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Introduction

Thermal noise constitutes a fundamental limitation to sensitivity in high precision experi-
ments. While well understood at thermodynamic equilibrium, where it is modeled by means of
the fluctuation-dissipation and equipartition theorem, it has not been properly modeled in non-
equilibrium conditions yet. An example of the importance of the study of thermal noise out of
equilibrium is provided by gravitational waves detectors: for the purpose of estimating the impact
of thermal noise on their performance, these experiments are usually modeled as equilibrium sys-
tems from a thermodynamic point of view; however, the validity of this assumption is questionable
for a variety of reasons. Temperature gradients are often present in these systems, as for example
in mirror coatings and mirror suspensions, which exhibit non-uniform temperatures due to heat
fluxes generated by the absorbed laser power, by thermal compensation techniques and, especially
in future detectors, by the need to operate the mirrors at cryogenic temperatures.

The Non-Equilibrium Thermal Noise (NETN) experiment aims to experimentally investigate
thermal noise in and out of thermodynamic equilibrium, by studying its effects on a macroscopic
aluminum oscillator, consisting of a rod with a cubic mass at the end, placed in a vacuum envi-
ronment and isolated from external noise sources by a system of mechanical filters. The thermal
noise-induced vibrations are measured on the oscillator through a quadrature phase differential in-
terferometer. The final goal is to provide a phenomenological relation between the thermal noise
level and the parameters that characterize the non-equilibrium condition.

As a preliminary step, this work focuses on acquiring and analyzing the interferometric output in
thermodynamic equilibrium, in order to measure thermal noise in accordance with the fluctuation-
dissipation theorem, with the future goal of studying its behavior outside thermodynamic equilib-
rium.

Chapter 1 introduces the topic of gravitational waves and their detection. The main noise sources
limiting the sensitivity of gravitational waves interferometers are illustrated. Particular attention
is given to the critical topic of thermal noise, both in and out of thermodynamic equilibrium.
Chapter 2 illustrates the components of the NETN experimental apparatus. Chapter 3 describes
the interferometric readout and the spectral analysis carried out on it to obtain thermal noise
measuremements. Chapter 4 finally presents the experimental results of this work, focused on the
measure of thermal noise in thermodynamic equilibrium.
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Chapter 1

Gravitational Waves Detectors and
Thermal Noise

This first chapter introduces the context of gravitational waves (section 1.1) and the apparatus
designed for their detection (section 1.2). This section assumes a basic understanding of gravita-
tional waves physics. While a concise overview is provided, a complete discussion about the topics
here covered can be found in the book Gravitational Waves - Volume 1 - Theory and Experiments
of Michele Maggiore [11]. Section 1.3 illustrate the different noise sources that affect the GW in-
terferometers sensitivity. Special emphasis is placed on the critical consideration of thermal noise
originated in the mirror coatings and in the mirror suspensions of GW detectors, in which the
present work aims to find an application. Section 1.4 addresses the problem of thermal noise out-
side thermidynamic equilibrium, as in the case of GW detectors, and presents previous studies on
this topic.

1.1 Gravitational Waves

Gravitational waves (GW) are disturbances in the curvature of space-time that propagate as
waves at the speed of light, generated by the acceleration of asymmetric mass distributions in a
strong gravitational field. GW signals are expected in a wide range of frequencies: from the order
of ⇠ 10�17 Hz of the ripples in the cosmological background, to the formation of neutron stars
in supernovae explosions, with a frequency of the order of ⇠ 103 Hz. The principal issue of their
detection lies in the amplitude of these signals: the predicted magnitude of a strain caused by a
GW, as measured on Earth, is of the order of 10�21 or lower [9].

Gravitational waves were predicted by Albert Einstein’s general theory of relativity in 1915. The
formalism for the generation of gravitational waves in general relativity was published by Einstein
in (1916) [1]. In this work, Einstein linearized his field equations to describe weak gravitational
fields and derived the quadrupole formula, which predicts the emission of gravitational waves by
systems with changing quadrupole moments:

hij =
2G

c4
d2Iij
dt2

(1.1)

where hij represents the amplitude of the metric perturbation caused by the gravitational wave, G is
the gravitational constant, c is the speed of light and Iij is the trace-free quadrupole moment tensor
which describes the distribution of mass within a system. It is useful for the comprehension of the
topics covered in the following paragraphs to express the amplitude hij in the transverse-traceless
gauge, for a gravitational wave propagating in the z direction:
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1.2 Gravitational Waves Detectors

hij(t, x, y, z) =

0

BB@

0 0 0 0
0 h+ h⇥ 0
0 h⇥ �h+ 0
0 0 0 0

1

CCA (1.2)

where h+ is the plus-polarization gravitational wave strain and h⇥ is the cross-polarization strain.
In this gauge choice the trace of the matrix in equation 1.2 is zero, and the space-time strain is only
in the x and y directions, transverse to the z direction of propagation. The space-time distortion
caused on a set of masses placed in circle by a plus-polarized GW and a cross-polarized GW can be
seen in figure 1.1.

Figure 1.1: Illustration of the space-time distortion caused on a set of masses placed in circle by a
plus-polarized GW (up) and a cross-polarized GW (down) impinging perpendicularly to the plane
of the circle. The stretching and squeezing encountered across the GW path takes place in the
perpendicular plane to the GW direction. The distortion caused on the free mass is dependent not
only on the GW polarization but also its amplitude (strain) and frequency. Picture from [26].

The quadrupole formula (1.1) shows how a changing mass distribution, characterized by a non-
zero second time derivative of the quadrupole moment, leads to the emission of gravitational waves.
This formula is particularly relevant for systems like binary stars, where the masses are in motion,
causing a dynamic change in the system quadrupole moment. As the masses accelerate, gravita-
tional waves are generated and propagate through spacetime, carrying away energy and causing the
orbits of the masses to decay. As the binary system approaches closer distances, the orbital period
decreases, and the rate of energy loss through GW emission intensifies. The system enters a critical
phase known as the final plunge, where the GW become more frequent and powerful. During this
phase, the masses experience an accelerated inspiral, culminating in the coalescence of the binary
system.

1.2 Gravitational Waves Detectors

Despite Einstein’s theoretical prediction, the physical reality of gravitational waves was initially
met with skepticism. Einstein himself initially had doubts about the physical reality of gravita-
tional waves. Moreover, the weak coupling of gravitational waves with matter posed a considerable
experimental challenge, leading some scientists to question the feasibility of detection. It wasn’t
until the 1960s that physicists like Joseph Weber began experimental efforts to directly detect these
waves using resonant bar detectors [2].

The indirect evidence for the existence of gravitational waves came from observations of bi-
nary pulsars. In 1974, Russell Hulse and Joseph Taylor discovered a binary pulsar system, PSR
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1 Gravitational Waves Detectors and Thermal Noise

B1913+16, which exhibited a gradual orbital decay [3]. The observed decay matched the predictions
of general relativity for the energy loss due to gravitational wave emission, providing strong indirect
evidence for the existence of these waves.

The first direct detection of gravitational waves, as predicted by Einstein, was finally achieved
in 2015 by the Laser Interferometer Gravitational wave Observatory (LIGO) with the observation
of a binary black hole merger [4].

1.2.1 Resonant Bar Detectors

The first experiments in the field of GW detection were the ground based resonant bar detectors,
developed by physicist Joseph Weber of the University of Maryland in the 1960s. They represent
an early approach in the attempt to directly detect gravitational waves.

The principal idea behind the detector is to observe the resonant bar modes being excited by the
transiting GW. Each mode can be studied independently, but the most relevant one is the lowest
longitudinal mode, since it is characterized by the higher quadrupole moment and thus it is the
most affected by GW energy transfer. It represents the frequency the bar is most sensible to. The
size and composition of the bar are crucial factors, as they determine the natural frequencies at
which the bar can resonate.

The main limit to sensitivity in this type of detector was thermal noise. In fact the average
amplitude of the resonant bar oscillation due to thermal fluctuations was many orders of magnitude
larger than the expected oscillation amplitudes induced by a transiting GW. The solution Weber
adopted to overcome the problem was to use materials with a high mechanical quality factor Q =
!⌧E , where ⌧E is the energy relaxation time (maximum stored energy over the dissipated power)
and ! is the angular frequency at which the stored energy and power loss are measured. High-Q
materials enable the resonant bar to "ring" at its natural frequency for an extended period, even
in the presence of thermal noise. This extended resonance time provides a more significant window
for detecting the subtle changes induced by passing GW. As a result, the use of high-Q materials
enhances the detector’s sensitivity, allowing it to pick up weak GW signals that might otherwise be
masked by thermal noise.

Weber’s first large suspended bar antenna was built out of aluminum, since it constitutes a high
quality factor oscillator. It was a 1.2 ton aluminum cylinder of length ⇠1.5 m and diameter ⇠61
cm, suspended in a vacuum chamber on acoustic filters, with the first longitudinal mode resonating
at 1657 Hz (at room temperature) [2]. In 1969 Weber announced the detection of a GW signal,
but in the following years more sensitive resonant bar experiments, including low-temperature bars,
were never able to replicate his results and to confirm the presence of GW of the amplitude implied
by Weber’s data.

Over the year many other resonant bar detectors have been built, with a significant emphasis
on cooling to reduce thermal noise levels, reaching sensitivities four order of magnitude higher in
energy. NAUTILUS, EXPLORER and AURIGA were among those that achieved the best perfor-
mance in terms of sensitivity. NAUTILUS (figure 1.2 (a)) and AURIGA (figure 1.2 (b)), built in
Italy (respectively in Frascati, Rome and Legnaro, Padua, where also the NETN experiment (2) is
located), were the only two ultracryogenic bar antennae that ever went into operation (cooled at
130 and 200 mK respectively), while EXPLORER was a low-temperature bar (2.6 K) located at
CERN (Geneva). AURIGA, EXPLORER and NAUTILUS had a triple overlapping operation in
2005 with about 72% of duty cycle.

Figures 1.3, and 1.4 from [2] shows the sensitivity curves of the three bar detectors. These
curves result from the sum of thermal noise (magenta and sky blue curves), amplifier noise (green)
and quantum back action noise (yellow). The cooling of the antenna therefore did not necessarily
improved the sensitivity curve if thermal noise were not dominant in the considered bandwidth.
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1.2 Gravitational Waves Detectors

(a) NAUTILUS resonant bar detector (b) AURIGA resonant bar detector

Figure 1.2: (a) NAUTILUS gravitational wave detector, consisting of a 2.3 ton resonant bar at a
temperature of 0.13 K, located at the Frascati Laboratories (Rome). (b) AURIGA gravitational
wave detector, consisting of a 3-meter aluminum cylinder, cooled at 0.2 K, located at the Laboratori
Nazionali di Legnaro (Padua).

Figure 1.3: Power spectral density of the AURIGA detector operating a 4.5 K, using a two stage
low noise dc-SQUID amplifier. The black curve represents the predicted value while the red curve
represents the experimental one. The dominating noise source is the electrical resonator thermal
noise (sky blue curve) except at the resonances, where the antenna thermal noise dominates. Picture
from [2].

Cryogenic resonant bars made no confirmed detections, and around 2003 the sensitivity of km-
scale GW interferometers began to surpass their peak sensitivity. Moreover, interferometric detec-
tors demonstrated to be sensible to a much broader range of frequencies with respect to the resonant
bars, which were limited to the narrow band around their resonant frequencies.

1.2.2 Gravitational Waves Interferometers

Gravitational waves interferometers are based on the Michelson interferometer concept. A sim-
ple scheme of a Michelson interferometer is shown in figure 1.5. In its simplest configuration, a laser
beam is split by a beam splitter and sent along the two perpendicular arms of the interferometer of
length L. Higly reflective mirrors, also called test masses, are placed at the end of the interferometer
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1 Gravitational Waves Detectors and Thermal Noise

Figure 1.4: Power spectral density of NAUTILUS and EXPLORER detectors. Picture from [2].

arms and suspended from pendulums. Laser interferometry is used to keep track of the test mass
motion, possibly caused by a transiting GW. For example, a GW wave propagating perpendicular
to the plane of the interferometer, and with a polarization whose axis correspond to those of the
interferometer’s arms, will cause a space-time distortion resulting in one arms of the interferometer
being increased in length and the other decreased, as schematically described in figure 1.1 (equiv-
alently, this can be seen as a change in the proper travel time of photons). The GW effect can be
identified thus with a strain h = �L/L, where �L is the path length difference between the two
arms of the interferometer. This path length difference translates in a small change of the light
intensity observed at the interferferometer output, read by a photodetector, which indicates the
transit of a GW.

