, used
to provide samples to the algorithm for learning, the validation set, used to
monitor the learning and interrupt the learning before overfitting, and the test

set to assess the goodness of the procedure.

Pillar size p (m) mAP

0.16 0.669
0.50 0.704
1.28 0.393

Table 4.1: mAP achievable changing Pillar Size

As stated before the original pillar size was changed to use PointPillars in
this context. In particular, the algorithm has been trained several times and

the most promising results in terms of mAP are shown in Tab. 4.1.

69



4.2 Draco Compression

Draco is a high-performance and tunable open-source library developed by
Google for compressing and decompressing 3D geometric data, encompassing
both meshes and point clouds. It was engineered to optimize both compression
efficiency and processing speed, offering a solution for improving the transmis-
sion of 3D objects.

Draco functions as an adaptive and versatile compression framework, allow-
ing balancing between compression ratios and decoding performance according
to their specific use cases. This tunability grants users the flexibility to adapt
Draco’s compression settings to suit their application’s requirements.

When using Draco to compress a point cloud you can tune mainly two
paramecters: the number of quantization bits ¢ and the compression level c.

As the name suggests, the number of quantization bits ¢ is the number of
bits that Draco will use to encode each coordinate of each point in the point
cloud. Since LiDARs in SELMA have a range of 100 m, the minimum distance

we can encode with g bits of quantization is:
A =200/2%. (4.1)

And to give an example, with ¢ = 10 the resolution is approximately 20
cm.

This parameter is the one that most affect the size of the file and also the
quality of the compression, since for Draco the higher part of the compression
error is coming from the quantization.

On the other side, the ¢ parameter, which can take values in [1,10], con-
trols the operations performed on the point clouds and the byte streams when
encoding the point clouds. The higher ¢, the higher the level of compression,
and the higher the time needed to encode or decode the point cloud.

In order to estimate this behavior some tests were performed on the point

70



clouds generated for SELMA. In Fig. 4.1 you can compare the time it takes to

compress a point cloud depending on the ¢ and ¢ used.

307 q:

7q:

] =
—q=11

Total time (ms)
[\] DO
= S

| |

]
[\
|

2 4 6 8 10
Compression level

o —

Figure 4.1: Total time needed to encode and decode a point cloud using Draco

When feeding PointPillar with a point cloud that was compressed with
Draco, the minimum distance between points A takes a crucial importance.
In particular, if the distance A is bigger than the size of a pillar p, there will
be empty pillars even in regions where the point cloud is dense.

Due to the convolutional nature of PointPillar, then, the presence of empty
pillars inside the representation of the point cloud will heavily alter the capabil-
ity of convolutional layers to correctly identify features in this representation.

This leads to the identification of a threshold ¢ for the number of quanti-

zation bits. The threshold can be computed as

R 200
q= {108;2 TJ ; (4.2)

that is the highest ¢ for which A > p
If the quantization is done with ¢ > ¢ the error introduced by the compres-
sion is not enough to alter the performances of PointPillars, therefore the mAP

that can be achieved when compressing and detecting point cloud is constant

71



Vg > q.

But on the other side, when ¢ < ¢ the quality of the prediction degrades
really fast, reaching a mAP close to zero with small changes in q.

In Fig. 4.2 is plotted the mAP achievable with different choices of ¢, ¢ and
p. Since the version of PointPillars with p = 50 cm outperforms every other
version for each level of compression, from now on only the version with p = 50
cm will be used. Leading to the fact that the threshold for having A > p is

reached when ¢ = 8.

P mp=0.16m
n e p=050m
0.6 ([ ) 0,0:1.28111
®¢=7
®q¢=38
o ®¢=9
<CE 0.4 7S qg=10
qg=11
o
L4
0.2 [}
o W
T T T T T
2 3 4 5 6

Encoded File Size (MB)  .10-2

Figure 4.2: mAP of PointPillar using point clouds compressed with Draco

4.3 Double Deep Q-Learning Network

In this framework, a RL agent controls in real-time the compression level
used by Draco. Given the tradeoff between the mAP and the amount of data
transmitted over the network, the RL agent has to maximize the achieved
mAP while respecting the KPIs imposed by the TD.

A RL model characterizes the environment (the network), as a Markov
Decision Process (MDP), where time is discretized into steps t =0, 1,2, ....

At each step t, the agent observes the environment state s; € S and chooses

72



an action a; € A, with state and action spaces S and A, respectively. The
environment transitions to a new state s;1; € S based on s; and a;, and the

agent receives a reward r; € R.