Figure 1.5: Simplified scheme of a gravitational wave interferometer. Picture from [9].

The functioning of a GW interferometer can be explained in a simple way as follow. By consid-
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1.2 Gravitational Waves Detectors

ering the electro-magnetic field of the laser to be propagating along the z-axis, the input laser light
can be described in complex notation (where vector quantities are indicated in bold) as:

E(z) = E0e
i(kz�!Lt) (1.3)

where E0 is the amplitude of the laser beam entering the interferometer, !L is the laser frequency,
k = 2⇡

�
is the wave vector and � the laser wavelength. Before entering the interferometer, the laser

intensity is equal to Iin / EE⇤ = |E|2. When the laser encounter the 50:50 beam splitter, it is
divided in two different beams, E1 and E2. These fields propagate along the two perpendicular
arms of the interferometer, of length L1 and L2 respectively. The two beams reach the end mirrors
(M1 and M2) and are reflected back towards the beam splitter, where they recombine. The two
beams, just before the recombination into the beam splitter, can be described as:

E1(z) =
1

2
E0e

i(kz�!Lt)e(i2kL1) (1.4)

E2(z) =
1

2
E0e

i(kz�!Lt)e(i2kL2) (1.5)

where the terms e(i2kL1) and e(i2kL2) indicate the phase accumulated by the two beams while
propagating along the two perpendicular arms. Once E1 and E2 recombine at the beam splitter, the
resulting beam is directed towards the photodetector, which reads its intensity Iout, resulting from
the interference of the two beams. The intensity of the outgoing beam, read by the photodetector,
is:

Iout / |Eout|2= |E1 + E2|2=
1

2
E2

0 �
1

2
E2

0cos[2k(L2 � L1)] =
1

2
Iin[1� cos(2k�L)] (1.6)

where 2k�L = ��. Therefore any variation of the length of a arm, such the one caused by the
transit of a GW, results in a corresponding variation of the power read by the photodetector.

When this is applied to the detection of GW of course the functioning is not that simple: a
general relativistic computation from [11] demonstrates that the phase difference induced by a +
polarized GW of amplitude h0, propagating along z, to the laser beam traveling along the two
perpendicular arms of an interferometer, if these lies on the x and y-axis, is:

��gw = !L

2L

c
h0cos

✓
!gwt+

L

c

◆
sinc

✓
!gwL

c

◆
(1.7)

where L of the interferometer arms and !gw is the grabitational wave frequency. This derivation
applies to a GW propagating along z and plus-polarized. In this case the other ⇥ polarization is
completely invisible to the detector, since it would cause a simultaneous and equal change on the
two arms.

In a more generic way, the strain caused on the detector by a gravitational wave emitted by a
source at spherical coordinates (✓,�) can be derived applying two rotational matrices to the + and
⇥ polarization components of the GW, thus calculating the so called antenna pattern:

h(t) =
1

2
(1 + cos2(✓))cos(2�)h+(t) + cos(✓)sin(2✓)h⇥(t) (1.8)

where ✓ is the polar angle and � the azimuthal angle. The polarization angle  , which indicate the
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1 Gravitational Waves Detectors and Thermal Noise

rotation of the GW coordinate system relative to the interferometer reference frame (see figure 1.6
for a reference), is considered here equal to 0. The antenna pattern response functions for the h+
and h⇥ GW polarizations (see figure 1.1) are shown in figure 1.7.

Figure 1.6: Detector coordinate system (û, v̂, ŵ) in green and gravitational-wave coordinate system
(m̂, n̂, ⌦̂). Picture from [12].

Figure 1.7: Antenna pattern response functions of an interferometer. Images (a) and (b) show the
+ and ⇥ antenna pattern function. Color indicates the strength of the response, with red being the
strongest and blue being the weakest. The black lines between the two pictures give the orientation
of the interferometer arms. Picture from [12].

From equation 1.7 it can be seen that for a GW of a given frequency !gw, the dependence
on L is given by a factor (!LL/c)sinc(!gwL/c) = (!L/!gw)sin(!gwL/c). Therefore, the optimal
arm length to maximize the interferometer response to the GW is given by !gwL/c = ⇡/2, i.e.
L = �gw/4. In therms of fgw = !gw/(2⇡), this gives:

L w 750 km

✓
100Hz

fgw

◆
(1.9)

Obviously arms of hundreds of kms are not feasible to build in a ground-based interferometer, both
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1.2 Gravitational Waves Detectors

for practical and financial reasons (considering also that, among other things, the interferometer
arms should be enclosed in a high vacuum system).

Modern GW interferometers like two LIGO ones (Hanford and Livingston, USA) and VIRGO
(Pisa, Italy) have arms respectively 4 and 3 km long. A picture of these three interferometers is
shown in 1.8.

(a) LIGO interferometer in Hanford (Wash-
ingtone, USA)

(b) LIGO interferometer in Livingston
(Louisiana, USA)

(c) VIRGO interferometer in Cascina (Pisa,
Italy)

Figure 1.8: Pictures of the three currently active ground-based interferometers.

The idea is to not increase the physical arm length but their effective length by "folding" the
optical path of the laser, making it bounce back and forth many times in each arm before recombining
the two beams. Two different design were considered for this purpose: to build the so called "delay
lines", or to use optical cavities.

In the first one, the laser light goes back and forth along trajectories that do not superimpose, and
which hit different point on the mirrors. The problem with this scheme was the need of unpractical
large mirrors, since to reach the necessary path length of ⇠750 km the number of bounces needed
is of the order of O(100).

In the second design, which is the one adopted in the modern GW interferometers such LIGO
and VIRGO, each arm is transformed into a Fabry-Pérot cavity, where each photon still bounces
back and forth between the two cavity mirrors, but it is bounced back on its own path. In this
way the photons effectively travel a much longer distance before going back to the beam splitter.
The high power build-up inside the cavities is also necessary to overcome limitations to the detector
sensitivity due to photon shot noise (mentioned in more detail in section 1.3).

An example of delay lines and Fabry-Pérot cavities implementation on a GW interferometer is
schematically shown in figure 1.9.

Many other improvements to the simple Michelson interferometer design are applied in modern
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1 Gravitational Waves Detectors and Thermal Noise

Figure 1.9: Example of Michelson interferometers with (a) delay lines and (b) Fabry–Pérot cavities
as the arms of the interferometer. Picture from [9].

interferomeners, such as a power recycling cavity, used to increase even more the effective power
in the interferometer arms, or input and output mode cleaners, used to reject higher order modes
and to stabilize the laser frequency. A more detailed description of these techniques can be found
in [10].

1.3 Noise Sources in Gravitational Waves Interferometers

Gravitational wave interferometers are highly sensitive instruments designed to detect the faintest
perturbations. However, their sensitivity makes them susceptible to various noise sources that com-
promise their performance. Understanding and mitigating these noise sources is essential for opti-
mizing signal detection. As an example, the sensitivity curve of the VIRGO interferometer is show
in figure 1.10, built considering the limitations imposed by the various noise sources. The types
of noise that most affect GW detectors are briefly described below, paying particular attention to
thermal noise, on which the present work is focused.

1.3.1 Seismic Noise

Seismic noise refers to the vibrations and movements of the Earth crust caused by various natural
and human sources and can impact GW interferometers by displacing the mirrors and misaligning
the optical components, inducing vibrations of the order of O(10�6m) on the detector components.

Seismic noise can be managed in a passive or active way: the first consist in choosing geologically
stable locations to minimize ground motion and utilize suspension systems and isolation platforms
that isolate sensitive optical components from ground vibrations. An active way to deal with seismic
noise is to employ seismic isolation systems that actively counteract ground motion, reducing its
transmission to the interferometer sensitive elements. Signal processing techniques are also applied
to the data to identify and filter out noise from seismic sources.

1.3.2 Newtonian Noise

Newtonian noise consists in gravity gradients (stochastic fluctuations of the local gravitational
field) that are generated by seismic vibrations or variations in the atmospheric pressure.
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1.3 Noise Sources in Gravitational Waves Interferometers

Figure 1.10: Advanced Virgo sensitivity curve. The noise level on the y-axis is given in equivalent
GW amplitude that has the same physical nature of strain. Picture from [13].

Since newtonian noise consists in gravitational field variations, it mimics gravitational waves,
and can not therefore be shielded without shielding GW as well. An active strategy to deal with
newtonian noise is to deploy a network of sensor measuring ground displacement and atmospheric
variations, in order to model its effect on the mirrors and subtract it from the GW signal. A
passive strategy consists in choosing a very quiet location, as in the case of seismic noise, and to go
underground. Since the dominant source of gravity-gradient noise are surface waves, the observed
noise decreases with depth into the Earth.

1.3.3 Quantum Noise

Quantum noise can be divided into two contributions: shot-noise and radiation pressure noise.
Shot noise arises due to the discrete nature of light, which is composed of individual photons. The

arrival of each photon at the photodetector is a stochastic event, leading to statistical fluctuations
in the observed signal known as shot noise. The number of photons arriving on the photodetector in
a time ⌧ obeys Poisson statistics and it can be shown that the detectable strain sensitivity depends
on the laser power P as S1/2

h,shot
⇠ 1p

P
[9], thus increasing the power P of the laser can help mitigate

shot noise.
On the other hand, photons impinging on the test mass and exchanging momentum with it are

associated with a stochastic force called quantum radiation pressure noise. As the effective laser
power in the arms is increased, the magnitude of the force, and of its fluctuations, is also increased;
thus the detectable strain sensitivity limited by radiation pressure noise is S1/2

h,rp
⇠

p
P [9].

Radiation pressure may be a significant sensitivity limitation at low frequency. Its effects could
be reduced by increasing the mass of the mirrors or decreasing the laser power, but at the expenses
of the shot noise at higher frequencies. For a given frequency, it can be identified an optimum laser
power which minimizes the effect of these two sources of quantum noise. Given that shot noise and
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1 Gravitational Waves Detectors and Thermal Noise

radiation pressure noise have opposite proportionality to the laser power, for a given frequency f
a fundamental limit exists to the displacement sensitivity, known as the Standard Quantum Limit
(SQL):

S1/2
h,SQL

(f) =
1

2⇡fL

r
8h̄

M
(1.10)

where L is the arm length and M the mirrors mass.

1.3.4 Thermal Noise

Thermal noise is one of the most significant noise source affecting GW interferometers at the
low-mid frequency band, as can be seen in figure 1.10. It is originated in the mirror coatings (thin
layers of materials applied to the surface of a mirror to modify its reflective properties) and in the
mirror suspensions, in general contributed by any source of dissipation, internal or external.

Thermal noise is fundamentally due to the thermal kinetic energy of the atoms that compose
the mirror coating and mirror suspensions. Weber realized that, in a mechanical oscillator with
high Q-factor, the minimum GW energy that could be detected was much smaller, since it persisted
in the oscillator much longer. Therefore by averaging over a long time, the GW energy could be
distinguishable from the thermal one. To demonstrate this physical intuition it is useful to study the
evolution of the resonant bar fundamental mode ⇠0 in the presence of thermal noise. The evolution
of ⇠0 is studied by [11] using the equation for a damped oscillator:

⇠0̈ + !2
0⇠0 = ��⇠0̇ (1.11)

where !0 is the resonance frequency of the fundamental mode and � the dissipation coefficient. If
this was the complete description of the bar dynamics, so without the presence of thermal noise,
the time evolution of ⇠0(t) could be described in a fully deterministic way.

This is not the case: thermal noise acts as a stochastic force, which can be described only in a
statistical way. It is responsible both for the dissipation term ��⇠0̇ and for the fluctuations around
it. Considering also these fluctuations, 1.11 can be rewritten as:

m(⇠0̈ + !2
0⇠0) = Fth (1.12)

with m the oscillator mass and Fth is the stochastic force describing the thermal fluctuations around
the equilibrium, called Nyquist Force. These fluctuations, as said before, are described as a stochas-
tic Gaussian process, so that by definition hFth(t)i = 0, where the angular brackets denote a time
average, since they are the sum of many independent contributions. On a macroscopic time-scale
this force at a time t is completely uncorrelated with itself at a different time t0.

The relation between the single-sided spectral density SFth
(!) of the force Fth(t), representing

the stochastic fluctuations due to thermal noise, and the dissipation (�) is derived by [11] to be:

SFth
(!) = 4kBT� (1.13)

where kB is the Boltzmann constant and T the equilibrium temperature. This obtained relation
represents a particular case of the Fluctuation-Dissipation Theorem (FTD). The FTD can be for-
mulated considering x(t) to be the variable describing a linear system, subject to an external force
F(t), and v(t) = ẋ(t) the velocity. In Fourier space, the equation of motion can always be expressed
in the general form:
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1.3 Noise Sources in Gravitational Waves Interferometers

F̃ (!) = Z(!)ṽ(!) (1.14)

where Z(w) is the impedance of the system. The FDT states that the single-sided power spectrum
of the force causing the thermal fluctuations, denoted SF (!), can be defined in function of the real
part of the system impedance Z:

SF (!) = 4kTRe[Z(!)] (1.15)

It is useful for the comprehension of the present work to study the motion of a particle, subject to
velocity damping (VD), to a Hooke restoring force and to thermal noise [15]:

mẍ(t) + �ẋ(t) + kx(t) = Fth(t) (1.16)

where m is the mass of the particle, � the velocity damping coefficient and k the spring constant of
the restoring force Fs. The thermal noise spectrum in case of velocity damping can be computed
using 1.15 after calculating the impedance R(!) as follows:

R(!)th,V D = Re


F

ẋ

�
= Re


ẍ+ �ẋ+ kx

ẋ

�
= Re


i!m+ � +

k

i!

�
= � (1.17)

The spectrum of the thermal force is then equal to SFth,V D
(!) = 4kBT�, as found in 1.13, thus

thermal noise results to be a white noise in the case of a particle velocity damping, not depending
on frequency.

The power spectral density (PD) of the particle motion Sx(!) induced by thermal noise can be
computed by first writing equation 1.16 in the frequency domain:

x(!) =
1

�m!2 + i!� + k
Fth,V D(!) = H(!)Fth(!) (1.18)

where H(!) is the thermal noise transfer function. The PSD of the oscillating mass position is then:

Sx,V D(!) = |H(!)|2SFth,V D
(!) =

4kBT�

(k �m!2)2 + (!�)2
=

4kBT

mQ!0

1
⇣
1� !2

!2
0

⌘2
+
⇣
!

Q

⌘2 (1.19)

where SFth
is the power spectral density of the thermal driving force and in the third equality the

definitions � = m!0/Q and k = m!2
0 have been used.

When this description is applied to a solid, as in the present work, the damping is modeled as
internal (ID), which can be expressed by writing the restoring force in function of a complex spring
constant [15]:

Fs = �k(1 + i�(!))x. (1.20)

The imaginary component of the spring constant causes a time lag between the applied thermal
force and the response of the spring. A fraction 2⇡�(!) of the energy stored in the oscillatory
motion is dissipated at each cycle [15]. The PSD of the thermal driving force in the case of internal
damping is equal to:
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1 Gravitational Waves Detectors and Thermal Noise

SFth,ID
(!) = 4kBTk�(!)!

�1 (1.21)

which is not anymore white, as in the case of velocity damping. Therefore the PSD of the position
of a solid subject to internal damping can be calculated as:

Sx,ID(!) = |H(!)|2SFth,ID
(!) =

4kBTk�(!)

![(k �m!2)2 + (k�(!))2]
=

4kBT

!!2
0mQ

1
⇣
1� !2

!2
0

⌘2
+
⇣

1
Q

⌘2 (1.22)

where in the last equality the definition of internal damping quality factor Q = 1/�(!0) is been
used [15]. The sharpness of the resonance in the PSD of the position is determined by the quality
factor Q, defined as Q = !0/�!, where !0 is the resonance frequency and �! is the full width at
half maximum (FWHM). For low-loss systems or materials (high-Q) the PSD of the position has a
sharp peak around !0.

It is useful for the topics covered in the next sections to report the estimation, from the integral
of the spectra 1.19 and 1.22, of the mean square displacement of the mass hx2

th
i caused by thermal

noise. At thermodynamic equilibrium and in absence of external noises, the law of equipartition
states that:

hx2thi =
kBT

m!2
0

(1.23)

1.4 Thermal Noise Out of Thermodynamic Equilibrium

Currently thermal noise affecting GW interferometers is modeled by means of the FDT, assuming
the systems to be at thermodynamic equilibrium. Thermal noise prediction that uses the FDT are
well verified in high-precision experiments characterized by a thermodynamic equilibrium situation,
but for many reasons GW interferometers can not be considered equilibrium devices. There are in
fact many process and components that drive the detector out of the equilibrium state [20], such as
the light power dissipated into the mirror substrates and coatings, the external additional thermal
load used to deform the mirrors in order to create the desired radius of curvature and many others.

If non-equilibrium states processes are proven to be significant in a GW interferometer, they
need to be considered in the modeling of the noise statistics, since the latter could be intrinsically
different from the equilibrium Gaussian statistics.

However, up until now, there is no complete theory in statistical mechanics describing thermal
noise in solids out of thermodynamic equilibrium. Given that GW detectors are constantly develop-
ing improvements to increase sensitivity to GW signals, many of which concerns higher circulating
powers or the use of cryogenic temperatures, it is of fundamental importance to study how thermal
noise behaves in non-equilibrium conditions and its impact on GW detectors performance.

Up to now, experiments on thermal noise out of thermodynamic equilibrium involved mainly
small-scale systems, as in large-scale ones the fluctuations due to thermal noise become small.
Only recently experiments on non-equilibrium macroscopic systems have been performed. Below
an example of both is proposed: the study of thermal noise in a silicon micro-cantilever heated
by a laser [23] and the RareNoise experiment [22], which studies the effects of breaking energy
equipartition on the measurements of temperature in macroscopic oscillators subject to heat flux.
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1.4 Thermal Noise Out of Thermodynamic Equilibrium

1.4.1 Thermal Noise of a Micro-Cantilever

In his work, Bellon [23] studied the behavior a silicon cantilever heated by partial absorption of
light from a laser. The heat was conducted along the cantilever towards the clamped base, creating
a significant thermal gradient (see figure 1.11).

Figure 1.11: Scheme of the experimental setup. The deflection d of a micro-cantilever is measured
through the interference of two laser beams, one reflected on the cantilever free end, the other on
the clamp holding the cantilever. The sensing beam heats the cantilever and a steady temperature
profile driven by the absorbed light power is reached, setting the system in a non-equilibrium steady
state (NESS). In a first approximation, the temperature T grows linearly along the cantilever length
(i.e. along x). Picture from [23].

The deflection of the cantilever was measured using a differential interferometer, which also
acted as the heating source. Sharp resonances in the power spectrum density of the deflection were
observed, indicating modes of oscillation assumed to be driven by thermal noise, as can be seen in
figure 1.12. The quality factor of these resonances was high, allowing each mode to be modeled as
an independent harmonic oscillator.

To quantify the thermal fluctuations of each mode of oscillation n, an effective temperature T eff
n

was calculated by extending the equipartition relation, as seen in 1.23:

1

2
knhd2ni =

1

2
kBT

eff
n (1.24)

where kn is the stiffness of the mode, kB the Boltzmann constant and hd2ni the mean square deflection
of mode n. By tracking then the frequency shift of the resonances with light power, the cantilever
temperature profile and average temperature were estimated. The same thing was repeated after
adding a tantala coating to the cantilever.

In figure 1.13 are reported the results: the effective temperatures of the first three flexural
modes measured on two different cantilevers are plotted as a function of the impinging light power
P, and compared it to their average temperature T avg (measured by the resonance frequency shift
1.12). What can be understood from these results is that the behavior of the two cantilevers is
very different: for the raw silicon one, T eff

n is mode independent and almost constant close to the
room temperature T0 = 295 K. The system therefore shows less fluctuations with respect to the
ones expected for a system in equilibrium around its average temperature . For the tantala-coated
cantilever instead it can be seen that T eff

n is mode dependent, and it increases with the light power
P and results reasonably close to T avg for n > 1. However, the first mode also seems to present a
deficit of fluctuations with respect to an equivalent equilibrium situation.

The experiment starts from a generalization of the fluctuation dissipation theorem (FDT) and
demonstrates that some non-equilibrium states can lead to unexpectedly low thermal fluctuations,
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1 Gravitational Waves Detectors and Thermal Noise

Figure 1.12: PSD of thermal noise induced deflection in vacuum as a function of frequency. (a) Each
resonant mode is identified by a sharp peak, associated to the normal mode shape pictured in the
insets. The resonances can be modeled as uncoupled simple harmonic oscillators. The area under
the PSD curvegives the mean square deflection of each degree of freedom, and defines its effective
temperature. (b) With increasing laser power, the cantilever resonance frequencies decrease. Here is
shown the case for mode 2. The frequency shift is used to estimate the amplitude of the temperature
profile, and thus the average temperature Tavg. Picture from [23].

with respect to a system in equilibrium having the same average temperature T avg: therefore
spatially inhomogeneous fields of temperature and dissipation mechanisms can lead to an apparent
deficit of thermal noise.

1.4.2 The RareNoise Experiment

The RareNoise Experiment [22] aimed to study the behavior of thermal noise fluctuations out of
thermodynamic equilibrium, but it differed from Bellon’s work by considering macroscopic systems.
The research focused on the effect of temperature gradients inevitably present in GW detectors.

The experiment consisted in high precision measurements of the vibrations of a low-loss me-
chanical oscillator. The measurements were performed both in thermodynamic equilibrium and
non-thermodynamic equilibrium steady states (NESS), which were established by imposing a tem-
perature gradient across the oscillator.

These effects were studied in a small frequency range around the oscillator resonance, specifically
chosen to fall within the frequency range of interest for GW detectors.

The oscillator consisted in a monolithic aluminum piece, shaped as a cuboid at the end of a
square cross-section rod, hosted in a vacuum environment and isolated from external perturbations
with a cascade of mechanical filters (for a more detailed description of the setup see chapter 2). In
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1.4 Thermal Noise Out of Thermodynamic Equilibrium

(a) Silicon cantilever measurements (b) Tantala-coated cantilever measurements

Figure 1.13: Effective temperature T eff
n for the first three flexural modes and average temperature

T avg measured for the the silicon (a) and the tantala-coated (b) cantilevers as a function of the
impinging light power P . Pictures from [23].

the frequency range where its first transverse and longitudinal modes resonate, respectively ⇠320
Hz and ⇠1420 Hz (see figure 1.14 (b) and (c)), the dominant noise force acting on the oscillator is
of thermal origin [22].

Figure 1.14: Schematic drawing of the resonant oscillator, consisting in a rod with one extreme
fixed and the other loaded by a mass free to move. In (a) are visible the contactless thermopile used
to read the temperature of the cuboid mass T2 and the IR heater that heats the cuboid load mass
to establish a NESS. A NTC thermometer is used to measure the temperature T1 on the top of the
rod. The temperature profile along the rod in the steady state is shown in gray shading (increasing
temperature from light to dark). The first longitudinal mode (b) expected around 1.4 kHz and the
first transverse mode (c) around 320 Hz. Picture from [22].

A capacitive readout (see figure 1.15) is used to measure the vibrations of the resonator. The
capacitor is formed by a metal plate and the cuboid lower surface.
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1 Gravitational Waves Detectors and Thermal Noise

Figure 1.15: Scheme of the capacitive readout used to measure the vibrations of the oscillator. A
parallel plate capacitor (Cr) was formed by the bottom surface of the oscillator and a fixed plate; the
capacitor was biased to a constant dc voltage through a large resistor (Rc) and then disconnected
from it by opening the relay S, which was housed close to the oscillator. Static capacitances in
parallel to Cr, represented by the capacitance Cpara in the picture, had the net effect of reducing
the sensitivity of the readout. The signal from the overall parallel capacitor was sent to an amplifier
through a Cd decoupling capacitor. Picture from [22].

An infrared heater drives the oscillator out of thermodynamic equilibrium (see figure 1.14 (a)).
The temperature is measured on the top of the rod (T1) and on the cuboid mass (T2) to detect the
induce thermal difference �T .

The PSD of the measured vibrations was computed and time averaged. In correspondence of
the modes resonances at ⇠320 Hz and ⇠1420 Hz, peaks are visible in the PSD. A fit of these peaks
around the resonance were performed using a Lorentzian curve, which can be considered a good
approximation of 1.22 near the resonance:

y(f) =
2

⇡
A

w

4(f � f0)2 + w2
+ y0 (1.25)

where f0 is the resonance frequency, w the full width at half maximum (FWHM), A the
Lorentzian curve area and y0 the constant used to take into account the additive background noise
level (a fit of the longitudinal mode resonance in and out thermodynamic equilibrium is shown in
figure 1.16).