The objective in RL is to find the optimal policy 7* : S — A that maximizes

the cumulative sum of rewards
o0
Z v, (4.3)
T=t

over time, where v € [0, 1] is the discount factor.

This is in some cases done by approximating a function called Q,(s,a),
this function expresses the expected cumulative reward that the agent will get

by taking the action a in the state s and then following the policy .

The D-DQN algorithm [39] was employed to learn the optimal policy. This
algorithm is characterized by having two similar Deep Neural Network (DNN),

called primary and target networks.

The primary network, the first DNN, is trained to approximate the Q-
function, using as policy the agent’s policy w. Given a state s; it produces Q-
values Q (ay, s;) for each action a; € A based on the current state s;. And upon
those Q-values, the agent decides which action a; € A has to be performed at

the time step t.

The D-DQN algorithm introduces a target network, an asynchronous DNN
variant of the primary network. The target network’s parameters are updated
every v learning steps. The second network estimates Q-values using an old
version of the primary network to prevent positive feedback that would lead to
an overestimation of the Q-values, known as “overestimation bias”, ensuring

more robust learning.

Statistical learning has been used to train the primary network to approx-
imate the Q-function. In particular, the Stochastic Gradient Descent (SGD)

technique has been implemented. SGD requires iid data, but, since samples

73



from the network are temporally correlated, a memory replay approach must

be adopted to break the correlation between samples.

In the memory replay approach, the learning starts only when p transitions
(8¢, at, 14, S¢11) have been recorded. The agent randomly selects [ transitions
from the memory to break the correlation between subsequent acquisitions, and
those transitions are used to update the primary network. Older transitions

are removed when memory is full to prioritize recent observations.

One of the significant problems with RL is that once the agent finds a suit-
able policy it tends to repeat this policy avoiding exploring other alternatives.
To encourage exploration, an e-greedy policy was implemented. At each step
t, the agent selects a random action a; € A with probability € (exploration),
and with probability 1 — €, it chooses the best action (exploitation); € linearly

decreases during training.

The RL model comprises the state and reward function. The state s in-
cludes measurements from the network. The reward r depends on QoS and
QoE, with QoS enforcing end-to-end communication delay dapp,; lower than
om- QoE considers accurate data transmission for driving tasks and is propor-

tional to the mAP achieved in the time step t.

Being dapp; the maximum APP delay experienced during the time slot ¢,
dapp the requirement in terms of application delay to perform TD, PRRApp
the packet reception rate on the same time slot and PRRspp the requirement
in terms of packet receprion rate to perform TD, and mAP(a;) the average

mAP obtained by choosing the action a;, the reward r; at step t is defined as

follows: -
( SAPP t—OAPP
—e darr 41 dappt > OApp
re = § —ePRRapp—PRRare: 11 PRRappy < PRRapp (4.4)
mAP(a;) — edappy otherwise
\

74



with
£ < minggea | mAP(a) — mAP(d') | . (4.5)

The realization of the reward as a function of the delay is reported in

Fig. 4.3.

A
064 —————
0.4
0.2
-
0 _
—0.2 4 —action 0
——action 1
—0.4 - action 2
0 20 40 60
5APP,t (mb)

Figure 4.3: Reward function changing the delay

In this case the dapp is set to 50 ms, it is clear that if KPIs are addressed
during the time step ¢ the reward r, is positive and it is mainly based on the
action chosen a;. The linear behavior is only imposed by the need to avoid
zero gradients.

On the other side if KPIs are not addressed the reward does not depend on
the action, is negative, and goes down exponentially when the delay increases

or the packet reception rate decreases.

4.4 Simulation using ns3

Once all the components of the framework have been presented, the complete
detailed structure of the framework can be introduced.

At the UE, point clouds of the surroundings are acquired by a LiDAR

75



sensor. This point cloud is then preprocessed and sent to a Next Generation
Node Base (gNB) where an edge server computes the driving action that the
vehicle must actuate. This information is then sent to the UE in order to
actuate it.

The UE, during the preprocessing of the point cloud, compresses the point
cloud using Draco. The compression level ¢ and the number of quantization
bits ¢ are chosen by a RL agent that implements a D-DQN algorithm.

The edge server, on the other hand, uses PointPillars to detect objects in
the point cloud compressed by the UE, the mAP obtained by this operation
is then used to train the D-DQN algorithm at the UE.