The area of the fitted curve A is used as a measurement of the time averaged mean square
vibrations hx(t)2i of the oscillator. In a system in thermodynamic equilibrium, in absence of external
noise (as the oscillator is approximated to be), the equipartition law defines a relation between the
root-mean-squared vibrations induced by thermal noise and the thermodynamic temperature, so
that an effective temperature Teff can be defined, as already seen in 1.23, as:

Teff =
m!2hx(t)2i

kB
(1.26)

where m is the mass of the longitudinal mode that resonates at frequency !.
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1.4 Thermal Noise Out of Thermodynamic Equilibrium

Figure 1.16: Time-averaged PSDs of the amplifier output around the first longitudinal mode in
equilibrium (Tavg = 288.14 K; blue triangles) and NESS (�T = 9.3 K, Tavg = 292 K; red circles)
The gray line is the fit of the equilibrium PSD, using equation 1.16: Tteff = [319±5(stat.)±18(syst.)]
K. The black line fits the NESS PSD: Tteff = [402± 6(stat.)± 18(syst.)] K. Picture from [22].

This measurement, performed in equilibrium at intervals of 25 K around room temperature, con-
firmed that Teff was a good estimation of the oscillator temperature. Once this has been established,
the same measurement was repeated after imposing a NESS by exposing the oscillating mass to heat
fluxes. The imposed NESS were characterized by a temperature gradient �T = T2 � T1 and by an
average temperature Tavg, calculated as Tavg = (T1+T2)/2 for the longitudinal mode, while for the
transversal mode it was estimated for each mode from the resonance frequency shift, in the same
way done by Bellon (figure 1.12). As shown in 1.16, an increase of the PSD around the resonance
was observed [22]. To better comprehend the measurements result, the ration RNEQ/EQ = Teff/Teq,
where Teq is the effective temperature at equilibrium, was computed and plotted against the induced
temperature gradient �T normalized by Tavg (figure 1.17).

From 1.17 it can be seen that RNEQ/EQ > 1, and in correspondence of the maximum �T ,
RNEQ/EQ > 1 by more than four standard deviations. A 4% relative temperature difference seems
to be enough to increase the non-equilibrium Teff by 20%, so to raise the effective temperature above
the highest physical temperature present across the oscillator, in constrast to what is found by [23].
This result means that in a NESS, Teff is not a valid estimate of the physical temperature anymore,
even close to the equilibrium state, and that the energy equipartition principle could be not valid
in systems out of thermodynamic equilibrium.

A numerical experiment was conducted in parallel using a 1-dimensional chain of oscillators, the
results of which are compatible with the experimental data and are also reported in figure 1.17.

This study questions that the equipartition principle remains valid also out of the thermody-
namic equilibrium: it suggests that in presence of a NESS not only the average energy does not
match the expected value, but also the energy is not anymore equiparted between the modes, and
different modes could be characterized by different temperatures.

The contrasting findings of the two experiments showcased here on the behavior of thermal noise
in a NESS induced by a temperature gradient, despite the distinct setups employed, emphasize the
necessity of further investigating this subject.

The Non-Equilibrium Thermal Noise experiment, described in chapter 2 and subject of the
present work, aims to reproduce the RareNoise experiment results with a different and ideally more
sensitive readout system.
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1 Gravitational Waves Detectors and Thermal Noise

Figure 1.17: (a) Plot RNEQ/EQ for the transverse (blue triangles) and longitudinal (red circles)
acoustic modes in NESS against �T/Tavg. The black stars show the results of the numerical
experiment. The gray line is the best fit of the numerical data with the function of equation. (b)
Zoom of the results of the longitudinal mode and the line fitting the numerical result in (a). Picture
from [22].
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Chapter 2

The Non-Equilibrium Thermal Noise
Experiment

Section 1.4 provided an overview of the previous works on thermal noise out of thermody-
namic equilibrium and of the accomplishments of these studies. The RareNoise experiment, once
concluded, provided most of the setup components necessary to install a very similar experiment,
which takes the name of Non-Equilibrium Thermal Noise (NETN), described in this work. The
NETN experiment is located at the Laboratori Nazionali di Legnaro (Padua) and, as the RareNoise
one, aims to study the behavior of thermal noise induced fluctuations in and out of thermodynamic
equilibrium, with a substantial difference: the monitoring of the oscillator vibrations, described in
the section 1.4.2, no longer takes place via a capacitive readout but via an interferometric readout.

Section 2.1 provides an overview of the NETN experiment, while section 2.2 describes all the
components of the experimental apparatus, apart from the interferometric readout, which is de-
scribed in details along with the data analysis in chapter 3.

2.1 Experiment Overview

The RareNoise experiment provided measurements of thermal noise both in thermodynamic
equilibrium and in non-equilibrium steady states (NESS). The latter measured an excess of thermal
noise with respect to the one that could be estimated by a simple extension of the fluctuation-
dissipation theorem, and also showed a violation of the equipartition of energy (see figure 1.17).
This experiment had although some limitations. The measurements were affected by a systematical
error, mainly due to the thermal expansion of the aluminum rod and of the cuboid mass which were
changing the reference capacity. Furthermore, the calibration of the sensing capacity (see figure
1.15) would not remain constant during the heating transients, making it difficult to accurately
estimate them.

The NETN experiment was designed to overcome these difficulties in order to improve the
measurements already carried out by the RareNoise one. An interferometric readout, where the
oscillating sample surface constitutes one of the reference mirrors, has been implemented in place
of the capacitive one for this purpose (see figure 2.1).

The interferometer used to track the mechanical oscillator vibrations is not a simple Michel-
son but a quadrature phase differential interferometer (QPDI). The two output signals of the
implemented QPDI allow to benefit both from the interferometer high sensitivity, and from an
unambiguous description of the phase even on multiple fringes. More precisely, two superimposed
interferometers are built exploiting two linear polarizations of light, one orthogonal to the other,
allowing to measure separately sine and cosine of the optical phase. Combining these two informa-
tion, the phase can be unambiguously extracted on multiple fringes and used to study the oscillator
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2 The Non-Equilibrium Thermal Noise Experiment

vibrations due to thermal noise.
One of the main advantages of this readout, with respect to the capacitive one lies in the

interferometer "self-calibration": a single fringe corresponds to a �/2 displacement and does not
require a calibration. For the particular case of a QPDI interferometer, there is also no dependency
on the laser power. Thus the interferometric readout is able to track the oscillator vibrations
with no systematic errors due to the aluminum thermal expansion, allowing to perform calibrated
measurements during the heating transients. A calibration is still always necessary to correct
unavoidable imperfections of the system and of the alignment, but, as described in section 3.2,
it does not require heating and therefore it does not introduce the systematic errors affecting the
RareNoise measurements.

From the QPDI interferometric readout it is then possible to retrieve the optical phase, which
encloses information about the oscillator longitudinal vibrations, and therefore on the thermal noise
causing them, as described in details in section 3.1.

2.2 Experimental Setup

The NETN experimental apparatus can be seen in figure 2.1, while a scheme of laser optical
path through it can be found in figure 3.1.

To integrate the interferometric readout in the RareNoise experiment setup, a compact optical
bench has been designed, for it to be screwed in place of the capacitive readout plate (see figure
2.1). As previously said, the oscillating sample is positioned in place of one of the reference mirrors
of the interferometer. This allows to track the first longitudinal mode of vibration of the oscillator
by studying the optical phase difference between the two laser beams traveling the interferometer
arms, and therefore to study the thermal noise causing those vibrations. It is also possible to
measure the first transversal mode by cross-correlation, but the latter is not "self-calibrated", as
instead happens for the longitudinal mode, as described above. The oscillator is placed in a vacuum
chamber equipped with a heater and isolated from external noises by three mechanical filters. These
three components are described in the following sections.

Since the interferometer is not a simple Michelson but a QPDI, its readout is measured by a
system of four photodiodes, and successively collected by an acquisition system based on a National
Instruments PXI platform (see section 2.2.5).

The whole experiment is placed over an mechanically suspended optical bench, where the re-
maining components needed for the interferometric readout are mounted.

2.2.1 Oscillator

The sample used as a probe to study thermal noise is a monolithic piece of aluminum machined
in the shape of a cuboid attached to an upper flange by means of a square cross-section rod. A
schematic drawing of the oscillator is visible from fig 2.2 [25].

The mass-rod-suspension sample is machined from a single piece of A15056, a particular alu-
minum alloy. This material is characterized by low intrinsic mechanical losses, large availability and
low cost. In particular its low intrinsic losses motivated its usage in resonant gravitational wave
detectors, where the thermal noise associated to losses needed to be minimized.

The cuboid sides are ⇠5 cm (the precise values can be seen in figure 2.2), with a lower surface
polished to be sufficiently reflective for interferometric readout. The rod is 100 mm long with a
(5.5mm)2 cross-section and is kept along the vertical axis with the mass at the bottom, free to
oscillate. On top of the flange, coaxial with the rod, a piezoelectric actuator is mounted, which
provides a mean of exciting the oscillator in the vertical direction, and can therefore be used to
study the response of the oscillator and test the measuring apparatus.
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2.2 Experimental Setup

(a) NETN experimental setup (b) Oscillator inside the vacuum
chamber

Figure 2.1: (a)Photo of the NETN experimental setup located at the Laboratori Nazionali di
Legnaro (LNL), Padova. The optical path of the laser beam is highlighted in red: the beam
originates in the laser head (lower right), and is then directed by the optical elements towards the
vacuum chamber (center of the image). When it enters vertically the vacuum chamber it is divided
into the two arms of the interferometer. After the two beams are recombined, the resulting beam
exits the chamber and is directed towards the detection area (left), where a beam splitter divides it
and directs it towards the four photodiodes (A, B, C, D), which will read and collect the resulting
signal. (b) Photo of the flange housing the interferometer; this is constitued by the oscillator, a
reference mirror (provided with a piezoelectric actuator) and a PBS that divides and recombines
the beams, after they have been reflected one by the reference mirror and the other by the lower
oscillator surface. A thermopile is positioned on the front of the oscillating mass, while a IR heater
is positioned on the back (thus is not visible in the photo). The beam optical path is highlighted
in red.

The oscillator modes of interest are the first longitudinal one, resonating at about 1.4 kHz (fig
2.2 (b)), and the first transverse one, resonating around 300 Hz (fig 2.2 (c)), since they are the
easiest to measure and the ones for which thermal noise induces the larger vibrations. In its first
longitudinal mode of vibration, the aluminum oscillator can be seen as a spring-mass system with
the rod acting as the spring and the cuboid as the mass attached to one of its ends. The system
dynamics therefore is that of a damped harmonic oscillator, and thermal noise acts as a stochastic
force on it (see section 1.4.2).

2.2.2 Heater

In order to produce a temperature gradient across the oscillator and establish a NESS, an
infrared heater is installed to face one side of the cuboid mass. The IR heater functions as a 3.6
⌦ resistor that generates heat through the Joule effect, emitting radiation as a black-body with a
power determined by the current flow. The resistor is positioned at the focal point of a parabolic
mirror, which directs all radiation emitted by the resistor towards the cuboid mass of the oscillator
(see figure 1.14 (a)).

When the oscillating mass is heated by the resistor a temperature gradient �T between the top
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2 The Non-Equilibrium Thermal Noise Experiment

Figure 2.2: Schematic drawing of the oscillator: it consists in a monolithic piece of aluminum
machined in the shape of a cuboid and attached to an upper flange by means of a square cross-
section rod of length L = 100mm and square cross section H2 = (5.5mm)2. The cuboid side
is roughly B = 50mm. In the picture the two motions of the oscillator are depicted, the first
transverse mode (left) and the first longitudinal one (right). Picture from [25].

(T1) and the bottom (T2) of rod is created, establishing a NESS.
To measure the temperature of the upper end of the rod and of the cuboid mass, an NTC

thermistor mounted on a copper plate at the base of the rod and a thermopile facing the other side
of the cuboid mass with respect to the heater are used, respectively. The thermopile provides also a
measure of the ambient temperature inside the vacuum chamber. The ambient temperature outside
the vacuum chamber (temperature inside the laboratory) is monitored by a thermometer.

2.2.3 Mechanical Suspensions

The setup is placed on an air suspended optical table. The residual environmental mechanical
noise is reduced by using a three-stage mechanical filter. The NETN experiment reuses the three-
stage mechanical filter developed in the past as suspension prototype for the RareNoise experiment
[21], where it was designed to fit in the volume of the vacuum chamber (described in section 2.2.4).
Each of the three stages have diameter 305 mm, height 260 mm and a mass of 17.4, 17.4, and 19.8
kg respectively, from bottom to top. The third one is more massive with respect to the previous
two since it must support a 6.6 kg payload, consisting of a flange for housing the oscillator-reference
mirror-PBS assembly. A scheme and a picture of the mechanical suspensions design can be seen in
figure 2.3.

A passive mechanical filter consists of a mechanical oscillator that resonates at a frequency ⌫0
much lower than the frequencies of interest, in the NETN case lower than ⇠ 300Hz, the frequency
of the first transverse mode of the oscillator.

For frequencies ⌫ much higher than the resonance frequency of the filter ⌫0 and in a low-loss
regime where ⌫0 ⌧ ⌫ ⌧ ⌫0/�, with � being the loss angle of the oscillator represented by the
mechanical filter, an input vibration is depressed at the output by a factor defined by the transfer
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(a) Scheme of the mechanical suspensions design (b) Picture of the mechanical suspensions

Figure 2.3: (a) Cross section of the full assembly with the payload. The oscillator inserted co-axially
inside the mechanical filters is visible. Also the piezoelectric actuator is visible, positioned over the
top flange. Picture from [21]. (b) Picture of the full assembly of the suspension with payload. The
picture shows also the white cables connecting the thermopiles, thermometers and heater. On top
of the system the piezoelectric actuator used to estimate the oscillator tranfer function is visible.

function [21]:

T (⌫0, ⌫) =
⌫20

⌫20 � ⌫2
(2.1)

When N filters are positioned in cascade, the total transfer function is the product of the
individual transfer functions and, for high enough frequencies, it shows an isolation that goes as
⌫2N . The three filters implemented in the NETN setup are designed to work in the frequency range
300-2000 Hz. Above 2000 Hz the mechanical filters lower acoustic mode resonate, therefore they
stop to behave as rigid bodies and exhibit internal modes of vibration. The internal resonances
of the mechanical structure cause the transfer function to display a pattern of resonances in the
high-frequency region (above 2000 Hz), thus worsening the suspension performance.

The resonance frequency of a single stage is ⌫0 ⇡38 Hz, while the overall cascade of filters shows
a more complicated behavior. The measured vertical transfer function of the whole suspension
system is reported in figure 2.4.

The vacuum chamber (containing filters and payload) is positioned on three nylon spacers, which
in turn are sustained by three aluminum cylinders, and the overall system lies on the optical bench.
The nylon spacers are inherited from the RareNoise experiment, in which they were used as thermal
insulators, while the aluminum ones have been integrated in the NETN experiment to raise the
vacuum chamber. In order to isolate even more the oscillator from external vibrations, between each
of the three nylon supports and the corresponding metallic cylinder is placed a cube of Sylodamp, a
vibration damping elastomer, which acts as a mechanical filter. The vacuum chamber spacers and
the Sylodamp placed on them are visible in figure 2.5. This material allows in particular to reduce
the vibrations in correspondence of the resonances in the range 10÷ 70 Hz (which propagate even
above 100 Hz through the higher harmonics of these modes) shown in figure 2.4.

A large piece of Sylodamp is also placed between the optical bench and the ion pump that
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2 The Non-Equilibrium Thermal Noise Experiment

Figure 2.4: Vertical Transfer function of the mechanical filter. The black line is the experimentally
measured transfer function. The gray line is the prediction from the coupling in cascade of the three
stages, which are three oscillators of masses, respectively, 17.4, 17.4, and 19.8 kg, each resonating
at the frequency ⌫0 ⇡ 38Hz. Picture from [21].

rests over it; being rigidly connected to the vacuum chamber, the pump would otherwise allow the
vibrations to reach the chamber bypassing the isolation of the legs.

(a) Pillars sustaining the vacuum chamber (b) Sylodamp positioned inside the
pillars

Figure 2.5: (a) Photo of the three pillars sustaining the vacuum chamber, consisting of a nylon part
(black) and an aluminum one (b) One of the three pillars sustaining the vacuum chamber; between
the nylon (back) and the aluminum supports, the cube of damping material called Sylodamp (green)
is placed in order to minimize the transmission of external vibration to the chamber.
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2.2 Experimental Setup

2.2.4 Vacuum System

In order to reduce external disturbancies to both the oscillator and the readout system, including
the acoustic noise caused by sound waves propagation in air and externally induced thermal effects,
the oscillator and the three mechanical filters surrounding it are kept inside a vacuum chamber.

The vacuum chamber is a prototype of the one used in the past for the RareNoise experiment
[21] and consists of two aluminum blank flanges, with a 400 mm diameter, acting as base and top
of the box, spaced by an aluminum tube of internal diameter 305 mm and height 260 mm. A
glass window has been added on the chamber base to let the laser beam enter and exit during the
measurements. The vacuum chamber can be seen in figure 2.1 (a).

The vacuum system consists of three pumping stages (displaced as shown in figure 2.7): a dry
scroll pump, a turbo-molecular pump (figure 2.8 (a)), and an ion-pump (figure 2.8 (b)).

The scroll pump is used to create a pre-vacuum (⇠ 10�1 mbar), then the turbo-molecular pump,
working in parallel with the scroll, reaches a pressure of the order of 10�5/10�6 mbar. This level of
vacuum would be sufficient for the experiment, but the turbo-molecular pump vibrations induces a
high mechanical noise on the optical table. Therefore, the combination of the scroll and the turbo-
molecular pumps is used only to pre-evacuate the chamber, in order to successively turn on the ion
pump. During the measurements the ion pump is left alone pumping into the chamber, where it
maintains a pressure of the order of 10�6 mbar. Figure 2.6 shows the trend of the pressure inside
the vacuum chamber during the procedure described above. Each step of the procedure is indicated
by specifying which pumps are acting on the system.

Figure 2.6: Trend of the pressure inside the vacuum chamber during the procedure of establishing
the vacuum. Each step of the procedure is distinguished by a different color.

Three vacuum valves are placed as can be seen in figure 2.7. Three vacuum gauges are used
to measure the pressure in the chamber, at the head of the ion pump and at the head of the
turbo-molecular pump (respectively gauge 1, 2 and 3 in the scheme 2.7).

2.2.5 Data Acquisition

The four photodiodes outputs are acquired using a 24-bit resolution ADC NI PXI-4462 DAQ
board, with a sampling frequency ffast = 8 kHz in a ±10 V range (fast channels).

All the enviromental parameters are acquired with a sampling frequency fslow = 1 Hz by NI
9219 24-bit universal analog inputs (slow channels). The monitored environmental parameters are
the temperatures measured by the NTC thermistor at the base of the rod and by the thermopile
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2 The Non-Equilibrium Thermal Noise Experiment

Figure 2.7: Scheme of the vacuum system. The three pressure gauges and the three valves allow
to monitor and control the system. The turbo molecular pump and the scroll pump are used to
reach the pressure in the chamber of 10�5/10�6 mbar. Once that level of vacuum is reached, the
ion pump is turned on and used to maintain a pressure of the order of 10�6 mbar. During the
measurements, turbo-molecular and scroll pump are turned off and detached one from the other, to
minimize the vibrations transmitted to the experimental apparatus.

facing the cuboid mass (T1 and T2), the ambient temperature, measured both inside and outside the
vacuum chamber, along with the pressures monitored by the vacuum gauges placed on the setup.

The acquisition system is based on a National Instruments PXI platform. The data acquisition
software, which is developed using NI LabView, allows both a real-time visualization of data from
fast and slow channel and their storage into files. The sampled fast channel data are stored in series
of 20 minutes long BIN files and the data analysis is carried out offline with custom Python scripts
and functions.
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2.2 Experimental Setup

(a) Turbo-molecular pump (b) Ion pump

Figure 2.8: (a) Photo of the turbo-molecular pump used, after the accension of the scroll pump
and in combination of it, to lower the pressure enough to turn on the ion pump (⇠ 10�5 mbar).
Once the ion pump is able to pump alone in the chamber, the turbo-molecular pump is turned off
and disconnected from the scroll pump, to avoid the transmission of ground vibrations to the table.
(b) Photo of the ion pump used to generate and maintain the vacuum inside the vacuum chamber.
The green piece of Sylodamp material, used to prevent the transmission of ground vibrations to the
system, is visible under the pump.
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Chapter 3

Interferometric Readout and Data
Analysis

Chapter 2 was dedicated to the detailed description of the experimental setup. It has been
seen that the latter is designed to perform high precision measurements of the vibrations induced
longitudinally in a mechanical oscillator by thermal noise, both in and out of thermodynamic equi-
librium. In this chapter the focus is on the interferometric readout of the oscillator vibrations.
Section 3.1 describes the optical layout and analyzes the interferometer output assuming ideal op-
tical components. Section 3.2 discusses the limits of the experimental case with respect to the ideal
one and describes the procedure of readout calibration performed using the photodiodes outputs.
Section 3.3 describes how the spectral analysis on the interferometric readout is carried out. This
analysis allows to extract, from the photodiodes output, information on the oscillator vibrations
and to measure therefore the thermal noise affecting the oscillator.

Figure 3.1: Schematized optical setup. The label detection area refers to the area containing the
four photodiodes collecting the quadrature signals.
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3.1 Ideal Case

3.1 Ideal Case

A scheme of the interferometer setup is shown in figure 3.1, where all the optical elements that
the beam encounters are indicated. From now on, as can be seen from the scheme, the area including
the four photodiodes that collect the quadrature signals is referred to as the detection area.

The laser source emits a 1064 nm wavelength, linearly polarized beam. A telescope consisting of
three lenses (L1, L2, L3), with focal length respectively 100, 150 and 1000 mm, is used to collimate
the beam. The produced beam is characterized by a beam waist of ⇠1 mm and a raylight range of
⇠2.95 m.

The combination of a half-wave plate (HWP#1) and a polarizing beam splitter (PBS#1) is used
as a power controller, allowing to have in transmission a p-polarized beam with adjustable power,
while the s-polarization is reflected and absorbed by a damper. The power tuning is possible through
the rotation of the half-wave plate angle and allows to adjust the power reaching the photodiodes
to the right amount, which is enough to use the full dynamic range of the ADC boards without
saturating the photodiodes.

In order to calculate the intensity reaching the four photodiodes, at the output of the phase
quadrature interferometer, Jones formalism is adopted: the beam is described by its Jones vector,
where the first component represents the p-polarized beam and the second component the s-polarized
one, while each optical element present in the setup is described by its Jones matrix. The Jones
matrix of optical elements relevant for the setup is reported in table 3.1. The interaction with an
optical element is performed by multiplying the beam Jones vector with Jones matrix of the optical
element, indicated using the symbols reported in table 3.1. Vectors are distinguished from scalars
graphically by the use of bold text.

Optical component Symbol Jones Matrix

HWP(22.5�) J�

2

1p
2

✓
1 1
1 �1

◆

HWP(�22.5�) J��

2

1p
2

✓
1 �1
�1 �1

◆

QWP(45�) J�

4

1p
2

✓
1 i
i 1

◆

PBSt JPBSt

✓
1 0
0 0

◆

PBSr JPBSs

✓
0 0
0 1

◆

Beam Splitter JBS
1p
2

✓
1 0
0 1

◆

Mirror JM
✓
1 0
0 �1

◆

Table 3.1: List of the Jones matrices of the optical components present in the setup and interacting
with the laser beam. For each Jones matrix is indicated the symbol used in the text to refer to it.

After PBS#1, the field can be described as:

E0 = JPBSt
Ein = Ein

✓
1
0

◆
(3.1)

where Ein describes the Gaussian beam entering the setup after traversing the HWP.
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3 Interferometric Readout and Data Analysis

The first element it then encounters is a 50:50 beam splitter (BS#1), which directs half of the
beam power towards the chamber area, while the other half is absorbed by a damper. Then an
half-wave plate (HWP#2), with the fast axis set at an angle of 22.5�, rotates the beam polarization
in order to equally divide it in p and s-polarization. Therefore the beam that enters the vacuum
chamber area can be described as:

Echamber = J�

2
JBSE0 =

Ein

2

✓
1
1

◆
(3.2)

The beam goes through a window to enter the vacuum chamber. Inside the chamber it encounters
PBS#2, which divides the two polarizations: the p-polarization is transmitted towards the lower
surface of the oscillator, that is used as the moving mirror of the Michelson interferometer, while
the s-polarization is reflected towards the reference mirror of the interferometer.