The D-DQN can choose between three different actions reported in Tab. 4.2.
The state of the D-DQN contains 18 entries, with information on the whole
protocol stack. In particular, from the Physical (PHY) layer, the metrics
chosen are the Modulation and Coding Scheme (MCS), transmitted Orthogo-
nal Frequency Division Multiplexing (OFDM) symbols, and average Signal to
Interference plus Noise Ratio (SINR). From the Radio Link Control (RLC),
Packet Data Convergence Protocol (PDCP), and Application (APP) layers the

delay and the packet reception rate are used.

g ¢ mAP
10 10 0.683
9 10 0.575
8 10 0.257

Table 4.2: Action space A of the D-DQN

In order to get realistic data and results, the communication is simulated
using ns3, an open-source discrete-event network simulator for Internet sys-
tems.

This extends the RAN-UEAI framework presented in [40] and [12], which

introduces the framework and decentralizes PQoS functionalities respectively.

76



The goal is to introduce a more realistic setting, dropping some assumptions
that were made in previous works.

The application module presented in [40] has been adapted to this new
setup. The application aimed to simulate data exchange and generate sensor

data. This generation process is influenced by three key factors:
1. The size of the initial sensor data, measured in bytes.
2. The regularity with which data is generated and exchanged.
3. The chosen degree of compression applied to the sensor data.

In this study, sensor data extracted from the SELMA dataset and the Draco
compression algorithm are used.

With the same rationale of KittiTraceBurstGenerator, the
TraceFileBurstGenerator has been extended into the SelmaTraceBurstGenerator.
This class allows the user to reproduce real-world traffic traces following data
samples from SELMA.

The SelmaTraceBurstGenerator is installed on each UE to simulate the
traffic flow generated by LiDARs acquisitions.

On the other side, the UE-AI, responsible for adapting the transmission
mode to the network state, is implemented through the UeAI and MmWaveUeNetDevice
classes that facilitate distributed PQoS. Those classes are integrated into the
mmwave module in ns-3.

The main functionalities of those classes are:

e Initialization: The InstallUserAI method installs UE-AI, initializes

measurement collection, and schedules updates.

e Measurement Collection: The RxPacketTraceUe method captures PHY
metrics, including MCS, transmitted OFDM symbols, and average SINR.
The SendStatusUpdate method records metrics from the RLC, PDCP,
and APP layers.

77



e Network Control: The SendStatusUpdate method reports measurements

to the RL agent, determining optimal compression levels with the D-

DON.

e Application Control: The NotifyActionIdeal method conveys the RL

agent’s decision to the application for configuration.

Finally, to keep a fair environment and reduce the time needed to reach
convergence, the D-DQN algorithms are trained in a federated fashion [41].
This means that, with periodic updates, the weights of the DNN are shared
with the gNB. The gNB that performs operations to combine them and redis-
tributes the model to sum all the experience gathered from different devices

and to ensure the fact that all UEs are following the same policy .

78



Chapter 5

Performance Evaluation

The PQoS framework presented in Chapter 4 has been trained and tested in
different conditions, in particular varying the number of vehicles in the system.
The parameters used in the simulations are reported in Tab. 5.1.

Specifically, the D-DQNs have been trained on a set of traces containing
the 90% of the total traces, and tested on the remaining 10%. The training
phase consists of 1000 episodes, or ns-3 simulations, of 80 s each. Each episode
is then divided into 800 steps of 100 ms each. During the testing phase, on
the other side, 100 episodes have been performed without training the neural

network.

5.1 Results with One Vehicle

In this section, we present some simulation results in which only one vehicle
is deployed. In Fig. 5.1 we report the action probability, i.e., the normalized
frequency with which each action is taken in each episode during the training
phase.

From this plot, it is clear that the D-DQN algorithm is exploring different
actions. Eventually, compression with ¢ = 10 quantization bits is the most

preferred action; still, ¢ = 9 has a non-negligible probability of being used,

79



0.6 -

0.4 -

Action Probability

0.2 -

___q:
..... g=9
q=10

Episode

| | | | |
0 200 400 600 800 1,000

Figure 5.1: Action probability during the training phase of the D-DQN.