The beam transmitted by the PBS and reflected by the oscillator is described as:

EO = JMJPBSt
Echamber =

Ein

2
ei2k(LO+�x)

✓
1
0

◆
(3.3)

where k = 2⇡
�

is the beam wave number, LO is the distance covered by the light going from the
PBS to the oscillator and back and �x the oscillator displacement.

The beam reflected by the PBS and reflected again by the reference mirror is described as:

EM = JMJPBSr
Echamber =

Ein

2
ei2kLM

✓
0
�1

◆
(3.4)

where the distance covered by the light, going from the PBD to the reference mirror and back, in
this case is denoted LM . The two beams then recombine at the PBS, so that at the exit of the
chamber the total beam is:

Erecombined = EO +EM =
Ein

2

✓
1

�ei 

◆
(3.5)

where  = 2k(LM � LO � �x) = 2k(�L � �x). After the recombination, and before entering the
detection area, the beam passes a second time through HWP#2, that in this case is equivalent to an
half-wave plate set at �22.5�. Then it reaches again BS#1, where half of the power is transmitted
and absorbed by a damper, while half is reflected into the detection area. The beam that enters
the detection area is therefore described as:

Edetection = JBSJ��

2
Erecombined =

Ein

4

✓
1 + ei 

�1 + ei 

◆
(3.6)

Inside the detection area BS#2 divides the beam between the two analysis arms of the QPDI. The
beam reaching PBS#3 can be described as:

EAB = JBSEdetection =
Einp
32

✓
1 + ei 

�1 + ei 

◆
(3.7)
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3.1 Ideal Case

The beam in the arm AB is then splitted by PBS#3, which transmits the p-polarization towards
the photodiode A and reflects the s-polarization towards the photodiode B. The beams reaching the
two photodiodes A and B are therefore described as:

EA = JPBSt
EAB =

Einp
32

✓
1 + ei 

0

◆
(3.8)

EB = JPBSr
EAB =

Einp
32

✓
0

�1 + ei 

◆
(3.9)

In the CD arm the beam first passes through a quarter-wave plate with the fast axis set at an
angle of 45� (QWP#1), before reaching the polarizing beam splitter (PBS#4). QWP#1 causes a
⇡

2 phase shift on the C and D signals with respect to the A and B ones. This phase shift generates
quadrature signals that, as described in the previous chapter, allow to unambiguously extract the
optical phase  by measuring both its sine and cosine. The beam in the CD arm arriving to PBS#4
can be described as:

ECD = J�

4
JBSEdetection =

Ein

8

✓
1 + ei � i+ iei 

�1 + ei + i+ iei 

◆
(3.10)

After QWP#1, PBS#4 splits and directs the two polarizations towards the photodiodes C and
D, in the same dynamics of the AB arm. The beam seen by the photodiodes C and D is described
as:

EC = JPBSr
ECD =

Ein

8

✓
0

�1 + ei + i+ iei 

◆
(3.11)

ED = JPBSt
ECD =

Ein

8

✓
1 + ei � i+ iei 

0

◆
(3.12)

For each photodiode the incident power P is proportional to the beam intensity I = |EE⇤| and
results to be:

PA =
Pin

16
(1 + cos ) PB =

Pin

16
(1� cos ) (3.13)

PC =
Pin

16
(1 + sin ) PD =

Pin

16
(1� sin ) (3.14)

Combining the signals read by the two pairs of photodiodes, A and B, C and D, the phase can
be unambiguously extracted. Combining therefore the relations 3.13 and 3.14, the cosine and the
sine of  are given by:

cos =
PA � PB

PA + PB

⌘ Cx (3.15)

sin =
PC � PD

PC + PD

⌘ Cy (3.16)
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3 Interferometric Readout and Data Analysis

where Cx and Cy are called the "contrasts" of the two couples of photodiodes. Once cos and sin 
are known, the phase is retrieved by using the four quadrant arctangent, a function that assumes
values included in a continuous interval of modulus 2⇡.

In relations 3.15 and 3.16, the term Pin contained in the powers measured by the photodiodes
simplifies, and therefore the contrasts are independent of the power of the laser entering the setup
and of its fluctuations.

Also, in this ideal case, the visibility of each photodiode is:

V =
Pmax � Pmin

Pmax + Pmin

= 1 (3.17)

The advantage of using a QPDI is even more evident defining the complex contrast C:

C ⌘ Cx + iCy = ei (3.18)

The unambiguous extraction of  is clear when displaying the contrast C in the complex plane: it
describes a circle with unitary radius centered in (0,0). Therefore, one measurement of the optical
phase  correspond to a polar angle in this plane.

The optical phase  can be expressed as:

 = 2k(LM � LO � �x) =
4⇡

�
(�L� �x) (3.19)

where two contributions can be distinguished: �L, the intrinsic optical path difference between
the two interferometer arms, which may vary slowly with thermal drifts, and �x, the mechanical
oscillator displacement, which can be seen as an oscillation around the mean value of �L. Since
the two contributions are summed in 3.19, the sensitivity of the contrast C with respect to �x does
not depend on �L:

����
dC

d(�x)

���� =
4⇡

�
(3.20)

Thus the working point (the position on the interference fringe, corresponding to the position on
the unitary circle) does not need to be optimized, since the sensitivity is unaffected by it. This is
particularly advantageous since, during the measurement, the working point can experience some
drifts, due for example to the temperature changing: being the sensitivity unaffected by it, the
measured displacement remains calibrated. Once the optical phase is determined, the oscillator
displacement is obtained as:

�x =
�

4⇡
 (3.21)

3.2 Real Case

What was described in the previous section was an ideal case, which does not consider the
inevitable losses in the optical elements and the deviation of their optical properties from the
nominal ones. The reflectivity of the mirrors is for example not exactly unitary and has a slight
different behavior for the s and p-polarizations, as well as the beam splitter does not reflect exactly
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3.2 Real Case

50% of the beam and transmit the other 50%, or the polarizing beam splitter does not transmit and
reflect perfectly the p and s-polarizations respectively, but partially reflects the p and transmits the
s-polarization. Each element of the setup contributes, along with a possible misalignment of the
optical setup, to make formulas 3.13 and 3.14 not exactly valid. In particular, the visibility 3.17
of the power measured by each photodiode is lower than the unitary value. Moreover, in the ideal
case a plot of the two contrasts Cy and Cx in the complex plane, at the variation of  , would result
in a circle of unitary radius, with  the polar angle. In the real case instead it results in something
closer to an ellipse.

3.2.1 Calibration

In order to account for the imperfections of the instrument and of the alignment, the Heyde-
mann’s correction is performed [18]: the closed curve in the (Cx, Cy) plane obtained in the real
case, corresponding to an excursion of  of at least 2⇡, represents the calibration curve. This curve
is approximated by an ellipse and fitted to obtain the parameters necessary to calibrate the system.
This calibration makes it possible to correctly translate the measured contrast into a displacement
of the mechanical oscillator.

The calibration curve is constructed experimentally by acquiring for a few seconds the power
collected by the four photodiodes, while the working point is scanned. The scanning of the working
point is performed by feeding the piezoelectric actuator attached to the reference mirror with a
sinusoidal voltage signal, at an angular frequency !, thus varying the lenght LM .

This allows to explore the full [0,2⇡] range of phases, and so to sweep at least one entire inter-
ference fringe. The power collected, stored into a calibration file, is used to compute the contrasts
Cx and Cy at the variation of the working point, and therefore at the variation of  , using the
equations 3.15 and 3.16. The closed curve in the (Cx, Cy) plane is then fitted by the parametric
equations of an ellipse:

Cx = X0 +Xcos( ) (3.22)

Cy = Y0 + Y sin( + �) (3.23)

Where X0 and Y0 represent the coordinates of the ellipse center, X, Y the projection of the semi
axes on the x and y directions and � its precession. Once these five parameters are obtained from
the fit, equations 3.22 and 3.23 can be used to retrieve the optical phase  and thus the displacement
�x:

cos( ) =
Cx �X0

X
(3.24)

sin( ) =
Cy � Y0
Y cos(�)

� Cx �X0

X
tan(�) (3.25)

An example of calibration is shown in figure 3.2.
Once the values of cos and sin are obtained from 3.24 and 3.25, they can be used, to obtain

the value of the optical phase difference  .
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3 Interferometric Readout and Data Analysis

(a) Photodiodes signal during calibration (b) Calibration curve

Figure 3.2: Example of calibration via piezoelectric excitation. (a) Outputs of the four photodiodes
during the excitation of the piezoelectric actuator on the reference mirror with a sinusoidal voltage
of amplitude 2 Vpp, offset 1 V and frequency 3 Hz. (b) Constrasts Cx and Cy (blue data) obtained
from the photodiodes outputs with the conditions described on the left figure caption and ellipsoidal
fit (orange curve) with the relative fit parameters X0, X, Y0, Y and �.

3.3 Spectral Analysis

This section illustrates the steps of the analysis, carried out with a custom Python script, that
leads to the calculation of the effective temperature Teff associated with thermal noise, starting
from the powers read by the photodiodes ad acquired by the data acquisition system.

3.3.1 Power Spectral Density of the Oscillator Displacement

The minimum displacement �x detectable by the NETN experiment is limited by different noise
sources impacting at different frequencies. In order to more easily separate the displacement caused
by the longitudinal oscillator vibrations from that, real or apparent, associated with other noise
sources, the analysis is conducted in the frequency domain. Therefore, the power spectral density
of the measured �x is computed. This PSD can be seen as the sum of an ideal component S(ideal)

�x
,

only due to the displacement �x, and a contribution SN due to other noises affecting the measuring
apparatus, mainly photodiodes shot noise, ADC limited resolution and residual mechanical noise.
Therefore the computed PSD can be expressed as:

S�x(⌫) = S(ideal)
�x

(⌫) + SN (⌫) (3.26)

This composition of the PSD measured can be seen graphically in the insert of figure 3.3. To
calculate S�x(⌫), the PDs signals are acquired at the sampling frequency ffast = 8kHz and stored
in 20 minutes long files. The signals are corrected based on the calibration parameters acquired
at the beginning of the data acquisition according to the procedure described in 3.2.1. The result
of the procedure is a calibrated optical phase which is then converted in a displacement �x using
equation 3.21. At this point, the whole time-series is divided into segments of duration T = 20
seconds, and for each of them the PSD is estimated based on the Fast Fourier Transform of the
signal, with a resulting frequency resolution of �f = 1/T = 0.05Hz.
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3.3 Spectral Analysis

3.3.2 White Noise Selection

Due to the high sensitivity of the experiment, to reject unreliable data due to excessive environ-
mental or acquisition noise, or to bad fit, the spectra are selected based on a series of criteria.

A first selection of the spectra is performed based on the value of the background noise in the
kHz region. Here, except for a number of peaks, the noise is almost white and is expected to be
associated to the readout chain rather than to actual motion of the system.

A test PSD is produced by averaging the first ⇠ 6 minutes of the acquired data (see figure 3.3).
From this PSD it is possible to identify a frequency region with no resonances or anomalies and
before the resonant frequency of the oscillator. In this region, the average white noise level for each
of the spectra calculated in 3.3.1 is computed, and the results are displayed on a histogram (fig 3.4).

Figure 3.3: Example of a PSD resulting from the average of 20 consecutive PSDs of 20 seconds
intervals which have been previously selected (⇠6 minutes). The structure of the PSD shows higher
values at low frequencies, with several peaks between 30Hz and 70Hz, while it decreases toward
higher frequencies; this shape is related to the cascade of three mechanical filters that sustain the
oscillator (2.2.3). At higher frequencies the PSD is nearly flat and the noise floor is mainly due to
photodiodes shot noise and resolution of the acquisition system. The resonance peak at ⇠1400 Hz
is shown in the insert, where the composition of the PSD described in equation 3.26 is illustrated.

By looking at the histogram, a threshold level is chosen in order to cut the noise distribution
tail, and spectra with a white noise above the threshold are discarded.