while ¢ = 8 is never hardly selected. This indicates that the D-DQN algorithm

is trained to choose when to change between ¢ = 9 and ¢ = 10 to meet the

KPIs, and learns not to choose ¢ = 8, meaning that in most cases the algorithm

is able to address the KPIs of TD using compression levels that preserve most

of the information in the point clouds. Indeed, the mAP increases as increasing

Parameter | Description Value

fe Carrier frequency 3.5 GHz
B Total bandwidth 50 MHz
Prx Transmission power 23 dBm
n Number of vehicles {1, 3, 5, 8}
OAPP Max. tolerated delay 50 ms
mAP,_g mAP for the action ¢ =8 | 0.257
mAP g mAP for the action ¢ =9 | 0.575
mAP,—1p | mAP for the action ¢ = 10 | 0.683

r LiDAR perception rate 10/s

y Discount factor 0.95

v Update interval 0.1s

W Memory replay size 8-10* B
16 Batch size 32 B

¢ Learning rate 107°

Table 5.1: Scenario parameters.

80



Policy | KPIs probability Average dapp Average mAP Average 1,

D-DQN 86.2% 26.5 ms 0.680 —4.8-10°
qg=2_8 90.4% 23.2 ms 0.257 —6.1-108
qg="9 87.7% 25.4 ms 0.575  —4.5-10°
qg =10 84.4% 28.0 ms 0.683 —3.5-10'°

Table 5.2: Comparison between D-DQN and some constant policies as a func-
tion of several metrics.

the number of quantization bits.

Notably, results in Fig. 5.1 are statistically sound, and empirically demon-
strate the technical accuracy of our D-DQN framework to support PQoS in

the TD scenario.

Moreover, in Tab. 5.2 we report, respectively, the percentage of time slots in
which the KPIs are satisfied, the average e2e delay dapp (which is a measure of
the QoS) experienced at the APP level, the average mAP (which is a measure
of the QoE, expressed as the quality of the object detection operation), and
the average reward. The D-DQN algorithm is compared to some constant
benchmark policies where the compression level of the point clouds is fixed a
priori for the whole duration of the simulation. From Tab. 5.2, the trade-off
between QoS and QoE is clear, and the D-DQN algorithm is able to finely
balance between the two achieving a very good mAP while respecting the
KPIs for 86.2% of the time. The only policy with a significantly higher KPIs
probability is ¢ = 8, at the expense of a very bad mAP of only 0.257. Overall,
the average reward of D-DQN is superior to any of the other policies for PQoS.

Another interesting fact is that the D-DQN algorithm, also when KPIs are
not met, achieves an average delay of 77.5 ms, which is lower than any of the
other constant benchmarks.

While the values in Tab. 5.2 are on average, to better capture the variability
of network metrics among the different policies, in Figs. 5.3 and 5.2 we report

the boxplots of the delay and of the rewards statistics achieved during the

81



0.6 -

0.5

0.4 -

0.3

e —

T T
D-DQN ¢=38 g=9 q¢g=10
Policy

Figure 5.2: Distribution of the reward for D-DQN vs. the constant policies,
during the testing phase.

100 i . * $
i | !
AR
. *
& 60 —
é —— . ¢
40
'
20-;

T T T T
D-DQN ¢=38 qg=9 ¢q=10
Policy

Figure 5.3: Distribution of the delay for D-DQN vs. the constant policies,
during the testing phase.

testing phase. From Fig. 5.2 it is clear that the reward achieved by D-DQN
is statistically really similar to the one for the constant policy ¢ = 10, and
is higher than any of the other benchmarks. In terms of delay, in Fig. 5.3
we see that D-DQN has a similar performance to the constant policies ¢ = 8

and ¢ = 9 (which in turn suffer in terms of mAP), while outperforms ¢ = 10,

82



_____ q= 9 /_~/,

E‘ q=10 e
2 0.6 -
< Lo
O ’w
£
) 04 1 I’
=] L
.-J: AR
=

0.2 -

0 200 400 600 800 1,0001,2001,400
Episode

Figure 5.4: Action probability during the training phase of the D-DQN.

especially in the higher percentiles. These results enforce the hypothesis that
the D-DQN algorithm is effectively learning how to change the compression

based on the network status and maximize both QoS and QoE simultaneously.

5.2 Analysis with Multiple Vehicles

In this subsection, we consider a scenario with multiple vehicles, specifically 3,
5, and 8 vehicles, even though results will be proven to be similar.