3.3.3 Lorentzian Fit and Effective Temperature Calculation

The estimation of the PSD of a time series carries a large uncertainty (in fact, the variance of
every single point in the PSD is equal to the point’s value), and this can make it difficult for the
non-linear fit routine to converge properly. To reduce this uncertainty, N spectra can be averaged
(under the assumption that they are all realization of the same stationary process), reducing the
uncertainty on each point by a factor

p
N . To this purpose we average the spectra that passed the

previous selection in groups of 20, reducing the statistical fluctuation by a factor ⇠4.
Each averaged spectrum is then fit in the region corresponding to the longitudinal vibration

mode of the oscillator (around 1400 Hz). The extremes of the fit are defined by looking at the same
test PSD used to define the interval where to estimate the white noise and change according to
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3 Interferometric Readout and Data Analysis

Figure 3.4: Example of histogram of the white noise values calculated in the frequency range (1365-
1390)Hz for each 20 seconds PSD of each file considered for the analysis. The red vertical line
defines the noise threshold chosen, in this case equal to 20⇥10�30m2/Hz. All the 20 seconds PSDs
characterized by a white noise value higher than the threshold (corresponding to the tail of the
noise distribution) are discarded by the analysis.

the resonance frequency (in chapter 4 it will be shown that the latter changes over time). These
extremes are set to be an interval of ±3 Hz around the value of the resonance frequency. The
resonance peak is fitted with the combination of a Lorentzian curve and a constant, which is a good
approximation, near the resonance frequency, of the formula 1.22 describing the PSD of the motion
of a solid due to thermal noise:

y(⌫) = y0 +
2

⇡
A

�⌫

4(⌫ � ⌫0)2 +�⌫2
(3.27)

where the constant y0 represents the noise level out of resonance, ⌫0 the resonance frequency, A the
peak area and �⌫ the full width at half maximum. Therefore, for each averaged spectrum, A, ⌫0,
�⌫ and an estimation of the white noise are calculated, along with the reduced �2 associated to
the fit.

At this point another selection is performed by discarding all the fit that are characterized by
reduced �2 higher than a defined threshold: a fit is rejected if its reduced �2

R
is higher than a

threshold �2 theshold
R

, defined such that P (�2
R

> �2 theshold
R

) = 5%. An example of the parameters
resulting from the fits and of the �2

R
selection is shown in figure 3.5 (left), where the data passing

the selection is indicated in red.
The area A of the Lorentzian curve and the resonance frequency ⌫0 of the longitudinal mode,

resulting from each fit, are used to calculate an effective temperature with the same formula obtained
and used by the RareNoise experiment to infer the thermodynamic temperature from the energy
stored in the mode (see section 1.4.2):
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3.3 Spectral Analysis

Teff =
m · (2⇡⌫0)2hx2(t)i

kB
(3.28)

where m ⇠ 0.234kg is the mass of the oscillator and hx2(t)i = A is the mean square longitudinal
vibration caused by thermal noise. For any given time interval in which the conditions can be
considered stationary (and this depends on the type of measurement that is being performed), the
distribution of all the calculated effective temperatures is fitted with a Gaussian curve (figure 3.5
(b)), whose mean value µ = Tavg represents the estimation of effective temperature Teff for that
particular measurement.

(a) Parameters of the Lorentzian fits (b) Effective temperatures histogram

Figure 3.5: (a) Parameters of the Lorentzian fits of the longitudinal mode of the oscillator for each
selected and averaged spectrum. The x-axis represents the sample count. The data in red represents
those that have passed the selection on the reduced �2. The plot of the calculated temperature as
a function of the fit number is not shown, as it is simply proportional to that of A, given that ⌫0 is
⇠constant. (b) Histogram of the calculated effective temperatures before (up) and after (down) the
reduced �2 selection. For each histogram the mean value µ = Tavg as well as the standard deviation
� and the reduced standard deviation �/

p
N are calculated.
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Chapter 4

Results and Discussion

This chapter presents the results obtained by the NETN experiment during this thesis work at
the Laboratori Nazionali di Legnaro (Padua).

The aim of this experiment coincides with that of the previous RareNoise experiment, i.e. to pre-
cisely measure the vibrations of a macroscopic oscillator caused by thermal noise in thermodynamic
equilibrium, and subsequently compare them with those measured in a non equilibrium steady state
(NESS). The scientific goal is to study the behavior of the thermal noise outside thermodynamic
equilibrium and its implications on the energy equipartition principle, both in the prediction of the
average energy and in the energy equipartition itself.

What differentiates the NETN experiment from the previous RareNoise is the substitution of
the capacitive readout with an interferometric one. The use of an interferometric readout allows to
perform an absolute calibration in terms of the oscillator displacements, thus reducing significantly
the presence of systematic errors.

In both experiments, the study of thermal noise in and out the thermodynamic equilibrium is
carried out through the estimate of the effective temperature Teff = m!2hx(t)2i/kB, where the
experimentally obtained quantities are the area A = hx(t)2i of the resonance peak of the vibration
mode of interest, and the resonance frequency !. In fact, in thermodynamic equilibrium and in the
absence of external noise sources, according to the equipartition principle, it is possible to estimate
the thermodynamic temperature from the energy stored in the mode, i.e. from A. However, this
may not be verified in the presence of a NESS. For this reason it is necessary to compare the Teff

calculated in and out the equilibrium state.
Experimentally, the comparison between Teff in a NESS and at equilibrium can be done in

two ways: relative, simply comparing the uncalibrated signal measured at equilibrium with that
measured in a NESS; or absolute, providing first an absolute calibration of the system, and then
measuring the level of noise in the two cases. In this last approach, one can check that the Teff is
in fact consistent with ambient temperature.

Unfortunately, to date the measurement of Teff in equilibrium showed several problems, despite
the improvement of the calibration procedures, characterizations of the optical readout and the
mechanical interventions (the latter of which are reported in the section 4.1). The main problems
affecting the equilibrium measurements of Teff are a fluctuation of the measured values, with a mag-
nitude that cannot be explained by corresponding fluctuations in the thermodynamic temperature,
and the fact that these were always lower than the thermodynamic temperature, which indicates
the presence of a systematic error. For these reasons, during this work, no measurements were
performed in a NESS.

The focus of the work here presented was instead to identify the cause of the Teff behavior
in thermodynamic equilibrium described above. Measurements were first carried out with the
acquisition and analysis methods described in section 3.3, to monitor the effect of the mechanical
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4.1 System Rigidity Test

interventions on the Teff measurements. These interventions, as explained in detail in the next
section, involve the screws that fix the flange containing the oscillator to the third stage of the
mechanical filters. Section 4.1 reports the results of this first study. On the basis of the results
obtained, it was decided to start a more systematic and continuous measurement of Teff , in order
to investigate the origin of the unexpected behavior of the equilibrium Teff . The results of these
latter measurements are reported in section 4.2.

4.1 System Rigidity Test

As anticipated, in the first part of this work mechanical interventions were carried out on the
system. This section reports a series of measurements that monitor the system’s response to these
interventions. These interventions concern the flange that supports the oscillator, together with the
reference mirror and the PBS necessary to monitor its vibrations (this system can be seen in figure
2.1 (b)). It has been discovered in the past, by removing the flange, that the eight steel screws
holding the flange to the filters (which have been tightened with a torque of 15 Nm) were loose.
The original configuration of the flange can be seen in figure 4.1 (a), were the screws aforementioned
are circled in red.

(a) Original flange (b) Modified flange

Figure 4.1: (a) Picture of the three mechanical stages usually enclosed in the vacuum chamber. The
upper stage contains the flange, to which the oscillator-PBS-reference mirror system is attached.
Originally the flange was fixed to the third mechanical filter, as visible here, by eight M8 steel
screws, tightened with a torque of 15 Nm. (b) Picture of the flange, fixed to the third mechanical
filter, after eight more screw were added and the pre-existing ones were enlarged, for a total of
sixteen M10 steel screws, tightened at 20 Nm.

It was not clear whether the screws had loosened over time, after being tightened at 15 Nm, or
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4 Results and Discussion

whether they had been tightened with a lower torque from the beginning. The screws were subse-
quently repositioned and tightened at 15 Nm. After the system was brought back into operation,
a change in the behavior of the measured Teff was observed, which appeared to be more stable
over time and closer to the thermodynamic temperature (see initial data in figure 4.2, with white
background). This change, however, faded away over time. This behavior motivated a study of the
response of Teff at the variation of the state of the screws holding the flange.

For this purpose, measurements have been performed acquiring data overnight (from ⇠6 pm
to ⇠9 am), or over an entire weekend, covering overall a time span of about three months. These
moments were chosen for data acquisition as they are favored by the reduced presence of people in
the laboratory and in the surrounding areas, which could cause an increase in environmental noise.

Figure 4.2: Plot displaying the values of Tavg calculated by analyzing overnight and weekend ac-
quisitions as described in section 3.3. These measurements cover a period of about three months,
as can be seen on the x axis, were the date represents the day when the acquisition started, and
full weekend acquisitions have been divided in days and nights (indicated as D and N respectively).
The error bar on each value represents the standard deviation of the mean �/

p
N , were N is the

number of averaged Teff . The red line on the plot represents a reference of the average ambient
temperature Tref ⇠ 296 K (and not a real time measure of the ambient temperature). The different
colors indicate a change in the tightening torque of the screws that fix the flange to the third stage
of the mechanical filters, or a substitution of them, as explained in the text.

The effective temperatures resulting from performing the data analysis described in section 3.3
on these measurements are displayed in figure 4.2. The plot shows the various Tavg, obtained
as the average value of the Teff calculated for each spectrum produced in the data analysis for
that particular measurement (as seen in figure 3.5) and indicates the date on which the overnight
acquisition of the relative measurements started. In the case of a full weekend acquisition, this has
been divided in days and nights (indicated as D and N respectively on the plot), due to the limited
amount of data that can be analyzed by the computer at one time. The error bar on each value
represents the standard deviation of the mean �/

p
N , with N being the number of Teff averaged.

The red line on the plot represents a reference of the average ambient temperature Tref ⇠ 296 K.
A real time value of the ambient temperature of the laboratory is not present due to a problem in
the collection of the slow channel data, but giving that the laboratory is thermally stabilized, it is

43



4.2 Continuous Measurements

not expected to vary from the average value by more that a couples of degrees kelvin.
In figure 4.2 different colors denote a change in the the tightening torque of the eight M8 steel

screws that fix the flange to the mechanical filters, or a substitution of them.
Until May 8th, the measured Tavg showed a significant fluctuation over time, indicating that

the effect of tightening the screws described above had already faded. On May 9th the vacuum
chamber was opened and the tightening torque verified to be lower than 15 Nm (between 11 and 13
Nm). The screws were tightened again at 15 Nm and the system was brought back into operation.
The green section of plot 4.2 reports the measurements performed after this intervention, which do
not show the expected improvement. On May 19th the chamber was opened again to verify the
tightening of the screws, which were found to be loose again. This time it was also noticed that the
screw threads had worn-out, thus all eight screws were substituted with new ones of the same type.
The orange section of plot 4.2 reports measurements performed after this substitution.

The measured values of Tavg in the orange section not only did not stabilize, but seemed to
show a decreasing trend, possibly associated with the loosening over time of the screws even though
these were new. This can be attributed to the fact that, although the screws were new, the screw
holes were not, and they could have been damaged as well. Furthermore, the screws were tightened
to the limit of the torque allowed for their type.

This led to the decision of modifying the experimental apparatus, increasing the number of
screw holes on the flange and widening the pre-existing ones, such that the flange and the third
stage mechanical filter could be kept together by a total of sixteen M10 steel screws, screwed
with a torque of 20 Nm. The flange after this modification can be seen in figure 4.1 (b). The
blue section of plot 4.2 reports the measurements performed in this new configuration. These
Tavg measurements continued to be sub-thermal and to show fluctuations (as confirmed by further
measurements reported in section 4.2).

The variation of the resonance frequency ⌫0 and of the FWHM of the resonance peak (�⌫) over
the whole period are reported in figure 4.3. This plot reports an average value of the two quantities
for each measurement, distinguishing with the same colors of figure 4.2 the different configurations
of the flange. What can be seen from the plot is that the resonance frequency changes at each
change of the configuration. The first time the screws are tightened (green) ⌫0 slightly decrease:
this is somewhat surprising, since one would expect the resonance frequency to increase with increase
rigidity of the system, which is confirmed by the subsequent measurements. In this case, it could
be that the already worn-out threads were actually further degrading and loosing grip as the screws
where tightened.

When the screws are replaced with new ones instead (orange section) an increase is visible, from
⇠ 1399 to ⇠ 1402 Hz. This is a sign that by replacing the screws with new ones the rigidity of the
structure increased. As expected, when more and bigger screws substitute the eight original ones
the rigidity of the structure increases significantly, given a resonance frequency increase of ⌫0 of ⇠ 6
Hz. The FWHM instead remained almost constant around ⇠ 0.45 Hz, until the replacement of the
eight M8 screws with the sixteen M10 screws, were it reached the value of ⇠ 0.2 Hz. This indicates
overall an increase in the quality factor Q = ⌫0/�⌫ by almost a factor 2 by modifying the flange.