First, in Fig. 5.4 we analyze the evolution of the action probabilities dur-
ing the training phase considering 8 vehicles. Due to the federated learning
approach in D-DQN, and due to the fact that vehicles experience similar net-
work conditions, results would be the same also considering 3 and 5 vehicles.
Notably, D-DQN tends to only choose action g = 8, i.e., the action that com-
presses the point cloud the most, even though this approach would irreparably
damage the mAP. This is due to the fact that, as the number of vehicles in-
creases, the network becomes more congested, and users are required to reduce
the size of the data to send as much as possible to alleviate the burden on the

channel. In these conditions, the D-DQN is not even trying to balance between

83



N. of Vehicles | KPIs probability Average dapp Average mAP

1 86.2% 26.5 ms 0.680
3 73.9% 36.8 ms 0.257
) 51.3% 55.4 ms 0.257
8 27.7% 73.7 ms 0.257

Table 5.3: Performance of D-DQN under several metrics, as a function of the
number of vehicles.

100

80

60

dapp

40

20

1 3 5 8
Number of vehicles

Figure 5.5: Distribution of the delay for D-DQN varying the number of vehi-
cles, during the testing phase.

different compression levels, and behaves as the constant policy ¢ = 8.

Results as a function of the number of vehicles for D-DQN are reported in
Tab. 5.3. Unfortunately, we see that the network is not able to support PQoS as
the number of vehicles increases, regardless of the D-DQN implementation and
even considering the most aggressive compression configuration. In particular,
the probability of satisfying the KPIs drops to only 27% with 8 vehicles, and
the average delay is as large as 73 ms, which is far beyond the requirements
of TD applications. We have the same results considering the APP delay
experienced during the testing phase, as reported in Fig. 5.5.

This is not due to how D-DQN has been structured, but rather to the

limited network resources available for transmission in the current simulation

84



scenario. In order to overcome this issue, there are several options.

First, while D-DQN is currently designed to only optimize the compression
level, that is the size of data packets, it could be changed to adjust the trans-
mission rate too, for example, based on the results in Chapter 3. In particular,
D-DQN can be trained to transmit only relevant or critical point clouds with
respect to what is already available at the receiver(s), thus reducing the trans-
mission rate below that of the sensors. This approach would drastically reduce
the amount of data to be sent through the network, thus improving the latency.

Second, D-DQN can be designed to operate at the RAN level too, e.g., using
a higher transmission power to increase the SINR and send data faster when
needed. In addition, a higher numerology would increase the number and size
of resource blocks available for transmission, as well as the total bandwidth,
which would improve the performance of the entire system.

Third, a better compression algorithm and /or object detector might be able
to improve the mAP even with very aggressive compression configurations,
which would allow for further reduction of the number of bits in the point

clouds with minor degradation of the quality of the point cloud itself.

85



86



Chapter 6

Conclusions

In this thesis, we considered a TD scenario in which vehicles are remotely
controlled by a teleoperator that relies on data acquired by the vehicles’ sensors
to make decisions on the vehicles” movements.

One of the main research concerns for TD is related to the variability of
the network. Indeed, given the strict KPIs that must be respected to ensure
safety in this scenario, it is important to predict and control changes in the
QoS, and react accordingly.

In this context, PQoS was identified as a suitable technique to ensure that
KPIs are satisfied. Specifically, PQoS is able to predict the status and evolution
of the network, and use these predictions to take countermeasures at the RAN
level in case KPIs are not satisfied.

In this thesis, two approaches have been presented to tackle this problem.
The first approach involves goal-oriented communication, where data transmis-
sion probability is proportional to data value. The second approach explores
the trade-off between QoS and QoE by adjusting point cloud compression
modes.

Data availability for training is essential for both approaches. This work
utilized and expanded the SELMA dataset for autonomous driving, which

contains synthetic sensor data from vehicles in urban settings. This dataset

87



is built upon the CARLA simulator and incorporates techniques to control
pedestrian, vehicle, and map behavior.

Using SELMA, we first focused on point cloud correlation. Techniques
for approximating point cloud correlation onboard the vehicles have been pro-
posed, involving voxel representation correlation, clusterization, and a cus-
tomized Chamfer Distance metric. The latter showed promising performance
in accurately measuring point cloud correlation.

Then, a comprehensive end-to-end framework for PQoS has been intro-
duced. Specifically, we designed an RL agent, trained using federated learning
and a reward based on application KPIs, to determine the optimal compres-
sion levels for point clouds. The compressed data is sent to an edge server for
object detection using PointPillars, with detection quality measured in terms
of mAP, which is used to train the RL agent.

Performance evaluation via ns-3 simulations demonstrates the effectiveness
of the RL agent. However, we proved that performance degradation occurs
as the number of vehicles increases due to potential transmission resource
limitations.

These results motivate further research efforts in this domain. For exam-
ple, we will integrate the analysis in Chapter 3 in the framework proposed in
Chapter 4. This integration will reduce the burden on the network by jointly
optimizing the data rate (based on the level of correlation) and size (based
on the level of compression) of point clouds. Also, we will explore different
numerologies for the transmission of the point clouds, to increase the capacity

of the network.

88



Bibliography

1]

S. Neumeier, N. Gay, C. Dannheim, and C. Facchi, “On the Way to
Autonomous Vehicles Teleoperated Driving,” in AmFE - Automotive meets

Electronics; 9th GMM-Symposium, 2018.

C. Kettwich, A. Schrank, H. Avsar, and M. Oehl, “What If the Automa-
tion Fails? — A Classification of Scenarios in Teleoperated Driving,” in
13th International Conference on Automotive User Interfaces and Interac-
twe Vehicular Applications, AutomotiveUl '21 Adjunct, (New York, NY,
USA), p. 92-96, Association for Computing Machinery, 2021.

J.-M. Georg, J. Feiler, F. Diermeyer, and M. Lienkamp, “Teleoperated
Driving, a Key Technology for Automated Driving? Comparison of Actual
Test Drives with a Head Mounted Display and Conventional Monitors,”
in 21st International Conference on Intelligent Transportation Systems

(ITSC), pp. 34033408, 2018.

M. Hofbauer, C. B. Kuhn, G. Petrovic, and E. Steinbach, “TELECARLA:
An Open Source Extension of the CARLA Simulator for Teleoperated
Driving Research Using Off-the-Shelf Components,” in IEEE Intelligent
Vehicles Symposium (1V), pp. 335-340, 2020.

S. Neumeier, E. A. Walelgne, V. Bajpai, J. Ott, and C. Facchi, “Measuring
the Feasibility of Teleoperated Driving in Mobile Networks,” in Network
Traffic Measurement and Analysis Conference (TMA ), pp. 113-120, 2019.

89



(6]

[9]

[10]

[11]

[12]

M. Boban, M. Giordani, and M. Zorzi, “Predictive Quality of Service: The
Next Frontier for Fully Autonomous Systems,” IEEFE Network, vol. 35,
no. 6, pp. 104-110, 2021.

D. C. Moreira, I. M. Guerreiro, W. Sun, C. C. Cavalcante, and D. A.
Sousa, “QoS Predictability in V2X Communication with Machine Learn-
ing,” in IEEE 91st Vehicular Technology Conference (VT C2020-Spring),
2020.

N. Duffield, J. Lewis, N. O’Connell, R. Russell, and F. Toomey, “Pre-
dicting quality of service for traffic with long-range fluctuations,” in Pro-

ceedings IEEFE International Conference on Communications ICC, vol. 1,

pp. 473-477 vol.1, 1995.

Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, “QoS prediction
for service recommendation with deep feature learning in edge computing

environment,” Mobile networks and applications, vol. 25, pp. 391-401,

2020.

F. Mason, M. Drago, T. Zugno, M. Giordani, M. Boban, and M. Zorzi, “A
Reinforcement Learning Framework for PQoS in a Teleoperated Driving

Scenario,” in IEEE Wireless Communications and Networking Conference

(WCNC), pp. 114-119, 2022.

Z. Wu and D. Yan, “Deep reinforcement learning-based computation
offloading for 5G vehicle-aware multi-access edge computing network,”

China Communications, vol. 18, no. 11, pp. 26-41, 2021.

F. Bragato, T. Lotta, G. Ventura, M. Drago, F. Mason, M. Giordani, and
M. Zorzi, “Towards Decentralized Predictive Quality of Service in Next-

Generation Vehicular Networks,” IEEFE Information Theory and Applica-
tions Workshop (ITA), 2023.

90



[13]

[17]

[18]

[19]

O. Goldreich, B. Juba, and M. Sudan, “A Theory of Goal-Oriented Com-
munication,” J. ACM, vol. 59, may 2012.

E. Calvanese Strinati and S. Barbarossa, “6G networks: Beyond Shan-

non towards semantic and goal-oriented communications,” Computer Net-

works, vol. 190, 2021.

N. Pappas and M. Kountouris, “Goal-Oriented Communication For Real-
Time Tracking In Autonomous Systems,” in IEEFE International Confer-

ence on Autonomous Systems (ICAS), 2021.