The persistence of fluctuations in the trend of the measured Tavg, despite improving the flange
configuration (as confirmed by the increased resonance frequency of the oscillator longitudinal
mode), led to the conclusion that the non-rigidity of the system was not the only factor influencing
the unexpected behavior of Tavg.

4.2 Continuous Measurements

From the study reported in the previous section it was concluded that the problem of fluctuations
in the Teff measurement was not due to the insufficient rigidity of the system, or not only to that.
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4 Results and Discussion

Figure 4.3: Plot of the average resonance frequency and FWHM of the resonance peak associated to
each overnight measurement. Different colors distinguish the different configurations of the flange,
as explained in the text.

In order to investigate the origin of the unexpected behavior of the equilibrium Teff , it was decided
to start a different data acquisition campaign, in order to continuously monitor the system and to
allow a statistical analysis of the results. For this purpose, the Lab View acquisition program was
modified so that it could continuously acquire one hour of data followed by a three-hour break. It
was necessary to modify the acquisition program due to the limited memory of the computer linked
to the acquisition system. During the acquisitions the condition of the setup remained unchanged.
It was possible in this way to acquire measurements continuously and analyze the trend of the
resulting Tavg week by week. A calibration was acquired every week to verify that the system
remained aligned over time. If slight misalignments were present, a calibration was collected both
before and after the realignment procedures. The values of Tavg measured during this continuous
acquisition are reported in the bottom plot of figure 4.4.

Furthermore, for a more detailed study of the temperature trend, it was decided to plot not only
Tavg, but also the value of Teff , calculated as in equation 3.28, associated to each spectrum selected
and averaged as described in section 3.3. The measured values of Teff are reported in the middle
plot of figure 4.4. From both the plot of Tavg and Teff it is visible a high variability, not justifiable
with the sole variation of thermodynamic temperature. The effective temperature fluctuates around
270 K between September 18th and 22th, then a rapid drift brings it around 200 K until September
30th, when it moves again rapidly towards 250 K, where it remains almost stable until the end of
the acquisition. Then not only the measured Teff continued to result sub-thermal, but it kept also
showing relatively big oscillations, due to phenomena that are currently unknown.

Along with Teff , other quantities usually derived by the analysis have been displayed and
studied. This allowed to study the correlations between all the variables used in the data analysis
to estimate Tavg: the resonance frequency ⌫0, the FWHM of the resonance peak (�⌫), the white
noise value (Nfit) estimated by fitting the resonance peak of each produced spectrum, the white
noise value (Navg) estimated averaging the displacement PSD in a range of frequencies before the
resonance (as seen in 3.3.2) and the average phase � indicative of the working point. This continuous
monitoring lasted about one month.
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4.2 Continuous Measurements

Figure 4.4: TOP: plot of the Tavg obtained by averaging the effective temperatures measured each
day. The error bar is derived as the standard deviation of the mean �/

p
N . MIDDLE: plot of

the Teff calculated with 3.28 for each spectra produced, selected and averaged by the analysis (as
seen in section 3.3). The x axis represents a sample count and not a time unit. For a rough time
reference see the upper plot. The error bar associated to each value is derived by propagation of
the errors associated to A and ⌫0. In both plots an average ambient temperature Tref is indicated
as a reference with a red horizontal line. It does not provide a real time measure of the ambient
temperature. BOTTOM: plot of the two white noise estimates: Navg (blue) and Nfit (orange). The
errors associated to Navg and Nfit are respectively the standard deviation of the mean (relative to
the averaged spectra) and the standard deviation calculated by the fit. The x axis represents the
sample count.

All these quantities were collected in order to identify possible correlations between them, which
could provide useful information to explain the trend of Teff shown in figure 4.4. To do so, each
quantity had to be sampled or averaged with the same frequency, so that one could be plotted
against the other. For this purpose, Navg and � were reprocessed to match the sampling of the
quantities resulting from the Lorentzian fits, i.e. in such a way that to each selected and averaged
spectrum corresponded a single Navg and � value. For Navg, which was originally calculated for
each 20 seconds spectra (see section 3.3.2), it was sufficient to apply the same operations of selection
and averaging that had been performed to obtain the spectra to be eventually fitted.

The values of the interferometer phase � are computed from the output of the four photodiodes
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4 Results and Discussion

with a sampling rate of 8 kHz. A single value of � for each 20 seconds spectrum was obtained by
averaging the values measured in those 20 seconds, only to be then processed in the same way as
Navg.

For each couple of variables the Spearman’s correlation coefficient was calculated [28], which as-
sesses how well the relationship between two variables can be described using a monotonic function.
This type of correlation was chosen so as not to limit the research to linear correlations, such as the
ones quantified by the Pearson’s correlation coefficient. By building a matrix with these calculated
coefficients, visible in figure 4.5, it is possible to identify correlations between several quantities:
some can be explained easily while others came out as unexpected.

Figure 4.5: Spearman correlation matrix of the six quantities considered in this analysis: Navg,
Nfit, Teff , ⌫0, �⌫ and �. For each couple of quantities the Spearman’s rank correlation coefficient
is indicated inside the relative square. This coefficient assesses how well the relationship between
two variables can be described using a monotonic function. In the estimation of the correlation of
other variables with �, the latter was unwrapped.

Among the expected correlations is the one between the two different white noise estimates
considered in the analysis: Navg and Nfit. As can be seen from the matrix in 4.5, the Spear-
man’s correlation coefficient between Navg and Nfit is equal to 0.94, indicating that the estimation
procedures are consistent, and suggesting therefore their goodness. A plot of the two noise esti-
mates during the monitoring is reported in the bottom plot of figure 4.4, from which the correlation
between the two parameters is clear, but it is also visible a high variability in their trend.

Another expected (anti)correlation is the one of the resonance frequency ⌫0 with the phase �,
indicative of the working point. The Spearman’s correlation coefficient between these two quan-
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4.2 Continuous Measurements

tities is equal to -0.89. In the calculation of this correlation coefficient � has been unwrapped.
This correlation is also shown in figure 4.7, where ⌫0 is plotted against the unwrapped �, and in
figure 4.6, were the trend of both quantities during the period in analysis is visible. The correla-
tion between these two quantities is physically correct and expected, since both are linked to the
thermodynamic temperature (ambient temperature inside the laboratory): if the thermodynamic
temperature changes, the two arms of the interferometer, defined by different material and geome-
tries, will undergo a different thermal expansion and cause a change in the working point �. At
the same time a temperature change affects also ⌫0, as an increase in the temperature softens the
oscillator’s material, decreasing ⌫0, and vice versa.

Figure 4.6: TOP: plot of the resonance frequency ⌫0 over sample number. The error associated to
each value is the standard deviation calculated by the fit. BOTTOM: plot of the unwrapped phase
� over the sample number. The error associated to each value is the standard deviation of the mean
(relative to the averaged spectra). The vertical green line indicates one of the two phase jumps
visible on the plot. This first jump is highlighted as it seems to be correlated to a jump also in the
Teff plot and in the noise plot (figure 4.4).

From figure 4.5 it can also be seen that Teff and � are not correlated (with a Spearman’s
correlation coefficient of -0.06). This demonstrates that the measured temperature is independent
of the working point, as one would want it to be.

At the same time, Navg and Nfit results to be correlated with the working point �, with a
Spearman’s correlation coefficient of -0.36 and -0.40 respectively. This is visible also in the plot
in figure 4.8, where the two noise estimate are plotted against the unwrapped �. This correlation
represents something unexpected and unwanted in the experiment. However, it can be explained
in many ways, all equally plausible, such as one of the photodiodes being more affected by optical-
electronic noise than the other three. In this way, the total noise on the recorded signal would
indeed depend on the working point. Further tests are needed to verify whether this or other
similar hypotheses are the cause of this correlation.

Another unexpected correlation is the one of Teff with the two noise estimates Navg and Nfit,
with a Spearman’s correlation coefficient of 0.46 in both cases. This is visible also in figure 4.4, where
the plot of the two quantities seems to follow the same trend. Considering that this correlation
cannot be due to the working point, that has been shown to affect the noise but not Teff , this
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4 Results and Discussion

Figure 4.7: Plot of the resonance frequency ⌫0 in function of the unwrapped phase �. The jump
between values ⇠-2.5 rad and ⇠0 rad is the one indicated in the other diagrams with a green vertical
line.

Figure 4.8: Plot of the white noise estimations Navg (blue) and Nfit (orange), as a function of �,
i.e. of the working point. It this plot � is not unwrapped to make the correlation is more evident.

suggests that there must be some other parameter that affects both Teff and the noise. This
cannot have a physical origin, as the white noise is related to the readout system and not to real
motion of the oscillator, and it is unlikely to be a consequence of the fitting procedure giving that
Navg is not obtained from the fit. However this hypothesis cannot be excluded yet. Further studies
are necessary to understand whether the cause of this unwanted correlation is to be found in the
interferometric readout, in a problem with the data acquisition system, in the fitting procedure or
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in other hypotheses not been taken into consideration yet.
Another issue arises by noticing two jumps in the trend of the working point �. The first of these

jumps is highlighted with a green vertical line in figure 4.6. This event is not in itself noteworthy;
however it seems to coincide with a quick drift in the Teff and white noise trends as well, indicated
in figure 4.4 with the same green vertical line to highlight the correlation. It is important to notice
that this event does not induce instead a jump in the ⌫0 trend (as can be seen in 4.6), indicating that
it is not caused by a change in the oscillator characteristics. Further tests are needed to understand
the origin of this event and how could it induce a common change in quantities, such Teff and �,
that otherwise not correlated, as shown in figure 4.5.

This analysis was useful to verify some aspects such as the validity of the two white noise es-
timates, or the expected correlation between ⌫0 and �, but also for bringing to light unexpected
relationships between some parameters of the experiment. Through further tests and studies, these
correlations could lead to understanding what influences the trend of Teff , apart from the thermo-
dynamic temperature, and causes the observed fluctuations.
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Conclusions

The scientific motivation of the work reported in this thesis is the study of the thermal noise
effects in a macroscopic oscillator, both in and out thermodynamic equilibrium. The high precision
measurements of the thermal noise-induced vibrations have been carried out with a quadrature phase
differential interferometer, in which the macroscopic oscillator represented one of the interferometer’s
mirrors. However, in thermodynamic equilibrium, in which thermal noise can be predicted by
theory, the estimated amplitude of thermal noise induced oscillations resulted to be lower than the
one expected from theory, and was characterized by relatively high fluctuations, not explainable
by the sole variation of thermodynamic temperature. This behavior prevented from carrying out
measurements outside the thermodynamic equilibrium (by imposing a NESS), due to the lack of a
stable reference in the equilibrium measurements.

Therefore this work focused on the measurement of thermal noise in equilibrium, and in particu-
lar on investigating the reasons for the mentioned behavior, with the aim of obtaining measurements
in equilibrium in agreement with the theory and without any free parameters, and then being able
to compare them with a non-equilibrium ones.

The amplitude of the thermal noise induced vibrations was associated with an estimated effective
temperature Teff . The measurements of Teff were first studied in different mechanical conditions
of the system; in particular, the initial hypothesis was that the variation of its overall rigidity
due to the loosening of some screws could cause the observed unexpected behavior. After some
modifications of the apparatus to ensure that it maintained rigidity over time, these fluctuations
did not disappear, indicating that this was not the cause of this behavior, or at least not the only
one.

It was therefore decided to monitor the system almost continuously over time, and to analyze
the correlation between various quantities including, in addition to Teff , the white noise affecting
the measurements, the working point � and the resonance frequency ⌫0 of the vibration mode
considered. Among the various correlations found some are justifiable in physical therms while
others are not. The most puzzling and maybe critical is the correlation between Teff and white
noise, which is not explained by a physical phenomena and therefore was not expected, but that
could lead to a common cause of the fluctuations detected in the monitoring of these two quantities.

The next steps of this experiment will be to investigate the origin of this correlation, considering
for example the interferometric readout or the data acquisition system, among other hypothesis.
Once the problem is identified and fixed, allowing to obtain a measurement of thermal noise in
equilibrium in accordance with the fluctuation-dissipation theorem, the experiment will be ready
for studying its behavior outside thermodynamic equilibrium.
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