F. Pezone, S. Barbarossa, and P. Di Lorenzo, “Goal-Oriented Commu-
nication for Edge Learning Based On the Information Bottleneck,” in
IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pp. 8832-8836, 2022.

F. Binucci, P. Banelli, P. Di Lorenzo, and S. Barbarossa, “Dynamic Re-
source Allocation for Multi-User Goal-oriented Communications at the
Wireless Edge,” in 30th FEuropean Signal Processing Conference (EU-
SIPCO), pp. 697-701, 2022.

M. Giordani, T. Higuchi, A. Zanella, O. Altintas, and M. Zorzi, “A Frame-
work to Assess Value of Information in Future Vehicular Networks,” in
Proceedings of the 1st ACM MobiHoc Workshop on Technologies, MOd-
els, and Protocols for Cooperative Connected Cars, TOP-Cars 19, (New
York, NY, USA), p. 31-36, Association for Computing Machinery, 2019.

P. Testolina, F. Barbato, U. Michieli, M. Giordani, P. Zanuttigh, and
M. Zorzi, “SELMA: SEmantic Large-Scale Multimodal Acquisitions in
Variable Weather, Daytime and Viewpoints,” IEEE Transactions on In-
telligent Transportation Systems, vol. 24, no. 7, pp. 7012-7024, 2023.

91



[20]

21

22]

23]

[26]

Z. Song, Z. He, X. Li, Q. Ma, R. Ming, Z. Mao, H. Pei, L. Peng, J. Hu,
D. Yao, et al., “Synthetic Datasets for Autonomous Driving: A Survey,”
arXiv preprint arXiw:230/4.12205, 2023.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual Con-

ference on Robot Learning, 2017.

J. Deschaud, “KITTI-CARLA: a kitti-like dataset generated by CARLA
simulator,” CoRR, vol. abs/2109.00892, 2021.

M. Lyssenko, C. Gladisch, C. Heinzemann, M. Woehrle, and R. Triebel,
“Instance Segmentation in CARLA: Methodology and Analysis for
Pedestrian-Oriented Synthetic Data Generation in Crowded Scenes,” in
Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV) Workshops, pp. 988-996, October 2021.

J. He, K. Yang, and H. Chen, “6G Cellular Networks and Connected
Autonomous Vehicles,” IEEE Network, vol. 35, pp. 255-261, July 2021.

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “To-
ward 6G Networks: Use Cases and Technologies,” IEEE Commun. Mag.,
vol. 58, pp. 5561, March 2020.

X. Qiao, Y. Huang, S. Dustdar, and J. Chen, “6G Vision: An AI-Driven
Decentralized Network and Service Architecture,” IEEE Internet Com-
puting, vol. 24, no. 4, pp. 33-40, 2020.

X. Huang, G. Mei, J. Zhang, and R. Abbas, “A comprehensive survey on
point cloud registration,” 2021.

D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny
data: Constant-size coresets for k-means, PCA, and projective cluster-

ing,” SIAM Journal on Computing, vol. 49, no. 3, pp. 601-657, 2020.

92



[29]

[30]

[31]

[32]

[35]

[36]

[37]

D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”

Annals of Data Science, vol. 2, pp. 165-193, 2015.

S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129-137, 1982.

D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of Careful
Seeding,” vol. 8, pp. 1027-1035, 01 2007.

P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and

9

validation of cluster analysis,” Journal of Computational and Applied

Mathematics, vol. 20, pp. 53—65, 1987.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
ACM Trans. Database Syst., vol. 42, jul 2017.

D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression standard-
ization activities: video-based (V-PCC) and geometry-based (G-PCC),”
APSIPA Transactions on Signal and Information Processing, vol. 9, 2020.

A. Varischio, F. Mandruzzato, M. Bullo, M. Giordani, P. Testolina, and
M. Zorzi, “Hybrid Point Cloud Semantic Compression for Automotive
Sensors: A Performance Evaluation,” in ICC 2021 - IEEFE International

Conference on Communications, 2021.

R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance
Metrics for Object-Detection Algorithms,” in International Conference on

Systems, Signals and Image Processing (IWSSIP), pp. 237-242, 2020.

A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,

“Pointpillars: Fast encoders for object detection from point clouds,” in

93



Proceedings of the IEEE/CVF conference on compuler vision and pattern
recognition, pp. 12697-12705, 2019.

[38] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231-1237, 2013.

[39] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 30, no. 1, 2016.

[40] M. Drago, T. Zugno, F. Mason, M. Giordani, M. Boban, and M. Zorzi,
“Artificial Intelligence in Vehicular Wireless Networks: A Case Study
Using Ns-3,” in Proceedings of the Workshop on Ns-3, WNS3 ’22, (New
York, NY, USA), p. 112-119, Association for Computing Machinery, 2022.

[41] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wire-
less communications: Motivation, opportunities, and challenges,” IFEE

Communications Magazine, vol. 58, no. 6, pp. 46-51, 2020.

94



Ringraziamenti

Vorrei in primis ringraziare il professor Marco Giordani, senza cui il mio per-
corso universitario sarebbe stato senza ombra di dubbio molto diverso, vorrei
ringraziarla per la pazienza e per essere sempre stato disponibile quando avevo
bisogno di una mano.

Vorrei ringraziare Paolo Testolina, senza cui questo lavoro non sarebbe
stato possibile, vorrei ringraziarti per essere sempre stato pronto ad accogliere
ogni dubbio e ogni esitazione, per il tempo che abbiamo speso a guardare
codice di dubbia correttezza e per aver sempre cercato di tirare fuori il meglio.

Vorrei ringraziare i miei genitori, Marina Allegro e Luca Bragato, senza
cul sicuramente questa tesi non sarebbe stata scritta, ho sempre apprezzato il
vostro modo di lasciarmi serenamente sbattere la testa, facendomi capire che
eravate sempre li qualora ne avessi avuto bisogno.

Vorrei ringraziare Alessia Ortile, Annamaria Pavan, Linda Crivellari, Luca
Moretti, Mattia Peron, Marta Fantin e Samuele Vanini, senza cui questa tesi
sarebbe stata un’esperienza meno felice, volevo ringraziarvi per far parte della
nostra grande larga famiglia, ma soprattutto per aver capito che le difficolta
sembrano meno insuperabili quando ci si lamenta insieme.

Ma vorrei ringraziare anche personalmente Alessia Ortile, senza cui sarei
diventato matto scrivendo questa tesi, anche se te ne vai lontana spero che
prima o poi anche tu possa tornare in questo posto meraviglioso, grazie per
aver condiviso con me quello scosceso ripido sentiero.

Ma vorrei ringraziare anche personalmente Annamaria Pavan, senza cui

95



questa esperienza sarebbe stata piena di domande e priva di risposte, grazie
per avere la straordinaria abilita di riportarmi con i piedi per terra, grazie per
riuscire a capire profondamente le mie preoccupazioni e grazie per cercare di
tirare fuori sempre il bello dalle cose.

Ma vorrei ringraziare anche personalmente Linda Crivellari, senza cui mi
sarei bruciato le ali cercando di raggiungere il sole, grazie per capire quando
ho bisogno di dire di no e per aver capito come dirmi che devo dire di no,
grazie per esserci sempre quando ho bisogno di condividere qualcosa che non
dovrei dire a nessuno e grazie per essere sempre 11 quando abbiamo bisogno di
ripetere mille volte le stesse cose e stupirci ogni volta.

Ma vorrei ringraziare anche personalmente Luca Moretti, senza cui mi sarei
perso un grosso pezzo di questo viaggio, volevo ringraziarti per sapere come
trascinarci tutti all’avventura, per essere sempre disponibile se ce n’e bisogno,
per riuscire a capire i problemi e per saperli condividere.

Vorrei ringraziare Gianmaria Ventura e Tommaso Lotta, senza cui avrei
imparato molto meno dall’universita, grazie per aver ascoltato i vari deliri di
questi anni, grazie per aver lavorato con me e per aver premuto il freno quando
ce n’era bisogno.

Vorrei ringraziare Lucia Borin, senza cui mi sarei annoiato moltissimo,
grazie per essere quella bussola che periodicamente dimentico di consultare,
anche se sa sempre dove e il nord.

Vorrei ringraziare il gruppo scout Lissaro 1, ma in particolare miei es-
ploratori, senza cui oggi sarei radicalmente una persona diversa, grazie per
insegnarmi ogni giorno qualcosa di nuovo, grazie per riempirmi di speranza,
grazie per motivarmi. E, fra tutti voi, vorrei fare un ringraziamento in parti-

colare. Grazie perché siamo dello stesso sangue, tu ed io, fratello mio.

96



